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Abstract. Deterministic recursive algorithms for the computation of
generalized Bruhat decomposition of the matrix in commutative domain
are presented. This method has the same complexity as the algorithm of
matrix multiplication.

1 Introduction

A matrix decomposition of a form A = V wU is called the Bruhat decomposition
of the matrix A, if V and U are nonsingular upper triangular matrices and w
is a matrix of permutation. It is usually assumed that the matrix A is defined
in a certain field. Bruhat decomposition plays an important role in the theory
of algebraic groups. The generalized Bruhat decomposition was introduced and
developed by D.Grigoriev[1],[2].

In [3] there was constructed a pivot-free matrix decomposition method in a
common case of singular matrices over a field of arbitrary characteristic. This
algorithm has the same complexity as matrix multiplication and does not require
pivoting. For singular matrices it allows us to obtain a nonsingular block of the
biggest size.

Let R be a commutative domain, F be the field of fractions overR. We want to
obtain a decomposition of matrix A over domain R in the form A = V wU , where
V and U are upper triangular matrices over R, and w is a matrix of permutation,
which is multiplied by some diagonal matrix in the field of fractions F . Moreover
each nonzero element of w has the form (aiai−1)−1, where ai is some minor of
order i of matrix A.

We call such triangular decomposition the Bruhat decomposition in the com-
mutative domain R.

In [6], a fast algorithm for adjoint matrix computation was proposed. On the
basis of this algorithm for computing the adjoint matrix, a fast algorithm was
proposed in [8] for LDU decomposition. However, this algorithm requires the
calculation of the adjoint matrix to calculate the LDU decomposition.

In this paper, we propose another algorithm that does not rely on the cal-
culation of the adjoint matrix and which costs less number of operations. We
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construct the decomposition in the form A = LDU , where L and U are lower
and upper triangular matrices, D is a matrix of permutation, which is multiplied
by some diagonal matrix in the field of fractions F and has the same rank as the
matrix A. Then the Bruhat decomposition V wU in the domain R may easily be
obtained using the matrices L, D and U .

2 Triangular Decomposition in Domain

Let R be a commutative domain, A = (ai,j) ∈ Rn×n be a matrix of order n,
αk
i,j be k× k minor of matrix A which disposed in the rows 1, 2, . . . , k− 1, i and

columns 1, 2, . . . , k− 1, j for all integers i, j, k ∈ {1, . . . , n}. We suppose that the
row i of the matrix A is situated at the last row of the minor, and the column j
of the matrix A is situated at the last column of the minor. We denote α0 = 1
and αk = αk

k,k for all diagonal minors (1 ≤ k ≤ n). And we use the notation δij
for Kronecker delta.

Let k and s be integers in the interval 0 ≤ k < s ≤ n, Ak
s = (αk+1

i,j ) be the

matrix of minors with size (s − k) × (s − k) which has elements αk+1
i,j , i, j =

k + 1, . . . , s− 1, s, and A0
n = (α1

i,j) = A.
We shall use the following identity (see [4], [5]):

Theorem 1 (Sylvester determinant identity).
Let k and s be the integers in the interval 0 ≤ k < s ≤ n. Then it is true that

det(Ak
s ) = αs(αk)s−k−1. (1)

Theorem 2 (LDU decomposition of the minors matrix).
Let A = (ai,j) ∈ Rn×n be the matrix of rank r, αi �= 0 for i = k, k + 1, . . . , r,
r ≤ s ≤ n, then the matrix of minors Ak

s is equal to the following product of
three matrices:

Ak
s = Lk

sD
k
sU

k
s = (aji,j)(δijα

k(αi−1αi)−1)(aii,j). (2)

The matrix Lk
s = (aji,j), i = k+1 . . . s, j = k+1 . . . r, is a low triangular matrix

of size (s− k)× (r− k), the matrix Uk
s = (aii,j), i = k+1 . . . r, j = k+1 . . . s, is

an upper triangular matrix of size (r−k)× (s−k) and Dk
s = (δijα

k(αi−1αi)−1),
i = k + 1 . . . r, j = k + 1 . . . r, is a diagonal matrix of size (r − k)× (r − k).

Proof. Let us write the matrix equation (2) for k + 1 = r

(ak+1
i,j ) = (ak+1

i,k+1)(δk+1,k+1a
k(akak+1)−1)(ak+1

k+1,j) (3)

This equation is correct due to Sylvester determinant identity

ak+1
i,j ak+1 − ak+1

i,k+1a
k+1
k+1,j = ak+2

i,j ak, (4)

and the equality ak+2
i,j = 0. This equality is a consequence of the fact that minors

ak+2
i,j have the order greater then the rank of the matrix A.
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Let for all h, k < h < r, the statement (1) be correct for matricesAh
s = (ah+1

i,j ).
We have to prove it for h = k. Let us write one matrix element in (2) for the
matrix Ak+1

s = (ak+2
i,j ) :

ak+2
i,j =

min(i,j,r)∑

t=k+2

ati,tα
k+1(αt−1αt)−1att,j .

We have to prove the corresponding expression for the elements of the matrix
Ak

s . Due to the Sylvester determinant identity (3) we obtain

ak+1
i,j = ak+1

i,k+1(α
k+1)−1ak+1

k+1,j + αk(αk+1)−1ak+2
i,j =

ak+1
i,k+1α

k(αkαk+1)−1ak+1
k+1,j + αk(αk+1)−1

min(i,j,r)∑

t=k+2

ati,tα
k+1(αt−1αt)−1att,j =

min(i,j)∑

t=k+1

ati,tα
k(αt−1αt)−1att,j .

Consequence 1 (LDU decomposition of matrix A). Let A=(ai,j)∈Rn×n,
be the matrix of rank r, r ≤ n, αi �= 0 for i = 1, 2, . . . , r, then matrix A is equal
to the following product of three matrices:

A = L0
nD

0
nU

0
n = (aji,j)(δij(α

i−1αi)−1)(aii,j). (4)

The matrix L0
n = (aji,j), i = 1 . . . n, j = 1 . . . r, is a low triangular matrix of

size n× r, the matrix U0
n = (aii,j), i = 1 . . . r, j = 1 . . . n, is an upper triangular

matrix of size r × n, and D0
n = (δij(α

i−1αi)−1), i = 1 . . . r, j = 1 . . . r, is a
diagonal matrix of size r × r.

Let In be the identity matrix and Pn be the matrix with second unit diagonal.

Consequence 2 (Bruhat decomposition of matrix A). Let matrix A =
(ai,j) have the rank r, r ≤ n, and B = PnA. Let B = LDU be the LDU-
decomposition of matrix B. Then V = PnLPr and U are upper triangular ma-
trices of size n× r and r × n correspondingly and

A = V (PrD)U (5)

is the Bruhat decomposition of matrix A.

We are interested in the block form of decomposition algorithms for LDU and
Bruhat decompositions. Let us use some block matrix notations.

For any matrix A (or Ap
q) we denote by Ai1,i2

j1,j2
(or Ap;i1,i2

q;j1,j2
) the block which

stands at the intersection of rows i1 +1, . . . , i2 and columns j1 +1, . . . , j2 of the
matrix. We denote by Ai1

i2
the diagonal block Ai1,i2

i1,i2
.
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3 LDU Algorithm

Input: (Ak
n, α

k), 0 ≤ k < n.
Output: {Lk

n, {αk+1, αk+2, . . . , αn}, Uk
n ,M

k
n ,W

k
n},

where Dk
n = αkdiag{αkαk+1, . . . , αn−1αn}−1, Mk

n = αk(Lk
nD

k
n)

−1,
W k

n = αk(Dk
nU

k
n)

−1.

1. If k = n− 1, An−1
n = (an) is a matrix of the first order, then we obtain

{an, {an}, an, an−1, an−1}, Dn−1
n = (αn)−1.

2. If k = n− 2, An−2
n =

(
αn−1 β
γ δ

)
is a matrix of second order, then we obtain

{(
αn−1 0
γ αn

)
, {αn−1, αn},

(
αn−1 β
0 αn

)
,

(
αn−2 0
−γ αn−1

)
,

(
αn−2 −β
0 αn−1

)}

where αn = (αn−2)
−1

∣∣∣∣
αn−1 β

γ δ

∣∣∣∣, D
n−2
n = αn−2diag{αn−2αn−1, αn−1αn}−1.

3. If the order of the matrix Ak
n is more than two (0 ≤ k < n − 2), then we

choose an integer s in the interval (k < s < n) and divide the matrix into blocks

Ak
n =

(Ak
s B

C D

)
. (6)

3.1. Recursive step

{Lk
s , {αk+1, αk+2, . . . , αs}, Uk

s ,M
k
s , W k

s } = LDU(Ak
s , α

k)

3.2. We compute

Ũ = (αk)−1Mk
s B, L̃ = (αk)−1CW k

s , (7)

As
n = (αk)−1αs(D− L̃Dk

s Ũ). (8)

3.3. Recursive step

{Ls
n, {αs+1, αs+2, . . . , αn}, Us

n,M
s
n, W s

n} = LDU(As
n, α

s)

3.4 Result:
{Lk

n, {αk+1, αk+2, . . . , αn}, Uk
n ,M

k
n ,W

k
n},

where

Lk
n =

(
Lk
s 0

L̃ Ls
n

)
, Uk

n =

(
Uk
s Ũ
0 Us

n

)
, (9)

Mk
n =

(
Mk

s 0

−M s
nL̃D

k
sM

k
s /α

k M s
n

)
, (10)

W k
n =

(
W k

s −W k
s D

k
s ŨW s

n/α
k

0 W s
n

)
. (11)
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4 Proof of the Correctness of the LDU Algorithm

Proof of the correctness of this algorithm is based on several determinant iden-
tities.

Definition 1 (δki,j minors and Gk matrices).
Let A ∈ Rn×n be a matrix. The determinant of the matrix obtained from the

upper left block A0,k
0,k of matrix A by the replacement in matrix A of the column

i by the column j is denoted by δki,j. The matrix of such minors is denoted by

Gk
s = (δk+1

i,j ) (12)

We need the following theorem (see [4] and [5]):

Theorem 3 (Base minor’s identity).
Let A ∈ Rn×n be a matrix and i, j, s, k, be integers in the intervals: 0 ≤ k <

s ≤ n, 0 < i, j ≤ n. Then the following identity is true

αsαk+1
ij − αkas+1

ij =
s∑

p=k+1

αk+1
ip δspj . (13)

The minors as+1
ij in the left-hand side of this identity equal zero if i < s + 1.

Therefore, this theorem gives the following

Consequence 3. Let A ∈ Rn×n be a matrix and s, k be integers in the intervals:
0 ≤ k < s ≤ n. Then the following identities are true

αsUk;k+1,s
n;s+1,n = Uk

s Gk;k+1,s
n;s+1,n. (14)

αsAk;k+1,s
n;s+1,n = Ak

sGk;k+1,s
n;s+1,n. (15)

The block Ak;k+1,s
n;s+1,n of the matrix Ak

n was denoted by B. Due to Sylvester
identity we can write the equation for the adjoint matrix

(Ak
s )

∗ = (Ak
s )

−1(αs)(αk)s−k−1 (16)

Let us multiply both sides of equation (15) by adjoint matrix (Ak
s )

∗ and use
equation (16). Then we get

Consequence 4

(Ak
s )

∗B = (Ak
s )

∗Ak;k+1,s
n;s+1,n = (αk)s−k−1Gk;k+1,s

n;s+1,n. (17)

As well as Lk
sD

k
sU

k
s = Ak

s ,

Mk
s = αk(Lk

sD
k
s )

−1 = αkUk
s (A

k
s )

−1 and W k
s = αk(Dk

sU
k
s )

−1. (18)

Therefore,

Ũ = (αk)−1Mk
s B = (αk)−1Uk

s (A
k
s )

−1B = (αs)−1(αk)−s+kUk
s (A

k
s )

∗B. (19)

Equations (19), (17), and (14) give
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Consequence 5

Ũ = Uk;k+1,s
n;s+1,n (20)

In the same way we can prove

Consequence 6

L̃ = Lk;s+1,n
n;k+1,s. (21)

Now we have to prove identity (8). Due to equations (14)-(19) we obtain

L̃Dk
s Ũ = (αk)−1CW k

s D
k
s (α

k)−1Mk
s B =

(αk)−2C(Ak
s )

−1B = (αk)−s+k−1(αs)−1C(Ak
s )

∗B (22)

The identity

As
n = (αk)−1(αsD− (αk)−s+k+1C(Ak

s )
∗B) (23)

was proved in [4] and [5]. Due to (20) and (21) we obtain identity (8).
To prove formulas (10) and (11) it is sufficient to verify the identities Mk

n =
αk(Lk

nD
k
n)

−1 and W k
n = αk(Dk

nU
k
n)

−1 using (9),(10), (11) and definition Dk
n =

αkdiag{αkαk+1, . . . , αn−1αn}−1.

5 Complexity

Theorem 4. The algorithm has the same complexity as matrix multiplication.

Proof. The total amount of matrix multiplications in (7)–(15) is equal to 7, and
the total amount of recursive calls is equal to 2. We do not consider multiplica-
tions of the diagonal matrices.

We can compute the decomposition of the second order matrix by means of 7
multiplicative operations. Therefore, we get the following recurrent equality for
complexity

t(n) = 2t(n/2) + 7M(n/2), t(2) = 7.

Let γ and β be constants, 3 ≥ β > 2, and let M(n) = γnβ+o(nβ) be the number
of multiplication operations in one n× n matrix multiplication.

After summation from n = 2k to 21 we obtain

7γ(202β·(k−1) + . . .+ 2k−22β·1) + 2k−27 = 7γ
nβ − n2β−1

2β − 2
+

7

4
n.

Therefore, the complexity of the decomposition is

∼ 7γnβ

2β − 2
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6 The Exact Triangular Decomposition

Definition 2. A decomposition of the matrix A of rank r over a commutative
domain R in the product of five matrices

A = PLDUQ (24)

is called exact triangular decomposition if P and Q are permutation matrces, L
and PLPT are nonsingular lower triangular matrices, U and QTUQ are non-
singular upper triangular matrices over R, D = diag(d−1

1 , d−1
2 , .., d−1

r , 0, .., 0) is
a diagonal matrix of rank r, di ∈ R\{0}, i = 1, ..r.

Designation: ETD(A) = (P,L,D,U,Q).

Theorem 5 (Main theorem). Any matrix over a commutative domain has
an exact triangular decomposition.

Before proceeding to the proof, we note that the exact triangular decomposi-
tion relates the LU decomposition and the Bruhat decomposition in the field of
fractions.

If D matrix is combined with L or U , we get the expression A = PLUQ. This
is the LU -decomposition with permutations of rows and columns. If the factors
are grouped in the following way:

A = (PLPT )(PDQ)(QTUQ),

then we obtain LDU-decomposition. If S is a permutation matrix in which the
unit elements are placed on the secondary diagonal, then (SLS)(STD)U is the
Bruhat decomposition of the matrix (SA).

Bruhat decomposition can be obtained from those PLUQ-decomposition that
satisfy the additional conditions: matrices PLPT and QTUQ are triangular.
Conversely, LU -decomposition can be obtained from the Bruhat decomposition
V ′D′U ′. This can be done if the permutation matrix D can be decomposed into
a product of permutation matrices D′ = PQ so that the PTL′P and QU ′QT

are triangular matrices.
If matrix A is a zero matrix, then ETD(A) = (I, I, 0, I, I).
If A is a nonzero matrix of the first order, then ETD(A) = (I, a, a−1, a, I).
Let us consider a non-zero matrix of order two. We denote

A =

(
α β
γ δ

)
, Δ =

∣∣∣∣
α β
γ δ

∣∣∣∣ , ε =

{
Δ, Δ �= 0
1, Δ = 0

, Δ−1 =

{
1/Δ, Δ �= 0
0, Δ = 0.

Depending on the location of zero elements, we consider four possible cases. For
each case, we give the exact triangular decomposition:

If α �= 0, then A =

(
α 0
γ ε

)(
α−1 0
0 Δ−1α−1

)(
α β
0 ε

)
.

If α = 0, β �= 0, then A =

(
β 0
δ ε

)(
β−1 0
0 −Δ−1β−1

)(
β 0
0 ε

)(
0 1
1 0

)
.
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If α = 0, γ �= 0, then A =

(
0 1
1 0

)(
γ 0
0 ε

)(
γ−1 0
0 −Δ−1γ−1

)(
γ δ
0 ε

)
.

If α = β = γ = 0, δ �= 0, then A =

(
0 1
1 0

)(
δ 0
0 1

)(
δ−1 0
0 0

)(
δ 0
0 1

)(
0 1
1 0

)
.

There are only two different cases for matrices of size 1× 2:

If α �= 0, then
(
α β

)
=

(
α
) (

α−1 0
)(α β

0 1

)
.

If α = 0, β �= 0, then
(
0 β

)
=

(
β
) (

β−1 0
)(β 0

0 1

)(
0 1
1 0

)
.

Two cases for matrices of size 2× 1 can easily be obtained by a simple transpo-
sition.

These examples allow us to formulate

Sentence 1. For all matrices A of size n ×m, n,m < 3 there exists an exact
triangular decomposition.

In addition, we can formulate the following property, which holds for triangu-
lar matrices and permutation matrices in the exact triangular decomposition.

We denote by Is the identity matrix of order s.

Property 1 (Property of the factors). For a matrix A ∈ Rn×m of rank r, r <
n, r < m over a commutative domain R there exists the exact triangular decom-
position (24) in which
(α) the matrices L and U are of the form

L =

(
L1 0
L2 In−r

)
U =

(
U1 U2

0 Im−r

)
, (25)

(β) the matrices PLPT and QTUQ remain triangular after replacing in the
matrices L and Q of unit blocks In−r and Im−r by arbitrary triangular blocks.

Without loss of generality of the main theorem, we shall prove it for the ex-
act triangular decompositions with property 1. We prove it by induction. The
theorem is true for matrices of sizes smaller than three.

We consider a matrix A of size N ×M . Assume that all matrices of size less
than n×m have the exact triangular decomposition. We split the matrix A into

blocks: A =

(
A B
C D

)
, where A ∈ Rn×n, n < N , n < M .

(1). Let the block A have the full rank. There exists exact triangular decom-
position of this block: A = P1L1D1U1Q1. Here the diagonal matrix D1 has full
rank, and the matrix A is decomposed into the factors:

(
P1 0
0 I

)(
L1 0

CQT
1 U

−1
1 D−1

1 I

)(
D1 0
0 D∗

)(
U1 D−1

1 L−1
1 PT

1 B
0 I

)(
Q1 0
0 I

)
.

Here D∗ = D−CQTU−1D−1
1 L−1PTB. The matrix D∗ also has the exact trian-

gular decomposition D∗ = P2L2D2U2Q2. Substituting it in this decomposition,
we obtain a new decomposition of the matrix A:
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(
P1 0
0 P2

)(
L1 0

PT
2 CQT

1 U
−1
1 D−1

1 L2

)(
D1 0
0 D2

)(
U1 D−1

1 L−1
1 PT

1 BQT
2

0 U2

)(
Q1 0
0 Q2

)
.

It is easy to see that this decomposition is exact triangular if both block
decompositions were exact triangular.

(2) Let the block A has rank r, r < n. There exists exact triangular decom-
position of this block:

A = P1L1D1U1Q1.

Here U1 =

(
U0 V0

0 I

)
, L1 =

(
L0 0
M0 I

)
and the diagonal matrix D1 =

(
d1 0
0 0

)

has a block d1 of rank r.
Let us denote C = (C′,C′′) and (C0,C1)= (C′U0,C

′V0 + C′′)Q1, B =(
B′

B′′

)
,

(
B0

B1

)
= P1

(
L0B

′

M0B
′ +B′′

)
. Then for the matrix A we obtain the de-

composition:

A =

(
P1 0
0 I

)⎛

⎝
L0 0 0
M0 I 0

C0d
−1
1 0 I

⎞

⎠

⎛

⎝
d1 0 0
0 0 B1

0 C1 D

⎞

⎠

⎛

⎝
U0 V0 d−1

1 B0

0 I 0
0 0 I

⎞

⎠
(
Q1 0
0 I

)
. (26)

(2.1) Let B1 = 0 and C1 = 0. We can rearrange the block D in the upper left
corner (

0 B1

C1 D

)
=

(
0 I
I 0

)(
D 0
0 0

)(
0 I
I 0

)
.

Let us find the exact triangular decomposition of D:

D = P2L2D2U2Q2.

We denote

P3 =

(
P1 0
0 P2

)⎛

⎝
I 0 0
0 0 I
0 I 0

⎞

⎠ , Q3 =

⎛

⎝
I 0 0
0 0 I
0 I 0

⎞

⎠
(
Q1 0
0 Q2

)
.

Then for the matrix A we obtain the following decomposition:

A = P3

⎛

⎝
L0 0 0

PT
2 C0d

−1
1 L2 0

M0 0 I

⎞

⎠

⎛

⎝
d1 0 0
0 D2 0
0 0 0

⎞

⎠

⎛

⎝
U0 d−1

1 B0Q
T
2 V0

0 U2 0
0 0 I

⎞

⎠Q3.

It is easy to check that the decomposition is exact triangular.
(2.2) Suppose that at least one of the two blocks of B1 or C1 is not zero. Let

the exact triangular decomposition exist for these blocks:

C = P2L2D2U2Q2, B = P3L3D3U3Q3.



240 G. Malaschonok

We denote

P1 =

(
P1 0
0 I

)
,P2 =

⎛

⎝
I 0 0
0 P3 0
0 0 P2

⎞

⎠ , Q2 =

⎛

⎝
I 0 0
0 Q2 0
0 0 Q3

⎞

⎠ , Q1 =

(
Q1 0
0 I

)
,

P3 = P1P2, Q3 = Q2Q1, D
′ = PT

2 L−1
2 DU−1

3 QT
3 .

Then, basing on expansion (26) we obtain for the matrix A the decomposition
of the form:

A = P3

⎛

⎝
L0 0 0

PT
3 M0 L3 0

PT
2 C0d

−1
1 0 L2

⎞

⎠

⎛

⎝
d1 0 0
0 0 D3

0 D2 D′

⎞

⎠

⎛

⎝
U0 V0Q

T
2 d−1

1 B0Q
T
3

0 U2 0
0 0 U3

⎞

⎠Q3. (27)

We denote d2 and d3 nondegenerate blocks of the matrices D2 and D3, respec-
tively,

(V1, V4) = V0Q
T
2 , (V5, V6) = d−1

1 B0Q
T
3 ,

(
M1

M4

)
= PT

3 M0,

(
M5

M6

)
= PT

2 C0d
−1
1

L2=

(
L′
2 0

M2 I

)
, L3=

(
L′
3 0

M3 I

)
, U2=

(
U ′
2 V2

0 I

)
, U3=

(
U ′
3 V3

0 I

)
,D′=

(
D′

1 D′
3

D′
2 D′

4

)
.

M7 = D′
2d

−1
3 , V7 = d−1

2 D′
1U

′
3, V8 = d−1

2 (D′
1V3 +D′

3).

Then (27) can be written as

A = P3

⎛

⎜⎜⎜⎜⎝

L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M6 0 0 M2 I

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 D′

1 D′
3

0 0 0 D′
2 D′

4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

U0 V1 V4 V5 V6

0 U ′
2 V2 0 0

0 0 I 0 0
0 0 0 U ′

3 V3

0 0 0 0 I

⎞

⎟⎟⎟⎟⎠
Q3 =

P3

⎛

⎜⎜⎜⎜⎝

L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M6 M7 0 M2 I

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D′

4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

U0 V1 V4 V5 V6

0 U ′
2 V2 V7 V8

0 0 I 0 0
0 0 0 U ′

3 V3

0 0 0 0 I

⎞

⎟⎟⎟⎟⎠
Q3. (28)

Find the exact triangular decomposition D′
4:

D′
4 = P4L4D4U4Q4, (29)

Let us denote the matrices P4 = diag(I, I, I, I, P4), Q4 = diag(I, I, I, I, Q4),
P5 = P3P4, Q5 = Q4Q3, (M

′
6,M

′
7,M

′
2) = PT

4 (M6,M7,M2) (V ′
6 , V

′
8 , V

′
3) =

(V6, V8, V3)Q
T
4 .

After substituting (29) into (28) we obtain the decomposition of the matrix
A as

A = P5

⎛

⎜⎜⎜⎜⎝

L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M ′

6 M ′
7 0 M ′

2 L4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

U0 V1 V4 V5 V ′
6

0 U ′
2 V2 V7 V ′

8

0 0 I 0 0
0 0 0 U ′

3 V ′
3

0 0 0 0 U4

⎞

⎟⎟⎟⎟⎠
Q5. (30)
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We rearrange the blocks d2, d3, and D4 to obtain the diagonal matrix d =
diag(d1, d3, d2, D4, 0). To do it we use permutation matrices P6 and Q6:

P6 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎞

⎟⎟⎟⎟⎠
, Q6 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠
, P6

⎛

⎜⎜⎜⎜⎝

d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4

⎞

⎟⎟⎟⎟⎠
Q6 = d.

As a result, we obtain the decomposition:

A = P6LdUQ6, (31)

with permutation matrices P6 = P5P
T
6 and Q6 = QT

6 Q5, diagonal matrix d
and triangular matrices

L = P6

⎛

⎜⎜⎜⎜⎝

L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M ′

6 M ′
7 0 M ′

2 L4

⎞

⎟⎟⎟⎟⎠
PT
6 =

⎛

⎜⎜⎜⎜⎝

L0 0 0 0 0
M5 L′

2 0 0 0
M1 0 L′

3 0 0
M ′

6 M ′
7 M ′

2 L4 0
M4 0 M3 0 I

⎞

⎟⎟⎟⎟⎠

U = QT
6

⎛

⎜⎜⎜⎜⎝

U0 V1 V4 V5 V ′
6

0 U ′
2 V2 V7 V ′

8

0 0 I 0 0
0 0 0 U ′

3 V ′
3

0 0 0 0 U4

⎞

⎟⎟⎟⎟⎠
Q6 =

⎛

⎜⎜⎜⎜⎝

U0 V1 V5 V ′
6 V4

0 U ′
2 V7 V ′

8 V2

0 0 U ′
3 V ′

3 0
0 0 0 U4 0
0 0 0 0 I

⎞

⎟⎟⎟⎟⎠

We show that expansion (31) is an exact triangular decomposition. To do this,
we must verify that the matrices L = P6LP

T
6 and Q = QT

6 UQ6 are triangular,
and the matrices P,L,U,Q satisfy the properties (α) and (β).

It is easy to see that all matrices in sequence

L1 = P6LP
T
6 ,L2 = P4L1P

T
4 ,L3 = P2L2P

T
2 ,L4 = P1L3P

T
1 (32)

are triangular and L4 = L.
Similarly, all of the matrices in the sequence

U1 = QT
6 LQ6,U2 = QT

4 U1Q4,U3 = QT
2 U2Q2,U4 = QT

1 U3Q1 (33)

are triangular and U4 = U .
For the matrices L and U Property 1 (α) is satisfied. To verify the properties

(β), the unit block in the lower right corner of the matrix L and U should be
replaced by an arbitrary triangular block, respectively, the lower triangle for
L and the upper triangular for U. We check that all the matrices in (32) and
(33) will be still triangular. This is based on the fact that the exact triangular
decompositions for matrices A,B,C,D′ have the property (β).



242 G. Malaschonok

7 Conclusion

Algorithms for finding the LDU and Bruhat decomposition in commutative do-
main are described. These algorithms have the same complexity as matrix mul-
tiplication.

8 Example

⎡

⎢⎢⎣

1 −4 0 1
4 5 5 3
1 2 2 2
3 0 0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−24 0 12 1
0 60 15 4
0 0 6 1
0 0 0 3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 0 1/(−144) 0
0 0 0 1/(−1440)
0 1/18 0 0
1/3 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

3 0 0 1
0 6 6 5
0 0 −24 −16
0 0 0 60

⎤

⎥⎥⎦
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