
Vladimir P. Gerdt
Wolfram Koepf
Ernst W. Mayr
Evgenii V. Vorozhtsov (Eds.)

 123

LN
CS

 8
13

6

15th International Workshop, CASC 2013
Berlin, Germany, September 2013
Proceedings

Computer Algebra
in Scientific Computing

Lecture Notes in Computer Science 8136
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vladimir P. Gerdt Wolfram Koepf
Ernst W. Mayr Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific Computing

15th International Workshop, CASC 2013
Berlin, Germany, September 9-13, 2013
Proceedings

13

Volume Editors

Vladimir P. Gerdt
Joint Institute for Nuclear Research (JINR)
Laboratory of Information Technologies (LIT)
141980 Dubna, Russia
E-mail: gerdt@jinr.ru

Wolfram Koepf
Universität Kassel, Institut für Mathematik
Heinrich-Plett-Straße 40, 34132 Kassel, Germany
E-mail: koepf@mathematik.uni-kassel.de

Ernst W. Mayr
Technische Universität München
Institut für Informatik
Boltzmannstraße 3, 85748 Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov
Institute of Theoretical and Applied Mechanics
Russian Academy of Sciences, 630090 Novosibirsk, Russia
E-mail: vorozh@itam.nsc.ru

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-02296-3 e-ISBN 978-3-319-02297-0
DOI 10.1007/978-3-319-02297-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947183

CR Subject Classification (1998): F.2, G.2, E.1, I.1, I.3.5, G.1, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.
Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Since the inception of the object and the subject area of computer algebra,
from the 1960s, German scientists have played an important, and in some areas
decisive, role in the development of this area of mathematics and computer sci-
ence. For example, Rüdiger Loos (University of Karlsruhe and then University
of Tübingen) is one of the pioneers of the development of algorithmic and soft-
ware methods of computer algebra; together with Bruno Buchberger and George
Collins he produced the first monograph in the world that covered the main areas
of computer algebra [Buchberger, B., Collins, G.E., Loos, R. (eds.), Computer
Algebra. Symbolic and Algebraic Computation. Springer-Verlag 1982]. This book
(translated into Russian in 1986, driven by the rapid growth of interest in com-
puter algebra in the USSR) included four chapters written by R. Loos, two of
which were co-authored with B. Buchberger and G. Collins.

In addition to developing algorithms for computer algebra, their software
implementation and application in scientific and technical computing, on the
initiative of, and (at least) under the initial guidance of experts from Germany,
a whole series of computer algebra systems (CASs) for special and general math-
ematical destination were developed:

— Simath (Horst Zimmer, University Saarbrücken) and Kash / Kant (Michael
Pohst, http://page.math.tu-berlin.de/~kant/) for computing in algebraic
number theory
— MuPAD (Benno Fuchssteiner, University of Paderborn,
http://www.mathworks.com/discovery/mupad.html) – general-purpose math-
ematical system
— GAP (Joachim Neubüser, RWTH-Aachen, http://www.gap-system.org/) –
for calculations in the theory of groups
— Singular (Gert-Martin Greuel and Gerhard Pfister, University of Kaiser-
slautern, http://www.singular.uni-kl.de/) – for computing in polynomial
algebra and algebraic geometry
— Felix (Joachim Apel and Uwe Klaus, University of Leipzig,
http://felix.hgb-leipzig.de/) for computing in polynomial algebra
— Molgen (Adalbert Kerber, University of Bayreuth, http://www.molgen.de/)
for the generation of molecular structures

It is also to be noted that the CAS Reduce – one of the oldest systems — was
co-developed at Konrad-Zuse-Zentrum Berlin (ZIB), our host, for a long time,
and Winfried Neun, our local organizer, was the responsible person for Reduce
at ZIB.

At present, research on the development and application of methods, algo-
rithms, and programs of computer algebra is performed at universities of Aachen,

VI Preface

Bayreuth, Berlin, Bochum, Bonn, Hannover, Kaiserslautern, Karlsruhe, Kassel,
Leipzig, Munich, Oldenburg, Paderborn, Passau, Saarbrücken, Tübingen, and
others as well as at research centers (ZIB, MPI, DESY, Fraunhofer Institute).

In connection with the above, it was decided to hold the 15th CASC Work-
shop in Berlin. The 14 earlier CASC conferences, CASC 1998, CASC 1999,
CASC 2000, CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005,
CASC 2006, CASC 2007, CASC 2009, CASC 2010, CASC 2011, and CASC
2012 were held, respectively, in St. Petersburg (Russia), in Munich (Germany),
in Samarkand (Uzbekistan), in Konstanz (Germany), in Yalta (Ukraine), in Pas-
sau (Germany), in St. Petersburg (Russia), in Kalamata (Greece), in Chişinău
(Moldova), in Bonn (Germany), in Kobe (Japan), in Tsakhkadzor (Armenia),
in Kassel (Germany), and in Maribor (Slovenia), and they all proved to be very
successful.

This volume contains 33 full papers submitted to the workshop by the par-
ticipants and accepted by the Program Committee after a thorough reviewing
process. Additionally, the volume includes the abstracts of the three invited
talks.

Polynomial algebra, which is at the core of computer algebra, is represented
by contributions devoted to the complexity of solving systems of polynomial
equations with small degrees, highly scalable multiplication of distributed sparse
multivariate polynomials on many-core systems, fast approximate polynomial
evaluation and interpolation, application of Groebner bases for mechanical the-
orem proving in geometry, application of quantifier elimination for determining
whether a univariate polynomial satisfies the sign definite condition, solution of
polynomial systems with approximate complex-number coefficients with the aid
of a polyhedral algorithm, the solution of a problem of interpolating a sparse, uni-
variate polynomial with the aid of a recursive algorithm using probes of smaller
degree than in previously known methods, computation of limit points of the
quasi-component of a regular chain with the aid of Puiseux series expansion,
solution of a system of polynomial equations as part of algebraic cryptoanal-
ysis by reducing to a mixed integer linear programming problem, an improved
QRGCD algorithm for computing the greatest common divisor of two univariate
polynomials, construction of classes of irreducible bivariate polynomials.

The invited talk by D. Grigoriev surveys complexity results concerning the
solution of tropical linear systems and tropical polynomial systems.

One paper deals with the theory of matrices: deterministic recursive algo-
rithms for the computation of generalized Bruhat decomposition of the matrix
are presented therein. It is to be noted that the matrix computations are widely
used in many papers in the area of polynomial algebra, which were summarized
above.

A number of papers included in the proceedings are devoted to using com-
puter algebra for the investigation of various mathematical and applied topics
related to ordinary differential equations (ODEs): computing divisors and com-
mon multiples of quasi-linear ordinary differential equations, investigation of
local integrability of the ODE systems near a degenerate stationary point, the

Preface VII

computation of the dimension of the solution space of a given full-rank system of
linear ODEs, application of symbolic calculations and polynomial invariants to
the classification of singularities of planar polynomial systems of ODEs, the use
of Vessiot’s vector field based approach for an analysis of geometric singularities
of ODEs.

Several papers deal with applications of symbolic computations for solving
partial differential equations (PDEs) in mathematical physics. In one of them, a
general symbolic framework is described for boundary problems for linear PDEs.
The methods of computer algebra are used intensively in the other two papers for
deriving new methods for the numerical solution of two- and three-dimensional
viscous incompressible Navier–Stokes equations.

The invited talk by T. Wolf is devoted to the problems arising at the ap-
plication of computer algebra methods for finding infinitesimal symmetries, first
integrals or conservation laws, Lax-pairs, etc. when investigating the integrability
of PDEs or ODEs.

Several papers deal with applications of symbolic and symbolic-numeric algo-
rithms in mechanics and physics: the investigation of gyrostat satellite dynam-
ics, modeling of identical particles with pair oscillator interactions, tunneling of
clusters through repulsive barriers, application of CAS Maple for investigating a
quantum measurements model of hydrogen-like atoms, development of efficient
methods to compute the Hopf bifurcations in chemical networks with the aid of
the package Redlog, which is an integral part of CAS Reduce, determination
of stationary points for the family of Fermat–Torricelli–Coulomb-like potential
functions, the determination of stationary sets of Euler’s equations on the Lie
algebra with the aid of CASs Maple and Mathematica.

The invited talk by A. Griewank is concerned with methods, algorithms, soft-
ware for, and some history about, the field of automatic differentiation, high-
lighting original developments and the use of adjoints.

The other topics include the application of the CAS Mathematica for the
simulation of quantum error correction in quantum computing, the application of
the CAS GAP for the enumeration of Schur rings over the group A5, constructive
computation of zero separation bounds for arithmetic expressions, the parallel
implementation of fast Fourier transforms with the aid of the Spiral library
generation system, the use of object-oriented languages such as Java or Scala for
implementation of categories as type classes, a survey of industrial applications
of approximate computer algebra, i.e., algebraic computation of expressions with
inaccurate coefficients represented by floating-point numbers.

The CASC 2013 workshop was supported financially by a generous grant
from the Deutsche Forschungsgemeinschaft (DFG). Our particular thanks are
due to the members of the CASC 2013 local Organizing Committee in Berlin, i.e.,
Winfried Neun and Uwe Pöhle (Zuse Institute Berlin), who ably handled all the

VIII Preface

local arrangements in Berlin. Furthermore, we want to thank all the members
of the Program Committee for their thorough work. Finally, we are grateful
to W. Meixner for his technical help in the preparation of the camera-ready
manuscript for this volume and the design of the conference poster.

July 2013 V.P. Gerdt
W. Koepf

E.W. Mayr
E.V. Vorozhtsov

Organization

CASC 2013 was organized jointly by the Department of Informatics at the Tech-
nische Universität München, Germany, and the Konrad Zuse-Zentrum für Infor-
mationstechnik Berlin (ZIB), Germany.

Workshop General Chairs

Vladimir P. Gerdt (JINR, Dubna) Ernst W. Mayr (TU München)

Program Committee Chairs

Wolfram Koepf (Kassel) Evgenii V. Vorozhtsov (Novosibirsk)

Program Committee

Sergei Abramov (Moscow)
François Boulier (Lille)
Hans-Joachim Bungart (München)
Victor F. Edneral (Moscow)
Ioannis Z. Emiris (Athens)
Jaime Gutierrez (Santander)
Victor Levandovskyy (Aachen)
Marc Moreno Maza (London, CAN)
Alexander Prokopenya (Warsaw)
Eugenio Roanes-Lozano (Madrid)

Valery Romanovski (Maribor)
Markus Rosenkranz (Canterbury)
Werner M. Seiler (Kassel)
Doru Stefanescu (Bucharest)
Thomas Sturm (Saarbrücken)
Agnes Szanto (Raleigh)
Stephen M. Watt (W. Ontario, CAN)
Andreas Weber (Bonn)
Kazuhiro Yokoyama (Tokyo)

External Reviewers

Ainhoa Aparicio Monforte
Atanas Atanasov
Benjamin Batistic
Carlos Beltran
Francisco Botana
Juergen Braeckle
Alexander Bruno
Morgan Deters
Jean-Guillaume Dumas
Wolfgang Eckhardt
Mark Giesbrecht
Domingo Gomez

Hans-Gert Graebe
Dima Grigoryev
Andy Hone
Max Horn
Martin Horvat
Denis Khmelnov
Kinji Kimura
Alexander Kobel
Christos Konaxis
Christoph Koutschan
Istvan Kovacs
Ryszard Kozera

X Organization

Heinz Kredel
Wen-Shin Lee
Franois Lemaire
Michael Lieb
Gennadi Malaschonok
Hirokazu Murao
Philipp Neumann
Ulrich Oberst
Dmitrii Pasechnik
Pavel Pech
Ludovic Perret
Eckhard Pfluegel
Nalina Phisanbut
Adrien Poteaux
Andreas Ruffing
Tateaki Sasaki

Yosuke Sato
Raimund Seidel
Takeshi Shimoyama
Ashish Tiwari
Elias Tsigaridas
Benjamin Uekermann
Raimundas Vidunas
Sergue Vinitsky
Dingkang Wang
Yonghui Xia
Josephine Yu
Zafeirakis Zafeirakopoulos
Christoph Zengler
Eugene Zima
Miloslav Znojil

Local Organization

Winfried Neun (Berlin)

Website

http://wwwmayr.in.tum.de/CASC2013/

The Many Faces of Integrability from an

Algebraic Computation Point of View
(Abstract; Invited Talk)

Thomas Wolf

Department of Mathematics, Brock University,
500 Glenridge Avenue,

St. Catharines,
Ontario, Canada L2S 3A1

twolf@brocku.ca

Abstract. Integrability investigations can be performed on smooth ob-
jects, like partial differential equations (PDEs), ordinary differential equa-
tions (ODEs) and such systems formulated for scalar-, vector-, matrix- or
supersymmetric functions, or on discrete objects, for example, in discrete
differential geometry. The aim can be to find infinitesimal symmetries,
first integrals or conservation laws, Lax-pairs, pre-Hamiltonian operators,
recursion operators or consistent face relations. What all the resulting
conditions for the existence of these structures have in common is that
they are overdetermined systems of equations.

In the talk a number of integrability investigations are discussed and
the resulting conditions are characterized. In each case the computer
algebra challenges are explained and ways are shown how these challenges
can be answered.

Table of Contents

On the Dimension of Solution Spaces of Full Rank Linear Differential
Systems . 1

S.A. Abramov and M.A. Barkatou

Polyhedral Methods for Space Curves Exploiting Symmetry Applied to
the Cyclic n-roots Problem . 10

Danko Adrovic and Jan Verschelde

Computing the Limit Points of the Quasi-Component of a Regular
Chain in Dimension One . 30

Parisa Alvandi, Changbo Chen, and Marc Moreno Maza

On Consistency of Finite Difference Approximations to the
Navier-Stokes Equations . 46

Pierluigi Amodio, Yuri Blinkov, Vladimir P. Gerdt, and
Roberto La Scala

Faster Sparse Interpolation of Straight-Line Programs 61
Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche

On Possibility of Additional Solutions of the Degenerate System Near
Double Degeneration at the Special Value of the Parameter 75

Alexander D. Bruno and Victor F. Edneral

Efficient Methods to Compute Hopf Bifurcations in Chemical Reaction
Networks Using Reaction Coordinates . 88

Hassan Errami, Markus Eiswirth, Dima Grigoriev,
Werner M. Seiler, Thomas Sturm, and Andreas Weber

Highly Scalable Multiplication for Distributed Sparse Multivariate
Polynomials on Many-Core Systems . 100

Mickaël Gastineau and Jacques Laskar

Simulation of Quantum Error Correction with Mathematica 116
Vladimir P. Gerdt and Alexander N. Prokopenya

From the Product Example to PDE Adjoints, Algorithmic
Differentiation and Its Application (Invited Talk) . 130

Andreas Griewank

Polynomial Complexity of Solving Systems of Few Algebraic Equations
with Small Degrees . 136

Dima Grigoriev

XIV Table of Contents

Computing Divisors and Common Multiples of Quasi-Linear Ordinary
Differential Equations . 140

Dima Grigoriev and Fritz Schwarz

Complexity in Tropical Algebra (Invited Talk) . 148
Dima Grigoriev

Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions:
Identical Particles with Pair Oscillator Interactions 155

Alexander Gusev, Sergue Vinitsky, Ochbadrakh Chuluunbaatar,
Vitaly Rostovtsev, Luong Le Hai, Vladimir Derbov,
Andrzej Góźdź, and Evgenii Klimov

Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics 169
Sergey A. Gutnik and Vasily A. Sarychev

On Stationary Sets of Euler’s Equations on so(3,1) and Their
Stability . 179

Valentin Irtegov and Tatyana Titorenko

An Effective Implementation of a Special Quantifier Elimination for a
Sign Definite Condition by Logical Formula Simplification 194

Hidenao Iwane, Hiroyuki Higuchi, and Hirokazu Anai

Categories as Type Classes in the Scala Algebra System 209
Raphaël Jolly

Enumeration of Schur Rings over the Group A5 . 219
Mikhail Klin and Matan Ziv-Av

Generalized Bruhat Decomposition in Commutative Domains 231
Gennadi Malaschonok

Automatic Parallel Library Generation for General-Size Modular FFT
Algorithms . 243

Lingchuan Meng and Jeremy Johnson

Extended QRGCD Algorithm . 257
Kosaku Nagasaka and Takaaki Masui

Polynomial Evaluation and Interpolation and Transformations of
Matrix Structures . 273

Victor Y. Pan

A Note on the Need for Radical Membership Checking in Mechanical
Theorem Proving in Geometry . 288

Eugenio Roanes-Lozano and Eugenio Roanes-Maćıas

Table of Contents XV

A Symbolic Approach to Boundary Problems for Linear Partial
Differential Equations: Applications to the Completely Reducible Case
of the Cauchy Problem with Constant Coefficients 301

Markus Rosenkranz and Nalina Phisanbut

Towards Industrial Application of Approximate Computer Algebra 315
Tateaki Sasaki, Daiju Inaba, and Fujio Kako

A Note on Sekigawa’s Zero Separation Bound . 331
Stefan Schirra

Applications of Symbolic Calculations and Polynomial Invariants to
the Classification of Singularities of Differential Systems 340

Dana Schlomiuk and Nicolae Vulpe

Singularities of Implicit Differential Equations and Static
Bifurcations . 355

Werner M. Seiler

A Quantum Measurements Model of Hydrogen-like Atoms in Maple 369
L. Sevastianov, A. Zorin, and A. Gorbachev

CAS Application to the Construction of the Collocations and Least
Residuals Method for the Solution of 3D Navier-Stokes Equations 381

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Construction of Classes of Irreducible Bivariate Polynomials 393
Doru Ştefănescu

Algebraic Attacks Using IP-Solvers . 401
Ehsan Ullah

Stationary Points for the Family of Fermat-Torricelli-Coulomb-Like
Potential Functions . 412

Alexei Yu. Uteshev and Marina V. Yashina

Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions:
Tunneling of Clusters through Repulsive Barriers . 427

Sergue Vinitsky, Alexander Gusev, Ochbadrakh Chuluunbaatar,
Vitaly Rostovtsev, Luong Le Hai, Vladimir Derbov, and
Pavel Krassovitskiy

Author Index . 443

On the Dimension of Solution Spaces of Full

Rank Linear Differential Systems

S.A. Abramov1,� and M.A. Barkatou2

1 Computing Centre of the Russian Academy of Sciences, Vavilova, 40, Moscow
119333, Russia

sergeyabramov@mail.ru
2 Institut XLIM, Département Mathématiques et Informatique,

Université de Limoges, CNRS, 123, Av. A. Thomas,
87060 Limoges Cedex, France
moulay.barkatou@unilim.fr

Abstract. Systems of linear ordinary differential equations of arbitrary
orders of full rank are considered. We study the change in the dimension
of the solution space that occurs while differentiating one of the equa-
tions. Basing on this, we show a way to compute the dimension of the
solution space of a given full rank system. In addition, we show how the
change in the dimension can be used to estimate the number of steps of
some algorithms to convert a given full rank system into an appropriate
form.

1 Introduction

Given a system of linear homogeneous differential equations with the coefficients
from some “functional” field. Suppose we differentiate one of its equations. What
would then happen to the solution space of the system? Would it remain un-
changed or would we always get some extra solutions?

In the scalar case, when we differentiate equation L(y) = 0, the resulting
equation (L(y))′ = 0 has a larger order than the original one. Let the coefficients
of the equations belong to some differential field K, and the solutions be in some
“functional” space Λ. If K and Λ are such that every equation of order m has
a solution space of dimension m then equation (L(y))′ = 0 has more solutions
than equation L(y) = 0.

For the systems of linear ordinary differential equations the problem is not as
simple as for scalar equations. Indeed, the solution space of a system of equations
is the intersection of the solution spaces of all the equations of the system. Thus,
the fact the solution spaces of the individual equations becomes larger does not
imply that their intersection becomes larger too.

� Supported in part by the Russian Foundation for Basic Research, project no. 13-01-
00182-a. The first author thanks also Department of Mathematics and Informatics
of XLIM Institute of Limoges University for the hospitality during his visits.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 1–9, 2013.
c© Springer International Publishing Switzerland 2013

2 S.A. Abramov and M.A. Barkatou

In the present paper we prove that differentiating one of the equations in a full
rank system, one increases the dimension of the solution space by one (Section
3). In Section 4 some applications of this are discussed.

In Appendix the difference case is briefly considered.

2 Preliminaries

The ring of m×m matrices with entries in a ring R is denoted by Matm(R). By
Im we denote the identity matrix of order m. The notation MT is used for the
transpose of a matrix (vector) M .

Let (K, ∂), ∂ =′, be a differential field of characteristic 0 with an algebraically
closed constant field Const(K) = {c ∈ K | ∂c = 0}. We denote by Λ a fixed
universal differential extension field ofK (see [9, Sect. 3.2]). This is a differential
extension Λ of K with Const(Λ) = Const(K) such that any differential system

∂y = Ay, (1)

with A ∈ Matm(K) has a solution space of dimension m over the constants.
If, e.g.,K is a subfield of the fieldC((x)) of formal Laurent series with complex

coefficients with ∂ = d
dx then we can consider Λ as the quotient field of the ring

generated by expressions of form eP (x)xγ(ψ0+ψ1 log x+ · · ·+ψs(log x)
s), where

in any such expression

– P (x) is a polynomial in x−1/p, where p is a positive integer,
– γ ∈ C,
– s is a non-negative integer and ψi ∈ C[[x1/p]], i = 0, 1, . . . , s.

Besides first-order systems of form (1) we will consider differential systems of
order r � 1 which have the form

Ary
(r) +Ar−1y

(r−1) + · · ·+A0y = 0. (2)

The coefficient matrices
A0, A1, . . . , Ar (3)

belong to Matm(K), and Ar (the leading matrix of the system) is non-zero.

Remark 1. If Ar is invertible in Matm(K) then the system (2) is equivalent to
the first order system having mr equations: Y ′ = AY , with

A =

⎛⎜⎜⎜⎝
0 Im . . . 0
...

...
. . .

...
0 0 . . . Im
Â0 Â1 . . . Âr−1

⎞⎟⎟⎟⎠ , (4)

where Âk = −A−1
r Ak, k = 0, 1, . . . , r − 1, and

Y =
(
y1 . . . , ym, y

′
1 . . . , y

′
m, . . . , y

(r−1)
1 , . . . , y(r−1)

m

)T
. (5)

Therefore if the leading matrix of the system (2) is invertible then the dimension
of the solution space of this system is equal to mr.

On Full Rank Linear Differential Systems 3

Denote the ring Matm(K [∂]) by Dm. System (2) can be written as L(y) = 0
where

L = Ar∂
r +Ar−1∂

r−1 + · · ·+A0 ∈ Dm. (6)

System (2) can be also written as a system of m scalar linear equations

L1(y1, . . . , ym) = 0, . . . , Lm(y1, . . . , ym) = 0, (7)

with

Li(y1, . . . , ym) =

m∑
j=1

lij(yj), lij ∈ K [∂] , i, j = 1, . . . ,m, max
i,j

ord lij = r.

(8)
When a system is represented in form (7) we can rewrite it in form (2) and
vice versa. The matrix Ar is the leading matrix of the system regardless of
representation form. We suppose also that the system is of full rank, i.e., that
equations (7) are independent over K [∂], in other words the rows

�i = (li1, . . . , lim), (9)

i = 1, . . . ,m, are linearly independent over K [∂]. We say that an operator
L ∈ Dm is of full rank if the system L(y) = 0 is. The leading matrix of L is the
leading matrix of the system L(y) = 0.

3 Differentiating of an Equation of a Full Rank System

3.1 Formulation of the Main Theorem

Our nearest purpose is to prove the following theorem:

Theorem 1. Let a system of the form (7) be of full rank. Let the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, L̃m(y1, . . . , ym) = 0, (10)

be such that its first m − 1 equations are as in the system (7) while the m-th
equation is the result of differenting of the m-th equation of (7), thus the equation
L̃m(y1, . . . , ym) = 0 is equivalent to the equation (Lm(y1, . . . , ym))′ = 0. Then
the dimension of the solution space of (10) exceeds by 1 the dimension of the
solution space of (7).

To prove this theorem we consider first the case when a given system has an
invertible leading matrix (in this case the system is certainly of full rank). After
this we consider the general case of a system of full rank.

The set of solutions of (10) coincides with the union of the set of solutions of
all the systems

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, Lm(y1, . . . , ym) = c, (11)

4 S.A. Abramov and M.A. Barkatou

when c runs through the set of constants of Λ (any constant c specifies a system).
Note that the fact that the dimension of the solution space of (10) does not
exceed the dimension of the solution space of (7) more than by 1 is trivial: if
c1, c2 are constants and ϕ, ψ ∈ Λm are solutions of the system (11) with c = c1,
resp. c = c2, then c2ϕ − c1ψ is a solution of (7). Thus it is sufficient to prove
simply that the differentiation increases the dimension of the solution space of
a full rank system.

It is also trivial that if (7) is of full rank then (10) is also of full rank. Going
back to (8), (9), let �̃m = ∂lm = (l̃m1, . . . , l̃mm). If u1, . . . , um ∈ K [∂] are such
that u1�1+ · · ·+um−1�m−1+um�̃m = 0 then v1�1+ · · ·+ vm−1�m−1+ vm�m = 0
where v1 = u1, . . . , vm−1 = um−1, vm = um∂, and if ui �= 0, 0 � i � m, then
vi �= 0.

3.2 Invertible Leading Matrix Case

Lemma 1. Let the leading matrix of (7) be invertible. Then the dimension of
the solution space of (10) is larger than the dimension of the solution space of
(7).

Proof. Together with the union of the set of solutions of all the systems (11)
when c runs through the set of constants of Λ, we consider the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0,

Lm(y1, . . . , ym) = ym+1, y′m+1 = 0. (12)

Observe that the system (12) is equivalent to the system Ỹ ′ = ÃỸ where the
matrix Ã ∈ Matrm+1(K) is obtained from the matrix (4) by adding the last row
of zeros and the last column (0, . . . , 0, 1, 0)T . The column vector Ỹ is obtained
from Y (see (5)) by adding ym+1 as the last component. The dimension of the
solution space of Ỹ ′ = ÃỸ is equal to mr+1, while the dimension of the solution
space of the original system is equal to mr (Remark 1).

Therefore the system (12) has a solution (ỹ1, . . . , ỹm, ỹm+1) with ỹm+1 �= 0.
Evidently (ỹ1, . . . , ỹm) is a solution of (11) with c = ỹm+1 �= 0, but (ỹ1, . . . , ỹm)
is not a solution of (7) since Lm(ỹ1, . . . , ỹm) �= 0. The claim follows.

Thus the dimension of the solution space of (10) is equal to mr + 1. This
proves the Theorem 1 in the case when the given system has an invertible leading
matrix.

3.3 General Case of a System of Full Rank

In [2] the following proposition has been proved:

Proposition 1. Let L be a full rank operator of the form (6). Then there exists
N ∈ Dm such that the leading matrix of LN is invertible. (In addition, N can
be taken such that LN is of order r).

On Full Rank Linear Differential Systems 5

Using Lemma 1 and Proposition 1 we can complete the proof of Theorem 1.
Let a given system of the form (2) be represented as L(y) = 0 where L is as in
(6). If the leading matrix Ar of L is invertible then the statement of the theorem
follows from Lemma 1. Otherwise let N be an operator such that the leading
matrix of LN is invertible (Proposition 1). Set

D =

⎛⎜⎜⎜⎝
0 . . . 0 0
...
. . .

...
...

0 . . . 0 0
0 . . . 0 1

⎞⎟⎟⎟⎠ ∂ +

⎛⎜⎜⎜⎝
1 . . . 0 0
...
. . .

...
...

0 . . . 1 0
0 . . . 0 0

⎞⎟⎟⎟⎠ , (13)

D ∈ Dm.
By Lemma 1 the dimension of the solution space of the system DLN(y) = 0

is larger than the dimension of the solution space of the system LN(y) = 0. This
implies that there exists ϕ ∈ Λm such that N(ϕ) is a solution of the system
DL(y) = 0 but is not a solution of L(y) = 0. In turn this implies that the
dimension of the solution space of the system DL(y) = 0 is larger than the
dimension of the solution space of the system L(y) = 0. Theorem 1 is proved.

Remark 2. Theorem 1 is valid for the case of a full rank inhomogeneous system
as well. That is a system of the form L(y) = b, with L ∈ Dm of full rank and
b ∈ Km

. First of all note that this system has at least one solution in Λm since
by adding to y an (m+1)-st component with value 1, one can transform the given
system into a homogeneous system with a matrix belonging to Matm+1(K). The
set of solutions in Λm of L(y) = b is an affine space over the Const(Λ) and is
given by VL+ f where VL ⊂ Λm is the solution space of the homogeneous system
L(y) = 0 and f ∈ Λm is a particular solution of L(y) = b. When we differentiate
the m-th equation of the system L(y) = b we get a new system L̃(y) = b̃ where
the operator L̃ corresponds to system (10). By Theorem 1 dim VL̃ = dim VL +1.

4 Some Applications

4.1 The Dimension of the Solution Space of a Given Full Rank
System

By Remark 1, if the leading matrix of the system (2) is invertible then the
dimension of the solution space of this system is equal to mr. How to find the
dimension of the solution space in the general case?

We use the notation
[M]i,∗ , 1 � i � m,

for the (1×m)-matrix which is the i-th row of an (m×m)-matrix M . Let a full
rank operator L ∈ Dm be of the form (6). If 1 � i � m then define αi(L) as the
maximal integer k, 1 � k � r, such that [Ak]i,∗ is a nonzero row. The matrix
M ∈ Matm(K) such that [M]i,∗ = [Aαi(L)]i,∗, i = 1, 2, . . . ,m, is the row frontal
matrix of L.

6 S.A. Abramov and M.A. Barkatou

Theorem 2. Let the row frontal matrix of a full rank system L(y) = 0, L ∈
Dm, be invertible. Then the dimension of the solution space of this system is∑m

i=1 αi(L).

Proof. It follows directly from Theorem 1: when we differentiate r−αi(L) times
the i-th equation of the given system, i = 1, 2, . . . ,m, we increase the dimension
of the solution space by mr−

∑m
i=1 αi(L), and the received full rank system has

the leading matrix which coincides with the row frontal matrix of the original
system, therefore the obtained system has an invertible leading matrix and the
dimension of its solution space is equal to mr.

In [6,7] algorithms to convert a given full rank system into an equivalent sys-
tem having an invertible row frontal matrix were proposed. It is supposed that
the field K is constructive, in particular that there exists a procedure for recog-
nizing whether a given element of K is equal to 0. Therefore in such situations
we are able to compute the dimension of the solution space of a given full rank
system.

4.2 Faster Computation of l-Embracing Systems

Suppose that K = K(x), ∂ = d
dx , where K is a field of characteristic zero such

that each of its elements is a constant. For any system S of the form (2) the
algorithm EGδ ([4,5]) constructs an l-embracing system S̄:

Ār(x)y
(r)(x) + · · ·+ Ā1(x)y

′(x) + Ā0(x)y(x) = 0,

of the same form, but with the leading matrix Ār(x) being invertible, and with
the solution space containing all the solutions of S. EGδ is used for finding a
finite super-set of the set of singular points of solutions of the given system.

First we describe briefly the algorithm EGδ, and then discuss its improvement
which is due to Theorem 1.

Let the i-th row of the matrix As(x), 0 � s � r, be nonzero and the i-th
rows of the matrices As−1(x), As−2(x), . . . , A0(x) be zero. Let the t-th entry,
1 � t � m, be the last nonzero entry of the i-th row of As(x). Then, the number
(r − s) · m + t is called the length of the i-th equation of the system, and the
entry of matrix As(x) having indices i, t is called the last nonzero coefficient of
the i-th equation of the system.

Algorithm EGδ is based on alternation of reductions and differential shifts.
Let us explain how the reduction works. It is checked whether the rows of the
leading matrix are linearly dependent over K(x). If they are, coefficients of the
dependence v1(x), v2(x), . . . , vm(x) ∈ K[x] are found. From the equations of
the system corresponding to nonzero coefficients, we select the equation of the
greatest length. Let it be the i-th equation. This equation is replaced by the
linear combination of the equations with the coefficients v1(x), v2(x), . . . , vm(x).
As a result, the i-th row of the leading matrix vanishes. This step is called
reduction (the reduction does not increase lengths of the equations).

On Full Rank Linear Differential Systems 7

Let the i-th row of the leading matrix be zero, and let a(x) be the last nonzero
coefficient of the i-th equation. Let us divide this equation by a(x), differentiate
it, and clear the denominators. This operation is called differential shift of the
i-th equation of the system. Due to the performed division by the last nonzero
coefficient, this operation decreases the length of the i-th equation in the system
(2).

The algorithm EGδ is as follows. If the rows of the leading matrix are linearly
dependent over K(x), then the reduction is performed. Suppose that this makes
the i-th row of the leading matrix zero. Then, we perform the differential shift
of the i-th equation and continue the process of alternated reductions and dif-
ferential shifts until the leading matrix becomes nonsingular. (We never get the
equation 0 = 0 since the equations of the original system are independent over
K(x) [∂].)

As we have mentioned no single equation increases its length due to the reduc-
tion. The differential shift decreases the length of the corresponding equation.
Thus the sum of all the lengths is decreased by a “reduction + differential shift”
step. This implies that algorithm EGδ always terminates and the number of
“reduction + differential shift” steps does not exceed (r + 1)m2.

Note that the division by the last coefficient of an equation before differentiat-
ing the equation is produced to ensure decreasing of the length of the equation.
This division and clearing the denominators after the differentiation are quite
expensive. If we exclude this division then the cost of a step “reduction + dif-
ferentiation” will be in general significantly less than the cost of a “reduction +
differential shift” step. By Theorem 1 the corresponding sequence of “reduction
+ differentiation” steps will be finite (thus the new version of EGδ terminates
for any system of the form (2)) and the number k of the “reduction + differenti-
ation” steps does not exceed mr. (By Theorem 1 the dimension of the solution
space of the original system is equal to mr − k; thus we have one more way
to compute the dimension of the solution space besides the one given by Theo-
rem 2). Note that Theorem 1 is applicable since K(x) ⊂ K̄(x) where K̄ is the
algebraic closure of K.

This improvement trick works also in the case of an inhomogeneous system
when the corresponding homogeneous system is of full rank. The corresponding
homogeneous system is transformed independently on the right-hand side when
we produce “reduction + differentiation” steps. Therefore the dimension of the
solution space of the corresponding homogeneous system increases due to every
“reduction + differentiation” step. The upper bound mr keeps valid in the
inhomogeneous case (one can also use Remark 2 for proving this).

In addition, we note that due to Theorem 1 it is not necessary to select an
equation of maximal length in the reduction substep; therefore various strategies
of a row selection on the reduction substep of each “reduction + differentiation”
step are possible. Such strategies make it possible to slow down the growth of
degrees of system coefficients when applying EGδ (due to Appendix this works
also in the case of difference systems, i.e. gives an improvement of EGσ [1,3,5]).

8 S.A. Abramov and M.A. Barkatou

Appendix: The Difference Case

A statement similar to Theorem 1 is valid in the difference case, when (K, σ)
is a difference field (σ is an automorphism of K) of characteristic 0 with an
algebraically closed constant field Const(K) = {c ∈ K | σc = c}. Let Λ the
universal Picard-Vessiot ring extension of K (see [8, Sect. 1.4]). A system is of
full rank if its equations are independent over the ring K[σ]. The application of
the operator Δ = σ − 1 is used instead of the differentiation of an equation of a
given full rank system.

The proof is a little more complicated since the invertibility of A is
needed to guarantee that the dimension space of a system σy = Ay, A ∈
Matm(K), is equal to m . However there is no problem with proving the ana-
log of Lemma 1. After applying Δ to the last equation of the original system
we get the system σỸ = ÃỸ where the matrix Ã ∈ Matrm+1(K) is obtained
from the matrix (4) by adding the last row (0, . . . , 0, 1) and the last column
(0, . . . , 0, 1, 1)T . If A is invertible then Ã is invertible too. Similarly to the dif-
ferential case the column vector Ỹ is obtained from Y (see (5)) by adding ym+1

as the last component.
Consider a system of order r � 1 which has the form

Arσ
ry +Ar−1σ

r−1y + · · ·+A0y = 0. (14)

The coefficient matrices A0, A1, . . . , Ar belong to Matm(K), and if Ar, A0 (the
leading and trailing matrices of the system) are invertible then the system (14) is
equivalent to the first order system havingmr equations: σY = AY , with A as in
(4), and A is invertible since detA = − det Â0 = detA−1

r detA0 �= 0. Therefore
if both the leading and trailing matrices of the system (14) are invertible then
the dimension of the solution space of this system is equal to mr.

Denote the ring Matm(K [σ]) by Em. System (14) can be written as L(y) = 0
where

L = Arσ
r +Ar−1σ

r−1 + · · ·+A0 ∈ Em. (15)

Similarly to the differential case, we say that the operator L ∈ Em is of full rank
if the system L(y) = 0 is of full rank.

It can be shown (see [5, Sect. 3.5]) that for any full rank operator L of the
form (15) there exists F ∈ Em such that the product FL is an operator of order
r + 1 with both the leading and trailing matrices are invertible. Using adjoint
difference operators we can analogously to the differential case prove that there
exists N ∈ Em such that the operator LN has invertible both the leading and
trailing matrices (N can be taken such that LN is of order r+1). We can consider
the operator D which is obtained from (13) by replacing ∂ by Δ = σ − 1 and
repeat the reasoning given in the last paragraph above Remark 2.

On Full Rank Linear Differential Systems 9

References

1. Abramov, S.A.: EG–eliminations. J. of Difference Equations and Applications 5(4-
5), 393–433 (1999)

2. Abramov, S.A., Barkatou, M.A., Khmelnov, D.E.: On full rank differential systems
with power series coefficients. J. of Symbolic Computation (submitted)

3. Abramov, S.A., Bronstein, M.: On solutions of linear functional systems. In: Proc.
ISSAC 2001, pp. 1–6 (2001)

4. Abramov, S.A., Khmelnov, D.E.: On singular points of solutions of linear differen-
tial systems with polynomial coefficients. Journal of Mathematical Sciences 185(3),
347–359 (2012)

5. Abramov, S.A., Khmelnov, D.E.: Linear differential and difference Systems: EGδ-
and EGσ-eliminations. Programming and Computer Software 39(2), 91–109 (2013)

6. Barkatou, M.A., El Bacha, C., Pflügel, E.: Simultaneously row- and column-reduced
higher-order linear differential systems. In: Proc. of ISSAC 2010, pp. 45–52 (2010)

7. Barkatou, M.A., El Bacha, C., Labahn, G., Pflügel, E.: On simultaneously row
and column reduction of higher-order linear differential systems. J. of Symbolic
Comput. 49(1), 45–64 (2013)

8. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lectures
Notes in Mathematics, vol. 1666. Springer, Heidelberg (1997)

9. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations.
Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg
(2003)

Polyhedral Methods for Space Curves Exploiting

Symmetry Applied to the Cyclic n-roots
Problem�

Danko Adrovic and Jan Verschelde

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
851 South Morgan (M/C 249)
Chicago, IL 60607-7045, USA
{jan,adrovic}@math.uic.edu

www.math.uic.edu/~jan, www.math.uic.edu/~adrovic

Abstract. We present a polyhedral algorithm to manipulate positive
dimensional solution sets. Using facet normals to Newton polytopes as
pretropisms, we focus on the first two terms of a Puiseux series expan-
sion. The leading powers of the series are computed via the tropical
prevariety. This polyhedral algorithm is well suited for exploitation of
symmetry, when it arises in systems of polynomials. Initial form systems
with pretropisms in the same group orbit are solved only once, allowing
for a systematic filtration of redundant data. Computations with cddlib,
Gfan, PHCpack, and Sage are illustrated on cyclic n-roots polynomial
systems.

Keywords: Algebraic set, Backelin’s Lemma, cyclic n-roots, initial
form, Newton polytope, polyhedral method, polynomial system, Puiseux
series, symmetry, tropism, tropical prevariety.

1 Introduction

We consider a polynomial system f(x) = 0, x = (x0, x1, . . . , xn−1), f = (f1,
f2, . . . , fN), fi ∈ C[x], i = 1, 2, . . . , N . Although in many applications the coef-
ficients of the polynomials are rational numbers, we allow the input system to
have approximate complex numbers as coefficients. For N = n (as many equa-
tions as unknowns), we expect in general to find only isolated solutions. In this
paper we focus on cases N ≥ n where the coefficients are so special that f(x) = 0
has an algebraic set as a solution.

Our approach is based on the following observation: if the solution set of
f(x) = 0 has a space curve, then this space curve extends from C∗ = C \ {0}
to infinity. In particular, the space curve intersects hyperplanes at infinity at
isolated points. We start our series development of the space curve at these

� This material is based upon work supported by the National Science Foundation
under Grant No. 0713018 and Grant No. 1115777.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 10–29, 2013.
c© Springer International Publishing Switzerland 2013

www.math.uic.edu/~jan
www.math.uic.edu/~adrovic

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 11

isolated points. Computing series developments for solutions of polynomial sys-
tems is a hybrid symbolic-numeric method, appropriate for inputs which consist
of approximate numbers (the coefficients) and exact data (the exponents).

In this paper we will make various significant assumptions. First we assume
that the algebraic sets we consider are reduced, that is: free of multiplicities.
Moreover, an algebraic set of dimension d is in general position with respect
to the first d coordinate planes. For example, we assume that a space curve is
not contained in a plane perpendicular to the first coordinate axis. Thirdly, we
assume the algebraic set of dimension d to intersect the first d coordinate planes
at regular solutions.

Our approach consists of two stages. The computation of the candidates for
the leading powers of the Puiseux series is followed by the computation of the
leading coefficients and the second term of the Puiseux series, if the leading
term of the series does not already entirely satisfy the system. Following our
assumptions, the second term of the Puiseux series indicates the existence of a
space curve. If the system is invariant to permutation of the variables, then it
suffices to compute only the generators of the solution orbits. We then develop
the Puiseux series only at the generators. Although our approach is directed
at general algebraic sets, our approach of exploiting symmetry applies also to
the computation of all isolated solutions. Our main example is one family of
polynomial systems, the cyclic n-roots system.

Related Work. Our approach is inspired by the constructive proof of the fun-
damental theorem of tropical algebraic geometry in [32] (an alternative proof
is in [39]) and related to finiteness proofs in celestial mechanics [27], [30]. The
initial form systems allow the elimination of variables with the application of
coordinate transformations, an approach presented in [29] and related to the
application of the Smith normal form in [25]. The complexity of polyhedral
homotopies is studied in [33] and generalized to affine solutions in [28]. Gen-
eralizations of the Newton-Puiseux theorem [43], [58], can be found in [5], [7],
[37], [38], [45], and [47]. A symbolic-numeric computation of Puiseux series is de-
scribed in [40], [41], and [42]. Algebraic approaches to exploit symmetry are [13],
[20], [23], and [50]. The cyclic n-roots problem is a benchmark for polynomial
system solvers, see e.g: [9], [13], [14], [16], [17], [18], [20], [35], [50], and relevant
to operator algebras [10], [26], [54]. Our results on cyclic 12-roots correspond
to [46].

Our Contributions. This paper is a thorough revision of the unpublished
preprint [2], originating in the dissertation of the first author [1], which ex-
tended [3] from the plane to space curves. In [4] we gave a tropical version of
Backelin’s Lemma in case n = m2, in this paper we generalize to the case n =
�m2. Our approach improves homotopies to find all isolated solutions. Exploiting
symmetry we compute only the generating cyclic n-roots, more efficiently than
the symmetric polyhedral homotopies of [57].

12 D. Adrovic and J. Verschelde

2 Initial Forms, Cyclic n-roots, and Backelin’s Lemma

In this section we introduce our approach on the cyclic 4-roots problem. For this
problem we can compute an explicit representation for the solution curves. This
explicit representation as monomials in the independent parameters for posi-
tive dimensional solution sets generalizes into the tropical version of Backelin’s
Lemma.

2.1 Newton Polytopes, Initial Forms, and Tropisms

In this section we first define Newton polytopes, initial forms, pretropisms, and
tropisms. The sparse structure of a polynomial system is captured by the sets
of exponents and their convex hulls.

Definition 1. Formally we denote a polynomial f ∈ C[x] as

f(x) =
∑
a∈A

cax
a, ca ∈ C∗, xa = xa0

0 xa1
1 · · ·xan−1

n−1 , (1)

and we call the set A of exponents the support of f . The convex hull of A is
the Newton polytope of f . The tuple of supports A = (A1, A2, . . . , AN) span the
Newton polytopes P = (P1, P2, . . . , PN) of the polynomials f = (f1, f2, . . . , fN)
of the system f(x) = 0.

The development of a series starts at a solution of an initial form of the
system f(x) = 0, with supports that span faces of the Newton polytopes of f .

Definition 2. Let v �= 0, denote 〈a,v〉 = a0v0 + a1v1 + · · ·+ an−1vn−1, and let
f be a polynomial supported on A. Then, the initial form of f in the direction
of v is

inv(f) =
∑

a ∈ inv(A)

cax
a, where inv(A) = { a ∈ A | 〈a,v〉 = min

b∈A
〈b,v〉 }.

(2)
The initial form of a system f(x) = 0 with polynomials in f = (f1, f2, . . . , fN)
in the direction of v is denoted by inv(f) = (inv(f1), inv(f2), . . . , inv(fN)). If
the number of monomials with nonzero coefficient in each inv(fk), for all k =
1, 2, . . . , N , is at least two, then v is a pretropism.

The notation inv(f) follows [53], where v represents a weight vector to order
monomials. The polynomial inv(f) is homogeneous with respect to v. Therefore,
in solutions of inv(f)(x) = 0 we can set x0 to the free parameter t. In [12]
and [34], initial form systems are called truncated systems.

Faces of Newton polytopes P spanned by two points are edges and all vectors v
that lead to the same inv(P) (the convex hull of inv(A)) define a polyhedral cone
(see e.g. [59] for an introduction to polytopes).

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 13

Definition 3. Given a tuple of Newton polytopes P of a system f(x) = 0, the
tropical prevariety of f is the common refinement of the normal cones to the
edges of the Newton polytopes in P.

Our definition of a tropical prevariety is based on the algorithmic characteri-
zation in [11, Algorithm 2], originating in [44]. Consider for example the special
case of two polytopes P1 and P2 and take the intersection of two cones, normal
to two edges of the two polytopes. If the intersection is not empty, then the inter-
section contains a vector v that defines a tuple of two edges (inv(P1), inv(P2)).

Definition 4. For space curves, the special role of x0 is reflected in the normal
form of the Puiseux series:{

x0 = tv0

xi = tvi(yi + zit
wi(1 +O(t)), i = 1, 2, . . . , n− 1,

(3)

where the leading powers v = (v0, v1, . . . , vn−1) define a tropism.

In the definition above, it is important to observe that the tropism v defines
as well the initial form system inv(f)(x) = 0 that has as solution the initial
coefficients of the Puiseux series.

Every tropism is a pretropism, but not every pretropism is a tropism, because
pretropisms depend only on the Newton polytopes. For a d-dimensional algebraic
set, a d-dimensional polyhedral cone of tropisms defines the exponents of Puiseux
series depending on d free parameters.

2.2 The Cyclic n-roots Problem

For n = 3, the cyclic n-roots system originates naturally from the elementary
symmetric functions in the roots of a cubic polynomial. For n = 4, the system is

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0
x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0.

(4)

The permutation group which leaves the equations invariant is generated by
(x0, x1, x2, x3) → (x1, x2, x3, x0) and (x0, x1, x2, x3) → (x3, x2, x1, x0). In addi-
tion, the system is equi-invariant with respect to the action (x0, x1, x2, x3) →
(x−1

0 , x−1
1 , x−1

2 , x−1
3).

With v = (+1,−1,+1,−1), there is a unimodular coordinate transforma-
tion M , denoted by x = zM :

inv(f)(x) =

⎧⎪⎪⎨⎪⎪⎩
x1 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0
x1x2x3 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

14 D. Adrovic and J. Verschelde

M =

⎡⎢⎢⎣
+1 −1 +1 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ x = zM :

⎧⎪⎪⎨⎪⎪⎩
x0 = z+1

0

x1 = z−1
0 z1

x2 = z+1
0 z2

x3 = z−1
0 z3

(5)

The system inv(f)(z) = 0 has two solutions. These two solutions are the lead-
ing coefficients in the Puiseux series. In this case, the leading term of the series
vanishes entirely at the system so we write two solution curves as

(
t,−t−1,−t, t−1

)
and
(
t, t−1,−t,−t−1

)
. To compute the degree of the two solution curves, we take

a random hyperplane in C4: c0x0 + c1x1 + c2x2 + c3x3 + c5 = 0, ci ∈ C∗. Then
the number of points on the curve and on the random hyperplane equals the
degree of the curve. Substituting the representations we obtained for the curves
into the random hyperplanes gives a quadratic polynomial in t (after clearing
the denominator t−1), so there are two quadric curves of cyclic 4-roots.

2.3 A Tropical Version of Backelin’s Lemma

In [4], we gave an explicit representation for the solution sets of cyclic n-roots,
in case n = m2, for any natural number m ≥ 2. Below we state Backelin’s
Lemma [6], in its tropical form.

Lemma 1 (Tropical Version of Backelin’s Lemma). For n = m2�, where
� ∈ N\{0} and � is no multiple of k2, for k ≥ 2, there is an (m−1)-dimensional
set of cyclic n-roots, represented exactly as

xkm+0 = ukt0
xkm+1 = ukt0t1
xkm+2 = ukt0t1t2

...
xkm+m−2 = ukt0t1t2 · · · tm−2

xkm+m−1 = γukt−m+1
0 t−m+2

1 · · · t−2
m−3t

−1
m−2

(6)

for k = 0, 1, 2, . . . ,m − 1, free parameters t0, t1, . . . , tm−2, constants u = e
i2π
m� ,

γ = e
iπβ
m� , with β = (α mod 2), and α = m(m�− 1).

Proof. By performing the change of variables y0 = t0, y1 = t0t1, y2 = t0t1t2,
. . ., ym−2 = t0t1t2 · · · tm−2, ym−1 = γt−m+1

0 t−m+2
1 · · · t−2

m−3t
−1
m−2, the solution (6)

can be rewritten as

xkm+j = ukyj, j = 0, 1, . . . ,m− 1. (7)

The solution (7) satisfies the cyclic n-roots system by plain substitution as in
the proof of [19, Lemma 1.1], whenever the last equation x0x1x2 · · ·xn−1−1 = 0
of the cyclic n-roots problem can also be satisfied.

We next show that we can always satisfy the equation x0x1x2 · · ·xn−1 − 1 =
0 with our solution. First, we perform an additional change of coordinates to

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 15

separate the γ coefficient. We let y0 = Y0, y1 = Y1, . . ., ym−2 = Ym−2, ym−1 =
γYm−1. Then on substitution of (7) into x0x1x2 · · ·xn−1 − 1 = 0, we get

(γm� u0u0 · · ·u0︸ ︷︷ ︸
m

u1u1 · · ·u1︸ ︷︷ ︸
m

· · ·

· · ·um�−1um�−1 · · ·um�−1︸ ︷︷ ︸
m

Y m�
0 Y m�

1 Y m�
2 · · ·Y m�

m−2Y
m�
m−1)− 1 = 0

(γm� um(0+1+2+···+(m�−1)) Y m�
0 Y m�

1 Y m�
2 · · ·Y m�

m−2Y
m�
m−1)− 1 = 0

(γ u
m(m�−1)

2 Y0Y1Y2 · · ·Ym−2Ym−1)
m� − 1 = 0.

(8)

The last equation in (8) has now the same form as in [19, Lemma 1.1]. We are
done if we can satisfy it. We next show that it can always be satisfied with our
solution.

Since all the tropisms in the cone add up to zero, the product (Y0Y1Y2 · · ·
· · ·Ym−2Ym−1), which consists of free parameter combinations, equals to 1. Since
(Y0Y1Y2 · · ·Ym−2Ym−1) = 1, we are left with

(γ u
m(m�−1)

2)m� − 1 = 0. (9)

We distinguish two cases:

1. γ = 1, implied by (m is even, � is odd) or (m is odd, � is odd) or (m is even,
� is even).

To show that (9) is satisfied, we rewrite (9):

(u
m(m�−1)

2)m�−1=0 ⇔ (u
m2�(m�−1)

2)−1=0 ⇔ ((um�)
m(m�−1)

2)−1=0, (10)

which is satisfied by u = e
i2π
m� and m(m�− 1) being even.

2. γ �= 1, implied by (m is odd, � is even).

To show that our solution satisfies (9), we rewrite (9):

(γ u
m(m�−1)

2)m�−1=0 ⇔ (γ u
m2�
2 u

−m
2)m�−1=0 ⇔ (γ (um�)

m
2 u

−m
2)m�−1=0.

(11)

Since u = e
i2π
m� , um� = 1, we can simplify (11) further

(γ u
−m
2)m� − 1 = 0

(e
iπ
m� (e

i2π
m�)

−m
2)m� − 1 = 0

(e
iπ
m� (e

−iπ
�))m� − 1 = 0

(eiπ e−iπm)− 1 = 0
(e(1−m)iπ)− 1 = 0.

(12)

16 D. Adrovic and J. Verschelde

Since m is odd, we can write m = 2j + 1, for some j. The last equation of
(12) has the form

(e(1−m)iπ)−1=0 ⇔ (e(1−(2j+1))iπ)−1=0 ⇔ (e(−2j)iπ)−1=0. (13)

Since (e(−2j)iπ) = 1, for any j, the equation (e(−2j)iπ) − 1 = 0 is satisfied,
implying (9).
�

Backelin’s Lemma comes to aid when applying a homotopy to find all isolated
cyclic n-roots as follows. We must decide at the end of a solution path whether
we have reached an isolated solution or a positive dimension solution set. This
problem is especially difficult in the presence of isolated singular solutions (such
as 4-fold isolated cyclic 9-roots [36]). With the form of the solution set as in
Backelin’s Lemma, we solve a triangular binomial system in the parameters t
and with as x values the solution found at the end of a path. If we find values
for the parameters for an end point, then this solution lies on the solution set.

3 Exploiting Symmetry

We illustrate the exploitation of permutation symmetry on the cyclic 5-roots
system. Adjusting polyhedral homotopies to exploit the permutation symmetry
for this system was presented in [57].

3.1 The Cyclic 5-roots Problem

The mixed volume for the cyclic 5-roots system is 70, which equals the exact
number of roots. The first four equations of the cyclic 5-roots system C5(x) = 0,
define solution curves:

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x0 + x1 + x2 + x3 + x4 = 0
x0x1 + x0x4 + x1x2 + x2x3 + x3x4 = 0
x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 = 0
x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4 = 0.

(14)

where v = (1, 1, 1, 1, 1). As the first four equations of C5 are homogeneous, the
first four equations of C5 coincide with the first four equations of inv(C5)(x) =
0. Because these four equations are homogeneous, we have lines of solutions.
After computing representations for the solution lines, we find the solutions
to the original cyclic 5-roots problem intersecting the solution lines with the
hypersurface defined by the last equation. In this intersection, the exploitation
of the symmetry is straightforward.

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 17

The unimodular matrix with v = (1, 1, 1, 1, 1) and its corresponding coordi-
nate transformation are

M =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ x = zM :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 = z0
x1 = z0z1
x2 = z0z2
x3 = z0z3
x4 = z0z4.

(15)

Applying x = zM to the initial form system (14) gives

inv(f)(x = zM) =

⎧⎪⎪⎨⎪⎪⎩
z1 + z2 + z3 + z4 + 1 = 0
z1z2 + z2z3 + z3z4 + z1 + z4 = 0
z1z2z3 + z2z3z4 + z1z2 + z1z4 + z3z4 = 0
z1z2z3z4 + z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0.

(16)

The system (16) has 14 isolated solutions of the form z1 = c1, z2 = c2, z3 =
c3, z4 = c4. If we let z0 = t, in the original coordinates we have

x0 = t, x1 = tc1, x2 = tc2, x3 = tc3, x4 = tc4 (17)

as representations for the 14 solution lines.
Substituting (17) into the omitted equation x0x1x2x3x4 − 1 = 0, yields a

univariate polynomial in t of the form kt5 − 1 = 0, where k is a constant.
Among the 14 solutions, 10 are of the form t5 − 1. They account for 10 × 5 =
50 solutions. There are two solutions of the form (−122.99186938124345)t5 −
1, accounting for 2 × 5 = 10 solutions and an additional two solutions are of
the form (−0.0081306187557833118)t5 − 1 accounting for 2 × 5 = 10 remaining
solutions. The total number of solutions is 70, as indicated by the mixed volume
computation. Existence of additional symmetry, which can be exploited, can be
seen in the relationship between the coefficients of the quintic polynomial, i.e.

1
(−122.99186938124345) ≈ −0.0081306187557833118.

3.2 A General Approach

That the first n−1 equations of cyclic n-roots system give explicit solution lines
is exceptional. For general polynomial systems we can use the leading term of
the Puiseux series to compute witness sets [49] for the space curves defined by
the first n− 1 equations. Then via the diagonal homotopy [48] we can intersect
the space curves with the rest of the system. While the direct exploitation of
symmetry with witness sets is not possible, with the Puiseux series we can pick
out the generating space curves.

4 Computing Pretropisms

Following from the second theorem of Bernshtěın [8], the Newton polytopes may
be in general position and no normals to at least one edge of every Newton poly-
tope exists. In that case, there does not exist a positive dimensional solution set

18 D. Adrovic and J. Verschelde

either. We look for v so that inv(f)(x) = 0 has solutions in (C∗)n and therefore
we look for pretropisms. In this section we describe two approaches to compute
pretropisms. The first approach applies cddlib [21] on the Cayley embedding.
Algorithms to compute tropical varieties are described in [11] and implemented
in Gfan [31]. The second approach is the application of tropical intersection

of Gfan.

4.1 Using the Cayley Embedding

The Cayley trick formulates a resultant as a discriminant as in [24, Proposition
1.7, page 274]. We follow the geometric description of [52], see also [15, §9.2].
The Cayley embedding EA of A = (A1, A2, . . . , AN) is

EA = (A1 × {0}) ∪ (A2 × {e1}) ∪ · · · ∪ (AN × {eN−1}) (18)

where ek is the kth (N − 1)-dimensional unit vector. Consider the convex hull
of the Cayley embedding, the so-called Cayley polytope, denoted by conv(EA).
If dim(EA) = k < 2n− 1, then a facet of conv(EA) is a face of dimension k− 1.

Proposition 1. Let EA be the Cayley embedding of the supports A of the sys-
tem f(x) = 0. The normals of those facets of conv(EA) that are spanned by at
least two points of each support in A form the tropical prevariety of f .

Proof. Denote the Minkowski sum of the supports in A as ΣA = A1 + A2 +
· · · + AN . Facets of ΣA spanned by at least two points of each support define
the generators of the cones of the tropical prevariety. The relation between EA

and ΣA is stated explicitly in [15, Observation 9.2.2]. In particular, cells in
a polyhedral subdivision of EA are in one-to-one correspondence with cells in
a polyhedral subdivision of the Minkowski sum ΣA. The correspondence with
cells in a polyhedral subdivision implies that facet normals of ΣA occur as facet
normals of conv(EA). Thus the set of all facets of conv(EA) gives the tropical
prevariety of f .
�

Note that ΣA can be computed as the Newton polytope of the product of all
polynomials in f . As a practical matter, applying the Cayley embedding is bet-
ter than just plainly computing the convex hull of the Minkowski sum because
the Cayley embedding maintains the sparsity of the input, at the expense of
increasing the dimension. Running cddlib [21] to compute the H-representation
of the Cayley polytope of the cyclic 8-roots problem yields 94 pretropisms. With
symmetry we have 11 generators, displayed in Table 1.

For the cyclic 9-roots problem, the computation of the facets of the Cayley
polytope yield 276 pretropisms, with 17 generators: (−2, 1, 1, −2, 1, 1, −2, 1,
1), (−1, −1, 2, −1, −1, 2, −1, −1, 2), (−1, 0, 0, 0, 0, 1, −1, 1, 0), (−1, 0, 0, 0,
0, 1, 0, −1, 1), (−1, 0, 0, 0, 1, −1, 0, 1, 0), (−1, 0, 0, 0, 1, −1, 1, 0, 0), (−1, 0, 0,
0, 1, 0, −1, 0, 1), (−1, 0, 0, 0, 1, 0, −1, 1, 0), (−1, 0, 0, 0, 1, 0, 0, −1, 1), (−1, 0,
0, 1, −1, 0, 1, −1, 1), (−1, 0, 0, 1, −1, 0, 1, 0, 0), (−1, 0, 0, 1, −1, 1, −1, 0, 1),
(−1, 0, 0, 1, −1, 1, −1, 1, 0), (−1, 0, 0, 1, −1, 1, 0, −1, 1), (−1, 0, 0, 1, 0, −1, 1,

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 19

Table 1. Eleven pretropism generators of the cyclic 8-root problem, the number of
solutions of the corresponding initial form systems, and the multidimensional cones
they generate, as computed by Gfan

generating pretropisms and initial forms higher dimensional cones of pretropisms
pretropism v #solutions

of
inv(C8)(z)

1D 2D 3D 4D

1. (−3, 1, 1, 1,−3, 1, 1, 1) 94 {1} {1, 3} {1, 6, 11} {1, 2, 3, 11}
2. (−1,−1,−1,3,−1,−1,−1,3) 115 {2} {1, 6} {1, 10, 11}
3. (−1,−1, 1, 1,−1,−1, 1, 1) 112 {3} {1, 10} {2, 8, 11}
4. (−1, 0, 0, 0, 1,−1, 1, 0) 30 {4} {1, 11}
5. (−1, 0, 0, 0, 1, 0,−1, 1) 23 {5} {2, 3}
6. (−1, 0, 0, 1,−1, 1, 0, 0) 32 {6} {2, 8}
7. (−1, 0, 0, 1, 0,−1, 1, 0) 40 {7} {3, 7}
8. (−1, 0, 0, 1, 0, 0,−1, 1) 16 {8} {2, 11}
9. (−1, 0, 1,−1, 1,−1, 1, 0) 39 {9} {6, 11}

10. (−1, 0, 1, 0,−1, 1,−1, 1) 23 {10} {8, 11}
11. (−1, 1,−1, 1,−1, 1,−1, 1) 509 {11} {10, 11}

−1, 1), (−1, 0, 0, 1, 0, 0, −1, 0, 1), and (−1, 0, 1, −1, 1, −1, 0, 1, 0). To get the
structure of the two dimensional cones, a second run of the Cayley embedding
is needed on the smaller initial form systems defined by the pretropisms.

The computations for n = 8 and n = 9 finished in less than a second on
one core of a 3.07Ghz Linux computer with 4Gb RAM. For the cyclic 12-roots
problem, cddlib needed about a week to compute the 907,923 facets normals
of the Cayley polytope. Although effective, the Cayley embedding becomes too
inefficient for larger problems.

4.2 Using Tropical intersection of Gfan

The solution set of the cyclic 8-roots polynomial system consists of space curves.
Therefore, all tropisms cones were generated by a single tropism. The computa-
tion of the tropical prevariety however, did not lead only to single pretropisms
but also to cones of pretropisms. The cyclic 8-roots cones of pretropisms and their
dimension are listed in Table 1. Since the one dimensional rays of pretropisms
yielded initial form systems with isolated solutions and since all higher dimen-
sional cones are spanned by those one dimensional rays, we can conclude that
there are no higher dimensional algebraic sets, as any two dimensional surface
degenerates to a curve if we consider only one tropism.

For the computation of the tropical prevariety, the Sage 5.7/Gfan function
tropical intersection() ran (with default settings without exploitation of
symmetry) on an AMD Phenom II X4 820 processor with 6 GB of RAM, running
GNU/Linux, see Table 2. As the dimension n increases so does the running time,
but the relative cost factors are bounded by n.

20 D. Adrovic and J. Verschelde

Table 2. Time to compute the tropical prevarieties for cyclic n-roots with Sage
5.7/Gfan and the relative cost factors: for n = 12, it takes 9.6 times longer than
for n = 11

n seconds hms format factor

8 16.37 16 s 1.0
9 79.36 1 m 19 s 4.8

10 503.53 8 m 23 s 6.3
11 3898.49 1 h 4 m 58 s 7.7
12 37490.93 10 h 24 m 50 s 9.6

5 The Second Term of a Puiseux Series

In exceptional cases like the cyclic 4-roots problem where the first term of the
series gives an exact solution or when we encounter solution lines like with the
first four equations of cyclic 5-roots, we do not have to look for a second term
of a series. In general, a pretropism v becomes a tropism if there is a Puiseux
series with leading powers equal to v. The leading coefficients of the series is a
solution in C∗ of the initial form system inv(f)(x) = 0. We solve the initial form
systems with PHCpack [55] (its blackbox solver incorporates MixedVol [22]). For
the computations of the series we use Sage [51].

5.1 Computing the Second Term

In our approach, the calculation of the second term in the Puiseux series is
critical to decide whether a solution of an initial form system corresponds to
an isolated solution at infinity of the original system, or whether it constitutes
the beginning of a space curve. For sparse systems, we may not assume that the
second term of the series is linear in t. Trying consecutive powers of t will be
wasteful for high degree second terms of particular systems. In this section we
explain our algorithm to compute the second term in the Puiseux series.

A unimodular coordinate transformation x = zM with M having as first row
the vector v turns the initial form system inv(f)(x) = 0 into ine1(f)(z) = 0 where
e1 = (1, 0, . . . , 0) equals the first standard basis vector. When v has negative
components, solutions of inv(f)(x) = 0 that are at infinity (in the ordinary
sense of having components equal to ∞) are turned into solutions in (C∗)n of
ine1(f)(z) = 0.

The following proposition states the existence of the exponent of the second
term in the series. After the proof of the proposition we describe how to compute
this second term.

Proposition 2. Let v denote the pretropism and x = zM denote the unimod-
ular coordinate transformation, generated by v. Let inv(f)(x = zM) denote the
transformed initial form system with regular isolated solutions, forming the iso-
lated solutions at infinity of the transformed polynomial system f(x = zM). If
the substitution of the regular isolated solutions at infinity into the transformed

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 21

polynomial system f(x = zM) does not satisfy the system entirely, then the con-
stant terms of f(x = zM) have disappeared, leaving at least one monomial c�t

w�

for some f� in f(x = zM) with minimal value w�. The minimal exponent w� is
the candidate for the exponent of the second term in the Puiseux series.

Proof. Let z = (z0, z1, . . . , zn−1) and z̄ = (z1, z2, . . . , zn−1) denote variables
after the unimodular transformation. Let (z0 = t, z1 = r1, . . . , zn−1 = rn−1) be
a regular solution at infinity and t the free variable.

The ith equation of the original system after the unimodular coordinate trans-
formation has the form

fi = zmi
0 (Pi(z̄) +O(z0)Qi(z)), i = 1, 2, . . . , N, (19)

where the polynomial Pi(z̄) consists of all monomials which form the initial form
component of fi and Qi(z) is a polynomial consisting of all remaining monomials
of fi. After the coordinate transformation, we denote the series expansion as{

z0 = t
zj = rj + kjt

w�(1 +O(t)), j = 1, 2, . . . , n− 1.
(20)

for some � and where at least one kj is nonzero.
We first show that, for all i, the polynomial zmi

0 Pi(z̄) cannot contain a mono-
mial of the form c�t

w� on substitution of (20). The polynomial zmi
0 Pi(z̄) is the

initial form of fi, hence solution at infinity (z0 = t, z1 = r1, z2 = r2, . . . , zn−1 =
rn−1) satisfies zmi

0 Pi(z̄) entirely. Substituting (20) into zmi

0 Pi(z̄) eliminates all
constants in tmiPi(z̄). Hence, the polynomial Pi(t) = Ri(t

w) and, therefore,
tmiPi(t) = Ri(t

w+mi).
We next show that for some i = �, the polynomial Qi(z) contains a monomial

c�t
w� . The polynomial Qi(z) is rewritten:

zw�
0 Qi(z̄) = zw�

0 Ti0(z̄) + zw�+1
0 Ti1(z̄) + · · · . (21)

The polynomial Qi(z) = zw�
0 Qi(z̄) consists of monomials which are not part of

the initial form of fi. Hence, on substitution of solution at infinity (20), zw�
0 Qi(z̄)

= tw�Qi(t) does not vanish entirely and there must be at least one i = � for which
constants remain after substitution. Since Q�(t) contains monomials which are
constants, tw�Q�(t) must contain a monomial of the form c�t

w� .
�

Now we describe the computation of the second term, in case the initial root
does not satisfy the entire original system. Assume the following general form of
the series: {

z0 = t

zi = c
(0)
i + kit

w�(1 +O(t)), i = 1, 2, . . . , n− 1,
(22)

for some � and where c
(0)
i ∈ C∗ are the coordinates of the initial root, ki is the

unknown coefficient of the second term tw� , w� > 0. Note that only for some
ki nonzero values may exist, but not all ki may be zero. We are looking for the

22 D. Adrovic and J. Verschelde

smallest w� for which the linear system in the ki’s admits a solution with at least
one nonzero coordinate. Substituting (22) gives equations of the form

ĉ
(0)
i tw�(1 +O(t)) + tw�+bi

n∑
j=1

γijkj(1 +O(t)) = 0, i = 1, 2, . . . , n, (23)

for constant exponents w�, bi and constant coefficients ĉ
(0)
i and γij .

In the equations of (23) we truncate the O(t) terms and retain those equations
with the smallest value of the exponents w�, because with the second term of
the series solution we want to eliminate the lowest powers of t when we plug
in the first two terms of the series into the system. This gives a condition on
the value w� of the unknown exponent of t in the second term. If there is no
value for w� so that we can match with w� + bi the minimal value of w� for all
equations where the same minimal value of w� occurs, then there does not exist
a second term and hence no space curve. Otherwise, with the matching value
for w� we obtain a linear system in the unknown k variables. If a solution to this
linear system exists with at least one nonzero coordinate, then we have found a
second term, otherwise, there is no space curve.

For an algebraic set of dimension d, we have a polyhedral cone of d tropisms and
we take any general vectorv in this cone.Thenwe apply themethod outlined above
to compute the second term in the series in one parameter, in the direction of v.

5.2 Series Developments for Cyclic 8-roots

We illustrate our approach on the cyclic 8-roots problem, denoted by C8(x) = 0
and take as pretropism v = (1,−1, 0, 1, 0, 0,−1, 0). Replacing the first row of the
8-dimensional identity matrix by v yields a unimodular coordinate transforma-
tion, denoted as x = zM , explicitly defined as

x0 = z0, x1 = z1/z0, x2 = z2, x3 = z0z3, x4 = z4, x5 = z5, x6 = z6/z0, x7 = z7.
(24)

Applying x = zM to the initial form system inv(C8)(x) = 0 gives

inv(C8)(x = zM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 + z6 = 0
z1z2 + z5z6 + z6z7 = 0
z4z5z6 + z5z6z7 = 0
z4z5z6z7 + z1z6z7 = 0
z1z2z6z7 + z1z5z6z7 = 0
z1z2z3z4z5z6 + z1z2z5z6z7 + z1z4z5z6z7 = 0
z1z2z3z4z5z6z7 + z1z2z4z5z6z7 = 0
z1z2z3z4z5z6z7 − 1 = 0.

(25)

By construction of M , observe that all polynomials have the same power of z0,
so z0 can be factored out. Removing z0 from the initial form system, we find a
solution

z0= t, z1=−I, z2=
−1

2
− I

2
, z3=−1, z4=1+I, z5=

1

2
+
I

2
, z6=I, z7=−1−I

(26)

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 23

where I =
√
−1. This solution is a regular solution. We set z0 = t, where t is

the variable for the Puiseux series. In the computation of the second term, we
assume the Puiseux series of the form at the left of (27). We first transform the
cyclic 8-roots system C8(x) = 0 using the coordinate transformation given by
(24) and then substitute the assumed series form into this new system. Since
the next term in the series is of the form kjt

1, we collect all the coefficients of t1

and solve the linear system of equations. The second term in the Puiseux series
expansion for the cyclic 8-root system, has the form as at the right of (27).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = t

z1 = −I + c1t

z2 = −1
2 − I

2 + c2t

z3 = −1 + c3t

z4 = 1 + I + c4t

z5 = 1
2 + I

2 + c5t

z6 = I + c6t

z7 = (−1− I) + c7t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = t

z1 = −I + (−1− I)t

z2 = −1
2 − I

2 + 1
2 t

z3 = −1

z4 = 1 + I − t

z5 = 1
2 + I

2 − 1
2 t

z6 = I + (1 + I)t

z7 = (−1− I) + t

(27)

Because of the regularity of the solution of the initial form system and the
second term of the Puiseux series, we have a symbolic-numeric representation of
a quadratic solution curve.

If we place the same pretropism in another row in the unimodular matrix,
then we can develop the same curve starting at a different coordinate plane. This
move is useful if the solution curve would not be in general position with respect
to the first coordinate plane. For symmetric polynomial systems, we apply the
permutations to the pretropism, the initial form systems, and its solutions to find
Puiseux series for different solution curves, related to the generating pretropism
by symmetry.

Also for the pretropism v = (1,−1, 1,−1, 1,−1, 1,−1), the coordinate trans-
formation is given by the unimodular matrix M equal to the identity matrix,
except for its first row v. The coordinate transformation x = zM yields x0 = z0,
x1 = z1/z0, x2 = z0z2, x3 = z3/z0, x4 = z0z4, x5 = z5/z0, x6 = z0z6, x7 = z7/z0.
Applying the coordinate transformation to inv(C8)(x) gives

inv(C8)(x=zM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 + z3 + z5 + z7 = 0
z1z2+z2z3+z3z4+z4z5+z5z6+z6z7+z1+z7 = 0
z1z2z3 + z3z4z5 + z5z6z7 + z1z7 = 0
z1z2z3z4 + z2z3z4z5 + z3z4z5z6 + z4z5z6z7
+z1z2z3 + z1z2z7 + z1z6z7 + z5z6z7 = 0
z1z2z3z4z5 + z3z4z5z6z7 + z1z2z3z7 + z1z5z6z7 = 0
z1z2z3z4z5z6 + z2z3z4z5z6z7 + z1z2z3z4z5
+z1z2z3z4z7 + z1z2z3z6z7 + z1z2z5z6z7
+z1z4z5z6z7 + z3z4z5z6z7 = 0
z1z2z3z4z5z6z7 + z1z2z3z4z5z7 + z1z2z3z5z6z7
+z1z3z4z5z6z7 = 0
z1z2z3z4z5z6z7 − 1 = 0

(28)

24 D. Adrovic and J. Verschelde

The initial form system (28) has 72 solutions. Among the 72 solutions, a
solution of the form

z0 = t, z1 = −1, z2 = I, z3 = −I, z4 = −1, z5 = 1, z6 = −I, z7 = I, (29)

here expressed in the original coordinates,

x0 = t, x1 = −1/t, x2 = It, x3 = −I/t, x4 = −t, x5 = 1/t, x6 = −It, x7 = I/t
(30)

satisfies the cyclic 8-roots entirely. Applying the cyclic permutation of this solu-
tion set we can obtain the remaining 7 solution sets, which also satisfy the cyclic
8-roots system.

In [56], a formula for the degree of the curve was derived, based on the coor-
dinates of the tropism and the number of initial roots for the same tropism. We
apply this formula and obtain 144 as the known degree of the space curve of the
one dimensional solution set, see Table 3.

Table 3. Tropisms, cyclic permutations, and degrees for the cyclic 8 solution curve

(1,−1, 1,−1, 1,−1, 1,−1) 8× 2 = 16
(1,−1, 0, 1, 0, 0,−1, 0) → (1, 0, 0,−1, 0, 1,−1, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 0, 0, 1, 0,−1) → (1, 0,−1, 1, 0,−1, 0, 0) 8× 2 + 8× 2 = 32
(1, 0,−1, 1, 0,−1, 0, 0) → (1, 0,−1, 0, 0, 1, 0,−1) 8× 2 + 8× 2 = 32
(1, 0, 0,−1, 0, 1,−1, 0) → (1,−1, 0, 1, 0, 0,−1, 0) 8× 2 + 8× 2 = 32

TOTAL = 144

Using the same polyhedral method we can find all the isolated solutions of
the cyclic 8-roots system. We conclude this subsection with some empirical ob-
servations on the time complexity. In the direction (1,−1, 0, 1, 0, 0,−1, 0), there
is a second term in the Puiseux series as for the 40 solutions of the initial form
system, there is no first term that satisfies the entire cyclic 8-roots system. Con-
tinuing to construct the second term, the total time required is 35.5 seconds,
which includes 28 milliseconds that PHCpack needed to solve the initial form
system. For (1,−1, 1,−1, 1,−1, 1,−1) there is no second term in the Puiseux
series as the first term satisfies the entire system. Hence, the procedure for con-
struction and computation of the second term does not run. It takes PHCpack
12 seconds to solve the initial form system, whose solution set consists of 509
solutions. Determining that there is no second term for the 509 solutions, takes
199 seconds. Given their numbers of solutions, the ratio for time comparison is
given by 509

40 = 12.725. However, given that for tropisms (1,−1, 0, 1, 0, 0,−1, 0)
the procedure for construction and computation of the second term does run,
unlike for tropism (1,−1, 1,−1, 1,−1, 1,−1), the ratio for time comparison is not
precise enough. A more accurate ratio for comparison is 199

35 ≈ 5.686.

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 25

T
a
b
le

4
.

G
en

er
a
to
rs

o
f

th
e

ro
o
ts

o
f

th
e

in
it
ia
l

fo
rm

sy
st
em

in
v
(C

1
2
)(
x
)

=
0

w
it
h

th
e

tr
o
p
is
m

v
=

(+
1
,−

1
,+

1
,−

1
,+

1
,−

1
,+

1
,−

1
,+

1
,−

1
,+

1
,−

1
)

in
th
e

tr
a
n
sf
o
rm

ed
z

co
o
rd
in
a
te
s.

E
v
er
y

so
lu
ti
o
n

d
efi

n
es

a
so
lu
ti
o
n

cu
rv
e

o
f
th
e

cy
cl
ic

1
2
-r
o
o
ts

sy
st
em

.

z 1
z 2

z 3
z 4

z 5
z 6

z 7
z 8

z 9
z 1

0
z 1

1

1 2
+

√
3

2
I

1 2
−

√
3

2
I

1
−

1 2
−

√
3

2
I

1 2
−

√
3

2
I

−1
−

1 2
−

√
3

2
I
−

1 2
+

√
3

2
I

−1
1 2
+

√
3

2
I
−

1 2
+

√
3

2
I

1 2
+

√
3

2
I

−1
1

1
1 2
−

√
3

2
I

−1
−

1 2
−

√
3

2
I

1
−1

−1
−

1 2
+

√
3

2
I

1 2
+

√
3

2
I

1 2
+

√
3

2
I
−

1 2
−

√
3

2
I

1
1 2
−

√
3

2
I

−1
−

1 2
−

√
3

2
I
−

1 2
+

√
3

2
I

1 2
+

√
3

2
I

−1
−

1 2
1 2
−

√
3

2
I

−1
−

1 2
−

√
3

2
I

1
−1

−1
−

1 2
+

√
3

2
I

1
1 2
+

√
3

2
I

−1
1

−
1 2
−

√
3

2
I

1 2
−

√
3

2
I

−1
−

1 2
+

√
3

2
I
−

1 2
−

√
3

2
I
−1

1 2
−

1 2
+

√
3

2
I

1
1 2
−

√
3

2
I

1 2
+

√
3 2
I

1
1 2
−

√
3

2
I

−1
1

−
1 2
−

√
3

2
I
−1

−1
−

1 2
+

√
3

2
I

1
−1

1 2
+

√
3 2
I

−
1 2
+

√
3

2
I

1 2
−

√
3

2
I

1 2
+

√
3

2
I

−
1 2
−

√
3

2
I
−

1 2
−

√
3

2
I
−1

1 2
+

√
3

2
I

−
1 2
+

√
3

2
I
−

1 2
+

√
3 2
I

1 2
+

√
3

2
I

1 2
+

√
3 2
I

−
1 2
−

√
3

2
I

−1
1 2
−

√
3

2
I

1
1

−1
1 2
+

√
3

2
I

1
−

1 2
+

√
3 2
I

−1
−1

1
−1

1 2
+

√
3

2
I

−
1 2
−

√
3

2
I
−

1 2
−

√
3

2
I
−1

−1
1

−
1 2
−

√
3 2
I

1 2
+

√
3

2
I

1 2
+

√
3 2
I

−
1 2
+

√
3

2
I

1 2
−

√
3

2
I

1 2
−

√
3

2
I

−
1 2
−

√
3

2
I
−

1 2
+

√
3

2
I
−1

1 2
−

1 2
+

√
3

2
I
−

1 2
+

√
3 2
I

1 2
+

√
3

2
I

1 2
−

√
3 2
I

−
1 2
+

√
3

2
I

1 2
−

√
3

2
I

1 2
+

√
3

2
I

−
1 2
−

√
3

2
I

1
−1

1 2
−

1 2
+

√
3

2
I
−

1 2
−

√
3 2
I

1 2
+

√
3

2
I

−1
−

1 2
1 2
−

√
3

2
I

1 2
−

√
3

2
I

1
1

−1
1 2
−

√
3

2
I

−
1 2
+

√
3

2
I
−

1 2
+

√
3 2
I

−1
−1

1 2
−

√
3

2
I

1 2
−

√
3

2
I
−

1 2
−

√
3

2
I
−

1 2
+

√
3

2
I

1 2
−

√
3

2
I

−1
−

1 2
+

√
3

2
I
−

1 2
+

√
3

2
I

1 2
+

√
3

2
I

1 2
+

√
3

2
I
−

1 2
+

√
3

2
I

1 2
+

√
3

2
I

1 2
−

√
3

2
I
−

1 2
−

√
3

2
I
−

1 2
−

√
3

2
I

1 2
+

√
3

2
I

−1
−

1 2
−

√
3

2
I
−

1 2
−

√
3

2
I

1 2
+

√
3

2
I

1 2
+

√
3

2
I
−

1 2
−

√
3

2
I

−
1 2
+

√
3

2
I

−1
−1

−
1 2
−

√
3

2
I

1
−1

1 2
−

√
3

2
I

1
1

1 2
+

√
3

2
I

−1
1 2
+

√
3

2
I

−1
−

1 2
+

√
3

2
I
−

1 2
−

√
3

2
I

1 2
−

√
3

2
I

−1
−

1 2
−

√
3

2
I

1
1 2
−

√
3

2
I

1 2
−

√
3

2
I
−

1 2
+

√
3

2
I

1
1 2
−

√
3

2
I

1 2
−

√
3

2
I

−
1 2
−

√
3

2
I
−

1 2
−

√
3

2
I
−1

−1
−

1 2
+

√
3

2
I
−

1 2
+

√
3 2
I

1 2
+

√
3

2
I

1 2
+

√
3 2
I

−1
−1

−
1 2
−

√
3

2
I
−

1 2
−

√
3

2
I

1 2
+

√
3

2
I

−1
1

1
1 2

1 2
−

1 2
−

√
3

2
I

−1
1 2

1
1

1 2
−1

1
−

1 2
+

√
3

2
I

−1
−1

−
1 2
−

√
3

2
I

−
1 2
−

√
3

2
I

1 2
−

√
3

2
I

1 2
−

√
3

2
I

1
−

1 2
−1

1 2
+

√
3

2
I

−
1 2
+

√
3

2
I
−

1 2
−

√
3 2
I

−1
1 2
−

√
3 2
I

26 D. Adrovic and J. Verschelde

5.3 Cyclic 12-roots

The generating solutions to the quadratic space curve solutions of the cyclic
12-roots problem are in Table 4. As the result in the Table 4 is given in the
transformed coordinates, we return the solutions to the original coordinates. For
any solution generator (r1, r2, . . . , r11) in Table 4:

z0 = t, z1 = r1, z2 = r2, z3 = r3, z4 = r4, z5 = r5,

z6 = r6, z7 = r7, z8 = r8, z9 = r9, z10 = r10, z11 = r11
(31)

and turning to the original coordinates we obtain

x0 = t, x1 = r1/t, x2 = r2t, x3 = r3/t, x4 = r4t, x5 = r5/t

x6 = r6t, x7 = r7/t, x8 = r8t, x9 = r9/t, x10 = r10t, x11 = r11/t
(32)

Application of the degree formula of [56] shows that all space curves are quadrics.
Compared to [46], we arrive at this result without the application of any factor-
ization methods.

6 Concluding Remarks

Inspired by an effective proof of the fundamental theorem of tropical algebraic
geometry, we outlined in this paper a polyhedral method to compute Puiseux
series expansions for solution curves of polynomial systems. The main advan-
tage of the new approach is the capability to exploit permutation symmetry. For
our experiments, we relied on cddlib and Gfan for the pretropisms, the black-
box solver of PHCpack for solving the initial form systems, and Sage for the
manipulations of the Puiseux series.

References

1. Adrovic, D.: Solving Polynomial Systems with Tropical Methods. PhD thesis, Uni-
versity of Illinois at Chicago, Chicago (2012)

2. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting sym-
metry. arXiv:1109.0241v1

3. Adrovic, D., Verschelde, J.: Tropical algebraic geometry in Maple: A preprocessing
algorithm for finding common factors to multivariate polynomials with approxi-
mate coefficients. Journal of Symbolic Computation 46(7), 755–772 (2011); Special
Issue in Honour of Keith Geddes on his 60th Birthday, edited by Giesbrecht, M.W.,
Watt, S.M.

4. Adrovic, D., Verschelde, J.: Computing Puiseux series for algebraic surfaces. In:
van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 20–27.
ACM (2012)

5. Aroca, F., Ilardi, G., López de Medrano, L.: Puiseux power series solutions for sys-
tems of equations. International Journal of Mathematics 21(11), 1439–1459 (2011)

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 27

6. Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports,
Matematiska Institutionen 8, Stockholms universitet (1989)

7. Beringer, F., Richard-Jung, F.: Multi-variate polynomials and Newton-Puiseux
expansions. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp.
240–254. Springer, Heidelberg (2003)

8. Bernshtěin, D.N.: The number of roots of a system of equations. Functional Anal.
Appl., 9(3):183–185 (1975); Translated from Funktsional. Anal. i Prilozhen 9(3),
1–4 (1975)

9. Björck, G., Fröberg, R.: Methods to “divide out” certain solutions from systems
of algebraic equations, applied to find all cyclic 8-roots. In: Herman, I. (ed.) The
Use of Projective Geometry in Computer Graphics. LNCS, vol. 564, pp. 57–70.
Springer, Heidelberg (1992)

10. Björck, G., Haagerup, U.: All cyclic p-roots of index 3, found by symmetry-
preserving calculations. Preprint available at http://www.math.ku.dk/~haagerup

11. Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing
tropical varieties. Journal of Symbolic Computation 42(1), 54–73 (2007)

12. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. North-
Holland Mathematical Library, vol. 57. Elsevier (2000)

13. Colin, A.: Solving a system of algebraic equations with symmetries. Journal of Pure
and Applied Algebra 177-118, 195–215 (1997)

14. Dai, Y., Kim, S., Kojima, M.: Computing all nonsingular solutions of cyclic-n
polynomial using polyhedral homotopy continuation methods. J. Comput. Appl.
Math. 152(1-2), 83–97 (2003)

15. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Structures for Algorithms
and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer
(2010)

16. Emiris, I.Z.: Sparse Elimination and Applications in Kinematics. PhD thesis, Uni-
versity of California, Berkeley (1994)

17. Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant
and the mixed volume. Journal of Symbolic Computation 20(2), 117–149 (1995)

18. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (f4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999); Proceedings of MEGA 1998,
Saint-Malo, France, June 22-27 (1998)

19. Faugère, J.C.: Finding all the solutions of Cyclic 9 using Gröbner basis techniques.
In: Computer Mathematics - Proceedings of the Fifth Asian Symposium (ASCM
2001). Lecture Notes Series on Computing, vol. 9, pp. 1–12. World Scientific (2001)

20. Faugère, J.C., Rahmany, S.: Solving systems of polynomial equations with sym-
metries using SAGBI-Gröbner bases. In: Johnson, J., Park, H. (eds.) Proceedings
of the 2009 International Symposium on Symbolic and Algebraic Computation
(ISSAC 2009), pp. 151–158. ACM (2009)

21. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

22. Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-
volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)

23. Gatermann, K.: Computer Algebra Methods for Equivariant Dynamical Systems.
Lecture Notes in Mathematics, vol. 1728. Springer (2000)

24. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and
Multi-dimensional Determinants. Birkhäuser (1994)

http://www.math.ku.dk/~haagerup

28 D. Adrovic and J. Verschelde

25. Grigoriev, D., Weber, A.: Complexity of solving systems with few independent
monomials and applications to mass-action kinetics. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154.
Springer, Heidelberg (2012)

26. Haagerup, U.: Cyclic p-roots of prime length p and related complex Hadamard
matrices. Preprint available at http://www.math.ku.dk/~haagerup

27. Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body prob-
lem. Invent. math. 163, 289–312 (2006)

28. Herrero, M.I., Jeronimo, G., Sabia, J.: Affine solution sets of sparse polynomial
systems. Journal of Symbolic Computation 51(1), 34–54 (2013); Dickenstein, A., Di
Rocco, S., Hubert, E., Schicho, J. (eds.): Collected papers of MEGA 2011. Effective
Methods in Algebraic Geometry, Stockholm, Sweden, May 30-June 3 (2011)

29. Hubert, E., Labahn, G.: Rational invariants of scalings from Hermite normal forms.
In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 219–226.
ACM (2012)

30. Jensen, A., Hampton, M.: Finiteness of spatial central configurations in the five-
body problem. Celestial Mechanics and Dynamical Astronomy 109, 321–332 (2011)

31. Jensen, A.N.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman,
M.E., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The
IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46. Springer
(2008)

32. Jensen, A.N., Markwig, H., Markwig, T.: An algorithm for lifting points in a trop-
ical variety. Collectanea Mathematica 59(2), 129–165 (2008)

33. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation techniques for
sparse systems. Foundations of Computational Mathematics 9(1), 1–50 (2009)

34. Ya, B.: Kazarnovskii. Truncation of systems of polynomial equations, ideals and
varieties. Izvestiya: Mathematics 63(3), 535–547 (1999)

35. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polyno-
mial systems by the polyhedral homotopy continuation method. Computing 83(2-
3), 109–133 (2008)

36. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for iso-
lated singularities of polynomial systems. Theoret. Comput. Sci. 359(1-3), 111–122
(2006)

37. Maurer, J.: Puiseux expansion for space curves. Manuscripta Math. 32, 91–100
(1980)

38. McDonald, J.: Fractional power series solutions for systems of equations. Discrete
Comput. Geom. 27(4), 501–529 (2002)

39. Payne, S.: Fibers of tropicalization. Mathematische Zeitschrift 262(2), 301–311
(2009)

40. Poteaux, A.: Calcul de développements de Puiseux et application au calcul du
groupe de monodromie d’une courbe algébrique plane. PhD thesis, University of
Limoges, Limoges (2008)

41. Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and complexity of the
Newton-Puiseux algorithm over finite fields. In: Jeffrey, D. (ed.) Proceedings of the
2008 International Symposium on Symbolic and Algebraic Computation (ISSAC
2008), pp. 239–246. ACM (2008)

42. Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and applications.
Journal of Symbolic Computation 47(1), 32–63 (2012)

43. Puiseux, V.: Recherches sur les fonctions algébriques. J. de Math. Pures et Appl. 15,
365–380 (1850)

http://www.math.ku.dk/~haagerup

Polyhedral Methods for Space Curves Exploiting Symmetry Applied 29

44. Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry.
In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical
Physics. Contemporary Mathematics, vol. 377, pp. 289–317. AMS (2005)

45. Rond, G.: About the algebraic closure of the field of power series in several variables
in characteristic zero. arXiv:1303.1921v2

46. Sabeti, R.: Numerical-symbolic exact irreducible decomposition of cyclic-12. LMS
Journal of Computation and Mathematics 14, 155–172 (2011)

47. Servi, T.: Multivariable Newton-Puiseux theorem for convergent generalised power
series. arXiv:1304.0108v3

48. Sommese, A.J., Verschelde, J., Wampler, C.W.: Homotopies for intersecting solu-
tion components of polynomial systems. SIAM J. Numer. Anal. 42(4), 552–1571
(2004)

49. Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical alge-
braic geometry. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equa-
tions. Foundations, Algorithms and Applications. Algorithms and Computation in
Mathematics, vol. 14, pp. 301–337. Springer (2005)

50. Steidel, S.: Gröbner bases of symmetric ideals. Journal of Symbolic Computa-
tion 54(1), 72–86 (2013)

51. Stein, W.A., et al.: Sage Mathematics Software (Version 4.5.2). The Sage Devel-
opment Team (2010), http://www.sagemath.org

52. Sturmfels, B.: On the Newton polytope of the resultant. Journal of Algebraic Com-
binatorics 3, 207–236 (1994)

53. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series,
vol. 8. AMS (1996)

54. Szöllősi, F.: Construction, classification and parametrization of complex Hadamard
matrices. PhD thesis, Central European University, Budapest, arXiv:1110.5590v1
(2011)

55. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polyno-
mial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276
(1999) Software available at http://www.math.uic.edu/~jan/download.html

56. Verschelde, J.: Polyhedral methods in numerical algebraic geometry. In: Bates,
D.J., Besana, G., Di Rocco, S., Wampler, C.W. (eds.) Interactions of Classical and
Numerical Algebraic Geometry. Contemporary Mathematics, vol. 496, pp. 243–263.
AMS (2009)

57. Verschelde, J., Gatermann, K.: Symmetric Newton polytopes for solving sparse
polynomial systems. Adv. Appl. Math. 16(1), 95–127 (1995)

58. Walker, R.J.: Algebraic Curves. Princeton University Press (1950)
59. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.

Springer (1995)

http://www.sagemath.org
http://www.math.uic.edu/~jan/download.html

Computing the Limit Points

of the Quasi-component of a Regular Chain
in Dimension One

Parisa Alvandi, Changbo Chen, and Marc Moreno Maza

ORCCA, University of Western Ontario (UWO), London, Ontario, Canada
palvandi@uwo.ca, changbo.chen@gmail.com, moreno@csd.uwo.ca

Abstract. For a regular chain R in dimension one, we propose an algo-
rithm which computes the (non-trivial) limit points of the quasi-compo-
nent of R, that is, the set W (R)\W (R). Our procedure relies on Puiseux
series expansions and does not require to compute a system of generators
of the saturated ideal of R. We provide experimental results illustrating
the benefits of our algorithms.

1 Introduction

The theory of regular chains, since its introduction by J.F. Ritt [22], has been
applied successfully in many areas including differential systems [8,2,13], differ-
ence systems [12], unmixed decompositions [14] and primary decomposition [23]
of polynomial ideals, intersection multiplicity calculations [17], cylindrical alge-
braic decomposition [7], parametric [28] and non-parametric [4] semi-algebraic
systems. Today, regular chains are at the core of algorithms computing triangular
decomposition of polynomial systems and which are available in several software
packages [16,26,27]. Moreover, those algorithms provide back-engines for com-
puter algebra system front-end solvers, such as Maple’s solve command.

This paper deals with a notorious issue raised in all types of triangular decom-
positions, the Ritt problem, stated as follows. Given two regular chains (algebraic
or differential) R and S, whose saturated ideals sat(R) and sat(S) are radical,
check whether the inclusion sat(R) ⊆ sat(S) holds or not. In the algebraic case,
the challenge is to test such inclusion without computing a system of genera-
tors of sat(R). This question would be answered if one would have a procedure
with the following specification: for the regular chain R compute regular chains
R1, . . . , Re such that W (R) = W (R1) ∪ · · · ∪ W (Re) holds, where W (R) is the
quasi-component of R and W (R) is the Zariski closure of W (R).

We propose a solution to this algorithmic quest, in the algebraic case. To
be precise, our procedure computes the non-trivial limit points of the quasi-
component W (R), that is, the set lim(W (R)) := W (R) \W (R) as a finite union
of quasi-components of some other regular chains, see Theorem 7 in Section 7.
We focus on the case where sat(R) has dimension one.

When the regular chain R consists of a single polynomial r, primitive w.r.t.
its main variable, one can easily check that lim(W (R)) = V (r, hr) holds, where

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 30–45, 2013.
c© Springer International Publishing Switzerland 2013

Computing the Limit Points of the Quasi-component of a Regular Chain 31

hr is the initial of r. Unfortunately, there is no generalization of this result when
R consists of several polynomials, unless R enjoys remarkable properties, such
as being a primitive regular chain [15]. To overcome this difficulty, it becomes
necessary to view R as a “parametric representation” of the quasi-component
W (R). In this setting, the points of lim(W (R)) can be computed as limits (in the
usual sense of the Euclidean topology 1) of sequences of points along “branches”
(in the sense of the theory of algebraic curves) of W (R) . It turns out that these
limits can be obtained as constant terms of convergent Puiseux series defining
the “branches” of W (R) in the neighborhood of the points of interest.

Here comes the main technical difficulty of this approach. When computing
a particular point of lim(W (R)), one needs to follow one branch per defining
equation of R. Following a branch means computing a truncated Puiseux ex-
pansion about a point. Since the equation of R defining a given variable, say
Xj , depends on the equations of R defining the variables Xj−1, Xj−2, . . ., the
truncated Puiseux expansion for Xj is defined by an equation whose coefficients
involve the truncated Puiseux expansions for Xj−1, Xj−2,

From Sections 3 to 7, we show that this principle indeed computes the de-
sired limit points. In particular, we introduce the notion of a system of Puiseux
parametrizations of a regular chain, see Section 3. This allows us to state in
Theorem 3 a concise formula for lim(W (R)) in terms of this latter notion. Then,
we estimate to which accuracy one needs to effectively compute such Puiseux
parametrizations in order to deduce lim(W (R)), see Theorem 6 in Section 6.

In Section 8, we report on a preliminary implementation of the algorithms
presented in this paper. We evaluate our code by applying it to the question
of removing redundant components in Kalkbrener’s decompositions and observe
the benefits of this strategy. Section 2 briefly reviews notions from the theories of
regular chains and algebraic curves. We conclude this section with an example.

Consider the regular chain R = {r1, r2} ⊂ k[X1, X2, X3] with r1 = X1X
2
2 +

X2+1, r2 = (X1+2)X1X
2
3 +(X2+1)(X3+1). We have W (R) = V (R) \V (hR)

with hR = X2
1 (X1 + 2). To determine lim(W (R)), we compute Puiseux series

expansions of r1 at X1 = 0 and X1 = −2. For such calculation, we use Maple’s
command algcurves[puiseux] [24]. The Puiseux expansions of r1 at X1 = 0 are:

[X1 = T,X2 = −1− T +O(T 2)], [X1 = T,X2 = −1/T + 1 + T +O(T 2)].

Clearly, the second expansion does not yield a limit point. After substituting the
first expansion into r2, we have:

r′2=r2(X1=T,X2=−1− T +O(T 2), X3)=(T +2)TX2
3+(−T +O(T 2))(X3+1).

Now, we compute Puiseux series expansions of r′2 which are

[T = T,X3 = 1− 1/3 T +O(T 2)], [T = T,X3 = −1/2 + 1/12 T +O(T 2)].

So the regular chains {X1, X2 + 1, X3 − 1} and {X1, X2 + 1, X3 + 1/2} give
the limit points of W (R) at X1 = 0. Similarly, {X1 + 2, X2 − 1, X3 + 1} and
{X1 + 2, X2 + 1/2, X3 + 1} give the limit points of W (R) at X1 = −2.

1 The closures of W (R) in Zariski and the Euclidean topologies are equal when k = C.

32 P. Alvandi, C. Chen, and M.M. Maza

2 Preliminaries

This section is a review of various notions from the theories of regular chains,
algebraic curves and topology. For these latter subjects, our references are the
textbooks of R.J. Walker [25], G. Fischer [11] and J. R. Munkres [20]. Notations
and hypotheses introduced in this section are used throughout the paper.

Multivariate Polynomials. Let k be a field which is algebraically closed. Let
X1 < · · · < Xs be s ≥ 1 ordered variables. We denote by k[X1, . . . , Xs] the
ring of polynomials in the variables X1, . . . , Xs and with coefficients in k. For a
non-constant polynomial p ∈ k[X1, . . . , Xs], the greatest variable in p is called
main variable of p, denoted by mvar(p), and the leading coefficient of p w.r.t.
mvar(p) is called initial of p, denoted by init(p).

Zariski Topology. We denote by As the affine s-space over k. An affine variety
of As is the set of common zeroes of a collection F ⊆ k[X1, . . . , Xs] of polynomi-
als. The Zariski topology on As is the topology whose closed sets are the affine
varieties of As. The Zariski closure of a subset W ⊆ As is the intersection of all
affine varieties containing W .

Relation between Zariski Topology and the Euclidean Topology. When k =
C, the affine space As is endowed with both Zariski topology and the Euclidean
topology. While Zariski topology is coarser than the Euclidean topology, we have
the following (Corollary 1 in I.10 of [19]) key result. Let V ⊆ As be an irreducible
affine variety and U ⊆ V be open in the Zariski topology induced on V . Then, the
closure of U in Zariski topology and the closure of U in the Euclidean topology
are both equal to V .

Limit Points. Let (X, τ) be a topological space. Let S ⊆ X be a subset. A point
p ∈ X is a limit point of S if every neighborhood of p contains at least one point
of S different from p itself. If the space X is a metric space, the point p is a limit
point of S if and only if there exists a sequence (xn, n ∈ N) of points of S \ {p}
with p as limit. In practice, the “interesting” limit points of S are those which
do not belong to S. For this reason, we call such limit points non-trivial and we
denote by lim(S) the set of non-trivial limit points of S.

Regular Chain. A set R of non-constant polynomials in k[X1, . . . , Xs] is called
a triangular set, if for all p, q ∈ R with p �= q we have mvar(p) �= mvar(q). A
variable Xi is said free w.r.t. R if there exists no p ∈ R such that mvar(p) = Xi.
For a nonempty triangular set R, we define the saturated ideal sat(R) of R to be
the ideal 〈R〉 : h∞R , where hR is the product of the initials of the polynomials in
R. The saturated ideal of the empty triangular set is defined as the trivial ideal
〈0〉. The ideal sat(R) has several properties, in particular it is unmixed [3]. We
denote its height, that is the number of polynomials in R, by e, thus sat(R) has
dimension s− e. Let Xi1 < · · · < Xie be the main variables of the polynomials
in R. We denote by rj the polynomial of R whose main variable is Xij and by
hj the initial of rj . We say that R is a regular chain whenever R is empty or
{r1, . . . , re−1} is a regular chain and he is regular modulo the saturated ideal
sat({r1, . . . , re−1}). The regular chain R is said strongly normalized whenever

Computing the Limit Points of the Quasi-component of a Regular Chain 33

each of the main variables of the polynomials of R (that is, Xi1 < · · · < Xie)
does not appear in hR.

Limit Points of the Quasi-component of a Regular Chain. We denote by
W(R) := V (R) \ V (hR) the quasi-component of R, that is, the common zeros of
R that do not cancel hR. The above discussion implies that the closure of W (R)
in Zariski topology and the closure of W (R) in the Euclidean topology are both
equal to V (sat(R)), that is, the affine variety of sat(R). We denote byW (R) this
common closure and lim(W (R)) this common set of limit points.

Rings of Formal Power Series. Recall that k is an algebraically closed field. We
denote by k[[X1, . . . , Xs]] and k〈X1, . . . , Xs〉 the rings of formal and convergent
power series in X1, . . . , Xs with coefficients in k. When s = 1, we write T instead
of X1. For f ∈ k[[X1, . . . , Xs]], its order is defined by min{d | f(d) �= 0} if f �= 0
and by ∞ otherwise, where f(d) is the homogeneous part of f in degree d. We
denote by Ms the only maximal ideal of k[[X1, . . . , Xs]], that is, Ms = {f ∈
k[[X1, . . . , Xs]] | ord(f) ≥ 1}. Let f ∈ k[[X1, . . . , Xs]] with f �= 0. Let k ∈ N.
We say that f is (1) general in Xs if f �= 0 mod Ms−1, (2) general in Xs of
order k if we have ord(f mod Ms−1) = k.

Formal Puiseux Series. We denote by k[[T ∗]] =
⋃∞

n=1 k[[T
1
n]] the ring of

formal Puiseux series. For a fixed ϕ ∈ k[[T ∗]], there is an n ∈ N>0 such that

ϕ ∈ k[[T
1
n]]. Hence ϕ =

∑∞
m=0 amT

m
n , where am ∈ k. We call order of ϕ the

rational number defined by ord(ϕ) = min{m
n | am �= 0} ≥ 0. We denote by

k((T ∗)) the quotient field of k[[T ∗]].

Convergent Puiseux series. Let ϕ ∈ C[[T ∗]] and n ∈ N such that ϕ = f(T
1
n)

holds for some f ∈ C[[T]]. We say that the Puiseux series ϕ is convergent if we
have f ∈ C〈T 〉. Convergent Puiseux series form an integral domain denoted by
C〈T ∗〉; its quotient field is denoted by C(〈T ∗〉). For every ϕ ∈ C((T ∗)), there
exist n ∈ Z, r ∈ N>0 and a sequence of complex numbers an, an+1, an+2, . . . such
that we have ϕ =

∑∞
m=n amT

m
r and an �= 0. Then, we define ord(ϕ) = n

r .

Puiseux Theorem. If k has characteristic zero, the field k((T ∗)) is the algebraic
closure of the field of formal Laurent series over k. Moreover, if k = C, the field
C(〈T ∗〉) is algebraically closed as well. From now on, we assume k = C.

Puiseux Expansion. Let B = C((X∗)) or C(〈X∗〉). Let f ∈ B[Y], where d :=
deg(f, Y) > 0. Let h := lc(f, Y). According to Puiseux Theorem, there exists
ϕi ∈ B, i = 1, . . . , d, such that f

h = (Y −ϕ1) · · · (Y −ϕd). We call ϕ1, . . . , ϕd the
Puiseux expansions of f at the origin.

Puiseux Parametrization. Let f ∈ C〈X〉[Y]. A Puiseux parametrization of f is
a pair (ψ(T), ϕ(T)) of elements of C〈T 〉 for some new variable T , such that (1)
ψ(T) = T ς , for some ς ∈ N>0; (2) f(X = ψ(T), Y = ϕ(T)) = 0 holds in C〈T 〉,
and (3) there is no integer k > 1 such that both ψ(T) and ϕ(T) are in C〈T k〉.
The index ς is called the ramification index of the parametrization (T ς , ϕ(T)).
It is intrinsic to f and ς ≤ deg(f, Y). Let z1, . . . , zς denote the distinct roots of
unity of order ς in C. Then ϕ(ziX

1/ς), for i = 1, . . . , ς , are ς Puiseux expansions
of f . For a Puiseux expansion ϕ of f , let c minimum such that both ϕ = g(T 1/c)
and g ∈ C〈T 〉 holds. Then (T c, g(T)) is a Puiseux parametrization of f .

34 P. Alvandi, C. Chen, and M.M. Maza

3 Puiseux Expansions of a Regular Chain

In this section, we introduce the notion of Puiseux expansions of a regular chain,
motivated by the work of [18,1] on Puiseux expansions of space curves. Through-
out this section, let R = {r1, . . . , rs−1} ⊂ C[X1 < · · · < Xs] be a strongly nor-
malized regular chain whose saturated ideal has dimension one and assume that
X1 is free w.r.t. R.

Lemma 1. Let hR(X1) be the product of the initials of the polynomials in R.
Let ρ > 0 be small enough such that the set Uρ := {x = (x1, . . . , xs) ∈ Cs | 0 <
|x1| < ρ} does not contain any zeros of hR. Define Vρ(R) := V (R) ∩ Uρ. Then,
we have W (R) ∩ Uρ = Vρ(R).

Proof. It follows from the observation that Uρ ∩ V (hR) = ∅.

Notation 1. Let W ⊆ Cs. Denote lim0(W) := {x = (x1, . . . , xs) ∈ Cs | x ∈
lim(W) and x1 = 0}.

Lemma 2. We have lim0(W (R)) = lim0(Vρ(R)).

Proof. By Lemma 1, we have W (R) ∩ Uρ = Vρ(R). Meanwhile, lim0(W (R)) =
lim0(W (R) ∩ Uρ) holds. Thus lim0(W (R)) = lim0(Vρ(R)) holds.

Lemma 3. For 1 ≤ i ≤ s − 1, let di := deg(ri, Xi+1). Then R generates a
zero-dimensional ideal in C(〈X∗

1 〉)[X2, . . . , Xs]. Let V
∗(R) be the zero set of R

in C(〈X∗
1 〉)s−1. Then V ∗(R) has exactly

∏s−1
i=1 di points, counting multiplicities.

Proof. It follows directly from the definition of regular chain, and the fact that
C(〈X∗

1 〉) is an algebraically closed field.

Definition 1. We use the notations of Lemma 3. Each point in V ∗(R) is called
a Puiseux expansion of R.

Notation 2. Let m = |V ∗(R)|. Write V ∗(R) = {Φ1, . . . , Φm}. For i = 1, . . . ,m,
write Φi = (Φ1

i (X1), . . . , Φ
s−1
i (X1)). Let ρ > 0 be small enough such that for

1 ≤ i ≤ m, 1 ≤ j ≤ s − 1, each Φj
i (X1) converges in 0 < |X1| < ρ. We define

V ∗
ρ (R) := ∪m

i=1{x ∈ Cs | 0 < |x1| < ρ, xj+1 = Φj
i (x1), j = 1, . . . , s− 1}.

Theorem 1. We have V ∗
ρ (R) = Vρ(R).

Proof. We prove this by induction on s. For i = 1, . . . , s − 1, recall that hi is
the initial of ri. If s = 2, we have r1(X1, X2) = h1(X1)

∏d1

i=1(X2 − Φ1
i (X1)). So

V ∗
ρ (R) = Vρ(R) clearly holds.
Now we consider s > 2. Write R′ = {r1, . . . , rs−2}, R = R′ ∪ {rs−1}, X ′ =

X2, . . . , Xs−1, X = (X1, X
′, Xs), x

′ = x2, . . . , xs−1, x = (x1, x
′, xs), and m′ =

|V ∗(R′)|. For i = 1, . . . ,m, let Φi = (Φ′
i, Φ

s−1
i), where Φ′

i stands for Φ
1
i , . . . , Φ

s−2
i .

Assume the theorem holds for R′, that is V ∗
ρ (R

′) = Vρ(R
′). For any i = 1, . . . ,m′,

there exist i1, . . . , ids−1 ∈ {1, . . . ,m} such that we have

rs−1(X1, X
′ = Φ′

i, Xs) = hs−1(X1)

ds−1∏
k=1

(Xs − Φs−1
ik

(X1)). (1)

Computing the Limit Points of the Quasi-component of a Regular Chain 35

Note that V ∗(R) = ∪m′
i=1 ∪

ds−1

k=1 {(X ′ = Φ′
i, Xs = Φs−1

ik
)}. Therefore, by induction

hypothesis and Equation (1), we have

V ∗
ρ (R) = ∪m′

i=1 ∪ds−1

k=1 {x | x ∈ Uρ, x
′ = Φ′

i(x1), xs = Φs−1
ik

(x1)}
= ∪ds−1

k=1 {x | (x1, x′) ∈ V ∗
ρ (R

′), xs = Φs−1
ik

(x1)}
= {x | (x1, x′) ∈ V ∗

ρ (R
′), rs−1(x1, x

′, xs) = 0}
= {x | (x1, x′) ∈ Vρ(R

′), rs−1(x1, x
′, xs) = 0}

= Vρ(R).

Theorem 2. Let V ∗
≥0(R) := {Φ = (Φ1, . . . , Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j =

1, . . . , s− 1}. Then we have lim0(W (R)) = ∪Φ∈V ∗
≥0

(R){(X1 = 0, Φ(X1 = 0))}.

Proof. By definition of V ∗
≥0(R), we immediately have

lim0(V
∗
ρ (R)) = ∪Φ∈V ∗

≥0
(R){(X1 = 0, Φ(X1 = 0))}.

Next, by Theorem 1, we have V ∗
ρ (R) = Vρ(R). Thus, we have lim0(V

∗
ρ (R)) =

lim0(Vρ(R)). Besides, with Lemma 2, we have lim0(W (R)) = lim0(Vρ(R)). Thus
the theorem holds.

Definition 2. Let V ∗
≥0(R) be as defined in Theorem 2. Let M = |V ∗

≥0(R)|.
For each Φi = (Φ1

i , . . . , Φ
s−1
i) ∈ V ∗

≥0(R), 1 ≤ i ≤ M , we know that Φj
i ∈

C(〈X∗
1 〉). Moreover, by Equation (1), we know that for j = 1, . . . , s − 1, Φj

i

is a Puiseux expansion of rj(X1, X2 = Φ1
i , . . . , Xj = Φj−1

i , Xj+1). Let ςi,j be

the ramification index of Φj
i and (T ςi,j , Xj+1 = ϕj

i (T)), where ϕj
i ∈ C〈T 〉,

be the corresponding Puiseux parametrization of Φj
i . Let ςi be the least com-

mon multiple of {ςi,1, . . . , ςi,s−1}. Let gji = ϕj
i (T = T ςi/ςi,j). We call the set

GR := {(X1 = T ςi, X2 = g1i (T), . . . , Xs = gs−1
i (T)), i = 1, . . . ,M} a system of

Puiseux parametrizations of R.

Theorem 3. We have lim0(W (R)) = GR(T = 0).

Proof. It follows directly from Theorem 2 and Definition 2.

Remark 1. The limit points of W (R) at X1 = α �= 0 can be reduced to the com-
putation of lim0(W (R)) by a coordinate transformation X1 = X1 +α. Given an
arbitrary one-dimensional regular chain R, the set lim(W (R)) can be computed
in the following manner. Compute a regular chain N which is strongly normal-

ized and such that sat(R) = sat(N) and V (hN) = V (ĥR) both hold, where ĥR is
the iterated resultant of hR w.r.t R. See [6]. Let Xi := mvar(hR). Note that N is
still a regular chain w.r.t. the new order Xi < {X1, . . . , Xn}\{Xi}. Observe that
lim(W (R)) ⊆ lim(W (N)) holds. Thus we have lim(W (R)) = lim(W (N))\W (R).

4 Puiseux Parametrization in Finite Accuracy

In this section, we define the Puiseux parametrizations of a polynomial f ∈
C〈X〉[Y] in finite accuracy, see Definition 4. For f ∈ C〈X〉[Y], we also define the

36 P. Alvandi, C. Chen, and M.M. Maza

approximation of f for a given accuracy, see Definition 3. This approximation
of f is a polynomial in C[X,Y]. In Sections 5 and 6, we prove that to compute
a Puiseux parametrization of f of a given accuracy, it suffices to compute a
Puiseux parametrization of an approximation of f of some finite accuracy.

In this section, we review and adapt the classical Newton-Puiseux algorithm to
compute Puiseux parametrizations of a polynomial f ∈ C[X,Y] of a given accu-
racy. Since we do not need to compute the singular part of Puiseux parametriza-
tions, the usual requirement discrim(f, Y) �= 0 is dropped.

Definition 3. Let f =
∑∞

i=0 aiX
i ∈ C[[X]]. For any τ ∈ N, we call f (τ) :=∑τ

i=0 aiX
i the polynomial part of f of accuracy τ +1. Let f =

∑d
i=0 ai(X)Y i ∈

C〈X〉[Y]. For any τ ∈ N, we call f̃ (τ) :=
∑d

i=0 a
(τ)
i Y i the approximation of f of

accuracy τ + 1.

Definition 4. Let f ∈ C〈X〉[Y], with deg(f, Y) > 0. Let σ, τ ∈ N>0 and g(T) =∑τ−1
k=0 bkT

k. Let {T k1, . . . , T km} be the support of g(T). The pair (T σ, g(T)) is
called a Puiseux parametrization of f of accuracy τ if there exists a Puiseux
parametrization (T ς , ϕ(T)) of f such that: (i) σ divides ς; (ii) gcd(σ,k1,. . ., km)=
1; and (iii) g(T ς/σ) is the polynomial part of ϕ(T) of accuracy (ς/σ)(τ − 1)+ 1.
Note that if σ = ς, then g(T) is the polynomial part of ϕ(T) of accuracy τ .

Definition 5 ([10]). A C-term2 is defined as a triple t = (q, p, β), where q
and p are coprime integers, q > 0 and β ∈ C is non-zero. A C-expansion is a
sequence π = (t1, t2, . . .) of C-terms, where ti = (qi, pi, βi). We say that π is
finite if there are only finitely many elements in π.

Definition 6. Let π = (t1, . . . , tN) be a finite C-expansion. We define a pair
(T σ, g(T)) of polynomials in C[T] in the following manner: (i) if N=1, set σ=1,

g(T)=0 and δN =0; (ii) otherwise, let a :=
∏N

i=1 qi, ci :=
∑i

j=1

(
pj
∏N

k=j+1 qk

)
(1≤ i ≤N), δi :=ci/gcd(a, c1, . . . , cN) (1≤ i ≤N). Set σ := a/gcd(a, c1, . . . , cN)

and g(T) :=
∑N

i=1 βiT
δi . We call the pair (T σ, g(T)) the Puiseux parametriza-

tion of π of accuracy δN + 1. Denote by ConstructParametrization an algorithm
to compute (T σ, g(T)) from π.

Definition 7. Let f ∈C〈X〉[Y] and write f as f(X,Y) :=
∑d

i=0

(∑∞
j=0 ai,jX

j
)
Y i.

The Newton Polygon of f is defined as the lower part of the convex hull of the
set of points (i, j) in the plane such that ai,j �= 0.

Let f ∈ C〈X〉[Y]. We denote by NewtonPolygon(f, I) an algorithm to compute
the segments in the Newton Polygon of f , where I is a flag controlling the
algorithm specification as follows. If I = 1, only segments with non-positive
slopes are computed. If I = 2, only segments with negative slopes are computed.
Such an algorithm can be found in [25]. Next we introduce some notations which
are necessary to present Algorithm 2.

2 It is a simplified version of Duval’s definition.

Computing the Limit Points of the Quasi-component of a Regular Chain 37

Let f ∈ C[X,Y], t = (q, p, β) be a C-term and � ∈ N s.t. NewPoly(f, t, �) :=

X−�f(Xq, Xp(β + Y)) ∈ C[X,Y]. Let f =
∑d

i=0

∑m
j=0 ai,jX

jY i ∈ C[X,Y] and
let Δ be a segment of the Newton Polygon of f . Denote SegmentPoly(f,Δ) :=
(q, p, �, φ) such that the following holds: (1) q, p, � ∈ N; φ ∈ C[Z]; q and p are
coprime, q > 0; (2) for any (i, j) ∈ Δ, we have qj + pi = �; and (3) letting
i0 := min({i | (i, j) ∈ Δ}), we have φ =

∑
(i,j)∈Δ ai,jZ

(i−i0)/q.

Theorem 4. Algorithm 2 terminates and is correct.

Proof. It directly follows from the proof of the Newton-Puiseux algorithm in
Walker’s book [25], the relation between C-expansion and Puiseux parametriza-
tion discussed in Duval’s paper [10], and Definitions 6 and 4.

Algorithm 1. NonzeroTerm(f, I)

Input: f ∈ C[X, Y]; I = 1 or 2.
Output: A finite set of pairs (t, �), where t is a C-term, and � ∈ N.

1 S := ∅;
2 for each Δ ∈ NewtonPolygon(f, I) do
3 (q, p, �, φ) := SegmentPoly(f,Δ);
4 for each root ξ of φ in C do
5 for each root β of Uq − ξ in C do {t := (q, p, β);S := S ∪ {(t, �)}} ;

6 return S

Algorithm 2. NewtonPuiseux

Input: f ∈ C[X,Y]; a given accuracy τ > 0 ∈ N.
Output: All the Puiseux parametrizations of f of accuracy τ .

1 π := (); S := {(π, f)}; P := ∅;
2 while S �= ∅ do
3 let (π∗, f∗) ∈ S; S := S \ {(π∗, f∗)}; if π∗ = () then I := 1 else I := 2;

(T σ, g(T)) := ConstructParametrization(π∗);
4 if deg(g(T), T) + 1 < τ then
5 C := NonzeroTerm(f∗, I);
6 if C = ∅ then
7 P := P ∪ {(T σ, g(T))}
8 else
9 for each (t = (p, q, β), �) ∈ C do

10 π∗∗ := π∗ ∪ (t); f∗∗ := NewPoly(f∗, t, �); S := S ∪ {(π∗∗, f∗∗)}

11 else
12 P := P ∪ {(T σ, g(T))}
13 return P

5 Computing in Finite Accuracy

Let f ∈ C〈X〉[Y]. In this section, we consider the following problems: (a) Is
it possible to use an approximation of f of some finite accuracy m in order to

38 P. Alvandi, C. Chen, and M.M. Maza

compute a Puiseux parametrization of f of a prescribed finite accuracy τ? (b)
If yes, how to calculate m from f and τ? (c) Provide an upper bound on m.
Theorem 5 provides the answers to (a) and (b) while Lemma 6 answers (c).

In the rest of this paper, the proof of a lemma is omitted if it is a routine.

Lemma 4. Let f ∈ C〈X〉[Y]. Let d := deg(f, Y) > 0. Let q ∈ N>0, p, � ∈ N and
assume that q and p are coprime. Let β �= 0 ∈ C. Assume that q, p, � define the
segment qj+pi = � of the Newton Polygon of f . Let f1 := X−�

1 f(Xq
1 , X

p
1 (β+Y1)).

Then, we have the following results: (i) for any given m1 ∈ N, there exists
a number m ∈ N such that the approximation of f1 of accuracy m1 can be
computed from the approximation of f of accuracy m; (ii) moreover, it suffices
to take m = �m1+�

q �.

Theorem 5. Let f ∈C〈X〉[Y]. Let τ ∈N>0. Let σ∈N>0 and g(T)=
∑τ−1

k=0 bkT
k.

Assume that (T σ, g(T)) is a Puiseux parametrization of f of accuracy τ . Then
one can compute a number m ∈ N such that (T σ, g(T)) is a Puiseux parametriza-

tion of accuracy τ of f̃m−1, where f̃m−1 is the approximation of f of accuracy
m. We denote by AccuracyEstimate an algorithm to compute m from f and τ .

Proof. By Lemma 4 and the construction of the Newton-Puiseux algorithm, we
conclude that there exists a number m ∈ N such that (T σ, g(T)) is a Puiseux
parametrization of accuracy τ of the approximation of f of accuracy m.

Next we show that there is an algorithm to compute m. We initially set

m′ := τ . Let f0 :=
∑d

i=0

(∑m′

j=0 ai,jX
j
)
Y i. That is, f0 is the approximation of

f of accuracy m′ + 1. We run the Newton-Puiseux algorithm to check whether
the terms ak,m′Xm′

Y k, 0 ≤ k ≤ d, make any contributions in constructing
the Newton Polygons of all fi. If at least one of them make contributions, we
increase the value of m′ and restart the Newton-Puiseux algorithm until none
of the terms ak,m′Xm′

Y k, 0 ≤ k ≤ d, makes any contributions in constructing
the Newton Polygons of all fi. We set m := m′.

Lemma 5. Let d, τ ∈ N>0. Let ai,j, 0 ≤ i ≤ d, 0 ≤ j < τ , and bk, 0 ≤
k < τ be symbols. Write a = (a0,0, . . . , a0,τ−1, . . . , ad,0, . . . , ad,τ−1) and b =

(b0, . . . , bτ−1). Let f(a, X, Y) =
∑d

i=0

(∑τ−1
j=0 ai,jX

j
)
Y i ∈ C[a][X,Y] and let

g(b, X) =
∑τ−1

k=0 bkX
k ∈ C[b][X]. Let p := f(a, X, Y = g(b, X)). Let Fk :=

coeff(p,Xk), 0 ≤ k < τ − 1, and F := {F0, . . . , Fτ−1}. Then under the order
a < b and b0 < b1 < · · · < bτ−1, F forms a zero-dimensional regular chain in
C(a)[b] with main variables (b0, b1, . . . , bτ−1) and main degrees (d, 1, . . . , 1). In

addition, we have (i) F0 =
∑d

i=0 ai,0b
i
0, and (ii) init(F1) = · · · = init(Fτ−1) =

der(F0, b0) =
∑d

i=1 i · ai,0b
i−1
0 .

Proof. Write p =
∑d

i=0

(∑τ−1
j=0 ai,jX

j
)(∑τ−1

k=0 bkX
k
)i

as a univariate polyno-

mial in X . Observe that F0 =
∑d

i=0 ai,0b
i
0. Therefore F0 is irreducible in C(a)[b].

Moreover, we have mvar(F0) = b0 and mdeg(F0) = d.

Computing the Limit Points of the Quasi-component of a Regular Chain 39

Since d > 0, we know that a1,0

(∑τ−1
k=0 bkX

k
)
appears in p. Thus, for 0 ≤ k <

τ , bk appears in Fk. Moreover, for any k ≥ 1 and i < k, bk can not appear in Fi

since bk andXk are always raised to the same power. For the same reason, for any
i > 1, bik cannot appear in Fk, for 1 ≤ k < τ . Thus {F0, . . . , Fτ−1} is a triangular
set with main variables (b0, b1, . . . , bτ−1) and main degrees (d, 1, . . . , 1).

Moreover, we have init(F1) = · · · = init(Fτ−1) =
∑d

i=1 i · ai,0b
i−1
0 , which is

coprime with F0. Thus F = {F0, . . . , Fτ−1} is a regular chain.

As a direct corollary, we have the following lemma.

Lemma 6. Let f =
∑d

i=0

(∑∞
j=0 ai,jX

j
)
Y i ∈ C[[X]][Y]. Assume that d =

deg(f, Y) > 0 and f is general in Y . Let ϕ(X) =
∑∞

k=0 bkX
k ∈ C[[X]] such that

f(X,ϕ(X)) = 0 holds. Let τ > 0 ∈ N. Then all coefficients bi, for 0 ≤ i < τ , can
be completely determined by {ai,j | 0 ≤ i ≤ d, 0 ≤ j < τ} if and only if b0 is a
simple zero of f(0, Y). Therefore, “generically”, all coefficients bi, for 0 ≤ i < τ ,
can be completely determined by the approximation of f of accuracy τ .

6 Accuracy Estimates

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a strongly
normalized regular chain. In this section, we show that to compute the limit
points of W (R), it suffices to compute the Puiseux parametrizations of R of
some accuracy. Moreover, we provide accuracy estimates in Theorem 6.

Lemma 7. Let f = ad(X)Y d+· · ·+a0(X) ∈ C〈X〉[Y], where d = deg(f, Y) > 0.

For 0 ≤ i ≤ d, let δi := ord(ai). Let k := min(δ0, . . . , δd). Let f̃ := X−kf . Then

we have f̃ ∈ C〈X〉[Y] and f̃ is general in Y . This operation of producing f̃ from
f is called “making f general” and we denote it by MakeGeneral.

The following lemma shows that computing limit points reduces to making a
polynomial f general.

Lemma 8. Let f ∈ C〈X〉[Y], where deg(f, Y) > 0, be general in Y . Let ρ > 0
be small enough such that f converges in |X | < ρ. Let Vρ(f) := {(x, y) ∈ C2 |
0 < |x| < ρ, f(x, y) = 0}. Then lim0(Vρ(f)) = {(0, y) ∈ C2 | f(0, y) = 0} holds.

Proof. With 1 ≤ i ≤ c, for some c such that 1 ≤ c ≤ deg(f, Y), let (X =
T ςi, Y = ϕi(T)) be the distinct Puiseux parametrizations of f . By Lemma 1
and Theorem 3, we have lim0(Vρ(f)) = ∪c

i=1{(0, y) ∈ C2 | y = ϕi(0)}. Let
(X = T σi , gi(T)), i = 1, . . . , c, be the corresponding Puiseux parametrizations

of f of accuracy 1. By Theorem 5, there exists an approximation f̃ of f of
some finite accuracy such that (X = T σi , gi(T)), i = 1, . . . , c, are also Puiseux

parametrizations of f̃ of accuracy 1. Thus, we have ϕi(0) = gi(0), i = 1, . . . , c.

Since f̃ is general in Y , by Theorem 2.3 in [25], we have ∪c
i=1{(0, y) ∈ C2 | y =

gi(0)} = {(0, y) ∈ C2 | f̃(0, y) = 0}. Since f̃(0, y) = f(0, y), the lemma holds.

40 P. Alvandi, C. Chen, and M.M. Maza

Lemma 9. Let a(X1, . . . , Xs) ∈ C[X1, . . . , Xs]. Let gi =
∑∞

j=0 cijT
j ∈ C〈T 〉,

for i = 1 · · · s. We write a(g1, . . . , gs) as
∑∞

k=0 bkT
k. To compute a given coef-

ficient bk, one only needs to know the coefficients of the polynomial a and the
coefficients ci,j for 1 ≤ i ≤ s, 0 ≤ j ≤ k.

Lemma 10. Let f = ad(X)Y d+ · · ·+a0(X) ∈ C〈X〉[Y], where d = deg(f, Y) >
0. Let δ := ord(ad(X)). Then “generically”, a Puiseux parametrization of f of
accuracy τ can be computed from an approximation of f of accuracy τ + δ.

Proof. Let f̃ := MakeGeneral(f). Observe that f and f̃ have the same system of
Puiseux parametrizations. Then the conclusion follows from Lemma 7 and 6.

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a strongly
normalized regular chain. For 1 ≤ i ≤ s−1, let hi := init(ri), di := deg(ri, Xi+1)
and δi := ord(hi). We define fi, ςi, Ti, ϕi(Ti), 1 ≤ i ≤ s − 1, as follows. Let
f1 := r1. Let (X1 = T ς1

1 , X2 = ϕ1(T1)) be a Puiseux parametrization of f1. For
i = 2, . . . , s− 1 do
(i) Let fi := ri(X1 = T ς1

1 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1).
(ii) Let (Ti−1 = T ςi

i , Xi+1 = ϕi(Ti)) be a Puiseux parametrization of fi.
Before stating our main result on the bound, we first present several lemmas.

Lemma 11. For 0 ≤ i ≤ s − 2, define gi(Ts−2) := T
∏s−2

k=i+1 ςk
s−2 . Let T0 := X1.

Then we have Ti = gi(Ts−2), 0 ≤ i ≤ s− 2.

Proof. We prove it by induction. Clearly it holds for i = s− 2. Suppose it holds

for i. Then we have Ti−1 = T ςi
i =

(
T

∏s−2
k=i+1 ςk

s−2

)ςi
=
(
T

∏s−2
k=i ςk

s−2

)
. Therefore it

also holds for i− 1. So it holds for all 0 ≤ i ≤ s− 2.

Lemma 12. There exist numbers τ1, . . . , τs−2 ∈ N such that in order to make
fs−1 general in Xs, it suffices to compute the polynomial parts of ϕi of accuracy
τi, 1 ≤ i ≤ s − 2. Moreover, if we write the algorithm AccuracyEstimate for
short as θ, the accuracies τi can be computed in the following manner: τs−2 :=
(
∏s−2

k=1 ςk)δs−1 + 1, τi−1 := max(θ(fi, τi), (
∏i−1

k=1 ςk)δs−1 + 1), for 2 ≤ i ≤ s− 2.

Proof. By Lemma 11, we have g0(Ts−2) = T
∏s−2

k=1 ςk
s−2 . Since ord(hs−1(X1)) = δs−1,

we have ord(hs−1(X1=g0(Ts−2)))=
(∏s−2

k=1 ςk

)
δs−1. Let τs−2 :=(

∏s−2
k=1 ςk)δs−1+1.

By Lemma 7, to make fs−1 general in Xs, it suffices to compute the polynomial
parts of the coefficients of fs−1 of accuracy τs−2.

By Lemma 9, we need to compute the polynomial parts of ϕi(gi(Ts−2)),

1 ≤ i ≤ s − 2, of accuracy τs−2. Since ord(gi(Ts−2)) =
∏s−2

k=i+1 ςk, to achieve
this accuracy, it is enough to compute the polynomial parts of ϕi of accuracy
(
∏i

k=1 ςk)δs−1 + 1, for 1 ≤ i ≤ s− 2.
Since we have fi = ri(X1 = T ς1

1 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1)
and (Ti−1 = T ςi

i , Xi+1 = ϕi(Ti)) is a Puiseux parametrization of fi, by Theo-
rem 5 and Lemma 9, to compute the polynomial part of ϕi of accuracy τi, we need
the polynomial part of ϕi−1 of accuracy θ(fi, τi). Thus, τs−2 := (

∏s−2
k=1 ςk)δs−1+1

Computing the Limit Points of the Quasi-component of a Regular Chain 41

and τi−1 = max(θ(fi, τi), (
∏i−1

k=1 ςk)δs−1 + 1) for 2 ≤ i ≤ s − 2 will guarantee
fs−1 can be made general in Xs.

Theorem 6. One can compute positive integer numbers τ1, . . . , τs−1 such that,
in order to compute lim0(W (R)), it suffices to compute Puiseux parametrizations
of fi of accuracy τi, for i = 1, . . . , s− 1. Moreover, generically, one can choose
τs−1 := 1, τs−2 := (

∏s−2
k=1 ςk)δs−1 + 1, τi = (

∏s−2
k=1 ςk)(

∑s−1
k=2 δi) + 1, for i =

1, . . . , s− 3, and each index ςk can be set to dk, for k = 1, . . . , s− 2.

Proof. By Lemma 12, we know that τ1, . . . , τs−1 can be computed. By Lemma 11,

we have X1=T
∏i−1

k=1
ςk

i−1 . Since ord(hi(X1))=δi, we have ord(hi(X1=T
∏i−1

k=1
ςk

i−1))=(∏i−1
k=1 ςk

)
δi. By Lemma 10, generically a Puiseux parametrization of fi of ac-

curacy τi can be computed from an approximation of fi of accuracy τi + δi. In
Lemma 12, let θ(fi, τi) = τi + (

∏i−1
k=1 ςk)δi, 2 ≤ i ≤ s − 2, which implies the

bound in the theorem. Finally we observe that ςk ≤ dk holds, for 1 ≤ k ≤ s− 2.

7 Algorithm

In this section, we provide a complete algorithm for computing the non-trivial
limit points of the quasi-component of a one-dimensional strongly normalized
regular chain based on the results of the previous sections.

Proposition 1. Algorithm 4 is correct and terminates.

Proof. This follows from Theorem 3, Theorem 5, Theorem 6 and Lemma 8.

Theorem 7. Let R ⊂ Q[X1, . . . , Xn] be a regular chain such that dim(sat(R)) =
1. Then there exists an algorithm to compute regular chains Ri ∈ Q[X1, . . . , Xn],
i = 1, . . . , e, such that lim(W (R)) = ∪e

i=1W (Ri).

Proof. By Remark 1, we can assume that R is strongly normalized and X1 is
free w.r.t. R. By Proposition 1, there is an algorithm to compute lim(W (R)).
Thus, it suffices to prove that lim(W (R)) can be represented by regular chains
in Q[X1, . . . , Xn], whenever R ⊂ Q[X1, . . . , Xn] holds. By examining carefully
Algorithms 1, 2, 3, 4, and their subroutines, one observes that only Algorithms 1
and 4 may introduce numbers that are in the algebraic closure Q of Q, and not in
Q itself. In fact, for each x = (x1, . . . , xn) ∈ lim(W (R)), Algorithms 1 and 4 in-
troduce a field extension Q(ξ1, . . . , ξm) such that we have xi ∈ Q[ξ1, . . . , ξm]. Let
Y1,. . .,Ym bem new symbols. Let G :={g1(Y1), g2(Y1,Y2), . . . , gm(Y1,Y2, . . . ,Ym)}
be an irreducible regular chain (i.e. generating a maximal ideal over Q) such that
G(Y1 = ξ1, . . . , Ym = ξm) = 0 holds. Since xi ∈ Q[ξ1, . . . , ξm], there exists fi ∈
Q[Y1, . . . , Ym], i = 1, . . . , n, such that xi = fi(Y1 = ξ1, . . . , Ym = ξm). Let Sx :=
{X1 = f1(Y1, . . . , Ym), . . . , Xn = fn(Y1, . . . , Ym), G(Y1, . . . , Ym) = 0}. The pro-
jection of the zero set of Sx on the (X1, . . . , Xn)-space is the zero set of an irreg-
ular chain Rx ∈ Q[X1, . . . , Xm] and we have lim(W (R)) = ∪x∈lim(W (R))W (Rx).

42 P. Alvandi, C. Chen, and M.M. Maza

Algorithm 3. LimitPointsAtZero

Input: A regular chain R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)}.
Output: The non-trivial limit points of W (R) whose X1-coordinates are 0.

1 let S := {(T0)};
2 compute the accuracy estimates τ1, . . . , τs−2 by Theorem 6; let τs−1 = 1;
3 for i from 1 to s− 1 do
4 S′ := ∅;
5 for Φ ∈ S do
6 fi := ri(X1 = Φ1, . . . , Xi = Φi, Xi+1);
7 if i > 1 then

8 let δ := ord(fi, Ti−1); let fi := fi/T
δ
i−1;

9 E := NewtonPuiseux(fi, τi);
10 for (Ti−1 = φ(Ti), Xi+1 = ϕ(Ti)) ∈ E do
11 S′ := S′ ∪ {Φ(Ti−1 = φ(Ti)) ∪ (ϕ(Ti))}
12 S := S′

13 if S = ∅ then return ∅ ;
14 else return eval(S, Ts−1 = 0) ;

Algorithm 4. LimitPoints

Input: A regular chain R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)}.
Output: All the non-trivial limit points of W (R).

1 let hR := init(R); let L be the set of zeros of hR in C; S := ∅;
2 for α ∈ L do
3 Rα := R(X1 = X1 + α); Sα := LimitPointsAtZero(Rα);
4 update Sα by replacing the first coordinate of every point in Sα by α;
5 S := S ∪ Sα

6 return S

8 Experimentation

We have implemented Algorithm 4 of Section 7, which computes the limit points
of the quasi-component of a one-dimensional strongly normalized regular chain.
The implementation is based on the RegularChains library and the command al-
gcurves[puiseux] [24] ofMaple.The code is available athttp://www.orcca.on.ca/
cchen/ACM13/LimitPoints.mpl. This preliminary implementation relies on al-
gebraic factorization, whereas, as suggested in [10], applying the D5 principle [9],
in the spirit of triangular decomposition algorithms [6], would be sufficient when
computations need to split into different cases. This would certainly improve per-
formance greatly and this enhancement is work in progress.

As pointed out in the introduction, the computation of the limit points of
the quasi-component of a regular chain can be applied to removing redundant
components in a Kalkbrener triangular decomposition. In Table 1, we report on
experimental results of this application.

http://www.orcca.on.ca/~cchen/ACM13/LimitPoints.mpl
http://www.orcca.on.ca/~cchen/ACM13/LimitPoints.mpl

Computing the Limit Points of the Quasi-component of a Regular Chain 43

The polynomial systems listed in this table are one-dimensional polynomial
systems selected from the literature [5,6]. For each system, we first call the
Triangularize command of the library RegularChains, with the option “’nor-
malized=’strongly’, ’radical’=’yes’”. For the input system, this process computes
a Kalkbrener triangular decomposition R where the regular chains are strongly
normalized and their saturated ideals are radical. Next, for each one-dimensional
regular chain R in the output, we compute the limit points lim(W (R)), thus
deducing a set of regular chains R1, . . . , Re such that the union of their quasi-
components equals the Zariski closureW (R). The algorithm Difference [5] is then
called to test whether or not there exists a pair R,R′ of regular chains of R such
that the inclusion W (R) ⊆ W (R′) holds. In Table 1, the columns T and #(T)
denote respectively the timings spent by Triangularize and the number of regular
chains returned by this command; the columns d-1 and d-0 denote respectively
the number of 1-dimensional and 0-dimensional regular chains; the columns R
and #(R) denote respectively the timings spent on removing redundant com-
ponents in the output of Triangularize and the number of regular chains in the
output irredundant decomposition. As we can see in the table, most of the de-
compositions are checked to be irredundant, which we could not do before this
work by means of triangular decomposition algorithms. In addition, the three re-
dundant 0-dimensional components in the Kalkbrener triangular decomposition
of system f-744 are successfully removed in about 7 minutes, whereas we cannot
draw this conclusion in more than one hour by a brute-force method comput-
ing the generators of the saturated ideals of regular chains. Therefore, we have
verified experimentally the benefits provided by the proposed algorithms.

Table 1. Removing redundant components

Sys T #(T) d-1 d-0 R #(R)

f-744 14.360 4 1 3 432.567 1
Liu-Lorenz 0.412 3 3 0 216.125 3
MontesS3 0.072 2 2 0 0.064 2
Neural 0.296 5 5 0 1.660 5

Solotareff-4a 0.632 7 7 0 32.362 7
Vermeer 1.172 2 2 0 75.332 2

Wang-1991c 3.084 13 13 0 6.280 13

9 Concluding Remarks

In this paper, we proposed an algorithm for computing the limit points of the
quasi-component of a regular chain in dimension one by means of Puiseux series
expansions. In the future, we will investigate how to compute the limit points in
higher dimension with the help of the Abhyankar-Jung theorem [21].

44 P. Alvandi, C. Chen, and M.M. Maza

References

[1] Alonso, M.E., Mora, T., Niesi, G., Raimondo, M.: An algorithm for computing
analytic branches of space curves at singular points. In: Proc. of the 1992 Inter-
national Workshop on Mathematics Mechanization, pp. 135–166 (1992)

[2] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of
a finitely generated differential ideal. In: Proc. of ISSAC 1995, pp. 158–166 (1995)

[3] Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangu-
lar systems and the D5 principle. In: Proc. of Transgressive Computing 2006,
Granada, Spain, pp. 79–91 (2006)

[4] Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

[5] Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive
triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

[6] Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

[7] Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. of ISSAC 2009, pp. 95–102
(2009)

[8] Chou, S.C., Gao, X.S.: A zero structure theorem for differential parametric sys-
tems. J. Symb. Comput. 16(6), 585–595 (1993)

[9] Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in
algebraic number fields. In: Proc. of EUROCAL 1985, pp. 289–290 (1985)

[10] Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989)
[11] Fischer, G.: Plane Algebraic Curves. American Mathematical Society (2001)
[12] Gao, X.S., Van der Hoeven, J., Yuan, C.M., Zhang, G.L.: Characteristic set

method for differential-difference polynomial systems. J. Symb. Comput. 44(9),
1137–1163 (2009)

[13] Hubert, E.: Factorization-free decomposition algorithms in differential algebra. J.
Symb. Comput. 29(4-5), 641–662 (2000)

[14] Kalkbrener, M.: Algorithmic properties of polynomial rings. J. Symb. Com-
put. 26(5), 525–581 (1998)

[15] Lemaire, F., Moreno Maza, M., Pan, W., Xie, Y.: When does 〈t〉 equal sat(t)? J.
Symb. Comput. 46(12), 1291–1305 (2011)

[16] Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Maple 10,
Maplesoft, Canada (2005); refereed software

[17] Marcus, S., Maza, M.M., Vrbik, P.: On fulton’s algorithm for computing inter-
section multiplicities. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2012. LNCS, vol. 7442, pp. 198–211. Springer, Heidelberg (2012)

[18] Maurer, J.: Puiseux expansion for space curves. Manuscripta Math. 32, 91–100
(1980)

[19] Mumford, D.: The Red Book of Varieties and Schemes, 2nd edn. Springer (1999)
[20] Munkres, J.R.: Topology, 2nd edn. Prentice Hall (2000)
[21] Parusiński, A., Rond, G.: The Abhyankar-Jung theorem. J. Algebra 365, 29–41

(2012)
[22] Ritt, J.F.: Differential Equations from an Algebraic Standpoint, vol. 14. American

Mathematical Society (1932)
[23] Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of poly-

nomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)

Computing the Limit Points of the Quasi-component of a Regular Chain 45

[24] van Hoeij, M.: An algorithm for computing an integral basis in an algebraic func-
tion field. J. Symb. Comput. 18(4), 353–363 (1994)

[25] Walker, R.J.: Algebraic Curves. Springer (1978)
[26] Wang, D.K.: The Wsolve package, http://www.mmrc.iss.ac.cn/

~dwang/wsolve.html

[27] Wang, D.M.: Epsilon 0.618, http://www-calfor.lip6.fr/~wang/epsilon
[28] Yang, L., Hou, X.R., Xia, B.: A complete algorithm for automated discovering of

a class of inequality-type theorems. Science in China, Series F 44(1), 33–49 (2001)

http://www.mmrc.iss.ac.cn/~dwang/wsolve.html
http://www.mmrc.iss.ac.cn/~dwang/wsolve.html
http://www-calfor.lip6.fr/~wang/epsilon

On Consistency of Finite Difference

Approximations to the Navier-Stokes Equations

Pierluigi Amodio1, Yuri Blinkov2, Vladimir Gerdt3, and Roberto La Scala1

1 Department of Mathematics, University of Bari, Bari, Italy
{pierluigi.amodio,roberto.lascala}@uniba.it

2 Department of Mathematics and Mechanics,
Saratov State University, Saratov, Russia

BlinkovUA@info.sgu.ru
3 Laboratory of Information Technologies, Joint Institute for Nuclear Research,

Dubna, Russia
gerdt@jinr.ru

Abstract. In the given paper, we confront three finite difference ap-
proximations to the Navier–Stokes equations for the two-dimensional
viscous incomressible fluid flows. Two of these approximations were gen-
erated by the computer algebra assisted method proposed based on the
finite volume method, numerical integration, and difference elimination.
The third approximation was derived by the standard replacement of
the temporal derivatives with the forward differences and the spatial
derivatives with the central differences. We prove that only one of these
approximations is strongly consistent with the Navier–Stokes equations
and present our numerical tests which show that this approximation has
a better behavior than the other two.

1 Introduction

By its completion to involution [1], the well-known Navier–Stokes system of equa-
tions [2] for unsteady two-dimensional motion of incompressible viscous liquid
of constant viscosity may be written in the following dimensionless form [11]⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 := ux + vy = 0 ,

f2 := ut + uux + vuy + px − 1
Re(uxx + uyy) = 0 ,

f3 := vt + uvx + vvy + py − 1
Re (vxx + vyy) = 0 ,

f4 := u2x + 2vxuy + v2y + pxx + pyy = 0 .

(1)

Here (u, v) is the velocity field, f1 is the continuity equation, f2 and f3 are the
proper Navier–Stokes equations [2], and f4 is the pressure Poisson equation [3].
The constant Re denotes the Reynolds number.

For discretization we use the finite difference method [4,5] and consider or-
thogonal and uniform computational grid. In this method, the finite difference
approximation (FDA) to the differential equations combined with appropriate
initial or/and boundary conditions in their discrete form constitutes the finite

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 46–60, 2013.
c© Springer International Publishing Switzerland 2013

Consistency of Approximations to Navier–Stokes Equations 47

difference scheme (FDS) for construction of a numerical solution. The main re-
quirement to the scheme is convergence of its numerical solution to the solution
of differential equation(s) when the grid spacings go to zero.

The fundamental problem in numerical solving of partial differential equation
(PDE) or a system of PDEs is to construct such FDA that for any initial- or/and
boundary-value problem, providing existence and uniqueness of the solution to
PDE(s) with a smooth dependence on the initial or/and boundary data, the
corresponding FDS is convergent. For polynomially-nonlinear PDEs, e.g., the
Navier–Stokes equations, to satisfy this requirement FDA must inherit all alge-
braic properties of the differential equation(s). The necessary condition for the
inheritance is the property of s(strong)-consistency of FDA to PDEs introduced
first in [6] for linear equations and extended in [13] to nonlinear ones.

The conventional consistency [5], called in [6,13] by weak-consistency implies
reduction of FDA to the original PDE(s) when the grid spacings go to zero. This
consistency can be verified by a Taylor expansion of the difference equations in
the FDA about a grid point. The strong consistency implies reduction of any
element in the perfect difference ideal generated by the FDA to an element in
the radical differential ideal generated by the PDE(s). In [13], it was shown that
s-consistency can be checked in terms of a difference Gröbner basis of the ideal
generated by the FDA. Since difference polynomial ring [7] is non Noetherian,
in the nonlinear case, generally, one cannot verify s-consistency of a given FDA
through computation of associated difference Gröbner basis. However, if the
FDA under consideration is w-consistent, then it is not s-consistent if and only
if at some step of the Buchberger-like algorithm (cf. [9,10] and [13]) applied to
construction of the Gröbner basis, a difference S-polynomial arises which in not
w-consistent with any of the consequences of the original PDE(s). In practice,
this may help to detect s-inconsistency.

In [11], the algorithmic approach to generation of FDA suggested in [12] was
applied to the Navier–Stokes equations (1). The approach is based on the finite
volume method combined with numerical integration and difference elimination.
As a result, three different w-consistent FDAs were obtained in [11]. Two of
them were analyzed in [13] from the viewpoint of s-consistency. One of these
FDAs was qualified as a ”good” one, i.e., s-consistent, by the claim that it itself
is a Gröbner basis. Another FDA was qualified as s-inconsistent by inspection
(observed already in [11]) that one of its differential consequences is not reduced
to a differential consequence of the system (1) when the grid spacings go to zero.
However, as explicit computation with the Maple-based implementation [9] of
the Buchberger-like algorithm [9,10] showed, the “good” FDA is not a Gröbner
basis what generates a need for the further investigation of its s-consistency.

In this paper, we prove that the ”good” FDA generated in [11] is indeed s-
consistent. In doing so we avoid the Gröbner basis computation what is rather
cumbersome. In addition, we consider universally adopted standard method to
discretization, which consists in the replacement of the temporal derivatives in
(1) with the forward differences and the spatial derivatives with the central dif-
ferences, and show that it yields FDA which is not s-consistent. To see numerical

48 P. Amodio et al.

impact of the property of s-consistency we confronted the three FDAs and com-
pared their behavior for the mixed initial-boundary value problem whose data
originate from the exact solution [14] of (1). This comparison clearly shows su-
periority of the s-consistent FDA over the other two which are not s-consistent.

This paper is organized as follows. Section 2 introduces the main objects
of difference algebra related to discretization of (1). Section 3 is concerned with
definition of FDA to (1) and its s-consistency. In Section 4, we consider three par-
ticular FDAs to the Navier–Stokes system (1) and establish their s-consistency
properties. Section 5 presents the results of our numerical computer experiments.
Some concluding remarks are given in Section 6.

2 Preliminaries

The left-hand sides of the PDEs in the Navier–Stokes system (1) can be consid-
ered as elements in the differential polynomial ring [8]

fi = 0 (1 ≤ i ≤ 4), F := {f1, f2, f3, f4} ⊂ R := K[u, v, p] , (2)

where {u, v, p} is the set of differential indeterminates and K := Q(Re) is the
differential field of constants.

Remark 1. It is easy to check that the differential ideal [F] ⊂ R generated by F
is radical [8].

To approximate the differential system (2) by a difference one, we use an or-
thogonal and uniform computational grid (mesh) as the set of points (jh,kh,nτ)∈
R3. Here τ > 0 and h > 0 are the grid spacings (mesh steps), and the triple
of integers (j, k, n) ∈ Z3 numerates the grid points. In doing so, in a grid node
(jh, kh, nτ) a solution to (1) is approximated by the triple of grid functions

{unj,k, vnj,k, pnj,k} := {u, v, p} |x=jh,y=kh,t=τn . (3)

Now we introduce the set of mutually commuting differences {σx, σy, σt} act-
ing on a grid function φ(x, y, t), which is to approximate a solution of (1) on the
grid points, as the forward shift operators⎧⎪⎨⎪⎩

σx ◦ φ(x, y, t) = φ(x + h, y, t) ,

σy ◦ φ(x, y, t) = φ(x, y + h, t) ,

σt ◦ φ(x, y, t) = φ(x, y, t+ τ) .

(4)

The monoid generated by the differences will be denoted by Σ, i.e.,

Σ := { σi1
x σ

i2
y σ

i3
t | i1, i2, i3 ∈ N≥0 } , (∀σ ∈ Σ) [σ ◦ 1 = 1] ,

and the ring of difference polynomials over K will be denoted by R. The ele-
ments in R are polynomials in the difference indeterminates u, v, p (dependent
variables) defined on the grid points and in their shifted values

{ σi1
x σ

i2
y σ

i3
t ◦ w | w ∈ {u, v, p}, {i1, i2, i3} ∈ N3

≥0 } .

Consistency of Approximations to Navier–Stokes Equations 49

Definition 1. [7] A total order ≺ on { σ ◦w | σ ∈ Σ, w ∈ {u, v, p} } is ranking
if for all σ, σ1, σ2, σ3 ∈ Σ and w,w1, w2 ∈ {u, v, p}

σ σ1 ◦ w � σ1 ◦ w , σ1 ◦ w1 � σ2 ◦ w2 ⇐⇒ σ ◦ σ1 ◦ w1 � σ ◦ σ2 ◦ w2

The set M of monomials in the ring R reads

M := { (σ1 ◦ u)i1(σ2 ◦ v)i2 (σ3 ◦ p)i3 | σj ∈ Σ, ij ∈ N≥0, 1 ≤ j ≤ 3 } . (5)

Definition 2. [13] A total order � on M is admissible if it extends a ranking
and

(∀μ ∈ M\{1}) [μ � 1]∧ (∀σ ∈ Σ) (∀μ, a, b ∈ M) [a � b ⇐⇒ μ·σ◦a � μ·σ◦b] .

Given an admissible monomial order �, every difference polynomial p has the
leading monomial lm(p) ∈ M and the leading term lt(p) := lm(p) lc(p) with the
leading coefficient lc(p). Throughout this session, every difference polynomial
is to be normalized (i.e., monic) by division of the polynomial by its leading
coefficient. This provides (∀p ∈ R) [lc(p) = 1].

Now we consider the notions of difference ideal [7] and its standard basis.
The last notion was introduced in [13] in the full analogy to that in differential
algebra [16].

Definition 3. [7] A set I ⊂ R is difference polynomial ideal or σ-ideal if

(∀ a, b ∈ I) (∀ c ∈ R) (∀σ ∈ Σ) [a+ b ∈ I, a · c ∈ I, σ ◦ a ∈ I].

If F ⊂ R, then the smallest σ-ideal containing F is said to be generated by F
and denoted by [F].

Definition 4. [13] If for α, β ∈ M the equality β = μ · σ ◦ α holds with σ ∈ Σ
and μ ∈ M we shall say that α divides β and write α | β. It is easy to see that
this divisibility relation yields a partial order.

Definition 5. [13] Given a σ-ideal I and an admissible monomial ordering �,
a subset G ⊂ I is its (difference) standard basis if [G] = I and

(∀ p ∈ I)(∃ g ∈ G) [lm(g) | lm(p)] .

If the standard basis is finite we shall call it Gröbner basis.

Remark 2. Based on Definition 4, one can introduce (see [13]) in difference alge-
bra the concepts of polynomial reduction and normal form of a difference polyno-
mial p modulo a set of difference polynomials P (notation: NF(p, P)). A reduced
standard basis G is such that (∀g ∈ G) [g = NF (g,G \ {g})].

50 P. Amodio et al.

The algorithmic characterization of standard bases and their construction in
difference polynomial rings is done in terms of difference S-polynomials.

Definition 6. [13] Given an admissible order, and monic difference polynomials
p and q (they not need to be distinct), the polynomial S(p, q) := m1 ·σ1 ◦p−m2 ·
σ2 ◦q is called (difference)S-polynomial associated to p and q if m1 ·σ1 ◦ lm(p) =
m2 · σ2 ◦ lm(q) with co-prime m1 · σ1 and m2 · σ2.

Remark 3. This characterization immediately implies [13,10] a difference version
of the Buchberger algorithm (cf. [15,16]). The algorithm always terminates when
the input polynomials are linear. If this is not the case, the algorithm may not
terminate. Additionally, one can take into account Buchberger’s criteria to avoid
some useless zero reductions. The difference criteria are similar to the differential
ones [16].

Definition 7. [7] A perfect difference ideal generated by a set F ⊂ R and de-
noted by �F � is the smallest difference ideal containing F and such that for any
f ∈ R, σ1, . . . , σr ∈ Σ and k1, . . . , kr ∈ N≥0

(σ1 ◦ f)k1 · · · (σr ◦ f)kr ∈ �F � =⇒ f ∈ �F � .

Remark 4. In difference algebra, perfect ideals play the same role (cf. [17]) as
radical ideals in commutative and differential algebra. Obviously, [F] ⊆ �F �.

3 Consistency of Difference Approximations

Let a finite set of difference polynomials

f̃1 = · · · = f̃p = 0 , F̃ := {f̃1, . . . f̃p} ⊂ R (6)

be a FDA to (1). It should be noted that generally the number p in (6) needs
not to be equal to the number of equations in (1).

Definition 8. A differential (resp. difference) polynomial f ∈ R (resp. f̃ ∈ R)
is differential-algebraic (resp. difference-algebraic) consequence of (1) (resp. (6))
if f ∈ �F � (resp. f̃ ∈ �F̃ �).

Definition 9. We shall say that a difference equation f̃ = 0 implies (in the
continuous limit) the differential equation f = 0 and write f̃ � f if f does
not contain the grid spacings h, τ and the Taylor expansion about a grid point
(unj,k, v

n
j,k, p

n
j,k) transforms equation f̃ = 0 into f + O(h, τ) = 0 where O(h, τ)

denotes expression which vanishes when h and τ go to zero.

Definition 10. [13,6] The difference approximation (6) to (1) is weakly consis-
tent or w-consistent with (1) if p = 4 and

(∀f̃ ∈ F̃) (∃f ∈ F) [f̃ � f] . (7)

Consistency of Approximations to Navier–Stokes Equations 51

The requirement of weak consistency which has been universally accepted in the
literature, is not satisfactory by the following two reasons:

1. The cardinality of FDA in (13) may be different from that of the original set
of differential equations. For example, the systems { uxz+yu = 0, uyw+zu =
0 } and { yuy−zuz = 0, ux−uw = 0, uxw+yuy = 0 } in one dependent and
four dependent variables are fully equivalent (see [6], Example 3). Thus, to
construct a FDA, one can use them interchangeably. Whereas Definition 10
fastens F̃ to F .

2. A w-consistent FDA may not be good in view of inheritance of properties
of differential systems at the discrete level. We shall demonstrate this in the
next section.

Another concept of consistency was introduced in [6] for linear FDA and
then extended in [13] to the nonlinear case. For the Navier–Stokes system, it is
specialized as follows.

Definition 11. An FDA (6) to (1) is strongly consistent or s-consistent if

(∀f̃ ∈ �F̃ �) (∃f ∈ [F]) [f̃ � f] . (8)

The algorithmic approach of paper [13] to verification of s-consistency is based
on the following theorem.

Theorem 1. [13] A difference approximation (6) to (1) is s-consistent if and
only if a (reduced) standard basis G of the difference ideal [F̃] satisfies

(∀g ∈ G) (∃f ∈ [F]) [g � f] . (9)

Irrespective of possible infiniteness of the (nonlinear) difference standard basis
G, it may be useful to apply an algorithm for its construction (see, for example,
the algorithms in [13,10]) and to verify s-consistency of the intermediate poly-
nomials. In doing so, one should check first the w-consistency of the polynomials
in the input FDA. Then, if the normal form p̃ of an S-polynomial modulo the
current basis is nonzero, then before insertion of p̃ into the intermediate basis
one has to construct p such that p̃ � p and check the condition p ∈ �F �.

Remark 5. Given a differential polynomial f ∈ R, one can algorithmically check
its membership in �F � by performing the involutive Janet reduction [13].

4 Three Difference Approximations to the Navier–Stokes
Equations

To analyze strong consistency of difference approximations to (1) we shall need
the following statements.

52 P. Amodio et al.

Proposition 1. Let f̃ ∈ R be a difference polynomial. Suppose f̃ � f where f
is a differential-algebraic consequence of the Navier–Stokes system (1), f ∈ [F].
Then a finite sum of the form

p̃ :=
∑
i

g̃i · σi ◦ f̃ , σi ∈ Σ, g̃i ∈ R (10)

also implies a differential-algebraic consequence of (1).

Proof. The shift operators in (4) are expanded in the Taylor series as follows

σx =
∑
k≥0

hk

k!
∂kx , σy =

∑
k≥0

hk

k!
∂ky , σt =

∑
k≥0

τk

k!
∂kt .

By the Taylor expansion over a grid point, in the limit when h and τ go to zero,
the right-hand side of (10) becomes differential polynomial of the form

p :=
∑
μ

bμ∂
μ ◦ f, bμ ∈ R , ∂μ ∈ { ∂ix∂jy∂kt | i, j, k ∈ N≥0 }.

Thus, p̃ � p ∈ [F]. �

Corollary 1. Let F̃ be a FDA (6) to (1) and � be an admissible order on the
monomial set (5). Suppose (∀f̃ ∈ F̃)

[
f̃ � f ∈ [F]

]
. Then, every element p̃ in

the difference ideal [F̃] that admits the representation

q̃ :=

p∑
k=1

∑
i

g̃i,k · σi ◦ f̃k, σi ∈ Σ, g̃i ∈ R , (11)

where the leading terms of the polynomials in
∑

i g̃i,k · σi ◦ f̃k do not cancel out,
satisfies q̃ � q ∈ [F].

Proof. Denote by pk the continuous limit of
∑

i g̃i,k · σi ◦ f̃k. Since pk ∈ [F], the
no-cancellation assumption implies p̃ �

∑p
k=1 pk ∈ [F]. �

Now we consider three difference approximations to system (1). The first
two of them were constructed in [11] by applying the algorithmic approach to
discretization proposed in [12] and based on the finite volume method combined
with numerical integration and difference elimination. The third approximation
is obtained by the conventional discretization what consists of replacing in (1)
the temporal derivatives with the forward differences and the spatial derivatives
with the central differences.

Every difference equation in an approximation must be satisfied in every node
of the grid. As this takes place, one can apply to every equation a finite number
of the forward shift operators (4) as well as of their inverses (the backward shift
operators) to transform the approximation into an equivalent form. Because of
this, we consider the difference approximations generated in [11] in the form
which is commonly used for numerical solving of PDEs.

Consistency of Approximations to Navier–Stokes Equations 53

FDA 1 ([11], Eqs. 13)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
n
j,k :=

un
j+1,k−un

j−1,k

2h +
vn
j,k+1−vn

j,k−1

2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ +
un
j+1,k

2−un
j−1,k

2

2h +
vn
j,k+1u

n
j,k+1−vn

j,k−1u
n
j,k−1

2h +
pn
j+1,k−pn

j−1,k

2h

− 1
Re

(
un
j+2,k−2un

jk+un
j−2,k

4h2 +
un
j,k+2−2un

jk+un
j,k−2

4h2

)
= 0,

e3
n
j,k :=

vn+1
jk

−vn
jk

τ +
un
j+1,kv

n
j+1,k−un

j−1,kv
n
j−1,k

2h

vn
j,k+1

2−vn
j,k−1

2

2h +
pn
j,k+1−pn

j,k−1

2h

− 1
Re

(
vn
j+2,k−2vn

jk+vn
j−2,k

4h2 +
vn
j,k+2−2vn

jk+vn
j,k−2

4h2

)
= 0,

e4
n
j,k :=

un
j+2,k

2−2un
j,k

2+un
j−2,k

2

4h2 +
vn
j,k+2

2−2vn
j,k

2+vn
j,k−2

2

4h2

+ 2
un
j+1,k+1v

n
j+1,k+1−un

j+1,k−1v
n
j+1,k−1−un

j−1,k+1v
n
j−1,k+1+un

j−1,k−1v
n
j−1,k−1

4h2

+
pn
j+2,k−2pn

jk+pn
j−2,k

4h2 +
pn
j,k+2−2pn

jk+pn
j,k−2

4h2 = 0 .

FDA 2 ([11], Eqs. 18)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
n
j,k :=

un
j+1,k−un

j−1,k

2h +
vn
j,k+1−vn

j,k−1

2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ + unjk
un
j+1,k−un

j−1,k

2h + vnjk
un
j,k+1−un

j,k−1

2h +
pn
j+1,k−pn

j−1,k

2h

− 1
Re

(
un
j+1,k−2un

jk+un
j−1,k

h2 +
un
j,k+1−2un

jk+un
j,k−1

h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ + unjk
vn
j+1,k−vn

j−1,k

2h + vnjk
vn
j,k+1−vn

j,k−1

2h +
pn
j,k+1−pn

j,k−1

2h

− 1
Re

(
vn
j+1,k−2vn

jk+vn
j−1,k

h2 +
vn
j,k+1−2vn

jk+vn
j,k−1

h2

)
= 0,

e4
n
j,k :=

(
un
j+1,k−un

j−1,k

2h

)2
+ 2

vn
j+1,k−vn

j−1,k

2h

un
j,k+1−un

j,k−1

2h +
(

vn
j,k+1−vn

j,k−1

2h

)2
+

pn
j+1,k−2pn

jk+pn
j−1,k

h2 +
pn
j,k+1−2pn

jk+pn
j,k−1

h2 = 0

FDA 3⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
n
j,k :=

un
j+1,k−un

j−1,k

2h +
vn
j,k+1−vn

j,k−1

2h = 0,

e2
n
j,k :=

un+1
jk −un

jk

τ + unjk
un
j+1,k−un

j−1,k

2h + vnjk
un
j,k+1−un

j,k−1

2h +
pn
j+1,k−pn

j−1,k

2h

− 1
Re

(
un
j+1,k−2un

jk+un
j−1,k

h2 +
un
j,k+1−2un

jk+un
j,k−1

h2

)
= 0,

e3
n
j,k :=

vn+1
jk −vn

jk

τ + unjk
vn
j+1,k−vn

j−1,k

2h + vnjk
vn
j,k+1−vn

j,k−1

2h +
pn
j,k+1−pn

j,k−1

2h

− 1
Re

(
vn
j+1,k−2vn

jk+vn
j−1,k

h2 +
vn
j,k+1−2vn

jk+vn
j,k−1

h2

)
= 0,

e4
n
j,k :=

(
un
j+1,k−un

j−1,k

2h

)2
+ 2

vn
j+1,k−vn

j−1,k

2h

un
j,k+1−un

j,k−1

2h +
(

vn
j,k+1−vn

j,k−1

2h

)2
+

pn
j+1,k−2pn

jk+pn
j−1,k

h2 +
pn
j,k+1−2pn

jk+pn
j,k−1

h2 = 0

The difference approximations in the form (6) constructed in [11] are obtained
from FDA 1,2 by applying the forward shift operators (4) as follows.

F̃ := { σ ◦ e1nj,k, σ2 ◦ e2nj,k, σ2 ◦ e3nj,k, σ2 ◦ e4nj,k } , σ := σxσy . (12)

54 P. Amodio et al.

All three FDAs are w-consistent. This can be easily verified by the Taylor ex-
pansion of the finite differences in the set

F̃ := {e1nj,k, e2nj,k, e3nj,k, e4nj,k} (13)

about the grid point {hj, hk, nτ} when the grid spacings h and τ go to zero.
To study s-consistency, fix admissible monomial order � on (5) such that the

leading monomials of difference polynomials in (13) read, respectively, as

{ unj+1,k, u
n+1
jk , vn+1

jk , pnj+2,k for FDA 1 and pnj+1,k for FDA 2,3 } . (14)

Such monomial order can be easily constructed by extension of the block (lexdeg)
orderly (cf. [13], Remark 2) ranking {σt}{σx, σy} with p � u � v.

Proposition 2. Among weakly consistent FDAs 1,2, and 3 only FDA 1 is
strongly consistent.

Proof. ¿From the leading monomial set (14) and the structure of FDAs it follows
that every of the approximations has the only nontrivial S-polynomial

S(e1
n
j,k, e2

n
j,k) :=

e1
n+1
j,k

τ
−
e2

n
j+1,k

2h
. (15)

In the case of FDA 1, the S-polynomial (15) is expressed in terms of the difference
polynomials in (13) as follows

S(e1
n
j,k, e2

n
j,k) = −

e1
n
j,k

τ
+
e2

n
j−1,k

2h
+
e3

n
j,k+1 + e3

n
j,k−1

2h

+
1

Re

(
e1

n
j+2,k − 2e1

n
jk + e1

n
j−2,k

4h2
+
e1

n
j,k+2 − 2e1

n
jk + e1

n
j,k−2

4h2

)
− e4

n
j,k . (16)

The summands in the right-hand side of (16) have distinct leading terms, and
thus cannot be cancelled out. Furthermore, every summand implies a differen-
tial consequence of the corresponding equation in the system (1). Hence, by
Corollary 1, the S-polynomial (15) implies, in the continuous limit, an algebraic-
differential consequence of (1).

Consider now an element of the form (11) in the ideal [F̃] ⊂ R generated
by the difference polynomials appearing in FDA 1. If cancellation occurs in p̃
among the leading terms, then the sum in (11) can be rewritten by means of the
right-hand side of (16) so that cancellation of the leading terms cannot occur
(cf. [15],Ch.2,§ 6,Th.6). Consequently, p̃ implies an element in [F]. This proves
s-consistency of FDA 1.

In the case of FDAs 2 and 3, the corresponding S-polynomial in addition to
the expression shown in right-hand side of (16) has extra and rather cumber-
some polynomial additive which we denote by Δ2 and Δ3, respectively. In the
continuous limit, Δ2 = 0 implies

2vvyyyy + 8vyvyyy + 6v2yy + 2uuxxxx + 8uxuxxx + 6u2xx + pyyyy + pxxxx = 0 .

Consistency of Approximations to Navier–Stokes Equations 55

Δ3 is given by

Δ3 := −unj,k
e1

n
j+1,k + e1

n
j−1,k

2h
− vnj,k

e1
n
j,k+1 + e1

n
j,k−1

2h
+Δ′

3 .

Clearly, the explicitly written terms of Δ3 in the continuous limit imply an
element in the differential ideal [F]. Further, Δ′

3 = 0 implies PDE

2vvyyyy + 8vyvyyy + 6v2yy + 2uuxxxx + 8uxuxxx + 6u2xx + pyyyy + pxxxx = 0 .

The both of obtained differential equations do not follow from the Navier–Stokes
equations that can easily be verified1 by using the Janet reduction of their left-
hand sides modulo the system of polynomials in (1). Therefore, FDAs 2 and 3
are not strongly consistent. �

¿From Theorem 1, we immediately conclude:

Corollary 2. A difference standard basis G of the ideal [F̃] generated by the set
(13) for FDA 1 satisfies the condition (9).

5 Numerical Comparison

In this section, we perform some numerical tests for experimental comparison of
the three FDAs of the previous section. To this aim, we suppose that the Navier–
Stokes system (1) is defined for t ≥ 0 in the square domain Ω = [0, π] × [0, π]
and provide initial conditions for t = 0 and boundary conditions for t > 0
and (x, y) ∈ ∂Ω. Initial and boundary conditions are defined according to (17).
Moreover, since we are essentially interested in the behavior of the different
space discretizations used by the FDAs, any required additional values near the
boundary ones are supposed to be known exactly.

Let [0, π]×[0, π] be discretized in the (x, y)-directions by means of the (m+2)2

equispaced points xj = jh and yk = kh, for j, k = 0, . . .m+1, and h = π/(m+1).
Considering difference equations (13) we observe that, starting from the initial
conditions, the second and the third equations give explicit formulae to compute
un+1
jk and vn+1

jk for j, k = 1, . . . ,m, respectively. Vice versa, the fourth equation

may be used to derive a m2 × m2 linear system that computes the unknowns
pn+1
jk for j, k = 1, . . . ,m. In doing so, the first equation is unnecessary to evaluate

the unknowns but may be used to validate the obtained solution. This procedure
may be iterated for n = 0, 1, . . . , N being tf = Nτ the end point of the time
interval. Since in our experiments we are essentially interested in comparing
different discretizations of u, v, and p on the space domain, the value of the time
step τ was always chosen in order to provide stability.

1 The Maple library implementing the differential Thomas decomposition [18] is ca-
pable of making Janet reduction of a differential polynomial modulo a nonlinear
system of PDEs. The library is free download from
http://wwwb.math.rwth-aachen.de/thomasdecomposition/index.php

56 P. Amodio et al.

In the following figures, we compare the error behavior in tf = 1 given by the
three methods for different values of the Reynolds number Re. Error is computed
by means of the formula

eg = max
j,k

|gNj,k − g(xj , yk, tf)|
1 + |g(xj , yk, tf)|

.

where g ∈ {u, v, p} and g(x, y, t) belongs to the exact solution [14] to (1)⎧⎨⎩
u := −e−2t/Re cos(x) sin(y) ,
v := e−2t/Re sin(x) cos(y) ,

p := −e−4t/Re(cos(2x) + cos(2y))/4 .

(17)

Figure 1 shows the numerical results obtained for (17) with the Reynolds
number set to Re = 105. Each subplot represents the error of a difference ap-
proximation for several values of m and N = 10. The three lines in each subplot
represent the error in u, v, and p. Even if the behavior of the three schemes is
essentially the same, for m = 50, the scheme based on FDA 1 is able to obtain
the solution with an error less than 10−7 while the schemes based on FDAs 2
and 3 do not obtain an approximation of the solution with an error less than
10−4.

10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FDA 1

10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FDA 2

10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

FDA 3

u
v
p

u
v
p

u
v
p

Fig. 1. Relative error in (17) for FDA 1, FDA 2 and FDA 3 with N = 10, tf = 1,
Re = 105 and varying m from 5 to 50

Figure 2 shows the value of the first difference polynomial e1
n
j,k in (13) for the

three FDAs and for growing m obtained by the numerical solution. It is clear
that the discretizations FDA 2 and 3 can not get along without the continuity
equation f1 in the Navier-Stokes system (1).

Figure 3 shows the results obtained for problem (17) with the Reynolds num-
ber set to Re = 102. Again each subplot represents the error of a difference
scheme and the three lines inside each subplot represent the error in u, v, and p,
respectively, for several values of m and N = 40. Similar considerations to the

Consistency of Approximations to Navier–Stokes Equations 57

Fig. 2. Computed value of f1 in (1) for FDA 1 (solid line), FDA 2 (dashed line) and
FDA 3 (dash-dotted line) with N = 10, tf = 1, Re = 105 and varying m from 5 to 50

Fig. 3. Computed errors in u, v and p for FDA 1 (left), 2 (middle) and 3 (right):
N = 40, tf = 1, Re = 102 and varying m from 10 to 100

Fig. 4. Computed error with FDA 1 (u, v and p, respectively): N = 40, tf = 1,
Re = 102 and m = 100

58 P. Amodio et al.

previous example may be done: the scheme based on FDA 1 works much better
than the others and the scheme with FDA 2 is the worst.

We conclude showing in Figure 4 the computed error in tf = 1 using the
s-consistent FDA 1 applied to the problem (17) (Re = 102) with N = 40 and
m = 100. Larger errors are near the boundaries, and u and v seem to be better
approximated than p.

6 Conclusion

As it has been already demonstrated in [6] for overdetermined systems of linear
PDEs, it may be highly nontrivial to construct strongly consistent difference
approximations. In the given paper, we have demonstrated that the demands of
s-consistency impose strong limitations on the finite difference approximations
to the nonlinear system of Navier–Stokes equations. These limitations proceed
from the fact that s-consistent approximations inherit at the discrete level all
basic algebraic properties of the initial differential equations.

It turned out that among two distinctive approximations generated in [12]
(by applying the same algorithmic technique with different choice of numerical
integration method), the one with a 5× 5 stencil (FDA 1) is strongly consistent
whereas the other one with a 3×3 stencil (FDA 2) is not. This result is at variance
with universally accepted opinion that discretization with a more compact stencil
is numerically favoured. One more discretization with a 3 × 3 stencil (FDA 3),
obtained from the differential Navier–Stokes equations by the replacement of
spatial derivatives with the central differences and of temporal derivatives with
the forward differences, also failed to be s-consistent. As this takes place, our
computer experimentation revealed much better numerical behavior of the s-
consistent approximation in comparison with the considered s-inconsistent ones.
The question of existence of s-consistent FDA to (1) with a 3× 3 stencil is open.

Unlike the linear case [6], given a difference approximation on a grid with
equisized grid spacings, one cannot fully algorithmically check its s-consistency.
This is owing to non-noetherianity of difference polynomial rings that may lead
to non-existence of a finite difference Gröbner basis for the ideal generated by
the approximation. And even with the existence of a Gröbner basis, its con-
struction and algorithmic verification of s-consistency may be very hard. For
example, by using experimental implementation in Maple [9] of the algorithm
of papers [9,10]2, many finite Gröbner bases have been constructed for the s-
consistent approximation FDA-1 and for many different monomial orders. In
doing so, the smallest obtained basis consists of 5 different polynomials, and one
of the polynomials has 404 terms. In distinction to those rather tedious compu-
tations, the verification of s-consistency for FDA 1 and s-inconsistency for the
other two was done by analysing the only S-polynomial and required much less
symbolic computation.

2 To our knowledge, it is the only software available for computation of difference
Gröbner bases for the nonlinear case.

Consistency of Approximations to Navier–Stokes Equations 59

It should be noted that in our paper, we use the collocated arrangement of the
dependent variables u, v, and p in the system (1) that often gives rise to oscil-
lations of the variables (cf. [19]) and makes impossible convergence of numerical
solutions. Our experiments presented in Section 5 demonstrate no spurious oscil-
lations of the numerical solution. This can be considered as a significant positive
property of the obtained FDAs.

Acknowledgements. The authors thank the anonymous referees for construc-
tive comments and recommendations which helped to improve the readability
and quality of the paper. The contribution of the second and third authors
(Yu.B. and V.G.) was partially supported by grant 13-01-00668 from the Rus-
sian Foundation for Basic Research and by grant 3802.2012.2 from the Ministry
of Education and Science of the Russian Federation.

References

1. Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Heidelberg (2010)

2. Pozrikidis, C.: Fluid Dynamics: Theory, Computation and Numerical Simulation.
Kluwer, Norwell (2001)

3. Gresho, P.M., Sani, R.L.: On pressure boundary conditions for the incompressible
Navier–Stokes Equations. Int. J. Numer. Meth. 7, 1111–1145 (1987)

4. Samarskii, A.A.: Theory of Difference Schemes. Marcel Dekker, New York (2001)

5. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd
edn. SIAM, Philadelphia (2004)

6. Gerdt, V.P., Robertz, D.: Consistency of Finite Difference Approximations for
Linear PDE Systems and its Algorithmic Verification. In: Watt, S.M. (ed.) Proc.
ISSAC 2010, pp. 53–59. Association for Computing Machinery, New York (2010)

7. Levin, A.: Difference Algebra, vol. 8. Springer (2008)

8. Hubert, E.: Notes on Triangular Sets and Triangulation-Decomposition Algorithms
II: Differential Systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS,
vol. 2630, pp. 40–87. Springer, Heidelberg (2003)

9. La Scala, R.: Gröbner Bases and Gradings for Partial Difference Ideals.
arXiv:math.RA/1112.2065

10. Gerdt, V., La Scala, R.: Noetherian Quotient of the Algebra of Partial Difference
Polynomials and Gröbner Bases of Symmetric Ideals. arXiv:math.AC/1304.7967

11. Gerdt, V.P., Blinkov, Y.A.: Involution and Difference Schemes for the Navier–
Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009)

12. Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Gröbner Bases and Generation
of Difference Schemes for Partial Differential Equations. SIGMA 2, 051 (2006);
arXiv:math.RA/0605334

13. Gerdt, V.P.: Consistency Analysis of Finite Difference Approximations to PDE
Systems. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125,
pp. 28–42. Springer, Heidelberg (2012)

60 P. Amodio et al.

14. Pearson, C.E.: A computational method for time dependent two dimensional in-
compressible viscous flow problems. Sperry-Rand Research Center, Sudbury, Mass.,
Report No. SRRC-RR-64-17 (1964); Chorin, A.J.: The Numerical Solution of the
Navier–Stokes Equations for an Incompressible Fluid. AEC Research and Devel-
opment Report, NYO-1480-82, New York University, New York (1967)

15. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer,
New York (2007)

16. Ollivier, F.: Standard Bases of Differential Ideals. In: Sakata, S. (ed.) AAECC
1990. LNCS, vol. 508, pp. 304–321. Springer, Heidelberg (1991)

17. Trushin, D.V.: Difference Nullstellensatz. arXiv:math.AC/0908.3865
18. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algebraic Thomas

Decomposition of Algebraic and Differential Systems. J. Symb. Comput. 47,
1233–1266 (2012); arXiv:math.AC/1108.0817

19. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer,
Heidelberg (1996)

Faster Sparse Interpolation of Straight-Line

Programs

Andrew Arnold1, Mark Giesbrecht1, and Daniel S. Roche2

1 Cheriton School of Computer Science, University of Waterloo, Canada
{a4arnold,mwg}@uwaterloo.ca

http://cs.uwaterloo.ca/~{a4arnold,mwg}
2 United States Naval Academy, USA

roche@usna.edu

http://www.usna.edu/Users/cs/roche/

Abstract. We give a new probabilistic algorithm for interpolating a
“sparse” polynomial f given by a straight-line program. Our algorithm
constructs an approximation f∗ of f , such that f − f∗ probably has
at most half the number of terms of f , then recurses on the difference
f−f∗. Our approach builds on previous work by Garg and Schost (2009),
and Giesbrecht and Roche (2011), and is asymptotically more efficient
in terms of the total cost of the probes required than previous methods,
in many cases.

1 Introduction

We consider the problem of interpolating a sparse, univariate polynomial

f = c1z
e1 + c2z

e2 + · · ·+ ctz
et ∈ R[z]

of degree d with t non-zero coefficients c1, . . . , ct (where t is called the sparsity
of f) over a ring R. More formally, we are given a straight-line program that
evaluates f at any point, as well as bounds D ≥ d and T ≥ t. The straight-
line program is a simple but useful abstraction of a computer program without
branches, but our interpolation algorithm will work in more common settings of
“black box” sampling of f .

We summarize our final result as follows.

Theorem 1. Let f ∈ R[z], where R is any ring. Given any straight-line program
of length L that computes f , and bounds T and D for the sparsity and degree
of f , one can find all coefficients and exponents of f using O (̃LT log3D +
LT logD log(1/μ))† ring operations in R, plus a similar number of bit operations.
The algorithm is probabilistic of the Monte Carlo type: it can generate random
bits at unit cost and on any invocation returns the correct answer with probability
greater than 1− μ, for a user-supplied tolerance μ > 0.

† For summary convenience we use soft-Oh notation: for functions φ, ψ ∈ R>0 → R>0

we say φ ∈ O (̃ψ) if and only if φ ∈ O(ψ(logψ)c) for some constant c ≥ 0.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 61–74, 2013.
c© Springer International Publishing Switzerland 2013

mailto:a4arnold@uwaterloo.ca
http://cs.uwaterloo.ca/~{a4arnold, mwg}
mailto:roche@usna.edu
http://www.usna.edu/Users/cs/roche/

62 A. Arnold, M. Giesbrecht, and D.S. Roche

1.1 The Straight-Line Program Model and Interpolation

Straight-line programs are a useful model of computation, both as a theoretical
construct and from a more practical point of view; see, e.g., (Bürgisser et al.,
1997, Chapter 4). Our interpolation algorithms work more generally for N -
variate sparse polynomials f ∈ R[z1, . . . , zN] given by a straight-line program
Sf defined as follows. Sf takes an input (a1, . . . , aN) ∈ RN of length N , and
produces a vector b ∈ RL via a series of L instructions Γi : 1 ≤ i ≤ L of the
form

Γi =

{
γi ←− α1 � α2, or

γi ←− δ ∈ R (i.e., a constant from R),

where � is a ring operation ‘+’, ‘−’, or ‘×’, and either α� ∈ {aj}1≤j≤n or α� ∈
{γk}1≤k<i for � = 1, 2. When we say Sf computes f , we mean Sf sets γL to
f(a1, . . . , aN) ∈ R.

To interpolate an N -variate polynomial f ∈ R[z1, . . . , zN], we apply a Kro-
necker substitution, and interpolate

f̂(z) = f
(
z, z(D+1), z(D+1)2, . . . , z(D+1)N−1

)
∈ R[z].

While this certainly increases the degree, f and f̂ have the same number of non-
zero terms, and f can be easily recovered from f̂ . This reduces the problem of
interpolating the N -variate polynomial f of partial degree at most D to interpo-
lating a univariate polynomial f̂ of degree at most (D+1)N . For the remainder
of this paper we thus assume f is univariate.

It will also be necessary to evaluate our polynomial f ∈ R[z], or rather our
straight-line program Sf for f , in an extension ring of R. Precisely, we want to
evaluate f at symbolic �th roots of unity for various choices of �, or algebraically,
in R[z]/(z� − 1). This may be regarded as transforming our straight-line pro-
gram by substituting operations in R with operations in R[z]/(z� − 1), where
each element is represented by a polynomial in R[z] of degree less than �. Each
instruction Υi in the transformed branching program now potentially requires
M(�) operations in R, where M(�) is the number of operations in R and bit
operations needed to multiply two degree-� polynomials over the base ring R.
By Cantor and Kaltofen (1991), we may assume M(�) = O(� log � log log �).

Each evaluation of our straight-line program for f in R[z]/(z� − 1) is called a
probe of degree �. Thus, the cost of a degree-� probe to Sf is O (̃L�) operations
in R, and similarly many bit operations.

This is easily connected to the more “classical” view of sparse interpolation, in
which probes are simply evaluations of a “black-box” polynomial at a single point
(and we do not have any representation for how f is calculated). Each probe in
the straight-line program model can be thought of as evaluating f at all �th
roots of unity in the classical model. Since we charge M(�) = O (̃�) operations in
R for a degree � probe in the straight-line program model, i.e., about � times as
much as a single black-box probe, this is consistent with the costs in a classical
model. We note that algorithms for sparse interpolation presented below could

Sparse Interpolation with Less Probing 63

be stated in this classical model, though we find the straight-line program model
convenient and will continue with it throughout this paper.

1.2 Previous Work

Straight-line programs, or equivalently algebraic circuits, are important both as a
computational model and as a data structure for polynomial computation. Their
rich history includes both algorithmic advances and practical implementations
(Kaltofen, 1989; Sturtivant and Zhang, 1990; Bruno et al., 2002).

One can naively interpolate a polynomial f ∈ R[z] given by a straight-line
program using a dense method, with D probes of degree 1. Prony’s (1795) in-
terpolation algorithm — see (Ben-Or and Tiwari, 1988; Kaltofen et al., 1990;
Giesbrecht et al., 2009) — is a sparse interpolation method that uses evaluations
at only 2T powers of a root of unity whose order is greater than D. However, in
the straight-line program model for a general ring, this would require evaluating
at a symbolic Dth root of unity, which would use at least Ω(D) ring operations
and defeat the benefit of sparsity. Problems with Prony’s algorithm are also
seen in the classical model in that the underlying base ring R must also support
an efficient discrete logarithm algorithm on entries of high multiplicative order
(which, for example, is not feasible over large finite fields).

We mention two algorithms specifically intended for straight-line programs.

The Garg-Schost Deterministic Algorithm. Garg and Schost (2009) de-
scribe a novel deterministic algorithm for interpolating a multivariate polyno-
mial f given by a straight-line program. Their algorithm entails constructing an
integer symmetric polynomial with roots at the exponents of f :

χ =

t∏
i=1

(y − ei) ∈ Z[y],

which is then factored to obtain the exponents ei.
Their algorithm first finds a good prime: a prime p for which the terms of f

remain distinct when reduced modulo zp−1.We call such an image f mod (zp−1)
a good image. Such an image gives us the values ei mod p and hence χ(y) mod p.

Example 2. For f = z33 + z3, 5 is not a good prime because f mod (z5 − 1) =
2z3. We say z33 and z3 collide modulo z5 − 1. 7 is a good prime, as the image
f(z) mod (z7 − 1) = z5 + z3 has as many terms as f(z) does.

In order to guarantee that we have a good prime, the algorithm requires
that we construct the images f mod (zp − 1) for the first N primes, where N
is roughly O (̃T 2 logD). A good prime will be a prime p for which the image
f mod (zp − 1) has maximally many terms, which will be exactly t. Once we
know we have a good image we can discard the images f mod (zq − 1) for bad
primes q, i.e. images with fewer than t terms. We use the remaining images to

64 A. Arnold, M. Giesbrecht, and D.S. Roche

construct χ(y) =
∏t

i=1(y − ei) ∈ Z[y] by way of Chinese remaindering on the
images χ(y) mod p.

We factor χ(y) to obtain the exponents ei, after which we directly obtain the
corresponding coefficients ci directly from a good image.

The algorithm of Garg and Schost (2009) can be made faster, albeit Monte
Carlo, using the following number-theoretic fact.

Fact 3 (Giesbrecht and Roche, 2011). Let f ∈ R[z] be a polynomial with
at most T terms and degree at most D. Let λ = max(21, � 5

3T (T − 1) logD).
A prime p chosen at random in the range [λ, 2λ] is a good prime for f(z) with
probability at least 1

2 .

Thus, in order to find a good image with probability at least 1 − ε, we can
inspect images f mod (zp−1) for �log 1/ε primes p chosen at random in [λ, 2λ].
As the height of χ(y) can be roughly as large as DT , we still require some
O∼(T logD) probes to construct χ(y).

The “Diversified” Interpolation Algorithm. Giesbrecht and Roche (2011)
obtain better performance by way of diversification. A polynomial f is said to
be diverse if its coefficients ci are pairwise distinct. The authors show that, for
f over a finite field or C and for appropriate random choices of α, f(αz) is
diverse with probability at least 1

2 . They then try to interpolate the diversified
polynomial f(αz).

Once we have t with high probability, we look at images f(αz) mod (zp−1) for
primes p in [λ, 2λ], discarding bad images. As f(αz) is diverse, we can recognize
which terms in different good images are images of the same term. Thus, as
all the ei are at most D, we can get all the exponents ei by looking at some
O (̃logD) good images of f .

1.3 Deterministic Zero Testing

Both the Monte Carlo algorithms of Garg and Schost (2009) and
Giesbrecht and Roche (2011) can be made Las Vegas (i.e., no possibility of erro-
neous output, but unbounded worst-case running time) by way of deterministic
zero-testing. Given a polynomial f represented by a straight-line program, each
of these algorithms produces a polynomial f∗ that is probably f .

Fact 4 (Bläser et al. (2009); Lemma 13). Let R be an integral domain, and
suppose f = f∗ mod (zp − 1) for T logD primes. Then f = f∗.

Thus, testing the correctness of the output of a Monte Carlo algorithm re-
quires some O (̃T logD) probes of degree at most O (̃T logD). This cost does
not dominate the cost of either Monte Carlo algorithm. We note that this deter-
ministic zero test can dominate the cost of the interpolation algorithm presented
in this paper if T is asymptotically dominated by logD.

Sparse Interpolation with Less Probing 65

1.4 Summary of Results

We state as a theorem the number and degree of probes required by our new
algorithm presented in this paper.

Theorem 5. Let f ∈ R[z], where R is a ring. Given a straight-line program for
f , one can find all coefficients and exponents of f with probability at least 1− μ

using O˜
(
logT (logD + log 1

μ)
)
probes of degree at most O(T log2D).

Table 1. A “soft-Oh” comparison of interpolation algorithms for straight-line programs

Probes Probe degree Cost of probes Type

Dense D 1 LD deterministic

Garg & Schost T 2 logD T 2 logD LT 3 log2 D deterministic

*Las Vegas G & S T logD T 2 logD LT 3 log2 D Las Vegas

*Diversified logD T 2 logD LT 2 log2 D Las Vegas

†Recursive log T logD T log2 D LT log3 D Monte Carlo

*Average # of probes given; † for a fixed probability of failure μ

Table 1 gives a rough comparison of known algorithms. Our recursive algo-
rithm improves by a factor of T/ logD over the Giesbrecht-Roche diversification
algorithm — ignoring “soft” multiplicative factors of (log(T/ logD))O(1) — and
as such is better suited for moderate values of T . Our algorithm recursively in-
terpolates a series of polynomials of decreasing sparsity. An advantage of this
method is that, when we cross a threshold where logD begins to dominate T ,
we can merely call the Monte Carlo diversification algorithm instead.

2 A Recursive Algorithm for Interpolating f

Entering each recursive step in our algorithm we have our polynomial f rep-
resented by a straight-line program, and an explicit sparse polynomial f∗ “ap-
proximating” f , that is, whose terms mostly appear in the sparse representation
of f . At each recursive step we try to interpolate the difference g = f − f∗. To
begin with, f∗ is initialized to zero.

We first find an “ok” prime p which separates most of the terms of g. We then
use that prime p to build a approximation f∗∗, containing most of the terms
of g, plus possibly some additional “deceptive” terms. The polynomial f∗∗ is
constructed such that g = f − f∗ has, with high probability, at most T/2 terms.
We then recursively interpolate the difference g − f∗∗.

Producing images f∗ mod (z� − 1) is straightforward, we merely reduce the
exponents of terms of f∗ modulo �. We assume g has a sparsity bound Tg ≤ T .

66 A. Arnold, M. Giesbrecht, and D.S. Roche

2.1 A Weaker Notion of “Good” Primes

To interpolate a polynomial g, the sparse interpolation algorithm described by
Giesbrecht and Roche (2011) requires a good prime p which keeps the exponents
of g distinct modulo p. That is, g mod (zp − 1) has the same number of terms
as g. We define a weaker notion of a good prime, an ok prime, which separates
most of the terms of g. To that end we measure, for fixed g and prime p, how
well p separates the terms of g.

Definition 6. Fix a polynomial g =
∑t

i=1 ciz
ei ∈ R[z] with non-zero c1, . . . , ct ∈

R, where ei < ej for i < j, we say ciz
ei and cjz

ej , i �= j, collide modulo zp − 1
if ei ≡ ej mod p. We call any term ciz

ei of f which collides with any other term
of f a colliding term of f modulo zp−1. We let Cg(p) ∈ [0, t] denote the number
of colliding terms of g modulo zp − 1.

Example 7. For the polynomial g = 1+z5+z7+z10, Cg(2) = 4, since 1 collides
with z10 and z5 collides with z7 modulo z2 − 1. Similarly, Cg(5) = 2, since z5

collides with z10 modulo z5 − 1.

We say ciz
ei and cjz

ej collide modulo zp − 1 because both terms have the
same exponent once reduced modulo zp − 1. All other terms of g we will call
non-colliding terms modulo zp − 1.

In the sparse interpolation algorithm of Giesbrecht and Roche (2011), one
chooses a λ ∈ Z>0 such that the probability of a prime p ∈ [λ, 2λ], chosen at
random and having Cg(p) = 0, is at least 1

2 . However, in order to guarantee that
we find such a prime with high probability, we need to choose λ ∈ O(T 2 logD).

In this paper we will search over a range of smaller primes, while allowing for
a reasonable number of collisions. We try to pick λ such that

Pr (Cg(p) ≥ γ for a random prime p ∈ [λ, 2λ]) < 1/2,

for a parameter γ to be determined.

Lemma 8. Let g ∈ R[z] be a polynomial with t ≤ T terms and degree at most

d ≤ D. Suppose we are given T and D, and let λ = max
(
21,
⌈
10T (T−1) ln(D)

3γ

⌉)
.

Let p be a prime chosen at random in the range λ, . . . , 2λ. Then Cg(p) ≥ γ with
probability less than 1

2 .

Proof. The proof follows similarly to the proof of Lemma 2.1 in
(Giesbrecht and Roche, 2011).

Let B be the set of unfavourable primes for which Cg(p) ≥ γ terms collide
modulo zp − 1, and denote the size of B by #B. As every colliding term collides
with at least one other term modulo zp−1, we know pCg(p) divides

∏
1≤i
=j≤t(ei−

ej). Thus, as Cg(p) ≥ γ for p ∈ B,

λ#Bγ ≤
∏
p∈B

pγ ≤
∏

1≤i
=j<t

(ei − ej) ≤ dt(t−1) ≤ DT (T−1).

Sparse Interpolation with Less Probing 67

Solving the inequality for #B gives us

#B ≤ T (T − 1) ln(D)

ln(λ)γ
.

The total number of primes in [λ, 2λ] is greater than 3λ/(5 ln(λ)) for λ ≥ 21 by
Corollary 3 to Theorem 2 of (Rosser and Schoenfeld, 1962). From our definition
of λ we have

3λ

5 ln(λ)
>

2T (T − 1) ln(D)

ln(λ)γ
≥ 2#B,

completing the proof.
�

Relating the Sparsity of g mod (zp − 1) with Cg(p)

Suppose we choose λ according to Lemma 8, and make k probes to compute
g mod (zp1 − 1), . . . , g mod (zpk − 1). One of the primes pi will yield an image
with fewer than γ colliding terms (i.e. Cg(pi) < γ) with probability at least
1− 2−k. Unfortunately, we do not know which prime p maximizes Cg(p). A good
heuristic might be to select the prime p for which g mod (zp − 1) has maximally
many terms. However, this does not necessarily minimize Cg(p). Consider the
following example.

Example 9. Let
g = 1 + z + z4 − 2z13.

We have
g mod (z2 − 1) = 2− z, and g mod (z3 − 1) = 1.

While g mod (z2−1) has more terms than g mod (z3−1), we see that Cg(2) = 4
is larger than Cg(3) = 3.

While we cannot determine the prime p for which g mod (zp − 1) has maxi-
mally many non-colliding terms, we show that choosing the prime p which max-
imizes the number of terms in g mod (zp − 1) is, in fact, a reasonable strategy.

We would like to find a precise relationship between Cg(p), the number of terms
of g that collide in the image g mod (zp−1), and the sparsity s of g mod (zp−1).

Lemma 10. Suppose that g has t terms, and g mod (zp − 1) has s ≤ t terms.
Then t− s ≤ Cg(p) ≤ 2(t− s).

Proof. To prove the lower bound, note that t− Cg(p) terms of g will not collide
modulo zp − 1, and so g mod (zp − 1) has sparsity s at least t− Cg(p).

We now prove the upper bound. Towards a contradiction, suppose that Cg(p) >
2(t − s). There are Cg(p) terms of g that collide modulo zp − 1. Let h be the
Cg(p)-sparse polynomial comprised of those terms of g. As each term of h collides
with at least one other term of h, h mod (zp − 1) has sparsity at most Cg(p)/2.
Since none of the terms of g− h collide modulo zp − 1, (g− h) mod (zp − 1) has
sparsity exactly t − Cg(p). It follows that g mod (zp − 1) has sparsity at most
t−Cg(p)+Cg(p)/2 = t−Cg(p)/2. That is, s ≤ t−Cg(p)/2, and so Cg(p) ≤ 2(t−s).

�

68 A. Arnold, M. Giesbrecht, and D.S. Roche

Corollary 11. Suppose g has sparsity t, g mod (zq − 1) has sparsity sq, and
g mod (zp − 1) has sparsity sp ≥ sq. Then Cg(p) ≤ 2Cg(q).

Proof.
Cg(p) ≤ 2(t− sp) by the second inequality of Lemma 10,

≤ 2(t− sq) since sp ≥ sq,
≤ 2Cg(q) by the first inequality of Lemma 10.
�

Suppose then that we have computed g mod (zp − 1), for p belonging to some
set of primes S, and the minimum value of Cg(p), p ∈ S, is less than γ. Then
a prime p∗ ∈ S for which g mod (zp

∗ − 1) has maximally many terms satisfies
Cg(p∗) < 2γ. We will call such a prime p∗ an ok prime.

We then choose γ = wT for an appropriate proportion w ∈ (0, 1). Note in
general we will use the better bound Tg ≤ T in place of T . We show that setting
w = 3/16 allows that each recursive call reduces the sparsity of the subsequent
polynomial by at least half. This would make λ = � 10

3w (T −1) ln(D) = � 160
9 (T −

1) ln(D) . As per Lemma 8, in order to guarantee with probability 1 − ε that
we have come across a prime p such that Cg(p) ≤ γ, we will need to perform
�log 1/ε probes of degree O(T logD). Procedure 1 summarizes how we find an
ok prime.

Procedure FindOkPrime(Sf, f
∗, Tg, D, ε)

Input:
– Sf , a straight-line program that computes a polynomial f
– f∗, a current approximation to f
– Tg and D, bounds on the sparsity and degree of g = f − f∗ respectively
– ε, a bound on the probability of failure

Output: With probability at least 1− ε, we return an “ok prime” for g = f − f∗

λ ←− max
(
21,
⌈
160
9
(Tg − 1) lnD

⌉)
(max sparsity, p) ←− (0, 0)
for i ←− 1 to �log 1/ε� do

p′ ←− a random prime in [λ, 2λ]

if # of terms of (f − f∗) mod (zp
′ − 1) ≥ max sparsity then

max sparsity ←− # of terms of (f − f∗) mod (zp
′ − 1)

p ←− p′

return p

A practical application would probably choose random primes by selecting
random integer values in [λ, 2λ] and then applying probabilistic primality test-
ing. In order to ensure deterministic worst-case run-time, we could pick random
primes in the range [λ, 2λ] by using a sieve method to pre-compute all the primes
up to 2λ.

Sparse Interpolation with Less Probing 69

2.2 Generating an Approximation f∗∗ of g

We suppose now that we have, with probability at least 1 − ε, an ok prime p;
i.e., a prime p such that Cg(p) ≤ 2wT for a suitable proportion w. We now use
this ok prime p to construct a polynomial f∗∗ containing most of the terms of
g = f − f∗.

For a set of coprime moduli Q = {q1, . . . , qk} satisfying
∏k

i=1 qi > D, we will
compute g mod (zpqi − 1) for 1 ≤ i ≤ k. Here we make no requirement that the
qi be prime. We merely require that the qi are pairwise co-prime.

We choose the qi as follows: denoting the ith prime by pi, we set qi = p
�logpi

x�
i ,

for an appropriate choice of x. That is, we let qi be the greatest power of the ith

prime that is no more than x. For pi ≤ x, we have qi ≥ x/pi and qi ≥ pi. Either
x/pi or pi is at least

√
x, and so qi ≥

√
x as well.

By Corollary 1 of Theorem 2 in Rosser and Schoenfeld (1962), there are more
than x/ lnx primes less than or equal to x for x ≥ 17. Therefore∏

pi≤x

qi ≥
(√

x
)x/ lnx

.

As we want this product to exceed D, it suffices that

lnD < ln
((√

x
)x/ ln x

)
= x/2.

Thus, if we choose x ≥ max(2 ln(D), 17) and k = �x/ lnx , then
∏k

i=1 qi will
exceed D. This means qi ∈ O(logD) and pqi ∈ O(T log2D). The number of
probes in this step is k ∈ O(log(D)/ log log(D)). Since we will use the same set
of moduli Q = {q1, . . . , qk} in every recursive call, we can pre-compute Q prior
to the first recursive call.

We now describe how to use the images g mod (zpqi − 1) to construct a poly-
nomial f∗∗ such that g − f∗∗ is at most T/2-sparse.

If cze is a term of g that does not collide with any other terms modulo zp− 1,
then it certainly will not collide with other terms modulo zpq −1 for any natural
number q. Similarly, if c∗ze

∗ mod p appears in g mod (zp − 1) and there exists a
unique term c∗ze

∗ mod pqi appearing in g mod (zpqi − 1) for i = 1, 2, . . . , k, then
c∗ze

∗
is potentially a term of g. Note that c∗ze

∗
is not necessarily a term of g:

consider the following example.

Example 12. Let

g(z) = 1 + z + z2 + z3 + z11+4 − z14·11+4 − z15·11+4,

with hard sparsity bound Tg = 7 and degree bound D = 170 and let p = 11. We
have

g(z) mod (z11 − 1) = 1 + z + z2 + z3 − z4.

70 A. Arnold, M. Giesbrecht, and D.S. Roche

As deg(g) = 170 < 2 ·3 ·5 ·7 = 210, it suffices to make the probes g mod z11q − 1
for q = 2, 3, 5, 7. Probing our remainder black-box polynomial, we have

g mod (z22 − 1) = 1 + z + z2 + z3 − z15,

g mod (z33 − 1) = 1 + z + z2 + z3 − z26,

g mod (z55 − 1) = 1 + z + z2 + z3 − z48,

g mod (z77 − 1) = 1 + z + z2 + z3 − z15.

In each of the images g mod zpq − 1, there is a unique term whose degree is
congruent to one of e = 0, 1, 2, 3, 4 modulo p. Four of these terms correspond to
the terms 1, z, z2, z3 appearing in g. Whereas the remaining term has degree e
satisfying e = 1 mod 2, e = 2 mod 3, e = 3 mod 5, and e = 1 mod 7. By Chinese
remaindering on the exponents, this gives a term −z113 not appearing in g.

Procedure ConstructApproximation(Sf, f
∗, D, p,Q)

Input:
– Sf , a straight-line program that computes a polynomial f
– f∗, a current approximation to f
– D a bound on the degree of g = f − f∗

– p, an ok prime for g (with high probability)
– Q, a set of co-prime moduli whose product exceeds D

Output: A polynomial f∗∗ such that, if p is an ok prime, g − f∗∗ has sparsity
at most Tg/2�, where g has at most Tg terms.

// Collect images of g
E ←− set of exponents of terms in (f − f∗) mod (zp − 1)
for q ∈ Q do

h ←− (f − f∗) mod (zpq − 1)
for each term cze in h do

if E(e mod p),q is already initialized then E ←− E/{e mod p}
else E(e mod p),q ←− e mod q

// Construct terms of new approximation of g, f∗∗

f∗∗ ←− 0
for ep ∈ E do

e ←− least nonnegative solution to {e = Eep,q mod q | q ∈ Q}
c ←− coefficient of zep term in (f − f∗) mod (zp − 1)
if e ≤ D then f∗∗ ←− f∗∗ + cze

return f∗∗

Definition 13. Let c∗ze
∗
, e∗ ≤ D be a monomial such that c∗ze

∗ mod p appears
in g mod zp − 1, and c∗ze

∗ mod pqi is the unique term of degree congruent to e∗

modulo p appearing in g mod (zpqi − 1) for each modulus qi. If c
∗ze

∗
is not a

term of g we call it a deceptive term.

Sparse Interpolation with Less Probing 71

Fortunately, we can detect a collision comprised of only two terms. Namely,
if c1z

e1 + c2z
e2 collide, there will exist a qi such that qi � (e1 − e2). That is,

g mod (zpqi−1) will have two terms whose degree is congruent to e1 mod p. Once
we observe that, we know the term (c1+c2)z

e1 mod p appearing in g mod (zp−1)
was not a distinct term, and we can ignore exponents of the congruence class
e1 mod p in subsequent images g mod (zpqj − 1).

Thus, supposing g mod (zp − 1) has at most 2γ colliding terms and at least
t− 2γ non-colliding terms, f∗∗ will have the t− 2γ non-colliding terms of g, plus
potentially an additional 2

3γ deceptive terms produced by the colliding terms of
g. In any case, g − f∗∗ has sparsity at most 8

3γ. Choosing γ = 3
16Tg guarantees

that g−f∗∗ has sparsity at most Tg/2. This would make λ = � 160
9 (Tg−1) ln(D) .

Procedure 2 gives a pseudocode description of how we construct f∗∗.
If we find a prospective term in our new approximation f∗∗ has degree greater

than D, then we know that term must have been a deceptive term and discard it.
There are other obvious things we can do to recognize deceptive terms which we
exclude here. For instance, we should check that all terms from images modulo
zpq − 1 whose degrees agree modulo p share the same coefficient.

2.3 Recursively Interpolating f − f∗

Procedure Interpolate(Sf, T,D, μ)

Input:
– Sf , a straight-line program that computes a polynomial f
– T and D, bounds on the sparsity and degree of f , respectively
– μ, an upper bound on the probability of failure

Output: With probability at least 1− μ, we return f

x ←− max(2 ln(D), 17)
Q ←− {p�logp x� : p is prime, p ≤ x}
return 4(Sf , 0, T,D,Q, μ/(log T + 1))

Once we have constructed f∗∗, we refine our approximation f∗ by adding f∗∗

to it, giving us a new difference g = f − f∗ containing at most half the terms
of the previous polynomial g. We recursively interpolate our new polynomial g.
With an updated sparsity bound �Tg/2�, we update the values of γ and λ and
perform the steps of Sections 2.1 and 2.2. We recurse in this fashion log T times.
Thus, the total number of probes becomes

O
(
logT (logD

log logD + log(1/ε))
)
,

of degree at most O(T log2D).

72 A. Arnold, M. Giesbrecht, and D.S. Roche

Procedure InterpolateRecurse(Sf, f
∗, Tg, D,Q, ε)

Input:
– Sf , a straight-line program that computes a polynomial f
– f∗, a current approximation to f
– Tg and D, bounds on the sparsity and degree of g = f − f∗, respectively
– Q, a set of coprime moduli whose product is at least D
– ε, a bound on the probability of failure at one recursive step

Output: With probability at least 1− μ, the algorithm outputs f

if Tg = 0 then return f∗

p ←− 1(Sf , f
∗, Tg, D, ε)

f∗∗ ←− 2(Sf , f
∗, D, p,Q)

return 4(Sf , f
∗ + f∗∗, Tg/2�, D,Q, ε)

Note now that in order for this method to work we need that, at every recursive
call, we in fact get a good prime, otherwise our sparsity bound on the subsequent
difference of polynomials could be incorrect. At every stage we succeed with
probability 1− ε, thus the probability of failure is 1− (1− ε)log T�. This is less
than �logT ε. If we want to succeed with probability μ, then we can choose
ε = μ

log T+1 ∈ O(μ
log T).

3 pre-computes our set of moduli Q, then makes the first recursive call to 4,
which subsequently calls itself.

2.4 A Cost Analysis

We analyse the cost of our algorithm, thereby proving Theorems 1 and 5.

Pre-computation. Using the wheel sieve (Pritchard, 1982), we can compute
the set of primes up to x ∈ O(logD) in O (̃logD) bit operations. From this set
of primes we obtain Q by computing p�logp x� for p ≤ √

x by way of squaring-
and-multiplying. For each such prime, this costs O (̃log x) bit operations, so the
total cost of computing Q is O (̃logD).

Finding ok Primes. In one recursive call, we will look at some log 1/ε =
O(log 1/μ log logT) primes in the range [λ, 2λ] in order to find an ok prime.
Any practical implementation would select such primes by using probabilistic
primality testing on random integer values in the range [λ, 2λ]; however, the
probabilistic analysis of such an approach, in the context of our interpolation al-
gorithm, becomes somewhat ungainly. We merely note here that we could instead
pre-compute primes up to our initial value of λ ∈ O(T logD) in O (̃T logD) bit
operations by way of the wheel sieve.

Each prime p is of order T logD, and so, per our discussion in Section 1, each
probe costs O (̃LT logD) ring operations and similarly many bit operations.
Considering the O(logT) recursive calls, this totals O (̃LT logD log 1/μ) ring
and bit operations.

Sparse Interpolation with Less Probing 73

Constructing the New Approximation f∗∗. Constructing f∗∗ requires
O (̃logD) probes of degree O (̃T log2D). This costs O (̃LT log3D) ring and bit
operations. Performing these probes at each O(logT) recursive call introduces
an additional factor of logT , which does not affect the “soft-Oh” complexity.
This step dominates the cost of the algorithm.

Building a term cze of f∗∗ amounts to solving a set of congruences. By The-
orem 5.8 of Gathen and Gerhard (2003), this requires some O(log2D) word op-
erations. Thus the total cost of Chinese remaindering to construct f∗∗ becomes
O(T log2D). Again, the additional logT factor due to the recursive calls does
not affect the stated complexity.

3 Conclusions

We have presented a recursive algorithm for interpolating a polynomial f given
by a straight-line program, using probes of smaller degree than in previously
known methods. We achieve this by looking for “ok” primes which separate
most of the terms of f , as opposed to “good” primes which separate all of the
terms of f . As is seen in Table 1, our algorithm is an improvement over previous
algorithms for moderate values of T .

This work suggests a number of problems for future work. We believe our al-
gorithms have the potential for good numerical stability, and could improve on
Giesbrecht and Roche’s (2011) work on numerical interpolation of sparse com-
plex polynomials, hopefully capitalizing on the lower degree probes. Our Monte
Carlo algorithms are now more efficient than the best known algorithms for
polynomial identity testing, and hence these cannot be used to make them error
free. We would ideally like to expedite polynomial identity testing of straight-
line programs, the best known methods currently due to Bläser et al. (2009).
Finally, we believe there is still room for improvement in sparse interpolation
algorithms. The vector of exponents of f comprises some T logD bits. Assuming
no collisions, a degree-� probe gives us some t log � bits of information about
these exponents. One might hope, aside from some seemingly rare degenerate
cases, that logD probes of degree T logD should be sufficient to interpolate f .

Acknowledgements. We would like to thank Reinhold Burger and Colton
Pauderis for their feedback on a draft of this paper.

References

Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial
interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, pp. 301–309. ACM (1988)

Bläser, M., Hardt, M., Lipton, R.J., Vishnoi, N.K.: Deterministically testing sparse
polynomial identities of unbounded degree. Information Processing Letters 109(3),
187–192 (2009)

74 A. Arnold, M. Giesbrecht, and D.S. Roche

Bruno, N., Heintz, J., Matera, G., Wachenchauzer, R.: Functional programming con-
cepts and straight-line programs in computer algebra. Mathematics and Computers
in Simulation 60(6), 423–473 (2002), doi:10.1016/S0378-4754(02)00035-6

Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer (1997)

Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary alge-
bras. Acta Informatica 28, 693–701 (1991)

de Prony, R.: Essai expérimental et analytique sur les lois de la dilabilité et sur celles
de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes
températures. J. de l’École Polytechnique 1, 24–76 (1795)

Garg, S., Schost, É.: Interpolation of polynomials given by straight-line pro-
grams. Theor. Comput. Sci. 410(27-29), 2659–2662 (2009), http://dx.doi.org/

10.1016/j.tcs.2009.03.030, doi:10.1016/j.tcs.2009.03.030, ISSN 0304-3975
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge

University Press, New York (2003) ISBN 0521826462
Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: IS-

SAC 2011, pp. 123–130 (2011), http://doi.acm.org/10.1145/1993886.1993909,
doi:10.1145/1993886.1993909

Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic– numeric sparse interpolation of
multivariate polynomials. Journal of Symbolic Computation 44(8), 943–959 (2009)

Kaltofen, E.: Factorization of polynomials given by straight-line programs. In: Ran-
domness and Computation, pp. 375–412. JAI Press (1989)

Kaltofen, E., Lakshman, Y.N., Wiley, J.M.: Modular rational sparse multivariate poly-
nomial interpolation. In: Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC 1990, pp. 135–139. ACM, New York (1990),
doi:10.1145/96877.96912

Pritchard, P.: Explaining the wheel sieve. Acta Informatica 17(4), 477–485 (1982)
Barkley Rosser, J., Schoenfeld, L.: Approximate formulas for some functions of prime

numbers. Illinois J. Math. 6, 64–94 (2082) ISSN 0019-2082
Sturtivant, C., Zhang, Z.-L.: Efficiently inverting bijections given by straight line pro-

grams. In: Proceedings of the 31st Annual Symposium on Foundations of Computer
Science, pp. 327–334. IEEE (October 1990), doi:10.1109/FSCS.1990.89551

http://dx.doi.org/10.1016/j.tcs.2009.03.030
http://dx.doi.org/10.1016/j.tcs.2009.03.030
http://doi.acm.org/10.1145/1993886.1993909

On Possibility of Additional Solutions of the

Degenerate System Near Double Degeneration
at the Special Value of the Parameter

Alexander D. Bruno1 and Victor F. Edneral2

1 Keldysh Institute for Applied Mathematics of RAS
Miusskaya Sq. 4, Moscow, 125047, Russia

abruno@keldysh.ru
2 Skobeltsyn Institute of Nuclear Physics,

Lomonosov Moscow State University
Leninskie Gory 1, Moscow, 119991, Russia

edneral@theory.sinp.msu.ru

Abstract. We consider an autonomous system of ordinary differential
equations, which is resolved with respect to derivatives. To study local
integrability of the system near a degenerate stationary point, we use an
approach based on Power Geometry and on the computation of the reso-
nant normal form. For the particular non-Hamilton 5-parameter case of
concrete planar system, we found previously the almost complete set of
necessary conditions on parameters of the system for which the system
is locally integrable near a degenerate stationary point. These sets of pa-
rameters, satisfying the conditions, consist of 4 two-parameter subsets in
this 5-parameter space except 1 special hyper plane b2 = 2/3. We wrote
down 4 first integrals of motion as functions of the system parameters.
Here we have proved that the limitation b2 �= 2/3 can be excluded from
the previously obtained solutions. Now we have not found the additional
first integrals.

Keywords: Ordinary differential equations, Integrability, Resonant
normal form, Power geometry, Computer algebra.

1 Introduction

We consider the autonomous system of ordinary differential equations

dxi/dt
def
= ẋi = ϕi(X), i = 1, . . . , n , (1)

where X = (x1, . . . , xn) ∈C
n
and ϕi(X) are polynomials.

At the stationary point X = X0, system (1) is locally integrable if it has
sufficient number m of independent first integrals of the form

aj(X)/bj(X), j = 1, . . . ,m , (2)

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 75–87, 2013.
c© Springer International Publishing Switzerland 2013

76 A.D. Bruno and V.F. Edneral

where functions aj(X) and bj(X) are analytic in a neighborhood of the point
X = X0. Otherwise we call the system (1) locally nonintegrable at this point.
Number m is equal to 1 for a planar (n = 2) autonomous system.

In [7], a method was proposed for the analysis of integrability of system (1)
based on power transformations [5] and computation of normal forms near sta-
tionary solutions of transformed systems.

In the neighborhood of the stationary point X = 0, system (1) can be written
in the form

Ẋ = AX + Φ̃(X), (3)

where Φ̃(X) has no terms linear in X .
Let λ1, λ2, . . . , λn be the eigenvalues of the matrix A. If at least one of them

λi �= 0, then the stationary point X = 0 is called an elementary stationary point.
In this case, system (1) has a normal form which is equivalent to a system of
lower order [4]. If all eigenvalues vanish, then the stationary point X = 0 is called
a nonelementary stationary point. In this case, there is no normal form for the
system (1). But by using power transformations, the nonelementary stationary
point X = 0 can be blown up to a set of elementary stationary points. For each
of these elementary stationary points, we can compute the normal form and
write conditions of local integrability.

In this paper, we demonstrate how this approach can be applied to study
the local and global integrability in the planar case of the system (1) near the
stationary point X0 = 0 of high degeneracy

ẋ = αy3 + β x3 y + (a0 x
5 + a1 x

2y2) + (a2 x
4 y + a3 x y

3) ,
ẏ = γ x2 y2 + δ x5 + (b0 x

4y + b1 x y
3) + (b2 x

6 + b3 x
3 y2 + b4 y

4) .
(4)

Systems with a nilpotent matrix of the linear part were thoroughly studied by
Lyapunov et al. In system (4), there is no linear part, and the first approximation
is nonhomogeneous. This is the simplest case of a planar system without linear
part and with Newton’s open polygon [4] consisting of a single edge. In general
case, such problems have not been studied. However, the system with such sup-
port was considered in [1], where authors put −α = δ = 1 and 3 β + 2 γ = 0.
Further authors of [1] studied Hamiltonian case of this system with the addi-
tional assumption that the Hamiltonian function is expandable into the product
of only square-free factors.

We study the problem: what are the conditions on parameters under which
the system (4) is locally or globally integrable at the another particular case

−α = δ = 1, b
def
= − β = 1/γ and a2 = a3 = b2 = b3 = b4 = 0. In this situation,

the system is not Hamiltonian.
Further we discuss the first quasi-homogeneous approximation of system(4),

recall the main ideas of the method of resonant normal forms, prove the theorem
on necessary conditions of local integrability, find some of sufficient conditions
of global integrability, and formulate the conclusions. At searching necessary
conditions of local integrability it is absolutely impossible to bypass of computer
algebra methods.

On Possibility of Additional Solutions of the Degenerate System 77

2 About First Quasi-Homogeneous Approximation

If n = 2 then rationality of the ratio λ1/λ2 and the condition A (see the next
Section) are necessary and sufficient conditions for local integrability of a system
near an elementary stationary point. For local integrability of original system (1)
near a degenerate (nonelementary) stationary point, it is necessary and sufficient
to have local integrability near each of elementary stationary points, which are
produced by the blowing up process described above.

So we study the system

ẋ1 = x1
∑
φQXQ ,

ẋ2 = x2
∑
ψQX

Q ,
(5)

where Q = (q1, q2), X = (x1, x2), X
Q = xq11 xq22 , q1, q2 ∈ Z; φQ and ψQ are

constant coefficients, which are polynomials in parameters of the system.
System (5) has a quasi-homogeneous initial approximation if there exists an

integer vector R = (r1, r2) > 0 and a number s such that the scalar product

〈Q,R〉 def
= q1 r1 + q2 r2 ≥ s = const

for nonzero |φQ| + |ψQ| �= 0, and between vectors Q with 〈Q,R〉 = s there are
vectors of the form (q1,−1) and (−1, q2). In this case, system (5) takes the form

ẋ1 = x1[φs(X) + φs+1(X) + φs+2(X) + . . .] ,
ẋ2 = x2[ψs(X) + ψs+1(X) + ψs+2(X) + . . .] ,

where φk(X) is the sum of terms φQX
Q for which 〈Q,R〉 = k. And the same

holds for the ψk(X). Then the initial approximation (or truncation) of system
(5) is the quasi-homogeneous system

ẋ1 = x1 φs(X) ,
ẋ2 = x2 ψs(X) .

(6)

We will study the case R = (2, 3) and s = 7, when the quasi-homogeneous
system (6) has the form

ẋ = αy3 + β x3 y, ẏ = γ x2 y2 + δ x5 , (7)

where α �= 0 and δ �= 0. Using linear transformation x = σx̃, y = τ ỹ we can fix
two nonzero parameters in (7)

ẋ = −y3 − b x3 y, ẏ = c x2 y2 + x5 . (8)

We study the problem: what are the conditions on parameters under which
system (5) is locally or globally integrable. For this, the system (7) should be at
least locally integrable. But each autonomous planar quasi-homogeneous system
like (7) has an integral, but it can have not the form (2) with analytic a1 and
b1. So we need to have the local integrability of (7) in the sense (2).

78 A.D. Bruno and V.F. Edneral

Theorem 1. In the case D
def
= (3 b + 2 c)2 − 24 �= 0, system (8) is locally inte-

grable if and only if the number (3 b− 2 c)/
√
D is rational.

Proof. After the power transformation

x = u v2, y = u v3 (9)

and time rescaling
dt = u2v7dτ ,

we obtain system (8) in the form

u̇ = −u (3 + (3 b+ 2 c)u+ 2 u2), v̇ = v (1 + (b + c)u+ u2) .

So
d log v

d u
= − 1 + (b+ c)u+ u2

u [3 + (3 b+ 2 c)u+ 2 u2]
. (10)

The number D is the discriminant of the polynomial 3 + (3 b + 2 c)u + 2 u2. In
our case D �= 0, so the polynomial has two different roots u1 �= u2, and the
right-hand side of (10) has the form

ξ

u
+

η

u− u1
+

ζ

u− u2
,

where ξ, η, and ζ are constants. Direct computation shows that

ξ = −1

3
, η + ζ = −1

6
, ζ = −1 + (3 b− 2 c)/

√
D

12
. (11)

The first integral of (10) is

uξ (u− u1)
η (u − u2)

ζ v−1 .

According to (11), its integral power can have the form (2) if and only if the
number

3 b− 2 c√
D

(12)

is rational. The same is true for the integral in variables x, y, because according
(9)

u =
x3

y2
, v =

y

x
.

Proof is finished.
We will study the integrability problem for entire system (5) with the first

quasi-homogeneous approximation (8). So we choose (5) in the form

dx/dt = −y3 − b x3y + a0 x
5 + a1 x

2y2 ,
dy/dt = c x2y2 + x5 + b0 x

4y + b1 x y
3 ,

(13)

with arbitrary parameters ai, bi and b �= 0.

On Possibility of Additional Solutions of the Degenerate System 79

In our system (13), there is no linear part, and the first approximation is
not homogeneous but quasi-homogeneous. This is the simplest case of a planar
system without linear part and with Newton’s open polygon consisting of a
single edge. In our case, the system corresponds to the quasi-homogeneous first
approximation with R = (2, 3), s = 7. In general case, such problems have not
been studied. Firstly the system with such a support was considered in [1], where
authors put 3 b− 2 c = 0, then the order (12) is equal to zero and the integral of
system (8) is

I = 2 x6 + 4 c x3y2 + 3 y4. (14)

In this case, system (8) is the Hamiltonian system with Hamiltonian function
H = I/12. Further authors of [1] studied Hamiltonian case of the full system
under the additional assumption that the Hamiltonian function is expandable
into the product of only square-free factors.

In this paper, we will study another simple particular case, when the order
(12) is equal to ±1, in the case c = 1/b and 2 x3+3 b y2 is the first integral of (8).
With respect of Theorem 2.1, the first quasi-homogeneous approximation has an
analytic integral but it is not a Hamiltonian system. Also we restrict ourselves
to the case b2 �= 2/3 which should be studied separately (see below).

3 About Normal Form and the Condition A

Let the linear transformation
X = BY (15)

bring the matrix A to the Jordan form J = B−1AB and system (3) to the form

Ẏ = JY + ˜̃Φ(Y) . (16)

Let the formal change of coordinates

Y = Z + Ξ(Z), (17)

where Ξ = (ξ1, . . . , ξn) and ξj(Z) are formal power series, transform the system
(16) into the system

Ż = JZ + Ψ(Z) . (18)

We write it in the form

żj = zjgi(Z) = zj
∑

gjQZ
Q over Q ∈Nj , j = 1, . . . , n , (19)

where Q = (q1, . . . , qn), Z
Q = zq11 . . . zqnn ,

Nj = {Q : Q ∈Z
n
, Q+ Ej ≥ 0}, j = 1, . . . , n ,

Ej means the unit vector. Denote

N =N1 ∪ . . . ∪Nn . (20)

80 A.D. Bruno and V.F. Edneral

The diagonal Λ = (λ1, . . . , λn) of J consists of eigenvalues of the matrix A.
System (18), (19) is called the resonant normal form if:
a) J is the Jordan matrix,
b) under the sum in (19), there are only the resonant terms, for which the

scalar product

〈Q,Λ〉 def
= q1λ1 + . . .+ qnλn = 0 . (21)

Theorem 2. [3] There exists a formal change (17) reducing system (16) to its
normal form (18), (19).

In [3], there are conditions on the normal form (19), which guarantee the con-
vergence of the normalizing transformation (17).

Condition A. In the normal form (19)

gj = λjα(Z) + λ̄jβ(Z), j = 1, . . . , n ,

where α(Z) and β(Z) are some power series.
Let

ωk = min |〈Q,Λ〉| over Q ∈N, 〈Q,Λ〉 �= 0,
n∑

j=1

qj < 2k, k = 1, 2,

Condition ω (on small divisors). The series

∞∑
k=1

2−k logωk > −∞ ,

i.e., it converges.
It is fulfilled for almost all vectors Λ.

Theorem 3. [3] If vector Λ satisfies Condition ω and the normal form (19)
satisfies Condition A then the normalizing transformation (17) converges.

The algorithm for calculation of the normal form and of the normalizing transfor-
mation together with the corresponding computer program are briefly described
in [6].

4 Necessary Conditions of Local Integrability

We consider the system

dx/dt = −y3 − b x3y + a0 x
5 + a1 x

2y2 ,
dy/dt = (1/b)x2y2 + x5 + b0 x

4y + b1 x y
3 ,

(22)

with arbitrary complex parameters ai, bi and b �= 0.
Systems with a nilpotent matrix of the linear part were thoroughly studied

by Lyapunov et al. In our system (22), there is no linear part, and the first
approximation is not homogeneous but quasi-homogeneous. This is the simplest

On Possibility of Additional Solutions of the Degenerate System 81

case of a planar system without linear part and with Newton’s open polygon
consisting of a single edge. In our case, the system corresponds to the quasi-
homogeneous first approximation with R = (2, 3), s = 7. In general case, such
problems have not been studied, and the authors do not know of any applications
of the system (22).

After the power transformation (9) and the time rescaling (dt = u2v7dτ), we
obtain system (22) in the form

du/dτ = −3 u− [3 b+ (2/b)]u2 − 2 u3 + (3 a1 − 2 b1)u
2v + (3 a0 − 2 b0)u

3v ,
dv/dτ = v + [b+ (1/b)]u v + u2v + (b1 − a1)u v

2 + (b0 − a0)u
2v2 .

(23)
Under the power transformation (9), the point x = y = 0 blows up into two

straight lines u = 0 and v = 0. Along the line u = 0 the system (23) has a single
stationary point u = v = 0. Along the second line v = 0 this system has three
elementary stationary points

u = 0, u = −1

b
, u = −3b

2
. (24)

The necessary and sufficient condition of local integrability of system (22)
near the point x = y = 0 is local integrability near all stationary points of the
system (23).

Lemma 1. Near the point u = v = 0, the system (23) is locally integrable.

Proof. In accordance with Chapter 2 of the book [4], the support of system (23)
consists of five points Q = (q1, q2)

(0, 0), (1, 0), (2, 0), (1, 1), (2, 1). (25)

At the point u = v = 0 eigenvalues of system (23) are Λ = (λ1, λ2) = (−3, 1).
Only for the first point from (25) Q = 0, the scalar product 〈Q,Λ〉 is zero, for
the remaining four points (25) it is negative, so these four points lie on the same
side of the straight line 〈Q,Λ〉 = 0. In accordance with the remark at the end of
Subsection 2.1 of Chapter 2 of the book [4], in such case the normal form consists
only of the terms of a right-hand side of system (23) such that their support Q
lies on the straight line 〈Q,Λ〉 = 0. But only linear terms of the system (23)
satisfy this condition. Therefore, at point u = v = 0, the normal form of the
system is linear

dz1/dτ = −3 z1, dz2/dτ = z2 .

It is obvious that this normal form satisfies the condition A. So the normalizing
transformation converges, and at point u = v = 0, system (23) has the analytic
first integral

z1 z
3
2 = const .

Proof is finished.
The proof of local integrability at point u = ∞, v = 0 is similar.

82 A.D. Bruno and V.F. Edneral

Thus, if we must find conditions of local integrability at two other stationary
points (24), then we will have the conditions of local integrability of system (22)
near the point X = 0.

Let us consider the stationary point u = −1/b, v = 0. Below we restrict
ourselves to the case b2 �= 2/3 when the linear part of system (23), after the
shift u = ũ− 1/b, has non-vanishing eigenvalues. At b2 = 2/3, the matrix of the
linear part of the shifted system in new variables ũ and v has a Jordan cell with
both zero eigenvalues. This case can be studied by means of one more power
transformation and will be studied later.

To simplify eigenvalues, we change the time at this point once more with the
factor dτ = (2 − 3 b2)/b2 dτ1. After that we obtain the vector of eigenvalues of
system (23) at this point as (λ1, λ2) = (−1, 0). So the normal form of the system
will become

dz1/dτ1 = −z1 + z1 g1(z2) ,
dz2/dτ1 = z2 g2(z2) ,

(26)

where g1,2(x) are formal power series in x. Coefficients of these series are rational
functions of the parameters a0, a1, b0, b1 and b of the system. It can be proved that
denominator of each of these rational functions is proportional to some integer
degree k(n) of the polynomial (2 − 3b2). Their numerators are polynomials in
parameters of the system

g1,2(x) =

∞∑
n=1

p1,2;n(b, a0, a1, b0, b1)

(2− 3 b2)k(n)
xn .

Condition A of integrability for system (26) is g2(x) ≡ 0. It is equivalent to the
infinite polynomial system of equations

p2,n(b, a0, a1, b0, b1) = 0, n = 1, 2, (27)

According to the Hilbert’s theorem on bases in polynomial ideals [10], this
system has a finite basis.

We computed the first three polynomials p2,1, p2,2, p2,3 by our program [6].
There are 2 solutions of a corresponding subset of equations (27) at b �= 0

a0 = 0, a1 = −b0 b, b1 = 0, b2 �= 2/3 (28)

and

a0 = a1 b, b0 = b1 b, b2 �= 2/3 . (29)

Addition of the fourth equation p2,4 = 0 to the subset of equations does not
change these solutions.

A calculation of polynomials p2,n(b, a0, a1, b0, b1) in generic case is technically
a very difficult problem. But we can verify some of these equations from the set
(27) on solutions (28) and (29) for several fixed values of the parameter b. We
can conclude from these results about a necessary condition of local integrability
and create hypothesis about existence of the sufficient condition.

On Possibility of Additional Solutions of the Degenerate System 83

We verified solutions of subset of equations

p2,n(b, a0 = a1b, a1, b0 = b1b, b1) = 0, n = 1, 2, . . . , 28 .

at b = 1 and b = 2. All equations above are satisfied. Thus, we can conclude that
(28) and (29) are necessary and with good probability sufficient conditions on
parameters of the system for the satisfaction of the conditions A, i.e., conditions
of the local integrability of equation (23) near the stationary point u = −1/b, v =
0.

Let us consider the stationary point u = −3 b/2, v = 0. We rescale time at
this point with the factor dτ = (2 − 3 b2) dτ2. After that we get the vector of
eigenvalues of system (23) at this point as (−1/4, 3/2). So the normal form has
a resonance of the seventh order

dz1/dτ2 = −(1/4) z1 + z1 r1(z
6
1 z2) ,

dz2/dτ2 = (3/2) z2 + z2 r2(z
6
1 z2) ,

(30)

where r1(x) and r2(x) are also formal power series, and in (30) they depend
on single ”resonant” variable z61z2. Coefficients of these series are again rational
functions of parameters a0, a1, b0, b1 and b. The denominator of each of these
functions is proportional to some integer degree l(n) of the polynomial 2− 3 b2.
Their numerators are polynomials in parameters of the system

r1,2(x) =

∞∑
n=1

q1,2;n(b, a0, a1, b0, b1)

(2− 3 b2)l(n)
xn .

The condition A for the system (30) is 6 r1(x) + r2(x) = 0. It is equivalent to
the infinite system of polynomial equations

6 q1,n(b, a0, a1, b0, b1) + q2,n(b, a0, a1, b0, b1) = 0, n = 7, 14, (31)

We computed polynomials q1,7, q2,7 and solved the lowest equation from the set
(31) for the parameters of the solution (29). We have found 5 different two-
parameter (b and a1) solutions. With (29) they are

1) b1 = −2 a1, a0 = a1b, b0 = b1b, b2 �= 2/3 ,
2) b1 = (3/2) a1, a0 = a1b, b0 = b1b, b2 �= 2/3 ,
3) b1 = (8/3) a1, a0 = a1b, b0 = b1b, b2 �= 2/3

(32)

and
4) b1 = 197−7

√
745

24 a1, a0 = a1b, b0 = b1b, b2 �= 2/3 ,

5) b1 = 197+7
√
745

24 a1, a0 = a1b, b0 = b1b b2 �= 2/3 .
(33)

We have verified (31) up to n = 49 for solutions (32) for b = 1 and b = 2 and
arbitrary a1. They are correct. We have verified the solution (28) in the same
way. It is also correct.

Solutions (33) starting from the order n = 14 are correct only for the addi-
tional condition a1 = 0. But for this condition, solutions (33) are a special case
of solutions (32).

So, we have proved.

84 A.D. Bruno and V.F. Edneral

Theorem 4. Equalities (28), and (32) form a full set of necessary conditions
of a local integrability of system (23) at all its stationary points and a local
integrability of system (22) at stationary point x = y = 0.

5 About Sufficient Conditions of Integrability

The conditions resulted in theorem 3.2 as necessary for local integrability of
system (22) at the zero stationary point, can be considered from the point of view
of ”The experimental mathematics” as sufficient conditions of local integrability,
especially considering high enough orders of the checks above. It is, however,
necessary to prove the sufficiency of these conditions by independent methods.
It is necessary to do it for each of four conditions (28),(32) in each of stationary
points u = −3b/2, v = 0 and u = −1/b, v = 0, and b2 �= 2/3.

With essential assistance by Prof. V. Romanovski [8] we have found first
integrals for all cases (28),(32) mainly by method of the Darboux factor of system
(23), see [9].

We have found four families of solutions which exhausted all integrable cases
except possibly the case b2 = 2/3.

–
At a0 = 0, a1 = −b0 b, b1 = 0 :
I1uv = u2(3 b+ 2 u)v6 ,
I1xy = 2 x3 + 3 b y2 .

(34)

–
At b1 = −2a1, a0 = a1b, b0 = b1b :
I2uv = u2 v6 (3 b+ u (2− 6 a1 b v)) ,
I2xy = 2 x3 − 6 a1 b x

2 y + 3 b y2 .
(35)

–

At b1 = 3a1/2, a0 = a1b, b0 = b1b :

I3uv = 4−4a1 uv+35/6a1 2F1(2/3,1/6;5/3;−2u/(3b))u v (3+2u/b)1/6

u1/3v (3b+2u)1/6
,

I3xy =
a1x

2(−4+35/6 2F1(2/3,1/6;5/3;−2x3/(3 b y2)) (3+2x3/(b y2))1/6)+4y

y4/3(3 b+2x3/y2)1/6
,

(36)

–
At b1 = 8a1/3, a0 = a1b, b0 = b1b :

I4u,v =
u (3+2 a21bu)+6 a1 b v

3u [u3(6+a21b u)+6 a21b u
2v+9 b v2]1/6

−
8 a1

√−b
35/3

B
6+a1

√−6 b u+3 v
√

−6 b/u3(5/6, 5/6) ,

(37)

where B is the incomplete beta function.

In the paper [8], there are printed corresponding solutions for the integrals
above. The integrals and solutions have no singularities near the points b2 =
2/3, but the approach in which these solutions were obtained has the limitation
b2 �= 2/3, so theoretically there is possible additional solutions at this point. So
we need to study the domains of b2 = 2/3 separately.

On Possibility of Additional Solutions of the Degenerate System 85

6 Case b2 = 2/3

At this value of b, the both stationary points (u = −3b/2, v = 0) and (u =
−1/b, v = 0) are collapsing, and we have instead (23) after the shift u → w −
1/b = w −

√
3/2 the degenerate system again

dw/dτ = v(− 9
2

√
3
2 a0 +

9
2 a1 + 3

√
3
2 b0 − 3 b1)

+wv(272 a0 − 3
√
6 a1 − 9 b0 + 2

√
6 b1)

+
√
6w2 + w2v(−9

√
3
2 a0 + 3 a1 + 3

√
6 b0 − 2 b1)

−2w3 + w3v(3 a0 − 2 b0) ,

dv/dτ = −
√
6
6 wv + v2(− 3

2 a0 +
√

3
2 a1 +

3
2 b0 −

√
3
2 b1)

+w2v + wv2((
√
6 a0 − a1 −

√
6 b0 + b1)

+w2v2(−a0 + b0) .

(38)

On the other hand, we should apply a power transformation once more. We
choose here the transformation

v → r2w, v′ → 2r′rw + r2w′ , (39)

with the time scaling by dividing the equations by u/
√
6. We will have from (38)

dw/dτ̃ = 1
2

√
3
2w(4

√
6 + 3(−3

√
6a0 + 6a1 + 2

√
6b0 − 4b1)r+

2w(−4 + (27a0 − 6
√
6a1 − 18b0 + 4

√
6b1+

w(−9
√
6a0 + 6a1 + 6

√
6b0 − 4b1 + (6a0 − 4b0)w))r)) ,

dr/dτ̃ = −1
2 r(26 − 6(9a0 − 3

√
6a1 − 6b0 + 2

√
6b1)r+

w(−10
√
6 + (57

√
6a0 − 78a1 − 39

√
6b0 + 54b1+

2w(−60a0 + 7
√
6a1 + 42b0 − 5

√
6b1 +

√
6(7a0 + 5b0)w))r)) .

(40)

On the invariant line u = 0, this equation has 2 finite singular points: w = 0
and w = 13/(3(9a0 − 3

√
6a1 − 6b0 + 2

√
6b1)). Near the first point we have a

resonance of 19 level (13 : 6) and near the second point of 27 level (1 : 26). The
infinite point is integrable.

The calculation of the normal form of equation (40) up to 19th order produced
a single equation for the necessary condition of integrability A as polynomial in
variables a0, a1, b0, and b1. This calculation was produced by the REDUCE [11]
based system. It takes about 6.5 hours on the 3 GGc Pentium IV processor. The
normalizing transformation concludes 226145 terms, and the normal form has
1174 terms.

The obtained condition A is consistent with condition (28) and each from (32),
i.e., all four solutions. We have obtained the condition A as the long polynomial
p(a0, a1, b0, b1). This polynomial was sixth-order homogenous polynomial. If you
put a0 = a1 b and b0 = b1 b as in (32) and solve the equation p = 0 you will
receive exactly solution (32), (33) but without limitation b2 �= 2/3. Solution
(33) is not realized thereafter, of course. Also the p(a0, a1, b0, b1) is equal to zero

86 A.D. Bruno and V.F. Edneral

under conditions (28). So our result is compatible with previous results, but the
result which we have really obtained is that solutions (32) do exist at b2 = 2/3,
and there are no more solutions of such a type in any case.

So, we have proved.

Theorem 5. All solutions (28),(32) are right without limitation b2 �= 2/3.

For searching additional first integrals we need to calculate the condition A
at the point with the resonance (1 : 26). There are also other transformations
with corresponding resonances. Its studying is a very heavy technical problem,
and we work on it at present.

7 Conclusions

For the particular 5-parametrical case at b2 �= 2/3 planar system (13), non-
Hamiltonian at c = 1/b, we have found all necessary sets of conditions on pa-
rameters at which system (22) is locally integrable near degenerate point X = 0.
They form 4 sets of conditions on parameters of the system. So these sets of
conditions are also sufficient for local and global integrability of system (22).
The case of point b2 = 2/3 at c = 1/b and different from c = 1/b but with a real
rational value of (12) cases should be studied separately. But we have proved
here that the limitation b2 �= 2/3 can be excluded from the solutions obtained
previously [8]. At the moment, we have not found the additional first integrals.

Acknowledgements. This work was supported by the Grant 11-01-00023-a–
of the Russian Foundation for Basic Research and the Grant 195.2008.2 of the
President of the Russian Federation on support of scientific schools.

References

1. Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar
systems. Nonlinearity 22, 395–420 (2009)

2. Bateman, H., Erdêlyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill
Book Company, Inc., New York (1953)

3. Bruno, A.D.: Analytical form of differential equations (I,II). Trudy Moskov. Mat.
Obsc. 25, 119–262 (1971); 26, 199–239 (1972); (Russian) = Trans. Moscow Math.
Soc. 25, 131–288 (1971); 26, 199–239 (1972) (English)

4. Bruno, A.D.: Local Methods in Nonlinear Differential Equations, Nauka, Moscow
(1979); (Russian) = Springer, Berlin (1989) (English)

5. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations, Fizmatlit,
Moscow (1998); (Russian) = Elsevier Science, Amsterdam (2000) (English)

6. Edneral, V.F.: An algorithm for construction of normal forms. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142.
Springer, Heidelberg (2007)

7. Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl.
Akademii Nauk. 424(3), 299–303 (2009); (Russian) = Doklady Mathem. 79(1),
48–52 (2009) (English)

On Possibility of Additional Solutions of the Degenerate System 87

8. Edneral, V., Romanovski, V.G.: Normal forms of two p: − q resonant polynomial
vector fields. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 126–134. Springer, Heidelberg (2011)

9. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computa-
tional Algebra Approach. Birkhäuser, Boston (2009)

10. Siegel, C.L.: Vorlesungen über Himmelsmechanik. Springer, Berlin (1956)
11. Hearn, A.C.: REDUCE. User’s Manual. Version 3.8., Santa Monica, CA, USA

(February 2004), reduce@rand.org

Efficient Methods to Compute Hopf Bifurcations

in Chemical Reaction Networks Using Reaction
Coordinates

Hassan Errami1, Markus Eiswirth2, Dima Grigoriev3, Werner M. Seiler1,
Thomas Sturm4, and Andreas Weber5

1 Institut für Mathematik, Universität Kassel, Kassel, Germany
errami@uni-kassel.de, seiler@mathematik.uni-kassel.de
2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
and Ertl Center for Electrochemisty and Catalysis, GIST, South Korea

eiswirth@fhi-berlin.mpg.de
3 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, France

Dmitry.Grigoryev@math.univ-lille1.fr
4 Max-Planck-Institut für Informatik, Saarbrücken, Germany

sturm@mpi-inf.mpg.de
5 Institut für Informatik II, Universität Bonn, Bonn, Germany

weber@cs.uni-bonn.de

Abstract. We build on our previous work to compute Hopf bifurcation
fixed points for chemical reaction systems on the basis of reaction co-
ordinates. For determining the existence of Hopf bifurcations the main
algorithmic problem is to determine whether a single multivariate poly-
nomial has a zero for positive coordinates. For this purpose we provide
heuristics on the basis of the Newton polytope that ensure the existence
of positive and negative values of the polynomial for positive coordinates.
We apply our method to the example of the Methylene Blue Oscillator
(MBO).

1 Introduction

In this paper we build on our previous work [1] to compute Hopf bifurcation fixed
points for chemical reaction systems on the basis of reaction coordinates. In that
previous work algorithmic ideas introduced by El Kahoui and Weber [2], which
already had been used for mass action kinetics of small dimension [3], have been
combined with methods of stoichiometric network analysis (SNA) introduced
by Clarke in 1980 [4], which had been used in several “hand computations”
in a semi-algorithmic way for parametric systems. The most elaborate of these
computations haven been described in [5]. The algorithmic method presented in
[1] uses and combines the ideas of these methods and extends them to a new
approach for computing Hopf bifurcation in complex systems using reaction
coordinates also allowing systems with linear constraints.

However, the criteria used for determining Hopf bifurcation fixed points with
empty unstable manifold involving an equality condition on the principal minor

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 88–99, 2013.
c© Springer International Publishing Switzerland 2013

Efficient Methods to Compute Hopf Bifurcations 89

Δn−1 = 0 in conjunction with inequality conditions on Δn−2 > 0 ∧ · · · ∧ Δ1 > 0
and positivity conditions on the variables and parameters still turned out to
be hard problems for general real quantifier elimination procedures even for
moderate dimensions.

In this paper we use the rather basic observation that when using convex
coordinates, the condition for the existence of Hopf bifurcation fixed points is
given by the single polynomial equation Δn−1 = 0 together with positivity
conditions on the convex coordinates. This allows to delay or even drop a test
for having empty unstable manifold on already determined witness points for
Hopf bifurcations. Hence the main algorithmic problem is to determine whether
a single multivariate polynomial has a zero for positive coordinates.

For this purpose we provide in Sect. 2 heuristics on the basis of the Newton
polytope, which ensure the existence of positive and negative values of the poly-
nomial for positive coordinates. In Sect. 3 we apply our method to the example
of the Methylene Blue Oscillator (MBO).

As we are continuing here the work in [1] we allow ourselves to refer the
reader to that publication for basic definitions as well as for an introduction of
our software toolchains.

2 Condition for a Hopf Bifurcation

Consider a parameterized autonomous ordinary differential equation of the form
ẋ = f(u, x) with a scalar parameter u. Due to a classical result by Hopf, this
system exhibits at the point (u0, x0) a Hopf bifurcation, i.e. an equilibrium trans-
forms into a limit cycle, if f(u0, x0) = 0 and the Jacobian Dxf(u0, x0) has a sim-
ple pair of pure imaginary eigenvalues and no other eigenvalues with zero real
parts [6, Thm. 3.4.2].1 The proof of this result is based on the center manifold
theorem. From a physical point of view, the most interesting case is that the
unstable manifold of the equilibrium (u0, x0) is empty. However, for the mere
existence of a Hopf bifurcation, this assumption is not necessary.

In [2] it is shown that for a parameterized vector field f(u, x) and the au-
tonomous ordinary differential system associated with it, there is a semi-algebraic
description of the set of parameter values for which a Hopf bifurcation (with
empty unstable manifold) occurs. Specifically, this semi-algebraic description
can be expressed by the following first-order formula:

∃x(f1(u, x) = 0 ∧ f2(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0 ∧
an > 0 ∧ Δn−1(u, x) = 0 ∧ Δn−2(u, x) > 0 ∧ · · · ∧ Δ1(u, x) > 0).

In this formula an is (−1)n times the Jacobian determinant of the matrix
Df(u, x), and the Δi(u, x)’s are the ith Hurwitz determinants of the charac-
teristic polynomial of the same matrix Df(u, x).

1 We ignore here the non-degeneracy condition that this pair of eigenvalues crosses
the imaginary axis transversally, as it is always satisfied in realistic models.

90 H. Errami et al.

The proof uses a formula of Orlando [7], which is discussed also in several
monographs, e.g., [8, 9]. However, a closer inspection of the two parts of the
proof of [2, Theorem 3.5] shows even the following: for a fixed points (given in
possibly parameterized form) the condition that there is a pair of purely complex
eigenvalues is given by the condition Δn−1(u, x) = 0 and the condition that all
other eigenvalues have negative real part is given by Δn−2(u, x) > 0 ∧ · · · ∧
Δ1(u, x) > 0. This statement (without referring to parameters explicitly) is also
contained in [10, Theorem 2], in which a different proof technique is used.

Hence if we drop the condition on Hopf bifurcation points that they have
empty unstable manifold a semi-algebraic description of the set of parameter
values for which a Hopf bifurcation occurs for the system is given by the following
formula:

∃x(f1(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0 ∧ an > 0 ∧ Δn−1(u, x) = 0).

Notice that when the quantifier elimination procedure yields sample points
for existentially quantified formulae, then the condition Δn−2(u, x) > 0 ∧ · · · ∧
Δ1(u, x) > 0) can be tested for the sample points later on, i.e. one can then
test whether this Hopf bifurcation fixed points has empty unstable manifold.
Such sample points are yielded, e.g., by virtual substitution-based methods in
Redlog [12–15].

As an example consider the famous Lorenz System named after Edward
Lorenz at MIT, who first investigated this system as a simple model arising in
connection with fluid convection [16, 6, 17]. It is given by the following system
of ODEs:

ẋ(t) = α (y(t)− x(t))

ẏ(t) = r x(t) − y(t)− x(t) z(t)

ż(t) = x(t) y(t)− β z(t).

After imposing positivity conditions on the parameters the following answer is
obtained using a combination of Redlog and SLFQ as described in [18] for the
test of a Hopf bifurcation fixed points:

(−α2 − αβ + αr − 3α− βr − r = 0 ∨ −αβ + αr − α− β2 − β = 0) ∧
− α2 − αβ + αr − 3α− βr − r ≤ 0 ∧

β > 0 ∧ α > 0 ∧ −αβ + αr − α− β2 − β ≥ 0.

When testing, in contrast, for Hopf bifurcation fixed points with empty unstable
manifold we obtain the following formula, which is not equivalent to the one
above:

α2 + αβ − αr + 3α+ βr + r = 0 ∧ αr − α− β2 − β ≥ 0 ∧
2α− 1 ≥ 0 ∧ β > 0.

Hence for the case of the Lorenz system not all Hopf bifurcation fixed points
have an unstable empty manifold.

This approach using concentration coordinates has been applied in [3].

Efficient Methods to Compute Hopf Bifurcations 91

2.1 Using Reaction Coordinates

In [1] a new approach for computing Hopf bifurcations in complex systems has
been given, which uses reaction coordinates in contrast to concentration coor-
dinates and also allows systems with linear constraints. The Jacobian matrix of
a subsystem formed by d-faces is given by the following equation, where S, K
and E denote the stoichiometric matrix, kinetic matrix, and the set of extreme
currents, respectively.

Jac(x) = Sdiag(
d∑
i

jiEi)Ktdiag(1/x1, ..., 1/xn).

For checking for the existence of Hopf bifurcation fixed points without requir-
ing empty unstable manifolds we have to decide the satisfiability of the following
formula:

Δn−1(j, x) = 0 ∧ j1 ≥ 0 ∧ · · · jd ≥ 0 ∧ x1 > 0 ∧ · · ·xn > 0.

Hence the algorithmic task is to determine whether the single multivariate poly-
nomial equation Δn−1(j, x) = 0 has a solution subject to the given sign condi-
tions on the variables. Note that whenever a satisfiability test provides sample
points in the satisfiable case, then those points can be tested for having an empty
unstable manifold by substituting them into the condition

Δn−2(j, x) > 0 ∧ · · · ∧ Δ1(j, x) > 0.

In the next section we are going to discuss sufficient conditions and their
efficient algorithmic realizations.

2.2 Sufficient Conditions for a Positive Solution of a Single
Multivariate Polynomial Equation

The method discussed in this section is summarized in an algorithmic way in
Alg. 1, which uses Alg. 2 as a sub-algorithm.

Given f ∈ Z[x1, . . . , xm], our goal is to heuristically certify the existence of
at least one zero (z1, . . . , zm) ∈]0,∞[m for which all coordinates are strictly
positive. To start with, we evaluate f(1, . . . , 1) = f1 ∈ R. If f1 = 0, then
we are done. If f1 < 0, then it suffices by the intermediate value theorem to
find p ∈]0,∞[m such that f(p) > 0. Similarly, if f1 > 0 it suffices to find
p ∈]0,∞[

m
such that (−f)(p) > 0. This algorithmically reduces our original

problem to finding for given g ∈ Z[x1, . . . , xm] at least one p ∈]0,∞[
m

such that
g(p) = f2 > 0.

We are going to accompany the description of our method with the example
g0 = −2x61+x31x2− 3x31+2x1x

2
2 ∈ Z[x1, x2]. Fig. 1 shows an implicit plot of this

polynomial. In addition to its variety, g0 has three sign invariant regions, one
bounded one and two unbounded ones. One of the unbounded regions contains
our initial test point (1, 1), for which we find that g0(1, 1) = −2 < 0. Thus our

goal is to find one point p ∈]0,∞[
2
such that g0(p) > 0.

92 H. Errami et al.

Algorithm 1. pzerop

Input: f ∈ Z[x1, . . . , xm]

Output: One of the following:
(A) 1, which means that f(1, . . . , 1) = 0.
(B) (π, ν), where ν = (p, f(p)) and π = (q, f(q)) for p, q ∈]0,∞[m, which means

that f(p) < 0 < f(q). Then there is a zero on]0,∞[m by the
intermediate value theorem.

(C) +, which means that f has been identified as positive definite on]0,∞[m.
Then there is no zero on]0,∞[m.

(D) −, which means that f has been identified as negative definite on]0,∞[m.
Then there is no zero on]0,∞[m.

(E) ⊥, which means that this incomplete procedure failed.

1 begin
2 f1 := f(1, . . . , 1)
3 if f1 = 0 then
4 return 1

5 else if f1 < 0 then
6 π := pzerop1(f)
7 ν := ((1, . . . , 1), f1)
8 if π ∈ {⊥,−} then
9 return π

10 else
11 return (ν, π)

12 else
13 π := ((1, . . . , 1), f1)
14 ν′ := pzerop1(−f)
15 if ν′ = ⊥ then
16 return ⊥
17 else if ν′ = − then
18 return +

19 else
20 (p, f(p)) := ν′

21 ν := (p,−f(p))
22 return (ν, π)

Efficient Methods to Compute Hopf Bifurcations 93

Algorithm 2. pzerop1

Input: g ∈ Z[x1, . . . , xm]

Output: One of the following:
(A) π = (q, g(q)), where q ∈]0,∞[m with 0 < g(q).
(B) −, which means that g has been identified as negative definite on]0,∞[m.

Then there is no zero on]0,∞[m.
(C) ⊥, which means that this incomplete procedure failed.

1 begin
2 F+ := { d ∈ frame(g) | sgn(d) = 1 }
3 if F+ = ∅ then
4 return −
5 foreach (d1, . . . , dm) ∈ F+ do
6 L := {d1n1 + · · ·+ dmnm − c = 0}
7 foreach (e1, . . . , em) ∈ frame(g) \ F+ do
8 L := L ∪ {e1n1 + · · ·+ emnm − c ≤ −1}
9 if L is feasible with solution (n1, . . . , nm, c) ∈ Qm+1 then

10 n := the principal denominator of n1, . . . , nm

11 (N1, . . . , Nm) := (nn1, . . . , nnm) ∈ Zm

12 ḡ := g[x1 ← ωN1 , . . . , xm ← ωNm] ∈ Z(ω)
13 assert lc(ḡ) > 0 when using non-exact arithmetic in the LP solver

14 k := min{ k ∈ N | ḡ(2k) > 0 }
15 return ((2kN1, . . . , 2kNm), ḡ(2k))

16 return ⊥

In the spirit of tropical geometry—and we refer to [19] as a standard refer-
ence with respect to its applications for polynomial system solving—we take an
abstract view of

g =
∑
d∈D

adx
d :=

∑
(d1,...,dm)∈D

ad1,...,dmx
d1
1 · · ·xdm

m

as the set frame(g) = D ⊆ Nm of all exponent vectors of the contained monomi-
als. For each d ∈ frame(g) we are able to determine sgn(d) := sgn(ad) ∈ {−1, 1}.
The set of vertices of the convex hull of the frame is called the Newton polytope
newton(g) ⊆ frame(g). In fact, the existence of at least one point d∗ ∈ newton(g)
with sgn(d∗) = 1 is sufficient for the existence of p ∈]0,∞[

m
with g(p) > 0.

In our example we have frame(g0) = {(6, 0), (3, 1), (3, 0), (1, 2)} and
newton(g0) = {(6, 0), (3, 0), (1, 2)} � frame(g0). We are particularly interested
in d∗ = (d∗1, d

∗
2) = (1, 2), which is the only point there with a positive sign as it

corresponds to the monomial 2x1x
2
2.

In order to understand this sufficient condition, we are now going to compute
from d∗ and g a suitable point p. We construct a hyperplane H : nTx = c
containing d∗ such that all other points of newton(g) are not contained in H

94 H. Errami et al.

Fig. 1. We consider g0 = −2x6
1 + x3

1x2 − 3x3
1 + 2x1x

2
2. The left hand shows the variety

g0 = 0. The right hand side shows the frame, the Newton polytope, and a separating
hyperplane for the positive monomial 2x1x

2
2 with its normal vector.

and lie on the same side of H . We choose the normal vector n ∈ Qm such that
it points into the half-space not containing the Newton polytope. The vector
c ∈ Rm is such that c

|n| is the offset of H from the origin in the direction of n.

We may assume w.l.o.g. that n ∈ Zm.
In our example H is the line x = 1 given by n = (−1, 0) and c = −1. Fig. 1

pictures the situation.
Considering the standard scalar product 〈·|·〉, it turns out that generally

〈n|d∗〉 = max{ 〈n|d〉 | d ∈ newton(g) }, and that this maximum is strict. For
the monomials of the original polynomial g =

∑
d∈D adx

d and a new variable ω
this observation translates via the following identity:

ḡ = g[x ← ωn] =
∑
d∈D

adω
〈n|d〉 ∈ Z(ω).

Hence plugging into ḡ a number β ∈ R corresponds to plugging into g the point
βn ∈ Rm and from our identity we see that in ḡ the exponent 〈n|d∗〉 correspond-
ing to our chosen point d∗ ∈ newton(g) dominates all other exponents so that
for large β the sign of ḡ(β) = g(βn) equals the positive sign of the coefficient ad∗

of the corresponding monomial. To find a suitable β we successively compute
ḡ(2k) for increasing k ∈ N.

In our example we obtain ḡ = 2ω−1− 2ω−3− 2ω−6, we obtain ḡ(1) = −2 ≤ 0,
but already ḡ(2) = 23

32 > 0. In terms of the original g this corresponds to plugging

in the point p = 2(−1,0) =
(
1
2 , 1
)
∈]0,∞[

2
.

It remains to be clarified how to construct the hyperplane H . Consider
frame(g) = { (di1, . . . , dim) ∈ Nm | i ∈ {1, . . . , k} }. If sgn(d) = −1 for all
d ∈ frame(g), then we know that g is negative definite on]0,∞[

m
. Otherwise

assume without loss of generality that sgn(d11, . . . , d1m) = 1. We write down the
following linear program:

(
d11 . . . d1m −1

)
·

⎛⎜⎜⎜⎝
n1

...
nm

c

⎞⎟⎟⎟⎠ = 0, I =

⎛⎜⎝ d21 . . . d2m −1
...

. . .
...

...
dk1 . . . dkm −1

⎞⎟⎠ ·

⎛⎜⎜⎜⎝
n1

...
nm

c

⎞⎟⎟⎟⎠ ≤ −1.

Efficient Methods to Compute Hopf Bifurcations 95

Notice that in our system of inequalities we can use the LP-friendly conditions
I ≤ −1 in favor of the more natural conditions I < 0. Since the distance of the
points (d21, . . . , d2m), . . . , (dk1, . . . , dkm) to the desired hyperplane H is scaled
by |(n1, . . . , nm)|, there is a sufficient degree of freedom in the choice of c in
combination with (n1, . . . , nm) to achieve values smaller or equal to −1 in the
feasible case. Our program is feasible if and only if (d11, . . . , d1m) ∈ newton(g).
In the negative case, we know that (d11, . . . , d1m) ∈ frame(g) \ newton(g), and
we iterate with another d ∈ frame(g) with sgn(d) = 1. If we finally fail on
all such d, then our incomplete algorithm has failed. In the positive case, the
solution provides a normal vector n = (n1, . . . , nm) and the offset c for a suitable
hyperplane H . Our linear program can be solved using any standard LP solver.
For our purposes here we have used Gurobi2; it turns out that the dual simplex
of Glpsol3 performs quite similarly on the input considered here.

For our example g0 = −2x61 + x31x2 − 3x31 + 2x1x
2
2, we generate the linear

program

n1 + 2n2 − c = 0

6n1 − c ≤ −1

3n1 + n2 − c ≤ −1

3n1 − c ≤ −1,

for which Gurobi computes the solution n = (n1, n2) = (−0.5, 0), c = −0.5.
Notice that the solutions obtained from the LP solvers are typically floats, which
we lift to integer vectors by suitable rounding and gcd computations.

Note that we do not explicitly construct the convex hull newton(g) of frame(g)
although there are advanced algorithms and implementations like QuickHull4

available for this. Instead we favor a linear programming approach for several
reasons. Firstly, we do not really need the quite comprehensive information,
comprising, e.g. adjacency, obtained from such algorithms. For our purposes, it is
rather sufficient to find one vertex with a positive sign the convex hull. Secondly,
for the application discussed here it turns out that there typically exist only few
(around 10%) such candidate points at all. Finally, it is known that for high
dimensions the subset of frame(g) establishing vertices of the convex hull gets
comparatively large. Practical experiments using QuickHull on our data support
these theoretical considerations.

2.3 Summarizing the Algorithm for Checking the Existence of Hopf
Bifurcations

Computing Hopf bifurcation fixed points for high-dimensional systems and sys-
tems with conservation laws had turned out to be difficult in practice. To over-
come this difficulty for systems arising from chemical reaction networks we intro-
duced in our previous paper [1] an algorithm based on using reaction coordinates

2 www.gurobi.com
3 www.gnu.org/software/glpk
4 www.qhull.org

www.gurobi.com
www.gnu.org/software/glpk
www.qhull.org

96 H. Errami et al.

instead of concentration coordinates and applying real quantifier elimination for
testing satisfiability. This enabled us to decide the occurrence of Hopf bifurcation
in various chemical systems even with conservation laws. For some chemical net-
works with complex dynamics, however, it remained difficult to finally process
the obtained quantified formulae with the currently available quantifier elim-
ination packages; one hard example is the Methylene Blue Oscillator (MBO)
discussed in the next section. To conclude this section, we are going to sum-
marize our new efficient algorithmic approach for checking for Hopf bifurcation
in complex chemical systems. Again using reaction coordinates, our approach
here improves the previous one by simplifying the formulas expressing Hopf-
existence conditions as shown in Subsection 2.1 and solving them by the method
described in Subsection 2.2. The pre-processing step and the steps 2-6 presented
in [1] remain the same. After computing the characteristic polynomial of each
Jacobian matrix, we compute the (n− 1)th Hurwitz determinant of the charac-
teristic polynomial, and we apply Alg. 1 to check for positive solutions of the
respective polynomial equations Δn−1 = 0. Alg. 3 outlines our new approach in
an algorithmic fashion.

3 Algorithmic Determination of Hopf bifurcations in the
Methylene Blue Oscillator System

As a complex example we consider the autocatalytic system Methylen Blue Os-
cillator (MBO), which is defined by the following reaction equations:

MB+ +HS− −→ MB+HS

H2O+MB+HS− −→ MBH+HS +OH−

HS +OH− +MB+ −→ MB+ S+ H2O

H2O+ 2MB −→ MB+ +MBH+OH−

HS− +O2 −→ HS +O−
2

HS +O2 +OH− −→ O−
2 + S + H2O

H2O+HS− +O−
2 −→ HO−

2 +HS +OH−

O−
2 +HS −→ HO−

2 + S

H2O2 + 2HS− −→ 2HS + 2OH−

MB+O2 −→ MB+ +O−
2

HS− +MB+H2O2 −→ MB+ +HS + 2OH−

OH− + 2HS −→ HS− + S + H2O

MB+HS −→ MBH+ S

H2O+MBH+O−
2 −→ MB+H2O2 +OH−

−→ O2

Efficient Methods to Compute Hopf Bifurcations 97

Algorithm 3. Computing Hopf Bifurcations in Chemical Reaction Net-
works Using Reaction Coordinates

Input: A chemical reaction network N with dim(N) = n.

Output: (Lt, Lf , Lu) as follows: Lt is a list of subsystems containing a Hopf
bifurcation, Lf is a list of subsystems in which its occurrence is
excluded, and Lu is a list of subsystems for which the incomplete
sub-procedure pzerop fails.

1 begin
2 Lt = ∅
3 Lf = ∅
4 Lu = ∅
5 generate the stoichiometric matrix S and the kinetic matrix K of N
6 compute the minimal set E of the vectors generating the flux cone
7 for d = 1 . . . n do
8 compute all d-faces (subsystems) {Ni}i of the flux cone

9 for each subsystem Ni do
10 compute from K, S the transformed Jacobian Jaci of Ni in terms of

convex coordinates ji
11 if Jaci is singular then
12 compute the reduced manifold of Jaci calling the result also Jaci

13 compute the characteristic polynomial χi of Jaci

14 compute the (n− 1)th Hurwitz determinant Δn−1 of χi

15 compute Fi := pzerop(Δn−1(j, x)) using Algorithm 1
16 if Fi = 1 or Fi is of the form (π, ν) then
17 Lt := Lt ∪ {Ni}
18 else if Fi = + or Fi = − then
19 Lf := Lf ∪ {Ni}
20 else if Fi = ⊥ then
21 Lu := Lu ∪ {Ni}
22 return (Lt, Lf , Lu)

98 H. Errami et al.

The MBO reaction system contains eleven species (not counting water) and
fifteen reactions O2, O

−
2 , HS, MB+, MB, MBH, HS−, OH−, S, H2O2 and HO−

2 .
It may be reduced to a six dimensional system by considering only the essen-
tial species O2, O

−
2 , HS, MB+, MB and MBH. The pre-processing step of our

algorithm yields the following two matrices describing the reaction laws: stoi-
chiometric matrix S and kinetic matrix K.

S =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1 1 −2 0 0 0 0 0 −1 −1 0 −1 1 0

−1 0 −1 1 0 0 0 0 0 1 1 0 0 0 0
1 1 −1 0 1 −1 1 −1 2 0 1 −2 −1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 −1 −1 −1 0 0 −1 0 0 0 0 1
0 0 0 0 1 1 0 −1 0 1 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠

K =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 2 0 0 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The flux cone of this Model is generated by 31 extreme currents. We tried to
compute Hopf bifurcation in all subsystems involving 2-faces and 3-faces using
our original approach described in [1], but the generated quantified formulae
could not be solved by quantifier elimination, even with main memory up to
500 GB and computation times up to one week.

Using our new approach described here, in only 3% of the cases no definite
answer could be obtained; in 67% of the cases it could be excluded that the
resulting polynomial has a zero, whereas in 30% of the cases it could be verified
that the resulting polynomial has a zero. Hence for at least 30% of the 2-faces
there are Hopf bifurcations on these faces. Recall that the positive answer for
at least one of the cases guarantees the existence of a Hopf bifurcation for the
original system in spite of the fact that there are cases without definite answer.

The algorithmic test sketched in Section 2.2 can be parallelized easily for the
different faces. Using 60 hyper-cores on a 2.4 GHz Intel Xeon E5-4640 running
Debian Linux 64 bit the computation for all instances resulting from 2-faces
could be completed in less than 90 seconds of wall clock time, which implies
that also the worst-case computation time for the single instances has been at
most 90 seconds.

Acknowledgements. This research was supported in part by Deutsche
Forschungsgemeinschaft within SPP 1489 and by the German Transregional
Collaborative Research Center SFB/TR 14 AVACS. Thomas Sturm would like
to thank B. Barber for his support with QuickHull and convex hull computation
and W. Hagemann and M. Košta for helpful discussions on linear programming
aspects.

Efficient Methods to Compute Hopf Bifurcations 99

References

1. Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing hopf bifurcations
in chemical reaction networks using reaction coordinates. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 84–97.
Springer, Heidelberg (2012)

2. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

3. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493–515 (2009)

4. Clarke, B.L.: Stability of Complex Reaction Networks. Advances in Chemical
Physics, vol. XLIII. Wiley Online Library (1980)

5. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer
(1990)

7. Orlando, L.: Sul problema di hurwitz relativo alle parti reali delle radici di
un’equazione algebrica. Mathematische Annalen 71(2), 233–245 (1911)

8. Gantmacher, F.R.: Application of the Theory of Matrices. Interscience Publishers,
New York (1959)

9. Porter, B.: Stability Criteria for Linear Dynamical Systems. Academic Press, New
York (1967)

10. Yu, P.: Closed-form conditions of bifurcation points for general differential equa-
tions. International Journal of Bifurcation and Chaos 15(4), 1467–1483 (2005)

11. Liu, W.M.: Criterion of Hopf bifurcations without using eigenvalues. Journal of
Mathematical Analysis and Applications 182(1), 250–256 (1994)

12. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

13. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

14. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–247. Springer, Heidelberg (1998)

15. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Gutier-
rez, J. (ed.) Proceedings of the 2004 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2004), pp. 111–118. ACM Press, New York (2004)

16. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric Sci-
ences 20(2), 130–141 (1963)

17. Rand, R.H., Armbruster, D.: Perturbation Methods, Bifurcation Theory and Com-
puter Algebra. Applied Mathematical Sciences, vol. 65. Springer (1987)

18. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods
for investigating equilibria in epidemic modeling. Journal of Symbolic Compu-
tation 41(11), 1157–1173 (2006)

19. Sturmfels, B.: Solving Systems of Polynomial Equations. AMS, Providence (2002)

Highly Scalable Multiplication for Distributed

Sparse Multivariate Polynomials on Many-Core
Systems

Mickaël Gastineau and Jacques Laskar

IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC
Astronomie et Systèmes Dynamiques

77 Avenue Denfert-Rochereau
75014 Paris, France

{gastineau,laskar}@imcce.fr

Abstract. We present a highly scalable algorithm for multiplying sparse
multivariate polynomials represented in a distributed format. This algo-
rithm targets not only the shared memory multicore computers, but also
computers clusters or specialized hardware attached to a host computer,
such as graphics processing units or many-core coprocessors. The scal-
ability on the large number of cores is ensured by the lacks of synchro-
nizations, locks and false-sharing during the main parallel step.

1 Introduction

Since the emergence of computers with multiple processors, and nowadays with
several cores per processor, computer algebra systems have been trying to take
advantage of such computational powers to reduce execution timings. As sparse
multivariate polynomials are intensively present in many symbolic computation
problems, the algorithms of the basic operations on these objects, such as mul-
tiplication, have been designed to use the available processors in workstations.
These algorithms depend on the polynomial representation in main memory. The
multivariate polynomials are usually stored in a distributed or recursive format.
In the distributed format, a polynomial is a list of terms, each term being a
tuple of a coefficient and an exponent. In the recursive form, a polynomial is
considered as an univariate polynomial whose coefficients are polynomials in the
remaining variables.

When the inputs are sparse multivariate polynomials, only the naive school-
book product, that is the pairwise term products, is usually more optimal in
practice than the asymptotically fast multiplication algorithms. Several parallel
algorithms have been proposed for modern parallel hardware. An algorithm for
the recursive representation has been designed using a work-stealing technique
[1]. It scales at least up to 128 cores for large polynomials. Several algorithms [2],
[3] have been designed for the distributed format for a parallel processing. The
algorithm due to Monagan [2] uses binary heaps to merge and sort produced
terms but its scalability depends on the kind of the operands. Indeed, dense

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 100–115, 2013.
c© Springer International Publishing Switzerland 2013

Highly Scalable Multiplication 101

operands shows a super-linear scalability [1], [2]. If the number of cores becomes
large, no improvement is observed because each thread should process at least a
fixed number of terms of the input polynomials. This behavior is due to the fact
that Monagan’s algorithm benefits from the shared cache inside the processor.
For sparse operands, a sub-linear speedup on a limited number of cores and a
regression above these number of cores is observed but their algorithm only fo-
cuses on single processor computers with multiple cores sharing a large cache.
The working threads have a private heap to sort their owned results and share
a global heap for computing the output polynomial. The access by a thread to
the global heap requires a lock statement to avoid a race condition. This lock
statement avoids to obtain a good scalability on a large number of cores. The
algorithm designed by Biscani [3] and implemented in the Piranha algebraic ma-
nipulator [4] has no limitation according to the number of cores. The work is
split in closed intervals based on the hashed value of the operands’ terms and
pushed in a list of available tasks. Since the result of the different tasks may
overlap, the access to the two lists of available and busy tasks is controlled by
a mutual-exclusion lock to avoid a race condition. This single mutual-exclusion
lock becomes a bottleneck when the number of cores becomes very large. Bis-
cani’s algorithm assumes that the cost of the access to the global memory for the
result is the same for all the cores and does not depend on the memory location
while two threads executed on two different processors may write successively
the result to the same location.

Several new hardware processing units have appeared in the last decade, such
as the multi-core processors in desktop computers or laptops, GPU with hundred
or thousands of elementary processing units or specialized accelerators. In these
different hybrid architectures, the memory access times depend on the memory
location because each processor accesses faster to its own attached global mem-
ory. Cluster of nodes embedding all these different processors are available and
may be used to perform the multiplication of sparse polynomials. We present
a new algorithm for sparse distributed multivariate polynomials targeting these
different architectures in Section 2. Our contribution resides in providing a natu-
ral lock-free algorithm using any available merge sort algorithm. This algorithm
on sparse polynomials is the first one which targets the many-core hardware.
Using a small specialization of one step inside this algorithm due the constraints
of the different hardware, we adapt it to a cluster of computers in Section 3 and
to specialized many-core hardware in Section 4. Benchmarks for these computers
are presented in Section 6.

2 Algorithm on Shared Memory Computers

The designed algorithm should minimize the number of synchronizations or locks
between threads in order to obtain a good scalability on many cores. Indeed,
many synchronizations or locks are required only if different threads compute
the terms of the result which have the same exponent. To avoid any lock or
synchronization during the computations of resulting terms, a simple strategy

102 M. Gastineau and J. Laskar

is that each thread computes independent terms. Computation of independent
terms is very easy if a recursive data structure for the polynomials is used,
as shown in Wang [5] and Trip [6] but if a distributed form is used then this
task is much more tricky. The proposed algorithm 1 requires two major steps.
A preliminary step is required to split the work between threads to avoid any
communication between the threads during the computational task.

Let c be the number of available cores and the same number of computational
threads. Let us consider the polynomials in m variables x1, . . . , xm,

A(x) =

na∑
i=1

aix
αi and B(x) =

nb∑
j=1

bjx
βj

where x corresponds to the variables x1, . . . , xm, the ai and bj are numerical
coefficients, and the m-dimensional integer vectors αi and βj are the exponents.
These polynomials are stored in a sparse distributed format and their terms are
sorted with a monomial order ≺.

The product P ofA and B is the sum of the terms Pi,j = aibjx
γi,j where γi,j =

αi + βj for i = 1 . . . na and j = 1 . . . nb. We can construct the na × nb matrix of
the sum of exponents, called pp-matrix following Horowitz’ denomination [7], to
understand how the work is split between the threads. In fact, this matrix (Fig. 1)
is never stored in memory during the execution of the algorithm due to its size.

[
β1 . . . βj . . . βnb

]
⎡⎢⎢⎢⎢⎣
α1

. . .
αi

. . .
αna

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
γ1,1 . . . γ1,j . . . γ1,nb

.
γi,1 . . . γi,j . . . γi,nb

.
γna,1 . . . γna,j . . . γna,nb

⎤⎥⎥⎥⎥⎦
Fig. 1. pp-matrix : matrix of the sum of exponents of A×B

As each thread must compute independent terms, each thread must process
all the pairwise term products Pi,j of the pp-matrix which have the same value
for γi,j . Since the possible values of all the γi,j are in the interval [γ1,1, γna,nb

],
this interval may be split into subintervals which are processed by the different
threads. If this interval is split in equal subintervals, the load-balancing between
the threads will be very poor. Several values γi,j of the pp-matrix are selected
and used to split into subintervals in order to obtain a better load-balancing.
Since a simple and fast method to select these values does not guarantee that
duplicated values are not selected, duplicated selected values are removed and
the remaining values γi,j are the bounds of the subintervals. Left-closed, right-
open subintervals are required to guarantee that all the γi,j , which have the
value of one of the bounds of the interval, remain in a single subinterval. The
exponent γend is introduced in order to have a same interval type (left-closed,

Highly Scalable Multiplication 103

right-open) for the last subinterval which must contain the value γna,nb
and γend

is any exponent greater than γna,nb
according to the monomial order.

The algorithm begins with the construction of the set S� which consists of
the selection of ns� values (or exponents) inside Γ . The selection method must
always select the exponents γ1,1 and γend in order to be sure that all pairwise
term products will be processed in the next step of the algorithm. ns� needs to
be provided as an input of the algorithm and its value must remain very small
in front of the size of Γ since the first step of the algorithm needs to be fast. The
way to select the ns� exponents will be discussed in Section 5. This set S� is then
sorted according to the monomial order and its duplicate values are removed in
order to obtain the new subset S. The number of elements of the set S is noted
ns. This first step is very fast and could be computed by a single thread. The
monomial order has only an effect on the number of elements ns as the number
of duplicate values of the set S� may change according to the monomial order. If
an almost regular grid is used, then the generation of the set S� requires to read
2
√
n�
s exponents from the main memory and write n�

s exponents to it. The sorting
step takes O(n�

s logn
�
s) time on average using the sequential quicksort algorithm.

Of course, this step may be parallelized using a parallel sorting algorithm. If we
define the set Γ = {γi,j | 1 ≤ i ≤ na and 1 ≤ j ≤ nb}

⋃
{γend}, then the first

step produces the following set

S = {Sk | 1 ≤ k ≤ ns and Sk ∈ Γ} with S1 = γ1,1, Sns = γend and Sk < Sk+1

After this preliminary step, every γi,j could be located inside a single interval
[Sk, Sk+1[and all the γi,j with the same value are located in the same interval.
The threads may process the ns−1 intervals of exponents at the same time since
they compute independent terms of the result. Indeed, if a thread processes the
interval [Sk, Sk+1[, it computes the summation of the selected terms Pi,j such
that Sk ≤ γi,j < Sk+1. So the second step consists in computing the resulting
terms using a parallel loop over all the ns−1 intervals. As each interval may have
different execution times, due to a variable amount of Pi,j involved, the work
should be balanced between the cores using a number of intervals greater than the
number of cores. The load-balancing may be done using a dynamic scheduling,
such as work-stealing [8], which does not require any bottleneck synchronization.
Even if the number of intervals varies according to the chosen monomial order,
the monomial order does not impact the complexity of the algorithm as the
number of intervals has only an effect on the quality of the load-balancing.

During this second step, each thread needs to check if the entry γi,j of the pp-
matrix is included inside its own current interval in order to process it or not. If
the thread checks each entry, each thread will perform nanb comparisons which
are very inefficient. As the pp-matrix has an ordered structure, as γi,j < γi+1,j

and γi,j < γi,j+1, this property may be exploited to find efficiently the necessary
entries of the intervals. For each line of this matrix, only the location of the first
and last element, which corresponds to the first and last exponent processed by
the thread, should be determined. So each thread needs to find the edge of the
area of terms that it should process for the current interval. This edge consists

104 M. Gastineau and J. Laskar

Algorithm 1. mul(A,B, ns�). Return A×B using at most n�
s intervals

Input: A =
∑na

i=1 aix
αi

Input: B =
∑nb

j=1 bjx
βj

Input: ns� : integer number of intervals
Input: monomial order ≺
Output: C =

∑nc
k=1 ckx

γk

// First step

1 S� ←Compute ns� exponents γi,j = αi + βj using an almost regular grid over
the pp-matrix associated to A and B

2 S ← sort S� using the monomial order ≺
3 remove duplicate values from S

// S has now ns sorted elements

// Second step

4 Initialize an array D of ns empty containers for the result
5 for k ← 1 to ns − 1 do in parallel
6 (Lmin, Lmax) ← FindEdge (A,B, Sk, Sk+1)
7 Dk ←MergeSort (A,B,Lmin, Lmax)

8 end
9 C ← concatenate all containers of D using ascending order

of two lines, which corresponds to the first exponents and last exponents on each
line, as shown in the figure 2(b). This work is done by the function FindEdge.
This algorithm consists in storing the location of the first, respectively last,
column j where Sk ≤ γi,j , respectively γi,j < Sk+1, in two arrays Lmin and
Lmax of size na. Its time complexity is O(na + nb) because, when the thread
processes the line i+1 of the matrix, it does not start at the column 1 but at the
found column in the previous line i, as γi,j < γi+1,j . Using the ideal distributed
cache model [9], the computation of Lmin and Lmax incurs ((E +2)na + Enb)/L
cache misses in the worst case if each core has a private cache of Z words
(cache size) partitioned into cache lines of L words and if each exponent of the
polynomial is stored on E words. ns� needs to be kept small because each thread
will have to process (na + nb)(ns − 1)/c exponents to compute these arrays if
the work is well balanced. As each thread has its own arrays Lmin and Lmax,
the additional memory usage requirement for these arrays is only 2nac integers
during the second step. However, the storage of these arrays is not required if it is
possible to combine this function with the function MergeSort but this depends
on the algorithm used in that function.

Using its own arrays Lmin and Lmax, each thread computes the summation
of its own terms Pi,j = aibjx

γi,j using any sequential comparison-based sorting
algorithm (function MergeSort in the algorithm) and store them in a container
Dk associated to the corresponding interval. No concurrent writing or reading
access occurs to the same container because threads need to read or write data
only about their own current interval. Johnson proposes a sequential algorithm
[10] which computes the result using a binary heap. If the multiplication produces

Highly Scalable Multiplication 105

O(na + nb) terms, only O(nanb logmin(na, nb)) comparisons of exponents are
required. Monagan and Pearce have improved this algorithm with a chained
heap [11]. When all threads have finished to process all the intervals, a simple
concatenation of the containers is performed to obtain the canonical form of the
polynomial as the containers of D are already sorted according to the sorted
intervals.

The Monagan’s and Biscani’s algorithms use a global read-write container
which prevents from having a good scalability on a large number of cores. While
our algorithm does not suffer from such limitation, Monagan’s algorithm always
benefits from the cache effect for the private heap of each thread whereas our al-
gorithm benefits from this cache effect only if the used comparison-based sorting
method has that property. Indeed, the size of their private heap is fitted for the
cache size of the processor. The time complexity of our algorithm is largely dom-
inated by the number of exponents comparisons inside the sorting method and
by the coefficient’s multiplication. Other steps have a linear complexity with the
number of terms of the input polynomials and a linearithmic complexity with
the value ns� .

3 Adaptation to Computer Cluster

As the second step could be computed in independent parallel tasks, our algo-
rithm could be easily adapted to a cluster of computational nodes. Cluster of
computer nodes offers a distributed memory architecture where the access time
to the memory located on the other nodes is several magnitude order greater
than the access to the local memory. A message passing paradigm, such as MPI
standard, should be used to perform the communications between the nodes. But
a pure MPI application does not take advantage of the multiple cores available
inside a node. An hybrid (multi-threading+MPI) approach must be used in order
to reduce the cost of the communication and to improve the parallel scheduling
of the second step of the previous algorithm. We assume that the operands are
located on a single node and the result should be stored on this node. So the
operands should be broadcast to the other nodes. If the operands are located on
different nodes, each node broadcasts its content of the operands to the other
nodes. A simple parallel scheduling could use the master-slave paradigm where
a node is dedicated to be the master and other nodes request intervals to this
master node, process the intervals and send the result to the master. Good load-
balancing in this context requires to have many intervals which involve many
communications. Furthermore, the result may generate large messages which
require to use the Rendezvous protocol and imply a waiting for the other slaves.

In order to limit the number of communications, a node should process con-
secutive intervals and send a single result for all these sorted intervals. Inside
this node, the same parallel scheduling as in the shared memory context may
be chosen to distribute the work between the threads. To reduce to the mini-
mal number of communications, the number of group of consecutive intervals is
chosen to be equal to the number of nodes. But an extra step is introduced to

106 M. Gastineau and J. Laskar

Algorithm 2. mul(A,B, ns�). Return A×B using at most n�
s intervals on

a cluster of N computer nodes.

Input: A =
∑na

i=1 aix
αi

Input: B =
∑nb

j=1 bjx
βj

Input: ns� : integer number of intervals
Input: monomial order≺
Output: C =

∑nc
k=1 ckx

γk

node 0 node 1. . .N − 1

Perform step 1 of Alg. 1

Broadcast A, B, ns and S =⇒ Receive A,B, ns and S

// do in parallel on all nodes

(Lmin, Lmax) ← FindEdge (A,B, Sk, Sk+1) for k = 1 . . . ns

Ok ← number of operations for [Sk, Sk+1[from (Lmin, Lmax)

Gather Ok from all nodes ⇐= Send Ok

Split S in N consecutive intervals [Sl1 , Sl2 [
using the cumulative summation of Ok

Send the N tuples l1, l2 =⇒ Receive l1, l2

// similar to the step 2 of Alg. 1

Initialize an array D Initialize an array Dl1...l2

// do in parallel on all nodes

for k ← l1 to l2 do in parallel
(Lmin, Lmax) ← FindEdge (A,B, Sk, Sk+1)
Dk ←MergeSort (A,B,Lmin, Lmax)

end

Gather Dk from all nodes ⇐= Send Dl1...l2

C ← concatenate all containers of D

perform a good load-balancing between all the nodes. This extra step requires
to compute the number of multiplications or operations required to process each
interval. The cumulative summation of the number of operations is performed in
order to create the group of consecutive intervals with almost the same number
of operations. The master node will also compute a part of the result. Other
nodes send their results back to the master node. The algorithm 2 shows the
processing steps required to perform the multiplication on the cluster of nodes.

4 Adaptation to Specialized Many-Core Hardware

GPU and other dedicated cards are able to perform general-purpose computa-
tions but they have dedicated memory. So the same adaptation as for the cluster
of computers is done for the data transfer between the host memory and the GPU

Highly Scalable Multiplication 107

memory. The scheduling is easier than on the cluster since it can be done by the
processor of the host computer. The values Ok are not computed to perform the
scheduling. If several many-core hardware are connected to the host computer,
only the bounds l1 and l2 are sent to the different cards. As the memory transfer
may be expensive, host processor may compute other data, e.g. put the result
in a canonical form, in order to overlap the memory communication.

Available specialized many-core hardware are able to schedule a large number
of threads at the same time but they only have a small cache shared among a
group of threads. An interval is processed by a group of threads in order to
benefit from this shared memory and to avoid divergence of the execution path
in the threads inside the group. As the arraysLmin and Lmax cannot be stored on
the device memory due to the large number of groups, the computation of these
arrays must be merged with the function MergeSort. The available sequential
comparison-based sorting algorithms designed for the CPU are not well adapted
to these hardware constraints. The parallel sorting algorithm among the group of
threads depends too much on the targeted hardware to be designed generically.

5 Choice of the Set S�

The set S� should be chosen in order to balance the work as better as possible
between the intervals, even if a perfect work balancing is impossible without
computing all the elements of the pp-matrix. The choice of the elements of S�

could be done using an almost regular grid over the pp-matrix. This method is
very fast and very simple to implement. In order to obtain the fixed ns� elements,
our grid is defined using the following rules.

S�
k =

⎧⎪⎪⎨⎪⎪⎩
αi + βj for i = 1 to na step �na

l �,
and for j = j0,i to nb step �nb

l �
αna + βj for j = 1 to nb step �nb

l �
αi + βnb

for i = 1 to na step �na

l �

with

{
ns� = (l + 1)2

j0,i = 1 +
((
i/na

l

)
mod 2

)
�nb

2l �

The value �na

l �and �nb

l � are the distances between two selected points on the
same line or column in the pp-mtarix. The value j0,i is used to avoid the effect
of the large strip. Due to the integer division, some elements in the last column
and in the last line are selected to avoid a too large strip in the last part of
the matrix. Figure 2(a) shows an example of a computed grid and the figure
2(b) shows the edge of the intervals computed by the different threads. Other
sort of grids may be used instead of our selected grid but they have insignificant
impact on the performance of the algorithm. For example, the pp-matrix may
be divided in ns� submatrices and a random exponent may be chosen inside
each submatrix. Instead of selecting equidistant points on the line i of our grid,
non-equidistant points may be selected on the line i to generate another sort of
grid. We have tested these grids and the differences of the execution time of the

108 M. Gastineau and J. Laskar

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

ex
po

ne
nt

s
of

 f
exponents of g

(a) selected exponents for the set S�

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

ex
po

ne
nt

s
of

 f

exponents of g

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

(b) Edge for the different intervals

Fig. 2. Grid and intervals computed for the multiplication of f = (1 + x + y + 2z2 +
3t3 + 5u5)8 by g = (1 + u+ t+ 2z2 + 3y3 + 5x5)8 for l = 8 or ns� = 81

product are less than 1.5% on a multicore multiprocessor computer using these
grids.

To achieve maximal performance, the value ns� or l should be chosen dy-
namically according to the number of available cores and/or to the number of
terms of the polynomials. As ns� should remain small in order to reduce the
time spent in the first step and in the function FindEdge of the algorithm, the
parameter should be fitted only to the number of available cores. The parameter
l is preferred instead of ns� for the tuning because a simple linear variation on
this parameter is possible. Its value must be tuned only once, for example at the
installation of the software. Of course, for small polynomials, the tuned value l
may be too large and must be reduced in order to have enough work for each
thread.

6 Benchmarks

Three examples are selected to test the implementation of our algorithm. The
two first examples are due to Fateman in [12] and Monagan and Pearce in [2].

– Example 1 : f1 × g1 with f1 = (1 + x + y + z + t)40 and g1 = f1 + 1. This
example is very dense. f1 and g1 have 135751 terms and the result contains
1929501 terms.

– Example 2 : f2 × g2 with f = (1 + x + y + 2z2 + 3t3 + 5u5)25 and g2 =
(1 + u+ t+ 2z2 + 3y3 + 5x5)25. As shown in [2] and [1], a linear speedup is
quite difficult to obtain on this very sparse example. f2 and g2 have 142506
terms and the result contains 312855140 terms.

Highly Scalable Multiplication 109

– Example 3 : f3 × g3 with f3 = (1 + u2 + v + w2 + x − y2)28 and g3 =
(1+ u+ v2 +w+ x2 + y3)28 +1. f3 and g3 have 237336 terms and the result
contains 144049555 terms.

The scalability of our algorithm depends on the number of intervals ns� , the
size of operands (na, nb), and the number of cores (c) available on the computer.
We have implemented two kinds of MergeSort algorithms for the parallel step
to show its independence with respect to this algorithm. As in Monagan and
Pearce, a chained heap algorithm is implemented to perform the summation of
the terms but it does not include any lock as the binary heap is accessed only by
one thread. This algorithm is noted heap in the tables and figures. The second
sorter algorithm, noted tree, uses a tree data structure in which each internal
node has exactly 16 children. At each level of this tree, four bits of the exponents
are used to index the next children. If the exponents are encoded on 2d bits, our
tree will have 2d−2 levels. The tree associated to each interval is converted to
a distributed representation at the end of the algorithm in order to obtain a
canonical distributed form of the polynomial. This container uses more memory
but its complexity to insert all the elements is only in O(2d−2nanb). This prac-
tical complexity is better if the exponents are packed since many inserted terms
have common bits inside their exponents. The exponents of the polynomials are
packed on a 64-bit unsigned integer in the implemented algorithm.

To fit the value l, and so ns� , on the available hardware, we generate randomly
two sets of 280 sparse polynomials in several variables with different numbers
of terms. The number of variables of these polynomials is from 4 to 8 and the
number of terms varies from 10000 to 60000 terms. The products of the two sets
of polynomials are performed with different values of l. An histogram is built
with the values of l, whose time of execution does not differ more than 10% from
the best time for each product.

6.1 Shared Memory Multiprocessors

As processors with multiple cores are now widely available in any computer,
the three examples are executed on a computer with 8 Intel Xeon processors
X7560 running at 2.27Ghz under the Linux operating system. Each processor
has 8 physical cores sharing 24 Mbytes of cache. This computer has a total of
256Gbytes of RAM shared by its 64 cores. The parallel dynamic scheduling of
the second step of the algorithm is performed by the OpenMP API [13] of the
compiler. As the memory management could be a bottleneck in a multi-threading
multiplication of sparse polynomials, the memory management is performed by
the Intel threading building blocks library [14], noted TBB, which provides a
scalable allocator instead of the operating system C library.

The first step has been to tune the parameter ns� or l on this hardware.
Figure 3 shows the histogram of the number of best execution time according
to the parameter l using the heap algorithm. For small value of l, not enough
parallelism is provided to get good execution time. We fix the parameter l to 64
in order to perform the benchmarks on this computer.

110 M. Gastineau and J. Laskar

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

nu
m

be
r

of
 p

ro
du

ct
s

l

8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Fig. 3. Number of products of the two sets of 280 randomly generated sparse multi-
variate polynomials using different values l, whose execution time does not differ more
than 10% from the best time

Our algorithm, noted DMPMC, is compared to the computer algebra systems
Maple 16 [15], Piranha [4] and Trip [6]. In all these software excepted Piranha,
the coefficients of the polynomials are represented with integers using a mixed
representation. For the integers smaller than 263 − 1 on 64-bit computers, hard-
ware integers are used instead of integers’ type of the GMP library [16]. The
multiplication and additions of the terms use a three word-sized integers accu-
mulator (a total of 192 bits) for the small integers. The same optimization is
used in Maple [11] and Trip. The timings for Maple 16 are the timings reported
by the multiplication step of the SDMP which excludes the DAG reconstruction
of the polynomial. Piranha uses only the GMP integers and allocates memory
with the same scalable memory allocator TBB. Two times are reported for Trip.
The dense time is for the optimized dense recursive polynomial data structure
(POLPV) and the sparse time is for the optimized sparse recursive polynomial
data structure (POLYV).

Table 1 shows the execution times of the three examples on the 64 cores com-
puter. Even if our chained heap is less tuned for the dense polynomials on single
core, our algorithm for distributed representation scales with the same behav-
ior as the recursive algorithms of Trip. We define the speedup as T1/Tc and
the efficiency as T1/(c × Tc) where Tc is the execution time on c cores. Figure
4 shows the speedup for the different implementations and confirms that the
SDMP algorithm of Maple 16 [15] focuses only on a single multi-core processor
with large shared memory cache. Indeed, the efficiency of the SDMP algorithm
drops to less than 0.6 above 16 cores for the three examples while the efficiency
of our algorithm remains above 0.7 on 64 cores. The limited scalability of Pi-
ranha is confirmed due to the access to its two global lists shared between all
the threads. The kind of MergeSort algorithm has only a significant impact on
the execution time but not on the scalability of our algorithm. The small dif-
ferences observed on the speedup between the tree and heap algorithm come

Highly Scalable Multiplication 111

Table 1. Execution time in seconds of the examples on the shared memory computer
with integer coefficients. DMPMC uses the tuned parameter l = 64 or ns� = 4225.

Software example 1 example 2 example 3

cores cores cores
1 16 64 1 16 64 1 16 64

DMPMC
heap 1843.2 116.2 32.3 1317 83.8 23.9 2081 126.1 35.0
tree 878.5 55.4 16.1 1394 90.4 30.2 1632 102.6 29.7

Maple 16 1226.7 358.5 262.4 1364 625.0 900.5 3070 317.4 609.9

Piranha 677.5 57.0 45.9 1576 138.4 174.6 2466 826.8 816.4

Trip 1.2
dense 649.9 40.3 10.4 1227 75.6 19.8 2738 164.9 42.9
sparse 705.5 43.7 11.5 1071 65.6 19.9 2874 177.7 45.8

 10

 20

 30

 40

 50

 60

 1 10 20 30 40 50 60

sp
ee

du
p

number of threads

example 1

TRIP - sparse
TRIP - dense

MAPLE 16
DMPMC - heap
DMPMC - tree

PIRANHA

 1 10 20 30 40 50 60

number of threads

example 2

 1 10 20 30 40 50 60

number of threads

example 3

Fig. 4. Speedup on the shared memory computer with integer coefficients’ polynomial

from the different number of memory allocations since the tree version requires
more memory allocation. Although we have used a sequential implementation
of the first step, its duration remains insignificant. The computation of the edge
(function FindEdge) by each thread takes only a few percent of the total time.

6.2 Distributed Memory Computers

In this second set of experiments, algorithm 2 is implemented using the hybrid
approach OpenMP+MPI on the MesoPSL cluster with 64 nodes interconnected
with a QDR InfiniBand network for a total of 1024 cores. Each node embeds two
Intel E5-2670 processors sharing a total of 64 Gbytes of RAM between the 16
cores of the node. Quadruple precision floating point numbers have been used for
the polynomials coefficients instead of variable size integers coefficients in order
to simplify the exchange of the coefficients between the nodes. Figure 6.2 shows
the speedup of the algorithm on this cluster with the tuned parameter l = 8

√
c

where c is the total number of cores. The speedup is defined as T1,OpenMP/Tn,MPI

where T1,OpenMP is the execution time on one core of a single node using the
OpenMP implementation of the algorithm 1 and Tn,MPI is the execution time

112 M. Gastineau and J. Laskar

on n nodes using the hybrid OpenMP+MPI implementation of algorithm 2. The
limitation of the 2 GB maximum message size in the MPI implementation of the
cluster requires to implement a custom gather operation using the send/receive
messages in order to collect the result on the root node which have significant
impact on the timings. This bottleneck is especially visible on the large result
of the second example which contains more than 300 million terms since half of
the time is spent to transfer the result from the slave nodes to the master node.
However, the algorithm always continues to scale according to the number of
available cores. In all cases, the algorithm scales well up to at least two hundred
cores. Similar behaviors are obtained if double precision coefficients are used
instead of quadruple precision coefficients.

 1

 200

 400

 600

 800

 1000

 1 200 400 600 800 1000

sp
ee

du
p

number of threads or cores

example 1

heap
tree

 1 200 400 600 800 1000

number of threads or cores

example 2

 1 200 400 600 800 1000

number of threads or cores

example 3

Fig. 5. Speedup of the DMPMC algorithm on a cluster of 64 nodes (a total of 1024
cores) interconnected with a QDR InfiniBand network. The coefficients of polynomials
are quadruple precision floating point numbers.

6.3 Specialized Many-Core Hardware

To test the algorithm on a many-core hardware, the benchmarks are performed
on a Nvidia Tesla S2050 computing System based on the Fermi architecture in-
terconnected through two links to a host computer using a PCI Express 2 16x
controller. The host computer is the same computer as for the shared memory
benchmark. The Nvidia Tesla S2050 consists of four Fermi graphics process-
ing units. So two GPU cards share the same links to the host controller. Each
GPU embeds 14 streaming multiprocessors and 3 GBytes DDR5 memory. Each
streaming processor has 32 cores running at 1.15 Ghz and is able to schedule
two groups of 32 threads simultaneously. A total of 448 cores is available per
GPU. The kernel function running on the GPU is implemented using the CUDA
programming model [17].

Highly Scalable Multiplication 113

Table 2. Execution time in seconds and speedup of the examples on the Nvidia Tesla
S2050 with double precision floating-point coefficients. Each example is executed with
a different number of threads in a group with a tuned value of the parameter l for the
corresponding group.

group of l example 1 example 2 example 3
t threads

gpu gpu gpu
1 2 3 4 1 2 3 4 1 2 3 4

32 90
42 24 19 16 98 61 43 36 181 103 83 67

1.7x 2.2x 2.5x 1.6x 2.2x 2.7x 1.8x 2.2x 2.7x

64 90
32 18 14 12 71 42 30 25 129 71 55 44

1.7x 2.3x 2.7x 1.7x 2.3x 2.8x 1.8x 2.3x 2.9x

128 60
35 20 15 13 73 42 31 25 141 79 63 49

1.7x 2.3x 2.7x 1.7x 2.4x 2.8x 1.8x 2.2x 2.9x

256 40
40 22 17 14 79 43 32 26 149 91 68 57

1.8x 2.3x 2.7x 1.8x 2.5x 3x 1.6x 2.2x 2.6x

512 25
48 29 23 20 93 52 38 31 174 106 77 67

1.6x 2x 2.4x 1.8x 2.5x 2.9x 1.6x 2.3x 2.6x

Table 3. Execution time in seconds of the examples on the shared memory computer
with double precision floating-point coefficients. DMPMC uses the tuned parameter
l = 64 or ns� = 4225.

Software example 1 example 2 example 3

cores cores cores
8 16 32 8 16 32 8 16 32

DMPMC tree 44.7 22.6 11.4 69.9 35.6 18.1 167.5 84.5 42.6

Piranha 8.6 6.5 20.0 62.8 43.2 59.5 134.4 128.9 166.9

Trip 1.2 sparse 11.49 5.8 3.0 30.9 15.4 7.9 86.6 43.5 22.3

Only the tree algorithm for the MergeSort function is implemented since the
heap version is not well adapted for the GPU architecture. Indeed, an interval
is not processed by a single thread but it is processed by a group of t threads,
called a block in the CUDA terminology. So for each interval, a group of threads
constructs a temporary tree in order to merge and sort the terms. To avoid the
divergence of the execution path of the threads inside a group, this one han-
dles the terms line after line. A cache blocking technique is used to process the
input data in order to minimize the access to the global memory. We try to
minimize the global memory access to the input polynomials but not for the
output polynomial. Indeed, at the same time, only t exponents and coefficients
of the polynomial A and t elements of the array Lmin are stored in the shared
memory of the GPU. So �na/t coalesced global memory accesses are required to
process the polynomial A. The construction of tree requires an explicit synchro-
nization between threads for the allocation of the tree nodes. In the worst case,
each group of threads performs O(l(na+nb)/t) global memory accesses to insert

114 M. Gastineau and J. Laskar

the elements in the tree. Due to the shared memory limits, more investigations
are required in order to reduce this number of global transactions and tune the
implementation of the merge sort algorithm.

In our implementation, the reconstruction of the canonical distributed repre-
sentation from the tree is performed on the host processor with one host thread
per GPU and overlaps the computations by the GPU. A simple static schedul-
ing is performed : ns

5g intervals are processed at a same time by a GPU if g
GPUs are used for the computations. So each GPU executes 5 times the kernel
function. More sophisticated scheduling may be done by overlapping memory
transfer between the host and GPU memory. As no version of the GMP library
is available for the GPU side, double-precision floating point numbers have been
used for the coefficients on CPU and GPU. Table 2 shows the execution time
and speedup obtained on the GPU with different number of threads (t) inside
the group. As the kernel function needs to be transferred on the card by the
CUDA driver, the timings are the average of eight executions without two first
useless executions. The group of 64 threads has the best execution time for the
three examples. The scalability on several GPUs is not linear for several reasons.
The major reason is that the four cards share the two links to the host. A better
dynamic scheduling should be done using an optimized heterogeneous scheduler,
such as StarPU [18], and the computations on the card are not overlapped by
the memory transfer. For comparison, the execution time of Trip, Piranha and
DMPMC on the same host computer are reported in Table 3 with the same kind
of numerical coefficients.

7 Conclusions

The presented algorithm for the multiplication of sparse multivariate polynomi-
als stored in a distributed format does not have any bottleneck related to the
numbers of cores due to the lack of synchronization or locks during the main
parallel step. But it requires a preliminary one time step to tune the size of the
grid to the targeted hardware. The range of targeted processor units is wide for
our algorithm. The only drawback comes from the time to transfer data between
nodes on the distributed memory systems due to the limited performance of the
interconnection network. It can use any available fastest sequential merge and
sort algorithm to generate the terms of the result and can benefit from any effi-
cient dynamic scheduling. A more appropriate algorithm for this merge and sort
step may be designed for the GPU hardware in order to take into account all
features of these specialized hardware.

Acknowledgements. The authors thank the computing centre MesoPSL of the
PSL Research University for providing the necessary computational resources for
this work.

Highly Scalable Multiplication 115

References

1. Gastineau, M.: Parallel operations of sparse polynomials on multicores: I. multi-
plication and poisson bracket. In: Moreno Maza, M., Roch, J.L. (eds.) PASCO
2010: Proceedings of the 4th International Workshop on Parallel and Symbolic
Computation, pp. 44–52. ACM, New York (2010)

2. Monagan, M., Pearce, R.: Parallel sparse polynomial multiplication using heaps.
In: Johnson, J., Park, H., Kaltofen, E. (eds.) ISSAC 2009: Proceedings of the 2009
International Symposium on Symbolic and Algebraic Computation, pp. 263–270.
ACM, New York (2009)

3. Biscani, F.: Parallel sparse polynomial multiplication on modern hardware archi-
tectures. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC 2012,
pp. 83–90. ACM, New York (2012)

4. Biscani, F.: Design and implementation of a modern algebraic manipulator for
Celestial Mechanics. PhD thesis, Centro Interdipartimentale Studi e Attivita
Spaziali,Universita degli Studi di Padova, Padova (May 2008)

5. Wang, P.S.: Parallel polynomial operations on smps: an overview. J. Symb.
Comput. 21(4-6), 397–410 (1996)

6. Gastineau, M., Laskar, J.: Trip: a computer algebra system dedicated to celes-
tial mechanics and perturbation series. ACM Commun. Comput. Algebra 44(3/4),
194–197 (2011)

7. Horowitz, E.: A sorting algorithm for polynomial multiplication. J. ACM 22(4),
450–462 (1975)

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

9. Frigo, M., Strumpen, V.: The cache complexity of multithreaded cache oblivious
algorithms. In: Gibbons, P.B., Vishkin, U. (eds.) Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2006, pp. 271–280. ACM, New York (2006)

10. Johnson, S.C.: Sparse polynomial arithmetic. SIGSAM Bull. 8(3), 63–71 (1974)
11. Monagan, M., Pearce, R.: Parallel sparse polynomial division using heaps. In:

Moreno Maza, M., Roch, J.L. (eds.) Proceedings of the 4th International Work-
shop on Parallel and Symbolic Computation, PASCO 2010, pp. 105–111. ACM,
New York (2010)

12. Fateman, R.: Comparing the speed of programs for sparse polynomial multiplica-
tion. SIGSAM Bull. 37(1), 4–15 (2003)

13. OpenMP Architecture Review Board: OpenMP application program interface
version 3.0 (May 2008)

14. Reinders, J.: Intel threading building blocks, 1st edn. Reilly & Associates, Inc.,
Sebastopol (2007)

15. Monagan, M., Pearce, R.: Sparse polynomial multiplication and division in maple
14. ACM Commun. Comput. Algebra 44(3/4), 205–209 (2011)

16. Granlund, T.: GNU multiple precision arithmetic library 4.2.4 (September 2008),
http://swox.com/gmp/

17. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (2010)

18. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2), 187–198 (2011)

http://swox.com/gmp/

Simulation of Quantum Error Correction

with Mathematica

Vladimir P. Gerdt1 and Alexander N. Prokopenya2,3

1 Joint Institute for Nuclear Research
141980 Dubna, Russia

gerdt@jinr.ru
2 Warsaw University of Life Sciences – SGGW
Nowoursynowska 166, 02-787, Warsaw, Poland

alexander prokopenya@sggw.pl
3 Collegium Mazovia Innovative University
Sokolowska 161, 08-110 Siedlce, Poland

Abstract. In this paper we consider the problem of quantum error cor-
rection and its simulation with the computer algebra system Mathemat-
ica. Basic ideas of constructing the quantum error correcting codes are
discussed, and some examples of error correction by means of quantum
circuits constructed with application of the Mathematica package Quan-
tumCircuit are presented.

1 Introduction

Quantum computing attracts much attention in the past three decades because
it promises a major performance speedup in certain types of computational prob-
lems (see [1–4]). At the same time, a realistic quantum computer is still not avail-
able, and the majority of studies in this field are theoretical ones. This stimulates
the development of classical simulators of quantum computation which help to
better understand existing quantum algorithms and can be used for searching
and testing new efficient algorithms.

In papers [5, 6], we presented our Mathematica package QuantumCircuit for
the simulation of quantum computation based on the circuit model [1]. Remind
that quantum computation may be represented as a unitary transformation of a
2n-dimensional vector describing a state of n-qubit memory register. Therefore,
simulation of quantum computation on a classical computer is nothing else than
construction of the unitary (circuit) matrix. Such matrix is implemented by a
sequence of quantum gates (also unitary transformations in the state space)
acting on one or several qubits of the memory register according to a quantum
algorithm, which is represented as a diagram called quantum circuit. It is a
quantum analogue of classical circuit implementing Boolean functions in terms
of classical logical gates.

Our package QuantumCircuit provides a user-friendly interface to specify a
general n-qubit quantum circuit, to draw it, and to construct the correspond-
ing unitary matrix for quantum computation defined by the circuit. Using this

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 116–129, 2013.
c© Springer International Publishing Switzerland 2013

Simulation of Quantum Error Correction with Mathematica 117

matrix, one can determine the final state of the quantum memory register for
its given initial state. Thereby, a user of the package can analyse the quantum
algorithm determined by the circuit. By varying a circuit one can study and
design quantum algorithms.

In our recent paper [7], we demonstrated an application of the package Quan-
tumCircuit to the simulation of quantum circuits implementing two best known
quantum algorithms, namely, the Grover search algorithm [3] and the Shor al-
gorithm for order finding [2]. Then we presented an algorithmic extension of
the QuantumCircuit package designed for modeling quantum error correction
by means of codes that correct errors [8]. There we considered the case when
the errors may arise due to noise in transmission of quantum states through
transmission channels, while encoding and decoding of the quantum states is
performed without errors. Using the QuantumCircuit package, we constructed
quantum circuits identifying and correcting simple errors such as bit-flip error
and phase error and illustrated their work.

In this paper, we continue simulation of quantum error correction with the
help of the QuantumCircuit package. We discuss basic ideas of quantum error
correction proposed firstly by P. Shor [9] and A. Steane [10] and illustrate its
implementation by way of concrete examples. The main aim of the paper is
to demonstrate step by step, on a classical computer and by using facilities of
Mathematica, how quantum errors arising during transmission of quantum states
can be diagnosed and corrected without destroying these states.

It should be noted that the possibility of quantum error correction is not
obvious, although similar problem is solved successfully in case of classical com-
putation, and there are some reasons for that. First, arbitrary state of a qubit
cannot be copied due to no-cloning theorem (see [1]), and so direct application
of an idea of redundant information used in classical computation is impossible.
Second, measurement of a qubit state with the aim of diagnosing an error as it is
done in classical computation is also not possible because measurement destroys
the qubit state and original information cannot be recovered afterwards. Finally,
a classical bit has only two possible states, and an error arises only if the bit
is flipped without any control, while a qubit state changes continuously due to
interaction of the qubit with environment, and its final state is not predictable.
It is very important to understand how all these difficulties may be overcome to
be able to design new effective algorithms for quantum error correction, and the
simulation seems to be a good way to do this.

The paper is organized as follows. In Section 2, we briefly describe basic ideas
of constructing the codes correcting quantum errors and illustrate them by the
example of a bit-flip error that may occur only in a single qubit of the three-qubit
codeword encoding a single informational qubit. Such an error is simulated by
means of applying the Pauli-X gate to one of the three qubits chosen randomly.
Inspecting the codeword with a special quantum circuit detects the corrupted
qubit, and it is corrected afterwards. In Section 3, we discuss a five-qubit error
correcting code that can be used to detect and correct a general error occurring
in a single qubit of the five-qubit codeword. Finally, we conclude in Section 4.

118 V.P. Gerdt and A.N. Prokopenya

2 Basic Concepts of Quantum Error Correction

General state |ψ〉 of a qubit that is an elementary unit of information used in
quantum computation and quantum communication is represented in the form

|ψ〉 = α|0〉+ β|1〉 , (1)

where |0〉, |1〉 are two basis states of the qubit, and α, β are two arbitrary com-
plex numbers satisfying the condition |α|2 + |β|2 = 1. The state (1) is assumed
to be transformed only during computation when the qubit is acted on by some
quantum gates, and it is maintained without change between operations or dur-
ing transmission. However, complete isolation of a qubit from its environment
cannot be achieved in reality, and their interaction necessarily occurs. As a re-
sult, quantum states of the qubit and environment become entangled, and the
qubit state (1) is corrupted what means a loss of quantum information.

Assuming that initially the environment state |e〉 is not entangled with the
qubit state (1), one can represent general interaction between the qubit and its
environment as the following transformation

|e〉|ψ〉 → (|eI〉I + |eX〉X + |eY 〉Y + |eZ〉Z) |ψ〉 , (2)

where |eI〉, |eX〉, |eY 〉, |eY 〉 are possible final states of the environment, I is
the identity operator, and X,Y, Z are the logical operators Pauli-X, Pauli-Y,
Pauli-Z, respectively (see, for example, [11, 12]). Therefore, under an influence
of environment, initial qubit state (1) is transformed in general to the state (2)
that is a superposition of the uncorrupted state I|ψ〉 = |ψ〉 and three states with
a bit-flip errorX |ψ〉, a phase error Z|ψ〉, and a combined bit-flip and phase error
Y |ψ〉. And to restore initial state (1) we need to construct a quantum circuit
that can identify an error using any of the four states |ψ〉, X |ψ〉, Y |ψ〉, Z|ψ〉 as
an input and correct it. As unitary transformation executed by any quantum
circuit is linear, the quantum circuit we are going to construct will be able to
correct an error using any superposition of the four states |ψ〉, X |ψ〉, Y |ψ〉, Z|ψ〉
as an input.

To clarify basic ideas of constructing such quantum circuit let us assume that
the qubit state (1) is acted on by the operator Pauli-X for example, simulating
a bit-flip error, and takes a form

X |ψ〉 = α|1〉+ β|0〉 , (3)

where we have taken into account an action of the Pauli-X operator on the
basis states: X |0〉 = |1〉, X |1〉 = |0〉. One can readily see from (1) and (3)
that measuring these states gives either |0〉 or |1〉 in both cases, and although
probabilities of getting these results are different for the states (1) and (3), in
general we cannot distinguish them in this way. Besides, measurement destroys
a qubit state, and its initial state cannot be restored afterwards.

However, according to the postulates of quantum physics (see, for exam-
ple, [1]), measurement of some observable U does not destroy a quantum state

Simulation of Quantum Error Correction with Mathematica 119

if this state is an eigenvector of the corresponding Hermitian operator U . There-
fore, if the states (1) and (3) would be two eigenvectors of some Hermitian
operator U corresponding to its different eigenvalues then one could distinguish
these states without their destruction by means of measuring U . But the problem
is that any vector |ψ〉 belonging to the two-dimensional Hilbert space spanned
by the basis vectors |0〉, |1〉 should be an eigenvector of U with the same eigen-
value. As the states (1) and (3) belong to the same Hilbert space both of them
should correspond to the same eigenvalue of U and cannot be distinguished.

The only way to separate an uncorrupted state and states with error is to
increase dimension of the Hilbert space and to set these states into different
subspaces. It means we have to increase number of qubits used for encoding
the state (1), let this number be equal to n. Of course, due to interaction with
environment each of the n qubits may be corrupted but it is quite reasonable
to assume that errors occur in different qubits independently of one another.
Therefore, if probability of error occurrence is small enough then the cases of
simultaneous errors in two or more qubits may be excluded from the consider-
ation, and one can assume that an error occurs only in one of the n qubits. As
a state of each qubit is described by a vector in two-dimensional Hilbert space
and operator Pauli-X, simulating a bit-flip error, can be applied to each of them
we need (n+1) different two-dimensional subspaces to separate the uncorrupted
state and n states with bit-flip error in different qubits. Obviously, total dimen-
sion of the n-qubit Hilbert space being equal to 2n must be greater or equal than
2(n+1). Solving the inequality 2n ≥ 2(n+1) gives n ≥ 3 and, hence, minimum
number of qubits we need to encode the state (1) is equal to 3 provided that a
bit-flip error can occur only in one of the three qubits.

Let us now consider two commuting Hermitian operators U1 and U2 satisfy-
ing the condition U2

k = I, (k = 1, 2). Obviously, such operators can have the
eigenvalues only ±1, since operator Uk acting twice on its eigenvector must act
as the identity operator I. Assume that uncorrupted 3-qubit state |Ψ〉 encoding
the state (1) is the eigenvector of both operators U1 and U2 corresponding to the
same eigenvalue +1. Assume also that operator U1 commutes with operator X0

and anti-commutes with operatorsX1 and X2, while operator U2 commutes with
X2 and anti-commutes with operators X0 and X1, where index k = 0, 1, 2 in the
notation Xk indicates the number of the qubit to which the operator Pauli-X
simulating a bit-flip error is applied. Recall that qubits in a quantum circuit are
usually numbered from bottom to top beginning with zero. Then any corrupted
state Xk|Ψ〉 will be an eigenvector of the operators U1 and U2, as well. Indeed,
the following equalities take place

U1X0|Ψ〉 = X0U1|Ψ〉 = X0|Ψ〉 , U2X0|Ψ〉 = −X0U2|Ψ〉 = −X0|Ψ〉 ,

U1X1|Ψ〉 = −X1U1|Ψ〉 = −X1|Ψ〉 , U2X1|Ψ〉 = −X1U2|Ψ〉 = −X1|Ψ〉 , (4)

U1X2|Ψ〉 = −X2U1|Ψ〉 = −X2|Ψ〉 , U2X2|Ψ〉 = X2U2|Ψ〉 = X2|Ψ〉 .

One can readily see from (4) that corrupted states X0|Ψ〉, X1|Ψ〉, X2|Ψ〉
are eigenvectors of the operators U1 and U2 corresponding to the eigenvalues

120 V.P. Gerdt and A.N. Prokopenya

(+1,−1), (−1,−1), (−1,+1), while uncorrupted state |Ψ〉 is eigenvector of these
operators corresponding to the eigenvalue (+1,+1), according to our assump-
tion. Therefore, measuring U1 and U2 diagnoses errors in the considered case of
bit-flip errors in one qubit and indicates the corrupted qubit.

x

0

0

H

H

U1 U2

H

H

1 U1
2

1 U2
2

x 00

1 U1
2

1 U2
2

x 10

1 U1
2

1 U2
2

x 01

1 U1
2

1 U2
2

x 11

Fig. 1. Quantum circuit with two ancillary qubits set initially in the state |0〉 for
measurement of U1 and U2

Note that either of the two operators U1 and U2 can be measured without
destroying an input state |x〉 by means of measuring ancillary qubits entangled
with this state, the corresponding quantum circuit, consisting of four Hadamard
gates and controlled U1 and U2 operators, is shown in Fig. 1. One can readily see
that if |x〉 is eigenvector of U1 and U2 with eigenvalues (+1,+1) then the final
qubit state will be 1

4 (1+U1)(1+U2)|x〉 = |x〉 and measuring the ancillary qubits
indicates |00〉. But if |x〉 is eigenvector of U1 and U2 with eigenvalues (+1,−1),
for example, then measuring the ancillary qubits indicates |01〉, and so on. It
should be emphasized that ancillary qubits are used here specially to indicate
an error and their measurement does not destroy the input state |x〉.

Remind that the Pauli operators X , Y , Z anti-commutes if they act on the
same qubit and commute otherwise. Therefore, the operators U1 and U2 hav-
ing the above-described properties can be chosen in the form U1 = Z2Z1I0,
U2 = I2Z1Z0. As quantum circuits implementing these operators are encoded in
the QuantumCircuit package by two symbolic vectors (Z,Z, 1)T and (1, Z, Z)T

(see [6, 7]), we can easily write two matrix equations determining their eigen-
vectors corresponding to eigenvalues (+1,+1). The corresponding commands
written in the language of the Mathematica system are

vecΨ = Table[aj, {j, 8}] ;

matrixU [{{Z}, {Z}, {1}}] . vecΨ == vecΨ ;

matrixU [{{1}, {Z}, {Z}}] . vecΨ == vecΨ ; (5)

where the built-in function matrixU[mat] computes unitary matrix determined
by symbolic matrix mat, and function Table generates vector vecΨ having eight

Simulation of Quantum Error Correction with Mathematica 121

components aj , (j = 1, 2, ..., 8). Using the built-in Mathematica function Solve,
one can easily find a solution of the system (5) that is

vecΨ = (a1, 0, 0, 0, 0, 0, 0, a8)
T . (6)

Therefore, three-qubit state |Ψ〉 being eigenvector of both operators U1, U2 with
eigenvalues (+1,+1), may be represented as superposition of two basis vectors

|Ψ〉 = a1|0〉3 + a8|7〉3 ≡ a1|000〉+ a8|111〉 ,

where complex numbers a1 and a8 must satisfy the normalization condition
|a1|2 + |a8|2 = 1. Assuming a1 = α, a8 = β, one can readily check that three-
qubit state

|Ψ〉 = α|000〉+ β|111〉 . (7)

is generated for arbitrary state (1) by the quantum circuit shown in Fig. 2.

�0�

�0�

Α�0��Β�1�

Α�000��Β�111�

Fig. 2. Quantum circuit for encoding the state (1) by three-qubit state (7)

Thus, to diagnose a bit-flip error arising in arbitrary qubit state (1) we can
encode this state by three-qubit state (7), using quantum circuit shown in Fig. 2.
This state is taken as input vector |Ψ〉 in the quantum circuit shown in Fig. 3
with two ancillary qubits set in state |0〉 and used for identification of error.
Pauli-X operator in the left-hand side of the circuit is applied to the upper qubit
(it is applied to any of the tree qubits in the state (7) chosen randomly) and
simulates bit-flip error. Arising error is corrected then by means of application
of the Pauli-X operator to corrupted qubit.

3 General Case of Five-Qubit Error Correcting Code

One can readily check that operator U1 = Z2Z1I0 considered above commutes
with Pauli operator Y0 and anti-commutes with Y1 and Y2, while operator U2 =
I2Z1Z0 commutes with Y2 and anti-commutes with operators Y0 and Y1. It means
that quantum circuit shown in Fig. 3 can be also used to diagnose the combined
bit-flip and phase error simulated by means of application of the Pauli-Y operator
to one of the three qubits of the state (7) (see Fig. 4, where the Pauli-Y operator

122 V.P. Gerdt and A.N. Prokopenya

X

H

H

Z

Z Z

Z

H

H X

X

X

�0�

�0�

���

Fig. 3. Quantum circuit correcting bit-flip error in one qubit of three-qubit codeword
encoding state (1)

is applied to the upper qubit in the left-hand side of the circuit). To correct such
error we need to apply another Pauli-Y operator to the corrupted qubit (see three
controlled Pauli-Y operators in the right-hand side) but the circuit indicating
corrupted qubit remains the same as in case of bit-flip error. Therefore, the
circuits shown in Figs. 3 and 4 indicate arising bit-flip or combined bit-flip and
phase error simulated by means of application of the Pauli-X and Y operators,
respectively, but they cannot distinguish these two errors.

Y

H

H

Z

Z Z

Z

H

H

Y

X

Y

X

X

Y

�0�

�0�

���

Fig. 4. Quantum circuit correcting combined bit-flip and phase error in one qubit of
three-qubit codeword encoding state (1)

Remind that in general case of n-qubit codeword, each qubit can be acted on
by any of the three Pauli operators or the codeword remains uncorrupted (see
(2)). Therefore, to distinguish all possible errors we need (3n+1) two-dimensional
subspaces in the Hilbert space of dimension 2n. Obviously, the condition 2n ≥
2(3n+1) should be fulfilled and, hence, we need at least five-qubit codeword for
encoding the state (1). Besides, we need four ancillary qubits and four mutu-
ally commuting Hermitian operators Uj, (j = 1, 2, 3, 4), obeying the condition

Simulation of Quantum Error Correction with Mathematica 123

U2
j = I to indicate the corrupted qubit. As in the case of three-qubit codeword,

such operators can be constructed from the Pauli operators X, Y, and Z and are
defined as follows (see, for example, [11]):

U1 = Z4X3X2Z1I0 , U2 = X4X3Z2I1Z0 ,

U3 = X4Z3I2Z1X0 , U4 = Z4I3Z2X1X0 . (8)

One can readily see that these operators Uj are mutually commuting because
anti-commuting Pauli operators Xj and Zj with the same index encounter ex-
actly two times in any pair Uj and Uk. As U2

j = I each operator has two

eigenvalues ±1, and there are exactly 24 = 16 possible combinations of their
eigenvalues (±1,±1,±1,±1).

Let us assume that five-qubit state |Ψ〉 ≡ |x4x3x2x1x0〉 is the eigenvector of
all four operators Uj corresponding to the set of eigenvalues (+1,+1,+1,+1).
Pauli operatorXj, Yj , or Zj , acting on one of the five qubits |x4x3x2x1x0〉, either
commutes or anti-commutes with operators Uk and, hence, any corrupted state
Xj |Ψ〉, Yj |Ψ〉, or Zj |Ψ〉, (j = 0, 1, 2, 3, 4), will be the eigenvector of operators
Uk, (k = 1, 2, 3, 4) as well but with different set of eigenvalues. For example,
Pauli operator Z4 acting on the qubit |x4〉 and simulating phase error in this
qubit commutes with operators U1, U4 and anti-commutes with U2, U3. Then
the following equalities take place

U1Z4|Ψ〉 = Z4U1|Ψ〉 = Z4|Ψ〉 ,

U2Z4|Ψ〉 = −Z4U2|Ψ〉 = −Z4|Ψ〉 ,
U3Z4|Ψ〉 = −Z4U3|Ψ〉 = −Z4|Ψ〉 ,
U4Z4|Ψ〉 = Z4U4|Ψ〉 = Z4|Ψ〉 .

Therefore, the state Z4|Ψ〉 is eigenvector of operators Uk with the set of eigen-
values (+1,−1,−1,+1). Similarly one can show that all 15 corrupted five-qubit
states are eigenvectors of operators Uk with different sets of eigenvalues. And
measuring operators Uk can diagnose error in one of the five qubits and indicate
corrupted qubit and kind of error. To implement such measurement we need
four ancillary qubits set initially in the state |0〉. The corresponding quantum
circuit is constructed similarly to the case of three-qubit codeword considered in
Section 2 and is shown in Fig. 5.

After measuring the operators Uk and identifying the error we have to apply
the corresponding Pauli operator to the corrupted qubit to restore it. A circuit
that corrects any of the possible 15 errors is quite large, and due to this we
separate it into two parts shown in Fig. 6 and 7.

Finally, we have to construct a five-qubit codeword |Ψ〉 that is eigenvector of
all four operators Uk with the same eigenvalue +1. Using the QuantumCircuit
package (see [6, 7]), we can write four matrix equations determining eigenvectors
of operators Uk corresponding to eigenvalues (+1,+1,+1,+1). The correspond-
ing commands written in the language of the Mathematica system are

vecΨ = Table[aj, {j, 32}] ;

124 V.P. Gerdt and A.N. Prokopenya

�x4�

�x3�

�x2�

�x1�

�x0�

�0�

�0�

�0�

�0�

H

H

H

H

Z

Z

Z

Z

Z

Z

Z

Z

H

H

H

H

Fig. 5. Quantum circuit diagnosing error in one qubit of five-qubit codeword encoding
state (1)

matrixU [{{Z}, {X}, {X}, {Z}, {1}}] . vecΨ == vecΨ ;

matrixU [{{X}, {X}, {Z}, {1}, {Z}}] . vecΨ == vecΨ ;

matrixU [{{X}, {Z}, {1}, {Z}, {X}}] . vecΨ == vecΨ ;

matrixU [{{Z}, {1}, {Z}, {X}, {X}}] . vecΨ == vecΨ ; (9)

where we have used the built-in function matrixU[mat] and four symbolic vectors
mat corresponding to the operators (8). Solving the system (9), we obtain the
following vector with 32 components:

Ψ = (a1, a2, a2, a1, a2,−a1, a1,−a2, a2,−a1,−a1, a2, a1, a2,−a2,−a1, a2, a1,

−a1,−a2,−a1, a2, a2,−a1, a1,−a2, a2,−a1,−a2,−a1,−a1,−a2) , (10)

where two numbers a1 and a2 are constrained by the normalization condition
|Ψ |2 = 1. Denoting a1 = α/4, a2 = −β/4, we can rewrite vector (10) in the form

|Ψ〉 = α

4
(|00000〉+ |00011〉 − |00101〉+ |00110〉 − |01001〉 − |01010〉+

+|01100〉 − |01111〉+ |10001〉 − |10010〉 − |10100〉 − |10111〉+

+|11000〉 − |11011〉 − |11101〉 − |11110〉)−

−β

4
(|00001〉+ |00010〉+ |00100〉 − |00111〉+ |01000〉+ |01011〉+

+|01101〉 − |01110〉+ |10000〉 − |10011〉+ |10101〉+ |10110〉−

−|11001〉+ |11010〉 − |11100〉 − |11111〉) . (11)

One can readily check that vector (11) is normalized (〈Ψ |Ψ〉 = 1) if the numbers
α and β satisfy the condition |α|2 + |β|2 = 1 that is exactly the same as in the

Simulation of Quantum Error Correction with Mathematica 125

Y

X

Y

X

Z

X

Z

X

X

Z

X

Z

X

Y

Fig. 6. First part of quantum circuit correcting errors in one qubit of five-qubit code-
word encoding state (1)

case of vector (1) we want to encode. Obviously, vector (11) is a superposition
of all 32 basis states in the five-qubit Hilbert space, and some quantum circuit
is needed to encode the state (1) into the five-qubit codeword (11). An example
of such a circuit is depicted in Fig. 8 (see [11]).

To check whether the circuit shown in Fig. 8 really encodes the state (1) into
five-qubit codeword (11) let us remind that all information about this circuit is
encoded in the QuantumCircuit package in symbolic matrix mat1 given by

mat1 =

⎛⎜⎜⎜⎜⎝
Z H Z C H C 1 1 C 1 H C 1 1 H
1 1 1 X H 1 C 1 1 1 1 1 C 1 H
1 1 1 1 1 X X H 1 C 1 1 1 C 1
1 1 1 1 1 1 1 1 X X H 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 X X X 1

⎞⎟⎟⎟⎟⎠ . (12)

The input state |ψ0000〉=α|00000〉+β|10000〉 is a vector in the 25-dimensional
state space of five qubits, which has only two nonzero components (the first and
seventeenth). Using built-in function SparseArray, we can represent such vector
in codes of the Mathematica system as

vecInput[n] := SparseArray[{1 → α, 2n−1 + 1 → β}, 2n] ;

Then we can easily compute a final state vecOutput1 for the circuit encoded by
matrix (12), it is given by

vecOutput1 = matrixU [mat1].vecInput[5] ; (13)

126 V.P. Gerdt and A.N. Prokopenya

X

Z

X

X

X

Y

X

X

Y

X

X

Fig. 7. Second part of quantum circuit correcting errors in one qubit of five-qubit
codeword

�Ψ�

�0�

�0�

�0�

�0�

Z H Z H

H

H

H

H

H

H

Fig. 8. Quantum circuit encoding the state (1) into five-qubit codeword

Representing the state (13) in the form of superposition of the basis states in
the five-qubit Hilbert space gives a vector

|Ψ〉 = α

4
(|0〉5 + |3〉5 − |5〉5 + |6〉5 − |9〉5 − |10〉5 + |12〉5 − |15〉5 + |17〉5−

− |18〉5 − |20〉5 − |23〉5 + |24〉5 − |27〉5 − |29〉5 − |30〉5)+

+
β

4
(−|1〉5 − |2〉5 − |4〉5 + |7〉5 − |8〉5 − |11〉5 − |13〉5 + |14〉5 − |16〉5+

+ |19〉5 − |21〉5 − |22〉5 + |25〉5 − |26〉5 + |28〉5 + |31〉5) ,
that coincides exactly with vector (11).

To simulate error correction we need to apply any of the three Pauli operators
X, Y, Z to any of the five qubits in (11) and to use the vector obtained as input
for quantum circuit diagnosing error that is shown in Fig. 5. As this circuit
contains four ancillary qubits for measuring operators Uj we need to represent

Simulation of Quantum Error Correction with Mathematica 127

the state (11) in the form of vector in the 29-dimensional Hilbert space. This
can easily be done by means of adding four rows of the units at the bottom
of symbolic matrix (12) and repeating the calculation of vecOutput1 (see (13))
with vecInput[9].

The circuit simulating error may be encoded by symbolic vector with 9 com-
ponents. One of the first five symbols may be X, Y or Z while the rest eight
symbols are units. For example, circuit simulating phase error in the qubit |x1〉
is encoded by the matrix that can be written in codes of the Mathematica system
as

matErrorZ1 = {{1}, {1}, {1}, {Z}, {1}, {1}, {1}, {1}, {1} };

Symbolic matrix encoding information about the circuit shown in Fig. 5 may
be represented in the form

mat2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 Z 1 1 1 X 1 1 1 X 1 1 1 Z 1
1 1 1 X 1 1 1 X 1 1 1 Z 1 1 1 1 1 1
1 1 X 1 1 1 Z 1 1 1 1 1 1 1 1 Z 1 1
1 Z 1 1 1 1 1 1 1 1 Z 1 1 1 X 1 1 1
1 1 1 1 1 Z 1 1 1 X 1 1 1 X 1 1 1 1
H C C C C 1 1 1 1 1 1 1 1 1 1 1 1 H
H 1 1 1 1 C C C C 1 1 1 1 1 1 1 1 H
H 1 1 1 1 1 1 1 1 C C C C 1 1 1 1 H
H 1 1 1 1 1 1 1 1 1 1 1 1 C C C C H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly one can define symbolic matrix determining the circuit correcting errors
that is shown in Figs. 6 and 7. This matrix is quite cumbersome, and we do
not show it here, let us denote this matrix as mat3. Then we can calculate a
final 9-qubit state according to the following command written in codes of the
Mathematica system:

vecOutput = matrixU [mat3].matrixU [mat2].

matrixU [matErrorZ1].vecOutput1 ; (14)

Vector (14) is easily transformed to the form

vecOutput → |Ψ〉|1010〉 , (15)

where vector |Ψ〉 is given by (11). One can readily see that action of the Pauli-Z
operator is eliminated, and initial state (11) is restored, while ancillary qubits
are in the state |1010〉. Changing matrix matError and repeating calculation
(14), one can simulate all possible errors in one of the five qubits |x4x3x2x1x0〉.
The calculation shows that any of the 15 possible errors in original state (11)
encoding the state (1) is restored.

It should be emphasized that quantum circuit described above can diagnose
and correct an arbitrary error arising in one qubit. Such error may be simulated
by means of application of an arbitrary superposition of four operators I,X, Y, Z

128 V.P. Gerdt and A.N. Prokopenya

to one qubit of the state (11) encoding the state (1). Actually, let us define the
following three matrices

matError0 = {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1} };

matErrorX1 = {{1}, {1}, {1}, {X}, {1}, {1}, {1}, {1}, {1} };
matErrorY 1 = {{1}, {1}, {1}, {Y }, {1}, {1}, {1}, {1}, {1} };

The first one corresponds to the case of error absence, while the second and third
matrices simulate the bit-flip and combined bit-flip and phase error in the qubit
|x1〉. Then the state (11) with the qubit |x1〉 corrupted arbitrarily is given by

vecCorrupted = (a ∗matrixU [matError0] + b ∗matrixU [matErrorX1]+

+c ∗matrixU [matErrorY 1]+ d ∗matrixU [matErrorZ1]) . vecOutput1 ; (16)

Here a, b, c, d are arbitrary complex numbers constrained only by the condition
that vector (16) is normalized by 1. After diagnosing and correcting errors we
obtain the vector

vecOutput = matrixU [mat3] . matrixU [mat2] . vecCorrupted ;

which can be represented in the form

vecOutput → |Ψ〉(a|1011〉+ b|0001〉+ c|0000〉+ d|1010〉) .

Thus, the vector |Ψ〉 encoding vector (1) turns out to be restored, while ancillary
qubits are in some superposition of the basis states. Note that final state of the
ancillary qubits is not essential because they should be set into state |0000〉
afterwards to prepare the circuit for diagnosing the next qubit.

4 Conclusion

In this paper, we discussed basic ideas of quantum error correction of noise-
induced errors arising upon transmission of quantum states through commu-
nication channel. These ideas were illustrated first by means of simulation of
bit-flip error arising in one qubit of the three-qubit codeword encoding an arbi-
trary qubit state (1).

It was shown that correction of general type error arising in one qubit requires
at least five-qubit codeword encoding the informational qubit. Nevertheless, our
simulation confirms that quantum error correction is possible if the noise level
in the transmission channel is sufficiently small, and probability of error arising
in one qubit is sufficiently small as well. At the same time, quantum circuit (see
Fig. 8) used for encoding an arbitrary qubit state (1) into five-qubit codeword
is quite cumbersome, and this makes difficult a practical usage of the five-qubit
error-correcting codes. The seven-qubit error-correcting code (see [10]) turns out
to be much more efficient and simpler for implementation, and we are planning
to consider it in our next paper.

For constructing and modeling quantum circuits that correct errors and for
performing all necessary calculations we used here our Mathematica package
QuantumCircuit.

Simulation of Quantum Error Correction with Mathematica 129

Acknowledgement. This work was supported in part by the Russian Founda-
tion for Basic Research, project no. 13-01-00668.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th
ed., Cambridge University Press (2010)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79, 325–328 (1997)

4. Phoenix, S.J.D., Townsend, P.D.: Quantum cryptography: how to beat the code
breakers using quantum mechanics. Contemp. Phys. 36, 165–195 (1995)

5. Gerdt, V.P., Kragler, R., Prokopenya, A.N.: A Mathematica package for simulation
of quantum computation. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2009. LNCS, vol. 5743, pp. 106–117. Springer, Heidelberg (2009)

6. Gerdt, V.P., Prokopenya, A.N.: Some algorithms for calculating unitary matrices
for quantum circuits. Programming and Computer Software 36(2), 111–116 (2010)

7. Gerdt, V.P., Prokopenya, A.N.: The circuit model of quantum computation and its
simulation with mathematica. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP
2011. LNCS, vol. 7125, pp. 43–55. Springer, Heidelberg (2012)

8. Gerdt, V.P., Prokopenya, A.N.: Simulation of quantum error correction by means
of QuantumCircuit package. Programming and Computer Software 39(3), 143–149
(2013)

9. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev.
A 52, R2493–R2496 (1995)

10. Steane, A.M.: Quantum error correction. In: Lo, H.-K., Popescu, S., Spiller, T.
(eds.) Introduction to QuantumComputation and Information, pp. 181–212. World
Scientific, Singapore (1998)

11. Mermin, N.D.: QuantumComputer Science. An Introduction.Cambridge University
Press (2007)

12. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation.
California Institute of Technology (1998)

From the Product Example to PDE Adjoints,

Algorithmic Differentiation and Its Application
(Invited Talk)

Andreas Griewank

Mathematics Department, Humboldt University, Berlin

One Origin of the Reverse Mode

At the last conference on algorithmic or automatic differentiation (AD) in July
2012, Bert Speelpenning gave a very entertaining account of his pioneering work
in the field. After finishing his thesis titled Compiling fast partial derivatives
of functions given by algorithms at Urbana Champain in 1981 he had dropped
from sight of the scientific community and spent a few decades in the software
industry working amongst others for Oracle and Microsoft.

I came across his thesis in 1987 when I took up a position at the mathematics
and computer science division of Argonne National University. Jorge Moré had
picked up his thesis and the associated source transformation tool JAKE, which
he had translated from C to to Fortran, then apparently considered the language
for real numerical types. The official supervisor of Bert S. had been the well
known numerical analyst Bill Gear, and this lead to the plausible story that Bill
G. had asked Bert S. to find a way of accurately and efficiently calculating the
Jacobians of the right hand sides of stiff ODEs for their numerical integration
by Gear’s BDF methods. I propagated that legend as late as June 2012, when
I submitted the article Who invented the reverse mode of differentiation for the
book Optimization Stories edited by Martin Grötschel for the 21. IMSP at Berlin
in August 2012 [Gri12].

Occasionally, I also have spread the notion that Bert had used compiler op-
timization techniques to go from the straight forward application of the chain
rule, known as the forward mode in the AD community, to the reverse mode,
which is much more efficient if there are fewer dependent then independent vari-
ables. Experiments in the nineties with expression simplification algorithms in
Reduce showed, that for the calculation of a determinant y = det(X) as a func-
tion of X ∈ Rn×n, the transition from the forward to the reverse mode could be
achieved only up to an n of about 8. That limit may be considerably higher now.
Nevertheless the janitorial approach, as Bruce Char called it, of first creating
an extensive mess of formulas through forward differentiation and then cleaning
it up by identifying internal redundancies, is certainly still not a recommended
technique.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 130–135, 2013.
c© Springer International Publishing Switzerland 2013

From the Product Example to PDE Adjoints and Algorithmic Differentiation 131

Arthur Sedgwick’s Hunch

In contrast to the plausible myths I perpetuated, Bert told us in July 2012,
that Bill hardly knew him and only took over the supervision formally, when his
actual supervisor Arthur Sedgwick returned to his native Canada to build up
the statistics department at Dalhousie University. Bert related furthermore that
the young professor Arthur S. had been inspired by the gradient calculation for
the extremely simple product example

f(x) =

n∏
i=1

xi ⇒ gj(x) ≡ ∂f(x)

∂xj
=

f(x)

xj
.

The interesting observation here is that once f has been evaluated at the cost
of n − 1 multiplications, the whole gradient g(x) = ∇f(x) can be obtained
using n divisions. In other words the operations count for the gradient is only a
small multiple of that for evaluating the function by itself. The objection that
divisions are more expensive than multiplications and may lead to a NaN if some
component xj is zero may be easily overcome by noting that

gj(x) = yj zj with yj ≡
j−1∏
i=1

xj and zj ≡
n−1∏
i=j

xi+1

Since the partial products yj can be accumulated forward and the zj backward
one sees that

OPS{∇f(x)} ≤ 3 OPS{f(x)} (1)

with the gap between between the gradient cost and its upper bound being very
small in this case. Here OPS represents the classical count of multiplications, but
it may be substituted by other temporal measures of computational complexity
that might also take into account memory access costs. Accordingly, the con-
stant 3 may have to be changed to another small and platform but not problem
depedent constant.

Arthus S. had the daring thought that gradients might always be obtain-
able at a similarly cheap cost and asked Bert S. to look into that. And indeed
Speelpenning demonstrated that this holds generally true by analysing and im-
plementing what we now call the reverse mode of algorithmic differentiation. It
requires absolutely no human intervention or algebraic simplifications, though
efficiency gains can usually be made by manual or automatic post processing.
For the product function above, which is known as the Speelpenning example
in the AD literature, but probably should be called the Sedgwick example now,
the input to the AD tool would be simply the loop for evaluating the partial
products yj for j = 1 . . . n. The reverse loop for evaluating the zj and computig
the gj is then generated by source transformation, or operator overloading, or a
combination thereof.

132 A. Griewank

Other Origins and Destinations

Many computer scientists know the reverse mode as the Baur-Strassen method,
actually published two years later (BS83), for computing gradients of rational
functions that are evaluated by a sequence of arithmetic operations. Here and
throughout references that are not listed in the present bibliography are noted
in round brackets and can be found in the book [GW08]. For the particular case
of matrix algorithms Miller et al proposed the corresponding roundoff analysis
[MW80]. Much more general, Kim, Nesterov et al (KN+84) considered the com-
position of elementary functions from an arbitrary library with bounded gradient
complexity. From a memory and numerical stability point of view the most dif-
ficult aspect of the reverse mode is the reversal of a program. This problem was
discussed in the context of Turing Machines by Benett (Ben73), who foreshad-
owed the use of checkpointing as a tradeoff between numerical computational
effort and memory requirement. From the computer algebra community Erich
Kaltofen [KS91] has been one of the first who understood and applied the reverse
mode. For more historical and anecdotal background on the reverse mode see
[Gri12].

Early Applications and Tool Developments

One of the earliest uses of the reverse mode has been in data assimilation in
weather forecasting and oceanography. This is really just a history match by
a weighted least squares calculation on a time-dependent evolution, where the
parameters to be approximated include the present state of the atmosphere. The
recurrent substantial effort of writing an adjoint code for geophysical models
eventually spawned activities to generate adjoint compilers such as Tapenade
(HP04) and TAF (GK98).

In the 80’s there was also a considerable effort to analyse the safety of nu-
clear reactors using forward simulations and adjoints. The corresponding tool
GRESS/ADGEN [Gre89] used at first only the forward mode but later also the
reverse mode. Unfortunately, that promising tool development effort was aban-
doned in the late nineties. Starting in the mid nineties the tool ADIFOR was
developed and immediately applied to aerodynamical codes at Nasa Langley
[GNH96]. ADIFOR (BC+96) was and is a very stable in the forward mode but
its reverse pendant ADJIFOR never got beyond an early beta stage, mainly due
to the fact that its main designer Alan Carle has to stop working for health
reasons.

The first implementations of the reverse mode based on the alternative soft-
ware technology of operator overloading was done in PASCAL-SC, an extension
of PASCAL for the purposes of interval computation. Rall had already used
Pascal-SC for the forward mode of AD (Rall81).The verified computing commu-
nity has later included the revers mode in their analysis and some but not all of
the software [Kea09].

From the Product Example to PDE Adjoints and Algorithmic Differentiation 133

Forward Mode Based Applications

Of course, there is more to AD than the reverse mode. In fact the idea of
propagating first and higher derivatives forward through a code list of elemen-
tary instructions dates back to the very beginning of programmable computers
(Wen64). This theory was comprehensively described in the monograph (Rall84).
The forward mode of AD yields derivatives with much better accuracy than the
classical approximation by differences. Moreover, using the fact that all intrin-
sic functions are solutions of linear ODE’s one can propagate univariate Taylor
series of length d with a computational complexity of order d2.

This low cost has been exploited in various tools for the numerical integra-
tion of ODEs (CC94), especially also for the computation of periodic orbits. It
has been reported [Phi03] that if one wishes to achieve rather high accuracy
such Taylor expansion based methods are more efficient than Runge Kutta and
other classical integrators. The optimal control of initial value problems in ODEs
leads via the Pontryagin principle to so-called differential algebraic equations.
They can also be efficiently analyzed and integrated by Taylor series methods
as demonstrated in a series of papers by Nedialkov and Pryce [NP07]. There are
many other promising applications, for example in numerical bifurcation, where
higher derivatives need to be calculated selectively.

AD and Adjoints

The cheap gradient principle (1) continues to be the most intriguing result of
AD. It also provides the most serious challenges for an efficient implementation,
especially with respect to the memory management. It may be viewed as a
discrete analog of so called adjoint equations or evolutions. The most serious
competitor of the reverse mode of AD is certainly the hand coding of derivatives.
In the context of ODEs and PDEs, that may mean first writing down an adjoint
equation in an appropriate function space and then discretizing it, hopefully
consistently with the discretization of the original or primal equation.

For an ODE on the unit time interval 0 ≤ t ≤ 1, we may have the primal dual
pair of evolutions

u̇(t) ≡ ∂u(t)/∂t =F(u(t)) with u(0) = x,

˙̄u(t) ≡ ∂ū(t)/∂t =F′(u(t))�ū(t) with ū(1) = ∇f(u(1)).

Here the state u belongs to some Euclidean or Banach space and the adjoint
vector ū to its topological dual. Correspondingly, the right-hand side F(u) and
its dual F′(u)�ū may be strictly algebraic or involve differential operators.

There is an ongoing debate whether it is better to first form the adjoint
equations and then discretize them, or to first discretize the primal equations
and then differentiate them in the reverse mode. Both approaches have fervent
supporters and balancing their advantages and disadvantages is not always easy.
For practical examples of a range of options see the volume [ea12] reporting
results of the DFG priority program 1253.

134 A. Griewank

I was recently asked to judge a large scale and long term industrial project,
where adjoints of a complex CFD code had ben written and maintained by hand
for several years. However, it became harder and harder to keep the primal and
adjoint code versions consistent so that eventually a time lag of more than a year
arose between the introduction of improvements and refinements of the primal
model and the corresponding changes on the adjoint code. Since it was forseable
that the adjoint code could not be kept up to date at all the management decided
to set things up such that the primal code was was developed in a way that allows
the almost instant generation of the primal or dual model using AD tools.

Future Challenges

Of course there is more to AD than the forward and reverse mode. It is well
known that a combination of the two, specifically so-called cross-country elim-
inations on the computational graph can lead to lower operations counts for
the calculation of Jacobian matrices. However, finding the optimal elimination
order is certainly NP hard (Nau06). While this result lends some air of sophis-
tication and possibly even respectability to the whole AD enterprise, it is not
clear whether it is terribly relevant from a practical point of view. Storing and
manipulating the whole computational graph is usually not advisable as it de-
stroys locality of the memory accesses. Of course all this may make sense on the
subroutine or block level, where some peephole optimization can be performed
at a reasonable cost.

Another issue which has been known for a long time but never really tackled
by the AD community is that of nonsmoothness. Many codes, especially space
discretizations of stationary or unstationary PDEs contain abs,min and max as
elementary operations so that the resulting composite function is merely Lips-
chitz but no longer differentiable. While by Rademacher’s theorem the function
will still be almost everywhere differentiable this means that local linearizations
or second order Taylor models will have a very limited range of validity. In my
view piecewise linearizations, which can be generated in an AD fashion open the
door to constructive nonsmooth numerics, for optimization, equation solving and
the integration of dynamical system.

References

[ea12] Gauger, N., et al.: In: Leugering, G., Engell, S., Griewank, A., Hinze, M.,
Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Constrained opti-
mization and optimal control for partial differential equations. International
Series of Numerical Mathematics, pp. 99–122. Springer, Heidelberg (2012)

[GNH96] Green, L.L., Newman, P.A., Haigler, K.J.: Sensitivity derivatives for
advanced CFD algorithm and viscous modeling parameters via automatic
differentiation. J. Comp. Physics 125, 313–325 (1996)

[Gre89] Gress, O.O.: Rsic peripheral shielding routine collection. Technical report,
Oak Ridge National Laboratory, Oak Ridge National Labority, Oak Ridge,
Tennessee (February 1989)

From the Product Example to PDE Adjoints and Algorithmic Differentiation 135

[Gri12] Griewank, A.: Who invented the reverse mode of differentiation. In:
Grötschel, M. (ed.) Optimization Stories, pp. 389–400. Deutsche Mathe-
matikervereinigung, Bielefeld (2012)

[GW08] Griewank, A., Walther, A.: Principles and Techniques of Algorithmic Differ-
entiation, 2nd edn. SIAM (2008)

[Kea09] Kearfott, R.B.: GlobSol user guide. Optimization Methods and Software
24(4-5), 687–708 (2009)

[KS91] Kaltofen, E., Singer, M.F.: Size efficient parallel algebraic circuits for par-
tial derivatives. In: Shirkov, D.V., Rostovtsev, V.A., Gerdt, V.P. (eds.)
IV International Conference on Computer Algebra in Physical Research,
pp. 133–145. World Scientific Publ. (1991)

[MW80] Miller, W.,Wrathall, C.: Software for RoundoffAnalysis ofMatrix Algorithms.
Academic Press (1980)

[NP07] Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Tay-
lor series (I): Computing the system jacobian. BIT 47(1), 121–135 (2007)

[Phi03] Phipps, E.T.: Taylor Series Integration of Differential-Algebraic Equations:
Automatic Differentiation as a Tool for Simulating Rigid Body Mechanical
Systems. PhD thesis, Cornell University (2003)

Polynomial Complexity of Solving Systems

of Few Algebraic Equations with Small Degrees

Dima Grigoriev

CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France
Dmitry.Grigoryev@math.univ-lille1.fr

http://logic.pdmi.ras.ru/~grigorev

Abstract. An algorithm is designed which tests solvability of a system
of k polynomial equations in n variables with degrees d within complexity

polynomial in nd3k . If the system is solvable then the algorithm yields
one of its solutions. Thus, for fixed d, k the complexity of the algorithm
is polynomial.

Keywords: polynomial complexity, solving systems of few equations,
small degrees.

Introduction

Consider a system of polynomial equations

f1 = · · · = fk = 0, (1)

where f1, . . . , fk ∈ Z[X1, . . . , Xn], deg fi ≤ d, 1 ≤ i ≤ k. The algorithm from [1],

[2] (see also [3]) solves (1) within complexity polynomial in M, k, dn
2

, where M
denotes the bound on bit-sizes of (integer) coefficients of polynomials f1, . . . , fk.
Moreover, this algorithm finds the irreducible components of the variety in Cn

determined by (1). We mention also that in [4] an algorithm is designed which
tests solvability of (1) reducing it to a system of equations over R, within a
better complexity polynomial in M, (k · d)n. We note that the algorithm from
[4] tests solvability of (1) and outputs a solution, provided that (1) is solvable,
rather than finds the irreducible components as the algorithms from [1], [2].

In the present paper we design an algorithm which tests solvability of (1)

within complexity polynomial in M ·
(
n+d3k

n

)
≤ M · nd3k

, which provides poly-

nomial (in the size M · k ·
(
n+d
n

)
of the input system (1)) complexity when d, k

being fixed. If (1) is solvable then the algorithm yields one of its solutions. Note
that the algorithm from [4] has a polynomial complexity when, say d > n2 and
k being polynomial in n; when d is close to n the complexity is subexponential,
while for small d the complexity is exponential.

We mention that in [5] an algorithm was designed testing solvability of (1) over
R (and finding a real solution, provided that it does exist) within the complexity
polynomial in M, n2k for quadratic equations (d = 2), and moreover, one can
replace equations by inequalities.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 136–139, 2013.
c© Springer International Publishing Switzerland 2013

http://logic.pdmi.ras.ru/~grigorev

Polynomial Complexity of Solving Systems 137

It would be interesting to clarify, for which relations between n, k, and d the
complexity of solvability of (1) is polynomial. In particular, when d = 2 and k
is close to n the problem of solvability is NP -hard.

1 Testing Points for Sparse Polynomials

Recall (see [6]) a construction of testing points for sparse polynomials in n vari-
ables. Let pi denote the ith prime and sj = (pj1, . . . , p

j
n) ∈ Zn, j ≥ 0 be a

point. A polynomial f ∈ C[X1, . . . , Xn] is called t-sparse if it contains at most t
monomials.

Lemma 1. For a t-sparse polynomial f there exists 0≤j<t such that f(sj) �=0.

The proof follows from the observation that writing f =
∑

1≤l≤t al · XIl

where coefficients al ∈ C and XIl are monomials, the equations f(sj) = 0, 0 ≤
j < t lead to a t × t linear system with Vandermonde matrix and its solution
(a1, . . . , at). Since Vandermonde matrix is nonsingular, the obtained contradic-
tion proves the lemma.

The substitution of points sj was first introduced in the proof of theorem 1
[6].

Corollary 1. Let deg f ≤ D. There exists 0 ≤ j <
(
n+D
n

)
such that f(sj) �= 0.

2 Reduction of Solvability to Systems in Few Variables

The goal of this section is to reduce testing solvability of (1) to testing solvability
of several systems in k variables.

Let V ⊂ Cn be an irreducible (over Q) component of the variety determined
by (1). Observe that the algorithm described in the next Section does not need
to produce V . Then dimV =: m ≥ n−k and deg V ≤ dn−m ≤ dk due to Bezout
inequality [7].

Let variables Xi1 , . . . , Xim constitute a transcendental basis over C of the
field C(V) of rational functions on V , clearly such i1, . . . , im do exist. Then
the degree of fields extension e := [C(V) : C(Xi1 , . . . , Xim)] ≤ degV equals the
typical (and at the same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . , Xim = cm} for different c1, . . . , cm ∈ C, provided that this
intersection being finite. Observe that for almost all vectors (c1, . . . , cm) ∈ Cn

the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i
=i1,...,im

bi ·Xi of the extension C(V)
of the field C(Xi1 , . . . , Xim) for appropriate integers bi [8] (moreover, one can
take integers 0 ≤ bi ≤ e for all i, see e. g. [1], [2], but we do not need here these
bounds). Moreover, there exist n − m linearly over C independent primitive
elements Y1, . . . , Yn−m of this form. One can view Y1, . . . , Yn−m, Xi1 , . . . , Xim as
new coordinates.

Consider a linear projection πl : Cn → Cm+1 onto the coordinates
Yl, Xi1 , . . . , Xim , 1 ≤ l ≤ n−m. Then the closure πl(V) ⊂ Cm+1 is an irreducible

138 D. Grigoriev

hypersurface, so dimπl(V) = m. Denote by gl ∈ Q[Yl, Xi1 , . . . , Xim] the minimal
polynomial providing the equation of πl(V). Then deg gl = deg πl(V) ≤ deg V
[7] and degYl

gl = e, taking into account that Yl is a primitive element.
Rewriting gl =

∑
q≤e Y

q
l · hq, hq ∈ Q[Xi1 , . . . , Xim] as a polynomial in a

distinguished variable Yl, we denote Hl := he · DiscYl
(gl) ∈ Q[Xi1 , . . . , Xim],

where DiscYl
denotes the discriminant with respect to the variable Yl (the

discriminant does not vanish identically since Yl is a primitive element). We
have degHl ≤ dk + d2k. Consider the product H :=

∏
1≤l≤n−mHl, then

D := degH ≤ (n−m) · (dk + d2k) ≤ d3k.

Due to Corollary 1 there exists 0 ≤ j <
(
D+m
D

)
≤ md3k

such that H(sj) =

H(pj1, . . . , p
j
m) �= 0. Observe that the projective intersection V ∩ {Xi1 = pj1 ·

X0, · · · , Xim = pjm ·X0} in the projective space PCn ⊃ Cn with the coordinates
[X0 : X1 : · · · : Xn] consists of e points, where V denotes the projective closure
of V . On the other hand, coordinate Yl of the points of the affine intersection
V ∩ {Xi1 = pj1, . . . , Xim = pjm} attains e different values, taking into account
that Hl(sj) �= 0, 1 ≤ l ≤ n − m. Therefore, all e points from the projective
intersection lie in the affine chart Cn. Consequently, the intersection V ∩{Xi1 =
pj1, . . . , Xim = pjm} is not empty.

3 Test of Solvability and Its Complexity

Thus, to test solvability of (1) the algorithm chooses all possible subsets
{i1, . . . , im} ⊂ {1, . . . , n} with m ≥ n − k treating Xi1 , . . . , Xim as a candi-
date for a transcendental basis of some irreducible component V of the variety
determined by (1). The number of these choices is bounded by

(
n
m

)
< nk. Af-

ter that for each 0 ≤ j <
(
D+m
D

)
where D ≤ d3k, the algorithm substitutes

Xi1 = pj1, . . . , Xim = pjm into polynomials f1, . . . , fk and solves the resulting
system of polynomial equations in n −m ≤ k variables applying the algorithm
from [1], [2]. The complexity of each of these applications does not exceed a

polynomial in M ·
(
D+m
D

)
· d(n−m)2 , i. e., a polynomial in M · nd3k

. Moreover,
the algorithm from [1], [2] yields an algebraic numbers solution of a system,
provided that it does exist, in the symbolic way as follows. The algorithm pro-
duces an irreducible over Q polynomial φ(Z) ∈ Q[Z] with degree deg(φ) ≤ dn−m

and polynomials φi(Z) ∈ Q[Z], 1 ≤ i ≤ n, i �= i1, . . . , im such that for a root
θ ∈ Q of φ(θ) = 0 the point (x1, . . . , xn) ∈ Q

n
with xi1 = pj1, . . . , xim = pjm and

xi = φi(θ), 1 ≤ i ≤ n, i �= i1, . . . , im is a solution of (1).
Summarizing, we obtain the following theorem.

Theorem 1. One can test solvability over C of a system (1) of k polynomials
f1, . . . , fk ∈ Z[X1, . . . , Xn] with degrees d within complexity polynomial in M ·(
n+d3k

n

)
≤ M · nd3k

, where M bounds the bit-sizes of (integer) coefficients of
f1, . . . , fk. If (1) is solvable then the algorithm yields one of its solutions.

Corollary 2. For fixed d, k the complexity of the algorithm is polynomial.

Polynomial Complexity of Solving Systems 139

The construction and the Theorem extend literally to polynomials with coeffi-
cients from a field F of characteristic zero (for complexity bounds one needs that
the elements of F are given in an efficient way). For F of a positive characteristic
one can obtain similar results replacing the zero test from Section 1 by the zero
test from [9].

Acknowledgements. The author is grateful to the Max-Planck Institut für
Mathematik, Bonn for its hospitality during writing this paper and to Labex
CEMPI (ANR-11-LABX-0007-01).

References

1. Chistov, A.: An algorithm of polynomial complexity for factoring polynomials, and
determination of the components of a variety in a subexponential time. J. Soviet
Math. 34, 1838–1882 (1986)

2. Grigoriev, D.: Polynomial factoring over a finite field and solving systems of algebraic
equations. J. Soviet Math. 34, 1762–1803 (1986)

3. Chistov, A., Grigoriev, D.: Complexity of quantifier elimination in the theory of
algebraically closed fields. In: Chytil, M.P., Koubek, V. (eds.) Mathematical Foun-
dations of Computer Science 1984. LNCS, vol. 176, pp. 17–31. Springer, Heidelberg
(1984)

4. Renegar, J.: On the computational complexity and geometry of the first-order theory
of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. J. Symbolic Comput. 13,
255–299 (1992)

5. Grigoriev, D., Pasechnik, D.: Polynomial-time computing over quadratic maps I.
Sampling in real algebraic sets. Computational Complexity 14, 20–52 (2005)

6. Grigoriev, D., Karpinski, M.: The matching problem for bipartite graphs with poly-
nomially bounded permanents is in NC. In: Proc. 28 Symp. Found. Comput. Sci.,
pp. 166–172. IEEE, New York (1987)

7. Shafarevich, I.: Foundations of algebraic geometry. MacMillan Journals (1969)
8. Lang, S.: Algebra. Springer (2002)
9. Grigoriev, D., Karpinski, M., Singer, M.: Fast parallel algorithms for sparse multi-

variate polynomial interpolation over finite fields. SIAM J. Comput. 19, 1059–1063
(1990)

Computing Divisors and Common Multiples of

Quasi-linear Ordinary Differential Equations

Dima Grigoriev1 and Fritz Schwarz2

1 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France
Dmitry.Grigoryev@math.univ-lille1.fr

http://logic.pdmi.ras.ru/~grigorev
2 Fraunhofer Gesellschaft, Institut SCAI 53754 Sankt Augustin, Germany

fritz.schwarz@scai.fraunhofer.de

http://www.scai.fraunhofer.de/schwarz.html

Abstract. If solutions of a non-linear differential equation may be ob-
tained by specialization of solutions of another equation we say that
the former equation is a generalized divisor of the latter one. We design
an algorithm which finds first-order quasi-linear generalized divisors of a
second-order quasi-linear ordinary differential equation. If solutions of an
equation contain solutions of a pair of equations we say that the equation
is a common multiple of the pair. We prove that a quasi-linear common
multiple of a pair of quasi-linear equations always exists and design an
algorithm which yields a quasi-linear common multiple.

Keywords: quasi-linear ordinary differential equations, divisor of equa-
tions, multiple of equations.

Introduction

The problem of factoring linear ordinary differential operators L = T ◦ Q was
studied in [1]. Algorithms for this problem were designed in [2], [3] (in [2] a
complexity bound better than for the algorithm from [1] was established). In [4]
an algorithm is exhibited for factoring a partial linear differential operator in two
variables with a separable symbol. In [5] an algorithm is constructed for finding
all first-order factors of a partial linear differential operator in two variables. A
generalization of factoring for D-modules (in other words, for systems of linear
partial differential operators) was considered in [6]. A particular case of factoring
for D-modules is the Laplace problem [7], [8] (one can find a short exposition of
the Laplace problem in [9]).

The meaning of factoring for search of solutions is that any solution of operator
Q is a solution of operator L, thus factoring allows one to diminish the order of
operators or its differential dimension.

Much less is known for factoring non-linear (even ordinary) differential equa-
tions. In Section 1, we design an algorithm for finding (first-order) generalized
divisors of a second-order quasi-linear differential equation.

We note that our definition of generalized divisors is in the framework of
differential ideals [12] rather than the definition of factorization from [10], [11]

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 140–147, 2013.
c© Springer International Publishing Switzerland 2013

http://logic.pdmi.ras.ru/~grigorev
http://www.scai.fraunhofer.de/schwarz.html

Computing Divisors and Common Multiples 141

being in terms of a composition of nonlinear ordinary differential polynomials.
A decomposition algorithm is designed in [11].

One can also introduce a different (from [10], [11]) concept of composition
(which yields generalized divisors) as follows. For a differential field K consider

an operator A =
∑

0≤i≤n ai · di

dxi acting on the algebra K{y} of differential
polynomials in y [12] where the coefficients ai ∈ K{y}, the result of the action
we denote by A ∗ z ∈ K{y} for z ∈ K{y}. Clearly, z is a generalized divisor
of A ∗ z. In Section 1, we show, conversely, that if a quasi-linear z ∈ K{y} is a
generalized divisor of v ∈ K{y} then v = A ∗ z for an appropriate operator A.

Easy examples demonstrate that the two considered compositions differ from
each other. In the sense of [10], [11] we have 1 = 1◦ z for an arbitrary z ∈ K{y},
while 1 cannot be represented as A ∗ y. On the other hand, y · y′ = y ∗ y′, while
one cannot represent y · y′ as g ◦ y′ for any g ∈ K{y}.

In Section 2, we define a common multiple of a pair of equations as an equa-
tion satisfied by the solutions of both equations. We prove the existence of a
quasi-linear common multiple for any pair of quasi-linear differential equations,
design an algorithm for computing a quasi-linear common multiple and bound its
complexity in terms of Grzegorczyk’s hierarchy of primitive-recursive functions.

It would be interesting to extend the algorithm from Section 1 to equations of
arbitrary order and from quasi-linear to arbitrary non-linear ordinary equations,
and then possibly to partial differential equations.

1 A Bound on the Degree and an Algorithm for
Generalized Divisors

We study second-order non-linear ordinary differential equations of the form

y′′ = f(y′, y, x) (1)

for a polynomial f ∈ Q[z, y, x]. We assume the coefficients of polynomials to
be algebraic since we are interested in algorithms, although for the purpose of
bounds (see below) one can consider coefficients from an arbitrary field with
characteristic zero.

Definition 1. We say that a first-order equation

y′ = p(y, x) (2)

is a generalized divisor of (1), where p ∈ Q[y, x], if any y satisfying (2) is a
solution of (1).

It suffices to verify the condition in the definition just for generic y [12], i. e., y
satisfying only the differential polynomials from the differential ideal generated
by y′ − p(y, x). In particular, y is algebraically independent of x over Q.

142 D. Grigoriev and F. Schwarz

Lemma 1. If (2) is a generalized divisor of (1) then the differential polynomial
y′′ − f(y′, y, x) has the form A ∗ (y′ − p(y, x)) for an operator A = d

dx + a0 with

a suitable differential polynomial a0 ∈ Q[y′, y, x].
The converse statement is evident.

Proof. Dividing with remainder (with respect to y′) the differential polynomial

u := y′′ − f(y′, y, x)− (y′ − p(y, x))′ ∈ Q[y′, y, x]

by y′ − p(y, x), we get a differential polynomial a0 ∈ Q[y′, y, x] such that u =
a0 · (y′ − p(y, x)) + v for suitable v ∈ Q[y, x]. Any solution y of (2) is a solution
of v, hence v ≡ 0 since y is algebraically independent of x.

Remark 1. i) The proof of Lemma 1 provides an algorithm to test whether (2)
is a generalized divisor of (1).

ii) Lemma 1 holds for an arbitrary quasi-linear differential polynomial of the
form y(n) − pn(y

(n−1), . . . , y, x) in place of (2) and for an arbitrary differential
polynomial (not necessary quasi-linear) in place of (1).

From (2) we have

y′′ =
∂p

∂y
· p+ ∂p

∂x
.

Substituting this into (1) and rewriting

f(y′, y, x) =
∑

0≤i≤l

fi · (y′)i (3)

where fi ∈ Q[y, x], we get

∂p

∂y
· p+ ∂p

∂x
=
∑

0≤i≤l

fi · pi. (4)

Observe that (4) is equivalent to that (2) is a generalized divisor of (1).
Then (4) implies that

p
∣∣(f0 − ∂p

∂x
). (5)

Hence either degx p ≤ degx f0 or f0 = ∂p
∂x . Indeed, expand p =

∑
0≤j≤k aj · xj

for certain polynomials aj ∈ Q[y], ak �= 0. If k = degx p > degx f0 then deg(f0 −
∂p
∂x) < k, therefore, f0 = ∂p

∂x due to (5).

In a similar way, we claim that either degy p ≤ degy f0 or f0 = ∂p
∂x . Indeed,

expand p =
∑

0≤i≤m bi · yi for certain polynomials bi ∈ Q[x], bm �= 0. If m =

degy p > degy f0 then the coefficient of f0 − ∂p
∂x at monomial ym equals −∂bm

∂x . If
∂bm
∂x �= 0, and thereby ym is the leading monomial of f0 − ∂p

∂x with respect to the

expansion in y, we get a contradiction with (5). Therefore, ∂bm
∂x = 0 and f0 = ∂p

∂x
due to (5), which proves the claim.

Computing Divisors and Common Multiples 143

So, it remains to consider the case f0 = ∂p
∂x . Then (4) entails that

∂p

∂y
=
∑

0≤i≤l−1

fi+1 · pi,

hence p|(f1 − ∂p
∂y). Arguing as above, we deduce that either degx p ≤

degx f1, degy p ≤ degy f1 or f1 = ∂p
∂y .

We note that in the latter case f1 = ∂p
∂y , f0 = ∂p

∂x ; hence
∑

2≤i≤l fi · pi−2 = 0

because of (4), and p is determined uniquely up to an additive constant. More-
over, in this case degx p ≤ 1 + degx f0, degy p ≤ 1 + degy f1.

Summarizing, we conclude with the following theorem.

Theorem 1. i) If (2) is a generalized divisor of (1) then either degx p ≤
degx f, degy p ≤ degy f or f1 = ∂p

∂y , f0 = ∂p
∂x , see (3); this determines p up to an

additive constant; in the latter case degx p ≤ 1 + degx f0, degy p ≤ 1 + degy f1.
ii) An algorithm which either constructs a generalized divisor (2) of (1) or

finds out that it does not exist, looks for polynomial p with indeterminate coeffi-
cients from Q satisfying the degree bounds

degx p ≤ max{degx f, 1 + degx f0}, degy p ≤ max{degy f, 1 + degy f1}
from item i), solving (4) as a system of polynomial equations in the indeterminate
coefficients of p.

Example 1. Consider the equation

E ≡ y′′ + (x + 3y)y′ + y3 + xy2 = 0. (6)

According to the above theorem degxE = 1 and degy E = 3, i.e., degx p ≤ 1 and

degy p ≤ 3. The second alternative ∂p
∂x = f0 = −xy2 − y3, ∂p

∂y = f0 = −x − 3y
does not apply because this system for p is inconsistent. Proceeding as described
above, two divisors are obtained and the representations

E ≡ (y′+y2)′+(y+x)(y′+y2) and E = (y′+y2+xy−1)′+y(y′+y2+xy−1)

follow. They yield the two one-parameter solutions

y =
1

x+ C
and y =

1

x
+

1

x2
exp
(
− 1

2x
2
)∫

exp
(
− 1

2x
2
)
dx
x2 + C

respectively.

An extension of the definition of a generalized divisor is the definition of a first
integral.

144 D. Grigoriev and F. Schwarz

Definition 2. We say that y′−p(y, x) is a first integral of (1) if for any constant
c any solution y of equation y′ − p(y, x) = c is also a solution of (1).

Denote by A(c) a formula obtained from (4) by means of replacing p with p+c.
Arguing as above, we get that y − p(y, x) is a first integral of (1) iff A(c) holds
for any constant c. We obtain the same bound on deg p as in Theorem i). The
algorithm for finding first integrals applies a quantifier elimination procedure to
the following formula of the first-order theory of algebraically closed fields:

∃P∀cA(c)

where P denotes the vector of indeterminate coefficients of polynomial p. Thus,
the algorithm finds the constructible set of all vectors P for which ∀cA(c) holds.
These vectors P provide all first integrals of (1).

2 Computing Common Multiples of Quasi-linear
Differential Equations

Definition 3. We say that a differential equation f = 0 is a common multiple
of equations f1 = 0 and f2 = 0 if solutions of f = 0 contain solutions of both
f1 = 0 and f2 = 0.

The goal of this Section is to design an algorithm which for a given pair of
quasi-linear ordinary differential equations yields a quasi-linear common multi-
ple. To simplify the notation we assume that the equations are of first order:
y′ = p(y, x) and y′ = q(y, x) where polynomials p, q ∈ Q[y, x], although one can
extend the algorithm to equations of arbitrary orders almost literally.

Treating y as a generic solution [12] of either of two given equations, one can
assume that y is algebraically independent of x over Q.

First, the algorithm looks for a common multiple being a quasi-linear second-
order equation y′′ = s(y′, y, x) for a suitable polynomial s(z, y, x) ∈ Q[z, y, x].
Hence

s(p, y, x) = p′ =
∂p

∂y
· p+ ∂p

∂x
, s(q, y, x) = q′ =

∂q

∂y
· q + ∂q

∂x
.

Therefore

s(z, y, x) = r · (z − p) +
∂p

∂y
· p+ ∂p

∂x
= t · (z − q) +

∂q

∂y
· q + ∂q

∂x

for appropriate polynomials r, t ∈ Q[z, y, x], whence

(t− r) · (z − q) + r · (p− q) = (
∂p

∂y
· p+ ∂p

∂x
)− (

∂q

∂y
· q + ∂q

∂x
). (7)

Computing Divisors and Common Multiples 145

There exist r, t ∈ Q[z, y, x] which fulfil (7) iff

(p− q) | (∂p
∂y

· p+ ∂p

∂x
)− (

∂q

∂y
· q + ∂q

∂x
).

If the latter relation holds, i. e., r · (p − q) = (p − q)′ for a suitable r ∈ Q[y, x],
one can put t := r to get (7) and take s(z, y, x) := r · (z−p)+p′ = r · (z− q)+ q′

to obtain a quasi-linear common multiple y′′ = s(y′, y, x). Conversely, when
(7) holds, we substitute in it z = q. Thus, there exists a quasi-linear common
multiple of the second order of a pair of equations y′ = p(y, x), y′ = q(y, x) iff
(p− q)′ ∈ 〈p− q〉, where 〈p− q〉 denotes the ideal generated by p− q.

More generally, following the same argument one can prove that

Lemma 2. There exists a quasi-linear common multiple of the order n+1 of a
pair of first-order equations y′ = p(y, x), y′ = q(y, x) iff n-th derivative

(p− q)(n) ∈ 〈p− q, (p− q)(1), . . . , (p− q)(n−1)〉.

More explicitly, if the latter relation holds, i. e., (p− q)(n) =
∑

0≤i<n ri · (p−
q)(i) for some polynomials ri ∈ Q[y, x], 0 ≤ i < n then for polynomial

sn(zn, . . . , z1, y, x) :=
∑

0≤i<n

ri · (zi+1 − p(i)) + p(n) =
∑

0≤i<n

ri · (zi+1 − q(i))+ q(n)

equation y(n+1) = sn(y
(n), . . . , y′, y, x) is a required quasi-linear common multi-

ple.

For the proof we observe that y(n+1) = sn(y
(n), . . . , y′, y, x) for a polynomial

sn ∈ Q[zn, . . . , z1, y, x] is a common multiple iff

sn(p
(n−1), . . . , p, y, x) = p(n), sn(q

(n−1), . . . , q, y, x) = q(n).

Therefore,

sn(zn, . . . , z1, y, x)− p(n) ∈ 〈zn − p(n−1), . . . , z1 − p〉,

sn(zn, . . . , z1, y, x) − q(n) ∈ 〈zn − q(n−1), . . . , z1 − q〉.

Subtracting two latter equalities we complete the proof of the lemma.

One can directly extend the lemma to a quasi-linear common multiple of a
pair of quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain

Corollary 1. Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

Moreover, from the explicit bound on the Idealbasissatz [13] we obtain

146 D. Grigoriev and F. Schwarz

Corollary 2. Any pair of ordinary quasi-linear differential equations

y(k) = pk(y
(k−1), . . . , y, x), y(k) = qk(y

(k−1), . . . , y, x)

of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a quasi-linear
common multiple of order g(d), where g is a primitive-recursive function from
the class Ek+2 of Grzegorczyk’s hierarchy [14], [15].

This provides also a complexity bound of similar order of magnitude of the
algorithm which looks for a quasi-linear common multiple by trying consecutively
increasing orders of a candidate and solving the membership problem to an ideal
(see Lemma 2), say, with the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) the function g(d) grows
exponentially.

Example 2. Let E1 ≡ y′ + y2 = 0 and E2 ≡ y′ + y = 0. By Lemma 2 a multiple
of order 2 does not exist; however, there is the following multiple of order 3
involving a parameter C:

E3 ≡ y′′′ + (C − 4)yy′′ + (C + 1)y′′ + (2C − 2)y′2 + (2C + 2)yy′ + Cy′ + Cy2.

For C = 0 it simplifies to

E0 ≡ y′′′ + 4yy′′ + y′′ − 2y′2 + 2yy′ = 0.

Applying again Theorem 1 the factors y′ + y2, y′ + y and y′ are obtained.

The next example is interesting because it allows to determine the general
solution of all equations involved.

Example 3. Let E1 ≡ y′ + y2 = 0 and E2 ≡ y′ = 0 with solutions y = 1
x+C and

y = C, respectively. The multiple of E1 and E2 yields y′′ + 2yy′ = 0 with the
first integral y′ + y2 = C. Its general solution is y = C1 tan

(
C2 −C1x

)
. It is not

obvious how the latter solution is related to the two solutions involving a single
parameter.

Remark 2. The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh

(
C2+C1x

)
; the two representations

are transformed into each other by multiplying the constants with the complex
unit i and representing them in terms of exponentials. From the latter represen-
tation the constant solution may be obtained by taking the limit C2 → ∞. The
first integral y′ + y2 = C generalizes the divisor E1; its existence simplifies the
solution procedure because it provides already one of the constants involved in
the general solution of the second-order equation.

Acknowledgements. The first author is grateful to the Max-Planck Institut
für Mathematik, Bonn for its hospitality during writing this paper and to Labex
CEMPI (ANR-11-LABX-0007-01). Both authors are thankful to an anonymous
referee whose remarks have encouraged to improve the exposition.

Computing Divisors and Common Multiples 147

References

1. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen II.
Teubner, Leipzig (1897)

2. Grigoriev, D.: Complexity of factoring and GCD calculating of ordinary linear
differential operators. J. Symb. Comput. 10, 7–37 (1990)

3. Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In:
Proc. Intern. Symp. Symbol. Algebr. Comput., pp. 17–25. ACM Press, New York
(1989)

4. Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equa-
tions. Computing 73, 179–197 (2004)

5. Grigoriev, D.: Analogue of Newton-Puiseux series for non-holonomic D-modules
and factoring. Moscow Math. J. 9, 775–800 (2009)

6. Grigoriev, D., Schwarz, F.: Loewy and primary decompositions of D-modules. Adv.
Appl. Math. 38, 526–541 (2007)

7. Goursat, E.: Leçons sur l’intégration des équations aux dérivées partielles du 2nd
ordre, Hermann, Paris, vol. II (1898)

8. Tsarev, S.: Generalized Laplace transformations and integration of hyperbolic sys-
tems of linear partial differential equations. In: Proc. Intern. ACM Symp. Symbol.
Algebr. Comput., pp. 325–331. ACM Press, New York (2005)

9. Grigoriev, D., Schwarz, F.: Non-holonomic ideal in the plane and absolute factoring.
In: Proc. Intern. ACM Symp. Symbol. Algebr. Comput., pp. 93–97. ACM Press,
New York (2010)

10. Tsarev, S.: On factorization of nonlinear ordinary differential equations. In: Proc.
Intern. ACM Symp. Symbol. Algebr. Comput., pp. 159–164. ACM Press, New York
(1999)

11. Gao, X.-S., Zhang, M.: Decomposition of ordinary differential polynomials. Appl.
Alg. Eng. Commun. Comput. 19, 1–25 (2008)

12. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York
(1973)

13. Seidenberg, A.: On the length of a Hilbert ascending chain. Proc. Amer. Math.
Soc. 29, 443–450 (1971)

14. Grzegorczyk, A.: Some classes of recursive functions. Rozprawy Matematiczne 4,
1–44 (1953)

15. Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and its
Applications 21 (1986)

Complexity in Tropical Algebra

(Invited Talk)

Dima Grigoriev

CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France
Dmitry.Grigoryev@math.univ-lille1.fr

http://logic.pdmi.ras.ru/~grigorev

Abstract. We give a survey on complexity results in tropical algebra.

Keywords: tropical semi-ring, solving tropical linear systems, complex-
ity, dual Nullstellensatz.

1 Introduction and Basic Concepts

The basic concept of tropical algebra is the tropical semi-ring (see e. g. [1], [2]) T
endowed with operations ⊕, ⊗. Thus, a tropical semi-ring is a semi-group w.r.t.
each of the two operations.

If T is an ordered semi-group then T is a tropical semi-ring with inherited
operations ⊕ := min, ⊗ := +. If T is an ordered group then T is a tropical
semi-skew-field w.r.t. the tropical division (:= −. If, in addition, T is abelian,
then it is a tropical semi-field.

Examples • Z+ := {0 ≤ a ∈ Z}, Z+
∞ := Z+ ∪ {∞} are commutative tropical

semi-rings. The element ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n×n matrices over Z∞ form a non-commutative tropical semi-ring with the

tropical multiplication: (aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Now we recall the concept of a tropical polynomial. First we define a tropical
monomial x⊗i := x⊗· · ·⊗x, Q = a⊗x⊗i1

1 ⊗· · ·⊗x⊗in
n , its tropical degree trdeg =

i1+ · · ·+ in. Then Q = a+ i1 ·x1+ · · ·+ in ·xn is a linear function in the classical
notations. A tropical polynomial f =

⊕
j(aj ⊗ x

ij1
1 ⊗ · · · ⊗ x

ijn
n) = minj{Qj} is

a convex piecewise linear function in the classical language.
A vector x = (x1, . . . , xn) is called a tropical zero of f if minimum minj{Qj}

is attained for at least two different values of j.
If T is an ordered semi-group then a tropical linear function over T n can be

written as min1≤i≤n{ai + xi}.
Tropical linear system

min
1≤j≤n

{ai,j + xj}, 1 ≤ i ≤ m (1)

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 148–154, 2013.
c© Springer International Publishing Switzerland 2013

http://logic.pdmi.ras.ru/~grigorev

Complexity in Tropical Algebra 149

(or (m×n)-matrix A = (ai,j)) has a tropical solution x = (x1 . . . , xn) if for every
row 1 ≤ i ≤ m there are two columns 1 ≤ k < l ≤ n such that

ai,k + xk = ai,l + xl = min
1≤j≤n

{ai,j + xj} .

Coefficients ai,j ∈ Z∞ := Z ∪ {∞}. Not all xj = ∞. For ai,j ∈ Z we assume
0 ≤ ai,j ≤ M .

When m < n system (1) always has a solution (due to a tropical analogue of
the Cramer’s rule).

An n×n matrix A = (ai,j) is tropically non-singular if minπ∈Sn{a1,π(1) +
· · · + an,π(n)} is attained for a unique permutation π. System (1) with n × n
matrix has a tropical linear solution iff matrix A is tropically singular.

2 Complexity of Solving Tropical Linear Systems

Theorem 1. One can solve anm×n tropical linear system (1) within complexity
polynomial in n,m,M .

Moreover, the algorithm either finds a solution over Z∞ or produces an n×n
tropically nonsingular submatrix of A ([3], [4]).

Note that the size of the input (1) of the algorithms is polynomial in
n, m, logM , thereby, the complexity of the algorithms in Theorem 1 is expo-
nential (in logM).

Corollary 1. The problem of solvability of tropical linear systems is in the com-
plexity class NP ∩ coNP .

Remark 1. i) The algorithm from [4] has also a complexity bound polynomial
in 2nm, logM (improved in [5] to

(
m+n
n

)
, logM) as well as an obvious algorithm

which invokes linear programming.
ii) In [5] a family of matrices A with M) 2n) 2m was constructed for which

the algorithm from [4] runs with exponential complexity Ω(M).
iii) In [6] an example of A = aij with m = 2, n = 3 where a11 = a12 =

a21 = 0, a22 = 1, a13 = a23 = M such that the algorithm from [3] runs with
exponential complexity Ω(M). Observe that a similar example with a constant
size matrix for the algorithm from [4] would be impossible due to i).

Question. Are tropical linear systems solvable within polynomial (in
n, m, logM) complexity (i. e., in the complexity class P)?

3 Tropical, Kapranov and Barvinok Ranks

Unlike the classical linear algebra in the tropical linear algebra at least three
different concepts of rank of a matrix are considered [7]. The first concept is
similar to its classical counterpart. The tropical rank trk(A) of matrix A is
the maximal size of its tropically nonsingular square submatrices.

150 D. Grigoriev

Now we introduce the second concept. A lifting of A is a matrix F = (fi,j)
over the field of Newton-Puiseux seriesK = R((t1/∞)) for a field R such that the
order ordt(fi,j) = ai,j where fi,j = b1 · tq1 + b2 · tq2 + · · · with rational exponents
ai,j = q1 < q2 < · · · having common denominator, or fi,j = 0 when ai,j = ∞.

Kapranov rank KrkR(A) equals the minimum of ranks (over K) of liftings
of A.

Finally, the third concept ofBarvinok rankBrk(A) is defined as the minimal
q such that A = (u1 ⊗ v1)⊕ · · · ⊕ (uq ⊗ vq) for suitable vectors u1, . . . , vq over T .

It is known that trk(A) ≤ KrkR(A) ≤ Brk(A), and both inequalities can be
strict [7].

The following is known on the complexity of computing ranks.
• For n× n matrix B testing trk(B) = n (⇔ B is tropically nonsingular) has

polynomial complexity [8];
• Testing trk(A) = r is NP -hard, testing trk(A) ≥ r is NP -complete [9];
• Solvability of polynomial equations over R is reducible to KrkR(A) = 3

[10]. Thus, KrkR(A) can be incomputable, say when R = GF [p](t);
• Testing Brk(A) ≤ r is NP -complete [10].

Similar to the classical linear algebra we get from the algorithm designed in
the proof of Theorem 1 a criterion on solvability of a tropical linear system.

Corollary 2. The following statements are equivalent
1) a tropical linear system with m× n matrix A has a solution;
2) trk(A) < n;
3) KrkR(A) < n.

Remark 2. • The corollary holds for matrices over R∞ [4].
• For matrices A over R the corollary was proved in [7].
• Equivalence of 1) and 2) was established in [11].

The set of solutions of (1) called a tropical linear prevariety is a contractible
union of convex polyhedra in Rn [2]. One can treat a tropical linear prevariety
as a subset of the tropical projective space in which two vectors from Rn are
identified iff their difference is a mulptiple of vector (1, . . . , 1). Unlike the clas-
sical linear algebra it is difficult to compute the dimension of a tropical linear
prevariety.

Proposition 1. One can test uniqueness (in the tropical projective space) of a
solution of a tropical linear system (i. e., whether the dimension of a tropical
linear prevariety equals 0) within complexity polynomial in n,m,M [4].

Theorem 2. Computing the dimension of a tropical linear prevariety is NP -
complete [6].

System (1) is homogeneous, one can solve also tropical nonhomogeneous linear
systems.

Proposition 2. One can test solvability of a tropical nonhomogeneous linear
system

Complexity in Tropical Algebra 151

min1≤j≤n{ai,j + xj , ai}, 1 ≤ i ≤ m
within complexity (n ·m ·M)O(1) [4].

We say that two tropical linear systems are equivalent if their prevarieties
coincide.

Theorem 3. One can reduce within (n ·m · logM)O(1) complexity testing equiv-
alence of a pair of tropical linear systems to solving tropical linear systems ([12],
[6]). The inverse reduction is evident.

Similar to tropical linear systems are min-plus linear systems [1]

min
1≤j≤n1

{ai,j + xj} = min
1≤j≤n2

{bi,j + yj}, 1 ≤ i ≤ m. (2)

Theorem 4. One can test solvability of a min-plus linear system within com-
plexity polynomial in M, n1, n2, m. If the system is solvable the algorithm yields
one of its solutions ([13], [3]).

We say that two min-plus linear systems are equivalent if they have the same
sets of solutions.

Theorem 5. Complexities of the following 4 problems coincide up to a polyno-
mial: solvability and equivalence of both min-plus and of tropical linear systems
([12], [6]).

We also mention two other problems close to tropical linear systems. Min-
atom problem is a system of inequalities of the form min{x, y}+ c ≤ z, c ∈ Z
(it could be viewed as a min-plus linear programming).

The second problem is amean payoff game. Let a bipartite graph (V, W, E)
with integer weights aij on edges eij ∈ E be given. Two players in turn move a
token between nodes V ∪W of the graph. The first player moves from a (current)
node i ∈ V to a node j ∈ W (respectively, the second player moves from W to
V). Weight aij is assigned to this move. The mean sum of assigned weights after
k moves is computed: (

∑
aij)/k.

If lim infk→∞(
∑

aij)/k > 0 then the first player wins. The problem of mean
payoff games consists in whether the first player has a winning strategy?

Theorem 6. The following 4 problems are equivalent up to a polynomial com-
plexity: mean payoff games, min-atom, min-plus linear systems and tropical lin-
ear systems ([14], [3]).

4 Tropical Polynomial Systems and Nullstellensatz

Similar to (1) one can consider tropical polynomial systems f1, . . . , fm where
f1, . . . , fm being tropical polynomials and similar to (2) min-plus polynomial
systems f1 = g1, . . . , fm = gm where f1, . . . , fm, g1, . . . , gm being tropical poly-
nomials.

Unlike the classical algebra factoring tropical univariate polynomials is NP -
hard [9]. On the contrary, for solving polynomial systems the following result on
tropical polynomials is similar to its classical counterpart.

152 D. Grigoriev

Theorem 7. Solvability of tropical polynomial systems is NP-complete ([15]).

Theorem 8. Solvability of min-plus polynomial systems fi = 0, 1 ≤ i ≤ m
where fi are min-plus polynomials, is NP -complete ([16]).

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra, Nullstellensatzfor serves this aim.
In the tropical world, the direct version of Nullstellensatz is false even for

linear univariate polynomials: X ⊕ 0, X ⊕ 1 do not have a common tropical
solution, while their (tropical) ideal does not contain 0 or any other monomial
(tropical monomials are the only polynomials without tropical zeroes).

That is why we study a dual Nullstellensatz [17], and first we start with a
classical dual Nullstellensatz. For polynomials g1, . . . , gs ∈ C[X1, . . . , Xk] con-
sider an infinite Cayley matrix C with the columns indexed by monomials XI

and the rows by shifts XJ · gi.
Nullstellensatz states that system g1 = · · · = gs = 0 has no solution iff a

linear combination of the rows of a suitable finite submatrix C0 of C (gener-
ated by a set of rows of C) equals vector (1, 0, . . . , 0) where the first coordinate
corresponds to monomial 1.

Effective Nullstellensatz provides a bound polynomial in (maxi{deg(gi)})n
on the size of C0 ([18], [19]).

Dual Nullstellensatz (being equivalent to the classical Nullstellensatz)
states that g1 = · · · = gs = 0 has a solution iff for any finite submatrix C0

of C linear system C0 · (y0, . . . , yN) = 0 has a solution with y0 �= 0.
Infinite dual Nullstellensatz (also being equivalent to the classical Null-

stellensatz) states that g1 = · · · = gs = 0 has a solution iff infinite linear system
C · (y0, . . .) = 0 has a solution with y0 �= 0.

Remark 3. Nullstellensatz deals with ideal 〈g1, . . . , gs〉, while dual Nullstellen-
satz forgets the ideal, therefore, gives a hope to hold in the tropical setting.

Now we proceed to the tropical dual Nullstellensatz. Assume w.l.o.g. that
for tropical polynomials h =

⊕
J(aJ ⊗X⊗J) in k variables which we consider,

function J → aJ is concave on Rk. This assumption does not change tropical
prevarieties.

For tropical polynomials h1, . . . , hs consider (infinite in all 4 directions) Cayley
matrix H with the rows indexed by X⊗I ⊗hi for I ∈ Zk, 1 ≤ i ≤ s and with the
columns indexed by X⊗I , I ∈ Zk. Now we formulate a tropical dual effective
Nullstellensatz ([20], for univariate tropical polynomials established in [17]).

Theorem 9. Tropical polynomials h1, . . . , hs have a zero iff tropical linear sys-
tem H0⊗ (z0, . . . , zN) has a solution with z0 �= ∞ where H0 is (finite) submatrix
of H generated by its rows X⊗I ⊗ hi for

0 ≤ |I| ≤ (n+ 2) · (trdeg(h1) + · · ·+ trdeg(hs)), 1 ≤ i ≤ s.

The conjecture is that one can replace the latter bound by
O(trdeg(h1) + · · ·+ trdeg(hs)).

Complexity in Tropical Algebra 153

For two tropical univariate (n = 1) polynomials (s = 2) the bound trdeg(h1)+
trdeg(h2) holds using the classical resultant and Kapranov’s theorem [21].

Now we give a convex-geometrical rephrasing of the tropical (infinite) dual
Nullstellensatz. For a tropical polynomial h =

⊕
J(aJ ⊗ X⊗J) consider its

extended Newton polyhedron G being the convex hull of the graph {(J, a) :
a ≤ −aJ} ⊂ Rk+1. As vertices of G consider all the points of the form
(I, c), I ∈ Zk on the boundary of G. Let Gi correspond to hi, 1 ≤ i ≤ s.
Denote by G(I) := G+ (I, 0) a horizontal shift of G.

We treat the solution Y := {(J, yJ)} ⊂ Rk+1 of a tropical linear system H⊗Y
also as a graph on Rk.

The tropical (infinite) dual Nullstellensatz is equivalent to the following.

For any I, i take the maximal b := bI,i such that a vertical shift G
(I)
i +(0, b) ≤

Y (pointwise as graphs). Assume that G
(I)
i + (0, b) has at least two common

points with Y . Then there is a hyperplane in Rk+1 (not containing the vertical
line) which supports (after a parallel shift) each Gi, 1 ≤ i ≤ s at least at two
points.

We note that in [22] the tropical (customary) Nullstellensatz was established
for a ”ghost” semi-ring introduced there. In [23] the radical of a tropical ideal
was explicitly described.

We also mention that in [24] an example of a linear polynomial ideal is exhib-
ited with an exponential lower bound of the size of its tropical bases.

Acknowledgements. The author is grateful to the Max-Planck Institut für
Mathematik, Bonn for its hospitality during writing this paper and to Labex
CEMPI (ANR-11-LABX-0007-01).

References

1. Butkovic, P.: Max-linear systems: theory and algorithms. Springer, Berlin (2010)

2. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical algebraic geometry. In: Oberwol-
fach Seminars, Birkhäuser, Basel (2009)

3. Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean
payoff games. Int. J. Algebra Comput. 22, 1793–1835 (2012)

4. Grigoriev, D.: Complexity of solving tropical linear systems. Comput. Complex-
ity 22, 71–88 (2013)

5. Davydow, A.: Upper and lower bounds for Grigoriev’s algorithm for solving integral
tropical linear systems. Zap. Nauchn. Sem. POMI St.Petersbourg 402, 69–82 (2012)

6. Grigoriev, D., Podolskii, V.: Complexity of tropical and min-plus prevarieties.
Preprint MPIM, 2013-23 (2012)

7. Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. Math. Sci.
Res. Inst. Publ. 52, 213–242 (2005)

8. Butkovic, P., Hevery, F.: A condition for the strong regularity of matrices in the
minimax algebra. Discr. Appl. Math. 11, 209–222 (1985)

9. Kim, K., Roush, F.: Factorization of polynomials in one variable over the tropical
semiring. arXiv:math/050116/v2

154 D. Grigoriev

10. Kim, K., Roush, F.: Kapranov rank vs. tropical rank. Proc. Amer. Math. Soc. 134,
2487–2494 (2006)

11. Izhakian, Z., Rowen, L.: The tropical rank of a tropical matrix. Communic.
Algebra 37, 3912–3927 (2009)

12. Allamigeon, X., Gaubert, S., Katz, R.: Tropical polar cones, hypergraph transver-
sals, and mean payoff games. Lin. Alg. and Its Appl. 435, 1549–1574 (2011)

13. Butkovic, P., Hegedus̈, G.: An elimination method for finding all solutions of the
system of linear equations over an extremal algebra. Ekonom.-Mat. Obzor 20,
203–215 (1984)

14. Bezem, M., Nieuwenhuis, R., Rodriguez-Carbonell, E.: Hard problem in max-
algebra, control theory, hypergraphs and other areas. Inf. Procss. Lett. 110, 133–138
(2010)

15. Theobald, T.: On the frontiers of polynomial computations in tropical geometry.
J. Symbolic Comput. 41, 1360–1375 (2006)

16. Grigoriev, D., Shpilrain, V.: Tropical cryptography. Preprint MPIM, Bonn (2011)
17. Grigoriev, D.: On a tropical dual Nullstellensatz. Adv. Appl. Math. 48, 457–464

(2012)
18. Giusti, M., Heintz, J., Sabia, J.: On the efficiency of effective Nullstellensaetze.

Comput. Complexity 3, 56–95 (1993)
19. Kollár, J.: Sharp effective Nullstellensatz. J. Amer. Math. Soc. 1, 963–975 (1988)
20. Grigoriev, D., Podolskii, V.: Tropical dual effective Nullstellensatz (in preparation)
21. Tabera, L.: Tropical resultants for curves and stable intersection. Rev. Mat.

Iberoam. 24, 941–961 (2008)
22. Izhakian, Z.: Tropical algebraic sets, ideals and an algebraic Nullstellensatz.

Internat. J. Algebra Comput. 18, 1067–1098 (2008)
23. Shustin, E., Izhakian, Z.: A tropical Nullstellensatz. Proc. Amer. Math. Soc. 135,

3815–3821 (2007)
24. Bogart, T., Jensen, A., Speyer, D., Sturmfels, B., Thomas, R.: Computing tropical

varieties. J. Symb. Comput. 42, 54–73 (2007)

Symbolic-Numerical Algorithm for Generating

Cluster Eigenfunctions: Identical Particles
with Pair Oscillator Interactions

Alexander Gusev1, Sergue Vinitsky1, Ochbadrakh Chuluunbaatar1,
Vitaly Rostovtsev1, Luong Le Hai1,2, Vladimir Derbov3,

Andrzej Góźdź4, and Evgenii Klimov5

1 Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
gooseff@jinr.ru

2 Belgorod State University, Belgorod, Russia
3 Saratov State University, Saratov, Russia

4 Department of Mathematical Physics, Institute of Physics,
University of Maria Curie–Sk�lodowska, Lublin, Poland

5 Tver State University, Tver, Russia

Abstract. The quantum model of a cluster, consisting of A identical
particles, coupled by the internal pair interactions and affected by the
external field of a target, is considered. A symbolic-numerical algorithm
for generating A−1-dimensional oscillator eigenfunctions, symmetric or
antisymmetric with respect to permutations of A identical particles in
the new symmetrized coordinates, is formulated and implemented using
the MAPLE computer algebra system. Examples of generating the sym-
metrized coordinate representation for A−1 dimensional oscillator func-
tions in one-dimensional Euclidean space are analyzed. The approach is
aimed at solving the problem of tunnelling the clusters, consisting of sev-
eral identical particles, through repulsive potential barriers of a target.

1 Introduction

Quantum harmonic oscillator wave functions have a lot of applications in modern
physics, particularly, as a basis for constructing the wave functions of a quantum
system, consisting of A identical particles, totally symmetric or antisymmetric
with respect to permutations of coordinates of the particles [1]. Various special
methods, algorithms, and programs (see, e.g., [1–9]) were used to construct the
desired solutions in the form of linear combinations of the eigenfunctions of an
A−1-dimensional harmonic oscillator that are totally symmetric (or antisymmet-
ric) with respect to the coordinate permutations. However, the implementation
of this procedure in closed analytical form is still an open problem [10].

A promising approach to the construction of oscillator basis functions for
four identical particles was proposed in [2–4]. It was demonstrated that a clear
algorithm for generating symmetric (S) and antisymmetric (A) states can be
obtained using the symmetrized coordinates instead of the conventional Jacobi

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 155–168, 2013.
c© Springer International Publishing Switzerland 2013

156 A. Gusev et al.

coordinates. However, until now this approach was not generalized for a quantum
system comprising an arbitrary number A of identical particles.

We intend to develop this approach in order to describe the tunnelling of
clusters, consisting of several coupled identical particles, through repulsive po-
tential barriers of a target. Previously this problem was solved only for a pair
of coupled particles [11, 12]. The developed approach will be also applicable to
the microscopic study of tetrahedral- and octahedral-symmetric nuclei [13] that
can be considered in the basis of seven-dimensional harmonic oscillator eigen-
functions [14]. The aim of this paper is to present a convenient formulation of
the problem stated above and the calculation methods, algorithms, and programs
for solving it.

In this paper, we consider the quantum model of a cluster, consisting of A
identical particles with the internal pair interactions, under the influence of the
external field of a target. We assume that the spin part of the wave function is
known, so that only the spatial part of the wave function is to be considered,
which can be either symmetric or antisymmetric with respect to a permutation
of A identical particles [15–17]. The initial problem is reduced to the problem
for a composite system whose internal degrees of freedom describe an (A −
1) × d-dimensional oscillator, and the external degrees of freedom describe the
center-of-mass motion of A particles in the d-dimensional Euclidean space. For
simplicity, we restrict our consideration to the so-called s-wave approximation
[11] corresponding to one-dimensional Euclidean space (d = 1). It is shown that
the reduction is provided by using appropriately chosen symmetrized coordinates
rather than the conventional Jacoby coordinates.

The main goal of introducing the symmetrized coordinates is to provide the
invariance of the Hamiltonian with respect to permutations of A identical par-
ticles. This allows construction not only of basis functions, symmetric or anti-
symmetric under permutations of A − 1 relative coordinates, but also of basis
functions, symmetric (S) or antisymmetric (A) under permutations of A Carte-
sian coordinates of the initial particles. We refer the expansion of the solution in
the basis of such type as the Symmetrized Coordinate Representation (SCR).

The paper is organized as follows. In Section 2, we present the statement of
the problem in the conventional Jacobi and the symmetrized coordinates. In
Section 3, we introduce the SCR of the solution of the considered problem and
describe the appropriate algorithm implemented using the MAPLE computer
algebra system. In Section 4, we analyze some examples of generating the sym-
metrized coordinate representation for A− 1-dimensional oscillator functions in
one-dimensional Euclidean space. In Conclusion, we summarize the results and
discuss briefly the prospects of application of the developed approach.

2 Problem Statement

Consider the system of A identical quantum particles with the mass m and
the set of Cartesian coordinates xi ∈ Rd in the d-dimensional Euclidean space,
considered as the vector x̃ = (x̃1, ..., x̃A) ∈ RA×d in the A × d-dimensional

Identical Particles with Pair Oscillator Interactions 157

configuration space. The particles are coupled by the pair potential Ṽ pair(x̃ij)
depending on the relative positions, x̃ij = x̃i − x̃j , similar to that of a harmonic

oscillator Ṽ hosc(x̃ij) = mω2

2 (x̃ij)
2 with the frequency ω. The whole system is

subject to the influence of the potentials Ṽ (x̃i) describing the external field of a
target. The system is described by the Schrödinger equation⎡⎣− h̄2

2m

A∑
i=1

∂2

∂x̃2i
+

A∑
i,j=1;i<j

Ṽ pair(x̃ij)+

A∑
i=1

Ṽ (x̃i)−Ẽ

⎤⎦ Ψ̃(x̃)=0,

where Ẽ is the total energy of the system of A particles and P̃ 2 = 2mẼ/h̄2, P̃ is
the total momentum of the system, and h̄ is Planck constant. Using the oscillator

units xosc =
√
h̄/(mω

√
A), posc =

√
(mω

√
A)/h̄ = x−1

osc, and Eosc = h̄ω
√
A/2 to

introduce the dimensionless coordinates xi = x̃i/xosc, xij = x̃ij/xosc = xi − xj ,

E = Ẽ/Eosc = P 2, P = P̃ /posc = P̃ xosc, V
pair(xij) = Ṽ pair(xijxosc)/Eosc,

V hosc(xij) = Ṽ hosc(xijxosc)/Eosc = 1
A (xij)

2 and V (xi) = Ṽ (xixosc)/Eosc, one
can rewrite the above equation in the form⎡⎣− A∑

i=1

∂2

∂x2i
+

A∑
i,j=1;i<j

1

A
(xij)

2+

A∑
i,j=1;i<j

Upair(xij)+

A∑
i=1

V (xi)−E

⎤⎦Ψ(x)=0, (1)

where Upair(xij) = V pair(xij)−V hosc(xij), i.e., if V
pair(xij) = V hosc(xij), then

Upair(xij) = 0.
Our goal is to find the solutions Ψ(x1, ..., xA) of Eq. (1), totally symmetric

(or antisymmetric) with respect to the permutations of A particles that belong
to the permutation group Sn [16]. The permutation of particles is nothing but a
permutation of the Cartesian coordinates xi ↔ xj , i, j = 1, ..., A. First we intro-
duce the Jacobi coordinates, y = Jx, following one of the possible definitions:

y0 =
1√
A

(
A∑

t=1

xt

)
, ys =

1√
s(s+ 1)

(
s∑

t=1

xt − sxs+1

)
, s = 1,..., A− 1. (2)

In the matrix form Eqs. (2) read as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
...

yA−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= J

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...
xA−1

xA

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√
A 1/

√
A 1/

√
A 1/

√
A · · · 1/

√
A

1/
√
2 −1/

√
2 0 0 · · · 0

1/
√
6 1/

√
6 −2/

√
6 0 · · · 0

1/
√
12 1/

√
12 1/

√
12 −3/

√
12 · · · 0

...
...

...
...

. . .
...

1√
A2−A

1√
A2−A

1√
A2−A

1√
A2−A

· · · − A−1√
A2−A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

The inverse coordinate transformation x = J−1y is implemented using the trans-
posed matrix J−1 = JT , i.e., J is an orthogonal matrix with pairs of complex

158 A. Gusev et al.

conjugate eigenvalues, the absolute values of which are equal to one. The Jacobi
coordinates have the property

∑A−1
i=0 (yi · yi) =

∑A
i=1(xi · xi) = r2. Therefore,

A∑
i,j=1

(xij)
2 = 2A

A−1∑
i=0

(yi)
2 − 2(

A∑
i=1

xi)
2 = 2A

A−1∑
i=1

(yi)
2,

so that Eq. (1) takes the form[
− ∂2

∂y20
+

A−1∑
i=1

(
− ∂2

∂y2i
+ (yi)

2

)
+ U(y0, ..., yA−1)− E

]
Ψ(y0, ..., yA−1) = 0,

U(y0, ..., yA−1) =

A∑
i,j=1;i<j

Upair(xij(y1, ..., yA−1)) +

A∑
i=1

V (xi(y0, ..., yA−1)),

which, as follows from Eq. (2), is not invariant with respect to permutations
yi ↔ yj at i, j = 1, ..., A− 1.

Symmetrized Coordinates

The transformation from the Cartesian coordinates to one of the possible choices
of the symmetrized ones ξi has the form, ξ = Cx and x = Cξ:

ξ0 =
1√
A

(
A∑
t=1

xt

)
, ξs =

1√
A

(
x1 +

A∑
t=2

a0xt +
√
Axs+1

)
, s = 1, ..., A− 1,

x1 =
1√
A

(
A−1∑
t=0

ξt

)
, xs =

1√
A

(
ξ0 +

A−1∑
t=1

a0ξt +
√
Aξs−1

)
, s = 2, ..., A,

or, in the matrix form,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ξ0
ξ1
ξ2
...

ξA−2

ξA−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= C

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xA−1

xA

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, C =

1√
A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1 1
1 a1 a0 a0 · · · a0 a0
1 a0 a1 a0 · · · a0 a0
1 a0 a0 a1 · · · a0 a0
...

...
...

...
. . .

...
...

1 a0 a0 a0 · · · a1 a0
1 a0 a0 a0 · · · a0 a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where a0 = 1/(1−
√
A) < 0, a1 = a0 +

√
A. The inverse coordinate transforma-

tion is performed using the same matrix C−1 = C, C2 = I, i. e., C = CT is a
symmetric orthogonal matrix with the eigenvalues λ1 = −1, λ2 = 1, ..., λA = 1
and detC = −1. For A = 2, the symmetrized variables (3) are within normaliza-
tion factors similar to the symmetrized Jacobi coordinates (2) considered in [9],
while at A = 4 they correspond to another choice of symmetrized coordinates
(ẍ4, ẍ1, ẍ2, ẍ3)

T = C(x4, x1, x2, x3)
T considered in [2–4] and mentioned earlier

Identical Particles with Pair Oscillator Interactions 159

in [5, 18]. We could not find a general definition of symmetrized coordinates for
A-identical particles like (3) in the available literature, so we believe that in the
present paper it is introduced for the first time. With the relations a1−a0 =

√
A,

a0−1 = a0
√
A taken into into account, the relative coordinates xij ≡ xi−xj of a

pair of particles i and j are expressed in terms of the internal A−1 symmetrized
coordinates only:

xij ≡ xi − xj = ξi−1 − ξj−1 ≡ ξi−1,j−1,

xi1 ≡ xi − x1 = ξi−1 + a0

A−1∑
i′=1

ξi′ , i, j = 2, ..., A. (4)

So, if only the absolute values of xij are to be considered, then there are (A −
1)(A − 2)/2 old relative coordinates transformed into new relative ones and
A− 1 old relative coordinates expressed in terms of A− 1 internal symmetrized
coordinates. These important relations essentially simplify the procedures of
symmetrization (or antisymmetrization) of the oscillator basis functions and
the calculations of the corresponding pair-interaction integrals V pair(xij). The
symmetrized coordinates are related to the Jacobi ones as y = Bξ, B = JC:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
...

yA−2

yA−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= B

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ξ0
ξ1
ξ2
...

ξA−2

ξA−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0 0
0 b01 b−1 b−1 b−1 · · · b−1 b−1
0 b+2 b02 b−2 b−2 · · · b−2 b−2
0 b+3 b+3 b03 b−3 · · · b−3 b−3
0 b+4 b+4 b+4 b04 · · · b−4 b−4
...

...
...

...
...

. . .
...

...
0 b+A−1 b

+
A−1 b

+
A−1 b

+
A−1 · · · b+A−1 b

0
A−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(5)

where b+s = 1/((
√
A − 1)

√
s(s+ 1)), b−s =

√
A/((

√
A− 1)

√
s(s+ 1)), and b0s =

(1 + s − s
√
A)/((

√
A − 1)

√
s(s+ 1)). One can see that for the center of mass

the symmetrized and Jacobi coordinates are equal, y0 = ξ0, while the relative
coordinates are related via the (A − 1) × (A − 1) matrix M with the elements
Mij = Bi+1,j+1 and detM = (−1)A×d, i.e., the matrix, obtained by cancelling
the first row and the first column. The inverse transformation ξ = B−1y is given
by the matrix B−1 = (JC)−1 = CJT = BT , i.e., B is also an orthogonal matrix.

In the symmetrized coordinates Eq. (1) takes the form[
− ∂2

∂ξ20
+

A−1∑
i=1

(
− ∂2

∂ξ2i
+ (ξi)

2

)
+ U(ξ0, ..., ξA−1)− E

]
Ψ(ξ0, ..., ξA−1) = 0, (6)

U(ξ0, ..., ξA−1) =

A∑
i,j=1;i<j

Upair(xij(ξ1, ..., ξA−1)) +

A∑
i=1

V (xi(ξ0, ..., ξA−1)),

which is invariant under permutations ξi ↔ ξj at i, j = 1, ..., A − 1, as follows
from Eq. (3), i.e., the invariance of Eq. (1) under permutations xi ↔ xj at
i, j = 1, ..., A survives.

160 A. Gusev et al.

Table 1. The first few eigenvalues ES
j and the oscillator S-eigenfunctions (13)

at ES
j − ES

1 ≤ 10, ES
1 = A − 1. We use the notations |[i1, i2, ..., iA−1]〉 ≡

Φs
[i1,i2,...,iA−1]

(ξ1, ..., ξA−1) from Eqs. (8) and (10), i.e., [i1, i2, ..., iA−1] assumes the

summation over permutations of [i1, i2, ..., iA−1] in the layer 2
∑A−1

k=1 ik+A−1 = E
s(a)
i .

A=2 A=3 A=4 ES
j −ES

1

j ΦS
j (ξ1) j ΦS

j (ξ1, ξ2) j ΦS
j (ξ1, ξ2, ξ3)

1 |[0]〉 1 |[0, 0]〉 1 |[0, 0, 0]〉 0

2 |[2]〉 2 |[0, 2]〉 2 |[0, 0, 2]〉 4

3 1
2
|[0, 3]〉 −

√
3

2
|[1, 2]〉 3 |[1, 1, 1]〉 6

3 |[4]〉 4
√

3
2
|[0, 4]〉+ 1

2
|[2, 2]〉 4 |[0, 0, 4]〉 8

5 |[0, 2, 2]〉 8

5
√

5
4
|[0, 5]〉 − 3

4
|[1, 4]〉 −

√
2

4
|[2, 3]〉 6 |[1, 1, 3]〉 10

Table 2. The first few eigenvalues EA
j and the oscillator A-eigenfunctions (13)

at EA
j − EA

1 ≤ 10, EA
1 = A2 − 1. We use the notations |[i1, i2, ..., iA−1]〉 ≡

Φa
[i1,i2,...,iA−1]

(ξ1, ..., ξA−1) from Eq. (11), i.e., [i1, i2, ..., iA−1] assumes the summation

over the multiset permutations of [i1, i2, ..., iA−1] in the layer 2
∑A−1

k=1 ik+A−1 = E
s(a)
i .

A = 2, EA
1 = 3 A = 3, EA

1 = 8 A = 4, EA
1 = 15 EA

j − EA
1

j ΦA
j (ξ1) j ΦA

j (ξ1, ξ2) j ΦA
j (ξ1, ξ2, ξ3)

1 |[1]〉 1 1
2
|[0, 3]〉+

√
3

2
|[1, 2]〉 1 |[0, 2, 4]〉 0

2 |[3]〉 2
√

5
4
|[0, 5]〉+ 3

4
|[1, 4]〉−

√
2

4
|[2, 3]〉 2 |[0, 2, 6]〉 4

3 1
4
|[0, 6]〉 −

√
15
4

|[2, 4]〉 3 |[1, 3, 5]〉 6

3 |[5]〉 4
√
21
8

|[0, 7]〉 + 3
√

3
8

|[1, 6]〉 4 |[0, 4, 6]〉 8

− 1
8
|[2, 5]〉 +

√
5

8
|[3, 4]〉 5 |[0, 2, 8]〉 8

5
√

2
4
|[0, 8]〉 −

√
14
4

|[2, 6]〉 6 |[1, 3, 7]〉 10

3 The SCR Algorithm: Symmetrized Coordinate
Representation

For simplicity, consider the solutions of Eq. (6) in the internal symmetrized
coordinates {ξ1, ..., ξA−1} ∈ RA−1, xi ∈ R1, in the case of 1D Euclidean space
(d = 1). The relevant equation describes an (A − 1)-dimensional oscillator with
the eigenfunctions Φj(ξ1, ..., ξA−1) and the energy eigenvalues Ej :[

A−1∑
i=1

(
− ∂2

∂ξ2i
+(ξi)

2

)
−Ej

]
Φj(ξ1, ..., ξA−1)=0, Ej = 2

A−1∑
k=1

ik+A−1, (7)

Identical Particles with Pair Oscillator Interactions 161

where the numbers ik, k = 1, ..., A− 1 are integer, ik = 0, 1, 2, 3, The eigen-
functions Φj(ξ1, ..., ξA−1) can be expressed in terms of the conventional eigen-
functions of individual 1D oscillators as

Φj(ξ1, ..., ξA−1) =
∑

2
A−1∑

k=1

ik+A−1=Ej

βj[i1,i2,...,iA−1]Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1),(8)

Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1) =

A−1∏
k=1

Φ̄ik(ξk), Φ̄ik(ξk) =
exp(−ξ2k/2)Hik(ξk)

4
√
π
√
2ik

√
ik!

,

where Hik(ξk) are Hermite polynomials [19]. Generally the energy level Ef =

2f + A− 1, f =
∑A−1

k=1 ik, of an (A − 1)-dimensional oscillator is known [20] to
possess the degeneracy multiplicity p = (A + f − 2)!/f !/(A − 2)! with respect
to the conventional oscillator eigenfunctions Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1). This de-
generacy allows further symmetrization by choosing the appropriate coefficients

β
(j)
[i1,i2,...,iA−1]

. Degeneracy multiplicity p of all states with the given energy Ej

defined by formula

p =
∑

2
∑A−1

k=1 ik+A−1=Ej

Nβ , Nβ = (A− 1)!/

Nυ∏
k=1

υk!, (9)

where Nβ is the number of multiset permutations (m.p.) of [i1, i2, ..., iA−1], and
Nυ ≤ A − 1 is the number of different values ik in the multiset [i1, i2, ..., iA−1],
and υk is the number of repetitions of the given value ik.
Step 1. Symmetrization with respect to permutation of A−1 particles
For the states Φs

j(ξ1, ..., ξA−1) ≡ Φs
[i1,i2,...,iA−1]

(ξ1, ..., ξA−1), symmetric with re-

spect to permutation of A − 1 particles i = [i1, i2, ..., iA−1], the coefficients
βi[i′1,i′2,...,i′A−1]

in Eq. (8) are

βi[i′1,i′2,...,i′A−1]
=

{
1√
Nβ

, if [i′1, i
′
2, ..., i

′
A−1] is a m. p. of [i1, i2, ..., iA−1],

0, otherwise.
(10)

The states Φa
j (ξ1, ..., ξA−1) ≡ Φa

[i1,i2,...,iA−1]
(ξ1, ..., ξA−1), antisymmetric with

respect to permutation of A− 1 particles are constructed in a conventional way

Φa
j (ξ1, ..., ξA−1) =

1√
(A− 1)!

∣∣∣∣∣∣∣∣∣
Φ̄i1(ξ1) Φ̄i2 (ξ1) · · · Φ̄iA−1 (ξ1)
Φ̄i1(ξ2) Φ̄i2 (ξ2) · · · Φ̄iA−1 (ξ2)

...
...

. . .
...

Φ̄i1(ξA−1) Φ̄i2(ξA−1) · · · Φ̄iA−1 (ξA−1)

∣∣∣∣∣∣∣∣∣ , (11)

i.e., the coefficients β
(i)
[i′1,i

′
2,...,i

′
A−1]

in (8) are expressed as

β
(i)
[i′1,i

′
2,...,i

′
A−1]

= εi′1,i′2,...,i′A−1
/
√
(A− 1)!,

where εi′1,i′2,...,i′A−1
is a totally antisymmetric tensor. This tensor is defined as

follows: εi′1,i′2,...,i′A−1
= +1(−1), if i′1, i

′
2, ..., i

′
A−1 is an even (odd) permutation of

162 A. Gusev et al.

1 23

 1

Fig. 1. Profiles of the first eight oscillator S-eigenfunctions ΦS
[i1,i2]

(ξ1, ξ2), at A =
3 in the coordinate frame (ξ1, ξ2). The lines correspond to pair collision x2 = x3,
x1 = x2 and x1 = x3 of the projection (x1, x2, x3) → (ξ1, ξ2), marked only in the left
upper panel with ‘23’, ‘12’, and ‘13’, respectively. The additional lines are nodes of the
eigenfunctions ΦS

[i1,i2]
(ξ1, ξ2).

the numbers i1 < i2 < ... < iA−1, and εi′1,i′2,...,i′A−1
= 0 otherwise, i.e., when some

two numbers in the set i′1, i
′
2, ..., i

′
A−1 are equal. Therefore, for antisymmetric

states the numbers ik in Eq. (7) take the integer values ik = k − 1, k, k + 1, ...,
k = 1, ..., A− 1.

Here and below s and a are used for the functions, symmetric (antisymmetric)
under permutations of A − 1 relative coordinates, constructed at the first step
of the procedure. On the contrary, S and A are used for the functions, symmet-
ric (asymmetric) under permutations of A initial Cartesian coordinates. This is
actually the symmetry with respect to permutation of identical particles them-
selves; in this sense, S and A states may be attributed to boson- and fermion-like
particles. However, we prefer to use the S (A) notation as more rigorous.
Step 2. Symmetrization with respect to permutation of A particles
For A = 2, the symmetrized coordinate ξ1 corresponds to the difference x2−x1 of
Cartesian coordinates, so that a function even (odd) with respect to ξ1 appears to
be symmetric (antisymmetric) with respect to the permutation of two particles
x2 ↔ x1. Hence, even (odd) eigenfunctions with corresponding eigenvalues Es

j =
2(2n) + 1 (Ea

j = 2(2n+ 1) + 1) describe S (A) solutions.
For A ≥ 3, the functions, symmetric (antisymmetric) with respect to permu-

tations of Cartesian coordinates xi+1 ↔ xj+1, i, j = 0, ..., A− 1:

ΦS(A)(..., xi+1, ..., xj+1, ...) ≡ ΦS(A)(ξ1(x1, ..., xA), ..., ξA−1(x1, ..., xA))

= ±ΦS(A)(..., xj+1, ..., xi+1, ...)

Identical Particles with Pair Oscillator Interactions 163

Fig. 2. The same as in Fig. 1, but for the first eight oscillator A-eigenfunctions
ΦA

[i1,i2]
(ξ1, ξ2), at A = 3

become symmetric (antisymmetric) with respect to permutations of symmetrized
coordinates ξi ↔ ξj , i, j = 1, ..., A− 1:

ΦS(A)(..., ξi, ..., ξj , ...) = ±ΦS(A)(..., ξj , ..., ξi, ...),

as follows from Eq. (4). However, the converse statement is not valid,

Φs(a)(..., ξi, ..., ξj , ...) = ±Φs(a)(..., ξj , ..., ξi, ...)

�⇒ Φs(a)(x1, ..., xi+1, ...) = ±Φs(a)(xi+1, ..., x1, ...),

because we deal with a projection map

(ξ1, ..., ξA−1)
T = Ĉ(x1, ..., xA)

T , (12)

which is implemented by the (A− 1)× (A) matrix Ĉ with the matrix elements
Ĉij = Ci+1,j , obtained from (3) by cancelling the first row. Hence, the func-
tions, symmetric (antisymmetric) with respect to permutations of symmetrized
coordinates, are divided into two types, namely, the S (A) solutions, symmetric
(antisymmetric) with respect to permutations x1 ↔ xj+1 at j = 1, ..., A− 1:

ΦS(A)(x1, ..., xj+1, ...) = ±ΦS(A)(xj+1, ..., x1, ...)

and the other s (a) solutions, Φs(a)(x1, ..., xi+1, ...) �= ±Φs(a)(xi+1, ..., x1, ...),
which should be eliminated. These requirements are equivalent to only one per-
mutation x1 ↔ x2, as follows from (4), which simplifies their practical imple-
mentation. With these requirements taken into account in the Gram–Schmidt
process, implemented in the symbolic algorithm SCR, we obtained the required
characteristics of S and A eigenfunctions,

Φ
S(A)
i (ξ1, ..., ξA−1) =

∑
2
∑A−1

k=1 ik+A−1=E
s(a)
i

α
S(A)
i[i1,i2,...,iA−1]

Φ
s(a)
[i1,i2,...,iA−1]

(ξ1, ..., ξA−1).(13)

164 A. Gusev et al.

The algorithm SCR:

Input:
A is the number of identical particles;
imax is defined by the maximal value of the energy Eimax ;
(ξ1, ..., ξA−1) and (x1, ..., xA) are the symmetrized and the Cartesian coordinates;

Output:

Φ
S(A)
i (ξ1, ..., ξA−1) and Φ

S(A)
i (x1, ..., xA) are the total symmetric (antisymmet-

ric) functions (13) in the above coordinates connected by (12);

Local:
E

s(a)
i ≡ E

S(A)
i = 2

∑A−1
k=1 ik + A− 1 is the (i+ 1)th eigenenergy;

imin = 0 for the symmetric and imin = (A− 1)2 for the antisymmetric case;

Φj ≡ Φ
s(a)
[i1,i2,...,iA−1]

(ξ1, ..., ξA−1) and Φj ≡ Φ
s(a)
[i1,i2,...,iA−1]

(x1, ..., xA) are the func-

tions, symmetric (antisymmetric) with respect to A− 1 Cartesian coordinates;
ps(a) ≡ pi;s(a) and pS(A) ≡ pi;S(A) are the degeneracy factors of the energy levels

E
s(a)
i and E

S(A)
i for s(a) and S(A) functions, respectively;

pi;min (pi;max) and Pi;min (Pi;max) are the lowest (highest) numbers of s(a) and

S(A) functions, belonging to the energy levels E
s(a)
i and E

S(A)
i , respectively;

{ᾱj} and {αS(A)
pj } are the sets of intermediate and desired coefficients;

1.1 j := 0;
for i from imin to imax do;
1.2: pi;min := j + 1;

1.3: for each sorted i1, i2, ..., iA−1, 2
∑A−1

k=1 ik +A− 1 = E
s(a)
i do

j := j + 1;
construction Φj(ξ1, ..., ξA−1) = Φs

j(ξ1, ..., ξA−1) from (8), (10)
or Φj(ξ1, ..., ξA−1) = Φa

j (ξ1, ..., ξA−1) from (11)
Φj(x1, ..., xA) =subs((ξ1, ..., ξA−1) → (x1, ..., xA), Φj(ξ1, ..., ξA−1));

end for
1.4: pi;max := j; pi;s(a) = pi;max − pi;min + 1;
end for

2.1.:Pmin = 1;
for i from imin to imax do
2.2.:Pi;min = Pmin;
2.3.:Φ(ξ1, ..., ξA−1) =

∑pi;max

j=pi;min
ᾱjΦj(ξ1, ..., ξA−1);

Φ(x1, ..., xA) =
∑pi;max

j=pi;min
ᾱjΦj(x1, ..., xA);

2.4.: Φ(x2, x1, ..., xA) :=change(x1 ↔ x2, Φ(x1, x2, ..., xA)));
2.5.: Φ(x2, x1, ..., xA)∓ Φ(x1, x2, ..., xA) = 0,

→ (ᾱpj , j = pi;min, ..., pi;max, p = 1, ..., pi;S(A)) ;
2.6.:Pi;max = Pi;min − 1 + pi;S(A);
2.7.: Gram–Schmidt procedure for Φ(ξ1, ..., ξA−1) →

Φ
S(A)
p (x1, x2, ..., xA) =

∑pi;max

j=pi;min
α
S(A)
pj Φj(x1, x2, ..., xA);

Φ
S(A)
p (ξ1, ..., ξA−1) =

∑pi;max

j=pi;min
α
S(A)
pj Φj(ξ1, ..., ξA−1),

at p = Pi;min, ..., Pi;max;
end for

Identical Particles with Pair Oscillator Interactions 165

Fig. 3. Upper panel: Profiles of the oscillator S-eigenfunctions ΦS
[1,1,1](ξ1, ξ2, ξ3),

ΦS
[0,0,4](ξ1, ξ2, ξ3) and A-eigenfunction ΦA

[0,2,4](ξ1, ξ2, ξ3), at A = 4 (left, middle, and
right panels, respectively). Some maxima and minima positions of these functions
are connected by black and gray lines and duplicated in lower panels: two tetrahe-
drons forming a stella octangula for ΦS

[1,1,1](ξ1, ξ2, ξ3), a cube and an octahedron for

ΦS
[0,0,4](ξ1, ξ2, ξ3), and a polyhedron with 20 triangle faces (only 8 of them being equi-

lateral triangles) for ΦA
[0,2,4](ξ1, ξ2, ξ3).

4 Examples of the SCR Generation

The SCR algorithm was implemented in MAPLE 14 on Intel Core i5 CPU 660
3.33GHz, 4GB 64 bit, to generate first 11 symmetric (antisymmetric) functions
up to ΔEj = 12 at A = 6 with CPU time 10 seconds (600 seconds), that together
with a number of functions in dependence of number of particles given in Table
3 demonstrates efficiency and complexity of the algorithm.

The examples of generated total symmetric and antisymmetric (A − 1)-
dimensional oscillator functions are presented in Tables 1 and 2. Note that for
A = 4, the first four states from Table 1 are similar to those of the translation-
invariant model without excitation of the center-of-mass variable [3].

As an example, in Figs. 1 and 2 we show isolines of the first eight S and
A oscillator eigenfunctions ΦS

[i1,i2]
(ξ1, ξ2) and ΦA

[i1,i2]
(ξ1, ξ2) for A = 3, calcu-

lated at the second step of the algorithm. One can see that the S (A) oscillator
eigenfunctions are symmetric (antisymmetric) with respect to reflections from
three straight lines. The first line (labelled ‘23’) corresponds to the permutation
(x2, x3) and is rotated by π/4 counterclockwise with respect to the axis ξ1. The
second and the third lines (labelled ‘12’ and ‘13’) correspond to the permuta-
tions (x1, x2) and (x1, x3) and are rotated by π/3 clockwise and counterclockwise
with respect to the first line. These lines divide the plane into six sectors, while
the symmetric (antisymmetric) oscillator eigenfunctions, calculated at the first

166 A. Gusev et al.

Table 3. The degeneracy multiplicities p from (9), ps = pa and pS = pA of s-, a-, S-,
and A-eigenfunctions of the oscillator energy levels ΔEj = E•

j − E•
1 , • = ∅, s, a, S,A

A=3 A=4 A=5 A=6 ΔEj

p ps, pa pS, pA p ps, pa pS, pA p ps, pa pS, pA p ps, pa pS, pA
1 1 1 1 1 1 1 1 1 1 1 1 0
2 1 0 3 1 0 4 1 0 5 1 0 2
3 2 1 6 2 1 10 2 1 15 2 1 4
4 2 1 10 3 1 20 3 1 35 3 1 6
5 3 1 15 4 2 35 5 2 70 5 2 8
6 3 1 21 5 1 56 6 2 126 7 2 10
7 4 2 28 7 3 84 9 3 210 10 4 12

step of the algorithm, which are symmetric (or antisymmetric) with respect to
reflections from the first line, generate the division of the plane into two parts.
This illustrates the isomorphism between the symmetry group of an equilateral
triangle D3 in R2 and the 3-body permutation group S3 (A = 3).

Figure 3 shows examples of profiles of S and A oscillator eigenfunctions forA =
4. Note that four maxima (black) and four minima (grey) of the S eigenfunction
ΦS
[1,1,1](ξ1, ξ2, ξ3) are positioned at the vertices of two tetrahedrons forming a

stella octangula, with the edges shown by black and grey lines, respectively.
Eight maxima and six outer minima for S eigenfunction ΦS

[0,0,4](ξ1, ξ2, ξ3) are
positioned at the vertices of a cube and an octahedron, the edges of which are
shown by black and grey lines, respectively. The positions of twelve maxima of
the A oscillator eigenfunction, ΦA

[0,2,4](ξ1, ξ2, ξ3) coincide with the vertices of a

polyhedron with 20 triangle faces (only 8 of them being equilateral triangles)
and 30 edges, 6 of them having the length 2.25 and the other having the length
2.66. The above shapes of eigenfunctions illustrate the isomorphism between the
tetrahedron group Td in R3 and the 4-particle permutation group S4 (A = 4),
discussed in [2] in the case of d = 3.

The degeneracy multiplicity (9), i.e., number p of all states with the given
energy Ej of low part of spectra, the numbers ps (pa) of the states, symmetric
(antisymmetric) under permutations of A− 1 relative coordinates together with
the total numbers pS (pA) of the states, symmetric (antisymmetric) under per-
mutations of A initial Cartesian coordinates are summarized in Table 3. Note
that the S and A states with E′ = ES,A

1 + 2 do not exist. The numbers ps (pa)
are essentially smaller than the total number p of all states, which simplifies the
procedure of constructing S (A) states with possible excitation of the center-of-
mass degree of freedom and allows the use of a compact basis with the reduced
degeneracy pS (pA) of the S (A) states in our final calculations. For clarity, in
the case A = 3, d = 1, the S(A)-type functions generated by the SCR algorithm,
in polar coordinates ξ1 = ρ cosϕ, ξ2 = ρ sinϕ are expressed as:

Φ
S(A)
k,m (ρ, ϕ) = Ckm(ρ2)3m/2 exp(−ρ2/2)L3m

k (ρ2) cossin (3m(ϕ+ π/12)),

where Ckm is the normalization constant, L3m
k (ρ2) are the Laguerre polynomials

[19], k = 0, 1, ..., m = 0, 1, ... for S states, while m = 1, 2, ... for A states, that are

Identical Particles with Pair Oscillator Interactions 167

classified by irr of the D3m-symmetry group. The corresponding energy levels

E
S(A)
k,m = 2(2k+3m+1) = E

s(a)
[i1,i2]

= 2(i1+i2+1) have the degeneracy multiplicity

K+1, if the energy E
S(A)
k,m −E

S(A)
1 = 12K+K ′, where K ′ = 0, 4, 6, 8, 10, 14. For

example, in Figs. 1 and 2 we show the wave functions ΦS
3,0(ρ, ϕ) and ΦS

0,2(ρ, ϕ)

(or ΦA
3,1(ρ, ϕ) and Φ

A
0,3(ρ, ϕ)) labelled with 6 and 7, corresponding to the energy

levels E
S(A)
k,m − E

S(A)
1 = 12 with the degeneracy K = 2, while the functions

labelled with 1, 2, 3, 4, 5, 8 are nondegenerate (K = 1). So, the eigenfunctions of
the A-identical particle system in one dimension are degenerate in accordance
with [21], and this result disagrees with nondegenerate ansatz solutions [10].

5 Conclusion

We considered a model of A identical particles bound by the oscillator-type
potential under the influence of the external field of a target in the new sym-
metrized coordinates. The constructive SCR algorithm of symmetrizing or an-
tisymmetrizing the A − 1-dimensional harmonic oscillator basis functions with
respect to permutations of A identical particles was described. One can see that
the transformations of (A − 1)-dimensional oscillator basis functions from the
symmetrized coordinates to the Jacobi coordinates, reducible to permutations
of coordinates and (A − 1)-dimensional finite rotation (5), are implemented by
means of the (A − 1)-dimensional oscillator Wigner functions [23]. Typical ex-
amples were analyzed, and a correspondence between the representations of the
symmetry groupsD3 and Td for A = 3 and A = 4 shapes is displayed. It is shown
that one can use the presented SCR algorithm, implemented using the MAPLE
computer algebra system, to construct the basis functions in the closed analytical
form. However, for practical calculations of matrix elements between the basis
states, belonging to the lower part of the spectrum, this is not necessary. The
application of the developed approach and algorithm for solving the problem
of tunnelling clusters through barrier potentials of a target is considered in our
forthcoming paper [22]. The proposed approach can be adapted to the analysis of
tetrahedral-symmetric nuclei, quantum diffusion of molecules and micro-clusters
through surfaces, and the fragmentation in producing neutron-rich light nuclei.

The authors thank Professor V.P. Gerdt for collaboration. The work was sup-
ported partially by grants 13-602-02 JINR, 11-01-00523 and 13-01-00668 RFBR
and the Bogoliubov-Infeld program.

References

1. Moshinsky, M., Smirnov, Y.F.: The harmonic oscillator in modern physics. Informa
Health Care, Amsterdam (1996)

2. Kramer, P., Moshinsky, M.: Group theory of harmonic oscillators (III). States with
permutational symmetry. Nucl. Phys. 82, 241–274 (1966)

3. Aguilera-Navarro, V.C., Moshinsky, M., Yeh, W.W.: Harmonic-oscillator states
and the α particle I. Form factor for symmetric states in configuration space. Ann.
Phys. 51, 312–336 (1969)

168 A. Gusev et al.

4. Aguilera-Navarro, V.C., Moshinsky, M., Kramer, P.: Harmonic-oscillator states and
the α particle II. Configuration-space states of arbitrary symmetry. Ann. Phys. 54,
379–393 (1969)

5. Lévy-Leblond, J.-M.: Global and democratic methods for classifying N particle
states. J. Math. Phys. 7, 2217–2229 (1966)

6. Neudatchin, V.G., Smirnov, Y.F.: Nucleon clusters in the light nuclei, Nauka,
Moscow (1969) (in Russian)

7. Novoselsky, A., Katriel, J.: Non-spurious harmonic oscillator states with arbitrary
symmetry. Ann. Phys. 196, 135–149 (1989)

8. Wildermuth, K., Tang, Y.C.: A unified theory of the nucleus. Academic Press,
New York (1977)

9. Kamuntavičius, G.P., Kalinauskas, R.K., Barrett, B.R., Mickevičius, S., Germanas,
D.: The general harmonic-oscillator brackets: compact expression, symmetries,
sums and Fortran code. Nucl. Phys. A 695, 191–201 (2001)

10. Wang, Z., Wang, A., Yang, Y., Xuechao, L.: Exact eigenfunctions of N-body system
with quadratic pair potential. arXiv:1108.1607v4 (2012)

11. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys.
Rev. A 62, 44701–44701 (2000)

12. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:
Symbolic-numerical algorithms to solve the quantum tunneling problem for a cou-
pled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

13. Dobrowolski, A., Góźdź, A., Mazurek, K., Dudek, J.: Tetrahedral symmetry in
nuclei: new predictions based on the collective model. International Journal of
Modern Physics E 20(2), 500–506

14. Dobrowolski, A., Szulerecka, A., Góźdź, A.: Electromagnetic transitions in
hypothetical tetrahedral and octahedral bands. In: Góźdź, A. (ed.) Hidden symme-
tries in intrinsic frame Proc. 19th Nuclear Physics Workshop in Kazimierz Dolny
(September 2012),
http://kft.umcs.lublin.pl/wfj/archive/2012/proceedings.php

15. Fock, V.A.: Näherungsmethode zur Lösung des quantenmechanischen
Mehrkörperproblems. Zs. Phys. 61, 126–148 (1930)

16. Hamermesh, M.: Group theory and its application to physical problems. Dover,
New York (1989)

17. Kanada-En’yo, Y., Hidaka, Y.: α-cluster structure and density waves in oblate
nuclei. Phys. Rev. C 84, 014313-1–014313-16 (2011)

18. Jepsent, D.W., Hirschfelder, J.O.: Set of co-ordinate systems which diagonalize the
kinetic energy of relative motion. Proc. Natl. Acad. Sci. U.S.A. 45, 249–256 (1959)

19. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions, p. 1037.
Dover, New York (1972)

20. Baker Jr., G.A.: Degeneracy of the n-dimensional, isotropic, harmonic oscillator.
Phys. Rev. 103, 1119–1120 (1956)

21. Lévy-Leblond, J.M.: Generalized uncertainty relations for many-fermion system.
Phys. Lett. A 26, 540–541 (1968)

22. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V.,
Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunc-
tions: quantum tunneling of clusters through repulsive barriers. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp.
427–442. Springer, Heidelberg (2013)

23. Pogosyan, G.S., Smorodinsky, Y.A., Ter-Antonyan, V.M.: Oscillator Wigner
functions. J. Phys. A 14, 769–776 (1981)

http://kft.umcs.lublin.pl/wfj/archive/2012/proceedings.php

Symbolic-Numerical Investigation of Gyrostat

Satellite Dynamics

Sergey A. Gutnik1 and Vasily A. Sarychev2

1 Moscow State Institute of International Relations (University) 76, Prospekt
Vernadskogo, Moscow, 119454, Russia

s.gutnik@inno.mgimo.ru
2 Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

4, Miusskaya Square, Moscow, 125047, Russia
vas31@rambler.ru

Abstract. Dynamics of gyrostat satellite moving along a circular or-
bit in the central Newtonian gravitational field is studied. A symbolic-
numerical method for determination of all equilibrium orientations of
gyrostat satellite in the orbital coordinate system with given gyrostatic
torque and given principal central moments of inertia is proposed. A com-
puter algebra method based on the algorithm for the construction of a
Groebner basis and the resultant concept for solving the problem is used.
All bifurcation values of parameters at which there is a change of num-
bers of equilibrium orientations are determined. Evolution of domains
in the space of parameters of the system which correspond to various
numbers of equilibria are carried out numerically in detail. The stability
analysis of equilibria is performed on the basis of Lyapunov’s theorem. It
is shown that the number of equilibria of the gyrostat satellite in general
case is no less than 8 and no more than 24, and the number of stable
equilibria changes from 4 to 2.

1 Introduction

The important aspect of the development of space technology is the design of
systems of orientation of the satellites. The orientation of the satellite can be
carried out with the use of active or passive methods. In the design of passive
control system of satellite orientation, it is possible to use the properties of the
gravitational and magnetic fields, the effect of atmospheric drag forces and solar
radiation pressure, gyroscopic properties of rotating bodies et cetera. An impor-
tant property of passive systems orientation is that these systems can operate
for a long time without spending energy. Among the passive methods of orien-
tation, the most widespread are the gravity orientation systems of the satellite.
These systems are based on the fact that a satellite with different moments of
inertia in the central Newtonian force field in a circular orbit has 24 equilib-
rium orientations, and four of them are stable [1]. Adding inside the body of
the satellite statically and dynamically balanced rotors rotating with a constant
angular velocity relative to the body of the satellite leads to new equilibrium

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 169–178, 2013.
c© Springer International Publishing Switzerland 2013

170 S.A. Gutnik and V.A. Sarychev

orientations of satellite, interesting for practical applications. Therefore, it is
necessary to study the joint action of gravitational and gyrostatic moments and,
in particular, to analyze all possible satellite’s equilibria in a circular orbit. Such
solutions can be used in practical space technology in the design of passive con-
trol systems of the satellites. In this work, a symbolic–numerical investigation of
satellite’s dynamics under the influence of gravitational and gyrostatic moments
is presented. The symbolic-numerical method for determination of equilibrium
orientation of a gyrostat satellite had been successfully used for the analysis of
equilibrium orientations of a satellite in a circular orbit under the influence of
gravitational and aerodynamic forces [2].

Many publications are dedicated to the problem of determination of the equi-
librium orientations of the gyrostat satellite. The basic problems of satellite’s
dynamics with a gyrostatic attitude control system have been presented in [1].
In [3], [4], [5], [6], and [7], all equilibrium orientations were found in some special
cases when the vector of gyrostatic moment is located along a satellite’s principal
central axis of inertia and in the satellite’s principal central plane of inertia. The
general case of the problem of gyrostat for general values of gyrostatic moment
was first studied in [8]. In the present work, the problem of determination of
the classes of equilibrium orientations for the general case is considered. The
equilibrium orientations are determined by real roots of the system of nonlinear
algebraic equations. The investigation of equilibria was possible due to applica-
tion of Computer Algebra Groebner basis and resultant methods. Evolution of
domains with a fixed number of equilibria is investigated numerically in depen-
dence of four dimensionless system parameters. Sufficient conditions for stability
of all equilibrium orientations are obtained using the generalized integral of en-
ergy. The stability of the equilibrium orientations is analyzed numerically.

2 Equations of Motion

Consider the attitude motion of the gyrostat satellite (further we call it as
the gyrostat), which is a rigid body with statically and dynamically balanced
rotors inside the satellite body. The rotors angular velocities relative to the
satellite body are constant. To write the equations of motion we introduce two
right Cartesian coordinate systems with origin in the satellite’s center of mass
O. OXY Z is the orbital coordinate system whose OZ axis is directed along
the radius vector connecting the centers of mass of the Earth and of the gyro-
stat satellite; the OX axis is directed along the vector of linear velocity of the
center of mass O. Oxyz is the gyrostat-fixed coordinate system; Ox, Oy, and
Oz are the principal central axes of inertia of the gyrostat satellite. The orien-
tation of the gyrostat-fixed coordinate system Oxyz with respect to the orbital
coordinate system is determined by means of the Euler angles ψ (precession),
ϑ (nutation), and ϕ (spin). The direction cosines in transformation matrix be-
tween the coordinate systems OXY Z and Oxyz are represented by the following
expressions [8]:

Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics 171

a11 = cos(x,X) = cosψ cosϕ− sinψ cosϑ sinϕ,

a12 = cos(y,X) = − cosψ sinϕ− sinψ cosϑ cosϕ,

a13 = cos(z,X) = sinψ sinϑ,

a21 = cos(x, Y) = sinψ cosϕ+ cosψ cosϑ sinϕ,

a22 = cos(y, Y) = − sinψ sinϕ+ cosψ cosϑ cosϕ, (1)

a23 = cos(z, Y) = − cosψ sinϑ,

a31 = cos(x, Z) = sinϑ sinϕ,

a32 = cos(y, Z) = sinϑ cosϕ,

a33 = cos(z, Z) = cosϑ.

Then equations of the satellite’s attitude motion can be written in the Euler
form [1], [8]:

Aṗ+ (C −B)qr − 3ω2
0(C −B)a32a33 − H̄2r + H̄3q = 0,

Bq̇ + (A− C)rp − 3ω2
0(A− C)a31a33 − H̄3p+ H̄1r = 0, (2)

Cṙ + (B −A)pq − 3ω2
0(B −A)a31a32 − H̄1q − H̄2p = 0,

p = ψ̇a31 + ϑ̇ cosϕ+ ω0a21 = p̄+ ω0a21,

q = ψ̇a32 − ϑ̇ sinϕ+ ω0a22 = q̄ + ω0a22, (3)

r = ψ̇a33 + ϕ̇+ ω0a23 = r̄ + ω0a23.

In equations (2), (3) H̄1 =
∑n

i=1Jiαiϕ̇i, H̄2 =
∑n

i=1Jiβiϕ̇i, H̄3 =
∑n

i=1Jiγiϕ̇i,
Ji is the axial moment of inertia of the ith rotor; αi, βi, and γi are the constant
direction cosines of the symmetry axis of the ith rotor in the coordinate system
Oxyz; ϕ̇i is the constant angular velocity of the ith rotor relative to the gyrostat;
n is the number of rotors; A, B, and C are the principal central moments of
inertia of the gyrostat; p, q, and r are the projections of the inertial angular
velocity of the gyrostat satellite onto the Ox, Oy, and Oz axes; ω0 is the angular
velocity of the orbital motion of the gyrostat satellite center of mass. The dot
designates differentiation with respect to time t.

Further it will be more convenient to use parameters H1 = H̄1/ω0, H2 =
H̄2/ω0, H3 = H̄3/ω0.

For the systems of equations (2) and (3), the generalized energy integral exists
in the form

1

2
(Ap̄2 +Bq̄2 + Cr̄2) +

3

2
ω2
0 [(A− C)a231 + (B − C)a232] +

+
1

2
ω2
0 [(B −A)a221 + (B − C)a223]− ω2

0(H1a21 +H2a22 +H3a23) = const. (4)

172 S.A. Gutnik and V.A. Sarychev

3 Equilibrium Orientations

Setting in (2) and (3) ψ = ψ0 = const, ϑ = ϑ0 = const, ϕ = ϕ0 = const we
obtain at A �= B �= C the equations

(C −B)(a22a23 − 3a32a33) = H2a23 −H3a22,

(A− C)(a21a23 − 3a31a33) = H3a21 −H1a23, (5)

(B −A)(a21a22 − 3a31a32) = H1a22 −H2a21

allowing us to determine the gyrostat satellite equilibria in the orbital coordinate
system.

Substituting the expressions for the direction cosines from (1) in terms of
Euler angles into Eqs. (5), we obtain three equations with three unknowns ψ,
ϑ, and ϕ. The second procedure for closing Eqs. (5) is to add the following six
orthogonality conditions for the direction cosines

ai1aj1 + ai2aj2 + ai3aj3 = δij (6)

where δij is the Kronecker delta and (i, j = 1, 2, 3). Equations (5) and (6) form
a closed system with respect to the direction cosines, which also specifies the
equilibrium solutions of the satellite.

We state the following problem for the system of equations (5), (6): determine
all nine direction cosines, i.e., to find all the equilibrium orientations of the
satellite when system parameters A,B,C, h̄1, h̄2, and h̄3 are given. The problem
has been solved only for some specific cases when the vector of gyrostatic moment
is located along the satellite’s principal central axis of inertia Oy, when H1 = 0,
H2 �= 0, H3 = 0 ([3], [4], [7]), and when the vector of gyrostatic moment locates
in the satellite’s principal central plane of inertia Oxz of the frame Oxyz and
H1 �= 0, H2 = 0, H3 �= 0 ([5], [6]).

In the case H1 = H2 = H3 = 0, it has been proved that the system (5), (6)
has 24 solutions describing the equilibrium orientations of a satellite-rigid body
[1].

Here we consider the general case of determination of the equilibria of the
satellite when H1 �= 0, H2 �= 0, H3 �= 0. This problem was first studied in [8].
A Computer Algebra approach to determination of equilibrium orientations of
the satellite was used. Projecting Eqs. (5) onto the axis of the orbiting frame
OXY Z, we get the algebraic system, using the method given in [8]:

Aa11a31 +Ba12a32 + Ca13a33 = 0,

Aa11a21 +Ba12a22 + Ca13a23 + (H1a11 +H2a12 +H3a13) = 0, (7)

4(Aa21a31 +Ba22a32 + Ca23a33) + (H1a31 +H2a32 +H3a33) = 0.

The main task of symbolic calculation is to reduce the algebraic system (6),
(7) to a single algebraic equation with one variable. Solution of the system (6),
(7) can be obtained using the algorithm for the construction of Groebner bases
[9]. The method of Groebner bases is used to solve systems of nonlinear alge-
braic equations. It comprises an algorithmic procedure for reducing the problem

Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics 173

involving polynomials of several variables to investigation of a polynomial of one
variable. Using the computer algebra system Maple [10] Groebner[gbasis] pack-
age with tdeg option, we calculate the Groebner basis of the system (6), (7) of
nine polynomials in nine variables aij (i, j = 1, 2, 3) under the ordering on the
total power of the variables. In the list of variables in the Maple Groebner pack-
age, we use nine direction cosines, and in the list of polynomials, we include the
polynomials from the left-hand sides fi (i = 1, 2, ...9) of the algebraic equations
(6), (7):

map(factor,Groebner[gbasis]([f1,f2,f3, ... f9],tdeg(a11, a12, a13, ... a33))).
Here we write the polynomials in the Groebner basis that depend only on vari-
ables a31, a32, a33:

16[(B − C)2a232a
2
33 + (C −A)2a231a

2
33 + (A−B)2a231a

2
32] =

= (H1a31 +H2a32 +H3a33)
2(a231 + a232 + a233),

4(B − C)(C −A)(A −B)a31a32a33 + [H1(B − C)a32a33 + (8)

+H2(C −A)a31a33 +H3(A−B)a31a32](H1a31 +H2a32 +H3a33) = 0,

a231 + a232 + a233 = 1.

Introducing the new variables x = a31/a33, y = a32/a33, hi = Hi/(B − C),
ν = (B −A)/(B − C), we deduce two equations for determination of x and y

a0y
2 + a1y + a2 = 0,

b0y
4 + b1y

3 + b2y
2 + b3y + b4 = 0, (9)

where

a0 = h2(h1 − νxh3),

a1 = h1h3 + [4ν((1 − ν) + h21 − (1 − ν)h22 − νh23]x− νh1h3x
2,

a2 = −(1− ν)h2(h1x+ h3)x,

b0 = h22,

b1 = 2h2(h1x+ h3),

b2 = (h21 + h22 − 16) + 2h1h3x+ (h21 + h22 − 16v2)x2,

b3 = 2h2(h1x+ h3)(1 + x2),

b4 = (h1x+ h2)
2(1 + x2)− 16(1− ν)2x2.

Using the resultant concept we eliminate the variable y from the equations (9).
Expanding the determinant of resultant matrix of Eqs.(9) with the help of Maple
symbolic matrix function, we obtain a twelfth order algebraic equation in x

p0x
12 + p1x

11 + p2x
10 + p3x

9 + p4x
8 + p5x

7 +

+ p6x
6 + p7x

5 + p8x
4 + p9x

3 + p10x
2 + p11x+ p12 = 0, (10)

the coefficients of which depend in a rather complicated way on the parameters
ν, h1, h2, h3:

p0 = −h41h43ν6, p1 = 2h31h
3
3ν

5[2h21 − h22(ν − 1)− 2ν(h23 + 2ν − 2)], . . . (11)

p11 = −2h31h
3
3[(2h

2
1 − h22(ν − 1)− 2ν(h23 + 2ν − 2)], p12 = −h41h43.

174 S.A. Gutnik and V.A. Sarychev

By the definition of resultant, to every root x of Eq.(10) there corresponds a
common root y of the system (9). It can easily be shown that to every real root
x of Eq.(10), there correspond 2 solutions for (5), (6). Since the number of real
roots of Eq.(10) does not exceed 12, the gyrostat satellite in a circular orbit
can have at most 24 equilibria in the orbital coordinate system. Using Eq.(10),
(11), we can determine numerically all the relative equilibrium orientations of
the gyrostat satellite and analyze their stability. We have analyzed numerically
dependence of the number of real solutions of Eq.(10) on the parameters, using
Mathematica 8.0 factorization package. It is possible to provide the numerical
calculations, without breaking a generality for the case when B > A > C. From
these inequalities it follows that 0 < ν < 1. The parameters h1, h2, and h3 can
take on any nonzero values. The coefficients of Eq.(10) depend on 4 dimensionless
parameters ν, h1, h2, h3. The system of stationary equations (5) depends on 6
dimensional parameters. For the numerical calculations, reduction of the number
of system parameters is very essential. Let us consider the properties of the
algebraic equation (10) in detail. It is possible to show that the number of real
roots of Eq. (10) does not depend on the sign of the parameters h1, h2, and h3.
It is evident that coefficients of Eq.(10) with odd x degree depend only on odd
degree of the parameters h1, h2, h3. For the coefficients with even x degree, we
can represent them, using factorization to the form of two factors - one factor
equals h1h3 and the second factor depends only on odd degree of the parameters
h1, h2, and h3. Thus, changing sign of h1, h2, and h3 we will change only the
sign of the factor h1h3 and, therefore, the sign of real root of polynomial (10).
Therefore, the number of real roots does not change.

Hence, the numerical analysis of the number of real roots of Eq.(10) is possible
to do with positive values of h1, h2, h3 and 0 < ν < 1 condition. Thus, the
numerical investigation of real roots of Eq.(10) will be simplified. The numerical
calculations were made for fixed values of ν and h3, the number of real roots
was determined at the nodes of a uniform grid in the plane (h1, h2). The direct
calculations for h2 with step equal to 0.0001 are very complicated. In this case,
we have for the size 4x4 (h1, h2) region about 109 nodes. The calculation task
was divided in two parts. In the first place, the number of real roots in the 107

nodes (0.001 step value for h2) was calculated. Secondly, the number of real roots
was calculated in the vicinity of the border between two regions with the fixed
number of real roots (0.0001 step value for h2).

Then for the fixed value of h2, it was defined a more precise border value of
h1 between two regions with the fixed number of real roots with the determined
accuracy, using the bisection method realized in Mathematica language as a
package. Equation (10) was derived under the conditions h1 �= 0, h2 �= 0, h3 �= 0,
so we use h1, h2, h3 in the vicinity of zero with the higher accuracy equal to
0.000001.

Calculations were made for the inertia parameters ν = 0.01, ν = 0.1, ν = 0.2,
ν = 0.3, ν = 0.4, ν = 0.5, ν = 0.6, ν = 0.7, ν = 0.8, ν = 0.9, ν = 0.99.

The example of numerical calculations of the borders between the regions with
the fixed number of real roots at the plane (h1, h2) for ν = 0.2 and h3 = 0.25

Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics 175

Fig. 1. The regions with the fixed number of equilibria for ν = 0.2, h3 = 0.25

is presented in Fig. 1. At the center of this picture, there is a region with 24
equilibria (12 real roots).

¿From the analysis of all calculations for the above-mentioned inertia param-
eters ν, it follows that with an increase of the h3 values, several regions with the
fixed number of equilibria become narrowed until they completely disappear.
The point in the space of parameters, where a region with the fixed number
of equilibria vanishes, was defined as bifurcation point. Calculated bifurcation
values of the parameters are presented in Table 1.

Table 1. Bifurcational ν, h3 values

ν h3(24/20) h3(20/16) h3(16/12) h3(12/8)

0.01 0.99 0.999 3.959 4.0
0.1 0.90 1.021 3.610 4.0
0.2 0.80 1.048 3.264 4.0
0.3 0.70 1.082 2.950 4.0
0.4 0.60 1.124 2.669 4.0
0.5 0.50 1.182 2.412 4.0
0.6 0.40 1.186 2.167 4.0
0.7 0.30 1.105 1.915 4.0
0.8 0.20 0.909 1.629 4.0
0.9 0.10 0.676 1.245 4.0
0.99 0.01 0.168 0.997 4.0

176 S.A. Gutnik and V.A. Sarychev

All bifurcation points from Table 1 were calculated numerically, and it is
possible to see that the h3 bifurcation values for regions with 24 equilibria (12
real roots) vanish in accordance with the equation h3 = 1− ν.

For the regions with 20 equilibria (10 real roots), the h3 bifurcation values
increase with the increase of ν up to ν = 0.6, and decrease after that with the
further increase of ν.

For the regions with 16 equilibria (8 real roots) the bifurcation values always
decrease with the decreasing of ν.

The regions with 12 equilibria become smaller with the increase of h3 values.
These regions are vanishing at the center of coordinate system for h3 = 4. For
h3 ≥ 4, there are small regions of 12 equilibria near h2 axis with the size along
h1 and h2 axes less than 10−1. And with increasing h3 value, these small regions
take the farther position from the center of coordinate system along the h2 axis.

For the interval 0.01 ≤ ν ≤ 0.99, the evolution of regions with 24, 20, 16,
12, and 8 equilibria was investigated numerically. For example, if ν = 0.2 then
analysis of the numerical results shows that five regions with 24, 20, 16, 12, and
8 equilibria exist in the plane (h1, h2) for the interval h3 < 0.8. When we pass
through the bifurcation value h3 = 0.8 the region with 24 equilibria vanishes,
and in the interval 0.8 < h3 < 1.048, only four regions with 20, 16, 12, and
8 equilibria exist. When we pass through the bifurcation value h3 = 1.048 the
region with 20 equilibria vanishes.

In the interval 1.048 < h3 < 3.264, only three regions with 16, 12, and 8
equilibria exist. The value h3 = 3.264 is bifurcational. When we pass through
this bifurcation value the region with 16 equilibria vanishes. In the interval
3.264 < h3 < 4, only two regions with 12 and 8 equilibria exist near the center
of coordinate system.

When the values of parameter h3 of the gyrostatic torque are more than 4,
the satellite has 8 equilibrium orientations, which correspond to four real roots
of Eq.(10). There are only small regions of 12 equilibria outside the center of the
plane (h1, h2) near the h2 axis.

4 Stability Analysis of Equilibria

To investigate the stability of equilibrium solutions ψ = ψ0 = const, ϑ = ϑ0 =
const, ϕ = ϕ0 = const satisfying Eqs. (5), we can use the Jacobi integral of
energy (4) as the Lyapunov function in order to obtain sufficient conditions of
stability of the equilibrium orientations of the gyrostat satellite. After replace-
ment ψ → ψ + ψ0, ϑ → ϑ + ϑ0, ϕ → ϕ + ϕ0 where ψ, ϑ, ϕ are small deviations
from the satellite’s equilibria ψ0, ϑ0, ϕ0, the energy integral takes the form

1

2
(Ap̄2 + Bq̄2 + Cr̄2) +

1

2
(B − C)(A11ψ

2 +A22ϑ
2 +A33ϕ

2 +

+ 2A12ψϑ+ 2A13ψϕ+ 2A23ϑϕ) +O3(ψ, ϑ, ϕ) = const, (12)

where coefficients Aij depend on the parameters ν, h1, h2, h3, ψ0, ϑ0, ϕ0 in the
form

Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics 177

A11 = ν(a211 − a221) + (a213 − a223) + h1a21 + h2a22 + h3a23,

A22 = (3 + cos2 ψ0)(1− ν sin2 ϕ0) cos 2ϑ0 − 1

4
ν sin 2ψ0 cosϑ0 sin 2ϕ0 +

+ (h1 sinϕ0 + h2 cosϕ0) cosψ0 cosϑ0 + h3a23,

A33 = ν[(a222 − a221)− 3(a232 − a231)] + h1a21 + h2a22, (13)

A12 = −1

2
sin 2ψ0 sin 2ϑ0 + ν(a11a23 + a13a21)−

− (h1a31 + h2a32 + h3a33) sinψ0,

A13 = ν(a11a22 + a12a21)− h1a12 + h2a11,

A23 = −3

2
ν sin 2ϑ0 sin 2ϕ0 + ν(a21 cosϕ0 + a22 sinϕ0)a23 −

− (h1 cosϕ0 − h2 sinϕ0)a23.

It follows from Lyapunov theorem that the equilibrium solution is stable if
the quadratic form (12),(13) is positive definite, i.e., the following inequalities
take place:

A11 > 0,

A11 A22 −A2
12 > 0, (14)

A11 A22A33 + 2A12A23A13 −A11A
2
23 −A22A

2
13 −A33A

2
12 > 0.

Substituting the expressions for Aij from (13) for the corresponding equilib-
rium solution into (14), we obtain the conditions for stability of this solution.
Using integral (12), we have analyzed numerically stability conditions (14) for
the equilibrium solutions.

¿From the analysis of all calculations for the above-indicated parameters it
follows that for |h3| < (1 − ν), there are 24 equilibrium solutions, and for 4
equilibrium solutions, stability conditions (14) are valid. There are also 4 sta-
ble equilibria for ν > 0.5 and |h3| ≥ (1 − ν). When the values of parameters
|hi| > 4 (i = 1, 2, 3) there are 8 equilibrium solutions, and only two of them are
stable.

5 Conclusion

In this work, the attitude motion of the gyrostat satellite under the action of
gravitational torque in a circular orbit has been investigated. The main attention
was given to determination of the satellite equilibrium orientation in the orbital
coordinate system and to analysis of their stability. The symbolic-numerical
method of determination of all satellite equilibria is suggested in general case
when h1 �= 0, h2 �= 0, and h3 �= 0. The symbolic computation system Maple
is applied to reduce the satellite stationary motion system of nine algebraic
equations with nine variables to a single algebraic equation of the twelfth degree
with one variable, using the Groebner package for the construction of a Groebner

178 S.A. Gutnik and V.A. Sarychev

basis and the resultant approach. It was shown that the equilibrium orientations
are determined by real roots of algebraic equation of the twelfth degree. Using
this result of symbolic calculations we conclude that the gyrostat satellite can
have no more than 24 equilibrium orientations in a circular orbit.

The evolution of domains with fixed number of equilibrium orientations was
investigated numerically in the plane of two parameters h1 and h2 for different
values of parameters ν and h3. The bifurcation values of h3 corresponding to
the qualitative change of domains with fixed number of equilibria were deter-
mined. On the basis of numerical calculation we can conclude that the number
of satellite’s isolated equilibria is no less than 8. Using the Lyapunov theorem,
the sufficient conditions of stability of the equilibrium orientations are investi-
gated numerically at different values of gyrostatic parameters. Analysis of the
numerical simulation shows that the number of stable equilibria is no less than
2 and no more than 4. All calculations considered here were implemented with
the computer algebra systems Maple and Mathematica.

The results of the study can be used at the stage of preliminary design of the
satellite with gravitational control system.

References

1. Sarychev, V.A.: Problems of Orientation of Satellites, Itogi Nauki i Tekhniki. Ser.
Space Research, vol. 11. VINITI, Moscow (1978)

2. Gutnik, S.A.: Symbolic-numeric investigation of the aerodynamic forces influence
on satellite dynamics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2011. LNCS, vol. 6885, pp. 192–199. Springer, Heidelberg (2011)

3. Sarychev, V.A., Mirer, S.A.: Relative equilibria of a gyrostat satellite with internal
angular momentum along a principal axis. Acta Astronautica 49, 641–644 (2001)

4. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: The dynamics of a satellite gyro-
stat with a single nonzero component of the vector of gyrostatic moment. Cosmic
Research 43, 268–279 (2005)

5. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: Dynamics of a gyrostat satellite
with the vector of gyrostatic moment in the principal plane of inertia. Cosmic
Research 46, 61–74 (2008)

6. Longman, R.W.: Gravity-gradient stabilization of gyrostat satellites with rotor
axes in principal planes. Celestial Mechanics 3, 169–188 (1971)

7. Longman, R.W., Hagedorn, P., Beck, A.: Stabilization due to gyroscopic coupling
in dual-spin satellites subject to gravitational torques. Celestial Mechanics 25,
353–373 (1981)

8. Sarychev, V.A., Gutnik, S.A.: Relative equilibria of a gyrostat satellite. Cosmic
Research 22, 323–326 (1984)

9. Buchberger, B.: Theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin, 19–29 (1976)

10. Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple
Reference Manual. Watcom Publications Limitid, Waterloo (1992)

On Stationary Sets of Euler’s Equations

on so(3, 1) and Their Stability

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia

irteg@icc.ru

Abstract. With the use of computer algebra methods we investigate
two recent found cases of integrability (in the Liouville sense) of Eu-
ler’s equations on the Lie algebra so(3, 1) when the equations possess
additional polynomial first integrals of degrees 3 and 6. The problems
of obtaining stationary sets of the equations and investigation of their
stability are considered. In addition to the sets obtained earlier [1], we
have found new zero-dimensional and nonzero-dimensional stationary
sets. For a number of the sets we have derived sufficient conditions of
their stability and instability.

Keywords: Euler’s equations, stationary sets, stability.

1 Introduction

It is known that configuration space in dynamics of a rigid body is, as a rule,
some natural Lie group SO(3), E(3), SO(4), etc. In [2], the connection of classical
Euler’s equations, describing the motion of a rigid body, with Lie algebras is
shown. Many problems of mechanics, mathematical physics, etc. [3] reduce to
Euler’s equations on Lie algebras. These equations are also a good model for the
study of singularities of integrable Hamiltonian systems. Therefore, an increased
interest takes place in the systems of such a type, in particular, finding new
cases of integrability of the systems and qualitative analysis of these cases. So,
the works [6]–[8] are devoted to investigation of new integrable cases of Euler’s
equations on Lie algebras e(3), so(4) [4], [5] when the equations admit additional
polynomial first integral of 4th degree. In these works, a topological analysis of
the cases has been conducted.

The goal of our paper is investigation of some qualitative properties of
two recent found cases of integrability of Euler’s equations on the Lie alge-
bra so(3, 1) when the equations possess additional polynomial first integrals of
degrees 3 and 6 [9], [10]. We find peculiar solutions (stationary sets) of these
equations and investigate their stability. For solving these problems, we apply a
technique based on computer algebra methods. The latter allows us not only to
obtain the desired solutions in an analytical form but also to investigate their
stability, e.g., by Lyapunov’s methods. In [1], some general analysis of station-
ary sets of the equations considered has been conducted. Nonzero-dimensional

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 179–193, 2013.
c© Springer International Publishing Switzerland 2013

180 V. Irtegov and T. Titorenko

stationary sets (stationary invariant manifolds (IMs)) have been found, their
stability and bifurcations have been investigated. It was shown that the equa-
tions have zero-dimensional stationary sets in capacity of their solutions. In the
given paper, we have found these sets and investigated their stability. We have
also found a family of complex IMs which possess, in our opinion, an interesting
property: under some additional constraints, the motion on the elements of this
family is described by real functions of time. For the purpose of solving compu-
tational problems, we used the computer algebra systems (CAS) Mathematica
and Maple [11].

2 On Stationary Sets of Euler’s Equations with an
Additional Cubic First Integral

2.1 Problem Formulation

In [10], the problem of revealing integrable equations in the family of Euler’s
equations with Hamiltonians of the form

H= c1 α3(M
2
1 +M

2
2+M

2
3)+c2M3(α1M1+α3M3)+M1γ2 −M2γ1 (1)

is considered. Such problems arise, e.g., in classification of integrable Hamil-
tonian systems [12]. Here Mi, γi (i = 1, 2, 3) are the components of the two
3-dimensional vectors, αj , cj are some constants.

Hamiltonians (1) belong to a wide class of quadratic Hamiltonians which
have numerous applications (two-spin interactions, motion of a rigid body in a
constant-curvature space or in an ideal fluid, motion of a body with ellipsoidal
cavity filled with fluid around a fixed point, etc.). A number of works are devoted
to the study of the Hamiltonians of such a type (see, e.g., [3]–[10]).

In [10], several integrable cases of the equations discussed were found. The
Hamiltonians corresponding to them are separated from family (1) by the con-
straints imposed on parameters c1 and c2: (a) c1 is arbitrary, c2 = 0; (b) c1 =
1, c2 = −2; (c) c1 = 1, c2 = −1; (d) c1 = 1, c2 = −1/2. In the present paper, cases
(b) and (d) are studied.

According to [10], in integrable case (b) there exists an additional cubic inte-
gral of the form

F = {2[α3(M1γ2 −M2γ1) + α1(M2γ3 −M3γ2)]− k(M2
1 +M2

2 +M2
3)

+γ21 + γ22 + γ23}M3 = h1 = const. (2)

The latter integral has been found earlier in [9].
Euler’s equations corresponding to Hamiltonian (b) write

Ṁ1=2M2(α1M1+2α3M3)−(M3γ1−M1γ3),

Ṁ2=M2γ3−M3γ2−2
[
α1(M

2
1 −M2

3)+2α3M1M3

]
, Ṁ3=−2α1M2M3,

γ̇1=2(α1M1+α3M3) γ2+(2α3M2−γ1) γ3+kM1M3,

γ̇2=2
[
(α1M3−α3M1) γ3−(α1M1+α3M3) γ1

]
+kM2M3−γ2γ3,

γ̇3=2
[
α3(M1γ2 −M2γ1)−α1M3γ2

]
+γ21+γ

2
2−k(M2

1+M
2
2).

(3)

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 181

The rest of the integrals of equations (3) has the form:

V1 =

3∑
i=1

Miγi = h2 = const, V2 =

3∑
i=1

(kM2
i + γ2i) = h3 = const. (4)

We state the problem of finding stationary sets of equations (3) and investi-
gation of their stability in the Lyapunov sense.

2.2 Finding Stationary Sets

In order to solve the stated problem we shall apply the Routh–Lyapunov method
[13] and some its generalizations (see [14]). This method in combination with
computer algebra tools allows one not only to find the desired solutions but also
to investigate their stability. According to the method, stationary invariant sets
of the above differential equations are called solutions of conditional extremum
problem for the elements of algebra of the first integrals of these equations. To
obtain these sets, some linear or nonlinear combination from the problem’s first
integrals (a family of the first integrals) is constructed, and necessary conditions
for this family to have an extremum with respect to phase variables are written.
The problem of finding stationary invariant sets for the system of differential
equations with polynomial first integrals is reduced thereby to obtaining solu-
tions of some algebraic system. In our case, it will be a system of nonlinear
equations.

Following the technique chosen, we construct the complete linear combination

K = λ0H − λ1V1 − λ2
2
V2 − λ3F (5)

from the first integrals of the problem, and write down the necessary conditions
for the integral K to have an extremum with respect to phase variables Mi, γi:

∂K/∂M1=λ0γ2−λ1γ1+(2α3λ0−kλ2)M1−2 [α1λ0+λ3(α3γ2−kM1)]M3=0,

∂K/∂M2=−λ0γ1−λ1γ2+(2α3λ0−kλ2)M2+2λ3 (α3γ1+kM2−α1γ3)M3=0,

∂K/∂M3 = −λ1γ3 − 2α1λ0M1 − (2α3λ0 + kλ2)M3 + λ3 [k(M
2
1 +M2

2 + 3M2
3)

+2 (α3γ1−α1γ3)M2+2 (2α1M3−α3M1)γ2−(γ21 + γ22 + γ23)] = 0,

∂K/∂γ1 = −λ1M1 − λ0M2 − λ2γ1 + 2λ3(α3M2 − γ1)M3 = 0,

∂K/∂γ2 = λ0M1 − λ1M2 − λ2γ2 + 2λ3 [(α1M3 − α3M1)− γ2]M3 = 0,

∂K/∂γ3 = −λ1M3 − λ2γ3 − 2λ3(α1M2 + γ3)M3 = 0.

(6)

Here λi = const are the family parameters of the integral K.
Equations (6) (the conditions of stationarity for the integral K) represent

a system of polynomial equations of 2nd degree with parameters λ0, λ1, λ2, λ3,
α1, α3. It should be noted that if some part of parameters λi in K assumes
zero values then we obtain an “incomplete” combination of the integrals. In this
case, both stationary equations and solutions of these equations correspond to
this “incomplete” combination of the integrals.

182 V. Irtegov and T. Titorenko

We applied computer algebra methods for qualitative analysis of the solution
set of equations (6) and for finding solutions of these equations.

It was shown in [1] that equations (6) have a finite number of solutions (6
solutions) over field Q(λi, αj)[M1,M2,M3, γ1, γ2, γ3]. The latter was revealed by
the programs IsZeroDimensional, NumberOfSolutions which are included in the
Maple-program package PolynomialIdeals.

The program IsPrime (which is also part of this package) allowed us to find
out that system (6) can be decomposed into “simpler” subsystems over the
above field. To this end, we applied triangular sets method [15]. The method
decomposes the algebraic variety of a polynomial system into subvarieties which
correspond to one or several solutions of the system. A special form, called
“triangular set”, is used for representing solutions. In the problem considered,
application of this method has not caused any computational difficulties. We used
the Maple-program Triangularize. The result of application of this program to
system (6) writes[

[γ1, γ2, γ3,M1,M2,M3],

[M2, γ1(2λ3M3 + λ2) + λ1M1, γ3(2λ3M3 + λ2) + λ1M3,

γ2(2λ3M3 + λ2) +M1(2α3λ3M3 − λ0)− 2α1λ3M
2
3 ,

2M1 (α
2
1(4λ

2
3M

2
3 − λ22)− (λ0 + α3λ2)

2 − λ21)

+α1(4α3λ
2
3M

2
3 + λ0(2λ3M3 + λ2))M3,

a0M
5
3 + a1M

4
3 + a2M

3
3 + a3M

2
3 + a4M3 + a5]

]
. (7)

Here a0, . . . , a5 are some expressions of λi, αj .
The program result is a list of the system solutions represented in “triangu-

lar” form. The first element of the list defines a trivial solution of system (6),
the 2nd element defines five solutions of this system because the polynomial of
variableM3 has five roots. We have found multiple roots of this polynomial. The
conditions of existence of such roots can be obtained as conditions under which
the resultant of two polynomials (the polynomial considered and its derivative)
vanishes. The found conditions in the form of restrictions imposed on parameters
λi, αj and the solutions corresponding to them are given below.

i) λ1 = 0, α3 = 0 :

γ1 = 0, γ2 = −2α1λ2λ
−1
3 , γ3 = 0, M1 = 0, M2 = 0, M3 = −λ2λ−1

3 ; (8)

ii) λ1 = 0, α3 = α1 :

γ1 = 0, γ2 = 2(α1λ2 + λ0)λ
−1
3 , γ3 = 0, M1 = −2(α1λ2 + λ0)α

−1
1 λ−1

3 ,

M2 = 0, M3 = (α1λ2 + λ0)α
−1
1 λ−1

3 ; (9)

iii) λ2 = 0, α1 = 0 :

γ1 = 0, γ2 = 0, γ3 = −λ1 λ−1
3 /2, M1 = 0, M2 = 0,

M3 = −(2λ0 ±
√
4λ20 + 3λ21)α

−1
3 λ−1

3 /6; (10)

iv) λ0 =
λ21

2α3λ2
+

1

2
α3λ2, α1 = 0 :

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 183

γ1 = 0, γ2 = 0, γ3 = −(2λ1 ±
√
λ21 − 3α2

3λ
2
2)λ

−1
3 /2, M1 = 0,

M2 = 0, M3 = −(λ21 + 3α2
3λ

2
2 ∓ λ1

√
λ21 − 3α2

3λ
2
2)α

−2
3 λ−1

2 λ−1
3 /6. (11)

The above expressions are the families of the stationary solutions of differential
equations (3) parameterized by λi. The latter is proved by direct substitution
of (8)–(11) into equations (3) and (6). As a result, these equations turn into
identities.

Geometrically, the elements of the families of real solutions (8)-(11) correspond
to the families of points in R6. According to [10], from a mechanical point of view,
under corresponding interpretation of the parameters and the phase variables,
these elements correspond to helical motions of a rigid body in fluid (generalized
Kirchhoff’s model), and permanent rotations of a rigid body with cavity filled
with fluid (generalized Poincaré’s model).

Next, we apply the triangular sets method for finding nonzero-dimensional
stationary sets. Similarly to [1], we consider some part of the phase variables and
some part of the parameters, e.g., γ1, γ2, γ3,M1,M2, λ1, in capacity of unknowns.
The Maple-programs IsZeroDimensional, HilbertDimention, IsPrime have re-
vealed that equations (6) have infinite number of solutions with respect to the
unknowns, the dimension of these solutions is 1, and the algebraic variety of the
equations can be decomposed into subvarieties. Below, the result of application
of the program Triangularize to system (6), when γ1, γ2, γ3,M1,M2, λ1 are the
unknowns, is given.[

[γ1(2λ3M3 + λ2) + λ1M1 −M2(2α3λ3M3 − λ0),

γ2(2λ3M3 + λ2) + +M1(2α3λ3M3 − λ0) + λ1M2 − 2α1λ3M
2
3 ,

γ3(2λ3M3 + λ2) + (2α1λ3M2 + λ1)M3,

(2α1λ
2
3M1 + λ0λ3)M3 + 2α3λ

2
3M

2
3 + λ0λ2,

λ21 + (λ0 + α3λ2)
2 + α2

1λ
2
2],

[M2, γ1(2λ3M3 + λ2) + λ1M1, γ3(2λ3M3 + λ2) + λ1M3,

γ2(2λ3M3 + λ2) +M1(2α3λ3M3 − λ0)− 2α1λ3M
2
3 ,

−M1((λ0 + α3λ2)
2 + λ21 + α2

1λ
2
2 − 4α2

1λ
2
3M

2
3)

+2α1(λ3(2α3λ3M3 + λ0)M3 + λ0λ2)M3),

b0λ
4
1 + b1λ

2
1 + b0]

]
. (12)

Here b0, b1, and b2 are some expressions of λ0, λ2, λ3, αj ,M3.
The first element of list (12) defines two solutions of equations (6) which write

M1 = −λ3(2α3λ3M3 + λ0)M3 + λ0λ2
2α1λ23M3

, M2 = − (2λ3M3 + λ2) γ3 + λ1M3

2α1λ3M3
,

γ1 =
λ0(γ3λ3 + λ1)− 2α3λ

2
3M3γ3

2α1λ23M3
,

γ2 =
λ3((α

2
1 + α2

3)(2λ3M3 − λ2)M3 + λ1γ3)− λ20
2α1λ23M3

, (13)

184 V. Irtegov and T. Titorenko

λ1 = ±
√

−((λ0 + α3λ2)2 + α2
1λ

2
2). (14)

Expressions (13), taking into account (14), correspond to two families of station-
ary IMs of the initial differential equations. The latter is proved by substitution
of these expressions into (6) and by IMs definition (the derivative of (13) cal-
culated by virtue of equations (3) vanishes on these sets). The calculations are
trivial and are not presented here.

Expression λ1 (14) is the first integral of a vector field on the found IMs that
is proved by first integral definition (the derivative of λ1 calculated by virtue of
equations of the vector field is identically equal to zero). In the case considered,
the integral is trivial.

The 2nd element of list (12) defines four solutions:

M1 =
2α1(2α3λ

2
3M

2
3 + λ0(λ3M3 + λ2))M3

λ21 + (α3λ2 + λ0)2 + α2
1(λ

2
2 − 4λ23M

2
3)
, M2 = 0,

γ1 = − 2α1λ1(2α3λ
2
3M

2
3 + λ0(λ3M3 + λ2))M3

(2λ3M3 + λ2)(λ21 + (α3λ2 + λ0)2 + α2
1(λ

2
2 − 4λ23M

2
3))

,

γ2 =
2α1

[
λ20(2λ3M3 + λ2) + λ3M3(λ

2
1 + (α2

1 + α2
3)(λ

2
2 − 4λ23M

2
3))
]
M3

(2λ3M3 + λ2)[λ21 + (α3λ2 + λ0)2 + α2
1(λ

2
2 − 4λ23M

2
3)]

,

γ3 = − λ1M3

2λ3M3 + λ2
, (15)

λ1 = ± 1√
2

√
p0 ± [2α3λ23M

2
3 + λ0(λ2 + λ3M3)]

√
z0

λ3M3 + λ2
, (16)

where p0 = −λ0(λ0 − 6α3λ3M3) +
2α3λ

2
3M

2
3 (λ0 + 2α3λ3M3)

λ3M3 + λ2

−2(α2
1 + α2

3)(λ
2
2 − 4λ23M

2
3),

z0 = 4α3(3λ3M3 + 2λ2)[2α3(3λ3M3 + 2λ2) + λ0]

+16α2
1(λ2 + λ3M3)(λ2 + 2λ3M3) + λ20.

Expressions (15), taking into account (16), define four families of one-dimen-
sional stationary IMs of equations (3) which deliver a stationary value to already
nonlinear combination of the basic integrals. Expression λ1 (16) is the first in-
tegral of a vector field on the found IMs. These statements are proved as above.

2.3 Motions on the Invariant Manifolds

To analyze solutions on the above IMs, we investigate the differential equations
on these IMs. Computer algebra tools play an auxiliary role here.

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 185

The equations of the vector field on the elements of families IMs (13) write

Ṁ3 =
(2λ3M3 + λ2)γ3 + λ1M3

λ3
,

γ̇3 =
(λ3M3 + λ2)γ

2
3

λ3M3
+
λ1
λ3

γ3 − (α2
1 + α2

3)M
2
3 +

λ20λ2
λ33M3

. (17)

These are derived from equations (3) by eliminating variables γ1, γ2,M1,M2

from them with the help of (13). Here λ1 has the form (14).

Next, we consider the case when λ1 = −
√

−((λ0 + α3λ2)2 + α2
1λ

2
2).

Equations (17) admit first integrals which are obtained from initial first in-
tegrals by eliminating variables γ1, γ2,M1,M2 from them with the help of (13).
The integrals found by this technique will be, generally speaking, dependent.
Take one of them, e.g.,

Ṽ =
1

4α2
1λ

4
3M

2
3

(
(α3λ2 + λ0)λ

2
0λ2 + λ2λ

2
3(λ0 + α3λ2)γ

2
3

−2(λ0 + α3λ2)λ
2
3

√
−((λ0 + α3λ2)2 + α2

1λ
2
2)M3γ3 + 2λ33(λ0 + α3λ2)M3γ

2
3

+λ23(2α3λ
2
0 + (3α2

1 + α2
3)λ0λ2 − α3(α

2
1 + α2

3)λ
2
2)M

2
3

+2λ33(α
2
1 + α2

3)(λ0 + α3λ2)M
3
3

)
= c̃1 = const. (18)

Eliminate variable γ3 from equations (17) by expression (18). As a result, we
have the differential equations (written in corresponding maps) with respect to
M3:

Ṁ3 = ±
√
z√

λ0 + α3λ2λ23
,

z = −4λ43(α
2
1 + α2

3)(λ0 + α3λ2)M
4
3

+λ33(8α
2
1c̃1λ

2
3 − 4λ0(2α

2
1λ2 + α3(λ0 + α3λ2)))M

3
3

+λ23(4α
2
1c̃1λ2λ

2
3 − λ0(λ0(λ0 + 5α3λ2) + 4(α2

1 + α2
3)λ

2
2))M

2
3

−λ20λ22(λ0 + α3λ2)− 2λ20λ2(λ0 + α3λ2)λ3M3 − λ20λ
2
2(λ0 + α3λ2).

The above equations are integrated in elliptic functions. We have the analogous
result when we take λ1 with positive sign. Hence, the motion on invariant sub-
manifolds of IMs (13), the equations of which are obtained by addition of integral
(18) to equations (13), is described by elliptic functions of time.

The families of IMs (13) are complex because the equations of the IMs contain
complex coefficients. When λ0 = λ1 = λ2 = 0 these families have the real
invariant submanifold

M1 = −α3M3

α1
, M2 = − γ3

α1
, γ1 = −α3γ3

α1
, γ2 =

(α2
1 + α2

3)M3

α1
,

the motion on which is described by real elementary functions. Note that the
submanifold delivers a stationary value to integral F (2).

186 V. Irtegov and T. Titorenko

When λ0 = 0, λ1 = −
√

−(α2
1 + α2

3)λ2 the family of IMs (13) has the subfam-
ily of complex IMs

M1 = −α3M3

α1
, M2 =

√
−α2

1 − α2
3 λ2M3 − (2λ3M3 + λ2)γ3

2α1λ3M3
, γ1 = −α3γ3

α1
,

γ2 = −
√

−α2
1 − α2

3 λ2γ3 − (α2
1 + α2

3)(2λ3M3 − λ2)M3

2α1λ3M3
, (19)

which delivers a stationary value to integral K̃ = −
√

−(α2
1 + α2

3)V1 −λ2V2/2−
λ3F .

The motion on the elements of subfamily (19) is defined by the differential
equations

Ṁ3 = ±2M3

√
α2
1λ2c̃1 + 2α2

1λ3c̃1M3 − α3(α2
1 + α2

3)λ2M
2
3√

α3λ2
. (20)

Equations (20) are integrated in the elementary functions

M3(t)=
2α2

1c̃1 λ2

e
∓α1

√
c̃1(

2t√
α3

±
√
λ2 c̃2)+α2

1c̃1[e
±α1

√
c̃1(

2t√
α3

±
√
λ2 c̃2)(α2

1c̃1λ
2
3−α3λ22k)−2λ3]

.

Here k = −(α2
1 + α2

3), c̃2 is a constant of integration.
As obvious from the latter expression, it assumes real values when α3 >

0, λ2 > 0, c̃1 > 0 or α3 < 0, λ2 < 0, c̃1 < 0. Hence, under the above restrictions
imposed on parameters α3, λ2, c̃1, the motion on the elements of the submanifold
of complex IMs (19) is described by the real functions of time.

Finally, let us consider the motion on the elements of families (15).
The vector field on the elements of these families is defined by equation

Ṁ3 = 0. Hence, geometrically, the elements of the families of real solutions (15)
correspond to curves in R6, each point of which is the degenerated stationary
solution of the initial differential equations.

3 On Stationary Sets of Euler’s Equations with an
Additional First Integral of 6th Degree

3.1 Problem Formulation

According to [10], in integrable case (d) there exists an additional first integral
of 6th degree of the form

F = M2
3

[
(M2

1 +M2
3)[(α3M1 + γ2)

2 + α1M3(α1M3 − 2(α3M1 + γ2))]

+((α1M2 + γ3)M3 − (α3M2 − γ1)M1)
2
]
= h1 = const

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 187

Euler’s equations corresponding to Hamiltonian (d) write

Ṁ1=2(M3γ1−M1γ3)−M2(α1M1+2α3M3),

Ṁ2=2(M2γ3−M3γ2)+α1(M
2
1 −M2

3)+2α3M1M3, Ṁ3=α1M2M3,

γ̇1=(2α3M3−α1M1) γ2−2(2α3M3−γ1) γ3−2kM1M3,

γ̇2=α1(M1γ1−M3γ3)+2α3(2M1γ3−M3γ1)−2(kM2M3+γ2γ3),

γ̇3=4α3(M2γ1−M1γ2)+α1M3γ2+2[k(M2
1 +M2

2)−(γ21+γ
2
2)].

(21)

The rest of the integrals of these equations has the form (4).
Once again let us state the problem of finding stationary sets, now for equa-

tions (21), and investigation of their stability in the Lyapunov sense.

3.2 Finding Stationary Sets

Following the technique chosen, we construct the complete linear combination

2K = 4λ0H − 2λ1V1 − λ2V2 − λ3F (λi = const) (22)

from the problem’s first integrals, and write down the necessary conditions for
the integral K to have an extremum with respect to phase variables Mi, γi:

∂K/∂M1=λ0(2η−α1M3)−λ1γ1−kλ2M1+λ3

[
α3(α1(M

2
1 +M

2
3)−γ2M3)M3

+kM1M
2
3+[(2α1M3−α3M1)σ−(ρ2+σ2)]M1−ρχM3

]
M2

3 = 0,

∂K/∂M2=2λ0x5−λ1γ2−kλ2M2+λ3(α3M1−α1M3)(ρM1+χM3)M
2
3 = 0,

∂K/∂M3=λ0(2α3M3−α1M1)−λ1γ3−kλ2M3−λ3
[
(ρ2+σ2)M2

1

+3ρχM1M3+2χ2M2
3+(2α2

3M
2
1+α

2
1(2M

2
1+3M2

3)+2ηγ2)M
2
3

−α1(3M
2
1+5M2

3)σM3

]
M3 = 0,

∂K/∂γ1 = −2λ0M2 − λ1M1 − λ2γ1 − λ3(ρM1 + χM3)M1M
2
3 = 0,

∂K/∂γ2 = 2λ0M1 − λ1M2 − λ2γ2 + λ3(M
2
1 +M2

3)(α1M3 − σ)M2
3 = 0,

∂K/∂γ3 = −λ1M3 − λ2γ3 − λ3(ρM1 + χM3)M
3
3 = 0.

(23)

Here the following notations η=2α3M1+γ2, ρ= γ1−α3M2, σ=α3M1+γ2, χ =
α1M2 + γ3 are used.

The above equations (the conditions of stationarity for the integral K) repre-
sent a system of polynomial algebraic equations of 5th degree with parameters
λi, αj .

Likewise the previous problem, some qualitative analysis of the solution set of
equations (23) by the Maple-programs IsZeroDimensional, NumberOfSolutions,
HilbertDimendion was conducted [1]. It was revealed that system (23) has infinite
number of solutions with respect to the phase variables, and the dimension of
these solutions is 1.

The above system was decomposed into two subsystems. To this end, Gröbner
basis and polynomial factorization methods were used. The 1st subsystem con-
sists of 20 polynomial equations of degrees from 2 to 9. The 2nd subsystem
consists of 16 polynomial equations of degrees from 1 to 9. The coefficients of

188 V. Irtegov and T. Titorenko

equations belong to field Q(λi, αj). The solutions, the dimension of which is 1,
form the solution set of the 1st subsystem. The 2nd subsystem has a finite num-
ber of solutions which is 33. Each of solutions of the subsystem corresponds to
a single point.

The solutions of the 1st subsystem obtained with respect to the phase vari-
ables, and the solutions of the 2nd subsystem obtained with respect to some
part of the phase variables and some part of the parameters can be found in [1].
These represent IMs of equations (21).

In the given work, we stated the problem of finding solutions for the 2nd
subsystem with respect to the phase variables. We tried to obtain solutions
corresponding to the complete linear combination of the problem’s first integrals
(the integral K).

It is known that the lexicographic basis is the most suitable for computing the
roots of a polynomial algebraic system. We have not managed to construct a lex-
icographic basis for the subsystem considered without imposing any additional
restrictions on parameters λi, αj neither with the use of Gröbner basis method
(the programs GroebnerBasis and gbasis of CAS Mathematica and Maple were
applied) nor with the use of the Maple-program FGLM. The computations were
executed for over 12 hours on Intel CPU 3.6 GHz, 32 GB RAM running under
Windows 7 Professional.

To find the desired solutions we have constructed the Gröbner basis with
respect to elimination monomial order. It writes:

M2 = 0, f1(γ1,M1,M3, λi, αi) = 0, f2(γ2,M1,M3, λi, αi) = 0,
f3(γ3,M1,M3, λi, αi) = 0, (24)

gr(M1,M3, λi, αi) = 0 (r = 1, . . . , 7). (25)

Here fs are the 5th degree polynomials of variablesM1,M3, γ1, γ2, γ3, gr are the
6-9 degree polynomials of variables M1,M3. The coefficients of the polynomials
fs, gr represent some expressions of λi, αj .

A number of solutions of equations (25) was obtained by computing resultants
for polynomials gr. Indeed, having computed the resultant of any two polyno-
mials gl, gm (25) with respect to, e.g., variable M1, we obtain some polynomial
of variable M3. Each root M3 of this polynomial corresponds to common roots
M1 of polynomials gl, gm. Since system (25) is compatible, some of the common
roots of polynomials gl, gm are the roots of all the rest of the polynomials gr.

Following the technique chosen, compute the resultant for two polynomials of
system (25) (e.g., for polynomials having the least degree with respect to variable
M1). It writes:

Res = α1((2λ0 + α3λ
2
2)

2 + α2
1λ

2
2)DM3 (a0M

12
3 + a1M

8
3 + a2M

4
3 + a4)

×(b0M
20
3 + b1M

16
3 + b2M

12
3 + b3M

8
3 + b4M

4
3 + b5) (26)

Here D, aσ, and bρ are some expressions of λi, αj .
As obvious from (26), the resultant expression is factorized and, consequently,

computing the roots of the polynomials chosen is reduced to finding the roots

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 189

of 12th and 20th degree bipolynomials. Under some restrictions imposed on pa-
rameters λi, αj , we have found several solutions of these equations. Substituting
the obtained values of M3 into the polynomials chosen, we find common roots
of these polynomials and equations (25).

Next, we substitute the found values of M1,M3 into equations (24) and find
the values of γ1, γ2, γ3 corresponding to them. Some of the solutions of equations
(24), (25) obtained by the technique described are given below.

i) λ1 = 0, λ2 = λ53, α3 = 0 :

γ1 = 0, γ2 = ±1

2
α1λ3, γ3 = 0,M1 = 0,M2 = 0,M3 = ±λ3;

ii) λ1 = 0, λ2 = λ35, α3 = 0 :

γ1 = 0, γ2 = ±1

2
α1

√
−λ3, γ3 = 0,M1 = 0,M2 = 0,M3 = ±

√
−λ3;

iii) λ1 = 0, λ2 = −λ3 :

γ1 =
α1

√
[(2λ0 − α3λ3)2(4α3λ0 − (3α2

1 + 2α2
3)λ3)− α4

1λ
3
3]λ3

2(α3λ3 − 2λ0)3/2[(2λ0 − α3λ3)2 + α2
1λ

2
3]

1/4
,

γ2 =
α1((α

2
1 + α2

3)λ
2
3)− 4λ20

2(α3λ3 − 2λ0)3/2[(2λ0 − α3λ3)2 + α2
1λ

2
3]

1/4
,

γ3 =

√
(2λ0 − α3λ3)2(4α3λ0 − (3α2

1 + 2α2
3)λ3)− α4

1λ
3
3

2
√
(α3λ3 − 2λ0)λ3 [(2λ0 − α3λ3)2 + α2

1λ
2
3]

1/4
,

M1 = − α1λ3√
(α3λ3 − 2λ0)λ3 [(2λ0 − α3λ3)2 + α2

1λ
2
3]

1/4
,

M2 = 0, M3 = −
√
α3λ3 − 2λ0

[(2λ0 − α3λ3)2 + α2
1λ

2
3]

1/4
. (27)

These represent the families of stationary solutions of equations (23) param-
eterized by λi. Likewise above, the latter is proved by direct substitution of
expressions (27) into the stationary equations and the initial differential ones
(i.e., equations (21) and (23)).

¿From a mechanical point of view and geometrically, the above solutions are
interpreted similarly to the stationary solutions of integrable case (b).

4 On Stability of the Stationary Sets

Now, we shall consider the problem of stability for the above stationary solutions.
We shall investigate stability of the solutions on the base of Lyapunov’s stability
theorems: the 2nd method [16], in particular, the Routh-Lyapunov method [13]
which is its modification, theorems for linear approximation [16] and theorems
for stability with respect to part of variables [17].

First, let us investigate a trivial solution by the Routh–Lyapunov method.
This method allows one to obtain sufficient conditions of stability.

190 V. Irtegov and T. Titorenko

The family of Hamiltonians (1) corresponds to a family of Euler’s equations
on Lie algebras e(3), so(4) and so(3, 1). We shall investigate stability of a trivial
solution of equations of this family. This solution is peculiar stationary one
because it delivers a stationary value to all the above first integrals, and it
is the solution for all equations of the family. Hence, investigation of its stability
has a special interest.

Application of the Routh–Lyapunov method, in the case considered, reduces
the stability problem to analysing the sign definiteness of variation of integral
K̃= λ0H − λ1V1 − λ2V2 obtained in the neighborhood of the given solution. It
writes

ΔK̃ = −λ2(z21 + z22 + z23)− λ1(z1z4 + z2z5 + z3z6) + λ0(z2z4 − z1z5

+α1c2z4z6) + (α3c1λ0 + (α2
1 + α2

3)λ2)z
2
4 + (α3c1λ0 + (α2

1 + α2
3)λ2)z

2
5

+(α3(c1 + c2)λ0 + (α2
1 + α2

3)λ2)z
2
6 .

Here zi are deviations of the perturbed solution from the unperturbed one.
According to Sylvester’s criterion, the quadratic form ΔK̃ is sign definite

when the following conditions

Δ1 = −λ2 > 0, Δ2 = −(λ20 + λ21 + 4α3c1λ0λ2 + 4(α2
1 + α2

3)λ
2
2) > 0,

Δ3 = Δ2(4α3(c1 + c2)λ
3
0λ2 + 4α3(2c1 + c2)λ0λ2(λ

2
1 + 4(α2

1 + α2
3)λ

2
2)

+(λ21 + 4(α2
1 + α2

3)λ
2
2)

2 + λ20(λ
2
1 + 4(α2

3(4c1(c1 + c2) + 1)− α2
1(c

2
2 − 1))λ22)).

hold.
The above inequalities are compatible under the following restrictions:(
α3 > 0 ∧ α1 �= 0 ∧ λ2 < 0 ∧

(
(λ0 < 0 ∧ c1 > A1 ∧B2 < c2 < B1)

∨(λ0 > 0 ∧ c1 < A1 ∧B2 < c2 < B1)
))

∨
(
α3 < 0 ∧ α1 �= 0 ∧ λ2 < 0

∧
(
(λ0 < 0 ∧ c1 < A1 ∧B2 < c2 < B1) ∨ (λ0 > 0 ∧ c1 > A1 ∧B2 < c2 < B1)

))
∨
(
α3 > 0 ∧ α1 = 0 ∧ λ2 < 0 ∧

(
(λ0 < 0 ∧ c1 > A2 ∧ c2 > B3)

∨(λ0 > 0 ∧ c1 < A2 ∧ c2 < B3)
))

∨
(
α3 < 0 ∧ α1 = 0 ∧ λ2 < 0

∧
(
(λ0 < 0 ∧ c1 < A2 ∧ c2 < B3) ∨ (λ0 > 0 ∧ c1 > A2 ∧ c2 > B3)

))
. (28)

These have been obtained with the Mathematica-program Reduce. Here A1 =
−(λ20 + λ21 + 4(α2

1 + α2
3)λ

2
2)/(4α3λ0λ2), A2 = −(λ20 + λ21 + 4α2

3λ
2
2)/(4α3λ0λ2),

B1,2 = 1/(2α2
1λ0λ2) [α3(λ

2
0 + λ21 + 4α3c1λ0λ2 + 4(α2

1 + α2
3)λ

2
2) ±

√
D], D =

(λ20+λ21+4α3c1λ0λ2+4(α2
1+α2

3)λ
2
2)(α

2
1λ

2
1+α2

3(λ
2
0+λ21)+4α3(α

2
1+α2

3)c1λ0λ2+
4(α2

1 + α2
3)

2λ22), B3 = −(λ21 + 4α3c1λ0λ2 + 4α2
3λ

2
2)/(4α3λ0λ2).

Conditions (28) separate from the family of Euler’s equations with Hamilto-
nians (1) some subfamily of systems of the equations, a trivial solution of which
is stable.

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 191

To verify whether or not integrable cases (a) − (d) (section 2.1) enter into
this subfamily it is sufficient, e.g., to test the compatibility of the conditions of
integrability with conditions (28) by applying the program Reduce. As a result,
we have that one integrable case (a) enters into the above subfamily only.

Let us illustrate the above results by a graphical constructing the stability
regions for the trivial solution considered. We shall construct a stability region
for the trivial solution in integrable case (a). According to (28), we can take, e.g.,
λ0 = −1, λ1 = 1, λ2 = −1, α3 = 1. Such a choice is relevant because λi are the
family parameters of integral K (22), and there are no constraints on α1, α3 in
the integrable case considered. Under the above numerical values for λi, α3, and
c2 = 0, inequalities (28) have the following form: (α1 �= 0 ∨ c1 < −3/2) ∧ (α1 =
0 ∨ c1 < −(α2

1 + 3/2)).
The stability region defined by the latter inequalities and plotted with Mathe-

matica-program RegionPlot is shown in Fig.1 (the grey region). Hence, when
λi, α3, and c2 have the above numerical values and c1, α1 assume the values
from the constructed region, the trivial solution is stable.

�3 �2 �1 0 1 2 3

�10

�8

�6

�4

�2

Α1

C
1

Fig. 1.

We have managed to obtain conditions of stability for the trivial solution of
system (21) (integrable case (d)) with respect to some part of the phase variables
[17]. To this end, we analyzed the variation of integral K̄ = −λ2(2α3H + V2)
(where α1 = 0) written in the neighbourhood of this solution. It writes:

2ΔK̃ = −λ2 [z23 + (z2 + α3z4)
2 + (z1 − α3z5)

2].

192 V. Irtegov and T. Titorenko

Introduce variables y1 = z2 + α3z4, y2 = z1 − α3z5 and write down ΔK̃ in
terms of y1, y2, z3:

2ΔK̃ = −λ2(y21 + y22 + z23). (29)

As obvious from (29), the quadratic form is sign definite with respect to
y1, y2, z3. Hence, the conditions α1 = 0, λ2 �= 0 are sufficient for the stability of
the trivial solution with respect to variables y1, y2, z3.

Next, we investigate one of the families of stationary solutions (27), e.g.,

γ1 = 0, γ2 =
1

2
α1λ3, γ3 = 0, M1 = 0, M2 = 0, M3 = λ3. (30)

We show that the elements of family (30) give instability when α1 �= 0. To
this end, we consider this solution in capacity of the unperturbed one and write
down the equations of the first approximation:

ż1 =
3

2
α2
1λ3z4, ż2 = 2α2

1λ3z5, ż3 =
1

2
α1λ3(−2z2 + α1z6),

ż4 = 2λ3z1, ż5 = λ3(2z2 − α1z6), ż6 = α1λ3z5.

The characteristic equation of the above linear system writes

μ2(μ2 − 3α2
1λ

2
3)

2 = 0

and has four nonzero roots μ1 = −
√
3α1λ3, μ2 = −

√
3α1λ3, μ3 =

√
3α1λ3,

μ4 =
√
3α1λ3, among which there are real positive roots when α1 �= 0, λ3 �= 0.

The latter, according to Lyapunov’s stability theorem for linear approximation
[16], means instability of the elements of family (30).

The rest of the families of stationary solutions (27) have been investigated by
this technique. We have obtained results analogous to the above.

5 Conclusion

Practically, the completed analysis for stationary sets of Euler’s equations on
the Lie algebra so(3, 1) when the equations possess additional polynomial first
integrals of degrees 3 and 6 has been performed. We considered the case when
the sets correspond to the complete linear combination of the problem’s first
integrals. The obtained results can be a base for further qualitative analysis of
the considered integrable cases. The approach applied in this work to investi-
gation of integrable systems may be of interest for the study of new integrable
cases of equations of such a type when problem’s algebraic first integrals have
degree higher than 2. This approach may also be of interest for the problems
of parametric analysis in which properties of solutions of nonlinear differential
equations in relation to continuous change of parameters of these solutions are
investigated.

The work was supported by the Presidium of the Russian Academy of Scien-
ces, basic research program No. 17.1.

On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability 193

References

1. Irtegov, V., Titorenko, T.: On invariant manifolds of dynamical systems in Lie
algebras. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS,
vol. 5743, pp. 142–154. Springer, Heidelberg (2009)

2. Bogoyavlenskii, O.I.: Integrable Euler equations on Lie algebras arising in problems
of mathematical physycs. Math. USSR-Izv. 25(2), 207–257 (1985)

3. Borisov, A.V., Mamayev, I.S.: Dynamics of a Rigid Body. R&C Dynamics, Izhevsk
(2001)

4. Sokolov, V.V.: A new integrable case for the Kirchhoff equation. Theoret. and
Math. Phys. 129(1), 1335–1340 (2001)

5. Borisov, A.V., Mamayev, I.S., Sokolov, V.V.: A new integrable case on so(4). Dokl.
Phys. 46(12), 888–889 (2001)

6. Morozov, V.P.: The topology of Liouville foliations for the cases of Steklov’s and
Sokolov’s integrability. Sb. Math. 195(3), 369–412 (2004)

7. Ryabov, P.E.: Bifurcations of first integrals in the Sokolov case. Theoret. and Math.
Phys. 134, 181–197 (2003)

8. Kozlov, I.K., Ratiu, T.S.: Bifurcation diagram for the Kovalevskaya case on the
Lie algebra so(4). Dokl. Math. 86(3), 827 (2012)

9. Tsiganov, A.V., Goremykin, O.V.: Integrable systems on so(4) related with XXX
spin chains with boundaries. J. Phys. A: Math. Gen. 37, 4843–4849 (2004)

10. Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on so(4) and
so(3,1). J. Phys. A: Mat. Gen. 39, 1915–1926 (2006)

11. Grabmeier, J., Kaltofen, E., Weispfenning, V.: Handbook in Computer Algebra.
Foundations, Applications, Systems. Springer, Berlin (2003)

12. Efimovskaya, O.V., Wolf, T.: Classification of integrable quadratic Hamiltonians
on e(3). Reg. and Chaot. Dyn. 8(2), 155–162 (2003)

13. Lyapunov, A.M.: On Permanent Helical Motions of a Rigid Body in Fluid. Col-
lected Works, vol. 1. USSR Acad. Sci., Moscow–Leningrad (1954)

14. Irtegov, V.D., Titorenko, T.N.: The invariant manifolds of systems with first inte-
grals. J. Appl. Math. Mech. 73(4), 379–384 (2009)

15. Aubry, P.A., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb.
Comp. 28, 105–124 (1999)

16. Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966)
17. Rumyantsev, V.V., Oziraner, A.S.: Motion Stability and Stabilization with Respect

to Part of Variables. Nauka, Moscow (1987)

An Effective Implementation of a Special

Quantifier Elimination for a Sign Definite
Condition by Logical Formula Simplification

Hidenao Iwane1,2, Hiroyuki Higuchi1, and Hirokazu Anai1,2

1 IT Systems Laboratories, Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1, Nakahara-ku, Kawasaki 211-8588, Japan

{iwane,h-higuchi,anai}@jp.fujitsu.com
2 Graduate School of Mathematics, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract. This paper presents an efficient quantifier elimination algo-
rithm tailored for a sign definite condition (SDC). The SDC for a poly-
nomial f ∈ R[x] with parametric coefficients is written as ∀x(x ≥ 0 →
f(x) > 0). To improve the algorithm, simplification of an output formula
is needed. We show a necessary condition for the SDC and an approach
to simplify formulae by using a logic minimization method. Experimental
results show that our approach significantly simplify formulae.

1 Introduction

In science and engineering, parametric treatment of constraint solving and op-
timization problems has garnered considerable concern. Quantifier elimination
(QE) over the reals provides one of the effective means to accomplish paramet-
ric optimization. Various algorithms and deep analysis on the complexity about
QE have been studied during the last several decades [6]. Moreover, practically
efficient software systems of QE have been developed and also applied to many
nontrivial application problems (see [15,11,16,12]).

A general-purpose symbolic method aiming for QE is cylindrical algebraic de-
composition (CAD). QE based on CAD has a high computational complexity. To
circumvent the inherent computational complexity of a QE algorithm based on
CAD, several researchers have focused on developing QE algorithms specialized
to particular types of input formulae in order to make good use of their special-
ity. This direction is quite promising in practice since a number of important
problems in engineering have been successfully reduced to such particular input
formulae and resolved efficiently by using the specialized QE algorithms.

For a special QE problem ∀x(f(x) > 0) where f is a polynomial with paramet-
ric coefficients, a combinatorial algorithm based on the Sturm-Habicht sequence
is proposed in [9]. The real root classification method [17] of a univariate polyno-
mial with parameter coefficients can also apply the special QE problem. These
methods are much more effective than a native direct use of CAD.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 194–208, 2013.
c© Springer International Publishing Switzerland 2013

An Effective Implementation of a Special Quantifier Elimination 195

In this paper we focus on one particular input formula

∀x (x ≥ 0 → f(x) > 0) (1)

where f(x) is a univariate polynomial with real parameters, which we call a sign
definite condition (SDC), because quite a lot of practical engineering problems
such as control system design problems can be recast as the SDCs [2]. We note
that we mainly consider the case where the coefficients of f contain some pa-
rameters. An effective QE algorithm for the SDCs was proposed in [11] and it
is based on a combinatorial approach using a real root counting technique. As a
real root counting method the Sturm-Habicht sequence [10] is employed.

In order to improve the efficiency of the proposed method in [11], simplifica-
tion of output logical formulae is a critical issue. Our focus is on developing an
effective algorithm which produces as simple formulae as possible.

For the purpose we propose two improvement approaches: First we use a nec-
essary condition for the SDC to simplify the output formula algebraically. The
necessary condition enables us to eliminate extraneous sign combinations derived
from real root counting using the Sturm-Habicht sequence. Second, for further
simplification we utilize Boolean function manipulation. We obtain simple for-
mulae by using the idea of don’t cares for handling a sign condition such that no
real numbers satisfy. A don’t care is an input where a function is not specified.
By these improvements we can significantly simplify the output formula of the
specialized QE algorithm for the SDC. We also present the experimental results
for demonstrating the effectiveness of our proposed method.

The organization of this paper is as follows. Section 2 explains the Sturm-
Habicht sequence and also an outline of the specialized QE algorithm for the SDC
using the Sturm-Habicht sequence. In Section 3 we show a necessary condition
for the SDC. Simplification of Boolean expressions based on Boolean function
manipulation is shown in Section 4. The proposed improvements for speeding up
the specialized QE algorithm for the SDC are discussed based on experimental
results in Section 5. The concluding remarks are made in Section 6.

2 Quantifier Elimination for Sign Definite Condition

In this section we describe the definition of a sign definite condition and a spe-
cialized QE algorithm based on the Sturm-Habicht sequence. Let us denote the
fields of real numbers by R.

2.1 Sign Definite Condition and Real Root Counting by
Sturm-Habicht Sequence

We first introduce a sign definite condition.

Definition 1. Let f(x) be a polynomial in x over R. We call the following
condition a sign definite condition (SDC) for f(x):

∀x (x ≥ 0 → f(x) > 0).

196 H. Iwane, H. Higuchi, and H. Anai

In addition, we call the n-th SDC problem if the leading coefficient of f is not
equal to zero and its degree is equal to n.

Many important design specifications such as H∞ norm constraints, stability
margins etc, which are frequently used as induces of the robustness, reduce to
SDCs [2]. One of the typical examples is the (frequency restricted) H∞ norm
constraint: An H∞ norm constraint of a strictly proper transfer function P (s) =
n(s)/d(s) expressed as

‖P (s)‖∞ := sup
ω

|P (jω)| < γ

is equivalent to ∀ω (γ2d(jω)d(−jω) > n(jω)n(−jω)). Since we can find a func-
tion f(ω2) which satisfies f(ω2) = γ2d(jω)d(−jω) − n(jω)n(−jω) > 0, letting
x = ω2 lead to a SDC. Similarly, a finite frequency H∞ norm defined by

‖P (s)‖[ω1,ω2] := sup
ω1≤ω≤ω2

|P (jω)| < γ

can be recast as the condition f(x) �= 0 in [−ω2
2,−ω2

1], which is reduced to a
SDC for f(z) by a bilinear transformation z = −(x+ω2

2)/(x+ω2
1). A specialized

QE algorithm for SDCs has been proposed in [11]. The algorithm utilizes the
following proposition and realizes QE by real root counting using the Sturm-
Habicht sequence [10].

Proposition 1. The SDC for a polynomial in R[x] with the positive leading
coefficient is equivalent to a condition that the polynomial has no real root in
x ≥ 0.

We next describe the Sturm-Habicht sequence.

Definition 2. Let f(x) be a polynomial in R[x] with the degree n. The Sturm-
Habicht sequence associated to f is defined as the sequence of polynomial SH(f) =
{SHj(f)}j=0,...,n such that SHn(f)=f , SHn−1(f)=

df
dx , SHj(f)=δn−j Sresj(f,

df
dx)

for j ∈ {0, . . . , n− 2}, where δk = (−1)
k(k−1)

2 and Sresk(f, g) is the k-th subre-
sultant which is defined as the determinant of the k-th Sylvester-Habicht matrix
of f and g.

Definition 3. Let A = {am, . . . , a0} be a finite sequence of real numbers. We
define the sign of a real number is 1, 0, or −1 if the number is positive, zero, or
negative, respectively. In addition, we define the number of sign variations V (A)
in the following rules:

– we count 1 sign variation for the groups: {−1,+1}, {+1,−1}, {−1, 0,+1},
{+1, 0,−1}, {−1, 0, 0,+1}, {+1, 0, 0,−1},

– we count 2 sign variations for the groups: {+1, 0, 0,+1}, {−1, 0, 0,−1}.

Let S(x) = {Sn(x), Sn−1(x), . . . , S0(x)} be a finite sequence of polynomials
in R[x] and let α be a real number. We construct a sequence {hs, . . . , h0} of
polynomials in R[x] obtained from S(x) by deleting the polynomial identically
zero. The number of sign variations Vα(S) is defined by V ({hs(α), . . . , h0(α)}).

An Effective Implementation of a Special Quantifier Elimination 197

Wenote that the sign sequences {+1, 0,+1} and {−1, 0,−1} cannot appear by [10].

Theorem 1. (real root counting by the Sturm-Habicht sequence [10]) Let f be
a polynomial in R[x] and α, β in R∪{−∞,+∞} with α < β and f(α)f(β) �= 0.
Then Vα(SH(f))− Vβ(SH(f)) is equal to the number of real roots of f(x) in the
interval [α, β].

By using Theorem 1 we can obtain the number of real roots of a polynomial in
the interval [0,+∞).

Here is an additional notation. In the rest of this paper we denote the sign of
SHk(f) at x = ∞ and x = 0 by sk and ck, respectively.

Remark 1. Let SHk(f) = ak,kx
k + ak,k−1x

k−1 + · · · + ak,0. Then sk = 0 is
equivalent to ak,i = ak,k−1 = · · · = ak,0 = 0 and sk > 0 is equivalent to (ak,k >
0) ∨ (ak,k = 0 ∧ ak,k−1 > 0) ∨ · · · ∨ (ak,k = ak,k−1 = · · · = ak,1 = 0 ∧ ak,0 > 0).
That is to say sk = 0 if and only if SHk(f) is identically zero. We note that ck
is equivalent to the sign of ak,0.

Example 1. Let f(x) = 25x5+25x4+10x3+2x2 +25x+1. The Sturm-Habicht
sequence associated to f is as follows:

SH5(f) = f(x) = 25x5 + 25x4 + 10x3 + 2x2 + 25x+ 1,

SH4(f) =
df
dx (x) = 125x4 + 100x3 + 30x2 + 4x+ 25,

SH3(f) = δ5−3Sres3(f,
df
dx) = −(310000x),

SH2(f) = δ5−2Sres2(f,
df
dx) = −(0),

SH1(f) = δ5−1Sres1(f,
df
dx) = +(1906624000000x),

SH0(f) = δ5−0Sres0(f,
df
dx) = +(945685504000000).

Thus
{s5, s4, s3, s2, s1, s0} = {+1,+1,−1, 0,+1,+1},
{c5, c4, c3, c2, c1, c0} = {+1,+1, 0, 0, 0,+1}.

Therefore f(x) has no real root in x ≥ 0 because of V0(SH(f)) = V∞(SH(f)) = 2.

Remark 2. We note that sn = sn−1 and s0 = c0 for a polynomial with degree n.

Definition 4. SHk(f) is regular when the degree of SHk(f) is equal to k.

Theorem 2. (Sturm-Habicht Structure Theorem [10]) Let f be a polynomial in
R[x] with degree n. Then for every k ∈ {1, . . . , n − 1} such that SHk+1(f) is
regular and deg(SHk(f)) = r ≤ k we have

(A) if r < k − 1 then, SHk−1(f) = · · · = SHr+1(f) = 0,
(B) if r < k then, lc(SHk+1(f))

k−rSHr(f) = δk−r lc(SHk(f))
k−rSHk(f)

(C) lc(SHk+1(f))
k−r+2SHr−1(f) = δk−r+2Prem(SHk+1(f), SHk(f)),

where lc(g) is the leading coefficient of the polynomial g and Prem(g, h) is a
pseudo remainder of the polynomial g by the polynomial h defined as

Prem(g, h) = remainder(lc(h)deg(g)−deg(h)+1g, h).

198 H. Iwane, H. Higuchi, and H. Anai

2.2 A Specialized QE Algorithm for SDC

In this subsection, we describe an implementation for a specialized QE algorithm
for the SDCs [11]. The flow of the algorithm for the n-th SDC problem is as
follows:

1. consider all the 32n+1 (at most) possible sign conditions over sk and ck,
2. choose all sign conditions ϕn which satisfy V0(SH(f))− V∞(SH(f)) = 0,
3. compute the Sturm-Habicht sequence associated to f ,
4. construct semi-algebraic sets generated by coefficients of polynomials in

SH(f) for each selected sign conditions and combine them as a union.

Since steps 1 and 2 are independent of an input polynomial, we can execute these
steps beforehand and store the results in a database. This greatly improves the
total efficiency of the algorithm. In fact, a QE computation for the fifth SDC
problem ∀x(x ≥ 0 → x5+

∑4
i=0 aix

i > 0) by cylindrical algebraic decomposition
(CAD) [7], which is a general QE algorithm, did not terminate after an hour. On
the other hand, a real root classification algorithm [17], implemented as a Maple
command, can solve the SDC problems. However, it also did not terminate after
an hour. In contrast, the specialized algorithm took less than a second.

The result obtained from the above procedure obviously tends to be large
and complicated, and hence we should reduce the admissible sign conditions ϕn

as simple as possible. The simplification of ϕn makes the algorithm and post-
processing, for example drawing of feasible regions, more efficient. For example,
formulae can be simplified by using the well-known rules:⎧⎨⎩

< ∪ > ↔ �=,
< ∪ = ↔ ≤,
> ∪ = ↔ ≥ .

(2)

The goal of this paper is to obtain an output formula equivalent to the SDC by
simplifying the possible sign conditions ϕn.

Example 2. Let f be a quadratic polynomial in R[x]. We consider the second
SDC problem ∀x (x ≥ 0 → f(x) > 0). Table 1 shows sign conditions which
satisfy V0(SH(f))−V∞(SH(f)) = 0. Each row shows the signs of sk and ck when
f has no real root in x ≥ 0. We note that s2 = s1 > 0 and s0 = c0 from Remark
2, and that c2 > 0 because f(0) > 0 implies c > 0. From Table 1 we obtain the
following quantifier-free formula:

(s0 < 0 ∧ c2 > 0 ∧ c1 < 0) ∨
(s0 < 0 ∧ c2 > 0 ∧ c1 = 0) ∨
(s0 < 0 ∧ c2 > 0 ∧ c1 > 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 = 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 > 0) ∨
(s0 > 0 ∧ c2 > 0 ∧ c1 > 0).

(3)

An Effective Implementation of a Special Quantifier Elimination 199

Table 1. ϕ2: sign conditions for the 2nd SDC problem

s2 s1 s0 c2 c1 c0 V0(SH)

+ + − + − − 1

+ + − + 0 − 1

+ + − + + − 1

+ + 0 + 0 0 0

+ + 0 + + 0 0

+ + + + + + 0

The formula (3) can be simplified as follows by using (2):

(s0 < 0 ∧ c2 > 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 ≥ 0) ∨
(s0 > 0 ∧ c2 > 0 ∧ c1 > 0).

(4)

By constructing the formula (4) beforehand, the QE computation is only done by
computing the Sturm-Habicht sequence and substitution for sk and ck. Moreover,
simplification of ϕ2 reduces the number of substitutions.

3 Necessary Condition for SDC

Now we again consider the formula (4) in Example 2. For any quadratic polyno-
mial f ∈ R[x], s0 = 0 ∧ c2 > 0 ∧ c1 = 0 is not held. In fact, the Sturm-Habicht
sequence associated to f(x) = x2 + p1x + p0 is SH(f) = {x2 + p1x + p0, 2x +
p1, p

2
1 − 4p0}. In this case, if s0 = p21 − 4p0 = 0 and c1 = p1 = 0, we have

p1 = p0 = 0. Thus, we obtain c2 = p1 = 0. From this fact, we can reduce the
formula (4) to the following:

(s0 < 0 ∧ c2 > 0) ∨
(s0 ≥ 0 ∧ c2 > 0 ∧ c1 > 0).

In this section to simplify the formula derived from the possible sign conditions
ϕn, we give a necessary condition for a sign sequence of the Sturm-Habicht se-
quence associated to a polynomial which satisfies the SDC. We use the notations
introduced in the previous section.

The following theorem provides a necessary condition.

Theorem 3. Let f be a polynomial in R[x] where the leading coefficient is
nonzero and its degree is n, and let u be the smallest nonnegative integer k
such that sk �= 0. We define sk and ck are zero when k < 0 or k > n. When f
satisfies the SDC, the following condition holds.

200 H. Iwane, H. Higuchi, and H. Anai

V0(SH(f))− V∞(SH(f)) = 0,

sn > 0, sn−1 > 0, cn > 0, s0 = c0,

sk = 0 → ck = 0, (∀k ∈ {0, . . . , n− 2}),
cu �= 0,

cn−1 = 0 → cn−2 < 0,

sn−2 = 0 → sn−3 = · · · = s0 = 0,

ck+2 �= 0 ∧ ck+1 = 0 → ck �= ck+2, (∀k ∈ N = {u, . . . , n− 2}),
ck = ck+1 = 0 ∧ ck−1ck+2sksk+1 �= 0 → sksk+2 < 0, (∀k ∈ N),

ck = · · · = ck+m = 0 → sk+1 = · · · = sk+m−1 = 0, (∀k ∈ N ,m > 1),

sk+2 = 0 ∧ sk+1 �= 0 → sk �= 0, (∀k ∈ N),

sk−1 �= 0 ∧ sk = · · · = sk+m = 0 ∧ sk+m+1 �= 0 → smk+m+2sk−1 = δm+2s
m+1
k+m+1

∧smk+m+2ck−1 = δm+2s
m
k+m+1ck+m+1, (∀k ∈ N ,m ≥ 0).

The proof of the theorem is obtained by proving the following 10 lemmas. Lemma
3 and the part of Lemma 6 are already mentioned in [10].

Lemma 1. Let f =
∑n

i=0 pix
i be a polynomial in R[x] where pn �= 0. The

conditions sn = sn−1 = cn > 0 and s0 = c0 are necessary conditions for the
SDC.

Proof. When f satisfies the SDC, cn > 0 because of f(0) = p0 > 0. In order to
satisfy f(x) > 0 for sufficiently large x > 0, pn > 0 is needed. Then sn = sn−1 >
0. Since the degree of SH0(f) with respect to x is zero, we have s0 = c0.
�

The rest of this section we assume that the leading coefficient and the constant
term of a given polynomial are positive from Lemma 1. Thus sn = sn−1 = cn > 0.
For sake of simplicity, we denote SHk(f) by SHk.

Lemma 2. For k ∈ {0, . . . , n} sk = 0 implies that ck = 0.

Proof. From Remark 1, sk = 0 implies that SHk = 0. Then ck = 0.
�

Lemma 3. cu �= 0 where u is the smallest nonnegative integer k such that
sk �= 0.

Proof. This lemma is mentioned in [10]. From the definition of u, SHu is the
greatest common factor of f and df/dx. Since the assumption f(0) �= 0, SHu(0) �=
0. Then cu �= 0.
�

Lemma 4. cn−1 = 0 implies cn−2 < 0.

Proof. By the definition we have SHn−1(0) = p1 and SHn−2(0) = p1pn−1pn −
n2p0p

2
n. Since pn and p0 are positive by the assumption and cn−1 is the sign of

p1, SHn−2(0) = −n2p0p
2
n < 0 .
�

Lemma 5. sn−2 = 0 implies sn−3 = · · · = s1 = s0 = 0.

An Effective Implementation of a Special Quantifier Elimination 201

Proof. Suppose that there exists some integer k ≤ n − 3 such that sk �= 0.
From Theorem 2 the degree of SHn−1 must be less than n− 2. Since the leading
coefficient of f is positive and SHn−1 = df/dx, this is a contradiction.
�

Lemma 6. For k ∈ {1, . . . , n− 1}, ck−1 �= ck+1 if ck+1 �= 0 and ck = 0.

Proof. We only need to consider five cases. The case (1) is proved in [10].

(1) deg(SHk) = r, deg(SHk+1) = k + 1, SHk(0) = ck = 0:
(a) r = k: From Theorem 2 (C), lc(SHk+1)

2SHk−1 = −Prem(SHk+1, SHk).
Then ck−1 = −lc(SHk+1)

−2ck+1. Since f(0) �= 0, x is not a common
divisor of SHk and SHk+1. Then ck+1 �= 0. Hence we obtain ck+1 �= ck−1.

(b) r < k: From Theorem 2 (A) and (C), ck−1 = 0.
(2) deg(SHk+1) = r < k + 1, deg(SHk+2) = k + 2, SHk(0) = ck = 0:

(a) r < k − 1: From Theorem 2 (A), ck−1 = 0.
(b) r = k−1: From Theorem 2 (B), lc(SHk+2)

2SHk−1 = −lc(SHk+1)
2SHk+1.

Then SHk−1SHk+1 ≤ 0.
(c) r = k: From Theorem 2 (B), ck+1 = 0.

�

Lemma 7. For k ∈ {u + 1, . . . , n − 2}, ck−1 �= 0 ∧ ck = ck+1 = 0 ∧ ck+2 �=
0 ∧ sk �= 0 ∧ sk+1 �= 0 → sk+2sk < 0.

Proof. From Lemma 2, SHk+2 �= 0 because of ck+2 �= 0. We first consider the case
where SHk+2 is not regular. From Theorem 2 (A), SHk+1 is regular. In addition,
from Theorem 2 (B) SHk+1 is a constant multiple of SHk+2. Thus when SHk+2

is not regular, ck+2 �= 0 and ck+1 = 0 are not satisfied simultaneously.
We next consider the case where SHk+2 is regular. We assume that SHk+1 is

regular. From Theorem 2 (C) lc(SHk+2)
2SHk = δ2Prem(SHk+2, SHk+1) . Since

ck = ck+1 = 0, x must be a common divisor of SHk and SHk+1. This is a
contradiction to f(0) �= 0. Therefore SHk+1 is not regular and the degree of
SHk+1 is k from Theorem 2 (A). From Theorem 2 (B), we obtain sk+2sk < 0.

�

Lemma 8. For k ∈ {u + 1, . . . , n − 2} and m ∈ {2, . . . , n − k − 1}, ck+m+1 �=
0 ∧ ck+m = · · · = ck = 0 → sk+m−1 = · · · = sk+1 = 0 .

Proof. (i) Case sk+m �= 0. By the proof of Lemma 7, SHk+m+1 is regular and
SHk+m is not. We denote the degree of SHk+m by d1. When d1 > k, by
Theorem 2 (C), SHd1−1 is a constant multiple of a pseudo remainder of
SHk+m+1 by SHk+m. Since SHd1−1(0) = SHk+m(0) = 0, x is a common
divisor of them. This is a contradiction for f(0) �= 0. Thus d1 ≤ k. Therefore
by Theorem 2 (A) we have sd1+1 = · · · = sk+m−1 = 0.

(ii) Case sk+m = 0. We denote the degree of SHk+m+1 by d2. When d2 ≥ k, by
Theorem 2 (B), SHd2 is a constant multiple of SHk+m+1. This is a contra-
diction for SHd2−1(0) = 0 and SHk+m+1(0) �= 0. Thus d2 < k. Therefore by
Theorem 2 (A) we have sd2+1 = · · · = sk+m−1 = 0.

�

202 H. Iwane, H. Higuchi, and H. Anai

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x+ y

0 0 0
0 1 1
1 0 1
1 1 1

x x′

0 1
1 0

Fig. 1. Boolean operations (AND, OR, and NOT)

Lemma 9. For k ∈ {u, . . . , n− 3}, sk+2 = 0 ∧ sk+1 �= 0 implies sk �= 0.

Proof. The polynomial SHk+1 is regular from Theorem 2 (B). From Theorem 2
(C) SHk is a pseudo remainder of SHr by SHk+1 for some r > k+1. Since k ≥ u,
we obtain SHk �= 0.
�

Lemma 10. For k ∈ {u+ 1, . . . , n− 3} and m ∈ {0, . . . , n− k − 1}, sk+m+1 �=
0 ∧ sk+m = · · · = sk = 0 ∧ sk−1 �= 0 implies that smk+m+2sk−1 = δm+2s

m+1
k+m+1 ∧

smk+m+2ck−1 = δm+2s
m
k+m+1ck+m+1 .

Proof. This is obtained from Theorem 2 (B).
�

4 Simplification of Boolean Expressions

In this section we explain an approach to simplify logical formulae by using a
simplification method of Boolean expressions based on Boolean function manip-
ulation [3].

4.1 Boolean Algebra and Simplification of Boolean Expressions

In this subsection we define a Boolean algebra and a Boolean function.

Definition 5. A Boolean algebra is an algebraic system consisting of the set
B = {0, 1}, two binary operations called AND and OR and denoted by the sym-
bols · and +, respectively, and one unary operation called NOT and denoted by a
prime, ′. The definitions of the AND, OR, and NOT operations are as in Fig. 1.

Definition 6. A Boolean variable is a two-valued variable which can take any of
the two distinct values 0 and 1. A literal is a Boolean variable or its complement.
A product term is a literal or a conjunction of literals where no literal appears
more than once. A sum of products is a product term or a disjunction of product
terms.

Definition 7. A Boolean expression is the combination of a finite number of
Boolean variables and Boolean constants by means of the Boolean operations de-
fined in Definition 5. A (completely specified) Boolean function with n variables
is a mapping f : Bn → B.

An Effective Implementation of a Special Quantifier Elimination 203

Definition 8. An incompletely specified Boolean function of n variables is a
Boolean function which is defined over a subset of Bn. An input combination for
which the function is not specified is called a don’t care.

In general, there are a number of Boolean expressions to represent a Boolean
function. For example, Boolean expressions (x+ y)′ and x′+ y′ represent a same
Boolean function. In this paper, finding a Boolean expression which has relatively
a small number of product terms is called simplification of Boolean expressions.

Example 3. Consider an incompletely specified Boolean function f whose truth
table is defined as follows. Entry d in the column “f” means that the corre-
sponding function value is unspecified.

x y z f

0 0 0 1
0 0 1 d
0 1 0 0
0 1 1 0
1 0 0 d
1 0 1 1
1 1 0 1
1 1 1 1

For incompletely specified Boolean functions, we can expand the notion of
simplification of Boolean expressions, because an incompletely specified Boolean
function represents a set of completely specified Boolean functions. We can
choose a completely specified Boolean function by assigning 0 or 1 to each don’t
care entry d. By considering both of assignments to don’t cares and expressions
of the functions, we may obtain better expressions. In the above example, when
we assign 1 to every d, we obtain a simplified Boolean expression f = x+ y′.

In the integrated circuit design, simplification of Boolean expressions directly
corresponds to minimization of area of the designed circuit. Hence many efficient
techniques have been proposed, such as a heuristic method called ESPRESSO
[3] and several exact methods based on binary decision diagrams (BDDs) [8,14].

4.2 Simplification of ϕn Based on Boolean Expression Minimization

In this subsection, we consider simplification of ϕn presented in Subsection 2.2
by using simplification techniques for Boolean expressions.

First, since signs of polynomials handled in this paper is three-valued, we need
two Boolean variables to represent them. In this paper, using variables x and y,
we represent zero, positive, and negative as x′y′, xy′, and x′y, respectively. Then
we obtain simplified representation of ϕn by applying simplification techniques
for Boolean expressions.

204 H. Iwane, H. Higuchi, and H. Anai

Example 4. Consider formula (3) again. Let us use x1y1, x2y2, x3y3 to represent
the signs of s0, c2, c1, respectively. Then we can represent formula (3) as the
following Boolean expression.

x′1y1x2y
′
2x

′
3y3 + x′1y1x2y

′
2x

′
3y

′
3 + x′1y1x2y

′
2x3y

′
3+

x′1y
′
1x2y

′
2x

′
3y

′
3 + x′1y

′
1x2y

′
2x3y

′
3 + x1y

′
1x2y

′
2x3y

′
3.

As mentioned in Subsection 4.1, introduction of don’t cares is likely to simplify
Boolean expressions further. For the specialized QE algorithm for the SDC, we
can introduce don’t cares as follows.

1. As mentioned above, we use two Boolean variables x and y to represent a sign
of a polynomial. While the sign is three-valued, the two Boolean variables
can represent four values. Since we do not use xy here, we can consider xy
as a don’t care.

2. Since we do not need to consider sign conditions which do not satisfy Lemmas
2–10, we consider them as don’t cares.

3. In the same way, since it never happens that V0(SH(f)) < V∞(SH(f)), we
can introduce don’t cares in this case.

5 Computational Results

In this section we present computational results.
Table 2 shows the results of simplification by our approach. All the compu-

tational experiments were executed on a personal computer with an Intel(R)
Core(TM) i7-3540M CPU 3.0 GHz and 2.0 GByte memory. We used the
ESPRESSO logic minimizer [1] to simplify formulae. The first column “deg” gives
the degree of an input polynomial. The second column “var” gives the number
of Boolean variables which are inputs to the ESPRESSO logic minimizer. When
the degree of an input polynomial is n, the Sturm-Habicht sequence contains
n + 1 elements. Since sn = sn−1 = cn > 0 and s0 = c0 by Lemma 1, we only
consider a sign sequence of 2(n+1)−4 = 2n−2 polynomials. Hence the number
of Boolean variables is 2(2n− 2) = 4n− 4. The column “SyN” gives the number
of product terms by the previous SyNRAC implementation in [11]. The column
“DC” gives the number of product terms by the implementation with an ap-
proximate ESPRESSO method in which we introduce a don’t care only when a
sign condition satisfies the condition 1 presented in Subsection 4.2 or Lemma 2.
Both conditions can be obtained without using Theorem 2. The columns “ESP
app” and “ESP ex” give the number of product terms by the implementation
presented in this paper with an approximate ESPRESSO method and with an
exact ESPRESSO method, respectively. The seventh column “terms” gives the
number of sign conditions which satisfy Theorem 2. The last two columns “time
app” and “time ex” give the computing times by an approximate and by an
exact minimization algorithm, respectively. Computing times are given in units
of seconds. We remark that since this simplification step is executed before-
hand, the comparison of the computing times is not an essential problem in QE
computation.

An Effective Implementation of a Special Quantifier Elimination 205

We see that our improvements greatly reduced the number of product terms,
comparing “SyN” and “ESP app”, and don’t cares are important to simplify
a formula from comparing “DC” and “ESP app”. We have not obtained the
solutions of the seventh and the eighth SDC problems by an exact ESPRESSO
method. However, we see that “ESP app” outputs good approximate solutions
of up to the sixth SDC problem.

Table 2. Computational result of the SDC problems

deg var SyN DC ESP app ESP ex term time app time ex

2 4 5 2 2 2 5 0.01 0.01
3 8 17 7 4 4 21 0.01 0.01
4 12 64 24 10 10 99 0.01 0.04
5 16 302 85 18 18 480 0.05 1.12
6 20 1229 299 57 57 2352 0.72 61.92
7 24 5238 1096 121 - 11656 21.40 >350h
8 28 20468 4037 353 - 58284 757.59 >350h

Fig. 2 presents the input and output files to ESPRESSO software [1] for
the third SDC problem. The rows from 5 to 42 of the input file indicate each
output value of sign conditions by Boolean expressions. The rows from 6 to 9 of
the output file present the simplified formula by Boolean expressions. Each row
shows truth table row consisting of 8 inputs and 1 output. Each position in the
input plane corresponds to an input variable where “0” implies the corresponding
input literal appears complemented in the product term, “1” implies the input
literal appears uncomplemented in the product term, and “-” implies the input
literal does not appear in the product term. The numbers 1 and 2 at the end of
row indicate that a sign condition is true and a don’t care, respectively. The mark
“-” of the input file implies the input literal does not appear. The products of the
Boolean variables x0y0, x1y1, x2y2 and x3y3 show the signs of s1, s0, c2 and c1,
respectively. For example, the row 18 shows s1 < 0∧s0 = c0 = 0∧c2 > 0∧c1 > 0
and this sign condition is a don’t care because V0(SH(f)) = 0 < 1 = V∞(SH(f))
which satisfies condition 3 in Section 4.2. The rows 28 to 31 show that xy is a
don’t care. The rows 32 to 33, 34 to 35, 36 to 37, 38 to 39 and 40 to 42 are from
Lemmas 5, 2, 6, 4 and 3, respectively.

By our approach 22 sign conditions for the third SDC problem was reduced
to 4 conditions and we obtained the following formula:

(s1 < 0 ∧ s0 > 0) ∨ (s1 < 0 ∧ c1 < 0) ∨ (s0 < 0 ∧ c1 < 0) ∨ (c2 ≥ 0 ∧ c1 ≥ 0).

Let f(x) = x3 + ax2 + bx + c. The Sturm-Habicht sequence associated to f
is {SH3 = f , SH2 = df/dx = 3x2 + 2ax + b, SH1 = (2a2 − 6b)x + ab − 9c,
SH0 = −4b3+a2b2−4a3c+18bac−27c2} and then we obtain a simple quantifier-
free formula

c > 0 ∧ ((2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ SH0 > 0 ∨
(2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ ab− 9c < 0 ∨
SH0 < 0 ∧ ab− 9c < 0 ∨ b ≥ 0 ∧ ab− 9c ≥ 0).

(5)

206 H. Iwane, H. Higuchi, and H. Anai

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

.i 8

.o 1

.lib x0 y0 x1 y1 x2 y2 x3 y3

.ob f0

01010101 1

01010001 1

01011001 1

01011000 1

01011010 1

10010101 1

10010001 1

10011001 1

10011000 1

10011010 1

01000101 1

01000001 1

01001001 1

01001010 2

00001000 1

10001010 1

01100101 1

01100001 1

01101001 1

01100100 1

01100110 1

01101010 2

10101010 1

11------ 2

--11---- 2

----11-- 2

------11 2

0010---- 2

0001---- 2

00----1- 2

00-----1 2

--101000 2

--010100 2

----0010 2

----0000 2

1000--00 2

0100--00 2

000000-- 2

.e

.lib x0 y0 x1 y1 x2 y2 x3 y3

.i 8

.o 1

.ob f0

.p 4

-11----- 1

-1-----1 1

---1---1 1

-----0-0 1

.e

Fig. 2. Input (left side) and output (right side) file of the 3rd SDC problem for the
ESPRESSO command

An Effective Implementation of a Special Quantifier Elimination 207

We obtained the significant simpler formula by our approach than that by [11]
which has 17 product terms. However, the formula can be simplified more. For
example, there do not exist real numbers a, b, and c such that

c > 0 ∧ ((2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ SH0 > 0),

which is the first product term in (5). Thus we can reduce the formula more.
The necessary condition for the SDC presented in Section 3 considers only the
case that sk or ck is zero. To obtain the simpler formula ϕn finding the necessary
and sufficient condition is a promising direction and this would be one of our
future work.

Remark 3. CAD is known as an algorithm which constructs simpler quantifier-
free formulae because CAD uses sign information of many projection factors. In
fact, in the third SDC problem we obtain the following simpler formula by CAD
[4,5,13] which used 6 projection factors:

c > 0 ∧ (b ≥ 0 ∧ a ≥ 0 ∨ SH0 < 0).

6 Conclusion

This paper has considered the SDC problem which is the QE problem ∀x(x ≥
0 → f(x) > 0) where f is a polynomial in R[x]. For improvement of the algo-
rithm, simplification of formulae is important. To simplify a formula, we have
shown the necessary condition for the SDC and the usage of a logic minimiza-
tion method. Finally we have shown the effect of our approach by computational
results.

We expect to make further reduction of ϕn and would like to find the necessary
and sufficient condition for the SDC in our future work. Meanwhile we did not
obtain an exact solution of the seventh and subsequent SDC problems. To obtain
a simpler formula we would like to try to simplify formulae by an exact method,
for example, based on BDDs.

References

1. Espresso, http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/
2. Anai, H., Hara, S.: A parameter space approach to fixed-order robust con-

troller synthesis by quantifier elimination. International Journal of Control 79(11),
1321–1330 (2006)

3. Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Norwell (1984)

4. Brown, C.W.: Solution formula construction for truth invariant cad’s. PhD thesis,
University of Delaware Newark (1999)

5. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets
using CADs. SIGSAM Bulletin 37, 97–108 (2003)

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/

208 H. Iwane, H. Higuchi, and H. Anai

6. Caviness, B.F., Johnson, J.R. (eds.): Quantifier elimination and cylindrical alge-
braic decomposition. Texts and Monographs in Symbolic Computation. Springer
(1998)

7. Collins, G.E.: Quantifier elimination and cylindrical algebraic decomposition. In:
Caviness, Johnson (eds.) [6], pp. 8–23 (1998)

8. Coudert, O., Madre, J.C., Fraisse, H.: A new viewpoint on two-level logic minimiza-
tion. In: Proceedings of the Design Automation Conference, pp. 625–630 (1993)

9. González-Vega, L.: A combinatorial algorithm solving some quantifier elimination
problems. In: Caviness, Johnson (eds.) [6], pp. 365–375 (1998)

10. González-Vega, L., Recio, T., Lombardi, H., Roy, M.-F.: Sturm-Habicht se-
quences determinants and real roots of univariate polynomials. In: Caviness, B.F.,
Johnson, J.R. (eds.) [6], pp. 300–316 (1998)

11. Hyodo, N., Hong, M., Yanami, H., Hara, S., Anai, H.: Solving and visualizing non-
linear parametric constraints in control based on quantifier elimination. Applicable
Algebra in Engineering, Communication and Computing 18(6), 497–512 (2007)

12. Iwane, H., Yanami, H., Anai, H.: A symbolic-numeric approach to multi-objective
optimization in manufacturing design. Mathematics in Computer Science 5(3),
315–334 (2011)

13. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
symbolic–numeric cylindrical algebraic decomposition for quantifier elimination.
Theoretical Computer Science 479, 43–69 (2013)

14. McGeer, P., Sanghavi, J., Brayton, R., Vincentelli, A.S.: ESPRESSO-
SIGNATURE: A new exact minimizer for logic functions. In: Proceedings of the
Design Automation Conference, pp. 618–624 (1993)

15. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V.G.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 295–301.
Springer, Heidelberg (2006)

16. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: Proceedings of the 36th International Symposium on Symbolic and Algebraic
Computation, ISSAC 2011, pp. 329–336. ACM, New York (2011)

17. Yang, L., Xia, B.: Real solution classification for parametric semi-algebraic sys-
tems. In: Dolzmann, A., Seidl, A., Sturm, T. (eds.) Algorithmic Algebra and Logic,
pp. 281–289. Books on Demand (2005)

Categories as Type Classes

in the Scala Algebra System

Raphaël Jolly

Databeans, Vélizy-Villacoublay, France
raphael.jolly@free.fr

Abstract. A characterization of the categorical view of computer alge-
bra is proposed. Some requirements on the ability for abstraction that
programming languages must have in order to allow a categorical ap-
proach is given. Object-oriented inheritance is presented as a suitable
abstraction scheme and exemplified by the Java Algebra System. Type
classes are then introduced as an alternate abstraction scheme and shown
to be eventually better suited for modeling categories. Pro and cons of
the two approaches are discussed and a hybrid solution is exhibited.

Keywords: categories, type classes, bounded polymorphism.

1 Introduction

The Scala Algebra System [1] is a computer algebra library build on the model of
JAS [2], following a type-safe, generic and object-oriented paradigm, but written
in Scala, with the aim to address a number of concerns of the Java approach.
It implements polynomial arithmetic over various base rings (integer, rational,
complex, modular), rational and algebraic functions, ring modules, polynomial
GCD and Gröbner bases computations.

In the present work, we explain how we refactored our library using Scala’s
type classes [3], a feature that the language certainly owes to its functional pro-
gramming origins, and that turns out a perfect match to the computer algebraic
notion of categories.

2 Outline

The paper is organized as follows. Section 3 tries to extract defining features of
the categorical view of computer algebra, as implemented in some historical and
current computer algebra systems. Section 4 shows how categories are modeled
in the Java Algebra System using bounded polymorphism. Section 5 introduce
Scala’s type classes as an alternate abstraction scheme, which is also suited to
modeling categories. Section 6 shows that the two schemes can coexist in a
hybrid solution that retains the benefits of both. Section 7 compares our design
to existing solutions.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 209–218, 2013.
c© Springer International Publishing Switzerland 2013

210 R. Jolly

3 Categories

In the categorical view of computer algebra, mathematical objects are grouped
into well defined domains, like Integer or Rational, which restrict the kind
of arithmetic operations that can be applied to their elements. Domains can
be assembled into towers by means of domain constructors, like Matrix or
Polynomial, allowing to work with objects of arbitrary complexity, still in a pre-
cise way. This means for instance that domains Matrix(Rational) and
Matrix(ModInteger(2)) are incompatible, and that distinct operations must
be devised for each of them. To recover flexibility, categories are introduced. A
category is meant to abstract characteristics common to several domains : if in
the above example, matrix elements are specified to be in category Field, then
domain operations need only be defined once. Likewise, polynomial coefficients
can be specified to be in category Ring, which allows the construction of recur-
sive polynomial rings like Polynomial(Polynomial(Integer)), etc. Categories
are tied by (possibly multiple) inheritance relations : as every field is also a ring,
Field inherits from Ring and shares all its characteristics. They can optionally
supplement the specification of their operations by default definitions.

Thus we can summarize the categorical approach by the following
requirements:

1. arithmetic operations between elements are restricted based on their domain
2. domains must support abstraction by means of categories
3. categories must support multiple inheritance
4. (optional) categories may support default definition of operations

Over time, several attempts were made following this approach, the most
prominent being undoubtedly Axiom [4], but there was also notably Gauss [5]
and more recently JAS [2], DoCon [6], Mathemagix [7]. What is interesting
with JAS and DoCon is that they are written in general purpose languages
(Java and Haskell, respectively). Categorical programming somewhat pushes
the limits of such languages and is only possible thanks to the ability of mod-
ern object-oriented or functional programming languages for abstraction and
polymorphism.

4 Categorical Programming in Java: The JAS Example

In the Java Algebra System (JAS), a domain is modeled by a pair of Java classes,
called factory and element, respectively. The factory is named after the Factory
pattern, namely it has methods responsible for the creation of new elements [8].
The element contains the representation of a mathematical value, together with
a reference to its parent factory. Operations involving one or more (usually two)
element(s) are performed through the element’s methods. Hence the factory is
responsible for nullary operations, and unary and binary operations are handled
by the element. Similarly, a category is modeled by a pair of Java interfaces, to
be implemented by the factory and element of each domain that the category

Categories as Type Classes in the Scala Algebra System 211

abstracts. These interfaces are parametrized by the type of the element, thus
allowing restrictions of permitted operations on the element, in fulfillment of
our requirement 1, as well as 2. As Java interfaces support multiple inheritance,
but not default implementations, requirement 3 is also met, but not 4.

Below we give a code example, in the case of domain BigInteger, abstracted
by category Ring. (The example is simplified, and given in Scala for easier
comparison with subsequent examples, but it is strictly equivalent to the
corresponding Java code.)

trait Ring[T <: Ring.Element[T]] {

def zero: T

}

object Ring {

trait Element[T <: Element[T]] {

val factory: Ring[T]

def +(that: T): T

}

}

class BigInteger(val value: Int) extends

Ring.Element[BigInteger] {

val factory = BigInteger

def +(that: BigInteger) = factory(this.value + that.value)

override def toString = value.toString

}

object BigInteger extends Ring[BigInteger] {

def apply(value: Int) = new BigInteger(value)

def zero = apply(0)

}

A use case is given below.

BigInteger(1) + BigInteger(1)

// 2

This scheme, where abstraction is obtained through inheritance/implementa-
tion, is called bounded polymorphism [9]. Domain constructors are implemented
as follows, in the case of domain Polynomial[C]:

class Polynomial[C <: Ring.Element[C]](val ring: Ring[C], val

variable: String) extends Ring[Polynomial.Element[C]] {

def generator = new Polynomial.Element(...)(this)

}

object Polynomial {

def apply[C <: Ring.Element[C]](ring: Ring[C],

variable: String) = new Polynomial(ring, variable)

class Element[C <: Ring.Element[C]](val value: Repr[C])(val

factory: Polynomial[C]) extends Ring.Element[Element[C]]

}

212 R. Jolly

Polynomial coefficients are specified to be in category Ring through a bound
on their element type C which is required to be a subtype of Ring.Element[C].
A use case is given below.

val r = Polynomial(BigInteger, "x")

val x = r.generator

x + x

// 2*x

5 Type Classes in ScAS

In the Scala Algebra system (ScAS), a domain is modeled by a single class, which
is responsible for both nullary (creational) and (n > 0)-ary operations. Elements
can be of any type. Categories are modeled by type classes. In Scala these are
represented by traits, with the element type as type parameter, like in Section
4. The binding between the element type and the domain is made by an implicit
definition. Operations among elements are realized in big part by the type classes
machinery, and only require the manual import of some suitable implicit value.
As Scala traits support multiple inheritance and default implementations, so do
the obtained categories, and requirements 3 and 4 are fulfilled, in addition to 1
and 2.

trait Ring[T] { outer =>

def zero: T

def plus(x: T, y: T): T

implicit def mkOps(value: T): Ring.Ops[T] = new Ring.Ops[T] {

val lhs = value

val factory = outer

}

}

object Ring {

trait ExtraImplicits {

implicit def infixRingOps[T: Ring](lhs: T) =

implicitly[Ring[T]].mkOps(lhs)

}

trait Ops[T] {

val lhs: T

val factory: Ring[T]

def +(rhs: T) = factory.plus(lhs, rhs)

}

}

type BigInteger = java.math.BigInteger

object BigInteger extends Ring[BigInteger] {

def apply(i: Int) = java.math.BigInteger.valueOf(i)

def zero = apply(0)

def plus(x: BigInteger, y: BigInteger) = x.add(y)

Categories as Type Classes in the Scala Algebra System 213

}

trait ExtraImplicits {

implicit val ZZ = BigInteger

}

object Implicits extends ExtraImplicits with Ring.ExtraImplicits

A use case is given below, with the required imports.

import Implicits.{ZZ, infixRingOps}

BigInteger(1) + BigInteger(1)

// 2

Domain constructors are implemented as follows, in the case of domain
Polynomial[C]:

class Polynomial[C: Ring](val variable: String)

extends Ring[Repr[C]] {

val ring = implicitly[Ring[C]]

def generator: Repr[C] = ...

}

object Polynomial {

def apply[C: Ring](variable: String) = new Polynomial(variable)

}

Polynomial coefficients are specified to be in category Ring through a context
bound on their element type C, which means that an instance of type Ring[C]

must be available for the domain to be constructed. A use case is given below,
with the required imports and implicit decalaration.

import Implicits.{ZZ, infixRingOps}

implicit val r = Polynomial(ZZ, "x")

val x = r.generator

x + x

// 2*x

The category hierachy of ScAS is given in Figure 1. All categories are in
package scas.structure except for Equiv and Ordering which come from the
Scala standard library. These are drawn in the same box to reflect the fact that
the hierarchy is duplicated in unordered and ordered versions.

6 Discussion

The first advantage of type classes is, that they provide a nice, if radical, solution
to the dependent type problem [2]. In Java, the type system makes no distinction
between the types of elements from e.g. ModInteger(2) and ModInteger(3),
and thus does not forbid operations between these domains. With type classes,
such mismatches are prevented, by the fact that domains are specified through

214 R. Jolly

Mon oid

Rin g

Se m iGrou p

Se t

UFD

Abe lia nGroup

NotQu ite Group

Euclide a nDom a in

Fie ld

Grou p

Modu le

Equ iv / Orde ring

Alge b ra Ove rRing

Alge b ra Ve ctorSpa ce

Fig. 1. Category hierarchy of ScAS

implicits, and only one such implicit definition can exist at a time for a given
element type.

Compared to bounded polymorphism, the merit of type classes is also, not to
impose constraints on the type of elements. It allows application of new abstrac-
tions to existing objects (“post-facto extensions”, [10]). As shown in Section 5,
the Ring abstraction can be applied to already existing domain java.math.Big-

Integer, with no need to redevelop it or wrap it with an adapter class. This
also allows unboxed primitive element types, like Int or Double, which, together
with type specialization, means better efficiency, and opens the way to generic
numeric-symbolic implementations, for example in linear algebra.

There are cases, however, where interface implementations are desirable. For
instance, in ScAS, coercions are made through implicit conversions, and these
work better (one should say only) when operations are implemented directly by
the element types. To remedy this problem, and bearing in mind that operating
directly on pre-existing types is mostly interesting for base types like Integer

or Rational, we have investigated if it would be possible to re-introduce inher-
itance in a limited way, namely just for elaborate domains (polynomials, etc).
There is no problem with implementing their elements as wrappers, since their
representation is generally a reference type (Array, ...) and it is just one more
indirection. This turned out to be compatible with the type classes scheme, as
shown below, in the case of domain Polynomial[C]:

Categories as Type Classes in the Scala Algebra System 215

class Polynomial[C: Ring](val variable: String)

extends Ring[Polynomial.Element[C]] {

...

def generator = apply(...)

def apply(value: Repr[C]) = new Polynomial.Element(value)(this)

}

object Polynomial {

...

class Element[C](val value: Repr[C])(val factory: Polynomial[C])

extends Ring.Element[Element[C]]

}

Conversely to domain Polynomial[C] in Section 5, whose elements could be
of any type Repr[C], here elements of domain Polynomial[C] are required to
be subtypes of Ring elements. This reminiscence of bounded polymorphism is
accommodated to the type classes machinery through the following addition:

object Ring {

...

trait Element[T <: Element[T]] extends Ops[T] { this: T =>

val lhs = this

}

}

, which bridges the gap between the two abstraction schemes, forming an
hybrid solution. The class layout is summarized in Figure 2.

Ring .Ele m e n t [T]

< < in te rfa ce > >

Ring [T]

< < in te rfa ce > >

Polynom ia l.Ele m e n t [C] Polynom ia l[C: Ring]

< < re a lize > > < < re a lize > >

Fig. 2. Hybrid abstraction scheme

7 Related Work

Type classes were first introduced in Haskell [9]. To the best of our knowledge,
they were first mentionned as possible abstractions for computer algebra struc-
tures in [11] and [12]. The computer algebra system DoCon actually uses them.

216 R. Jolly

Orde ring

Num e ric

Pa rt ia lOrde ring

Equ iv

In te g ra l Fra ct iona l

Fig. 3. Categories in the Scala standard library

Regarding Scala, one must note that type classes have been in front of computer
algebraists’ eyes for quite a long time, since a code example in the language
documentation explicitly involves abstract algebraic constructs [13]. The com-
puter algebra system Mathemagix uses a concept of categories that is completely
equivalent to type classes, without naming them [7]. It is written in a specialized
language and does not (yet) support default definitions. The Scala language it-
self uses types classes for algebra but only for numerical domains. Its categories
are defined in package scala.math. Their hierachy is given in Figure 3.

The Spire project aims to redefine this hierarchy in terms of a set of more fun-
damental type classes, corresponding to concepts from abstract algebra [14]. Its
category hierarchy is given in Figure 4 (all categories are in package spire.alge-
bra except for Numeric, Fractional, Integral, Order, Eq which come from
package spire.math).

Elements of the multiprecision integer domain in Scala are still implemented as
an adapter class scala.math.BigInt but, as we have seen and thanks to type
classes, the original Java class java.math.BigInteger could be used instead
(and likewise for big decimals). This would save an indirection, but would impede
coercions, which may be the reason why the adapter is kept. Thus, the adopted
solution is very similar to our hybrid scheme in Section 6.

We have long thought that computer algebra in a general purpose language
would not be successful until some abstract algebraic categories are included in
a standard libray. But, as we can see, each projet still has its own idea of what
category hierarchies should be. Furtunately, thanks to post-facto extensions, this
is no longer a problem.

Categories as Type Classes in the Scala Algebra System 217

Addit ive Monoid

Add it ive Group

Add it ive AbGroup

Monoid

Group

AbGroup

Se m iGroup Mult ip lica t ive Se m iGroup

Mult ip lica t ive Monoid

Mult ip lica t ive Group

Mult ip lica t ive AbGroup

Rig

Ring

Modu leRigh tModu le

Ve ctorSpa ce

Norm e d Ve ctorSpa ce

Inne rProductSpa ce Euclide a nRing

Fie ld

RingAlge b ra

ZAlge b raFie ldAlge b ra

Num e ric

Eq

Orde r

In te g ra l

Fra ct iona l

Add it ive Se m iGroup

Se m iRing

Rng

Fig. 4. Categories in Spire

8 Conclusion

Are general purpose programming languages ready for computer algebra ? This
is a recurring question, that we think today may be answered positively. We have
shown that the categorical approach can be tackled by modern object-oriented
languages such as Java or Scala. The type classes scheme available in the latter
enables a very natural implementation of categories, that in addition reveals
itself compatible with the former, object-oriented scheme. Type classes based
categories are already used for numerical purposes in the Scala standard library
and the third-party project Spire. Computer algebra in Haskell uses them since
the beginning. Computer algebra on the JVM can and should use them as well.

References

1. Jolly, R.: ScAS - Scala algebra system. Technical report (2010-2012),
https://github.com/rjolly/scas

2. Kredel, H.: On a Java Computer Algebra System, its performance and applications.
Science of Computer Programming 70(2-3), 185–207 (2008)

3. Odersky, M.: Poor man’s type classes. Technical report (Presentation at the meet-
ing of IFIP WG) (2006),
http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf

https://github.com/rjolly/scas
http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf

218 R. Jolly

4. Davenport, J.: The axiom system. In: Proceedings of NAGUA 1991 (1992)
5. Gruntz, D., Monagan, M.: Introduction to GAUSS. SIGSAM Bulletin 28(2), 3–19

(1994)
6. Mechveliani, S.: Computer algebra with haskell: applying functional-categorial-

“lazy” programming. In: Gerdt, V. (ed.) Proceedings of International Workshop
CAAP, Joint Institute for Nuclear Research, pp. 203–211 (2001)

7. van der Hoeven, J., Lecerf, G., Mourrain, B.: Mathemagix. Technical report (2002-
2012), http://www.mathemagix.org/

8. Niculescu, V.: A design proposal for an object oriented algebraic library. Technical
report, Studia Universitatis “Babes-Bolyai” (2003)

9. Oliveira, B.C., Moors, A., Odersky, M.: Type classes as objects and implicits.
SIGPLAN Not. 45(10), 341–360 (2010)

10. Watt, S.: Post facto type extensions for mathematical programming. In: Proc.
Domain-Specific Aspect languages (SIGPLAN/SIGSOFT DSAL 2006), October
23. ACM (2006)

11. Weber, A., Klaeren, H.: Type systems for computer algebra. Relation 10(1.54),
2615 (1993)

12. Santas, P.S.: A type system for computer algebra. J. Symb. Comput. 19(1-3), 79–
109 (1995)

13. Scala developpers: A tour of scala: Implicit parameters. Technical report (2008-
2010), http://www.scala-lang.org/node/114

14. Osheim, E., Switzer, T.: Powerful new number types and numeric abstractions for
scala. Technical report (2011-2012), https://github.com/non/spire

http://www.mathemagix.org/
http://www.scala-lang.org/node/114
https://github.com/non/spire

Enumeration of Schur Rings over the Group A5

Mikhail Klin and Matan Ziv-Av

Ben-Gurion University of the Negev
klin@cs.bgu.ac.il

matan@svgalib.org

Abstract. With the aid of the computer algebra system GAP (together
with the extension package COCO-II) all S-rings over the smallest non-
abelian simple group A5 of order 60 are enumerated. It turns out that
there are 2848 S-rings over A5, in 163 orbits under the action of S5.
Among them there are 505 non-Schurian S-rings, in 19 orbits. We discuss
the entire picture of this rich computer data and try to present an initial
outline of a human explanation for most of the results obtained.

1 Introduction

The concept of a Schur ring (briefly S-ring) was coined by I. Schur in 1933. For
a few decades, it was used exclusively by a rather narrow population of Schur’s
disciples and followers for purely group theoretical purposes. With the develop-
ment of algebraic graph theory (briefly AGT), this concept was revitalized and
used more frequently for the better understanding of Cayley graphs and their
automorphism groups. Nowadays tools from scientific computing, in conjunction
with theoretical background from permutation groups and AGT, create a serious
stimulus for more extensive investigations of S-rings.

In this paper we report on the results of a computer-aided classification of S-
rings over the alternating group A5 of order 60, the smallest non-abelian simple
group. The main principles of computer classification are discussed, together with
a presentation of the entire picture of the lattice of S-rings, their automorphism
groups and their combinatorial properties.

A number of interesting Cayley graphs over A5 are considered, with the cor-
responding S-rings. Recall that A5 is the group of rotational symmetries of the
icosahedron. Since the time of Felix Klein, icosahedral symmetry has appeared
as an interdisciplinary crossroads of science (see e.g. [20]). In the concluding
section, we present a very brief discussion of this extra context.

2 Schur Rings, Related Concepts,
and Computer-Aided Activities

In what follows we refer to such texts as [3,5,6,15,16] for more details regarding
the discussed background.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 219–230, 2013.
c© Springer International Publishing Switzerland 2013

220 M. Klin and M. Ziv-Av

Schur rings were introduced by I. Schur in 1933 ([29]), and were later developed
by H. Wielandt ([31]).

Recall that the group ring C[H] consists of all formal linear combinations of
elements of the group H with coefficients from the field C.

A Schur ring over the group H is a subring A of the group ring C[H] such
that there exists a partition P of H satisfying:

1. P is a basis of A (as a vector space over C).
2. {e} ∈ P , where e is the identity element of H .
3. X−1 ∈ P for all X ∈ P .

Here, for a subset X of H we define X−1 = {g−1|g ∈ X} and X =
∑

x∈X 1 · x,
while for a set of subsets T we define T = {X|X ∈ T }.

Let (G,Ω) be a permutation group and H a regular subgroup of G. Then
Ω may be identified with H . The stabilizer Ge of the identity element e ∈ H
defines an S-ring over H (see [31]). We denote this S-ring by V (G,H).

An S-ringA is called Schurian if it is equal to V (G,H) for a suitable overgroup
(G,H) of a regular group (H,H). A group H is called a Schur group if all S-rings
over H are Schurian. Schur [29] conjectured that all groups are Schur groups,
or in other words, all S-rings are Schurian. The first examples of non-Schurian
S-rings were presented by Wielandt in [31].

Let H be a group and S a subset of H . The Cayley graph Cay(H,S) = (H,R)
is a graph with vertex set H and with arc set R = {〈x, sx〉|x ∈ H, s ∈ S}. A
Cayley graph Cay(H,S) is undirected if S = S−1 and is connected if H = 〈S〉.

A colour graph is a pair (Ω,R), where R = {Ri|i ∈ I} is a partition of Ω2.
Let A be an S-ring over group H , A = {T0, T1, . . . , Ts}, where T0 = {e},

T1, . . . , Ts are the basic sets of A. It follows from the definitions that Ti · Tj =∑s
k=0 p

k
ijTk for suitable non-negative integers pkij , 0 ≤ i, j, k ≤ s. The numbers

pkij are called structure constants of A. We also associate with A the colour
graph m = (H,Ri), where for 0 ≤ i ≤ s, Ri is the arc set of the Cayley
graph Cay(H,Ti). This forms a structure which is called a translation asso-
ciation scheme, a particular case of the more general concept of an association
scheme (briefly AS). We say that the rank of m is equal to s+1. An AS is called
symmetric if each basic relation is symmetric. It is called commutative if pkij = pkji
for all i, j, k ∈ [1, r]. The structure constants of the AS (also called intersection
numbers) coincide with the structure constants of the corresponding S-ring.

Let m = (X,R) be an AS. A permutation g ∈ Sym(X) is an automorphism
(or a strong automorphism) of m if for each R ∈ R, Rg = R. The permutation
g is a colour automorphism of m if Rg ∈ R for all R ∈ R.

The group of all automorphisms of m is denoted by Aut(m), and the group of
all colour automorphisms is denoted by CAut(m).

Proposition 1. Aut(m) is a normal subgroup of CAut(m).

Let m be a rank-r AS. A permutation g ∈ Sym([0, r−1]) is an algebraic automor-
phism of m if pkij = pk

g

igjg for all structure constants pkij , where i, j, k ∈ [0, r − 1].
The group of all algebraic automorphisms of m is denoted by AAut(m).

Enumeration of Schur Rings over the Group A5 221

Proposition 2. The quotient group CAut(m)/Aut(m) is a subgroup of AAut(m).

Algebraic automorphisms which are not in CAut(m)/Aut(m) are called proper
algebraic automorphisms.

The goal of enumeration of the S-rings over a given group is a special case
of the enumeration of mergings of an AS and even more generally of a coherent
configuration. We have two tools for handling this task, COCO and GAP with
COCO-II. COCO is a set of programs for dealing with coherent configurations.
It was developed in 1990–2, in Moscow, USSR, mainly by Faradžev and Klin ([5],
[6]). The programs included in COCO allow for construction of the centralizer
algebra of a permutation group, and calculation of the homogeneous mergings
of this algebra, as well as their automorphism groups.

GAP ([7], [28]), an acronym for “Groups, Algorithms and Programming”, is
a system for computation in discrete abstract algebra. It supports easy addition
of extensions (packages, in gap nomenclature), that are written in the GAP
programming language which can add new features to the GAP system.

COCO-II, an extension package for GAP which is still in its initial devel-
opment phase, re-implements the algorithms in COCO. In addition, COCO-II
extends the abilities of COCO based on new theoretical results obtained since
the original COCO package was written. For the specific task of enumeration of
mergings, COCO-II uses knowledge of AAut to reduce the amount of work.

Since the main function of both packages is enumeration of mergings, the
programming part is simple. We need to construct the required group in COCO
or GAP terms, and call a single function to enumerate all mergings.

The S-rings over cyclic groups were classified by Leung and Man in [18,19]. In
2004 Muzychuk, using the classification by Leung and Man, offered a complete
solution of the isomorphism problem for circulant graphs ([25]).

Hanaki and Miyamoto ([9]) classified all association schemes of small order,
in particular, all S-rings over groups of order up to 35.

Sven Reichard classified all S-rings over groups of order up to 44.
The small but challenging open cases appear to be the non-abelian group of

order 55, the group AGL(1, 8) of order 56 and the group A5 of order 60. We ran
all three calculations, but for the group of order 55, the calculation appears to
take too long. For the two other groups we achieved a classification of all S-rings.

This text provides a detailed report about the S-rings over A5.

3 Computer Results for the Group A5

All S-rings over the group A5 were enumerated with the aid of COCO-II; the
job took about 1 month of computer time on a 3GHz CPU.

A summary of the results: there are 2848 S-rings, in 163 orbits under the action
of the group S5 = AAut(A5). Among them 505 S-rings (in 19 orbits) are non-
Schurian. A complete list of orbit representatives, along with some information
about each S-ring, is presented in the catalogue available from the home page of
author MZA http://www.math.bgu.ac.il/~zivav/math. Here the full group

http://www.math.bgu.ac.il/~zivav/math

222 M. Klin and M. Ziv-Av

ring C[A5] has number 0, and the rank 2 S-ring has number 162. From now on,
we refer to the enumeration of the orbits in this catalogue.

The results obtained appear as a massive list of computer generated data; we
wish to transform this into a form more suitable for a human being. Schurian
S-rings may in principle be explained in group theoretical terms. Non-Schurian
S-rings are a subject of particular interest in AGT. Each such object requires
special attention and analysis.

The general distribution of S-rings with respect to rank is provided in Table 1.
Eight of the 19 orbits of non-Schurian S-rings are non-commutative (with ranks

Table 1. Distribution of S-rings over A5 with respect to rank

Rank 60 33 32 22 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Total 1 1 1 1 1 2 3 2 1 1 2 7 5 10 11 17 15 18 21 19 16 7 1

Non-Schurian 0 0 0 0 0 0 0 0 0 0 1 1 0 1 4 3 3 3 2 0 1 0 0

between 9 and 14). Up to isomorphism there are 9 different automorphism groups
of non-Schurian S-rings with orders from 720 to 234 · 3 · 5. Altogether among the
automorphism groups of the 163 orbits of S-rings there are 139 different groups
(including the trivial cases of A5 and S60): too many to pay special attention to
each group.

For groups of relatively small orders, GAP allows us to get one or a few
“names” of abstract groups in clear algebraic terms. In addition, in each case we
need to understand the (transitive) permutation representation of each group.

It was convenient for us to classify all groups into a few classes according to
their order. Defining artificial borders, we distinguish:

– “small” groups, those of order up to 7680; all of them were identified with
the aid of GAP;

– “large” groups, those of order 14400 up to one million. Their orders are:
14400, 14580, 24360, 29160, 46080, 61440, 122880, 230400, 466560, 933120;

– “very large” groups, of order between 1875000 and 60!.

The list of orders of small groups is presented in Table 2. Identification of the
structure of large and very large groups, in general, is not possible using GAP
in an automatic fashion. Instead we apply special tricks.

For example, we discuss below those groups which may be described as wreath
products of two groups of smaller degree: G = G1 -G2, so that |G| = |G1| · |G2|m,
where m is the degree of G1 (we refer to [15] for definition and notation). The
following simple trick was programmed in GAP:

– We start from the order |G| and represent it in the form |G| = |G1| · |G2|m,
where m · n = 60.

– In addition, we require that m divides |G1|, and n divides |G2|.
– If these conditions are fulfilled, then we examine G in more detail, looking

for transitive groups G1, G2 with orders |G1|, |G2| and degrees m, n.

Enumeration of Schur Rings over the Group A5 223

Table 2. List of orders of small groups

0 60 A5 20 360 C3 × S5

1 120 S5 22 360 A5 × S3

2 120 C2 × A5 30 480 (C2 × C2 ×A5) : C2

3 180 GL(2, 4) 43 600 D10 × A5

6 240 C2 × S5 60 720 S5 × S3

9 240 C2 × C2 × A5 67, 95, 98 720 A5 × A4

10 240 A5 : C4 107 1200 (C5 × A5) : C4

12 300 C5 × A5 42, 112, 139 1320 PSL(2, 11) : C2

14 360 GL(2, 4) : C2 109 1440 (A5 × A4) : C2

4, 15, 21, 35, 47, 115 1920 C2 × ((C2 × C2 × C2 × C2) : A5)
5 3840 ((C2 × C2 × C2 × C2 × C2) : A5) : C2

18, 51, 77 3840 C2 × (((C2 × C2 × C2 × C2) : A5) : C2)
36, 45, 52, 80 3840 ((C2 × C2 × C2 × C2) : A5) : C4

137 7200 (A5 × A5) : C2

33, 44 7680 (C2.(((C2 ×C2 × C2 × C2) : A5) : C2) =
((C2 × C2 × C2 × C2 × C2) : A5).C2) : C2

In fact, there are 108 very large groups: 106 of them pass the numerical test, but
only 79 of them are actually wreath decomposable.

Example 1. S-ring #19 has rank 13 with |G| = 29859840 and valencies 48, 112.

– |G| = 120 · 125, m = 5, n = 12.
– G1 is S5 acting naturally on 5 points (rank 2). |G2| has to be a group of

order 12 acting regularly, for example we take G2 = A4.
– We conclude that G1 -G2 has the required order, rank and valencies.
– We construct G1 - G2 using GAP and check that it and G are similar per-

mutation groups.
– Thus G = S5 -A4.

Example 2. S-ring #133 has rank 5, |G| = 137594142720000000 and valencies 1,
50, 4, 4, 1. Here, acting in a similar fashion we recognize that |G| = 720 · 2406
and identify G as S6 -(S5×S2), where S6 acts naturally on 6 points, while S5×S2

acts transitively on 10 points with rank 4 and valencies 1, 1, 4, 4.

Finally, there remain 29 very large groups which are not wreath decomposable.We
expect to be able to explain these groups with the aid of more sophisticated op-
erations over permutation groups which sometimes are called generalized wreath
products, cf. [13].

Recall that an S-ring A is called primitive if all of the basic graphs of A
are connected. In particular, a Schurian S-ring is primitive if and only if its
automorphism group is a primitive permutation group. The primitive S-rings
over A5 were classified purely theoretically by M. Muzychuk ([24]):

– There are just two (non-trivial) primitive S-rings of ranks 5 and 4 over A5

with valencies 1, 12, 12, 15, 20 and 1, 15, 20, 24 respectively.

224 M. Klin and M. Ziv-Av

– Both appear as centralizer algebras of the holomorph of A5 and its subgroup
of index 2.

This result is now confirmed with the aid of a computer, as one of the
consequences of the project presented here.

4 Rational S-rings over A5

The concept of a rational S-ring over an abelian group H goes back to Schur and
Wielandt, see [31], where this concept, under the original name “S-ring of traces”,
is defined and investigated. It seems that first usage of the term “rational” can
be attributed to Bridges and Mena ([2]), who at that time were not aware of the
language of S-rings and were working with equivalent terminology.

Nowadays this concept may be formulated (in a more or less classical manner)
for a wider class of commutative association schemes. There are several possibil-
ities to generalize it to the case of arbitrary association schemes (also including
S-rings over finite groups). We use the following definition (cf. [13]):

Definition 1. A graph Γ is called rational if the spectrum of its adjacency ma-
trix is rational (in fact, integer). An association scheme (S-ring) is rational if
all its basic graphs are rational.

There are 54 orbits of rational S-rings over the group A5, and 49 of them have
large groups. Those with large groups are in a sense less interesting, because
they can be described via suitable decompositions into association schemes with
a smaller (than 60) number of points.

Those with small groups are listed in Table 3. Note that S-rings #51 and #77

Table 3. Rational S-rings over A5 having a small automorphism group

Rank Valencies |Aut| Name

51 9 1, 16, 8, 8, 16, 4, 2, 1, 4 3840 C2 × (((C2 × C2 × C2 ×C2) : A5) : C2)

60 9 1, 12, 6, 12, 6, 2, 12, 6, 3 720 S5 × S3

77 8 1, 16, 16, 16, 4, 2, 4, 1 3840 C2 × (((C2 × C2 × C2 ×C2) : A5) : C2)

107 6 1, 20, 5, 20, 10, 4 1200 (C5 × A5) : C4

109 6 1, 24, 12, 8, 12, 3 1440 (A5 × A4) : C2

are non-Schurian; they will be considered in more detail in Section 5. Each of
the remaining 3 S-rings needs to be investigated separately using suitable ad hoc
tools. The simplest pattern is presented below.

Example 3. S-ring #60. Our goal was to explain the significant properties of this
S-ring. For this purpose we used the computer package COCO. It is possible,
however, to perform all the necessary calculations without the use of a computer.

Let us start from the direct sum G = S5 +S3, acting intransitively on the set
[0, 7] with two orbits [0, 4] and [5, 7]. Clearly, |G| = 720. We wish to consider the

Enumeration of Schur Rings over the Group A5 225

transitive faithful action of G on the cosets of a suitable subgroup K of order
12. As abstract group, K is isomorphic to the dihedral group D6 of order 12.

We consider the combinatorial object P = {(0, 5), (1, 6), (2, 7)}. The stabilizer
Aut(P) of P in G has the structure S3 + S2, and is isomorphic (as an abstract
group) to D6. Two essential extra facts are that D6 does not contain a non-
trivial normal subgroup of G, and that there exists a subgroup A5 ≤ G which
has a trivial intersection with D6.

Thus, indeed we may consider the transitive action of G on the set Ω =
{P g|g ∈ G} of all images of P , and its centralizer algebra V = V (G,Ω). Naive
combinatorial counting shows that |Ω| =

(
5
2

)
· 3! = 60. Using the orbit counting

lemma (also known as the CFB lemma, see [15]), we confirm that rank(V) = 9
and V is a symmetric association scheme. We also calculate the valencies of the
classes of V , see Table 3. This provides a reasonably elementary description of
S-ring #60. The fact that it is rational was confirmed with the aid of GAP. It
might be interesting to try to get an independent computer-free justification of
this fact (avoiding specific calculation of the spectrum of V).

5 General Outline of Non-Schurian S-rings over A5

The information about all 19 non-Schurian S-rings is gathered together in Table
4. The content of the first three columns is clear, and the remaining two columns
are explained below. We use a few ad hoc approaches in order to explain (or
better, to interpret, see [16]) the computer results obtained.

An essential initial ingredient of the desired explanation is the concept of a
root group. Namely, we have a set R of four root groups of orders 720, 1320,
1920, 7680, such that each of the 19 (non-Schurian) S-rings appears as a subring
(merging, in other terminology) of a suitable corresponding transitivity module.

Note that S-rings #49 and #91 originate in this way from two roots.
In particular, of the 19 S-rings, 9 appear as so-called algebraic mergings. Below

we discuss each of the 4 roots separately.
Root 1: the group R1 = PGL(2, 11) of rank 10 and order 1320, non-

commutative S-ring #42 with subdegrees 15, 115. This is a particular case of a
general construction which was described by R. Mathon and his followers ([22]),
a pseudocyclic association scheme in the sense of [3]. In general, these schemes
allow proper algebraic automorphisms. In our case q = 11, d = 2, so we obtain

such a scheme on q2−1
d points, which has two algebraic mergings of rank 4 and

6; the first one is generated by an antipodal distance regular graph of diameter
3 and valency 11, see also [21], [8]. This explains #112 and #139.

Root 2: the group R2 of order 720 and rank 8, commutative S-ring #67 with
valencies 1, 3, 42, 124. The group is isomorphic to A5 × A4 and is a subgroup
of the holomorph of A5. This allows us to justify the existence of the group
AAut(R2) of order 4 and the two algebraic mergings that appear in reasonably
clear terms. Both mergings have rank 7. This explains #95 and #98.

Root 3: the group R3 of order 7680 and rank 11, non-commutative S-ring
#33 with valencies 12, 2, 42, 86. In its natural action of degree 12 this is the

226 M. Klin and M. Ziv-Av

Table 4. General information about non-Schurian S-rings

rank |Aut| root extra features

15 14 1920 1920 algebraic
21 13 1920 1920 algebraic
35 11 1920 1920 algebraic
39 10 3932160 1920 elementary merging #36
44 10 7680 7680 elementary merging #32
45 10 3840 1920 elementary merging #35
47 10 1920 1920 elementary merging #34
49 9 128849018880 1920,7680 wreath product, elementary merging

#38, #43, #44, #46, #47
51 9 3840 1920 algebraic
52 9 3840 1920 algebraic
69 8 7864320 1920 elementary merging #49
77 8 3840 1920 elementary merging #50
80 8 3840 1920 elementary merging #51
91 7 257698037760 1920,7680 wreath product, elementary merging

#68, #71, #76, #79
95 7 720 720 algebraic, elementary merging #66
98 7 720 720 algebraic, elementary merging #66
112 6 1320 1320 algebraic
115 6 1920 1920
139 4 1320 1320 algebraic

wreath product G = PGL(2, 5) - S2 of order 120 · 26, where PGL(2, 5) acts 3-
transitively on the projective line of size 6 (the entire group G is isomorphic
to group #270 of degree 12 in the catalogue [4]). To describe the action of G
of degree 60 combinatorially, one may start from a BIBD D with 6 points and
10 blocks, then “blow up” each point to a 2-element subset, blowing up also all
blocks. For the resulting incidence structure D′ we get G = Aut(D′). Now an
appropriate substructure S of D′ should be found so that the stabilizer of S in
G is a suitable subgroup of order 128 in G. All possible embeddings of S into D′

provide the 60 points of the S-ring #33.
Unfortunately we do not have enough space in this text to provide full details.

There is one elementary merging of rank 10 (see the discussion below). The other
two non-Schurian mergings are explained as wreath products of a suitable non-
Schurian scheme on 30 points with ZZ2 (this is why the automorphism groups
have huge sizes). This explains #44, #49, #91.

Root 4: the group R4 of order 1920 and rank 20, non-commutative S-ring #4
with valencies 14, 24, 412. This group acts naturally on 10 points and appears as
a wreath product A5 - S2 (of order 60 · 25). Again, its transitive action of degree
60 (as S-ring #4) may be described, starting from the action of degree 10, using
a suitable ad hoc explanation. It turns out that 14 of the 19 non-Schurian S-rings
are mergings of transitivity module of R4. Of these, 5 are algebraic mergings,
namely #15, #21, #35, #51, and #52.

Enumeration of Schur Rings over the Group A5 227

Another very helpful trick is due to M. Muzychuk ([26]). Let us start from
an S-ring A of rank r and its subring A′ of rank r − 1. This means that A′ is
obtained from A by a merging of just two basic sets, while all other basic sets
are unchanged. An efficient sufficient criterion, formulated in algebraic terms,
guarantees the existence of such a merging A′ of rank r − 1, which we call
an elementary merging (precise details to be provided elsewhere). It turns out
that altogether 11 non-Schurian S-rings may be explained (in the role of A′) by
selecting a suitable S-ring A. The corresponding information is given in Table 4.

By now, 18 of the 19 S-rings have been explained by at least one of the two
approaches described above (some having multiple explanations).

Finally, there remains one (commutative) S-ring of rank 6 from root R4.
None of the previous tricks provides an explanation for this S-ring. This is S-
ring #115, which posed us the most challenging task for a suitable computer-free
interpretation. We will face this challenge in the next section.

6 The Exceptional Non-schurian S-ring #115

We are interestied in S-ring A115. This is in fact a representative of an orbit of
30 isomorphic S-rings. This non-Schurian S-ring is a symmetric (and, therefore,
commutative) S-ring of rank 6, with valencies 1, 1, 5, 5, 8, 40. Its automorphism
group, Aut(A115) = R4, is a group of order 1920 and rank 20. It has three
imprimitivity systems, with 10, 12 and 30 cells. The basic graph of valency 40
is the only connected basic graph.

For a presentation of the relations of A115 we need two subgroups of A5:
a group K isomorphic to D5 (the stabilizer of a pentagon), and a group L
isomorphic to A4 (the stabilizer of a point). With 6 ways to select K and 5 ways
to select L, we note that the orbit is indeed of size 30.

The group K ∩L is of order 2; let i be its non-identity element. The starting
groups for the construction of A115 in this specific example are K = 〈(1, 4)(2, 3),
(0, 1, 2, 3, 4)〉 and L = A{1,2,3,4}, so that i = (1, 4)(2, 3).

Now we describe the basic sets as explicit subsets of A5:
X0 = {e}, X1 = {i}, X2 = K \ L of size 8.
The icosahedron graph is a Cayley graph over L; let X3, and X4 be two

complementing (with respect to K \ L) connection sets of the icosahedron:
X3 = {(1, 3)(2, 4), (1, 4, 3), (1, 2, 4), (1, 4, 2), (1, 3, 4)},
X4 = {(1, 2)(3, 4), (1, 2, 3), (1, 3, 2), (2, 3, 4), (2, 4, 3)}.
X5 = A5 \ (K ∪ L) is of size 40.
The imprimitivity systems arise from:
K ∩ L = X0 ∪X1: This is the connection set of the graph 30 ◦K2.
K = X0 ∪X1 ∪X2: 6 ◦K10.
L = X0 ∪X1 ∪X3 ∪X4: 5 ◦K12.
A significant feature of this description is that we use the Cayley representa-

tion of the icosahedron graph (over the subgroup A4) twice. Conceptually, this
description is close to the concept of orthogonal block structures ([1]), though it
does differ slightly.

228 M. Klin and M. Ziv-Av

To the best of our knowledge, A115 is new, in the sense that the automorphism
group and the non-Schurian property have not appeared in the literature (though
this also seems to be the case for some of the other S-rings).

7 S-rings over AGL(1, 8)

Another challenging problem was the enumeration of S-rings over the affine group
H = AGL(1, 8) over the field IF8 with 8 elements. Recall that H is a group of

order 56, which has a decomposition H ∼= (ZZ2)
3
� ZZ7, where (ZZ2)

3
stands

for the additive group of IF8 while ZZ7 is the multiplicative group of IF8. This
problem was solved in a similar manner to the A5 case. The same computer took
about two months.

There are 2349 S-rings, in 129 orbits under Aut(H) (which is isomorphic to
the group AΓL(1, 8) of order 168). Of the 2349 S-rings, 427 are non-Schurian
(forming 20 of the 129 orbits).

Here the set R of roots consists of two groups R1 and R2 of orders 168 and
224, both acting transitively on H . There are 5 minimal S-rings, of ranks 32,
20, 20, 20, and 14. Eight of the non-Schurian S-rings appear as mergings of the
transitivity module of the root R1. The group R1 = AΓL(1, 8) is 2-transitive
of degree 8 and order 168, of the form E8 � F21, where F21 = ZZ7 : ZZ3 is the
Frobenius group of order 21. The mergings of the root R1, together with other
interesting structures, were carefully investigated jointly with Josef Lauri. Some
of the results were recently published in [14]. The second root R2 has order 224
and rank 20; as an abstract group we have R2

∼= E4 ×AGL(1, 8).
The full report about the enumeration of S-rings over AGL(1, 8) is in prepa-

ration and will be published elsewhere.

8 Concluding Remarks

In this text, a number of results in the area of AGT, which were mainly obtained
with the aid of a computer, are presented in a concentrated form.

The use of the computer system GAP, in conjunction with some of its packages
(in particular, GRAPE [30] and nauty [23]), dramatically extends the capacity
for research. Indeed, without the use of modern tools of scientific computing, the
outlined panorama of all S-rings over A5 could never have been achieved.

Of course, a human being still has to use some theoretical knowledge to reach a
clear understanding of the extensive computer data obtained. Some initial steps
in this direction are also outlined. The results of our interpretation are presented
in a form suitable for an expert in AGT, as we were not trying to prepare a fully
self-contained text. Of course, the terminology and notation in use also depend
on the existing customs in the relevant research area. (As a simple example, the
same group of order 2 is denoted in this text by C2, ZZ2 or S2, depending on
the context.)

There still remain a number of issues within AGT, which are related to our
results and which should be carefully explained in the future, e.g., relative differ-
ence sets in A5 and maps over linear fractional groups (see [10], [11] respectively).

Enumeration of Schur Rings over the Group A5 229

In addition, we are pleased to mention the very famous structure of the
fullerene C60. In terms of S-rings, this is simply a coloured Cayley graph which
corresponds to two basic sets of sizes 2 and 1 (for example, {(0, 1, 2, 3, 4),
(1, 4, 3, 2, 1)} and {(1, 2)(3, 4)}). Its automorphism group ZZ2 ×A5 of order 120
and rank 32 generates S-ring #2. Recall that this structure is nowadays at the
intersection of many paths of research, from crystallography to nanotechnology
and virology. Paper [17] shows the potential of a better explanation of all S-
rings related to the root R1, while such a text as [12] opens new horizons to
exploit techniques of combinatorial enumeration for the classification of icosahe-
dral virus capsids (see [27] for an introduction to this rapidly growing new area
of modern theoretical biology).

We regret not being able to provide more details here, and hope in future to
exploit all these attractive links between AGT and other branches of modern
science.

Personal Remarks and Acknowledgements. Issai Schur, a scientific grand-
father of author MK, was born in Russia, established his mathematical career
in Germany, and in 1939 was forced to escape to Palestine. MK recalls a strong
wave of inspiration which we felt, together with German students, at the time
of a visit to Schur’s grave in the old cemetery in Tel Aviv (1995).

We are very grateful to Christian Pech and Sven Reichard for sharing with us
their beta versions of COCO-II. We thank Patrick Fowler and Misha Muzychuk
for helpful discussions, as well as Josef Lauri for a fruitful collaboration.

The authors acknowledge constructive criticism and helpful suggestions pro-
vided by three anonymous referees. Finally, we thank Gareth Jones for his kind
attention to our text.

References

1. Bailey, R.A.: Association schemes. Designed experiments, algebra and combina-
torics. Cambridge Studies in Advanced Mathematics, vol. 84. Cambridge Univer-
sity Press, Cambridge (2004)

2. Bridges, W.G., Mena, R.A.: Rational circulants with rational spectra and cyclic
strongly regular graphs. Ars Combin. 8, 143–161 (1979)

3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance Regular Graphs. Springer,
Berlin (1989)

4. Conway, J.H., Hulpke, A., McKay, J.: On transitive permutation groups. LMS J.
Comput. Math. 1, 1–8 (1998) (electronic)

5. Faradžev, I.A., Klin, M.H.: Computer package for computations with coherent
configurations. In: Proc. ISSAC 1991, pp. 219–223. ACM Press, Bonn (1991)

6. Faradžev, I.A., Klin, M.H., Muzichuk, M.E.: Cellular rings and groups of automor-
phisms of graphs. In: Faradžev, I.A., et al. (eds.) Investigations in Algebraic Theory
of Combinatorial Objects, pp. 1–152. Kluwer Acad. Publ., Dordrecht (1994)

7. http://www.gap-system.org

8. Godsil, C.D., Hensel, A.D.: Distance regular covers of the complete graph. J. Com-
bin. Theory Ser. B 56(2), 205–238 (1992)

http://www.gap-system.org

230 M. Klin and M. Ziv-Av

9. http://math.shinshu-u.ac.jp/~hanaki/as/

10. Hiramine, Y.: Relative difference sets in Alt(5). J. Combin. Theory Ser. A 110(2),
179–191 (2005)

11. Jones, G.A., Mačaj, M., Širáň, J.: Nonorientable regular maps over linear fractional
groups. Ars Math. Contemp. 6, 25–35 (2013)

12. Kerner, R.: Classification and evolutionary trends of icosahedral viral capsids.
Comput. Math. Methods Med. 9(3-4), 175–181 (2008)

13. Klin, M., Kovács, I.: Automorphism groups of rational circulant graphs. Electron.
J. Combin. 19(1), Paper 35, 1–52 (2012)

14. Klin, M., Lauri, J., Ziv-Av, M.: Links between two semisymmetric graphs on 112
vertices via association schemes. J. Symbolic Comput. 47, 1175–1191 (2012)

15. Klin, M., Pöschel, R., Rosenbaum, K.: Angewandte Algebra für Mathematiker
und Informatiker. Einfuhrung in gruppentheoretisch-kombinatorische Methoden.
Friedr. Vieweg & Sohn, Braunschweig (1988)

16. Klin, M., Pech, C., Reichard, S., Woldar, A., Ziv-Av, M.: Examples of computer
experimentation in algebraic combinatorics. Ars Math. Contemp. 3, 237–258 (2010)

17. Kostant, B.: Structure of the truncated icosahedron (e.g. Fullerene or C60, viral
coatings) and a 60-element conjugacy class in PSL(2, 11). Selecta Math (N.S.) 1,
163–195 (1995)

18. Leung, K.H., Man, S.H.: On Schur rings over cyclic groups. Israel J. Math. 106,
251–267 (1998)

19. Leung, K.H., Man, S.H.: On Schur rings over cyclic groups II. J. Algebra 183,
273–285 (1996)

20. Levy, S. (ed.): The Eightfold Way. The Beauty of Klein’s Quartic Curve. Math-
ematical Sciences Research Institute Publications, vol. 35. Cambridge University
Press, Cambridge (1999)

21. Mathon, R.: 3-class association schemes. In: Proc. Conference on Algebraic Aspects
of Combinatorics, pp. 123–155. Univ. Toronto, Toronto (1975)

22. Mathon, R.: Lower bounds for Ramsey numbers and association schemes. J. Com-
bin. Theory Ser. B 42, 122–127 (1987)

23. McKay, B.D.: Nauty User’s Guide (Version 1.5). Technical Report TR-CS-90-02,
Computer Science Department, Australian National University (1990)

24. Muzychuk, M.E.: Structure of primitive S-rings over group A5. In: VIII All-Union
Symposium on Group Theory, pp. 83–84. Kiev (1982)

25. Muzychuk, M.: A solution of the isomorphism problem for circulant graphs. Proc.
London Math. 88, 1–41 (2004)

26. Muzychuk, M.: Private communication (December 2012)
27. Peeters, K., Taormina, A.: Group theory of icosahedral virus capsid vibrations: A

top-down approach. J. Theoret. Biol. 256, 607–624 (2009)
28. Schönert, M., et al.: GAP - Groups, Algorithms, and Programming, 5th edn.

Lehrstuhl D für Mathematik. Rheinisch-Westfälische Technische Hochschule,
Aachen (1995)

29. Schur, I.: Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber.
Preuss. Akad. Wiss., Phys.-Math. Kl., 598–623 (1933)

30. Soicher, L.H.: GRAPE: a system for computing with graphs and groups. In: Finkel-
stein, L., Kantor, W.M. (eds.) Groups and Computation. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol. 11, pp. 287–291. A.M.S
(1993)

31. Wielandt, H.: Finite Permutation Groups. Acad. Press, New York (1964)

http://math.shinshu-u.ac.jp/~hanaki/as/

Generalized Bruhat Decomposition

in Commutative Domains

Gennadi Malaschonok�

Tambov State University,
Internatsionalnaya 33, 392622 Tambov, Russia

malaschonok@gmail.com

Abstract. Deterministic recursive algorithms for the computation of
generalized Bruhat decomposition of the matrix in commutative domain
are presented. This method has the same complexity as the algorithm of
matrix multiplication.

1 Introduction

A matrix decomposition of a form A = V wU is called the Bruhat decomposition
of the matrix A, if V and U are nonsingular upper triangular matrices and w
is a matrix of permutation. It is usually assumed that the matrix A is defined
in a certain field. Bruhat decomposition plays an important role in the theory
of algebraic groups. The generalized Bruhat decomposition was introduced and
developed by D.Grigoriev[1],[2].

In [3] there was constructed a pivot-free matrix decomposition method in a
common case of singular matrices over a field of arbitrary characteristic. This
algorithm has the same complexity as matrix multiplication and does not require
pivoting. For singular matrices it allows us to obtain a nonsingular block of the
biggest size.

Let R be a commutative domain, F be the field of fractions overR. We want to
obtain a decomposition of matrix A over domain R in the form A = V wU , where
V and U are upper triangular matrices over R, and w is a matrix of permutation,
which is multiplied by some diagonal matrix in the field of fractions F . Moreover
each nonzero element of w has the form (aiai−1)−1, where ai is some minor of
order i of matrix A.

We call such triangular decomposition the Bruhat decomposition in the com-
mutative domain R.

In [6], a fast algorithm for adjoint matrix computation was proposed. On the
basis of this algorithm for computing the adjoint matrix, a fast algorithm was
proposed in [8] for LDU decomposition. However, this algorithm requires the
calculation of the adjoint matrix to calculate the LDU decomposition.

In this paper, we propose another algorithm that does not rely on the cal-
culation of the adjoint matrix and which costs less number of operations. We

� Supported by the Russian Foundation for Basic Research, grant No. 12-07-00755a.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 231–242, 2013.
c© Springer International Publishing Switzerland 2013

232 G. Malaschonok

construct the decomposition in the form A = LDU , where L and U are lower
and upper triangular matrices, D is a matrix of permutation, which is multiplied
by some diagonal matrix in the field of fractions F and has the same rank as the
matrix A. Then the Bruhat decomposition V wU in the domain R may easily be
obtained using the matrices L, D and U .

2 Triangular Decomposition in Domain

Let R be a commutative domain, A = (ai,j) ∈ Rn×n be a matrix of order n,
αk
i,j be k× k minor of matrix A which disposed in the rows 1, 2, . . . , k− 1, i and

columns 1, 2, . . . , k− 1, j for all integers i, j, k ∈ {1, . . . , n}. We suppose that the
row i of the matrix A is situated at the last row of the minor, and the column j
of the matrix A is situated at the last column of the minor. We denote α0 = 1
and αk = αk

k,k for all diagonal minors (1 ≤ k ≤ n). And we use the notation δij
for Kronecker delta.

Let k and s be integers in the interval 0 ≤ k < s ≤ n, Ak
s = (αk+1

i,j) be the

matrix of minors with size (s − k) × (s − k) which has elements αk+1
i,j , i, j =

k + 1, . . . , s− 1, s, and A0
n = (α1

i,j) = A.
We shall use the following identity (see [4], [5]):

Theorem 1 (Sylvester determinant identity).
Let k and s be the integers in the interval 0 ≤ k < s ≤ n. Then it is true that

det(Ak
s) = αs(αk)s−k−1. (1)

Theorem 2 (LDU decomposition of the minors matrix).
Let A = (ai,j) ∈ Rn×n be the matrix of rank r, αi �= 0 for i = k, k + 1, . . . , r,
r ≤ s ≤ n, then the matrix of minors Ak

s is equal to the following product of
three matrices:

Ak
s = Lk

sD
k
sU

k
s = (aji,j)(δijα

k(αi−1αi)−1)(aii,j). (2)

The matrix Lk
s = (aji,j), i = k+1 . . . s, j = k+1 . . . r, is a low triangular matrix

of size (s− k)× (r− k), the matrix Uk
s = (aii,j), i = k+1 . . . r, j = k+1 . . . s, is

an upper triangular matrix of size (r−k)× (s−k) and Dk
s = (δijα

k(αi−1αi)−1),
i = k + 1 . . . r, j = k + 1 . . . r, is a diagonal matrix of size (r − k)× (r − k).

Proof. Let us write the matrix equation (2) for k + 1 = r

(ak+1
i,j) = (ak+1

i,k+1)(δk+1,k+1a
k(akak+1)−1)(ak+1

k+1,j) (3)

This equation is correct due to Sylvester determinant identity

ak+1
i,j ak+1 − ak+1

i,k+1a
k+1
k+1,j = ak+2

i,j ak, (4)

and the equality ak+2
i,j = 0. This equality is a consequence of the fact that minors

ak+2
i,j have the order greater then the rank of the matrix A.

Generalized Bruhat Decomposition in Commutative Domains 233

Let for all h, k < h < r, the statement (1) be correct for matricesAh
s = (ah+1

i,j).
We have to prove it for h = k. Let us write one matrix element in (2) for the
matrix Ak+1

s = (ak+2
i,j) :

ak+2
i,j =

min(i,j,r)∑
t=k+2

ati,tα
k+1(αt−1αt)−1att,j .

We have to prove the corresponding expression for the elements of the matrix
Ak

s . Due to the Sylvester determinant identity (3) we obtain

ak+1
i,j = ak+1

i,k+1(α
k+1)−1ak+1

k+1,j + αk(αk+1)−1ak+2
i,j =

ak+1
i,k+1α

k(αkαk+1)−1ak+1
k+1,j + αk(αk+1)−1

min(i,j,r)∑
t=k+2

ati,tα
k+1(αt−1αt)−1att,j =

min(i,j)∑
t=k+1

ati,tα
k(αt−1αt)−1att,j .

Consequence 1 (LDU decomposition of matrix A). Let A=(ai,j)∈Rn×n,
be the matrix of rank r, r ≤ n, αi �= 0 for i = 1, 2, . . . , r, then matrix A is equal
to the following product of three matrices:

A = L0
nD

0
nU

0
n = (aji,j)(δij(α

i−1αi)−1)(aii,j). (4)

The matrix L0
n = (aji,j), i = 1 . . . n, j = 1 . . . r, is a low triangular matrix of

size n× r, the matrix U0
n = (aii,j), i = 1 . . . r, j = 1 . . . n, is an upper triangular

matrix of size r × n, and D0
n = (δij(α

i−1αi)−1), i = 1 . . . r, j = 1 . . . r, is a
diagonal matrix of size r × r.

Let In be the identity matrix and Pn be the matrix with second unit diagonal.

Consequence 2 (Bruhat decomposition of matrix A). Let matrix A =
(ai,j) have the rank r, r ≤ n, and B = PnA. Let B = LDU be the LDU-
decomposition of matrix B. Then V = PnLPr and U are upper triangular ma-
trices of size n× r and r × n correspondingly and

A = V (PrD)U (5)

is the Bruhat decomposition of matrix A.

We are interested in the block form of decomposition algorithms for LDU and
Bruhat decompositions. Let us use some block matrix notations.

For any matrix A (or Ap
q) we denote by Ai1,i2

j1,j2
(or Ap;i1,i2

q;j1,j2
) the block which

stands at the intersection of rows i1 +1, . . . , i2 and columns j1 +1, . . . , j2 of the
matrix. We denote by Ai1

i2
the diagonal block Ai1,i2

i1,i2
.

234 G. Malaschonok

3 LDU Algorithm

Input: (Ak
n, α

k), 0 ≤ k < n.
Output: {Lk

n, {αk+1, αk+2, . . . , αn}, Uk
n ,M

k
n ,W

k
n},

where Dk
n = αkdiag{αkαk+1, . . . , αn−1αn}−1, Mk

n = αk(Lk
nD

k
n)

−1,
W k

n = αk(Dk
nU

k
n)

−1.

1. If k = n− 1, An−1
n = (an) is a matrix of the first order, then we obtain

{an, {an}, an, an−1, an−1}, Dn−1
n = (αn)−1.

2. If k = n− 2, An−2
n =

(
αn−1 β
γ δ

)
is a matrix of second order, then we obtain{(

αn−1 0
γ αn

)
, {αn−1, αn},

(
αn−1 β
0 αn

)
,

(
αn−2 0
−γ αn−1

)
,

(
αn−2 −β
0 αn−1

)}
where αn = (αn−2)

−1

∣∣∣∣αn−1 β
γ δ

∣∣∣∣, Dn−2
n = αn−2diag{αn−2αn−1, αn−1αn}−1.

3. If the order of the matrix Ak
n is more than two (0 ≤ k < n − 2), then we

choose an integer s in the interval (k < s < n) and divide the matrix into blocks

Ak
n =

(
Ak

s B
C D

)
. (6)

3.1. Recursive step

{Lk
s , {αk+1, αk+2, . . . , αs}, Uk

s ,M
k
s , W

k
s } = LDU(Ak

s , α
k)

3.2. We compute

Ũ = (αk)−1Mk
s B, L̃ = (αk)−1CW k

s , (7)

As
n = (αk)−1αs(D− L̃Dk

s Ũ). (8)

3.3. Recursive step

{Ls
n, {αs+1, αs+2, . . . , αn}, Us

n,M
s
n, W

s
n} = LDU(As

n, α
s)

3.4 Result:
{Lk

n, {αk+1, αk+2, . . . , αn}, Uk
n ,M

k
n ,W

k
n},

where

Lk
n =

(
Lk
s 0

L̃ Ls
n

)
, Uk

n =

(
Uk
s Ũ
0 Us

n

)
, (9)

Mk
n =

(
Mk

s 0

−M s
nL̃D

k
sM

k
s /α

k M s
n

)
, (10)

W k
n =

(
W k

s −W k
s D

k
s ŨW

s
n/α

k

0 W s
n

)
. (11)

Generalized Bruhat Decomposition in Commutative Domains 235

4 Proof of the Correctness of the LDU Algorithm

Proof of the correctness of this algorithm is based on several determinant iden-
tities.

Definition 1 (δki,j minors and Gk matrices).
Let A ∈ Rn×n be a matrix. The determinant of the matrix obtained from the

upper left block A0,k
0,k of matrix A by the replacement in matrix A of the column

i by the column j is denoted by δki,j. The matrix of such minors is denoted by

Gk
s = (δk+1

i,j) (12)

We need the following theorem (see [4] and [5]):

Theorem 3 (Base minor’s identity).
Let A ∈ Rn×n be a matrix and i, j, s, k, be integers in the intervals: 0 ≤ k <

s ≤ n, 0 < i, j ≤ n. Then the following identity is true

αsαk+1
ij − αkas+1

ij =
s∑

p=k+1

αk+1
ip δspj . (13)

The minors as+1
ij in the left-hand side of this identity equal zero if i < s + 1.

Therefore, this theorem gives the following

Consequence 3. Let A ∈ Rn×n be a matrix and s, k be integers in the intervals:
0 ≤ k < s ≤ n. Then the following identities are true

αsUk;k+1,s
n;s+1,n = Uk

s G
k;k+1,s
n;s+1,n. (14)

αsAk;k+1,s
n;s+1,n = Ak

sG
k;k+1,s
n;s+1,n. (15)

The block Ak;k+1,s
n;s+1,n of the matrix Ak

n was denoted by B. Due to Sylvester
identity we can write the equation for the adjoint matrix

(Ak
s)

∗ = (Ak
s)

−1(αs)(αk)s−k−1 (16)

Let us multiply both sides of equation (15) by adjoint matrix (Ak
s)

∗ and use
equation (16). Then we get

Consequence 4

(Ak
s)

∗B = (Ak
s)

∗Ak;k+1,s
n;s+1,n = (αk)s−k−1Gk;k+1,s

n;s+1,n. (17)

As well as Lk
sD

k
sU

k
s = Ak

s ,

Mk
s = αk(Lk

sD
k
s)

−1 = αkUk
s (A

k
s)

−1 and W k
s = αk(Dk

sU
k
s)

−1. (18)

Therefore,

Ũ = (αk)−1Mk
s B = (αk)−1Uk

s (A
k
s)

−1B = (αs)−1(αk)−s+kUk
s (A

k
s)

∗B. (19)

Equations (19), (17), and (14) give

236 G. Malaschonok

Consequence 5

Ũ = Uk;k+1,s
n;s+1,n (20)

In the same way we can prove

Consequence 6

L̃ = Lk;s+1,n
n;k+1,s. (21)

Now we have to prove identity (8). Due to equations (14)-(19) we obtain

L̃Dk
s Ũ = (αk)−1CW k

s D
k
s (α

k)−1Mk
s B =

(αk)−2C(Ak
s)

−1B = (αk)−s+k−1(αs)−1C(Ak
s)

∗B (22)

The identity

As
n = (αk)−1(αsD− (αk)−s+k+1C(Ak

s)
∗B) (23)

was proved in [4] and [5]. Due to (20) and (21) we obtain identity (8).
To prove formulas (10) and (11) it is sufficient to verify the identities Mk

n =
αk(Lk

nD
k
n)

−1 and W k
n = αk(Dk

nU
k
n)

−1 using (9),(10), (11) and definition Dk
n =

αkdiag{αkαk+1, . . . , αn−1αn}−1.

5 Complexity

Theorem 4. The algorithm has the same complexity as matrix multiplication.

Proof. The total amount of matrix multiplications in (7)–(15) is equal to 7, and
the total amount of recursive calls is equal to 2. We do not consider multiplica-
tions of the diagonal matrices.

We can compute the decomposition of the second order matrix by means of 7
multiplicative operations. Therefore, we get the following recurrent equality for
complexity

t(n) = 2t(n/2) + 7M(n/2), t(2) = 7.

Let γ and β be constants, 3 ≥ β > 2, and letM(n) = γnβ+o(nβ) be the number
of multiplication operations in one n× n matrix multiplication.

After summation from n = 2k to 21 we obtain

7γ(202β·(k−1) + . . .+ 2k−22β·1) + 2k−27 = 7γ
nβ − n2β−1

2β − 2
+

7

4
n.

Therefore, the complexity of the decomposition is

∼ 7γnβ

2β − 2

Generalized Bruhat Decomposition in Commutative Domains 237

6 The Exact Triangular Decomposition

Definition 2. A decomposition of the matrix A of rank r over a commutative
domain R in the product of five matrices

A = PLDUQ (24)

is called exact triangular decomposition if P and Q are permutation matrces, L
and PLPT are nonsingular lower triangular matrices, U and QTUQ are non-
singular upper triangular matrices over R, D = diag(d−1

1 , d−1
2 , .., d−1

r , 0, .., 0) is
a diagonal matrix of rank r, di ∈ R\{0}, i = 1, ..r.

Designation: ETD(A) = (P,L,D,U,Q).

Theorem 5 (Main theorem). Any matrix over a commutative domain has
an exact triangular decomposition.

Before proceeding to the proof, we note that the exact triangular decomposi-
tion relates the LU decomposition and the Bruhat decomposition in the field of
fractions.

If D matrix is combined with L or U , we get the expression A = PLUQ. This
is the LU -decomposition with permutations of rows and columns. If the factors
are grouped in the following way:

A = (PLPT)(PDQ)(QTUQ),

then we obtain LDU-decomposition. If S is a permutation matrix in which the
unit elements are placed on the secondary diagonal, then (SLS)(STD)U is the
Bruhat decomposition of the matrix (SA).

Bruhat decomposition can be obtained from those PLUQ-decomposition that
satisfy the additional conditions: matrices PLPT and QTUQ are triangular.
Conversely, LU -decomposition can be obtained from the Bruhat decomposition
V ′D′U ′. This can be done if the permutation matrix D can be decomposed into
a product of permutation matrices D′ = PQ so that the PTL′P and QU ′QT

are triangular matrices.
If matrix A is a zero matrix, then ETD(A) = (I, I, 0, I, I).
If A is a nonzero matrix of the first order, then ETD(A) = (I, a, a−1, a, I).
Let us consider a non-zero matrix of order two. We denote

A =

(
α β
γ δ

)
, Δ =

∣∣∣∣α βγ δ

∣∣∣∣ , ε = {Δ, Δ �= 0
1, Δ = 0

, Δ−1 =

{
1/Δ, Δ �= 0
0, Δ = 0.

Depending on the location of zero elements, we consider four possible cases. For
each case, we give the exact triangular decomposition:

If α �= 0, then A =

(
α 0
γ ε

)(
α−1 0
0 Δ−1α−1

)(
α β
0 ε

)
.

If α = 0, β �= 0, then A =

(
β 0
δ ε

)(
β−1 0
0 −Δ−1β−1

)(
β 0
0 ε

)(
0 1
1 0

)
.

238 G. Malaschonok

If α = 0, γ �= 0, then A =

(
0 1
1 0

)(
γ 0
0 ε

)(
γ−1 0
0 −Δ−1γ−1

)(
γ δ
0 ε

)
.

If α = β = γ = 0, δ �= 0, then A =

(
0 1
1 0

)(
δ 0
0 1

)(
δ−1 0
0 0

)(
δ 0
0 1

)(
0 1
1 0

)
.

There are only two different cases for matrices of size 1× 2:

If α �= 0, then
(
α β
)
=
(
α
) (
α−1 0

)(α β
0 1

)
.

If α = 0, β �= 0, then
(
0 β
)
=
(
β
) (

β−1 0
)(β 0

0 1

)(
0 1
1 0

)
.

Two cases for matrices of size 2× 1 can easily be obtained by a simple transpo-
sition.

These examples allow us to formulate

Sentence 1. For all matrices A of size n ×m, n,m < 3 there exists an exact
triangular decomposition.

In addition, we can formulate the following property, which holds for triangu-
lar matrices and permutation matrices in the exact triangular decomposition.

We denote by Is the identity matrix of order s.

Property 1 (Property of the factors). For a matrix A ∈ Rn×m of rank r, r <
n, r < m over a commutative domain R there exists the exact triangular decom-
position (24) in which
(α) the matrices L and U are of the form

L =

(
L1 0
L2 In−r

)
U =

(
U1 U2

0 Im−r

)
, (25)

(β) the matrices PLPT and QTUQ remain triangular after replacing in the
matrices L and Q of unit blocks In−r and Im−r by arbitrary triangular blocks.

Without loss of generality of the main theorem, we shall prove it for the ex-
act triangular decompositions with property 1. We prove it by induction. The
theorem is true for matrices of sizes smaller than three.

We consider a matrix A of size N ×M . Assume that all matrices of size less
than n×m have the exact triangular decomposition. We split the matrix A into

blocks: A =

(
A B
C D

)
, where A ∈ Rn×n, n < N , n < M .

(1). Let the block A have the full rank. There exists exact triangular decom-
position of this block: A = P1L1D1U1Q1. Here the diagonal matrix D1 has full
rank, and the matrix A is decomposed into the factors:(

P1 0
0 I

)(
L1 0

CQT
1 U

−1
1 D−1

1 I

)(
D1 0
0 D∗

)(
U1 D

−1
1 L−1

1 PT
1 B

0 I

)(
Q1 0
0 I

)
.

Here D∗ = D−CQTU−1D−1
1 L−1PTB. The matrix D∗ also has the exact trian-

gular decomposition D∗ = P2L2D2U2Q2. Substituting it in this decomposition,
we obtain a new decomposition of the matrix A:

Generalized Bruhat Decomposition in Commutative Domains 239

(
P1 0
0 P2

)(
L1 0

PT
2 CQT

1 U
−1
1 D−1

1 L2

)(
D1 0
0 D2

)(
U1 D

−1
1 L−1

1 PT
1 BQT

2

0 U2

)(
Q1 0
0 Q2

)
.

It is easy to see that this decomposition is exact triangular if both block
decompositions were exact triangular.

(2) Let the block A has rank r, r < n. There exists exact triangular decom-
position of this block:

A = P1L1D1U1Q1.

Here U1 =

(
U0 V0
0 I

)
, L1 =

(
L0 0
M0 I

)
and the diagonal matrix D1 =

(
d1 0
0 0

)
has a block d1 of rank r.

Let us denote C = (C′,C′′) and (C0,C1)= (C′U0,C
′V0 + C′′)Q1, B =(

B′

B′′

)
,

(
B0

B1

)
= P1

(
L0B

′

M0B
′ +B′′

)
. Then for the matrix A we obtain the de-

composition:

A =

(
P1 0
0 I

)⎛⎝ L0 0 0
M0 I 0

C0d
−1
1 0 I

⎞⎠⎛⎝d1 0 0
0 0 B1

0 C1 D

⎞⎠⎛⎝U0 V0 d
−1
1 B0

0 I 0
0 0 I

⎞⎠(Q1 0
0 I

)
. (26)

(2.1) Let B1 = 0 and C1 = 0. We can rearrange the block D in the upper left
corner (

0 B1

C1 D

)
=

(
0 I
I 0

)(
D 0
0 0

)(
0 I
I 0

)
.

Let us find the exact triangular decomposition of D:

D = P2L2D2U2Q2.

We denote

P3 =

(
P1 0
0 P2

)⎛⎝ I 0 0
0 0 I
0 I 0

⎞⎠ , Q3 =

⎛⎝ I 0 0
0 0 I
0 I 0

⎞⎠(Q1 0
0 Q2

)
.

Then for the matrix A we obtain the following decomposition:

A = P3

⎛⎝ L0 0 0
PT
2 C0d

−1
1 L2 0

M0 0 I

⎞⎠⎛⎝d1 0 0
0 D2 0
0 0 0

⎞⎠⎛⎝U0 d
−1
1 B0Q

T
2 V0

0 U2 0
0 0 I

⎞⎠Q3.

It is easy to check that the decomposition is exact triangular.
(2.2) Suppose that at least one of the two blocks of B1 or C1 is not zero. Let

the exact triangular decomposition exist for these blocks:

C = P2L2D2U2Q2, B = P3L3D3U3Q3.

240 G. Malaschonok

We denote

P1 =

(
P1 0
0 I

)
,P2 =

⎛⎝ I 0 0
0 P3 0
0 0 P2

⎞⎠ , Q2 =

⎛⎝ I 0 0
0 Q2 0
0 0 Q3

⎞⎠ , Q1 =

(
Q1 0
0 I

)
,

P3 = P1P2, Q3 = Q2Q1, D
′ = PT

2 L
−1
2 DU−1

3 QT
3 .

Then, basing on expansion (26) we obtain for the matrix A the decomposition
of the form:

A = P3

⎛⎝ L0 0 0
PT
3 M0 L3 0

PT
2 C0d

−1
1 0 L2

⎞⎠⎛⎝d1 0 0
0 0 D3

0 D2 D′

⎞⎠⎛⎝U0 V0Q
T
2 d−1

1 B0Q
T
3

0 U2 0
0 0 U3

⎞⎠Q3. (27)

We denote d2 and d3 nondegenerate blocks of the matrices D2 and D3, respec-
tively,

(V1, V4) = V0Q
T
2 , (V5, V6) = d−1

1 B0Q
T
3 ,

(
M1

M4

)
= PT

3 M0,

(
M5

M6

)
= PT

2 C0d
−1
1

L2=

(
L′
2 0

M2 I

)
, L3=

(
L′
3 0

M3 I

)
, U2=

(
U ′
2 V2
0 I

)
, U3=

(
U ′
3 V3
0 I

)
,D′=

(
D′

1 D′
3

D′
2 D′

4

)
.

M7 = D′
2d

−1
3 , V7 = d−1

2 D′
1U

′
3, V8 = d−1

2 (D′
1V3 +D′

3).

Then (27) can be written as

A = P3

⎛⎜⎜⎜⎜⎝
L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M6 0 0 M2 I

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 D′

1 D′
3

0 0 0 D′
2 D′

4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
U0 V1 V4 V5 V6
0 U ′

2 V2 0 0
0 0 I 0 0
0 0 0 U ′

3 V3
0 0 0 0 I

⎞⎟⎟⎟⎟⎠Q3 =

P3

⎛⎜⎜⎜⎜⎝
L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M6 M7 0 M2 I

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D′

4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
U0 V1 V4 V5 V6
0 U ′

2 V2 V7 V8
0 0 I 0 0
0 0 0 U ′

3 V3
0 0 0 0 I

⎞⎟⎟⎟⎟⎠Q3. (28)

Find the exact triangular decomposition D′
4:

D′
4 = P4L4D4U4Q4, (29)

Let us denote the matrices P4 = diag(I, I, I, I, P4), Q4 = diag(I, I, I, I, Q4),
P5 = P3P4, Q5 = Q4Q3, (M

′
6,M

′
7,M

′
2) = PT

4 (M6,M7,M2) (V ′
6 , V

′
8 , V

′
3) =

(V6, V8, V3)Q
T
4 .

After substituting (29) into (28) we obtain the decomposition of the matrix
A as

A = P5

⎛⎜⎜⎜⎜⎝
L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M ′

6 M
′
7 0 M ′

2 L4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
U0 V1 V4 V5 V

′
6

0 U ′
2 V2 V7 V

′
8

0 0 I 0 0
0 0 0 U ′

3 V
′
3

0 0 0 0 U4

⎞⎟⎟⎟⎟⎠Q5. (30)

Generalized Bruhat Decomposition in Commutative Domains 241

We rearrange the blocks d2, d3, and D4 to obtain the diagonal matrix d =
diag(d1, d3, d2, D4, 0). To do it we use permutation matrices P6 and Q6:

P6 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ , Q6 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ , P6

⎛⎜⎜⎜⎜⎝
d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4

⎞⎟⎟⎟⎟⎠Q6 = d.

As a result, we obtain the decomposition:

A = P6LdUQ6, (31)

with permutation matrices P6 = P5P
T
6 and Q6 = QT

6 Q5, diagonal matrix d
and triangular matrices

L = P6

⎛⎜⎜⎜⎜⎝
L0 0 0 0 0
M1 L′

3 0 0 0
M4 M3 I 0 0
M5 0 0 L′

2 0
M ′

6 M
′
7 0 M ′

2 L4

⎞⎟⎟⎟⎟⎠PT
6 =

⎛⎜⎜⎜⎜⎝
L0 0 0 0 0
M5 L′

2 0 0 0
M1 0 L′

3 0 0
M ′

6 M
′
7 M

′
2 L4 0

M4 0 M3 0 I

⎞⎟⎟⎟⎟⎠

U = QT
6

⎛⎜⎜⎜⎜⎝
U0 V1 V4 V5 V

′
6

0 U ′
2 V2 V7 V

′
8

0 0 I 0 0
0 0 0 U ′

3 V
′
3

0 0 0 0 U4

⎞⎟⎟⎟⎟⎠Q6 =

⎛⎜⎜⎜⎜⎝
U0 V1 V5 V

′
6 V4

0 U ′
2 V7 V

′
8 V2

0 0 U ′
3 V

′
3 0

0 0 0 U4 0
0 0 0 0 I

⎞⎟⎟⎟⎟⎠
We show that expansion (31) is an exact triangular decomposition. To do this,
we must verify that the matrices L = P6LP

T
6 and Q = QT

6 UQ6 are triangular,
and the matrices P,L,U,Q satisfy the properties (α) and (β).

It is easy to see that all matrices in sequence

L1 = P6LP
T
6 ,L2 = P4L1P

T
4 ,L3 = P2L2P

T
2 ,L4 = P1L3P

T
1 (32)

are triangular and L4 = L.
Similarly, all of the matrices in the sequence

U1 = QT
6 LQ6,U2 = QT

4 U1Q4,U3 = QT
2 U2Q2,U4 = QT

1 U3Q1 (33)

are triangular and U4 = U .
For the matrices L and U Property 1 (α) is satisfied. To verify the properties

(β), the unit block in the lower right corner of the matrix L and U should be
replaced by an arbitrary triangular block, respectively, the lower triangle for
L and the upper triangular for U. We check that all the matrices in (32) and
(33) will be still triangular. This is based on the fact that the exact triangular
decompositions for matrices A,B,C,D′ have the property (β).

242 G. Malaschonok

7 Conclusion

Algorithms for finding the LDU and Bruhat decomposition in commutative do-
main are described. These algorithms have the same complexity as matrix mul-
tiplication.

8 Example⎡⎢⎢⎣
1 −4 0 1
4 5 5 3
1 2 2 2
3 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−24 0 12 1
0 60 15 4
0 0 6 1
0 0 0 3

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 1/(−144) 0
0 0 0 1/(−1440)
0 1/18 0 0
1/3 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
3 0 0 1
0 6 6 5
0 0 −24 −16
0 0 0 60

⎤⎥⎥⎦
References

1. Grigoriev, D.: Analogy of Bruhat decomposition for the closure of a cone of Chevalley
group of a classical series. Soviet Math. Dokl. 23, 393–397 (1981)

2. Grigoriev, D.: Additive complexity in directed computations. Theoretical Computer
Science 19, 39–67 (1982)

3. Malaschonok, G.: Fast Generalized Bruhat Decomposition. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 194–202.
Springer, Heidelberg (2010)

4. Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tambov
University Publishing House, Tambov (2002)

5. Malaschonok, G.I.: Effective matrix methods in commutative domains. In: Krob,
D., Mikhalev, A.A., Mikhalev, A.V. (eds.) Formal Power Series and Algebraic Com-
binatorics, pp. 506–517. Springer, Berlin (2000)

6. Malaschonok, G.I.: A fast algorithm for adjoint matrix computation. Tambov Uni-
versity Reports 5(1), 142–146 (2000)

7. Malaschonok, G.I.: Fast matrix decomposition in parallel computer algebra. Tambov
University Reports 15(4), 1372–1385 (2010)

8. Malaschonok, G.I.: On the fast generalized Bruhat decomposition in domains. Tam-
bov University Reports 17(2), 544–550 (2012)

Automatic Parallel Library Generation

for General-Size Modular FFT Algorithms

Lingchuan Meng and Jeremy Johnson

Drexel University, Philadelphia PA 19104, USA
{lm433,jjohnson}@cs.drexel.edu

Abstract. This paper presents the automatic library generation for
modular FFT algorithms with arbitrary input sizes. We show how to
represent the transform and its algorithms at a high abstraction level.
Symbolic manipulations and code optimizations that use rewriting sys-
tems can then be systematically applied to generate a library with recur-
sive function closure. The generated library is automatically optimized
for the target computing platforms, and is intended to support modular
algorithms for multivariate polynomial computations in the modpn library
used by Maple. The resulting scalar and vector codes provide compara-
ble speedup to the fixed-size code presented in [LJF10], which is an or-
der of magnitude faster over the hand-tuned modpn library. Thread-level
parallelism has also been utilized by the generated library and delivers
additional speedup.

Keywords: FFT, modular arithmetic, library generation, paralleliza-
tion, autotuning.

1 Introduction

Fast Fourier Transforms (FFTs) are at the core of many operations in scientific
computing. In computer algebra, FFTs are used for fast polynomial and integer
arithmetic and modular methods (i.e. computation by homomorphic images). In
recent years, the use of fast arithmetic has become prevalent and has stimulated
the development of software libraries, such as modpn [FLMS06, LM06, LMP09]
providing hand-optimized low-level routines implementing fast algorithms for
multivariate polynomial computations over finite fields, in support of higher-level
code. The modpn library has been integrated into the computer algebra system
Maple and runs on all computer platforms supported by Maple. The imple-
mentation techniques employed in modpn are often platform-dependent, since
cache size, associativity properties and register sets have a significant impact on
performance. In order to take advantage of platform-dependent optimizations,
in the context of quickly evolving hardware acceleration technologies, automated
performance tuning that supports general input sizes has become necessary and
should be incorporated into the modpn library.

Spiral [www.spiral.net] is a library generation system that automatically
generates platform-tuned implementations of digital signal processing algorithms

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 243–256, 2013.
c© Springer International Publishing Switzerland 2013

244 L. Meng and J. Johnson

with an emphasis on fast transforms. Currently, Spiral can generate highly op-
timized fixed-point and floating-point FFTs for a variety of platforms with auto-
matic tuning, and has support for vectorization, threading, and shared memory
parallelization. The code produced is competitive with the best available code for
these platforms and Spiral is used by Intel for its IPP (Integrated Performance
Primitives) and MKL (Math Kernel Library) libraries.

In this paper, we extend our previous work [LJF10] that requires all param-
eters of the modular FFT to be known at generation time to the automatic
library generation for modular FFT that accepts general sizes. By incorporat-
ing and extending the new library generation mechanism in Spiral, we have
generated general size library with comparable speedup to the fixed-size code,
and have exploited additional thread level parallelization for further performance
improvement. A new transform definition and associated breakdown rules and
parameterization have been implemented in the library generation framework
in order to generate recursive function closure. The backend has also been ex-
tended to enable the generation of high performance scalar and vectorized code
for modular arithmetic. With these enhancements, we present our results show-
ing that the parallel library generated by Spiral is ten to twenty times faster
than the modular FFT implementation in modpn.

2 Background

The Spiral system [PMJ05] uses a mathematical framework for representing
and deriving algorithms. Fig.1 shows the classic program generation framework
in Spiral.

– Internal languages. Spiral uses internally a domain-specific language
called SPL with which the algorithms are expressed symbolically as sparse
matrix factorizations and are derived using rewrite rules. Although sub-
structures produced in the factorizations are well-suited for good locality,
the conquer step in these algorithms is iterative, meaning that extra passes
through data are required. As a result, it is important to merge the iterative
steps to improve data locality and reuse. Σ-SPL [FVP05], an extension to
SPL, is developed to support formal loop merging by making explicit the de-
scription of loops, index mappings, and most recently parametrization and
recursive calls.

– Rewriting systems. Algorithms in Σ-SPL representation are in turn pro-
cessed by rewriting systems to perform difficult optimizations such as loop
merging, vectorization [FVP062], and parallelization [FVP061] automati-
cally. The optimizations are performed at a high abstraction level in order to
overcome known compiler limitations. The sequence of applications of break-
down rules is encoded as a ruletree which can be translated into a formula
and compiled with a special-purpose compiler into efficient code [XJJP01].

– Search engine. A search engine using the dynamic programing technique
with a feedback loop is used to tune fixed-size implementations to particular
platforms.

Automatic Parallel Library Generation for FFT Algorithms 245

Linear transform and size

Optimized/adapted implementation

S
ea

rc
h

controls

controls

performance

algorithm as formula
in SPL language

C/Fortran
implementation

Algorithm
Level

Implementation
Level

Evaluation
Level

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

Fig. 1. Fixed-size program generation in Spiral

The fixed-size program generation framework was used and extended in our
previous work to generate fixed-size modular FFT algorithms. However, the
framework is limited by the type of code it could produce, in that transform sizes
and other parameters must be known at generation time. Spiral has recently
been extended to support general size library generation [V08].

Library Generation Extension. To generate a library for a given transform,
the system has to be able to generate code for transforms of symbolic size, i.e.,
the size becomes an additional parameter. While the fixed-size transforms can be
decomposed by the classic generation framework, the breakdown rules can only
be applied at runtime, since the applicabilities of different rules are dependent on
the transform size. This change leads to a new framework shown in Fig.2, with
the addition of two new modules, Library Structure and Library Implementation.

– Library Structure. The generation of library structure operates at the al-
gorithm level, and is independent of the library implementation. The library
structure module compiles the breakdown rules of the transform into a re-
cursion step closure, which corresponds to a set of recursive functions in the
resulting library.

– Library Implementation. The goal of the library implementation module
is to translate or compile the recursive step closure expressed in Σ-SPL into
a program in some lower level target language. The particular set of require-
ments, such as adaptive or fixed, floating-point or integer, for the generated
library together with target language are encapsulated in the library target.

246 L. Meng and J. Johnson

Fig. 2. Library generation in Spiral

Themodule does not require any transform specific code, which makes reusing
library targets easy for new transforms.

The new framework separates the transform algorithm generation from the
library implementation details in order to maximize reusability. For instance, a
new transform and its algorithms can be mapped to a closure, and the unmod-
ified library implementation module can immediately generate several types of
libraries.

The library generation procedure is completely deterministic, and does not in-
volve feedback-driven search at library generation time except for small fixed-size
base cases. Instead, it moves the platform adaptation to runtime, by generating
libraries with feedback-driven adaptation mechanisms, similar to FFTW [FJ05].

In both frameworks, new transforms can be added by introducing new symbols
and their definitions, and new algorithms can be generated by adding new rules.
Spiral was developed for floating point and fixed point computation; however,
many of the transforms and algorithms carry over to finite fields. For example,
the DFT of size n is defined when there is a primitive nth root of unity and
many factorizations of the DFT matrix depend only on properties of primitive
nth roots. In this case, the same machinery in Spiral can be used for generating
and optimizing modular transforms.

Automatic Parallel Library Generation for FFT Algorithms 247

3 Modular FFT

Let the n-point modular DFT matrix be

ModDFTn,p,ω =
[
ωk�
n

]
0≤k,�<n

, (1)

where ωn is a primitive nth root of unity in Zp.
Let n = rs, then the divide and conquer step in the Cooley-Tukey algorithm

[CT65] can be represented as a matrix factorization with the tensor product :

ModDFTn,p,ω = (ModDFTr,p,ωr ⊗ Is)T
n
s (Ir ⊗ModDFTs,p,ωs) L

n
r . (2)

In (2), Tn
s is a diagonal matrix containing twiddle factors. Is is the s × s iden-

tity matrix. Furthermore, the stride permutation matrix Ln
r permutes the input

vector as
is+ j /→ jr + i, 0 ≤ i < r, 0 ≤ j < s.

If the input vector is viewed as a row-major 2-D matrix of size s × r, then Ln
r

transposes the matrix. For instance, L6
2 can be viewed as matrix vector compu-

tation:

L6
2 x =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
x0
x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
x0
x2
x4
x1
x3
x5

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

The tensor product, the most important operator in this paper, is defined as

A⊗B = [ak,lB] =

⎡⎢⎣ a0,0B · · · a0,l−1B
...

. . .
...

ak−1,0B · · · ak−1,l−1B

⎤⎥⎦ (4)

The tensor product serves as the key construct in Spiral and its many fast
algorithms, in that it captures loops, data independence, vectorization and par-
allelism concisely.

Example 1. An example of the Cooley-Tukey algorithm where r = s = 2 is

ModDFT4,p,ω = (ModDFT2,p,ω2 ⊗ I2) · T4
2 · (I2 ⊗ModDFT2,p,ω2) · L4

2,

which is equivalent to the matrix factorization below:⎡⎢⎢⎣
1 1 1 1
1 ω4 ω

2
4 ω

3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω

2
4 ω4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω4

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦

248 L. Meng and J. Johnson

Mathematical operations such as the tensor product in the Cooley-Tukey
algorithm produces substructures that can be interpreted as vector and parallel
operations, and formulae can be transformed to adapt to a given vector length
and number of cores, and permutations can be manipulated to obtain desired
data access patterns [JJRT90]. Such techniques have been incorporated into
Spiral to obtain highly optimized vector and parallel code [FVP05, FVP061,
FVP062].

Fig. 3 shows an example of the substructure. The four sparse matrices from
applying Cooley-Tukey algorithm to a 16-point modular DFT are represented
by four frames, where only the non-zero values are plotted. In the first frame of
ModDFT4 ⊗ I4, for example, scalar operations can be replaced by 4-way vector
operations, as each value in ModDFT4 is duplicated four times along the block
diagonals. Further, in the third frame of I4 ⊗ ModDFT4, it is obvious that the
same computing kernel ModDFT4 is applied to four non-overlapping sub-vectors
of the permuted input vector, which can be interpreted as a parallelizable loop
with no loop-carried dependencies.

DF T 4 I 4 I 4 L 16
4

DFT16 =Mod

Mod 16
4T DF T 4Mod

Fig. 3. Representation of the matrix factorization based on the Cooley-Tukey algo-
rithm. Shades of gray represent values that belong to the same tensor substructure.

In fact, the general forms of the first and the third frames, A ⊗ I and I⊗A
where A is an arbitrary matrix, are the two typical substructures for automatic
vectorization and parallelization. In Sect. 4, we will discuss how Spiral uses
hardware tags and rewriting rules to fully exploit vector level parallelism and
thread level parallelism and how the library structure is generated as recursion
step closure.

Modular arithmetic needs to be implemented efficiently in Spiral for a
high performance modular FFT library. In our implementation, the Montgomery
reduction proposed in [M85] is used. The algorithm effectively replaces integer
division, which can be expensive on many platforms, with bitwise operations.

For arithmetic mod N , the algorithm selects a radix R coprime to N , usually
the word size of the target platform, such that R > N and computations modulo
R are inexpensive to process. LetR−1 andN ′ be integers satisfying 0 < R−1 < N
and 0 < N ′ < R and RR−1 −NN ′ = 1. For i ∈ ZN , let i represent the residue
class containing iR−1 mod N . With this residue system, we can quickly compute
TR−1 mod N from T if 0 ≤ T < RN , as shown in the algorithm below:

With the release of the Streaming SIMD Extensions (SSE) 4.2 by Intel, the
Montgomery reduction can be fully vectorized in Spiral by defining a library

Automatic Parallel Library Generation for FFT Algorithms 249

Algorithm 1. Montgomery Reduction

function REDC(T)
m ← (T mod R)N ′ mod R � m ≡ TN ′ mod R
t ← (T +mN)/R � mN ≡ TN ′N ≡ −T mod R ⇒ t ≡ TR−1 mod N
if t ≥ N then � 0 ≤ T +mn < RN +RN ⇒ 0 ≤ t < 2N

return t−N
else

return t
end if

end function

target for modular arithmetic, adding rewriting rules based on pattern matching,
and using the newly introduced integer vector instructions in the code generator.

Since the Cooley-Tukey factorization holds for any field with a primitive nth
root of unity, the same machinery in Spiral can be used for generating and
optimizing modular FFTs, provided the infrastructure is extended to support
new data types and the code generation and compiler optimizations are similarly
enhanced.

4 General Size Parallel Library Generation for Modular
FFT

As previously mentioned, the substructures from applying recursive algorithms
to transforms can be mapped to vector and parallel operations, and formulae
can be transformed to adapt to hardware parameters, such as vector length
and number of computing cores. In this section, we show how the rewriting
systems and hardware tags are used to fully exploit vector parallelism and thread
parallelism for modular FFT library. Then we show how the library structure
is generated by constructing the recursion step closure as the algorithms are
applied to the given transform.

4.1 Vectorization and Parallelization

Rewriting systems and hardware tags have been developed in Spiral to fully
exploit two levels of parallelism: vector parallelism and thread parallelism. To
generate vectorized and parallelized implementations, one first needs to obtain
“fully optimized” SPL formulae, which means they can be mapped to efficient
vector and parallel code. The mapping utilizes the natural interpretation of the
tensor product, as shown in Fig.3, as vector and parallel operations.

Vectorization. The rewriting system for vector code uses the following four
components:

– Vectorization tags which mark the formula as ”to be vectorized”, and intro-
duce the vector length.

250 L. Meng and J. Johnson

– Vector formula constructs which express subformulae that can be fully
mapped to SIMD code.

– Rewriting rules which transform SPL formulae into vector formulae.
– Vector backend that generates SIMD code from vector formulae.

During the rewriting, vectorization information is propagated through the
formulae via a set of vectorization tags. For example, V ecν(A) means the formula
construct A is to be translated into vector code with vector length ν.

The central formula construct in vector formula constructs is A ⊗ Iν , where
A is an arbitrary matrix, and I is an identity matrix of size ν. Vector code
is obtained on ν-way short vector extensions by generating scalar code for A
and replacing scalar operations by respective ν-way vector operations. A⊗ Iν
stipulates that the tensor product is to be mapped to vector code without any
further manipulations. In addition, a set of efficient base cases for vectors of size
ν are provided.

L2ν
2 ,L2ν

ν ,Lν2

ν , (In/ν ⊗L2ν
2)Dn(In/ν ⊗L2ν

2),

where Dn is any diagonal matrix. Both constructs marked with ⊗ and base cases
are final, i.e., they will not be changed by rewriting rules.

Rewriting rules are used for non-final constructs in the framework to gen-
erate vectorized form, and are extensively covered in [FVP062]. For example,
V ecν(Im ⊗ A) can be rewritten into Im/ν ⊗ V ecν(Iv ⊗ A) based on the rewrit-
ing rules. Spiral derived rules for permutations and tensor products. These
rules are applied with pattern matching to rewrite an SPL formula into a final
vectorized formula. Similar rewriting mechanism can also be applied to Σ-SPL
vectorization.

Example 2. The tensor product Ir ⊗ModDFTs produced in the Cooley-Tukey
factorization of ModDFTrs can rewritten for vectorization as follows

Ir ⊗ModDFTs = Ir/ν ⊗ Iν ⊗ModDFTs (5)

= Ir/ν ⊗(Lsν
ν (ModDFTs ⊗ Iν) L

sν
s) (6)

Note that in this formula ModDFTs ⊗ Iν is already vectorized. Then the stride
permutation can also be rewritten into the fully vectorizable form as follows:

Ir/ν ⊗((Ls
ν ⊗ Iν)(Is/ν ⊗Lν2

ν)(ModDFTs ⊗ Iν)(Is/ν ⊗Lν2

ν)(Ls
s/ν ⊗ Iν)). (7)

Parallelization. The same approach is followed by shared memory paralleliza-
tion (smp) as with vectorization, starting with the formula tags and tagged SPL
constructs, and finally obtaining parallel code. During parallelization, there are
several issues one must address:

– Load balancing: All processors should have an equal workload.
– Synchronization overhead : Synchronization should involve as little overhead

as possible and unnecessary wait should be eliminated at synchronization
points.

Automatic Parallel Library Generation for FFT Algorithms 251

– Avoiding false sharing: Private data of different processors should not be in
the same cache line at the same time, otherwise cache thrashing may occur,
which leads to severe performance degradation.

To generate parallel code by rewriting SPL formulae, we first notice that SPL
constructs have a direct interpretation in terms of parallel code. A SPL for-
mula fully determines the memory access pattern of the generated program, and
thus one can statically schedule the loop iterations across p processors through
rewriting to ensure load balancing and eliminate false sharing. The components
required in the parallelization extension to Spiral include:

– Parallelism tags which introduces hardware parameters into the rewriting
system.

– Parallel formula constructs which denote the subformulae that can be per-
fectly mapped to smp platforms.

– Rewriting rules which transform general formulae into parallel formulae.
– Parallel backend than maps parallel formulae into parallel executable code.

Parallelism tags introduces the important parameters of smp machines: the
number of processors p, and the cache line length μ, e.g. Parp,μ(A).

Parallel formula constructs. For arbitrary A and Ai, the expressions

y = (Ip ⊗A)x, y = (

p−1⊕
i=0

Ai)x,

are embarrassingly parallel on p processors as they express block diagonal matri-
ces with p blocks. If the matrix dimensions are a multiple of μ, then each cache
line is owned by exactly one processor, thus preventing false sharing. If all Ai

have the same computational cost, the resulting program is load balanced. The
tagged operators declare that a construct is fully optimized for smp machines
and does not require further manipulation.

The general formulae are transformed into fully optimized formulae with
rewriting rules. Example of rules include:

– Parp,μ(AB) → Parp,μ(A)Parp,μ(A), which expresses that in matrix multi-
plication each factor will be rewritten separately, and

– Parp,μ(Am ⊗ In) → Parp,μ((L
mp
m ⊗ In/p)(Ip ⊗ (Am ⊗ In/p))(L

mp
p ⊗ In/p)),

which handles tensor product with identity matrices. It distributes the work-
load evenly among the p processors and execute as many consecutive itera-
tions as possible on the same processor.

4.2 Library Generation

To understand how a general size library is generated, recall the Cooley-Tukey
factorization of ModDFTrs, where the modulus p and the root of unity ω are
omitted for simplicity.

ModDFTrs = (ModDFTr ⊗ Is)T
rs
s (Ir ⊗ModDFTs) L

rs
r .

252 L. Meng and J. Johnson

With Σ-SPL, the twiddle factor Trs
s and the permutation matrix Lrs

r can be
fused into the nearby tensor products. As a result, the Cooley-Tukey FFT is
computed in two loops corresponding to the two tensor products decorated with
the twiddles and the stride permutation.

ModDFTrs = (ModDFTr ⊗ Is)T
rs
s︸ ︷︷ ︸

loop

(Ir ⊗ModDFTs) L
rs
r︸ ︷︷ ︸

loop

.

The fusion of the stride permutation requires a ModDFT function (moddft str)
with different input and output stride, and the fusion of the twiddles requires
a ModDFT function (moddft scaled) with an extra array parameter holding the
scaling factors. These functions are implemented recursively based on the Cooley-
Tukey algorithm, and do not require any new functions. Eventually, the modu-
lar DFT size becomes sufficiently small, and the recursion terminates by using
codelet functions that compute small fixed-size transforms.

We say the functions moddft, moddft str and moddft scaled form a so-called
recursion step closure, which is a minimal set of functions sufficient to com-
pute the desired transform. The recursion step closure is the central concept
in the library generation framework. The framework can compute the recursion
step closure for a given transform and multiple algorithms via parametrization
and descending, and generate corresponding base cases. Extensive details and
examples can be found in [V08].

With the vectorization and parallelization techniques, the code generator
works like a human expert for modular FFT in both algorithms and code tun-
ing to fully exploit vector and thread level parallelism. Furthermore, the library
generation techniques enable the autonomous exploration of algorithm and im-
plementation space at runtime with arbitrary input parameters. In Sect. 5, we
present the performance data that shows an order-of-magnitude speedup over
the hand-tuned implementation as a result of utilizing the aforementioned tech-
niques.

5 Performance Results

This section reports the performance data comparing the modular FFT in the
hand-optimized modpn library with the fixed-size code and the general size library
automatically generated by Spiral.

Test Setup. All experiments were performed on an Intel Core i7 965 quad-
core processor running at 3.2 GHz with 12 GB of RAM. Generated code was
compiled with gcc version 4.3.4-1 with optimization set to O3. Vector code used
SSE 4.2 with 4-way 32 bit integer vectors. Initial experiments were performed
using 32 bit integers and 16 bit primes. Performance is reported in Gops (giga-
ops) or billions of operations per second (higher is better), which is calculated
assuming that modular DFT of size N takes a total of (3/2)N lg(N) additions,
subtractions and nontrivial multiplications.

Automatic Parallel Library Generation for FFT Algorithms 253

Fig. 4. Performance Comparison

Baseline Implementation. The modpn library is mainly written in C, which
supports general multivariate polynomial computations over finite fields based
on fast algorithms, and targets efficient implementation of modular algorithms.
modpn takes advantage of certain hardware features such as SSE instructions
and thus performs better on some platforms than others. Montgomery’s trick is
used to avoid integer division, which can be costly on many machines. In this
experiment, modpn does not utilize the thread-level parallelism. The solid black
line at the bottom of Fig. 4 represents the performance of modular FFT in modpn

as the baseline implementation.

SPIRAL-Generated Code. The four lines labeled with Spiral-gen represent
the performance of the generated fixed-size codes and the library. The two dotted
lines labeled with Spiral-gen fixed-size refer to the previously reported results
in [LJF10], which do not utilize thread-level parallelism. Spiral generated al-
gorithms currently use the Cooley-Tukey algorithm (other algorithms like the
Prime factor algorithm and Rader’s algorithm have also been implemented) with
a dynamic programming search engine at generation time for the fixed-size codes
and at runtime for the general size library to select an “optimal” recursive break-
down strategy. More details on the DP search can be found in [PMJ05, V08].
We summarize the speedup and explain how it is achieved as a combined effort
from various optimization techniques.

– Speedup. All Spiral generated codes are faster than the baseline imple-
mentation. The fixed-size vector code delivers a speedup of 26 times for
medium sizes and 11 times for large sizes. The general size parallel library
provides comparable speedups as the fixed-size code.

254 L. Meng and J. Johnson

– Search mechanism. The nature of the recursive algorithms and complex
architectural features lead to a large space of candidate implementations,
which is challenging for the hand-tuned library to provide an highly opti-
mized implementation. On the other hand, the search engine can select an
optimized breakdown strategy that adapts to the target platform.

– Scalar code optimizations. With Σ-SPL, loops are merged to reduce the
number of passes on the input data. A collection of small size transforms
supporting general factorization are generated as base cases and are fully
unrolled to improve cache locality and avoid loop overhead. Small functions
are inlined to reduce function call overhead.

– Vectorization and parallelization. The rewriting systems and hardware
tags introduced in Sect. 4 further optimize the generated code to fully ex-
ploit vector level parallelism and thread level parallelism by automatically
adapting to the the vector length and the number of cores on the target
platform.

General Size Parallel Library and Fixed-Size Code. The performance of
the scalar and vector algorithms in the general size library are within 81% to
91% of the performance of corresponding fixed-size algorithms. For large sizes,
thread level parallelism in the parallel library leads to roughly 1.5 time speedup
over the fixed-size algorithm. The combined speedup for the general size parallel
library over baseline implementation is roughly 15 times for large sizes, compared
to 11 times of the fixed-size code.

Both fixed-size code generation and general size library use DP search engine
to search for an optimized algorithm for a given size. For fixed-size code, all
parameters including the transform size are known at generation time, which
enables computation of constants like the twiddle factors at generation time.
The constants are then used in fully unrolled small size transforms. On the
other hand, in general size library, precomputation (e.g., computing the twiddle
factors) is performed with runtime parameters and the results are kept in buffers
of recursive function steps and base cases. Initial accesses to the buffers may
lead to cache misses, which explains the small performance loss of the scalar and
vector algorithm in the general size library.

6 Conclusions

In this paper we extend the Spiral system to generate general input size parallel
library for modular FFT algorithms. The new transform and algorithms are
represented and optimized at high abstraction levels. By applying and extending
the library generation framework, we have generated a library that supports
efficient modular arithmetic, fully exploits vector and thread parallelisms of the
target platforms, and offers comparable performance improvement as the fixed-
size code compared to the hand-tuned implementations.

The general size library is advantageous over the fixed-size approach, in that it
compiles the breakdown rules to recursive function closure and search for an op-
timized strategy with runtime parameters. The performance results have proved

Automatic Parallel Library Generation for FFT Algorithms 255

the usefulness of the library generation and autotuning techniques and suggest
that they should be incorporated into high-level libraries to take advantage of
platform-dependent optimizations, in the context of quickly evolving hardware
acceleration technologies.

The goal of the automatic generation and performance tuning of a modular
FFT library is to eventually generate an optimized parallel library for polyno-
mial multiplication. We have developed additional algorithms for modular FFT,
including the Prime factor algorithm and Raders algorithm, which serve as good
candidate algorithms for non power-of-two size transforms. We have also exper-
imented with the usages of vector registers to support larger primes and hence
larger transform sizes. In the future, we will systematically explore the tradeoffs
and cutoffs between the 1-D transform candidates, non power-of-2 transform
sizes and various padding strategies to support the automatic generation of a
high performance library for polynomial multiplication.

References

[LJF10] Meng, L., Johnson, J., Franchetti, F., Voronenko, Y., Moreno Maza,
M., Xie, Y.: Spiral-Generated Modular FFT Algorithms. In: Proc.
International Workshop on Parallel and Symbolic Computation
(PASCO), pp. 169–170 (2010)

[V08] Voronenko, Y.: Library Generation for Linear Transforms. PhD. the-
sis, Electrical and Computer Engineering, Carnegie Mellon University
(2008)

[CT65] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation
of complex Fourier series. Math. of Computation 19, 297–301 (1965)

[FLMS06] Filatei, A., Li, X., Moreno Maza, M., Schost, É.: Implementation
techniques for fast polynomial arithmetic in a high-level programming
environment. In: Proc. ISSAC 2006, pp. 93–100. ACM Press, New
York (2006)

[FVP05] Franchetti, F., Voronenko, Y., Püschel, M.: Formal Loop Merging
for Signal Transforms. In: Proc. Programming Languages Design and
Implementation (PLDI), pp. 315–326 (2005)

[FVP061] Franchetti, F., Voronenko, Y., Püschel, M.: FFT Program Generation
for Shared Memory: SMP and Multicore. In: Proc. Supercomputing,
SC (2006)

[FVP062] Franchetti, F., Voronenko, Y., Püschel, M.: A Rewriting System
for the Vectorization of Signal Transforms. In: Daydé, M., Palma,
J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VEC-
PAR 2006. LNCS, vol. 4395, pp. 363–377. Springer, Heidelberg (2007)

[JJRT90] Johnson, J., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A Method-
ology for Designing, Modifying, and Implementing Fourier Transform
Algorithms on Various Architectures. IEEE Trans. Circuits Sys. 9
(1990)

[LM06] Li, X., Maza, M.M.: Efficient implementation of polynomial arith-
metic in a multiple-level programming environment. In: Iglesias,
A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 12–23.
Springer, Heidelberg (2006)

256 L. Meng and J. Johnson

[LMP09] Li, X., Moreno Maza, M., Pan, W.: Computations modulo regular
chains. In: Proc. ISSAC 2009, pp. 239–246. ACM, New York (2009)

[LMRS08] Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: High-Performance
Symbolic Computation in a Hybrid Compiled-Interpreted Program-
ming Environment. In: Proc. CASA 2008. LNCS. Springer (2008)

[LMS07] Li, X., Moreno Maza, M., Schos, É.: Fast arithmetic for triangular
sets: From theory to practice. In: Proc. ISSAC 2007, pp. 269–276.
ACM Press (2007)

[M85] Montgomery, P.L.: Modular Multiplication Without Trial Division.
Mathematics of Computation 44(170), 519–521 (1985)

[PMJ05] Püschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B.,
Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., John-
son, R., Rizzolo, N.: SPIRAL: Code Generation for DSP Transforms.
Proc. IEEE Special Issue on “Program Generation, Optimization,
and Adaptation” 93(2), 232–275 (2005)

[www.spiral.net] Spiral project website, http://www.spiral.net
[XJJP01] Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A Language and

Compiler for DSP Algorithms. In: Proc. PLDI, pp. 298–308 (2001)
[FJ05] Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3.

Proc. IEEE Special Issue on “Program Generation, Optimization, and
Adaptation” 93(2), 216–231 (2005)

http://www.spiral.net

Extended QRGCD Algorithm�

Kosaku Nagasaka1 and Takaaki Masui2

1 Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
2 Kobe-Takatsuka High School, 9-1 Mikatadai, Nishi-ku, Kobe 651-2277, Japan

Abstract. For computing the greatest common divisor of two univariate
polynomials with a priori numerical errors on their coefficients, we use
several approximate polynomial GCD algorithms: QRGCD, UVGCD,
STLN-based, Fastgcd, GPGCD and so on. Among them, QRGCD is
the most common algorithm since it has been distributed as a part of
Maple and there are many papers including their comparisons of ef-
ficiency and effectiveness against QRGCD. In this paper, we give an
improved QRGCD algorithm (ExQRGCD) which is unfortunately not
faster than the original but more accurate and the resulting perturba-
tion is able to satisfy the given tolerance.

1 Introduction

Computing the greatest common divisor (GCD) of polynomials is one of the
most primitive computations in symbolic algebraic computations hence several
algorithms are known: the Euclidean algorithm, the half GCD algorithm and so
on (see also the recent result[1] and the text book[2]). However, in the practical
situations (e.g. control theory, image processing and so on), the input polynomi-
als are represented by the floating-point numbers or derived from the result of
numerical computations or experiments hence in general they have a priori errors
on their coefficients. For such polynomials, any conventional algorithms cannot
compute their GCD since it easily becomes coprime due to a priori errors. This
problem is called “approximate polynomial GCD” and there are many known
studies (see Boito[3]).

Recently, most of modern algorithms for this problem use some optimization
techniques and matrix decompositions. UVGCD[4], STLN-based[5], Fastgcd[6]
and GPGCD[7] are typical algorithms using optimization techniques. The Gauss-
Newton algorithm is used in UVGCD and Fastgcd to refine a tentative approx-
imate GCD computed by some matrix decomposition and solving a linear sys-
tem. Structured total least norm (STLN) techniques and the gradient projection
algorithm are used in STLN-based and GPGCD, respectively, for seeking the ap-
proximate GCD directly.

QRGCD[8] is one of algorithms based on matrix decompositions and is also
implemented as a part of the SNAP package of Maple. It uses the QR decomposi-
tion of the Sylvester matrix of the input polynomials and constructs approximate

� This work was supported in part by JSPS KAKENHI Grant Number 22700011.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 257–272, 2013.
c© Springer International Publishing Switzerland 2013

258 K. Nagasaka and T. Masui

GCD directly from the upper triangular matrix (i.e. QRGCD does not refine the
resulting approximate factor). It is notable that QRGCD has been used as the
benchmark algorithm for newly proposed algorithms. However, since QRGCD
was proposed in the early stage of approximate GCD, its theoretical background
is not enough analyzed (e.g. detectability of approximate GCD by QR factoring).

In this paper, we show some relative closeness and property of the upper
triangular matrix, which clarify some weak points of QRGCD and for which we
give an improved QRGCD algorithm (we call it ExQRGCD). Unfortunately our
algorithm is not faster than the original but more accurate and the resulting
perturbation is able to satisfy the given tolerance (note that QRGCD is not
able to do this). We introduce the notations and the framework of the QRGCD
algorithm in the rest of this section, and give our improved framework based on
the original QRGCD in the section 2. We give an improved QRGCD algorithm
(ExQRGCD) with theoretical considerations in the section 3. In the sections 4
and 5, we give some numerical experiments and concluding remarks, respectively.

1.1 Notations

Let input polynomials f(x), g(x) ∈ IR[x] of degree m,n be

f(x) =

m∑
i=0

fix
i, g(x) =

n∑
i=0

gix
i.

We assume that the input polynomials have the unit Euclidean norm (2-norm)
(i.e. ‖f(x)‖2=‖g(x)‖2= 1). Hence we scale the polynomials if they do not have
the unit norm at the input. In this paper, we use the following (descending term
order and row major) Sylvester matrix of f(x) and g(x).

Syl(f, g) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fm fm−1 · · · f1 f0
fm fm−1 · · · f1 f0

. . .
. . . · · · . . .

. . .

fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0

gn gn−1 · · · g1 g0
. . .

. . . · · · . . .
. . .

gn gn−1 · · · g1 g0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For vectors and matrices, ‖·‖2 and ‖·‖F denote the Euclidean norm (2-norm)
and the Frobenius norm, respectively. AT and A−1 are the transpose1 and the
inverse of matrix A, respectively. To specify the submatrix of matrix A, we use
the MATLAB like colon notation: the submatrix consisting of elements in the i1
through i2-th rows and j1 through j2-th columns is denoted by A(i1:i2,j1:j2).

1 For the complex case, we just use the conjugate transpose (Hermitian transpose)
instead of the transpose.

Extended QRGCD Algorithm 259

The coefficient vector (in the descending term order) of p(x) of degree k is
denoted by %p ∈ IRk+1. We represent the evaluation of p(x) at the point ω ∈ C as
p(ω) = %p T %ω∗ where %ω∗ = (ωk · · · ω1 ω0)T . We denote the reversal polynomial
of p(x) by rev(p) (i.e. rev(p) = xdeg(p)p(1/x)). Moreover, we abbreviate “factor
whose roots are outside the unit circle in the complex plane” to “outside-root
factor” and also use “inside-root factor” similarly.

We note that approximate polynomial GCD has been defined from the several
point of view in the literatures. In this paper, we use the following coefficient-wise
definition without any constraint on the Bézout coefficients, which is compatible
with most of known results.

Definition 1 (Approximate Polynomial GCD).
For the input polynomials2 f(x), g(x) ∈ IR[x], we call the polynomial d(x) ∈ IR[x]
“approximate polynomial GCD” of tolerance ε ∈ IR≥0 if it satisfies

f(x) +Δf (x) = f1(x)d(x), g(x) +Δg(x) = g1(x)d(x)

for some polynomials Δf (x), Δg(x), f1(x), g1(x) ∈ IR[x] such that deg(Δf) ≤
deg(f), deg(Δg) ≤ deg(g), ‖Δf ‖2< ε ‖f ‖2 and ‖Δg ‖2< ε ‖g ‖2 where ‖·‖2
denotes the 2-norm. &

Remark 1. In the recent studies of approximate GCD, one may consider the
extra conditions that deg(d) is maximized w.r.t. the tolerance ε or the tolerance
ε is minimized w.r.t. deg(d). However, in this paper, we do not consider these
conditions since it is difficult that the QRGCD or similar algorithms guarantee
these properties without any refinement (optimization) step. &

1.2 Framework and Algorithm

The framework of the QRGCD algorithm is as follows.

1. Compute the QR decomposition of Syl(f, g): Syl(f, g) = QR.
2. Find the gap between the k-th and (k + 1)-th row vectors %rk, %rk+1 of R and

form the polynomial with coefficients %rk, which is an approximate polynomial
GCD (or its factor).

3. Apply the same procedures to the reversal polynomials of cofactors since R
may not have the approximate outside-root factor.

This is basically based on the following well known properties of the QR
decomposition of the Sylvester matrix.

Lemma 1. The last non-zero row vector of R gives the (mathematically exact)
coefficients of the polynomial GCD of f(x) and g(x). (see e.g. [9]) &

Lemma 2. The QR factoring is numerically backward stable. Thus, ‖Syl(f, g)−
QR‖2 is enough small even if we compute the QR decomposition numerically.

(see e.g. [10]) &

2 We focus on polynomials over IR for easy understanding though QRGCD and our
algorithm can work also over C.

260 K. Nagasaka and T. Masui

We briefly review the original QRGCD algorithm below.

Algorithm 1 (QRGCD in the original paper).
Input: f(x), g(x) ∈ IR[x] and tolerance ε ∈ IR≥0.

Output: u(x), v(x), d(x) ∈ IR[x] (d(x) is an approx. GCD)

1. Compute the QR decomposition of Syl(f, g): Syl(f, g) = QR.
2. Suppose that R(k) is the last (k + 1) × (k + 1) submatrix of R such that

‖R(k)‖2> ε and ‖R(k−1)‖2< ε.
Case 1: ‖R(0)‖2> ε (Approximately Coprime)

(a) d1(x) := 1, u(x) and v(x) formed by rows of QT .

Case 2: ‖R(k−1)‖2< 10ε ‖R(k)‖2 (Big Gap Found)

(a) d1(x) := the last k-th row vector of R.

Case 3: ∃k1(biggest), ‖R(k1−1)‖2< 10ε ‖R(k1)‖2 (Gap Found)

(a) d1(x) := the last k1-th row vector of R.
Case 4: Otherwise (Difficult Case)

(a) find the inside-root factors of f(x) and g(x) by the algorithm “Split”
and compute an approximate divisor d1(x) of the inside-root factors.

3. Apply the above steps to reversal polynomials of cofactors of f(x) and g(x)
w.r.t. d1(x), to obtain d2(x).

4. Apply the above steps to cofactors f(x) and g(x) w.r.t. d(x) = d1(x)d2(x),
to obtain u(x) and v(x).

5. Output u(x), v(x) and d(x). &

Here, the algorithm “Split” was proposed in the original paper[8] which finds
the inside-root factor, and we also use it in our algorithm. This is done by
the Graeffe’s root-squaring, contour integration, Newton’s formula, Newton’s
iteration and lifting steps. This algorithm is not the purpose of this paper and
there are similar methods in the literatures hence we omit this in detail.

2 Improved QRGCD Framework

In this section, we give new lemmas and theorems that guarantee our framework
similar to that of QRGCD above. At first, we cite the following lemma given
by Stetter[11] (see also [12]), which plays an essential role in the frameworks of
QRGCD and our improvement.

Lemma 3 (Corollary 7 in [11]).
For ε ∈ IR≥0, let Pε be the polynomial set s.t. Pε = {p̃(x) ∈ C[x] | deg(p̃) ≤
deg(p), ‖p(x)− p̃(x)‖2≤ ε}. For ω ∈ C, we have

∃p̃(x) ∈ Pε(p), p̃(ω) = 0 ⇐⇒ |p(ω)| ≤ ε ‖%ω∗‖2 .

(note that the original is intended for the dual norm) &

Extended QRGCD Algorithm 261

2.1 Detectability of Approximate GCD by QR Factoring

Let d(x) be the approximate polynomial GCD of f(x) and g(x), of degree k
and having the unit 2-norm hence d(x) is the exact GCD of f(x) +Δf (x) and
g(x)+Δg(x). Similar to f(x) and g(x), we denote the Sylvester matrix of f(x)+
Δf (x) and g(x) +Δg(x) by Syl(f +Δf , g +Δg). For simplicity, we abbreviate
Syl(f, g) and Syl(f +Δf , g +Δg) to S and S +ΔS , respectively, where ΔS =
Syl(Δf , Δg). For S and S +ΔS , let their QR decompositions be S = QR and

S+ΔS = Q̂R̂ where Q, Q̂ are orthogonal and R, R̂ are upper triangular matrices.
We note that the notations in this paper are different from the notations used
in the original paper[8] as the result of simplifications. Moreover, we denote the
matrices whose column vectors generate the null spaces of S and S +ΔS by N
and N̂ , respectively, thus we have SN = 0 and (S+ΔS)N̂ = 0 and substituting
S = QR gives

−RN̂ = QTΔSN̂ . (2.1)

Lemma 4. Let r(x) be a polynomial with coefficients %r which is a row vector of
R, and ω be any root of d(x). Then we have |r(ω)| ≤ ‖ΔS‖2‖%ω∗‖2. &

Proof. By the equality (2.1), we have −R%ω∗ = QTΔS%ω∗. Therefore, we have
|r(ω)| ≤ ‖R%ω∗‖2 = ‖QTΔS%ω∗‖2 ≤ ‖ΔS‖2‖%ω∗‖2 since r(ω) is an element of R%ω∗.

Note that any factor of d(x) can be an approximate polynomial GCD by the
definition. By dr(x) we denote such a factor of d(x), and letΩ(dr) = {ω1, . . . , ωk}
be the set of distinct roots of dr(x) and Ω∗(dr) be the k× (m+n) matrix whose
i-th row vector is %ωi

T
∗ = (ωm+n−1

i · · · ω1
i ω

0
i), the transpose of the evaluation

vector of ωi. We denote the condition number of Ω∗(dr) by κ2(Ω∗(dr)).

Theorem 1. Let r(x) be a polynomial with coefficients %r which is a row vector
of R. Then, an upper bound of relative distance of r(x) from dr(x), an approx-

imate polynomial GCD of f(x) and g(x), is given by
√
k + 1κ2(Ω∗(dr))

‖ΔS‖2

‖r(x)‖2
.

Moreover, there may exist another approximate polynomial GCD of higher degree

other than r(x) if ‖ΔS‖2

‖r(x)‖2
> 1. &

Proof. First claim. Let δr(x) = dr(x)− r(x) be the residual polynomial, and all
the coefficient vectors are treated as polynomials of degree m+n−1 by padding
zeros. By Lemma 4, for any ω ∈ Ω(dr) we have

|r(ω)| ≤‖ΔS‖2‖%ω∗‖2=
‖ ΔS ‖2
‖ r(x) ‖2

‖r(x)‖2‖%ω∗‖2,

hence the square root of the sum of |r(ω)|2 over all roots ω ∈ Ω(dr) gives

‖Ω∗(dr)%r‖2≤
‖ ΔS ‖2
‖ r(x) ‖2

‖r(x)‖2‖Ω∗(dr)‖F≤
√
k + 1

‖ ΔS ‖2
‖ r(x) ‖2

‖r(x)‖2‖Ω∗(dr)‖2 .

262 K. Nagasaka and T. Masui

Therefore, we have the following relative upper bound of ‖δr(x)‖2 since Ω∗(dr)

is of full row rank and Ω∗(dr)%δr = Ω∗(dr)(%dr − %r) = −Ω∗(dr)%r can be solved by

the least square w.r.t. %δr.

‖ %δr ‖2
‖ r(x) ‖2

≤
√
k + 1κ2(Ω∗(dr))

‖ ΔS ‖2
‖ r(x) ‖2

.

Second claim. We note that ΔS is the required perturbation of the Syl(f, g)
so that f(x)+Δf (x) and g(x)+Δg(x) may have an exact polynomial GCD (i.e.
d(x)). Therefore, the row vector %r can become the zero vector within the given
tolerance if ‖ΔS‖2>‖r(x)‖2 since Q is orthogonal hence the perturbation of S
equals to the perturbation of R in the 2-norm. This means that the degree of
d(x) may be larger than that of r(x).

If deg(d(x)) = 1 then the first claim is proved easily and directly by Lemma 3.
Note that Theorem 1 gives us only the necessary condition for that a computed
row vector of R is close to d(x). It does not give us any property of each row
vector of R, which will be discussed in the next subsection. Moreover, we cannot
know the magnitude ‖ΔS‖2 hence we have to estimate it in advance or in the
algorithm. We will discuss this later in Section 3.

Remark 2. The condition number of Ω∗(dr) becomes large if the approximate
polynomial GCD has close roots. This means that QRGCD and our algorithm
may be weak for polynomials having mutually close roots. &

Remark 3. A similar theorem is proved by Corless et al. in [8]. Their theorem
is only for absolute closeness hence we extend it for the relative closeness. In
general, lower row vectors of matrix R have smaller 2-norms. For example, we
may have the case that the expected approximate polynomial GCD is 10−6(x−
1)(x− 2) (before normalized) and the detected polynomial is 10−6(x+1)(x+2).
This result is not suitable but may happen since we compute the QR decompo-
sition numerically. In order to prepare for such cases, we extend their theorem
as above, though this is just a theoretical possibility (we didn’t find any simple
small example which has this behavior explicitly). &

2.2 Roots Outside the Unit Circle

As reported by Corless et al. in [8], QR factoring of the Sylvester matrix may
not detect any outside-root factor of approximate GCD, which has the (approx-
imately3) common roots outside the unit circle. Therefore, the framework and
the algorithm compute an inside-root factor and then compute an outside-root
factor. In this subsection, we prove this from the different approach.

Let p1(x) = f(x), p2(x) = g(x), p3(x), . . . ∈ IR[x] be the polynomial remainder
sequence (PRS) of f(x) and g(x). We denote the k-th subresultant of f(x) and
g(x) by resk(f, g) which is defined by the determinant as follows.

3 By “approximately common root” we denote the roots of approximate GCD.

Extended QRGCD Algorithm 263

resk(f, g) =

∣∣∣∣ Syl(f, xn)(1:n−k,1:m+n−2k−1) %x∗f(x)
Syl(xm, g)(n+1:m+n−k,1:m+n−2k−1) %x∗g(x)

∣∣∣∣
where %x∗f(x) = {xn−k−1f(x) · · · x1f(x) x0f(x)}T , %x∗g(x) = {xm−k−1g(x) · · ·
x1g(x) x0g(x)}T and fi = 0 and gi = 0 for any negative index (i < 0). It is
well known that pi(x) is a multiple of resdeg(pi−1)−1(f, g) (see [13] for example)
and the subresultant is related to the Sylvester’s single sum ([14] and references
therein) as follows.

Lemma 5 (Sylvester’s single sum).
Let A and B be the sets of all the roots of f(x) and g(x), respectively. Then we
have

resk(f, g) =
∑

A′⊂A, #A′=k

R(x,A′)
R(A \A′, B)

R(A \A′, A′)

where R(A,B) =
∏

a∈A, b∈B(a− b), R(x,A) =
∏

a∈A(x−a) and #A denotes the
cardinality of A. &

To describe some quality of PRS, we estimate the norm of each summand in the
single sum for the following specific polynomials (similar estimation method used
in [15] for clusters of close roots) where ωini

and ω̂inj
are roots inside the unit

circle and ωouti and ω̂outj are roots outside the unit circle. One may think that
these polynomials are odd, however, this situation easily happens (see Example
1 for such actual polynomials).

f(x) =
∏min

i=1(x− ωini
)
∏mout

i=1 (x− ωouti), deg(f) = m,
g(x) =

∏nin

j=1(x− ω̂inj
)
∏nout

j=1 (x− ω̂outj), deg(g) = n

where the magnitudes of roots satisfy |ωini
| = O(α), |ω̂inj

| = O(α), |ωouti | =
O(αβ), and |ω̂outj | = O(αβ) with the common big O notation, for α, β ∈ IR≥0

satisfying α < 1 and αβ > 1. We assume that the roots of f(x) and g(x) are
well isolated respectively, the approximate GCD of f(x) and g(x) is of degree k,
the corresponding (approximately common) roots satisfy |ωini

− ω̂inj
| = O(αγin)

and |ωouti − ω̂outj | = O(αβγout) for some γin, γout ∈ IR≥0, and the other pairs of
roots satisfy |ωini

− ω̂inj
| = O(α) and |ωouti − ω̂outj | = O(αβ). Moreover, cin and

cout denote the numbers of common inside roots of f(x) and g(x), and common
outside roots of f(x) and g(x), respectively, hence we have k = cin + cout.

Lemma 6. With the above notations and assumptions, for the coefficient of
each summand of single sum representation of resk(f, g), we have

R(A \A′, B)

R(A \A′, A′)
=O(α(m−k)(n−k)β(m−k)(n−k)−(min−kin)(nin−kin)γ

cin−kinc

in γ
cout−koutc
out)

where kin, kinc
and koutc denote the numbers of inside roots included in A′,

common inside roots included in A′ and common outside roots included in A′,
respectively. &

264 K. Nagasaka and T. Masui

Proof. At first, we estimate the numerator by multiplying each part (inside non-
common roots: Bins

, inside common roots: Binc
, outside non-common roots:

Bouts and outside common roots: Boutc) of B as follows.

R(A \A′, B) = R(A \A′, Bins)×R(A \A′, Binc)
×R(A \A′, Bouts)×R(A \A′, Boutc),

R(A\A′, Bins
) = O(α(min−kin)(nin−cin)(αβ)(mout−kout)(nin−cin)),

R(A\A′, Binc
) = O(α(min−kin)cin−(cin−kinc)(αγin)

cin−kinc (αβ)(mout−kout)cin),

R(A\A′, Bouts) = O((αβ)(m−k)(nout−cout)),

R(A\A′, Boutc) = O((αβ)(min−kin)cout(αβγout)
cout−koutc

×(αβ)(mout−kout)cout−(cout−koutc)).

Therefore, we have

R(A\A′, B) = O(α(m−k)nβ(m−k)nout+(mout−kout)ninγ
cin−kinc

in γ
cout−koutc
out).

Next, we estimate the denominator in the same way.

R(A \A′, A′) = R(A \A′, A′
in)×R(A \A′, A′

out),

= O(α(min−kin)kin(αβ)(mout−kout)kin)×O((αβ)(m−k)kout)
= O(α(m−k)kβ(m−k)kout+(mout−kout)kin).

By substituting mout − kout = (m − k) − (min − kin) for the power of β, the
lemma follows from the above directly.

Theorem 2. There exists a pair of polynomials f(x) and g(x) such that the QR
decomposition of Syl(f, g) cannot detect any outside-root factor of the approxi-
mate GCD. Moreover, we need to detect such factors from rev(f) and rev(g) or
their cofactors several times and combine them. &

Proof. With the assumptions of Lemma 6 for a fixed k = deg(d), let A′
0 be the

set of all the (approximately) common roots of f(x) and g(x) and A′
s be a set

of A′
0 replaced s common outside roots with s (not common) inside roots. We

focus on the roots of r(x) with coefficients %r which is the last (k + 1)-th row
vector of R.

By Lemmas 5 and 6, the coefficient R(A\A′
s, B)/R(A\A′

s, A
′
s) of R(x,A′

s),
is O(β(min+nin−2kin−s)sγsout) times larger than R(A \A′

0, B)/R(A \A′
0, A

′
0) of

R(x,A′
0). Therefore, r(x) easily becomes to be without common outside roots,

regardless of their closeness, hence the QR decomposition cannot detect any
outside-root factor of the approximate GCD. For such factors, we have to com-
pute the QR decomposition of matrix of rev(f) and rev(g) (i.e. transform the
outside roots into inside).

One may think that Theorems 1 and 2 seem like a contradiction since Theorem 1
does not restrict roots to the inside. However, there is no contradiction. Theorem
2 states only one of properties of PRS which may not have common outside roots.
As the result of the computation of PRS, Theorem 1 states only a necessary
condition that the resulting PRS is an approximate GCD (or its approximate
factor).

Extended QRGCD Algorithm 265

Moreover, the above theorem indicates a concrete example below that we have
to compute approximate GCD from the both of input and reversal polynomials.
In the rest of paper, by “normal side” and “reversal side” we denote the com-
putations from the input and reversal polynomials (finding inside and outside
roots), respectively.

Example 1 (Fake Common Inside Roots).
We compute the QR decomposition of Syl(f, g) of the following f(x) and g(x).

f(x) = (x+0.001)(x−0.001)(x+1000)(x−1000),
g(x) = (x+0.0010000001)(x−0.009)(x+1000.0001)(x−2000).

They have the following approximate GCD of tolerance 10−12.

d(x) = 9.99998× 10−4x2 + 0.999999x+ 9.99998× 10−4

≈ 9.99998× 10−4(x+ 0.00100000)(x+ 1000.00).

The 2-nd, 3-rd and 4-th last row vectors of R are as follows.

4-th last row: 0.00143003x3+1.39855x2−0.00559397x−6.99252×10−6

≈ 0.00143003(x−0.00499981)(x+0.001)(x+977.993),
3-rd last row: 0.20978x2 − 0.000839074x− 1.04885× 10−6

≈ 0.20978(x− 0.00499978)(x+ 0.001),
2-nd last row: 0.00565685x+ 5.65685× 10−6

≈ 0.00565685(x+ 0.001).

As in the proof of Theorem 2, the 3-rd last row is not related to the above
d(x) and has a non-common inside root (i.e. 0.00499978 instead of approximate
value of 1000). To detect the correct common outside root (≈ 1000), we have to
transform the outside roots into inside. This is a reason that we have to compute
with reversal polynomials. In the rest of this paper, these non-common inside
roots detected instead of the common outside roots are called “fake common
inside roots”. &

We note that the QRGCD algorithm also works for this example since there
is only one fake common root. However, for polynomials having more than one
fake common roots, QRGCD may not detect the expected degree of GCD since
QRGCD computes from the normal and reversal sides only once. For example,
suppose that the row vectors of R consist of roots in this order from bottom
to top: common, fake, common, fake, common roots. In this case, we need to
compute from the normal, reversal and normal sides (the last normal side is not
done by QRGCD). This fact leads us the improved QRGCD algorithm in the
next section.

3 Improved QRGCD Algorithm

We propose the following algorithm based on the discussions, which is unfortu-
nately not faster than the original but more accurate and the resulting pertur-
bation is able to satisfy the given tolerance. We will explain the algorithm in
subsections 3.1–3.5.

266 K. Nagasaka and T. Masui

Algorithm 2 (Extended QRGCD).
Input: f(x), g(x) ∈ IR[x] and tolerance ε ∈ IR≥0.

Output: f1(x), g1(x), d(x) ∈ IR[x] s.t.
‖f(x)− d(x)f1(x)‖2< ε, ‖g(x)− d(x)g1(x)‖2< ε.

1. Determine the first side (normal or reversal sides), put i := 1, f1(x) := f(x)
and g1(x) := g(x) (or rev(f) and rev(g), respectively, if the first side is
reversal).

2. Compute the QR decomposition of Syl(f1, g1): Syl(f1, g1) = QR.
3. Suppose that R(k) is the bottom-rightmost (k+1)× (k+1) submatrix of R

and %rk is the top row vector of R(k).
Case 1: ‖R(0)‖F> ε

√
m+ n (Approx. Coprime)

(a) di(x) := 1.
Case 2: ‖R(0)‖F≤ ε

√
m+ n (Trial Divisions)

(a) for all k ≥ 1 s.t. ‖R(k−1)‖F≤ ε
√
m+ n, compute erk :=‖R(k−1)‖F /‖%rk‖2,

and sort erk in ascending order s.t. erk1 ≤ erk2 ≤ erk3 ≤ · · ·.
(b) for k = k1, k2, k3 (i.e. up to the 3-rd smallest erk at most), do

(i) di(x) := rk(x) and if ∃f1, g1, ‖f(x) − d(x)f1(x)‖2< ε and ‖g(x) −
d(x)g1(x)‖2< ε for d(x) :=

∏
di(x), then goto step 4.

(if no factor found in the recursive call by step (e) below, then put
di(x) := 1 and goto step 4.)

(c) find the last two rows of R whose norm is not less than 1.0 and let p1(x)
and p2(x) be their polynomial representations s.t. deg(p1) > deg(p2).

(d) find the inside-root factors of p1(x), p2(x) by the algorithm “Split” and
let them be p1in(x), p2in(x).

(e) apply steps 2 and 3 to p1in(x) and p2in(x) and form the divisor di(x).
4. i := i + 1, change the side (normal ↔ reversal) and apply the above steps

2 and 3 to (if in the reversal side, reversal polynomials of) cofactors f1(x)
and g1(x) of f(x) and g(x) w.r.t. d(x) :=

∏
di(x), to obtain di+1(x) until

di(x) = di+1(x) = 1 for some i.
5. Output f1(x), g1(x) and d(x). &

3.1 The Matrix Norm Used

In the algorithm, we use the Frobenius norm instead of the 2-norm since it is
easy to compute. It should be the 2-norm if we can compute it fastly (but usually
not fast).

3.2 Approximate Coprime Condition

The QRGCD and our algorithms are based on the QR decomposition of Syl(f, g)
hence they cannot detect d(x) directly but may be able to detect r(x) close
to d(x) as the result of the QR factoring. Therefore, any (approximately) co-
prime detection must not be against the expected d(x) but be against r(x) with
coefficients %r which is the last (k + 1)-th row of R. From this point of view,
‖R(k)‖F represents a sufficient “unstructured” magnitude to make Syl(f, g) to

Extended QRGCD Algorithm 267

be rank deficient and f(x) and g(x) may have r(x) as an approximate GCD. Note
that “unstructured” perturbation does not preserve a Toeplitz-block structure
of Sylvester matrix Syl(f, g). Let f(x) + δf and g(x) + δg be polynomials whose
(exact) GCD is r(x). In general, Syl(δf , δg) which makes Syl(f + δf , g + δg) to
be rank deficient is the “structured” perturbation hence its norm is larger than
‖R(k)‖F of “unstructured” perturbation in most cases. This means that r(x) is
not any approximate GCD if we have ‖R(k)‖F> ε

√
m+ n hence ‖Syl(δf , δg)‖F>

ε
√
m+ n.

3.3 Trial Divisions

By the same reason of the above subsection and Theorem 1, the QR decom-
position might not detect all the inside common roots but detect some r(x)
close to an approximate factor of d(x) and its closeness can be estimated by
erk :=‖R(k−1)‖F/‖%rk‖2 though this is depending on the condition number Ω∗(dr)
and is not the sufficient condition. If we take r(x) of the maximal degree, r(x)
may have some fake inside roots and it becomes difficult to detect the common
outside roots from the reversals of cofactors. Therefore, we try to find r(x) for
which erk is as small as possible (since we cannot estimate the condition num-
ber Ω∗(dr)). According to our experiments, the smallest erk gives enough close
factors in most cases but to make sure we try to do trial divisions up to the 3-rd
smallest erk at most.

3.4 The Polynomials to be Applied to “Split”

Let pi(x) and pi+1(x) be successive two elements of PRS of f(x) and g(x), and
r(x) be an approximate GCD of f(x) and g(x). We have

f(x) + δf (x) = f1(x)r(x), g(x) + δg(x) = g1(x)r(x),
ui(x)f(x)+vi(x)g(x)=pi(x), ui+1(x)f(x)+vi+1(x)g(x)=pi+1(x)

where the coefficients of ui(x), vi(x), ui+1(x), vi+1(x) are some column vectors of
the orthogonal matrix Q of the QR decomposition of Syl(f, g) hence they have
the unit 2-norm by the orthogonality of Q. Then r(x) is an approximate GCD
of pi(x) and pi+1(x) of tolerance (‖δf‖2 + ‖δg‖2)/min{‖pi‖2, ‖pi+1‖2} since we
have

pi(x)=(ui(x)f1(x)+vi(x)g1(x))r(x)−(ui(x)δf (x)+vi(x)δg(x)),
pi+1(x)=(ui+1(x)f1(x)+vi+1(x)g1(x))r(x)−(ui+1(x)δf (x)+vi+1(x)δg(x)).

Therefore, we should split pi(x) and pi+1(x) whose norms are not small (e.g.
‖pi‖2, ‖pi+1‖2≥ 1.0) since there is a chance that pi(x) and pi+1(x) have (ap-
proximately) common roots other than that of f(x) and g(x) if their norms are
small (i.e. tolerance for pi(x) and pi+1(x) becomes large).

268 K. Nagasaka and T. Masui

3.5 The Fail-Safe Retry Loop

By the same reason of the section 3.3, we should try to detect a piece of approxi-
mate factors which is enough close to the ideal factors. Therefore, our algorithm
seeks such a factor by computing from the normal and reversal sides several
times. At the worst case, this makes the computational cost k (the degree of
approximate GCD) times larger than that of the original, hence our algorithm
unfortunately is not faster than the original. However, this is an inevitable cost
proven by Theorem 2 and ExQRGCD becomes more stable than the original as
in the following examples. Note that in our implementation, the first side of this
retry loop is the normal side if min{|fm|, |gn|} ≥ min{|f0|, |g0|}.

4 Numerical Experiments

All the computations in this section are done by Maple 16 with Digits := 16 on
Linux (Intel Core i7 3.30GHz and 64GB memory).

4.1 Against SNAP and QRGCD

At first, we compare ExQRGCD with QRGCD: our algorithm (Algorithm 2) and
the SNAP implementation of QRGCD (Algorithm 1), respectively. The vertical
axes of Figure 1 and 2 denote the sum of detected degrees of approximate GCD
(larger is better) and the magnitude of required perturbation in the common
logarithmic scale (smaller is better), respectively. We note that the official SNAP
implementation increases the precision in case of the difficult case. However in
our experiments we omit this functionality4 to make the condition equal.

Example 2 (Random Polynomials).
For i = 1, . . . , 10, we have generated 100 pairs of (f, g) such that

f(x) = f1(x)d(x), g(x) = g1(x)d(x), d(x) =
∑5i

j=0 djx
j ,

f1(x) =
∑5i

j=0 f1,jx
j , g1(x) =

∑5i
j=0 g1,jx

j

where f1,j, g1,j, dj ∈ [−99, 99] ⊂ ZZ is randomly chosen, f(x), g(x) are normal-
ized (‖f(x)‖2=‖g(x)‖2= 1) and rounded with Digits := 10. We computed with
tolerance 10−5.

Figure 1 shows the result that ExQRGCD and QRGCD are not so different.
However, we note that QRGCD outputs “failure” or GCDs that do not satisfy
the given tolerance as in Table 1 (ExQRGCD does not have this problem and
always can work well). As for computing time, ExQRGCD is 1.59 times slower
than QRGCD. The average of resulting perturbations of QRGCD is better than
ExQRGCD except failure cases. &

4 With this functionality, the QRGCD and ExQRGCD algorithms become to be much
better since the QR decomposition becomes to be more stable.

Extended QRGCD Algorithm 269

ExQRGCD

QRGCD

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000
Random Polynomials without Perturbation

ExQRGCD

QRGCD

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000
Random Polynomials with Perturbation

ExQRGCD
QRGCD

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10 000
Artificial Common Roots

Fig. 1. Sum of Detected Degrees (failure is counted as 0)

Example 3 (Random Poly. with Perturbations).
For i = 1, . . . , 10, we have generated 100 pairs of (f, g) such that

f(x) = f1(x)d(x)/ ‖f1d‖2 +10−8Δf (x)/ ‖Δf‖2,
g(x) = g1(x)d(x)/ ‖g1d‖2 +10−8Δg(x)/ ‖Δg‖2,
Δf (x) =

∑10i
j=0Δf jx

j , Δg(x) =
∑10i

j=0Δgjx
j

where Δf j , Δgj ∈ [−99, 99] ⊂ ZZ is randomly chosen, f1(x), g1(x), d(x) are the
polynomials of Example 2 and rounded with Digits := 10. We computed with
tolerance 10−5.

Figure 1 and Table 1 show the result that ExQRGCD is explicitly better than
QRGCD. As for computing time, ExQRGCD is 1.99 times slower than QRGCD.
The average of resulting perturbations of QRGCD is better than ExQRGCD
except failure cases. &

Example 4 (Fake Common Roots).
For i = 1, . . . , 10, we have generated 100 pairs of (f, g) such that

f(x) = d(x)
∏2i

j=1(x− ωf,j)
∏2i

j=1(x − ω̂f,j),

g(x) = d(x)
∏2i

j=1(x− ωg,j)
∏2i

j=1(x − ω̂g,j),

d(x) =
∏3i

j=1(x − ωd,j)
∏3i

j=1(x− ω̂d,j)

where ω·,j = O(10−2), ω̂·,j = O(102) is randomly chosen, f(x), g(x) are normal-
ized (i.e. ‖f(x)‖2=‖g(x)‖2= 1) and rounded with Digits := 10. We computed
with tolerance 10−5. We note that the degree of approximate GCD should be
larger than or equal to 6i.

Figure 1 and Table 1 show the result that ExQRGCD is explicitly better than
QRGCD. As for computing time, ExQRGCD is 39.8 times slower than QRGCD
(note that QRGCD outputs failure for 62% pairs so computing time is very fast
for the rest easy cases). The average of resulting perturbations of ExQRGCD is
better than QRGCD. &

Other than the above, we have tested with several examples of polynomials of
higher degree (up to 1020) which are not listed here due to the page restriction.
Our algorithm also works for such polynomials. For some of examples we have
tested by the native version (C with ATLAS, LAPACK and LAPACKE) since
it is about 100 times faster or more.

270 K. Nagasaka and T. Masui

ExQRGCD
QRGCD

1 2 3 4 5 6 7 8 9 10
�7.0

�6.5

�6.0

�5.5

�5.0

Random Polynomials without Perturbation

ExQRGCD
QRGCD

1 2 3 4 5 6 7 8 9 10
�7.0

�6.5

�6.0

�5.5

�5.0

Random Polynomials with Perturbation

ExQRGCD
QRGCD

1 2 3 4 5 6 7 8 9 10
�7.0

�6.5

�6.0

�5.5

�5.0

Artificial Common Roots

Fig. 2. Resulting Perturbations (i.e. (‖Δf‖2 + ‖Δg‖2)/2) (failure is excepted)

Table 1. Number of fail events or wrong perturbations by QRGCD
(The numbers by ExQRGCD are 0)

i = 1 2 3 4 5 6 7 8 9 10 Δf Δg

Random Polys. w/o Perturbation 0 0 0 0 0 0 1 1 3 6 6 6

Random Polys. with Perturbation 0 0 0 9 17 31 46 63 68 81 6 6

Fake Common Roots 29 63 68 71 64 60 66 66 69 68 110 119

4.2 Against Fastgcd and UVGCD

In this subsection, we compare ExQRGCD with Fastgcd and UVGCD by ex-
amples given by Bini and Boito[6,3]. We note that the results of Fastgcd and
UVGCD are quoted from there hence the following comparisons are just sub-
sidiary data since the conditions may not be equal.

Example 5 (Mignotte-like polynomials).
Let the input polynomials be f(x) = x100 + (x − 1/2)17 and g(x) = f ′(x). We
compute with tolerance ε = 10−1, . . . , 10−12. Table 2 shows the detected degrees.
ExQRGCD is almost better than others. We note that this is Example 8.2.2 [3]
and ExQRGCD is not better than Fastgcd for the polynomials in Example 8.2.1
[3] but same as UVGCD. &

Example 6 (An ill-conditioned case).
Let n be an even positive integer and k = n/2; define f(x) = f1(x)d(x) and

Table 2. Detected degrees (Mignotte-like polys.)

ε ExQRGCD ε Fastgcd ε UVGCD

10−1 99 10−1 99 10−1 . . . 10−2 99
10−2 25 10−2 . . . 10−5 17 10−3 . . . 10−5 17
10−3 23 10−6 . . . 10−7 6 10−6 . . . 10−11 16
10−4 20 10−8 . . . 10−9 4 10−12 0

10−5 . . . 10−10 16 10−10 3
10−11 0 10−11 0

Extended QRGCD Algorithm 271

Table 3. Resulting Perturbations (ill-conditioned case)

n ExQRGCD Fastgcd UVGCD

12 2.86× 10−12 1.65× 10−14 9.99× 10−15

14 2.67× 10−11 4.81× 10−14 3.66× 10−14

16 9.31× 10−10 2.27× 10−13 1.54× 10−13

18 4.38 × 10−9 1.08× 10−12 5.21× 10−13

20 1.22 × 10−7 (detected degree fails) 1.59× 10−12

g(x) = g1(x)d(x) where

d(x) =
∏k

j=1((x− r1αj)
2 + r21β

2
j), r1 = 0.5, r2 = 1.5,

f1(x) =
∏k

j=1((x− r2αj)
2 + r22β

2
j), αj = cos(jπ/n),

g1(x) =
∏n

j=k+1((x − r1αj)
2 + r21β

2
j), βj = sin(jπ/n).

Table 3 shows the resulting perturbations in the 2-norm (i.e.
√

‖Δf‖22 + ‖Δg‖22).
ExQRGCD is not good though it detected the correct degree of approximate
GCD. &

Other than the above, we have tested several examples in Boito[3]. Although
ExQRGCD is more competitive than the original QRGCD algorithm, it is not
better than Fastgcd and UVGCD for most of those examples. Moreover,
ExQRGCD requires higher precision (e.g. Digits := 24 or 32) to make it com-
petitive against them for those examples. ExQRGCD and QRGCD do not refine
the resulting factor hence the resulting perturbation may become larger than
those algorithms with refinement steps.

5 Concluding Remarks

In this paper, we improved the QRGCD algorithm from the different approach
and our algorithm works as same as the original for polynomials without pertur-
bations and much better than the original for polynomials with perturbations or
having fake common roots. We again note that ExQRGCD does not refine the
output hence it is notable that ExQRGCD is almost better than Fastgcd and
UVGCD for Mignotte-like polynomials in Example 5.

We note that our preliminary implementations on Maple and written in C,
and generated polynomial data are available at our website:

http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/exqrgcd/

though some routines derived from the SNAP package are not included.

Acknowledgments. The authors would like to thank an anonymous reviewer
for his/her many constructive comments that are very helpful to improve the
manuscript.

http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/exqrgcd/

272 K. Nagasaka and T. Masui

References

1. Roy, M.F., Sedjelmaci, S.M.: New fast euclidean algorithms. J. Symbolic Com-
put. 50, 208–226 (2013)

2. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

3. Boito, P.: Structured Matrix Based Methods for Approximate GCD. Ph.D. Thesis.
Department of Mathematics, University of Pisa, Italia (2007)

4. Zeng, Z.: The numerical greatest common divisor of univariate polynomials. In:
Randomization, relaxation, and complexity in polynomial equation solving, Prov-
idence, RI. Contemp. Math. Amer. Math. Soc, vol. 556, pp. 187–217 (2011)

5. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. In:
ISSAC 2006: Proceedings of the 2006 International Symposium on Symbolic and
Algebraic Computation, pp. 169–176 (2006)

6. Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial GCD based on
structured matrix computations. In: Numerical Methods for Structured Matrices
and Applications. Oper. Theory Adv. Appl, vol. 199, pp. 155–173. Birkhäuser
Verlag, Basel (2010)

7. Terui, A.: An iterative method for calculating approximate GCD of univariate
polynomials. In: ISSAC 2009: Proceedings of the 2009 International Symposium
on Symbolic and Algebraic Computation, pp. 351–358 (2009)

8. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate
approximate polynomials. IEEE Trans. Signal Process. 52(12), 3394–3402 (2004)

9. Laidacker, M.A.: Another theorem relating Sylvester’s matrix and the greatest
common divisor. Math. Mag. 42, 126–128 (1969)

10. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

11. Stetter, H.J.: The nearest polynomial with a given zero, and similar problems.
SIGSAM Bull. 33(4), 2–4 (1999)

12. Rezvani, N., Corless, R.M.: The nearest polynomial with a given zero, revisited.
SIGSAM Bull. 39(3), 73–79 (2005)

13. Brown, W.S., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants.
J. Assoc. Comput. Mach. 18, 505–514 (1971)

14. D’Andrea, C., Hong, H., Krick, T., Szanto, A.: An elementary proof of Sylvester’s
double sums for subresultants. J. Symbolic Comput. 42(3), 290–297 (2007)

15. Sasaki, T.: The subresultant and clusters of close roots. In: ISSAC 2003: Proceed-
ings of the 2003 International Symposium on Symbolic and Algebraic Computation,
pp. 232–239 (2003)

Polynomial Evaluation and Interpolation

and Transformations of Matrix Structures

Victor Y. Pan

Departments of Mathematics and Computer Science
Lehman College and the Graduate Center of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Multipoint polynomial evaluation and interpolation are fun-
damental for modern numerical and symbolic computing. The known al-
gorithms solve both problems over any field of constants in nearly linear
arithmetic time, but the cost grows to quadratic for numerical solution.
By combining a variant of the Multipole celebrated numerical techniques
with transformations of matrix structures of [10] we achieve dramatic
speedup and for a large class of inputs yield solution algorithms running
in nearly linear time as well. The algorithms support similar speedup of
approximation of the products of a Vandermonde matrix, its transpose,
inverse, and the transpose of the inverse by a vector.

1 Introduction

Multipoint polynomial evaluation and interpolation are fundamental for modern
numerical and symbolic computations. Both problems can be solved in nearly
linear arithmetic time over any field [12]. For numerical solution, in the presence
of rounding errors, however, these algorithms are prone to error propagation,
and the users employ quadratic time algorithms [2], [1]. We propose novel re-
duction of these tasks to computations with HSS matrices, followed by appli-
cation of the efficient numerically stable algorithms of papers [9], [3], and [18],
based on the Multipole celebrated techniques. (“HSS” is the acronym for “hi-
erarchically semiseparable”.) This enables dramatic acceleration of the known
numerical algorithms, and for a large class of inputs our new algorithms use
nearly linear arithmetic time for approximate multipoint polynomial evaluation
and interpolation as well as for multiplication by a vector of a Vandermonde ma-
trix and its transpose and inverse (see Theorem 11). The Multipole techniques
could possibly help to extend these results to a larger class of inputs. Paper [13]
(revisiting the approach of paper [10]) extends our algorithms to a large class
of structured matrices (as well as to rational interpolation) via transformation
of matrix structures. Due to the size limitation we leave many details, proofs,
figures, and references to paper [14].

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 273–287, 2013.
c© Springer International Publishing Switzerland 2013

http://comet.lehman.cuny.edu/vpan/

274 V.Y. Pan

2 Definitions and Auxiliary Results

Hereafter “flop” stands for “arithmetic operation performed in the field C of
complex numbers with no error”. |S| denotes the cardinality of a set S.
M = (mi,j)

m−1,n−1
i,j=0 is an m×n matrix.MT is its transpose,MH is its Hermi-

tian transpose. For two sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} define the sub-
matrix M(I,J) = (mi,j)i∈I,j∈J . Write M(I, .) = M(I,J) for J = {1, . . . , n}.
Write M(.,J) =M(I,J) for I = {1, . . . ,m}. C(B) and R(B) are the sets of in-
dices of the rows and columns of a submatrix B ofM = (mi,j)

m,n
i,j=1, respectively.

R(B) = I and C(B) = J if and only if B =M(I,J). An m×n matrix M has a
non-unique generating pair (F,GT) of a length ρ if M = FGT for two matrices
F ∈ Cm×ρ and G ∈ Cn×ρ. The rank of a matrix is the minimum length of its
generating pairs. A matrix M has a rank ρ if and only if it has a nonsingular
ρ× ρ submatrix M(I,J), and if so, then M = M(.,J)M(I,J)−1M(I, .), that
is (M(.,J),M(I,J)−1M(I, .) and (M(.,J)M(I,J)−1,M(I, .) are two gener-
ating pairs of M of length ρ. We refer to generating pairs and triples such as
(M(.,J),M(I,J)−1,M(I, .)) as generators.

(B0 | . . . | Bk−1) is a 1×k block matrix with k blocks B0, . . . , Bk−1, whereas
DB = diag(B0, . . . , Bk−1) = diag(Bj)

k−1
j=0 is a k × k block diagonal matrix with

k diagonal blocks B0, . . . , Bk−1, possibly rectangular. For 1 × 1 blocks bj = Bj

we arrive at a vector bT = (b0 | . . . | bk−1) and a k × k diagonal matrix
Db = diag(bj)

k−1
j=0 , respectively. O = Om,n is the m× n matrix filled with zeros.

I = In = diag(1)n−1
j=0 is the n × n identity matrix. An n × n matrix M is

nonsingular if rank(M) = n or equivalently if it has the inverse X = M−1 such
that XM =MX = I. M is a k× l unitary matrix if MHM = Il or MMH = Ik.
These two equations imply one another and imply that MH = M−1 if k = l. If
a unitary matrix is a vector we call it a unit vector.

||M || = ||M ||2 denotes the 2-norm of a matrix M . It holds that ||U || = 1 and
||MU || = ||UM || = ||M || for a unitary matrix U . For an m × n matrix M of
a rank ρ define its SVD or full SVD, M = SMΣMTH

M where SM and TM are
square unitary matrices, SMSH

M = ST
MSM = Im, TMTH

M = TH
MTM = In, ΣM =

diag(diag(σj(M))ρj=1, Om−ρ,n−ρ), σj = σj(M) is the jth largest singular value of
a matrix M for j = 1, . . . , ρ, σj = 0 for j > ρ, σρ > 0, σ1 = max||x||=1 ||Mx|| =
||M ||, and

min
rank(B)≤s−1

||A−B|| = σs(A), s = 1, 2, . . . (1)

Delete the last n − ρ columns of the SVD matrices SM and ΣM and the
last m − ρ rows of the matrices ΣM and TH

M and obtain a compact SVD M =
S̄M Σ̄M T̄H

M , defining a generating triple (S̄M , Σ̄M , T̄H
M) of the minimum length ρ

for the matrix M . Rank revealing factorizations (such as ULV factorization in
[3] and [18] for two unitary matrices U and V and a triangular matrix L) are
less costly and also supply generating triples of the minimum length.
α(M) and β(M) denote the numbers of flops for computing the vectors Mu

and M−1u, respectively, maximized over all unit vectors u and minimized over
all algorithms. We write β(M) = ∞ where the matrix M is singular.

Polynomial Evaluation and Interpolation and Transformations 275

Theorem 1. α(M) ≤ (2m + 2n − 1)ρ −m < 2(m + n)ρ for an m × n matrix
M given with its generating pair of a length ρ.

A matrix M̃ is an ε-approximation of a matrix M if ||M̃ −M || ≤ ε. We similarly
define other ε-concepts such as the ε-rank of a matrix M , denoting the integer
min||M̃−M||≤ε rank(M̃) (so that σρ(M) > ε ≥ σρ+1(M)), an ε-basis for a linear
space S of dimension k, denoting a set of vectors that ε-approximate the k vectors
of a basis for this space, and an ε-generator of a matrix, which is a generator
of its ε-approximation. αε(M) and βε(M) replace the bounds α(M) and β(M)
where we ε-approximate the vectors Mu and M−1u instead of evaluating them.

Equations (1) imply the following result.

Theorem 2. Assume block matrices M =

(
V B Y
W O Z

)
and M− =

(
W | Z

)
. If

the matrix M has ε-rank at most ρ and if σρ(B) > ε, then ||M−|| ≤ ε.

In Section 5 we deal with block tridiagonal matrices extended into the south-
eastern and northwestern corners as in the following 5× 5 example,

T =

⎛⎜⎜⎜⎜⎝
Σ0 B0 O O A0

A1 Σ1 B1 O O
O A2 Σ2 B2 O
O O A3 Σ3 B3

B4 O O A4 Σ4

⎞⎟⎟⎟⎟⎠ . (2)

We represent such extended block tridiagonal matrices as extended block diag-

onal matrices in two dual ways, T = Σ(c) = diag(Σ
(c)
0 , . . . , Σ

(c)
k−1) = Σ(r) =

diag(Σ
(r)
0 , . . . , Σ

(r)
k−1). Here Σ

(c)
q =

⎛⎝Bq−1 mod k

Σq

Aq+1 mod k

⎞⎠ and Σ
(r)
q = (Aq | Σq | Bq)

for q = 0, . . . , k−1 denote the extended diagonal blocks, each made up of a triple
of the blocks of the matrix T . The central block Σq is adjacent to both of its
neighbours in both triples if we glue together the lower and upper boundaries of
the matrix as well as its right and left boundaries.

3 Dense Structured Matrices. Polynomial and Rational
Evaluation and Interpolation. DFT, IDFT, FFT, and
Some Transformations of Matrix Structures

T = (ti−j)
n−1
i,j=0, H = (hi+j)

n−1
i,j=0, V = Vs = (sji)

n−1
i,j=0, and C = Cs,t =(

1
si−tj

)n−1

i,j=0
denote Toeplitz, Hankel, Vandermonde, and Cauchy matrices, re-

spectively, all linked to computations with polynomials [12, Chapters 2 and
3]. It holds that α(M) = O(n(log(n))d) for d ≤ 2, and if det(M) �= 0 then
β(M) = O(n(log(n))2) for the matrices M of these classes or more generally
for the matrices having structures of Toeplitz, Hankel, Vandermonde, or Cauchy
type.

276 V.Y. Pan

Problem 1. Multipoint polynomial evaluation or Vandermonde-by-
vector multiplication. INPUT: 2n complex scalars p0, . . . , pn−1; s0, . . . , sn−1.
OUTPUT: n complex scalars v0, . . . , vn−1 satisfying vi = p(si) for p(x) = p0 +
p1x+ · · ·+ pn−1x

n−1 and i = 0, . . . , n− 1 or equivalently

V p = v for V = Vs = (sji)
n−1
i,j=0, p = (pj)

n−1
j=0 , and v = (vi)

n−1
i=0 . (3)

Problem 2. Polynomial interpolation or the solution of a Vandermonde
linear system of equations.
INPUT: 2n complex scalars v0, . . . , vn−1; s0, . . . , sn−1, the last n of them distinct.
OUTPUT: n complex scalars p0, . . . , pn−1 satisfying equation (3).

Likewise the equations Cu = v, C = Cs,t =
(

1
si−tj

)n−1

i,j=0
, u = (uj)

n−1
j=0 ,

and v = (vi)
n−1
i=0 = (

∑n−1
j=0

uj

si−tj
)n−1
i=0 link multipoint rational evaluation and

interpolation to Cauchy matrix computations. One can solve all these polynomial
and rational computational problems numerically by using O(n log(n)) flops [12]
provided the knots are the roots of 1, si = ωi for i = 0, . . . , n − 1, ω = ωn =
exp(2π

√
−1/l) denotes a primitive nth root of 1, Vs = (ωij)n−1

i,j=0, and Ω = 1√
n
Vs.

In this case Problems 1 and 2 turn into the tasks of computing the forward and
inverse discrete Fourier transforms, DFT and IDFT. The FFT (Fast Fourier
transform) and Inverse FFT perform DFT and IDFT by using 1.5n log2(n) and
1.5n log2(n)+n numerically stable flops, respectively, if n is a power of 2, whereas
O(n log(n)) flops are sufficient for any n [12, Problem 2.4.2]. Note that ΩHΩ =
In, Ω

T = Ω, Ω and ΩH = Ω−1 = 1√
n
(ω−ij)n−1

i,j=0 are unitary matrices.

In spite of some common properties the four matrix structures have quite
distinct features. The matrix structure of Cauchy type is invariant in row and
column interchange (in contrast to the structures of Toeplitz and Hankel types)
and enables expansion of the matrix entries into Laurent series (unlike the struc-
tures of the three other types). The paper [10], however, links the four structures
to each other by means of structured matrix multiplication and exploits this link
to extend any successful matrix inversion algorithm for the matrices of any of
the four classes to the matrices of the three other classes. The present paper
shows a new specialization of this general approach. We first employ the Van-
dermonde–Cauchy links defined by the following equation [12, Section 3.6],

Cs,t = diag(t(si)
−1)n−1

i=0 VsV
−1
t diag(t′(tj))

n−1
j=0 (4)

where s = (si)
n−1
i=0 , t = (ti)

n−1
i=0 , and t(x) =

∏n−1
i=0 (x− ti). One can first compute

the values v(t0) = −tn0 , . . . , v(tn−1) = −tnn−1 of the polynomial v(x) = t(x)−xn,
by using O(n log n) flops, and then compute the coefficients of this polynomial
as the solution of Problem 2 of polynomial interpolation in a special case. For
t = (fωj)n−1

j=0 the knots ti are the roots of 1 scaled by f , t(x) = xn − fn,

t′(x) = nxn−1, Vt =
√
nΩ diag(f j)n−1

j=0 , and V −1
t = diag(f−j)n−1

j=0Ω
H/

√
n, and

equation (4) turns into the equation

Cs,f =
√
n diag

(1

sni − fn

)n−1

i=0
Vs diag(f

−j)n−1
j=0Ω

H diag(ω−j)n−1
j=0 , (5)

Polynomial Evaluation and Interpolation and Transformations 277

which links Vandermonde matrix Vs and its inverse to the Cauchy matrix Cs,f =
Cs,t, having a knot set T = {tj = fωj}n−1

j=0 and said to be a CV matrix. Cs,f =

−CT
f,s is said to be a CV T matrix.

4 HSS Matrices and Neutered Blocks

Next we link CV matrices to the class of HSS matrices, which extend banded
matrices and their inverses. We refer the reader to [5], [9], [3], [17], and the bib-
liography therein on such extensions, long studied by many authors under the
names of matrices with low Hankel rank, rank structured matrices, quasisepara-
ble, and weakly, recursively, or sequentially semiseparable matrices.

Definition 1. (Cf. [14, Figures 1–3].) Assume an m×n matrix M with a block

diagonal Σ̂′ = (Σ′
0, . . . , Σ

′
k−1) and the two dual extended block diagonals Σ̂(c) =

(Σ
(c)
0 , . . . , Σ

(c)
k−1) and Σ̂(r) = (Σ

(r)
0 , . . . , Σ

(r)
k−1) (cf. the end of Section 2). For

simplicity we also write Σ̂ = (Σ0, . . . , Σk−1) instead of Σ̂(c) = (Σ
(c)
0 , . . . , Σ

(c)
k−1),

dropping the superscript (c). (i) (See [9, Section 1].) A block of the matrix M is
neutered unless it overlaps the extended block diagonal, and so such block is either
subdiagonal or superdiagonal. For a set of consecutive indices J remove all rows
of the block column M(.,J) that overlap the extended block diagonal and obtain
the neutered block column N(J) = N (c)(J). (ii) It is a basic neutered block
column, dual to an extended diagonal block Σq and denoted Nq if J = C(Σq),
that is if this neutered block column shares its column indices with the submatrix
Σq. (iii) The neutered union N(N(J), N(K)) of two neutered block columns
N(J) and N(K) is the neutered block column N(J ∪ K). (iv) Similarly define

neutered block rows N (r)(I), their unions, and the basic neutered block rows N
(r)
p

dual to the extended diagonal blocks Σ
(r)
p .

Definition 2. A matrix M , given with its extended block diagonal, is an (l, u)-
HSS block matrix if l is the maximum rank of its subdiagonal neutered blocks
and if u is the maximum rank of its superdiagonal neutered blocks. A matrix
M is ρ-neutered if it is a (ρ, ρ)-HSS block matrix or equivalently if ρ is the
maximum rank of its neutered blocks. A matrix M is basically ρ-neutered if all
its basic neutered block columns have ranks at most ρ. By replacing ranks with
ε-ranks we define (ε, l, u)-HSS block matrices, basically (ε,ρ)-neutered matrices,
and (ε, ρ)-neutered matrices.

We immediately verify the following results.

Theorem 3. Every neutered block is a block submatrix of the neutered union of
some basic neutered block columns as well as of some basic neutered block rows.

Theorem 4. Assume a matrix M = (B0 | . . . | Bk−1) having k block columns

B0, . . . , Bk−1 and given with its extended block diagonal Σ̂ = (Σ0, . . . , Σk−1) and
with k generating pairs of lengths at most ρ defining the k basic neutered block

278 V.Y. Pan

columns N0, . . . , Nk−1. Then one can modify the extended diagonal blocks Σq to
obtain generating pairs of lengths at most ρ defining the k block columns B′

q of
the resulting matrix M ′ = (B′

0 | . . . | B′
k−1).

Corollary 1. (Cf. Theorem 1.) Under the assumptions of Theorem 4 let Σ =
diag(M) be generic matrix. Then α(M) ≤ α(Σ) + (2m+ 2n− 1)kρ.

One can yield superior estimates in the case of ρ-neutered matrices.

Theorem 5. (See [4, Section 3], [3, Sections 3 and 4], and our Remark 1.)
Assume an (l, u)-HSS block matrix M of size m × n having an extended block

diagonal Σ̂ = (Σ0, . . . , Σk−1) with mq × nq extended diagonal blocks Σq, q =

0, . . . , k − 1 such that
∑k−1

q=0 mqnq = O((l + u)(m+ n)). Then it holds that

(i) α(M) ≤ 2
∑k−1

q=0((mq+nq)(l+u)+mqnq)+2l2k+2u2k = O((l+u)(m+n)),

and (ii) if m = n and if the matrix M is nonsingular, then β(M) = O((l+u)2n).

Part (i) is supported by the algorithms of [4, Section 3]. They separately
multiply by a vector the extended block diagonal matrix Σ = diag(M), the
sub- and superdiagonal parts of the matrix M . Part (ii) is supported by the
algorithms of [3]. Both papers as well as the study in [17], [18], and [5] rely on
the representation of an (l, u)-HSS matrix M with HSS generators, which we
define in Theorem 6 below, but first demonstrate by the following 4×4 example,

M =

⎛⎜⎜⎝
Σ0 S0T1 S0B1T2 S0B1B2T3
P1Q0 Σ1 S1T2 S1B2T3
P2A1Q0 P2Q1 Σ2 S2T3
P3A2A1Q0 P3A2Q1 P3Q2 Σ2

⎞⎟⎟⎠ .
Theorem 6. (Cf. [5], [17], the bibliography therein, and our Remark 1.) As-

sume a k × k matrix M with an extended block diagonal Σ̂ = (Σ0, . . . , Σk−1),
where Σq = M(Iq, Jq), q = 0, . . . , k − 1. Then M is an (l, u)-HSS block ma-
trix if and only if there exists a nonunique family of HSS generators {Pi, Qh,
Sh, Ti, Ag, Bg} such that M(Ii,Jh) = PiAi−1 · · ·Ah+1Qh and M(Ih,Ji) =
ShBh+1 · · ·Bi−1Ti for 0 ≤ h < i < k. Here Pi, Qh and Ag are |Ii| × li,
lh+1 × |Jh|, and lg+1 × lg matrices, respectively, whereas Sh, Ti and Bg are
|Ih| × uh+1, ui × |Ji|, and ug × ug+1 matrices, respectively, g = 1, . . . , k − 2,
h = 0, . . . , k − 2, i = 1, . . . , k − 1, l = maxg{lg}, and u = maxh{uh}.
Now one can redefine the (l, u)-HSS block matrices as those allowing represen-
tation with some HSS generator families {Ph, Qi, Ag} and {Sh, Ti, Bg} above,
where the integers l and u are called lower and upper lengths or orders of the
HSS generators, respectively.

Remark 1. The cited bibliography covers matrices with block diagonals, but the
study presented there, including Theorems 5 and 6, is readily extended to the
case of matrices with extended block diagonals as well as (ε, l, u)-HSS block
matrices and (ε, ρ)-neutered matrices, which we define by replacing ranks with
ε-ranks, generators with ε-generators, computation with ε-approximation, and
the bounds α(M) and β(M) with αε(M) and βε(M), respectively.

Polynomial Evaluation and Interpolation and Transformations 279

5 ε-approximation of CV Matrices by HSS Matrices

[9, Section 4] and [3, Section 2.4] ε-approximate the matrix C1,ω2n by an (l, u)-

HSS block matrix for l = u = O(log(n)), ε of order c′/nc′′ , and two positive
constants c′ and c′′, and then solve a linear system of equations with this matrix
numerically in nearly linear time by applying the Multipole techniques. We yield
similar results for multiplication by a vector of CV and CV T matrices as well
as of their inverses where there exist the inverses. Namely, in this section, given
a vector s̄ = (s̄i)

n−1
i=0 and a complex point f on the unit circle {f : |f | = 1}, we

seek a permutation matrix P and a ρ-neutered matrix that approximates a CV
matrix C = Cs,f = (1

si−fωj−1)
n−1
i,j=0 within a norm bound ε for s = (si)

n−1
i=0 = P s̄

and ρ = O(log(n/
√
ε)).

5.1 Small-rank Approximation of Cauchy Matrices Where the Knot
Sets S and T Are Separated from One Another (cf. [3])

Definition 3. (See [3, page 1254].) For a separation bound θ < 1 and a complex
separation center c, two complex points s and t are (θ, c)-separated from one
another if | t−c

s−c | ≤ θ. Two sets of complex numbers S and T are (θ, c)-separated
from one another if every two points s ∈ S and t ∈ T are (θ, c)-separated from
one another. δc,S = mins∈ S |s−c| and δc,T = mint∈T |t−c| denote the distances
from the center c to the sets S and T , respectively.

Lemma 1. (See [3, equation (2.8)].) Suppose two complex values s and t are
(θ, c)-separated from one another for a positive θ < 1 and a complex c and write
q = t−c

s−c , |q| ≤ θ. Then for every positive integer ρ it holds that

1
s−t =

1
s−c

∑ρ−1
i=0

(t−c)i

(s−c)i +
qρ
s−c where |qρ| = |q|ρ

1−|q| ≤
θρ

1−θ .

Corollary 2. (Cf. [3, Section 2.2].) Suppose two sets of 2n distinct complex
numbers S = {s0, . . . , sn−1} and T = {t0, . . . , tn−1} are (θ, c)-separated from one
another for 0 < θ < 1 and a complex c. Write C = (1

si−tj
)n−1
i,j=0 and δ = δc,S =

minn−1
i=0 |si − c|. Then for every positive integer ρ it holds that C = FGT + E,

where F = (1/(si − c)ν+1)n−1,ρ−1
i,ν=0 , G = ((tj − c)ν)n−1,ρ−1

j,ν=0 , and ||E|| ≤ nθρ

(1−θ)δ .

Furthermore we can compute the n× ρ matrices F and G by applying 2ρn flops.

In the corollary and throughout, we can replace δ = δc,S = minn−1
i=0 |si − c| by

δ = δc,T = minn−1
j=0 |tj − c| because of the symmetric roles of the sets S and T .

Corollary 2 defines a ||E||-generating pair of a length at most ρ for the Cauchy
matrix C. Unless any of the values 1− θ and δ is small, the norm ||E|| is small
already for moderately large integers ρ.

5.2 An Extended Block Diagonal of a CV Matrix (Cf. (2), our Figures
1 and 2, and [14, Algorithm 1].)

Assume the polar coordinates for the knots s̄i = |s̄i| exp(2πφ̄i
√
−1) where 0 ≤

φ̄i < 2π, φ̄i = 0 if s̄i = 0, and i = 0, . . . , n−1. Write φ0 = minn−1
i=0 φ̄i, reorder the

280 V.Y. Pan

angles φ̄i in the nondecreasing order breaking ties arbitrarily, let P denote the
permutation matrix that defines this reordering, and write (φi)

n−1
i=0 = P (φ̄i)

n−1
i=0

and (si)
n−1
i=0 = P (s̄i)

n−1
i=0 . To simplify the notation assume that f = 1 and n = hk

for two positive integers h and k. Let S ′
q and Tq = {ωj}(q+1)h−1

j=qh denote the

subsets of the sets S and T , respectively, consisting of the knots si and tj = ωj

such that qh ≤ φi < (q + 1)h − 1, qh ≤ j < (q + 1)h − 1, q = 0, . . . , k − 1.
The two subsets are the intersections of the sets S and T with the semi-open
sector Γq of the complex plane bounded by the pairs of the rays from the origin
to the points ωhq and ω(q+1)h. Write Sq = S ′

q−1 mod k ∪ S ′
q ∪ S ′

q+1 mod k, q =

0, . . . , k − 1. Now for the matrix C =
(

1
si−ωj

)n−1

i,j=0
define the k diagonal blocks

Σ′
q =
(

1
si−ωj

)
i∈S′

q, j∈Tq

, q = 0, . . . , k− 1, which have hn entries overall, and the

k extended diagonal blocks Σq =
(

1
si−ωj

)
i∈Sq,j∈Tq

, q = 0, . . . , k−1, which have

3hn entries overall, and then for every q, q = 0, . . . , k − 1, partition the block

column
(

1
si−ωj

)
0≤i<n,j∈Tq

into the block Σq and the dual basic neutered block

column Nq = N
(c)
q .

5.3 The ε-ranks of Basic Neutered Block Columns

Theorem 7. (Cf. Remarks 2–5 and Figure 2.) Assume a CV matrix C of the
previous subsection. Then (i) the extended diagonal blocks Σ0, . . . , Σk−1 together
have exactly 3hn entries and (ii) for |p−q mod k| > 1 the row index sets R(Σp)
and R(Σq) have no overlap. Furthermore (iii) there are points c0, . . . , ck−1 on
the unit circle {z : |z| = 1} and at the distance of at least 0.5/(kn) from the
set S such that the sets Sp and Tq are (θ, cq)-separated from one another for
θ = (1.5π/k)/ sin(3π/k) ≈ 0.5/ cos(1.5π/k) as long as |p− q mod k| > 1.

Proof. One can readily verify parts (i) and (ii). Let us prove part (iii). Let A(s, t)
denote the arc of the unit circle {z : |z| = 1} with the end points s and t. For

every q, q = 0, . . . , k − 1, choose a center cq on the arc A(ω
(4q+1)h
4n , ω

(4q+3)h
4n) at

the distance at least 2
kn from the set S (as we require). This is possible because

the set has exactly n elements. The arc has length π/k and shares the midpoint

ω
(2q+1)h
2n with the arc A(ωqh, ω(q+1)h) of length 2π/k, on which all points of the

set Tq lie. Therefore, these points lie at the distance less than 3π
2k from the center

cq. Furthermore, unless |p− q| ≤ 1 or |p− q| = k − 1, all points of the set Sp lie
outside the sector of the complex plane bounded by the pairs of the rays from the
origin to the points ω(q−1)h and ω(q+2)h, and then Distance(cq,Sp) ≥ sin(3π/k).

Therefore, the sets Sp and Tq = {ωj}hq−1
j=(q−1)h are (θ, cq)-separated from one

another for θ = (1.5π/k)/ sin(3π/k) unless |p − q| ≤ 1 or |p − q| = k − 1. It
holds that 1.5π/k ≈ sin(1.5π/k) for sufficiently large values k = n/h, whereas
sin(1.5π/k)/ sin(3π/k) = 0.5/ cos(1.5π/k). Summarizing obtain part (iii).

Polynomial Evaluation and Interpolation and Transformations 281

Corollary 3. Assume a CV matrix C of Section 5.1 and its extended block diag-

onal. Assume a positive integer ρ and write θ = 1.5π/k
sin(3π/k) and ε = nθρ

(1−θ) sin(3π/k) .

Then C is a basically (ε, ρ)-neutered matrix.

Proof. Theorem 7 implies that every basic neutered block column is (θ, cq)-
separated for some center cq and for the above θ. Apply Corollary 2 for δ =
sin(3π/k) and deduce that the ε-ranks are at most ρ.

Remark 2. To bound ρ from above in terms of k, n, and ε we rewrite the ex-

pression of the corollary to obtain 1
θρ = 2kn2

ε
1

1−θ , and so ρ = (log2(
2kn2

ε) +

log2(
1

1−θ))/ log2(
1
θ). We can assume that n is reasonably large, then choose, say,

k ≥ 12, and obtain from Theorem 7 that θ < 0.5554 (one can specify such
bounds for other choices of k, noting that θ → 1/2 as k = n/h → ∞). Now
for k ≥ 12 deduce that ρ < 1.2 log2(kn

2/ε) + 2.6 < 1.2 log2(n
3/ε) + 2.6 and

ε < kn2/20.83ρ−2.17 ≤ n3/20.83ρ−2.17.

Remark 3. In the proof of Theorem 7, we can rotate all sectors Γq and centers cq
by a fixed angle φ, 0 ≤ φ < 2π, redefine the block diagonal matrix Σ accordingly,
and then readily extend Theorem 7 and Corollary 3. In particular, rotation by
the angle π/k produces new basic neutered block columns, each overlapping a
pair of old adjacent basic neutered block columns.

Remark 4. Among the basic neutered block columns Nq only N0 and Nk−1 are
blocks, whereas for q = 1, . . . , k− 2 the matrices Nq are made up of the pairs of
super- and subdiagonal blocks. By gluing the upper and lower boundaries of the
matrix C, however, we can turn all these pairs into single blocks. Furthermore
our study is invariant under block row and block column permutations, with
which we can move any diagonal block into the northwestern position (0, 0) or
the southeastern position (k − 1, k − 1).

Remark 5. One can extend the results of this section in various ways. To simplify
the notation we have assumed that f = 1 and n = hk throughout, but the same
arguments and proofs can be applied to any complex f and any triple of integers
(h, k, n) satisfying |f | = 1 and k = �n/h . Since −CT

s,t = Ct,s one can replace

the CV matrix of Corollary 3 by a CV T matrix (1
fωi−tj

)n−1
i,j=0 for |f | = 1. The

proof techniques enable extension to rectangular CV and CV T matrices as well
as to a Cauchy matrix Cs,t with the set T or S more or less equally spaced
about a segment of a line or a smooth curve on the complex plane, the unit
circle {x : |x = 1|} being an example of such a curve.

5.4 The ((2k − 1)ε)-ranks of Neutered Blocks

Next, under an additional assumption on the CV matrices, we extend the bound
ρ of Corollary 3 on the ε-rank from the basic neutered block columns at first to
the neutered unions of the pairs and the chains of such adjacent block columns
and then (by virtue of Theorem 3) to all neutered blocks of the matrix.

282 V.Y. Pan

Definition 4. (Cf. [14, Figures 5 and 6].) Assume four positive integers h, k,
n = hk, and ρ ≤ �n/2� and a basically (ε, ρ)-neutered n × n matrix C for

ε of Remark 2. In addition to the extended block diagonal Σ̂ define another
one, Σ̂′, by applying Remark 3 for φ = π/k. For q = 0, . . . , k − 1 let Nq =
Nc(Σq) and N ′

q = Nc(Σ
′
q) denote the basic neutered block columns dual to the

extended diagonal blocks Σq and Σ′
q, respectively, and let ∩q and ∩′

q denote the
two neutered blocks defined by the common entries of the matrix pairs (Nq, N

′
q)

and (Nq+1 mod k, N
′
q), respectively. We call the matrix C weakly (ε, ρ)-neutered

if the blocks ∩q and ∩′
q have ε+-ranks at least ρ for some ε+ > ε and all q.

Remark 6. For a weakly (ε, ρ)-neutered matrix we must have �h/2� ≥ ρ because
each matrix ∩q and ∩′

q has at least �h/2� columns and has ε+-rank at least ρ.

Theorem 8. For a weakly (ε, ρ)-neutered n × n CV matrix C the ((2k − 1)ε)-
ranks of the neutered unions of the blocks of any chain of adjacent basic neutered
block columns cannot exceed ρ.

Proof. (Cf. [14, Figure 6].) By virtue of Corollary 3 the basic neutered block
columns Nq and N

′
q and therefore also the blocks ∩q and ∩′

q have ε-ranks at most
ρ for all q, but actually all these blocks have ε-ranks exactly ρ for all q because
the matrix C is weakly (ε, ρ)-neutered. Let ∩q = S̄∩qΣ̄∩q T̄

H
∩q

be a compact

SVD for 0 ≤ q < k. Then S̄H
∩q

∩q = Σ̄∩q T̄
H
∩q

=

(
Mρ

Eq

)
where Mρ is a ρ × ρ

matrix, ||Eq || ≤ ε, and σρ(Mρ) = σρ(∩q) > ε because the matrix C is weakly

(ε, ρ)-neutered. Represent the matrix Uq = S̄H
∩q
N(Nq, N

′
q) as

(
V Mρ Y
W Eq Z

)
, ε-

approximate the matrix Eq by the null matrix O, apply Theorem 2 for B = Mρ,
and obtain that ||(W | Z)|| ≤ ε. Consequently only the first ρ rows of the
matrix Uq − E′

q are nonzero for some matrix E′
q satisfying ||E′

q|| ≤ 2ε. Extend
this argument to prove that for any pair of integers l and q, 0 < l < k, 0 ≤
q < k, and the neutered union U of the chain of the 2l− 1 overlapping neutered
blocksNq, N

′
q, Nq+1 mod k, N

′
q+1 mod k, . . . , Nq+l−1 mod k, Nq+l−1 mod k there is

a matrix Eq,l such that the matrix U − Eq,l has only ρ nonzero rows, and so
rank(U − Eq,l) ≤ ρ, whereas ||Eq,l|| ≤ (2l − 1)ε. This implies the theorem.

Theorems 3 and 8 and Remark 1 together imply the following corollary.

Corollary 4. A CV n×n matrix is ((2k− 1)ε, ρ)-neutered if it is weakly (ε, ρ)-
neutered.

Remark 7. Clearly a basically (ε, ρ)-neutered matrix is weakly (ε, ρ)-neutered
unless ρ exceeds the ε+-rank of some block ∩q or ∩′

q for ε+ > ε. For CV matrices
C1,f and more generally CV matrices C with the sets S more or less uniformly
distributed over the unit circle {x : |x| = 1}, all blocks ∩q and ∩′

q have the
same ε-rank. This is also the ε+-rank of the blocks ∩q and ∩′

q for all q if we
choose ε such that the ε-rank does not change under a sufficiently small increase
of ε. Therefore the CV matrix C is weakly (ε, ρ)-neutered and consequently, by

Polynomial Evaluation and Interpolation and Transformations 283

Fig. 1. The neutered union of two basic neutered block columns is shown in green. The
rest of them is shown in blue and pink.

Fig. 2. Blue lines bound the sectors Γ0, Γ1, Γ3, Γk−2, and Γk−1

virtue of Corollary 4, is ((2k− 1)ε, ρ)-neutered for ε and ρ of Remark 2 provided
12 ≤ k < n, h = n/k ≥ 2ρ (cf. Remark 6), and so ρ = O(log(n)) where
1/ε = O(log(n)). Such bound was stated in papers [9] and [3].

6 Multiplication of CV and Vandermonde Matrices and
Their Transposes and Inverses by a Vector

Given an n × n CV matrix, we seek an (nε)-approximation of its product by a
vector. Our algorithm supporting the following theorem accelerates by a factor
of
√
n/ log(n) the known algorithms provided that log(1/ε) = O(log(n)).

Theorem 9. Assume positive integers k and n, n > k, complex s′0, . . . , s
′
n−1,

and f , |f | = 1, positive ε, and a CV matrix C′ = (1
s′i−ωj)

n−1
i,j=0. Then it holds

that (i) α(k+1)ε(C
′) < 4n

√
3nρ for ε and ρ of Remark 2. (ii) Consequently it

holds that αnε(C
′) = O(n

√
n log(n)) where log(1/ε) = O(log(n)).

284 V.Y. Pan

Proof. As in Section 5.1, define a permutation matrix P , an extended block
diagonal matrix Σ, and the basic neutered block columns N0, . . . , Nk−1 of the

matrix C = PC′. Clearly α(k+1)ε(C
′) = α(k+1)ε(C) ≤ αε(Σ)+

∑k−1
q=0 αε(Nq)+kn.

By virtue of Theorem 7, every basic neutered block column Nq has rank at most
ρ and the matrix Σ has at most 3hn nonzero entries. Therefore, α(Σ) ≤ 6hn−n,
whereas by virtue of Theorem 1, α(Nq) ≤ 2(h+ n− nq)ρ− ρ− (n− nq) for the

(n− nq)× h basic neutered block column Nq. Note that
∑k−1

q=0 nq = 3n, and so∑k−1
q=0 α(Nq) ≤ 2(h+ n)kρ− 6nρ− kρ+ (3− k)n = 2knρ− (4n+ k)ρ+ (3− k)n

because hk = n. Combine the above bounds and deduce that α(k+1)ε(C) ≤
6hn+ 2knρ− (4n+ k)ρ+ (2− k)n < 6hn+ 2knρ. Choose kρ = 3h = 3n/k, and
deduce that k =

√
3n/ρ, kρ =

√
3nρ, and therefore α(k+1)ε(C) < 4n

√
3nρ. This

proves part (i), which implies part (ii).

Remark 8. The theorem can be readily extended to the case of rectangular CV
matrices as well as CV T matrices C = (1

fωi−sj
)m−1,n−1
i,j=0 for |f | = 1.

For ((2k−1)ε)-approximate multiplication by a vector of a weakly (ε, ρ)-neutered
CV matrix C we yield nearly linear upper bounds on α(2k−1)ε(C), α(2k−1)ε(C

T),
β(2k−1)ε(C), and β(2k−1)ε(C

T) provided that log(1/ε) = O(log(n)).

Theorem 10. Assume a weakly (ε, ρ)-neutered n×n CV matrix C. Then it holds
that (i) α(2k−1)ε(C) ≤ 16nρ+4kρ2+6hn ≤ 30nρ+4n�h/2−ρ�= O(nρ) for k =
n/h and ρ = �h/2� (cf. Remark 6). Therefore, α(2k−1)ε(C) = O(n log(n/

√
ε)) for

ρ = O(log(n/
√
ε)) of Remark 2. (ii) Furthermore if the matrix C is nonsingular

and if (2k− 1)ε||C−1|| < 1/3, then β(2k−1)ε(C) = O(nρ2), and so β(2k−1)ε(C) =
O(n(log(n))2) where 1/ε = O(log(n)).

Proof. Combine Corollary 4 with part (i) of Theorem 5 for l = u = ρ, note that

in this application of the theorem it holds that
∑k−1

q=0 mq = 3n,
∑k−1

q=0 nq = n,

and
∑k−1

q=0 mqnq ≤ 3hn, deduce that α(2k−1)ε(C) ≤ 16nρ + 4kρ2 + 6hn, and
obtain the bounds of part (i) of Theorem 10. Likewise, to deduce its part (ii)
combine Corollary 4 with part (ii) of Theorem 5 and [16, Corollary 1.4.19].

Theorem 11. Suppose equation (5) has been applied to express an n× n Van-
dermonde matrix Vs through a CV matrix C = Cs,f for a complex f such that
|f | = 1. Assume that u is a unit vector. Then (i) one can ν-approximate the

vector Vsu for ν = (ε
√
n)maxn−1

i=0 |sni − f | by using at most 4n
√
7.2 log2(n/

√
ε)

flops. Furthermore let this CV matrix C be weakly (ε, ρ)-neutered. Then (ii) one
can ν-approximate the product Vsu for ν = ((2k − 1)ε/

√
n)maxn−1

i=0 |sni − f | by
using at most 30ρn+4n flops for ε and ρ of Remark 2, which means O(n(log(n)))
flops where 1/ε = O(log(n)). Furthermore (iii) if the matrix Vs is nonsingular
and if ν′ = 1.5(2k − 1)ε

√
nμf ||V −1

s || ≤ 1/2, then one can ν′-approximate the
vector V −1

s u by using O(nρ2) flops where μf = maxn−1
i=0 |sni − fn|−1, |f | = 1,

and one can choose f such that μf ≤ n/π. The same estimates hold where
the transposes V T

s and −Cf,s = CT
s,f replace the matrices Vs and C = Cs,f ,

respectively, as well as for the problems of approximate evaluation of a polynomial

Polynomial Evaluation and Interpolation and Transformations 285

of degree n− 1 at the n knots s0, . . . , sn−1 and approximate interpolation to this
polynomial from its n values at these knots.

Proof. Deduce the claims about the matrix Vs and its transpose by combining
Theorems 9 and 10 with equation (5) and note that μf is minimized under
|f | = 1 for the complex points si equally spaced on the unit cirle {x : |x| = 1}.
Extend the estimates to the case of polynomials by applying equation (3).

Remark 9. The proofs of Theorems 9–11 are constructive. One can readily devise
algorithms that compute some centers cq and c′q (defining basic neutered block
columnsNq andN

′
q) and then compute ULV factorizations of the neutered blocks

∩q and ∩′
q for all q. One can avoid a large part of these computations by following

papers [3] and [18]: they bypass the computation of the centers cq and c′q and
compute the HSS generators for the blocks defined by HSS trees. These blocks
are not as numerous as all neutered block columns.

Remark 10. In the extensive tests reported in [18], the ε-ranks of the matrix
C1,ω2n for small ε consistently grew much slower than log(n) as n grew large.
This empirical observation and formal arguments in [14, Remark 11] suggest
that at least for a large class of CV matrices if not for a “typical” CV matrix
our upper estimate of Remark 2 for ρ is overly pessimistic.

Remark 11. Reduction of Vandermonde to Cauchy computations was the ini-
tial step for our current progress (cf. (4)), but the reduction into the opposite
direction seems to be also promising. Indeed exact or approximate polynomial
evaluation and interpolation are equivalent to computing or approximating the
products of a Vandermonde matrix and its inverse by a vector (cf. Problems 1
and 2). Now assume any successful algorithms for the latter tasks and employ
equation (4) to extend them to the multiplication of a Cauchy matrix and its
inverse by a vector and consequently to some problems of rational interpolation
[12] as well as to a broad area of computations with matrices having structures
of Vandermonde and Cauchy types [13].

7 Conclusions

We first proposed a novel transformation of a Vandermonde matrix into an HSS
matrix, and then application of the efficient algorithms of [9], [3], and [18] enabled
dramatic acceleration of the known approximation algorithms for polynomial
interpolation and multipoint evaluation. At first we accelerated ε-approximate
evaluation of an nth degree polynomial at n points by a factor of

√
n/ logn

provided log(1/ε) = O(log(n)). Then for a large class of input matrices, which
we call weakly (ρ, ε)-neutered CV matrices (cf. Definition 4), we obtained further
speedup reaching nearly optimal arithmetic cost bounds for both ν-approximate
evaluation and interpolation for ν = O(ε) specified in Theorem 11. Formal and
experimental study of the above matrix class can be a natural research subject.
The basic computational blocks of our algorithms are the FFT and Multipole
type algorithms, well studied, efficiently implemented, and numerically stable.

286 V.Y. Pan

As a potential beneficiary of our progress we recall the classical task of univari-
ate polynomial root-finding. The current best package of subroutines MPSolve [2]
relies on Ehrlich–Aberth iterations, which amount essentially to recursive mul-
tipoint polynomial evaluation. MPSolve performs it in quadratic time by means
of Horner’s algorithm, versus nearly linear time of our algorithms. For a large
class of inputs a number of initial iterations can be performed with the IEEE
standard double precision, and at these stages, our algorithms clearly supersede
Horner’s.

Transformations of matrix structures can extend our progress to computations
with various matrices having structures of Vandermonde and Cauchy types (cf.
[13]), for example, confluent Vandermonde matrices and Loewner matrices, and
to various problems of rational interpolation such as the Nevanlinna–Pick and
matrix Nehari problems, although numerical stability problems may limit the
power of these extensions. One can seek efficient algorithms for approximation
of the products of a Cauchy matrix and its inverse by a vector by employing
their link to computations with polynomials and rational functions (cf. [12]). As
we pointed out in Remark 11 transformations of matrix structures should help
to extend any progress in exact or approximate polynomial evaluation and inter-
polation to a broad area of computations with structured matrices, polynomials,
and rational functions. One may employ the algorithms that are relatively little
known but support the Boolean complexity bounds of order n log(1/ε) up to poly-
logarithmic factors for ε-approximate multipoint polynomial evaluation provided
that log(1/ε) dominates the precision of other input parameters (cf. [8, Theorem
3.9 and Section 5.3] and [15]), and similarly for ε-approximate polynomial inter-
polation. These algorithms involve arithmetic operations with a high precision,
but their small Boolean cost implies that they proceed with a lower precision
of computing on the average and therefore can be competitive under sufficient
support from the field of Computer Arithmetic (cf. [11]). Other natural subjects
for further formal and experimental study, include the ones pointed out in Re-
marks 5, 10, and 11 and the estimation of the threshold input sizes for which
our algorithms, running in nearly linear time, outperform the known numeri-
cal algorithms, running in quadratic time, as well as the algorithms supporting
Theorem 9 and part (i) of Theorem 11.

Acknowledgements. This research has been supported by the NSF Grant CC
1116736 and the PSC CUNY Awards 64512–0042 and 65792–0043. Reviewers’
comments were thoughtful and valuable.

References

1. Bella, T., Eidelman, Y., Gohberg, I., Olshevsky, V.: Computations with quasisep-
arable polynomials and matrices. TCS 409(2), 158–179 (2008)

2. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numer. Algs. 23, 127–173 (2000)

3. Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for
Toeplitz systems of linear equations. SIMAX 29, 1247–1266 (2007)

Polynomial Evaluation and Interpolation and Transformations 287

4. Eidelman, Y., Gohberg, I.: A modification of the Dewilde–van der Veen method
for inversion of finite structured matrices. Linear Algebra and Its Applications 343,
419–450 (2002)

5. Eidelman, Y., Gohberg, I., Haimovici, I.: Separable Type Representations of Ma-
trices and Fast Algorithms, vol. 1. Birkhäuser, Basel (2013)

6. Gu, M.: Stable and efficient algorithms for structured systems of linear equations.
SIAM J. Matrix Anal. Appl. 19, 279–306 (1998)

7. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial piv-
oting for matrices with displacement structure. Mathematics of Computation 64,
1557–1576 (1995)

8. Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by New-
ton’s iteration. J. Complexity 14, 378–444 (1998)

9. Martinsson, P.G., Rokhlin, V., Tygert, M.: A fast algorithm for the inversion of
Toeplitz matrices. Comput. Math. Appl. 50, 741–752 (2005)

10. Pan, V.Y.: On computations with dense structured matrices. Math. Computa-
tion 55(191), 179–190 (1990); Proceedings version in Proc. ISSAC 1989, pp. 34–42.
ACM Press, New York (1989)

11. Priest, D.: Algorithms for arbitrary precision floating point arithmetic. In: Ko-
rnerup, P., Matula, D. (eds.) Proc. 10th Symp. Computer Arithmetic, pp. 132–145.
IEEE Computer Society Press, Los Angeles (1991)

12. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkhäuser/Springer, Boston/New York (2001)

13. Pan, V.Y.: Transformations of Matrix Structures Work Again. Tech. Report
TR 2013004, PhD Program in Comp. Sci., Graduate Center, CUNY (2013),
http://www.cs.gc.cuny.edu/tr/techreport.php?id=449

14. Pan, V.Y.: Polynomial Evaluation and Interpolation and Transformations of Ma-
trix Structures 1. Tech. Report TR 2013007, PhD Program in Comp. Sci. Graduate
Center, CUNY (2013), http://www.cs.gc.cuny.edu/tr/techreport.php?id=452

15. Pan, V.Y., Tsigaridas, E.P.: On the Boolean complexity of the real root refinement.
In: Kauers, M. (ed.) Proc. ISSAC 2013. ACM Press, New York (2013)

16. Stewart, G.W.: Matrix Algorithms. Basic Decompositions, vol. I. SIAM, Philadel-
phia (1998)

17. Vandebril, R., van Barel, M., Mastronardi, N.: Matrix Computations and Semisep-
arable Matrices: Linear Systems, vol. 1. The Johns Hopkins University Press, Bal-
timore (2007)

18. Xia, J., Xi, Y., Gu, M.: A superfast structured solver for Toeplitz linear systems
via randomized sampling. SIMAX 33, 837–858 (2012)

http://www.cs.gc.cuny.edu/tr/techreport.php?id=449
http://www.cs.gc.cuny.edu/tr/techreport.php?id=452

A Note on the Need for Radical Membership

Checking in Mechanical Theorem Proving
in Geometry

Eugenio Roanes-Lozano and Eugenio Roanes-Maćıas

Universidad Complutense de Madrid, Algebra Dept., 28040-Madrid, Spain
{eroanes,roanes}@mat.ucm.es,

http://www.ucm.es/info/secdealg/ERL/

Abstract. In his famous 1988 book “Mechanical Geometry Theorem
Proving”, Shang-Ching Chou details a method with two steps to check
whether a geometric theorem is “generally true” or not using Groeb-
ner bases. The second step consists of checking the membership of the
thesis polynomial to the radical (J) of a certain ideal (L). Chou men-
tions: “However, for all theorems we have found in practice, J=L.” In
his 2007 book “Selected topics in geometry with classical vs. computer
proving”, Pavel Pech shows a beautiful example where checking the rad-
ical membership, not only the ideal membership, is required. Using a
kind of “reverse engineering” we shall show how to easily find examples
of theorems where to check the radical membership is required. The idea
is just to construct a thesis involving an ideal such that the ideal of its
variety is not itself (therefore, the ideal is not equal to its radical).

Keywords: mechanical theorem proving in geometry, ideals theory, rad-
ical ideal.

1 Introduction

In his famous book “Mechanical Geometry Theorem Proving” [6], Shang-Ching
Chou details a method with two steps (page 78) to check whether a geometric
theorem is “generally true” or not, using Groebner bases [4, 8, 18, 19].

The adjective “generally” is used because there can be degenerate cases (like
a triangle degenerating into a segment when its three vertices are aligned). Let
us note that there is some controversy on what actually means “generally true”
[1, 5, 7, 9, 15], but we shall not address this topic here, as it deals with complex
issues as the distinction between parameters and free variables in special cases.
Regarding this topic, we shall underline that minimal canonical comprehensive
Groebner bases [11] have been successfully applied to mechanical theorem prov-
ing [12]. Finally, regarding the truthfulness of geometric theorems, in the recent
[25], comprehensive Groebner systems and Rabinovitch’s trick have been used
to successfully distinguish the situations: true / true on component / completely
false / generically false.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 288–300, 2013.
c© Springer International Publishing Switzerland 2013

http://www.ucm.es/info/secdealg/ERL/

A Note on the Need for Radical Membership Checking 289

Mechanical theorem proving in geometry is not restricted to the 2D case (see,
for instance [21–23]). Moreover, there are different attempts to link dynamic
geometry systems and GUIs to computer algebra systems for mechanical theorem
proving and related issues [2, 3, 17, 26], but we shall not address these topics
here.

1.1 Some Preliminary Notes about Algebraic Geometry

This section can be skipped by the reader familiar with basic algebraic geometry
(as it only overviews some basic concepts and results in order the paper to be
self-contained).

Definition 1. An ideal of a ring is a special subset of a ring such that it is also
a ring and the product of any element of the ring by an element of the subset is
again in the subset.

Example 1. The set of even numbers is an ideal of the integers.

Definition 2. The radical of an ideal I, Rad(I), is the set of elements, α, such
that some integer power of α is in I.

Proposition 1. Rad(I) is also an ideal and I is obviously contained in Rad(I).

Example 2. In Z, the radical of the ideal of the set of multiples of 9 is the set of
multiples of 3.

Definition 3. A basis of an ideal is a set of generators of the ideal (i.e., the
elements of the ideal are the linear algebraic combinations of the elements in the
basis). The ideal generated by the polynomials p1, ..., pn is denoted 〈p1, ..., pn〉.

Corollary 1. 〈1〉 is the whole ring.

Property 1. A Groebner basis of a polynomial ideal is a very special basis. Once
the way the monomials have to be ordered and the order for the variables are
fixed, the (reduced) Groebner basis of an ideal is unique (that is, it completely
characterizes the ideal). Moreover, Buchberger’s algorithm provides a method
to obtain the Groebner basis of any ideal of a polynomial ring over a field in a
finite number of variables.

Corollary 2. As a consequence of the properties of Groebner bases, checking
some very complex algebraic issues turns easily decidable. For instance, checking
whether two ideals of a polynomial ring are equal or not can be decided by simply
comparing their (reduced) Groebner bases.

Definition 4. An algebraic variety is the set of solutions of a system of polyno-
mial equations (that is, the set of zeros of the ideal generated by the corresponding
polynomials). We shall denote by v(I) the algebraic variety of ideal I.

Example 3. The variety of ideal 〈x2 + y2 − 1〉 in the Euclidean space R3 is the
cylinder of axis the z axis and radius 1.

290 E. Roanes-Lozano and E. Roanes-Maćıas

Definition 5. The ideal of an algebraic variety V , i(V), is the set of all poly-
nomials which vanish on all the points of the set V . This set turns out to be an
ideal.

Theorem 1. Hilbert’s Nullstellensatz states that, if the base field is algebraically
closed, then: i(v(I)) = Rad(I).

Example 4. Let us consider C as the base field. v(〈x3, y − 1〉) = {(0, 1)} ⊆ C2.
We have: i({(0, 1)}) = 〈x, y − 1〉. Consequently: i(v(〈x3, y − 1〉)) = 〈x, y − 1〉,
and, as expected: 〈x, y − 1〉 = Rad(〈x3, y − 1〉) (see Figure 1).

Fig. 1. The variety of ideal 〈x3, y − 1〉 is the intersection of lines x = 0 and y = 1.
Observe that, although the example is considered in C2, we can only draw it in R2 (we
would need a 4-dimensional space to represent C2).

We shall use the following nontrivial surprising result (radical membership
criterion):

Proposition 2. Let K[x1, ..., xn] be a polynomial ring over the field K, let p ∈
K[x1, ..., xn] and let I = 〈p1, p2, ..., pm〉 be an ideal of K[x1, ..., xn]. Let w be
another variable, independent from x1, x2, ..., xn. Then:

p ∈ Rad(I) (in the polynomial ring K[x1, ..., xn]) ⇔
⇔ the ideal 〈p1, p2, ..., pm, 1− p · w〉 of K[x1, ..., xn, w] is the whole ring, 〈1〉.

1.2 Yet another Preliminary Note

In logic we have the following:

Definition 6. A formula F ′ is a tautological consequence of a formula F iff
every valuation that causes F to be true also causes F ′ to be true. This situation
is denoted F |= F ′.

Proposition 3. In classic Boolean logic, F |= F ′ is equivalent to the formula
F ⇒ F ′ being a tautology (i.e., to being always true).

A Note on the Need for Radical Membership Checking 291

But, if S is a set of polynomial equations and p is a polynomial equation (all
in the same polynomial ring), what does it mean that S ⇒ p ?

Example 5. If we say (in C) that:

x− 31200 = 0 ⇒ x3 − 27 = 0

(where 31200 represents the complex number of modulus 3 and argument 120
degrees), we mean that all the solutions of the LHS equation satisfy the RHS
equation.

Example 6. If we say (in R2) that:

{x+ y − 2 = 0, x− y = 0} ⇒ x− 1 = 0

we mean that all the solutions of the LHS linear system satisfy the RHS equation.

2 Chou’s Remark Regarding Mechanical Theorem
Proving in Geometry and the Radical Membership
Checking

Roughly speaking, we can describe the underlying idea as follows. Let H be the
ideal describing the hypotheses polynomials and let t be the thesis polynomial.

1st Step (ideal membership): If t belongs to H , t is a linear algebraic combi-
nation of some of the elements in H . Consequently, at the points where all
the polynomials in H vanish, any linear algebraic combination of these poly-
nomials will vanish, so t will also vanish. Consequently, v(H) is a subset
of v(〈t〉). Therefore, according to the ideas in Section 1.1, the theorem is
“generally true”.

However, this 1st step is only a sufficient condition. A mentioned above (The-
orem 1), if the base field is algebraically closed, for any ideal I, i(v(I)) = Rad(I),
and it is not difficult to prove that a necessary and sufficient condition is:

2nd Step (radical membership): t belongs to Rad(H) iff the theorem is “gener-
ally true”.

Chou mentions at the same page 78 of [6]:

“However, for all theorems we have found in practice, H = Rad(H).”

(that is, to check the “1st step” was always sufficient in practice).
Other introductory sources are [10, 20, 24].

292 E. Roanes-Lozano and E. Roanes-Maćıas

3 Pavel Pech’s Counterexample Revisited

In his book “Selected topics in geometry with classical vs. computer proving”
[14], Pavel Pech shows a beautiful theorem (Section 8.1) where H is not equal
to Rad(H), that is, checking the radical membership, not only the ideal mem-
bership, is required. This theorem is about the planarity of a (3D) regular skew
(equilateral) pentagon:

“Theorem 8.1.A regular skew polygon ABCDE in the Euclidean space
E3 is given. Then ABCDE is a planar pentagon.”

This counterexample can also be found in [13].
We shall begin by revisiting Pech’s example using the computer algebra system

Maple 16 (nevertheless, what is done afterwards could be done with any CAS
with a Groebner bases implementation and plotting capabilities, what most of
them have).

We firstly load the Groebner bases package and define a “square distance”
auxiliary function:

> with(Groebner):

> unprotect(D):

> dist2:=(P,Q)->(P[1]-Q[1])^2+(P[2]-Q[2])^2+(P[3]-Q[3])^2:

We give the coordinates of the vertices of the pentagon (for the sake of simplic-
ity, we consider one of the vertices to be (1, 0, 0) and another one (0, 0, 0), what
doesn’t represent any restriction but an adequate selection of the coordinate
axes and the unit).

> A:=[1,0,0]:

> B:=[b1,b2,0]:

> C:=[c1,c2,c3]:

> D:=[d1,d2,d3]:

> E:=[0,0,0]:

According to the coordinate system chosen, A,B,E lie on plane z = 0. There-
fore, the thesis is that C,D lie on plane z = 0, so there are two thesis polynomials.
For instance: C lies on plane z = 0 ⇔ 1 · b2 · b3 = 0. Let us consider this thesis
polynomial (the other is analogous).

We can then use the radical membership criterion to check whether the thesis
polynomial belongs to the hypothesis ideal:

> Basis({ dist2(A,B)-1 , dist2(B,C)-1 ,

> dist2(C,D)-1 , dist2(D,E)-1 ,

> dist2(B,D)-dist2(A,C) , dist2(C,E)-dist2(A,C) ,

> dist2(D,A)-dist2(A,C) , dist2(E,B)-dist2(A,C) ,

> 1*b2*c3*w-1 } ,

> plex(b1,b2,c1,c2,c3,d1,d2,d3,w));

[1]

A Note on the Need for Radical Membership Checking 293

so the theorem holds.
But if we compare the hypotheses ideal with the ideal generated by the hy-

potheses together with the thesis (observe that w is no longer a variable):

> GB1:=Basis({ dist2(A,B)-1 , dist2(B,C)-1 ,

> dist2(C,D)-1 , dist2(D,E)-1 ,

> dist2(B,D)-dist2(A,C) , dist2(C,E)-dist2(A,C) ,

> dist2(D,A)-dist2(A,C) , dist2(E,B)-dist2(A,C) } ,

> plex(b1,b2,c1,c2,c3,d1,d2,d3));

GB1 := [d32, 5− 20 ∗ d22 + 16 ∗ d24,−3 + 4 ∗ d22 + 2 ∗ d1, c3,
2 ∗ d2− 4 ∗ d23 + c2,−1 + 2 ∗ c1, b2− d2, 1− 4 ∗ d22 + 2 ∗ b1]

> GB2:=Basis({ dist2(A,B)-1 , dist2(B,C)-1 ,

> dist2(C,D)-1 , dist2(D,E)-1 ,

> dist2(B,D)-dist2(A,C) , dist2(C,E)-dist2(A,C) ,

> dist2(D,A)-dist2(A,C) , dist2(E,B)-dist2(A,C) ,

> 1*b2*c3 } ,

> plex(b1,b2,c1,c2,c3,d1,d2,d3));

GB2 := [d33, 5−14∗d32−20∗d22+24∗d22∗d32+16∗d24,−3+3∗d32+4∗d22+2∗
d1, d32−2∗d22∗d32+c3∗d3,−d32+c32, 10∗d2−15∗d2∗d32−20∗d23−4∗d23∗d32+
5∗c2,−1+2∗c1,−5∗d2−10∗d2∗d32+8∗d23∗d32+5∗b2, 1−3∗d32−4∗d22+2∗b1]

They are not equal!
Therefore, for this theorem, the membership of the thesis to the hypotheses

ideal is not equivalent to the radical membership.
For the other thesis condition the same holds:

> GB3:=Basis({dist2(A,B)-1 , dist2(B,C)-1 ,

> dist2(C,D)-1 , dist2(D,E)-1 ,

> dist2(B,D)-dist2(A,C) , dist2(C,E)-dist2(A,C) ,

> dist2(D,A)-dist2(A,C) , dist2(E,B)-dist2(A,C) ,

> 1*b2*d3 } , plex(b1,b2,c1,c2,c3,d1,d2,d3));

GB3 := [d3, 5− 20 ∗ d22 + 16 ∗ d24,−3 + 4 ∗ d22 + 2 ∗ d1, c32,
2 ∗ d2− 4 ∗ d23 + c2,−1 + 2 ∗ c1, b2− d2, 1− 4 ∗ d22 + 2 ∗ b1]

> evalb(GB1=GB3);

false

They are not equal! (observe that the fourth element of this last Groebner basis
is c23, instead of c3).

3.1 Continuing with Pavel Pech’s Example

We can extend Pavel Pech’s example by analysing the different solutions to the
problem.

294 E. Roanes-Lozano and E. Roanes-Maćıas

Maple includes a solve command that can be used with nonlinear polynomial
systems (it is based on Groebner bases techniques). Now that we know that the
theorem holds, we can solve the system of hypotheses conditions:

> solve(GB2,[b1,b2,c1,c2,c3,d1,d2,d3]);

[[b1 = − 1
2 + 1

2RootOf(5 − 5 Z + Z2),
b2 = 1

2RootOf(Z
2 −RootOf(5− 5 Z + Z2)), c1 = 1/2,

c2 = 1
2 (−2+RootOf(5− 5 Z + Z2)) ∗RootOf(Z2 −RootOf(5− 5 Z + Z2)),

c3 = 0, d1 = 3
2 − 1

2RootOf(5 − 5 Z + Z2),
d2 = 1

2RootOf(Z
2 −RootOf(5 − 5 Z + Z2)), d3 = 0]]

If we ask for the explicit solutions we obtain four solutions:

> allvalues(%);

[[b1 = 3
4 −

√
5
4 , b2 =

√
10−2

√
5

4 , c1 = 1
2 , c2 =

(1
2−

√
5

2)
√

10−2
√
5

4 ,

c3 = 0, d1 =
√
5
4 + 1

4 , d2 =

√
10−2

√
5

4 , d3 = 0]],

[[b1 = 3
4 −

√
5
4 , b2 = −

√
10−2

√
5

4 , c1 = 1
2 , c2 = − (1

2−
√

5
2)

√
10−2

√
5

4 ,

c3 = 0, d1 =
√
5
4 + 1

4 , d2 = −
√

10−2
√
5

4 , d3 = 0]],

[[b1 = 3
4 +

√
5
4 , b2 =

√
10+2

√
5

4 , c1 = 1
2 , c2 =

(1
2+

√
5

2)
√

10+2
√
5

4 ,

c3 = 0, d1 =
√
5
4 − 1

4 , d2 =

√
10+2

√
5

4 , d3 = 0]],

[[b1 = 3
4 +

√
5
4 , b2 = −

√
10+2

√
5

4 , c1 = 1
2 , c2 = − (1

2+
√

5
2)

√
10+2

√
5

4 ,

c3 = 0, d1 =
√
5
4 − 1

4 , d2 = −
√

10+2
√
5

4 , d3 = 0]]

Finally, if we plot these four solutions we obtain two symmetrical convex pen-
tagons and two symmetrical star pentagons (see Figure 2).

4 Designing Other Counterexamples

The idea is to use a kind of “reverse engineering” to easily find examples of
theorems where to check the radical membership is required. It is enough to
construct a hypotheses ideal such that the ideal of its variety is not itself (i.e., an
ideal such that it is not equal to its radical) and an adequate thesis polynomial.

We shall include afterwards some trivial examples: one involving two circles
and a cubic, another one involving three parabolae, another one involving two
circumferences and a line,...

4.1 First Example

Idea: Let us consider a simple locus described by an ideal that is not radical. For
example, point (0, 0) can be described as the intersection of two circumferences.
Now an ideal which variety contains point (0, 0) should be contained in the ideal

A Note on the Need for Radical Membership Checking 295

Fig. 2. The four solutions of the regular pentagon problem computed with Maple 16

generated by the two circumferences. Let us consider such ideal to be simple and
reducing a power of y by means of x, for instance y = x3. Summarizing, we can
consider the following:

Theorem 2. The intersection point of the circumferences of centers (1, 0) and
(−1, 0) and radius 1 lie on the cubic y = x3 (see Figure 3).

The hypothesis polynomial are:

(x− 1)2 + y2 − 1, (x+ 1)2 + y2 − 1

and the thesis polynomial is:
y = x3 .

If we apply the radical membership criterion:

> Basis([(x-1)^2+y^2-1 , (x+1)^2+y^2-1, 1-w*(y-x^3)],

plex(x,y,w));

[1]

we obtain that the theorem holds.

296 E. Roanes-Lozano and E. Roanes-Maćıas

Fig. 3. A first example on the need to apply the radical membership criterion

But if we apply the ideal membership criterion:

> Basis([(x-1)^2+y^2-1 , (x+1)^2+y^2-1)], plex(x,y));

[y2, x]

> Basis([(x-1)^2+y^2-1 , (x+1)^2+y^2-1) , y-x^3], plex(x,y));

[y, x]

we obtain that the two Groebner bases are different!
There is a Maple package specialized in computations with ideals. Using such

package the previous computations are straightforward:

> with(PolynomialIdeals):

> thesis:=y-x^3:

> J:=<(x-1)^2+y^2-1,(x+1)^2+y^2-1>:

> IdealMembership(thesis , J);

false

> RadicalMembership(thesis , J);

true

Remark 1. Let us emphasize that the intersection point of the two circumfer-
ences in the previous example is a tangency point. That is a key issue in order
the corresponding ideal not to be radical (and to obtain a counterexample).

For instance, if the centre of the second circumference is moved to (1, 1), the
two circumferences intersect at points (0, 0) and (1, 1), and the two Groebner
bases of the ideal membership criterion are equal.

A Note on the Need for Radical Membership Checking 297

4.2 Second Example

It is clear that we can use endlessly the idea of the first example, and the way
the theorem is enunciated can be camouflaged in a “geometric style”:

Theorem 3. The locus of the points of R2 that are at the same distance of point
(0, 1/4) and line y = − 1

4 and are also at the same distance of point (0,−1/4) and
line y = 1

4 is contained in the locus of the points that are at the same distance
of point (1/4, 0) and line x = − 1

4 .

Let us not directly recognize what these curves are, and let us compute the
situation with Maple (an auxiliary function “square of the distance” is defined
firstly):

> dist2:=(P,Q)->(P[1]-Q[1])^2+(P[2]-Q[2])^2:

> simplify(dist2([x,y],[0,1/4])-(y+1/4)^2)=0;

> simplify(dist2([x,y],[0,-1/4])-(y-1/4)^2)=0;

> simplify(dist2([x,y],[1/4,0])-(x+1/4)^2)=0;

x2 − y = 0
x2 + y = 0
−x+ y2 = 0

Therefore, the situation is that of Figure 4.
Let us apply both criteria:

> with(PolynomialIdeals):

> thesis:=simplify(dist2([x,y],[1/4,0])-(x+1/4)^2):

> J:=<dist2([0,1/4],[x,y])-(y+1/4)^2,

> dist2([0,-1/4],[x,y])-(y-1/4)^2>:

> IdealMembership(thesis , J);

false

> RadicalMembership(thesis , J);

true

4.3 Other Examples

More complex and interesting (from the geometric point of view) examples can
be found, now that we know what to look for. The following examples are not
detailed for the sake of space, but behave as the examples previously analysed.

Theorem 4. The intersection point of two tangent circumferences lies on their
centers line.

Theorem 5. If T and X are the tangency points of the inscribed circle and the
excribed circle on the side AB of triangle ABC (respectively), then dist(A,X) =
dist(T,B) (Figure 5) .

298 E. Roanes-Lozano and E. Roanes-Maćıas

Fig. 4. A second example on the need to apply the radical membership criterion

Fig. 5. A more complex example on the need to apply the radical membership criterion

5 Remark

This is an extended and very improved version of an unpublished previous talk
presented at the “Applications of Computer Algebra 2012 (ACA’2012)” confer-
ence. The Extended Abstract can be found at the web page of ACA’2012.

A Note on the Need for Radical Membership Checking 299

6 Conclusions

Summarizing, Pavel Pech’s regular pentagon example is not an isolated rare
case of mechanical theorem proving in geometry where the radical membership
is required to be checked.

Moreover, using a kind of “reverse engineering” we have shown how to easily
find examples of theorems where to check the radical membership is also required.

Acknowledgments. This work was partially supported by the research project
TIN2012–32482 (Government of Spain).

The author is grateful to the anonymous referees for valuable suggestions and
recommendations which improved the paper.

References

1. Bazzotti, L., Dalzotto, G., Robbiano, L.: Remarks on geometric theorem proving.
In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp.
104–128. Springer, Heidelberg (2001)

2. Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mat.
Comp. Simul. 61(2), 141–154 (2003)

3. Botana, F.: A web-based resource for automatic discovery in plane geometry. Intl.
J. Comp. Mat. Learning 8(1), 109–121 (2003)

4. Buchberger, B: Applications of Gröbner bases in non-linear computational geom-
etry, in: Rice, J.R. (ed.) Mathematical Aspects of Scientific Software, pp. 59–87.
Springer (1988)

5. Bulmer, M., Fearnley-Sander, D., Stokes, T.: The kinds of truth of geometry theo-
rems. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061,
pp. 129–142. Springer, Heidelberg (2001)

6. Chou, S.-C.: Mechanical geometry theorem proving. Reidel, Dordrecht (1988)
7. Conti, P., Traverso, C.: Algebraic and Semialgebraic Proofs: Methods and Para-

doxes. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061,
pp. 83–103. Springer, Heidelberg (2001)

8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics. Springer, New York (1997)

9. Kutzler, B.: Careful algebraic translations of geometry theorems. In: Gonnet, G.H.
(ed.) Proc. ISSAC 1989, pp. 254–263. ACM Press, Portland (1989)

10. Kutzler, B., Stifter, S.: On the application of Buchberger’s algorithm to automated
geometry theorem proving. J. Symb. Comp. 2(4), 389–397 (1986)

11. Manubens, M., Montes, A.: Minimal Canomical Comprehensive Groebner system.
J. Symb. Comput. 44, 463–478 (2006)

12. Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal
canonical comprehensive gröbner systems. In: Botana, F., Recio, T. (eds.) ADG
2006. LNCS (LNAI), vol. 4869, pp. 113–138. Springer, Heidelberg (2007)

13. Pech, P.: On the need of radical ideals in automatic proving: A theorem about reg-
ular polygons. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869,
pp. 157–170. Springer, Heidelberg (2007)

14. Pech, P.: Selected topics in geometry with classical vs. computer proving. World
Scientific Publishing Co. Pte. Ltd, Singapore (2007)

300 E. Roanes-Lozano and E. Roanes-Maćıas

15. Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in
elementary geometry). In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 761–770. Springer,
Heidelberg (2004)

16. Recio, T., Vélez, M.P.: An Introduction to Automated Discovery in Geometry
through Symbolic Computation. In: Langer, U., Paule, P. (eds.) Numerical and
Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation,
vol. 1, pp. 257–271. Springer, Vienna (2012)

17. Roanes-Lozano, E., Roanes-Maćıas, E., Villar-Mena, M.: A bridge between dy-
namic geometry and computer algebra. Mat. Comp. Mod. 37(9-10), 1005–1028
(2003)

18. Roanes-Lozano, E., Roanes-Maćıas, Laita, L.M.: The geometry of algebraic systems
and their exact solving using Groebner bases. Comp. Sci. Eng. 6(2), 76–79 (2004)

19. Roanes-Lozano, E., Roanes-Maćıas, Laita, L.M.: Some Applications of Groebner
bases. Comp. Sci. Eng. 6(3), 56–60 (2004)

20. Roanes-Maćıas, E., Roanes-Lozano, E.: Nuevas Tecnoloǵıas en Geometŕıa. Edito-
rial Complutense, Madrid (1994)

21. Roanes-Maćıas, E., Roanes-Lozano, E.: A Maple package for automatic theorem
proving and discovery in 3D-geometry. In: Botana, F., Recio, T. (eds.) ADG 2006.
LNCS (LNAI), vol. 4869, pp. 171–188. Springer, Heidelberg (2007)

22. Roanes-Maćıas, E., Roanes-Lozano, E., Fernández-Biarge, J.: Extensión natural a
3D del teorema de Pappus y su configuración completa. Bol. Soc. “Puig Adam” 80,
38–56 (2008)

23. Roanes-Maćıas, E., Roanes-Lozano, E., Fernández-Biarge, J.: Obtaining a 3D ex-
tension of Pascal theorem for non-degenerated quadrics and its complete config-
uration with the aid of a computer algebra system. RACSAM (Rev. R. Acad. C.
Exactas, F́ıs. Nat., Serie A, Mat.) 103(1), 93–109 (2009)

24. Roanes-Maćıas, E., Roanes-Lozano, E.: Un método algebraico-computacional para
demostración automática en geometŕıa eucĺıdea. Bol. Soc. “Puig Adam” 88, 31–63
(2011)

25. Sun, Y., Wang, D., Zhou, J.: A new method of automatic geometric the-
orem proving and discovery by comprehensive Groebner systems. In: Proc.
ADG 2012 (2012) (to appear), http://dream.inf.ed.ac.uk/events/adg2012/

uploads/proceedings/ADG2012-proceedings.pdf#page=163

26. Wang, D.: GEOTHER 1.1: Handling and proving geometric theorems automat-
ically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215.
Springer, Heidelberg (2004)

http://dream.inf.ed.ac.uk/events/adg2012/uploads/proceedings/ADG2012-proceedings.pdf#page=163
http://dream.inf.ed.ac.uk/events/adg2012/uploads/proceedings/ADG2012-proceedings.pdf#page=163

A Symbolic Approach to Boundary Problems

for Linear Partial Differential Equations

Applications to the Completely Reducible Case
of the Cauchy Problem with Constant Coefficients

Markus Rosenkranz and Nalina Phisanbut�

University of Kent, Canterbury, Kent CT2 7NF, United Kingdom
{M.Rosenkranz,N.Phisanbut}@kent.ac.uk

Abstract. We introduce a general algebraic setting for describing linear
boundary problems in a symbolic computation context, with emphasis
on the case of partial differential equations. The general setting is then
applied to the Cauchy problem for completely reducible partial differ-
ential equations with constant coefficients. While we concentrate on the
theoretical features in this paper, the underlying operator ring is imple-
mented and provides a sufficient basis for all methods presented here.

1 Introduction

A symbolic framework for boundary problems was built up in [11,13] for linear
ordinary differential equations (LODEs); see also [15,6,7] for more recent devel-
opments. One of our long-term goals is to extend this to boundary problems for
linear partial differential equations (LPDEs). Since this is a daunting task in
full generality, we want to tackle it in stages of increasing generality. In the first
instance, we restrict ourselves to constant coefficients, where the theory is quite
well-developed [2]. Within this class we distinguish the following three stages:

1. The simplest is the Cauchy problem for completely reducible operators.

2. The next stage will be the Cauchy problem for general hyperbolic LPDEs.

3. After that we plan to study boundary problems for elliptic/parabolic LPDEs.

In this paper we treat the first case (Section 4). But before that we build
up a general algebraic framework (Sections 2 and 3) that allows a symbolic
description for all boundary problems (LPDEs/LODEs, scalar/system, homo-
geneous/inhomogeneous, elliptic/hyperbolic/parabolic).1 Using these concepts
and tools we develop a general solution strategy for the Cauchy problem in the
case (1). See the Conclusion for some thoughts about the next two steps.
The passage from LODEs to LPDEs was addressed at two earlier occasions:

� The authors acknowledge support from the EPSRC First Grant EP/I037474/1.
1 Due to space limitations we omit proofs; they can be found in arXiv:1304.7380.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 301–314, 2013.
c© Springer International Publishing Switzerland 2013

arXiv:1304.7380

302 M. Rosenkranz and N. Phisanbut

– An abstract theory of boundary problems was developed in [9], including
LODEs and LPDEs as well as linear systems of these. The concepts and re-
sults of Sections 2 and 3 are built on this foundation, adding crucial concepts
whose full scope is only appreciated in the LPDE setting: boundary data,
semi-homogeneous problem, state operator.

– An algebraic language for multivariate differential and integral operators was
introduced in Section 4 of [14], with a prototype implementation described
in Section 5 of the same paper. This language is generalized in the PIDOS
algebra2 of Section 4, and it is also implemented in a Mathematica package.

In this paper we will not describe the current state of the implementation
(mainly because of space limitations). Let us thus say a few words about this
here. A complete reimplementation of the PIDOS package described in [14] is
under way. The new package is called OPIDO (Ordinary and Partial Integro-
Differential Operators), and it is implemented as a standalone Mathematica
package unlike its predecessor, which was incorporated into the THEOREMA
system. In fact, our reimplementation reflects several important design princi-
ples of THEOREMA, emphasizing the use of functors and a strong support for
modern two-dimensional (user-controllable) parsing rules. We have called this
programming paradigm FUNPRO, first presented at the Mathematica sympo-
sium [12]. The last current stable version of the (prototype) package can be
found at http://www.kent.ac.uk/smsas/personal/mgr/index.html.

While the interested reader will find all the relevent details (in particular
the rather large rewrite system) in this package, here are a few remarks on the
current state of the implementation:

– The FUNPRO paradigm emphasizes the a functional style of programming
while at the same time encapsulating all mathematical domains similar to
object-oriented languages. For example, a ring R would come along with its
various operations like +R and ∗R.

– We make heavy use of two-dimensional syntax, using parsing and formatting
rules that allow us to write integro-differential operators in a notation that
is close to the one we use on paper.

– At this stage we do not aim at efficiency. Whenever there was a conflict
between speed and conceptual clarity, we gave preference to the latter. The
reason is that we view the current package as a prototype, with the goal of
writing a more efficient (and stable) MAPLE package once the content is
sufficiently matured.

– Since we rely on Mathematica for computing integrals in closed form, we
inherit all the usual limitations in that respect. However, this is not a real
issue in the current scope (constant coefficients) since here we can stay within
the class of exponential polynomials.

We plan to describe more details of the implementation at another occasion.

2 PIDOS = Partial Integro-Differential Operator System.

http://www.kent.ac.uk/smsas/personal/mgr/index.html

Symbolic Theory of Boundary Problems with Applications 303

At the time of writing, the ring of ordinary integro-differential operators is
completed and the ring of partial integro-differential operators is close to com-
pletion (for two independent variables). Compared to [14], the new PIDOS ring
contains several crucial new rewrite rules (instances of the substitution rule for
resolving multiple integrals). Our conjecture is that the new rewrite system is
noetherian and confluent but this shall also be analyzed at another occasion.

Notation. The algebra of m × n matrices over a field K is written as Km
n ,

where m = 1 or n = 1 is omitted. Thus we identify Km = K ⊕ · · · ⊕K with the
space of column vectors and Kn = (Kn)∗ with the space of row vectors. More
generally, we have Km

n
∼= Kn → Km. As usual we write Cω(�n) for the algebra

of (complex-valued) analytic functions with real arguments is denoted by.

2 An Algebraic Language for Boundary Data

As mentioned in the Introduction, we follow the abstract setting developed in [9].
We will motivate and recapitulate some key concepts here, but for a fuller treat-
ment of these issues we must refer the reader to [9] and its references.

Let us recall the notion of boundary problem. Fix vector spaces F and G over
a common ground field K of characteristic zero (for avoiding trivialities one may
assume F and G to be infinite-dimensional). Then a boundary problem (T,B)
consists of an epimorphism T : F → G and a subspace B ⊆ F∗ that is orthogo-
nally closed in the sense defined below. We call T the differential operator and B
the boundary space.

Similar to the correspondence of ideals/varieties in algebraic geometry, we
make use of the following Galois connection [9, A.11]. If A is any subspace of the
space F , its orthogonal A⊥ ≤ F∗ is defined as {ϕ ∈ F∗ | ϕ(a) = 0 for all a ∈ A}.
Dually, for a subspace B of the dual space F∗, the orthogonal B⊥ ≤ F is defined
by {f ∈ F | β(f) = 0 for all β ∈ B}. If we think of F as “functions” and of F∗ as
“boundary conditions”, then A⊥ is the space of valid conditions (the boundary
conditions satisfied by the given functions) while B⊥ is the space of admissible
functions (the functions satisfying the given conditions).

Naturally, a subspace of either S of F or F∗ is called orthogonally closed if
S⊥⊥ = S. But while any subspace of F itself is always orthogonally closed, this
is far from being the case of the subspaces of the dual F∗. Hence the condition on
boundary spaces B to be orthogonally closed is in general not trivial. However,
if B is finite-dimensional as in boundary problems for LODEs (as in Example 1
below), then it is automatically orthogonally closed. For LPDEs, the condition
of orthogonal closure is important; see Example 2 for an intuitive explanation.

In [11,13] and also in the abstract setting of [9] we have only considered
what is sometimes called the semi-inhomgeneous boundary problem [16], more
precisely the semi-inhomogeneous incarnation of (T,B); see Definition 7 for the
full picture. This means we are given a forcing function f ∈ G and we search for
a solution u ∈ F with

Tu = f,
β(u) = 0 (β ∈ B). (1)

304 M. Rosenkranz and N. Phisanbut

In other words, u satisfies the inhomogeneous “differential equation” Tu = f
and the homogeneous “boundary conditions” β(u) = 0 given in B.

A boundary problem which admits a unique solution u ∈ F for every forcing
function f ∈ G is called regular. In terms of the spaces, this condition can be
expressed equivalently by requiring that KerT � B⊥ = F ; see [9] for further
details. In this paper we shall deal exclusively with regular boundary problems.
For singular boundary problems we refer the reader to [6] and [5].

For a regular boundary problem, one has a linear operator G : G → F send-
ing f to u is known as the Green’s operator of the boundary problem (T,B).
From the above we see that G is characterized by TG = 1 and ImG = B⊥.

Example 1. A classical example of this notion is the two-point boundary prob-
lem. As a typical case, consider the simplified model of stationary heat conduction
described by

u′′ = f,
u(0) = u(1) = 0.

Here we can choose F = G = C∞(�) for the function space such that the differ-
ential operator is given by T = D2 : C∞(�) → C∞(�) and the boundary space
by the two-dimensional subspace of C∞(�)∗ spanned by the linear function-
als L : u /→ u(0) and R : u /→ u(1) for evaluation on the left and right endpoint.
In the sequel we shall write B = [L,R], employing an important generalization
for LPDEs, described in the next eamples. We can express its Green’s operator
in the language of integro-differential operators as explained in [13].

Example 2. As a typical counterpart in the world of LPDEs, consider the equa-
tion for waves in an inhomogeneous medium, described by

uxx − utt = f(x, t)
u(x, 0) = ut(x, 0) = u(0, t) = u(1, t) = 0

in one space dimension. In this case we choose F = G = Cω(�×�+); again one
could choose much larger spaces of functions (or distributions) in analysis and in
the applications. Here the differential operator is T = Dxx−Dtt : C

ω(�×�+) →
Cω(�×�+) while the boundary space B is the orthogonal closure of the linear
span of the families of functionals βx, γx (x ∈ �) and κt, λt; (t ∈ �+) defined
by βx(u) = u(x, 0), γx(u) = ut(x, 0) and κt(u) = u(0, t), λt(u) = u(1, t). Using
the notation [. . .] for denoting the orthogonal closure of the linear span, we can
thus write B = [βx, γx, κt, λt | x ∈ �, t ∈ �+] for the boundary space under
consideration.

The point of the orthogonal closure is that the given conditions imply other
conditions not in their span, for example ux(1/2, 0) = 0 or

� 5

−3u(0, τ) dτ = 0.
Rather than being linear consequences, these two examples are differential and
integral consequences. (Of course the full boundary space also contains many
functionals without a natural analytic interpretation.)

Symbolic Theory of Boundary Problems with Applications 305

In the problems above, the differential equation is inhomogeneous while the
boundary conditions are homogeneous. A semi-homogeneous boundary problem
is the opposite, combining a homogeneous differential equation with inhomoge-
neous boundary conditions. While this is a simple task for LODEs (as always we
assume that the fundamental system is available to us in some form!), it is usu-
ally a nontrivial problem for LPDEs (even when they have constant coefficients).
We will give the formal definition of a semi-inhomogeneous boundary problem
in the next section (Definition 7). Here it suffices to consider an example for
developing the necessary auxiliary notions.

Example 3. The Cauchy problem for the wave equation in one dimension is

uxx − utt = 0,
u(x, 0) = f(x), ut(x, 0) = g(x).

Being a hyperbolic problem, we could use rather general function spaces for
the “boundary data” f, g. For reasons of uniformity we will nevertheless restrict
ourselves here to the analytic setting, so assume f, g ∈ Cω(�). Note that the
association of u to (f, g) is again a linear operator mapping (two univariate)
functions to a (bivariate) function; we will come back to this point in Definition 7.

Going back to the abstract setting, one is tempted to define the notion
of boundary data as some kind of functions depending on “fewer” variables.
But the problem with this approach is that—abstractly speaking—we are not
dealing with any functions depending on any number of variables (but see be-
low). Moreover, the inhomogeneous boundary conditions in the form u(0, x) =
f(x), ut(0, x) = g(x) are basis-dependent while the whole point of the abstract
theory is to provide a basis-free description (which leads to an elegant setting
for describing composition and factorization of abstract boundary problems); see
Proposition 9. We shall therefore develop a basis-independent notion of bound-
ary data (we can go back to the traditional description by choosing a basis).

We define first the trace map trc : F → B∗ as sending f ∈ F to the func-
tional β /→ β(f). In Example 3 this would map the function u(x, t) to its position
and velocity values on �×{0}. We call trc(f) the trace of f and write it as f∗.
Moreover, we denote the image of the map trc by B′ and refer to its elements as
boundary data. Note that B′ is usually much smaller than the full dual B∗ since a
continuous function (let alone an analytic one) cannot assume arbitrary values.
(This situation is vaguely reminiscent of the algebraic and continuous dual of a
topological vector space.)

Since by definition the trace map is surjective from F to B′, it has some
right inverse B� : B′ → F . We refer to B� as an interpolator for B since it
constructs a “function” f = B�(B) ∈ F from given boundary values B ∈ B′

such that β(f) = B(β). Of course, the choice of f is usually far from being
unique. Apart from its use for describing boundary data (see at the end of this
section), the notion of interpolator will turn out to be useful for solving the
semi-homogeneous boundary problem (see Proposition 10).

306 M. Rosenkranz and N. Phisanbut

Let us now describe how to relate these abstract notions to the usual setting
of initial and boundary values problems as they actually in analysis: essentially
by choosing a basis. However, we have to be a bit careful since we must deal
with the orthogonal closure.

Definition 4. If B ≤ F∗ is any orthogonally closed subspace, we call a fam-
ily (βi | i ∈ I) a boundary basis if B = [βi | i ∈ I], meaning B is the orthogonal
closure of the span of the βi.

Note that a boundary basis is typically smaller than a K-linear basis of B. All
traditional boundary problems are given in terms of such a boundary basis.
In Example 3, the boundary basis could be spelled out by using I = � 0 �
with β(x,0)(u) = u(x, 0) and β(x,1)(u) = ut(x, 0). Relative to a boundary ba-
sis (βi | i ∈ I), we call f = βi(f)i∈I ∈ KI the boundary values of f ∈ F . As we
can see from the next proposition, we may think of the trace as a basis-free de-
scription of boundary values. Conversely, one can always extract from any given
boundary data B ∈ B′ the boundary values B(βi)i∈I as its coordinates relative
to the boundary basis (βi).

Lemma 5. Let B ≤ F∗ be a boundary space with boundary basis (βi |∈ I). If
for any B, B̃ ∈ B′ one has B(βi)i∈I = B̃(βi)i∈I then also B = B̃. In particular,
for any f ∈ F , the trace f∗ depends only on the boundary values f(βi)i∈I .

The analytic interpretation of this proposition is clear in concrete cases like
Example 2: Once the values u(x, 0), ut(x, 0) and u(0, t), u(1, t) are fixed, all dif-
ferential and integral consequences, as in the above examples ux(1/2, 0) = 0

or
� 3/4

1/4u(0, τ) dτ , are likewise fixed. It is therefore natural that an interpolator

need only consider the boundary values rather than the full trace information.
This is the contents of the next lemma.

Lemma 6. Let B ≤ F∗ be a boundary space with boundary basis (βi |∈ I)
and write fI = f(βi)i∈I ∈ KI for the boundary values of any f ∈ F and B′

I

for the K-subspace of KI generated by all boundary values fI . Then any linear
map J : B′

I → F with J(fI)I = fI induces a unique interpolator B� : B′ → F
defined by B /→ J(B(βi)i∈I).

As noted above, we can always extract the boundary values B(βi)i∈I ∈ KI of
some boundary data B ∈ B′ relative to fixed basis (βi) of B. However, since one
normally has got only the boundary values (coming from some function), where
does the corresponding B ∈ B′ come from? By definition, it has to assign values
to all β ∈ B, not only to the βi making up the boundary basis. As suggested
by the above lemmata, for actual computations those additional values will be
irrelevant. Nevertheless, it gives a feeling of confidence to provide these values:
If B� is any interpolator, we have B(β) = β(B�(Bi)i∈I). This follows immedi-
ately from the fact that B� is a right inverse of the trace map and that it depends
only on the boundary values (Bi)i∈I by Lemma 6. In the analysis setting this
means we interpolate the given boundary value and then do with the resulting
function whatever is desired (like derivatives and integrals in Example 2).

Symbolic Theory of Boundary Problems with Applications 307

3 Green’s Operators for Signals and States

Using the notion of boundary data developed in the previous section, we can
now give the formal definition of the semi-homogeneous boundary problem. In
fact, we can distinguish three different incarnations of a “boundary problem”
(as we assume regularity, the fully homogeneous problem is of course trivial).

Definition 7. Let (T,B) be a regular boundary problem with T : F → G and
boundary space B ⊆ F∗. Then we distinguish the following problems:

Given (f,B) ∈ G ⊕ B′,
find u ∈ F with

Tu = f,
β(u) = B(β) (β ∈ B).

Given f ∈ G,
find u ∈ F with

Tu = f,
β(u) = 0 (β ∈ B).

Given B ∈ B′,
find u ∈ F with

Tu = 0,
β(u) = B(β) (β ∈ B).

They are, respectively, called the fully inhomogeneous, the semi-inhomogeneous
and the semi-homogeneous boundary problem for (T,B). The corresponding lin-
ear operators will be written as F : G ⊕ B′ → F , (f,B) /→ u and G : G → F ,
f /→ u and H : B′ → F , B /→ u.

Lemma 8. Each of the three problems in Definition 7 has a unique solution for
the respective input data,so the operators F,G,H are well-defined.

The terminology for the operators F,G,H is not uniform in the literature. In
the past, we have only considered G and called it the “Green’s operator” acting
on a “forcing function” f . While this is in good keeping with the engineering
tradition and large parts of the standard mathematical culture [16], it is difficult
to combine with suitable terminology for F and H . In this paper, we shall follow
the systems theory jargon [8] and refer to F as the (full) transfer operator,
to G as the (zero-state) signal transfer operator or briefly signal operator, and
to H as the (zero-signal) state transfer operator or briefly state operator. This
terminology reflects the common view of forcing functions f ∈ F as “signals”
and boundary data B ∈ B′ as (initial) “states”.

One of the advantages of the abstract formulation is that it allows us to
describe the product of boundary problems in a succinct, basis-free manner (and
it includes LODEs and LPDEs as well as systems of these). The composite
boundary problem can then be solved, both in its semi-inhomogneous and its
semi-homogeneous incarnation (the latter is presented here for the first time).

Proposition 9. Define the product of two boundary problems (T,B) and (T̃ , B̃)
with F T̃→ G T→ H and B ⊆ G∗, B̃ ⊆ F by

(T,B)(T̃ , B̃) = (T T̃ ,BT̃ + B̃).

Then (T,B)(T̃ , B̃) is regular if both factors are. In that case, if (T,B), (T̃ , B̃)
have, respectively, the signal operators G, G̃ and the state operators H, H̃,
then (T,B)(T̃ , B̃) has the signal operator G̃G and the state operator (BT̃ + B̃)′ →
F acting by B + B̃ /→ G̃H(BT̃ ∗) + H̃(B̃).

308 M. Rosenkranz and N. Phisanbut

As detailed in [11,9], the computation of the signal operator G can be decom-
posed in two parts: (1) Finding a right inverse T� of the differential operator T ,
which involves only the differential equation without boundary conditions (so
we may replace the boundary by intial conditions, thus having again a unique
solution: this is the so-called fundamental right inverse). (2) Determining the
projector onto the homogeneous solution space along the space of functions ad-
missible for the given boundary conditions—the projector “twists” the solutions
coming from the right inverse into satisfying the boundary conditions. An anal-
ogous result holds for the computation of the state operator H if we replace the
right inverse T� of T by the interpolator B� for the boundary space B.

Proposition 10. Let (T,B) be regular with operators F,G,H as in Definition 7.
Then we have G = (1−P)T� and H = PB�, hence F = (1−P)T� ⊕PB� for
the transfer operator. Here T� : G → F is any right inverse of the differential
operator T : F → G and B� : B′ → F any interpolator for B while P : F → F is
the projector determined by ImP = KerT and KerP = B⊥.

If T ∈ �[D] is a completely reducible differential operator3 with constant co-
efficients in �, the determination of T� reduces to solving an inhomogeneous
first-order equation with constant coefficients—which is of course straightfor-
ward (Lemma 14). Also the determination of the interpolator B� turns out to
be easy for a Cauchy problem since it is essentially given by the corresponding
Taylor polynomial (3). Hence it remains to find some means for computing the
kernel projector P for a boundary problem (T,B).

In the case of a LODE of order n, the method for computing P given in the
proof of Theorem 26 of [13] and in Section 6 of [9] is essentially a Gaussian
elimination on the so-called evaluation matrix β(u) = [βi(uj)]ij ∈ Kn×n formed
by evaluating the i-th boundary condition βi on the j-th fundamental solution uj .
So here we assume u1, . . . , un is a basis of KerT and β1, . . . , βn a basis of B.
Unfortunately, this is not a very intuitive description of P , and it is not evident
how to generalize it to the LPDE case. We have to gain a more conceptual
perspective at β(u) for making the generalization transparent.

Let us write Ev : B ⊕ KerT → K for the bilinear operation of evaluation
(β, u) /→ β(u). Choosing bases β1, . . . , βn for B and u1, . . . , un for KerT , the
coordinate matrix of Ev is clearly β(u). By the usual technique of dualization,
we can also think of Ev as the map B : KerT → B∗ that sends u ∈ KerT to
the functional β /→ β(u). But this map is nothing else than the restriction of
the trace map trc : F → B′ to KerT ⊂ F . It is easy to check that the restricted
trace is bijective and that its inverse gives rise to the projector.

Proposition 11. Let (T,B) be a regular boundary problem with E : KerT → B′

being the restricted trace map. Then E is bijective with the state operator H as
its inverse, and P = H ◦trc is the projector with ImP = KerT and KerP = B⊥.

3 By definition, this means its characteristic polynomial T (λ) ∈ �[λ] = �[λ1, . . . , λn]
splits into linear factors.

Symbolic Theory of Boundary Problems with Applications 309

We observe that the formula P (u) = H(u∗) has a very natural interpretation:
The kernel projector picks up the boundary data u∗ of an arbitrary function u ∈
F and then constructs the required kernel element H(u∗) ∈ KerT by solving
the semi-homogeneous boundary problem with boundary data u∗. In the LODE
case, the relation P = H ◦ trc reduces to the aforementioned formulae (see [9]
after Proposition 6.1) after choosing bases u1, . . . , un for KerT and β1, . . . , βn
for B. Apart from its conceptual clarity, the advantage of Proposition 11 is that
it can also be used in the LDPE case (see after Lemma 14).

4 The Cauchy Problem for Analytic Functions

At this point we switch from the abstract setting of Sections 2 and 3 to the
concrete setting of analytic functions. Note that we are dealing with complex-
valued functions of real arguments. This means the ground field isK = �, and F
is the integro-differential algebra of entire functions restricted to real arguments.

More precisely, we shall employ the following conventions for easing the burden
of book-keeping: As elements of F we take all holomorphic functions �n → � for
any n ∈ �, including the constant functions u ∈ � for n = 0. In other words, F
is a direct limit of algebras. Moreover, we have derivations Dn and integrals An

for all n > 0, namely Dn(u) = ∂u/∂xn and

An(u) =

∫ xn

0

u(. . . , ξ, . . .) dξ,

where ξ occurs at the n-th position. Clearly, we have then integro-differential
algebras (F , Dn, An) for every n > 0. In fact, F has the structure of a hierar-
chical integro-differential algebra. This notion will be made precise at another
occasion; for the moment it suffices to make the following observations. If �� is
the sublattice of the powerset P(�+) that consists of finite sets α = {α1, . . . , αk}
and the full set �+ = {1, 2, 3, . . .}, we define for α ∈ �� the subalgebras

Fα = {f ∈ F | Dif = 0 for all i /∈ α},

consisting of the functions depending (at most) on xα1 , . . . , xαk
. Then (Fα,⊆)

is a sublattice of (F ,⊆) that is isomorphic to the lattice (��,⊆). The bottom
element is of course F∅ = �, the top element F�+ = F . We write Fn as an
abbreviation for F{1,...,n}.

As in the earlier paper [14], we add to this algebraic structure all linear sub-
stitution operators. In accordance with the above hierarchical structure, we use
the ring �∗

∗ of row and column finite matrices with complex entries.4 This means

4 The usage of complex substitutions in functions of a real argument may sound strange
at first. But an analytic function on �n is of course also analytic on �n with values
in �, so there is no problem with this view. For example, the substitution (1, i)∗

sends f(x) = ex ∈ F1 to f(x + iy) = ex cos y + iey sin y ∈ F2. Moreover, complex
substitutions are indispensible for specifying the general solution of elliptic equations
like the Laplace equation.

310 M. Rosenkranz and N. Phisanbut

any M ∈ �∗
∗ can actually be seen as a finite matrix M ∈ �m

n with m rows and n
columns, extended by zero rows and columns. As usual, we identifyM ∈ �m

n with
the linear mapM : �n → �m, yielding the substitution operatorM∗ : Fm → Fn

defined by u(x) /→ u(Mx).
We write F [D,A] for the PIDOS algebra generated over � by the opera-

tors Dn, An (n > 0), the substitutions M∗ induced by M ∈ �∗
∗ and the ex-

ponential basis polynomials xαeλx ∈ F . Here x denotes the arguments x =
(x1, . . . , xn) for any n ≥ 0, with exponents α = (α1, . . . , αn) ∈ � and frequen-
cies λ = (λ1, . . . , λn) ∈ �. Obviously, F [D,A] acts on F , with D = (D1, D2, . . .)
denoting the differential operators and A = (A1, A2, . . .) the integral operators,
similar to the univariate case in the older notation of [11]. Here we avoid the
notation

�
for the integrals since the powers

� n
might be mistaken as integrals

with upper bound n.
The algebra F [D,A] can be described by a rewrite system (PIDOS = partial

integro-differential operator system), analogous to the one given in [14]. We
will present this system in more detail—in particular proofs of termination and
confluence—at another occasion.

Since in this paper we restrict ourselves to the analytic setting, we can appeal
to the well-known Cauchy-Kovalevskaya theorem [10, Thm. 2.22] for ensuring
the existence and uniqueness of the solution of the Cauchy problem. While the
theorem in its usual form yields only local results, there is also a global version [4,
Thm. 7.4] that provides a good foundation for our current purposes.5 Since this
form of the theorem is not widely known, we repeat the statement here.

As usual, we designate one lead variable t, writing the other ones x1, x2, . . .
as before. Note that in applications t is not necessarily time. The apparently
special form of the differential equation Tu = 0 implies no loss of generality:
Whenever T ∈ �[D] is a differential operator of order deg T = m, the change of
variables t̄ = t, x̄i = xi + t leads to an equation of the required form.

Theorem 12 (Global Cauchy-Kovalevskaya). Let T ∈ �[Dt, D1, . . . , Dn]
be a differential operator in Caucy-Kovalevskaya form with respect to t, mean-
ing T = Dm

t + T̃ with deg(T̃ , t) < m and deg(T̃) ≤ m. Then the Cauchy problem

Tu = 0

Di−1
t u(0, x1, . . . , xn) = fi(x1, . . . , xn) for i = 1, . . . ,m

}
(2)

has a unique solution u ∈ Fn+1 for given (f1, . . . , fm) ∈ Fm
n .

In the abstract language of Sections 2 and 3 this is the semi-homogeneous
boundary problem (T,B) with boundary space

B = [L0,ξD
i
t | i = 0, . . . ,m− 1 and ξ ∈ �m],

where the evaluation u(t, x1, . . . , xn) /→ u(0, ξ1, . . . , ξn) is written as the substi-
tution L0,ξ = diag(0, ξ1, . . . , ξm)∗ denotes . Hence the solution of (2) is given

5 Of course the problem may still be ill-posed ; we will not treat this issue here.

Symbolic Theory of Boundary Problems with Applications 311

by the state operator (f1, . . . , fm) ∈ Fm
n /→ u if we identify the boundary

data B ∈ B′ with its coordinate representation (f1, . . . , fm) ∈ Fm
n relative to the

above boundary basis (L0,ξD
i
t). In detail, B : B → � is the unique linear map

sending L0,ξD
i
t ∈ B to f(ξ) ∈ �; confer Lemma 5 for the uniqueness statement.

In the sequel these identifications will be implicit.
For future reference, we mention also that the usual Taylor polynomial allows

one to provide a natural interpolator for the initial data, namely

B�(f1, . . . , fm) = f1(x) + t f2(x) + · · ·+ tm−1

(m−1)! fm(x), (3)

which we will not need here because compute the kernel projector directly from
its first-order factors.

In this paper, we will study the Cauchy problem (2) for a completely re-
ducible operator T (D). Hence assume T = Tm1

1 · · ·Tmk

k with first-order op-
erators T1, . . . , Tk ∈ �[D]. By a well-known consequence of the Ehrenpreis-
Palamodov theorem, the general solution of Tu = 0 is the sum of the general
solutions of the factor equations Tm1

1 u = 0, . . . , Tmk

k u = 0; see the Corollary
on [1, p. 187]. Hence it remains to consider differential operators that are powers
of first-order ones (we may assume all nonconstant coefficients are nonzero since
otherwise we reduce n after renaming variables).

Lemma 13. Let T = a + a0Dt + a1D1 + · · · + anDn ∈ �[D] be a first-order
operator with all ai �= 0. Order the variables such that all cumulative sums a0 +
a1 + · · ·+ ai−1 are nonzero. Then the general solution of Tmu = 0 is given by

u(t, x1, . . . , xn) =

m∑
i=1

ci(x̄1, . . . , x̄n)
ti−1e−at/a0

(i−1)! , (4)

x̄i = t+ x1 + · · ·+ xi−1 − (a0 + a1 + · · ·+ ai−1)xi/ai, (5)

where (f1, . . . , fm) ∈ Fm
n−1 are arbitrary functions of the indicated arguments.

In principle, one could now combine the general solutions (4) for each factor,
substitute them into the initial conditions of (2) and then solve for the ci in
terms of the prescribed boundary data (f1, . . . , fm). With this choice of ci, the
general solution will become the state operator for the Cauchy problem. However,
this is a very laborious procedure, and therefore we prefer to use another route.
Since we assume a completely reducible operator, we can employ the product
representation of Proposition 9. In that case, it remains to consider the case of
a single first-order factor.

Lemma 14. Let T = a + a0Dt + a1D1 + · · · + anDn ∈ �[D] be a first-order
operator with all ai �= 0. Then the Cauchy problem Tu = 0, u(0, x1, . . . , xn) =
f(x1, . . . , xn) has the state operator H(f) = e−at/a0 Z∗Z̃∗

xf and the signal oper-
ator G = a−1

0 eat/a0 Z∗At e
−at/a0 Z̃∗, where Z ∈ �n+1

n+1 is the transformation (5)

with t̄ = t, and Z̃ is its inverse (written as Z̃x when restricted to the argu-
ments x1, . . . , xn).

312 M. Rosenkranz and N. Phisanbut

By Proposition 11, we can determine the kernel projector for the Cauchy problem
of Lemma 14 as P = H ◦ trc, where trc(u) = u(0, x1, . . . , xn) in this simple case.
Having the kernel projector and the right inverse T� in Lemma 14, the signal
operator is computed by G = (1−P)T� as usual. Now we can tackle the general
Cauchy problem (2) by a simple special case of Proposition 9.

Proposition 15. Let T1, T2 ∈ �[D] be two first-order operators with nonzero
coefficients for Dt. If L0,ξ is the evaluation defined after Theorem. 12, then we
have

(T1, [L0,ξ | ξ ∈ �]) (T2, [L0,ξ | ξ ∈ �]) = (T1T2, [L0,ξ, L0,ξDt | ξ ∈ �]

for the product of the Cauchy problems.

This settles the completely reducible case: Using Proposition 15 we can break
down the general Cauchy problem (2) into first-order factors with single ini-
tial conditions. For each of these we compute the state and signal operator via
Lemma 14, hence the state and signal operator of (2) by Proposition 9.

Example 16. As a typical example, let us consider a modified wave equation as
treated in [3, §5.2] within the general class of higher-order hyperbolic equations
with constant coefficients. We want to solve the initial value problem given by

utt − 4 utx + 4 uxx − 9 uyy = f,
u(0, x, y) = f1(x, y), ut(0, x, y) = f2(x, y)

(6)

for a given forcing function f and initial data f1, f2. Note that the differential
operator T = D2

t − 4DtDx+4D2
x− 9D2

y factors completely as T = T− T+ with
the two first-order factors T± = Dt − 2Dx ± 3Dy. In view of Proposition 9, it
suffices to consider the two first-order factor problems

ut − 2 ux ± 3 uy = f,
u(0, x, y) = f±(x, y).

(7)

Using Lemma 14, we obtain H±f± (t, x, y) = f±(x + 2t, y ∓ 3t) for the state
operators and

G±f (t, x, y) =
� t

0 f(τ, x+ 2t− 2τ, y ∓ 3t± 3τ) dτ

for the signal operators. By Proposition15 the composition of the two semi-
inhomogeneous boundary problems for (7) yields the semi-inhomogeneous prob-
lem for (6), hence we may compute the signal operator as G = G+G− with

Gf (t, x, y) =
� t

0

� σ

0
f(τ, x+ 2t− 2τ, y − 3t− 3τ + 6σ) dτ dσ.

Using Proposition 9 now for computing the composite state operator one obtains
at first u(t, x, y) = H(f−, f+) = G+H−f− +H+f+ with

u(t, x, y) = f+(x+ 2t, y − 3t) +
� t

0 f
−(x+ 2t, y − 3t+ 6τ) dτ.

Symbolic Theory of Boundary Problems with Applications 313

But this result should be interpreted cautiously: It solves the differential equation
of (6) for the initial conditions u(0, x, y) = f+(x, y) and T+u (0, x, y) = f−(x, y).
But since T+u(0, x, y) = ut(0, x, y) − (2Dx − 3Dy)f1(x, y), we just have to
pick f+(x, y) = f1(x, y) and f−(x, y) = f2(x, y) − 2Dxf1(x, y) + 3Dyf1(x, y)
so that H(f1, f2) = u with

u(t, x, y) = f1(x+ 2t, y− 3t) +
� t

0
(f2 − 2Dxf1 + 3Dyf1)(x+ 2t, y − 3t+ 6τ) dτ

is the state operator for the given initial value problem (6).

5 Conclusion

As explained in the Introduction, we see the framework developed in this paper
as the first stage of a more ambitious endeavor aimed at boundary problems for
general constant-coefficient (and other) LPDEs. Following the enumeration of
the Introduction, the next steps are as follows:

1. Stage (1) was presented in this paper, but the detailed implementation for
some of the methods explained here is still ongoing. The crucial feature of
this stage is that it allows us to stay within the (rather narrow) confines of
the PIDOS algebra. In particular, no Fourier transformations are needed in
this case, so the analytic setting is entirely sufficient.

2. As we enter Stage (2), it appears to be necessary to employ stronger tools.
The most popular choice is certainly the framework of Fourier transforms
(and the related Laplace transforms). While this can be algebraized in a
manner completely analogous to the PIDOS algebra, the issue of choosing
the right function space becomes more pressing: Clearly one has to leave
the holomorphic setting for more analysis-flavoured spaces like the Schwartz
class or functions with compact support. (As of now we stop short of using
distributions since that would necessitate a more radical departure, forcing
us to give up rings in favor of modules.)

3. For the treatment of genuine boundary problems in Stage (3) our plan is to
use a powerful generalization of the Fourier transformation—the Ehrenpreis-
Palamodov integral representation [1], also applicable to systems of LPDEs.

Much of this is still far away. But the general algebraic framework for bound-
ary problems from Sections 2 and 3 is applicable, so the main work ahead of us
is to identify reasonable classes of LPDEs and boundary problems that admit a
symbolic treatment of one sort or another.

References

1. Hansen, S.: On the “fundamental principle” of L. Ehrenpreis. In: Partial Differen-
tial Equations (Warsaw, 1978). Banach Center Publ., vol. 10, pp. 185–201. PWN,
Warsaw (1983)

2. Hörmander, L.: Linear partial differential operators. Springer, Berlin (1976)

314 M. Rosenkranz and N. Phisanbut

3. John, F.: Partial differential equations, 4th edn. Applied Mathematical Sciences,
vol. 1. Springer, New York (1982)

4. Knapp, A.W.: Advanced real analysis. Cornerstones. Birkhäuser Boston Inc.,
Boston (2005)

5. Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary
Problems. PhD thesis, Johannes Kepler University, Linz, Austria (November 2012);
Abstracted in ACM Communications in Computer Algebra 46(4(182)) (December
2012)

6. Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary
problems in MAPLE. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V.
(eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)

7. Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordi-
nary boundary problems in maple. In: Proceedings of the 37th International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2012 (2012) (software
presentation)

8. Oberst, U., Pauer, F.: The constructive solution of linear systems of partial dif-
ference and differential equations with constant coefficients. Multidimens. Systems
Signal Process. 12(3-4), 253–308 (2001); Special issue: Applications of Gröbner
bases to multidimensional systems and signal processing

9. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring lin-
ear boundary problems. Ann. Mat. Pura Appl (4) 188(1), 123–151 (2009),
doi:10.1007/s10231-008-0068-3

10. Renardy, M., Rogers, R.C.: An introduction to partial differential equations, 2nd
edn. Texts in Applied Mathematics, vol. 13. Springer, New York (2004)

11. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199
(2005)

12. Rosenkranz, M.: Functorial programming & integro-differential operators. In: Talk
at the International Mathematica Symposium (IMS 2012), London, United King-
dom, June 13 (2012), http://www.homepages.ucl.ac.uk/~ucahwts/ims2012/

ims2012announce1/IMS2012.html

13. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. Journal of Symbolic
Computation 43(8), 515–544 (2008)

14. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic frame-
work for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W.,
Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Hei-
delberg (2009)

15. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of
boundary problems: From rewriting to parametrized Gröbner bases. In: Langer,
U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and
Prospects, pp. 273–331. Springer (2012)

16. Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons,
New York (1979)

http://www.homepages.ucl.ac.uk/~ucahwts/ims2012/ims2012announce1/{IMS2012.html}
http://www.homepages.ucl.ac.uk/~ucahwts/ims2012/ims2012announce1/{IMS2012.html}

Towards Industrial Application

of Approximate Computer Algebra�

Tateaki Sasaki1, Daiju Inaba2, and Fujio Kako3

1 Professor emeritus, University of Tsukuba,
Tsukuba-city, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Japanese Association of Mathematics Certification,

Ueno 5-1-1, Tokyo 110-0005, Japan
d.inaba@su-gaku.net

3 Dept. Info. Comp. Sci., Nara Women’s University,
Nara-city, Nara 630-8506, Japan

kako@ics.nara-wu.ac.jp

Abstract. The approximate computer algebra has scarcely been used
for computations in industry so far. In order to break through this situa-
tion, we consider the series expansion of multivariate eigenvalues at their
critical points in an aircraft control model. We show that the approxi-
mate square-free decomposition of univariate polynomial is quite useful
in finding critical points semi-numerically and that the approximate fac-
torization is successfully used for factoring multivariate polynomials with
floating-point number coefficients. Furthermore, the “effective floating-
point numbers” are quite useful in eliminating fully-erroneous terms from
small but meaningful terms.

Keywords: approximate computer algebra, approximate polynomial
factorization, approximate square-free decomposition, Hensel series.

1 Introduction

In this paper, we abbreviate floating-point number to FLOAT, and by F we
denote the fixed-precision FLOATs. By ‖ ◦ ‖, with ◦ a polynomial or numerical
vector, we denote the norm; we employ the infinity norm in this paper.

In industry, expressions with FLOAT coefficients are widely used. However,
most algorithms in computer algebra before 1990 were developed by assum-
ing exact coefficients, such as rational numbers and algebraic numbers. In late
1980’s, the first author started on studying “approximate computer algebra”,
that is, algebraic computation of expressions with inaccurate coefficients repre-
sented by FLOATs. With collaboration of Noda et al., he proposed algorithms
of approximate GCD (greatest common divisor) and approximate square-free
decomposition of univariate polynomials in 1989 [19,20] and multivariate ones

� Work supported by Japan Society for the Promotion of Science under Grants
23500003.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 315–330, 2013.
c© Springer International Publishing Switzerland 2013

316 T. Sasaki, D. Inaba, and F. Kako

in 1991 [10,9]. The algorithms are based on Euclid’s method. Soon, he and his
collaborators proposed an algorithm of approximate factorization of multivariate
polynomials [21,22], which is based on the multivariate Hensel construction. In
1993, Sasaki and Kako proposed a method of expanding multivariate algebraic
functions in a series form at critical points (see Subsect. 3.1) [17], by extending
the multivariate Hensel construction so that it works at critical points. Later,
Sasaki and Inaba revealed the properties of the series and named the series
Hensel series [13,5,15].

Study of approximate algebraic computation has spread to the world very
soon. Shirayanagi proposed a stabilization technique for computing Gröbner
bases using FLOATs [25]. Stetter and Thallinger investigated singular systems
of polynomials having multiple zeros each of which is separated into isolated
zeros under almost all perturbations of the system [27]. Corless, Giesbrecht and
Jeffrey proposed “approximate polynomial decomposition”: given f(x) ∈ C[x],
find polynomials g and h satisfying (f+δf)(x) = g(h(x)), where ‖δf‖ is much
smaller than ‖f‖ and deg(δf) ≤ deg(f) [3]. Many researchers tried to construct
a theory of approximate Gröbner bases since ∼1995, and after various trials, the
first author has constructed a theory based on a concept of “approximate ideal”
and proposed an algorithm to compute them [12]. He and Inaba then proposed
a concept of “approximately singular system” to be a polynomial system the
dimension of whose zero manifold increases by suitable small perturbations of
the system [16].

There are quite many and various studies on approximate computer algebra,
especially on the approximate GCD and the approximate factorization. Further-
more, studies on the nearest polynomial and its related topics may be included
into them. Although the studies include many interesting and important ones,
we do not refer to each because there are so many papers on these topics.

There are a number of applications of approximate computer algebra to math-
ematical computations, such as irreducibility testing of multivariate polynomials
and the analytic continuation of algebraic functions. However, so long as com-
putations in industry are concerned, the applications are very few. The present
authors remind only the followings: Kitamoto proposed to use the approximate
Puiseux series for eigenvalues appearing in the control theory [7], Li et al. uti-
lized the approximate GCD to deconvolute blurred images [8], and Giesbrecht
and Pham employed a symbolic-numeric method to compute null space basis of a
Jacobian matrix from a multibody mechanical system [4]. The current situation
is completely unsatisfactory.

In order to break through this situation, the authors decided to perform a
study of applying approximate computer algebra to industrial computation. As
an industrial problem, we have chosen symbolic-numeric analysis of the passen-
gers aircraft control; the aircraft is described theoretically by a small number of
parameters. We learned the aircraft control by a textbook [1], and found that
the aircraft motion is described usually by being separated into the longitudinal
motion (rotary motion around the “wing axis”) and the lateral motion (rotary
motions around the “body axis” and the “yaw axis”). Hence, we developed an

Towards Industrial Application of Approximate Computer Algebra 317

aircraft model which describe these motions unitedly. We formulate the aircraft
motion in the scheme of linear control theory [2], by approximating the equa-
tions of aircraft motion suitably, and obtain a 9×9 matrix A containing many
aircraft “constants” and free variables. An important expression in the linear
control theory is the eigenpolynomial of A. Substituting suitable numbers for
the aircraft constants in the eigenpolynomial, we obtain a polynomial C̄(X,u)
with FLOATs coefficients, where u denotes three interesting free variables.

We consider searching critical points of C̄(X,u) near the origin and perform-
ing Hensel series expansion of some roots of C̄(X,u) at two critical points. Owing
to this specialized but concrete computation, we will be able to find typical phe-
nomena for which we should be careful enough and situations in which we can
utilize approximate algebraic operations successfully.

In Sect. 2, we present a model of aircraft control and show an eigenpolynomial
the roots of which we will compute. In Subsect. 3.1, after defining the critical
point, we explain how to compute the Hensel series. In Subsect. 3.2, we consider
searching for critical points near the origin, and show that the approximate
square-free decomposition is quite useful in the searching. In Subsect. 3.3, we
consider separating eigenpolynomial into two parts, one containing only critical
eigenvalues and the other containing only non-critical eigenvalues. By this, we
show that it is quite important to remove “fully-erroneous” terms. In Subsect.
3.4, we show that the approximate factorization is nicely applicable to factor the
so-called Newton polynomial with FLOAT coefficients; the Newton polynomial
plays a crucial role in the “extended Hensel construction”. In Subsect. 3.5, we
perform the Hensel series expansion of engenvalues at critical points. In Sect. 4,
we give conclusions and comments on our model from an expert.

2 Eigenpolynomial in an Aircraft Model

We denote the time by t, and the derivative dX/dt by Ẋ . Let (x, y, z) be a
Cartesian coordinate system fixed to the ground, such that the origin is at the
aircraft center of gravity at time t0, the z-axis is vertical to the ground, and the
x- and y-axes are horizontal such that if x-axis points north then y-axis points
east, where the x-axis points the aircraft head at time t0. We also consider three
mutually orthogonal aircraft axes called body axis (or roll axis), wing axis (or
pitch axis) and yaw axis, where the axes pass the aircraft center always: the body
axis penetrates the aircraft body from the tail to head, the wing axis is parallel
to the wings and points from left to right, and the yaw axis is vertical from the
floor to the ceiling. Let θ be the angle between the body axis and the horizontal
plane, with θ > 0 if the body axis points upward, φ the angle between the wing
axis and the horizontal plane, with φ > 0 if the wing axis points upward, and ψ
the angle between the x-axis and the orthogonal projection of the body axis on
the horizontal plane (ψ = 0 at time t0). We express the state of aircraft at time
t by state variables vx, vy, vz , φ, θ, ψ, ωφ, ωθ, ωψ. Here, (vx, vy, vz) = (ẋ, ẏ, ż) and

(ωφ, ωθ, ωψ) = (φ̇, θ̇, ψ̇). We assume that the aircraft is equipped with left and
right engines below the wings and left and right flaps in the rear of wings, where
the left and the right ones are controllable independently.

318 T. Sasaki, D. Inaba, and F. Kako

Our aircraft model is the following first-order differential system for state
vector U given below, where (ux, uy, uz) is the dimensionless velocity defined by
(vx, vy, vz) = V0(1+ux, uy, uz), with V0 the aircraft speed at time t0. Because
of the page limit, we omit the derivation of the model; the reader can see the
omitted part at http://kako.ics.nara-wu.ac.jp/sasaki/CASC13paper.pdf.
Below, matrix A0 is for the aircraft motion in the case of F = 0 and TL = TR,
and AF shows the effect of F and TL �= TR, where T (= TL+TR) and F (= FL+FR)
denote the “thrust” and the force due to flaps, respectively (left and right).

U̇ = (A0 +AF)U + (b0 + bF), U = (ux, uy, uz, φ, θ, ψ, ωφ, ωθ, ωψ)
t, (2.1)

A0=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2D 0 0 0 −αm0L 0 0 0 0
0 −D−Pv 0 −αm0L 0 T+Pv 0 0 0

2αm0L 0 −D−L−Ph 0 L+T+Ph 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0αm0Λ+Qvv 0 0 0−αm0Λ−Qvv0 0−αm0Qo

0 0 Qh 0 −Qh 0 0 0 0
0 Qv 0 0 0 −Qv 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b0=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Td
0
Ld

0
0
0
Qai

Qel

Qru

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.2)

AF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −f+Fac 0 0 0 0
0 0 0−f+Fac 0 0 0 0 0
0 0 0 0 −f+Fas 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, bF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f+Fas

0
f+Fac

0
0
0

−f−Hφac

−f+Hθac + (2+e+)Tθ
−f−Hψas + e−Tψ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.3)
We explain the symbols briefly. In deriving a model, many approximations

are made by assuming u2x + u2y + u2z 1 1 and θ2 + φ2 + ψ2 1 1. The α, β, λ
denote, respectively, the attack angle (α = θ− atan(vz/vx)), the side-slide angle
(β = ψ− atan(vy/vx)), the sweptback angle of the wings; we neglect the dihedral
angle of the wings. The L,D, Ph, Pv denote the lift, frictional drag, forces acting
on tail plates and vertical tail, respectively. L is proportional to α approximately,
and we simplify L to be L = (αm+α)L̃, where αmL̃ denotes the lift in the hor-
izontal flight. We put αm0 = αm+α0, where α0 is the attack angle at time t0.
Similarly, Ph = αP̃h and Pv = βP̃v. Td = T−D and Ld = αmL̃− gM , where g is
the gravitational constant and M is the weight of the aircraft. All these forces
are divided implicitly by MV0 and ˜ is omitted from L̃, P̃h and P̃v in (2.2).
The Λ,Qo, Qvv, Qh, Qv, Qai, Qel, Qru are torques caused by the sweptback wings
(Λ ∝ sinβ tanλ), the rotary motion around the yaw axis, Pv, the ailerons, the
elevators, the rudder, respectively. The Tθ and Tψ are torques due to the en-
gines. They are divided by Iφ, Iφ, Iφ, Iθ, Iψ , Iφ, Iθ, Iψ , Iφ, Iψ , respectively, where

Towards Industrial Application of Approximate Computer Algebra 319

Iφ, Iθ, Iψ are moments of inertia around the body axis, the wing axis, the yaw
axis, respectively. The αF is the angle between the wings and the flaps taken out
downward; the force F is approximately proportional to α+αF: F = (α+αF)F̃ .
The Fac and Fas (and H∗ac and H∗as, where ∗ is either φ, θ or ψ) denote the
forces due to flaps (and the torques due to flaps, resp.); suffices ac and as mean
that αF cosαF and αF sinαF are multiplied to F (and multiplied to H∗, resp.).
These forces and toques are divided implicitly by MV0 and I∗, respectively, and˜ is omitted from F̃ in (2.3). We have mentioned that we may have TL �= TR
and FL �= FR. So, we put TL+TR = (2+e+)T0, TL−TR = e−T0, FL+FR = f+Fm

and FL−FR = f−Fm, where Fm is the maximum force acting on each flap when
the flap is taken out maximally from the wing.

The equations of motion were determined by the x-, y- and z-components
of forces T ,D,L,Ph,Pv,F at time t0, by treating L̃, P̃h, P̃v, F̃ to be constant.
However, L̃, P̃h, P̃v, F̃ are proportional to V 2, hence their values also change as
t. (Even M changes gradually because the fuel is being exhausted). Therefore,
A0 and AF must be reset if the values of T, V, α are changed noticeably.

We put A = A0 +AF and b = b0 + bF . The solution of (2.1) is given by

U(t) = eA(t−t0)U(t0) +

∫ t

t0

eA(t−t′)b(t′)dt′. (2.4)

Therefore, 9 eigenvalues of the matrix A play an important role for the long-term
behavior of U ; the short-time behavior of U is determined mostly by the vector
b. The eigenpolynomial |XI9 − A| has a factor X , so we put

C(X)
def
= |XI9−A|/X = X8 + C7X

7 + · · ·+ C1X + C0. (2.5)

We show coefficient polynomials C0, C1, C2 explicitly.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = 2×αm0QhQvQo × (αm0L+f+Fac)
×{(2T0+T0e+−D)D − αm0L(αm0L+f+Fac)−Df+Fac},

C1 = −αm0Qh × [16 terms] + 2×DQh × (2T0+T0e+−D−f+Fas)
×{(2T0+T0e+−D)Qv − f+QvvFac},

C2 = αm0 × [22 terms]
+ QhQv × {T 2

0 (2+e+)
2 −D(12T0+6T0e+−5D)}

+ f+FasQhQv × (−2T0−T0e++3D)
+ f+FacQhQvv × (−2T0−T0e++3D+f+Fas),

(2.6)
The C(X) contains many parameters, most of them are “constants” deter-

mined by the aircraft structure and the aircraft speed V . The parameters which
are independent of L̃, P̃h, P̃v, F̃ are αm0, e+ and f+. Therefore, below, we ana-
lyze the dependence of C(X) on αm0, e+, f+. By C̄(X,αm0, e+, f+) = C̄(X,u)
we denote the eigenpolynomial, with the other aircraft parameters being substi-
tuted by suitable numbers. Since the coefficients of αm0 in C̄ are pretty large,
we redefine C̄(X,u) by replacing αm0 by αm0/100.

The aircraft parameters are estimated for a middle-sized passengers aircraft of
M = 250, 000 kg, SW = 350m2, Sp = 100m2, SF = 50m2, lT = 30m, lW = 12m,

320 T. Sasaki, D. Inaba, and F. Kako

λ = 30 degrees, etc., flying horizontally at a high altitude where ρ = 0.5 kg/m3,
with speed 250m/s . Here, m, kg, s denote meter, kilogram, second, respectively,
and SW, Sp, SF denote the surface areas of the wings, the tail plates or the
vertical tail, and each flap, respectively; lT, lW etc. denote the distances between
the aircraft center and the tail plates, between an effective center of one wing
and the body axis, and so on. The estimated values of parameters in the matrix
A are: L = 1.10, T0 = 0.20, D = 0.0039, Ph = Pv = 0.315, Λ = 26.5, Qo =
8.83, Qh = 14.8, Qv = 12.3, Qvv = 6.57, Fac = 0.023, Fas = 0.0067.

3 Expansion of Multivariate Algebraic Functions at
Critical Points

In this section, we will expand multivariate algebraic functions, which are roots
of C̄(X,u) w.r.t. X , into Hensel series at critical points. By this, we want to show
usefulness of the approximate square-free decomposition of univariate polynomi-
als and the approximate factorization of multivariate polynomials. Furthermore,
we will also show usefulness of “eFLOATs” (effective floating-point numbers)
which were designed to detect the accuracy of each FLOAT approximately but
quickly [6].

3.1 Hensel Series: A Brief Survey

Let F (x, u1, . . . , u�), with � ≥ 2, be a multivariate polynomial over C; for simplic-
ity, we denote (u1, . . . , u�) by (u). Consider the generalized Hensel construction

at (u) = (0)
def
= (0, . . . , 0). The first step of the construction is to factor univari-

ate polynomial F (x,0) into two or more mutually irreducible polynomials, and
the construction fails if F (x,0) has no such factors. Such a case occurs if, for
example, F (x,0) = xn.

Definition 1 (critical point) Let F (x,u) ∈ C[x,u]. If F (x,uc), with uc ∈
C�, has multiple roots in C then uc is called a critical point of F (x,u).

In this subsection, we assume that F (x,0) has m multiple root at x = 0. Then,
the generalized Hensel construction, with initial factors G(0) = xm and H(0) =
F (x,0)/xm, gives G(k)(x,u), H(k)(x,u) ∈ C[x,u], ∀k ∈ N, satisfying

F (x,u) ≡ G(k)(x,u)H(k)(x,u) (mod 〈u〉k+1), (3.1)

where 〈u〉 denotes an ideal generated by u1, . . . , u�, and we haveG(k)(x,0) = xm.
In the rest of this subsection, we consider G(k)(x,u).

As is well-known, the algebraic functions, multivariate as well as univariate,
can be expanded into Taylor series at non-critical points. The univariate al-
gebraic functions can be expanded into Puiseux series at critical points. The
multivariate algebraic functions (i.e., the case of � ≥ 2) can also be expanded
into multivariate Puiseux series, but the series are hard to utilize practically. In

Towards Industrial Application of Approximate Computer Algebra 321

1993, Sasaki and Kako devised a new technique to expand multivariate algebraic
function into a series form by extending the Hensel construction, and they called
the new construction extended Hensel construction or EHC in short.

The so-called Newton polynomial defined below plays a crucial role in the
EHC. We explain the Newton polynomial in the simplest case; for more general
cases, see [13].

Definition 2 (Newton polynomial) We assume that degx(F (x,u)) =
degx(F (x,0)) = n. For each nonzero term c xexue11 · · ·ue�� of F (x,u), plot a
dot at the point (ex, et) in the two-dimensional plane, where et = e1 + · · · + e�.
Let LNew be a line which passes the point (n, 0) and another dot plotted, such
that no dot lies below it. The FNew(x,u) is the sum of the terms plotted on LNew.

Figure 1 shows a polynomial F (x, u, v) and its Newton line: the Newton poly-
nomial in this case is FNew(x, u, v) = x3 − u2.

�

�

�
�
�
�
�
�
�
�
�
��
�

��

��

��

�

et

ex

plot terms of F (x, u, v) on (ex, et)-plane

(u2 − v3)x

�����
Newton line LNew

Fig. 1. Newton polynomial is x3 − u2

In the EHC, we factor FNew(x,u) and perform the Hensel construction by
using the mutually irreducible factors of FNew(x,u) as initial factors; in the

above example, the initial factors are x − ωi
3
√
u2 (i = 1, 2, 3), where ωi is the

cube root of 1. The modulus of EHC is chosen in such a way that the Newton
line LNew is shifted upward without changing its slope so that all the lattice
points above LNew, of (ex, et)-plane are scanned.

Using the generalized and extended Hensel constructions, we factor F (x,u)
as F (x,u) ≡ Cn(u)

∏n
i=1(x − χi(u)) (〈u〉k+1). Then, we obtain n algebraic

functions defined by F (x,u) = 0 in series forms; the series corresponding to
single roots of F (x,0) are Taylor series.

3.2 Determination of Critical Points and Approximate Square-Free
Decomposition

From now on, we treat C̄(X,u) = C̄(X,αm0, e+, f+) defined in Sect. 2. We put{
C̄(X,u) = X8 + C̄7(u)X

7 + · · ·+ C̄2(u)X
2 + C̄1(u)X + C̄0(u),

C̄(X,0) = X8 + · · ·+182.2· ·X4 +1.383· ·X3 +0.00028· ·X2 +1.41· · e−8X.

(3.2)

322 T. Sasaki, D. Inaba, and F. Kako

The first thing we must do is to determine a critical point uc at which we
perform the EHC. We consider mostly the case that C̄(X,uc) has multiple roots
at X = 0. Then, uc can be determined by solving C̄1(u) = C̄0(u) = 0. Fortu-
nately, we have factorized expressions of C1 and C0. We see C0 ∝ αm0 in (2.6),
so we set αm0 = 0. Then, C1 becomes 0 if we set⎧⎨⎩uc1 : (αm0, e+, f+) = (0, 0, (2T0 −D)Qv/QvvFac) = (0, 0, 0.0081· ·),

uc2 : (αm0, e+, f+) = (0, 0, (2T0 −D)/Fas) = (0, 0, 0.0149· ·),
uc3 : (αm0, e+, f+) = (0, (2T0 −D)/T0, 0) = (0, 0.0500· · , 0).

(3.3)

We see that C̄2(uc2) �= 0 but C̄2(uc3) = 0, hence uc2 and uc3 are critical points
of the second and the third orders, respectively.

The above determination relies on the exact factorization crucially, which we
cannot anticipate practically. If C0 and C1 are not factorizable then C̄0(u) and
C̄1(u) will mostly be not factorizable, too. Then, we determine critical points
by solving C̄0(u) = C̄1(u) = 0 numerically. This system of equations is often
under-determined hence has infinitely many solutions, which is true in our case,
then it may have solutions near the origin 0. If this expectation is right then
C̄(X,0) will have approximately multiple roots, so we perform the approximate
square-free decomposition of C̄(X,0). In our algebra system, this operation is
executed by computing “normalized” remainder sequence which is cutoff if the
norm of remainder is reduced to ε (1 1), compared with that of the quotient.
Changing the “cutoff parameter” as ε = 10−3 → 10−4 → · · · → 10−10, we
obtained the following three decompositions.⎧⎪⎨⎪⎩
(X + 0.0019239· ·)4×(X4 + 1.73· ·X3 + · · ·+ 182.· ·) (tol 0.01793· ·),
(X + 6.5961· · e−5)3×(X5 + 1.74· ·X4 + · · ·+ 1.41· ·) (tol 3.63· · e−6),

(X − 9.9999· · e−5)2×(X6 + 1.74· ·X5 + · · ·+ 1.41· ·) (tol 0.00000· ·).
(3.4)

Here, the “(tol 0.01793· ·)” for example means that

‖(X + 0.0019239· ·)4×(X4 + 1.73· ·X3 + · · ·)− C̄0‖/‖C̄0‖ = 0.01793· · .

The above decompositions show that there is a very small cluster of 2 close
roots, which is contained in a little bigger cluster of 3 close roots, and which is
contained in a much bigger cluster of 4 close roots. We expect that two small
clusters correspond to critical points.

Following this observation, we search for critical points near the origin 0, by
taking out only terms of total-degrees ≤ 2 w.r.t. u, of C̄1(u) and C̄0(u) of (3.2):

C̄1 : 1.571292819390e−12 − 9.232303419296e−11αm0

+ 6.285171277561e−11e+ − 2.983156903935e−10f+
+ 6.285171277561e−10e2+ − 5.966313807871e−09e+f+
+ 1.293361779012e−08f2

+ + [3 terms ∝ αm0] = 0,

C̄0 : 4.154005264743e−12α2
m0 + 8.685647371734e−12αm0f+ = 0.

Solving these equations by putting αm0 = 0, we obtain three special solutions
(e+, f+) = (−0.050000000· · , 0), (0, 0.0149253731· ·) and (0, 0.00813976573· ·).

Towards Industrial Application of Approximate Computer Algebra 323

Since C̄1 contains only eee+ f
ef
+ -terms with ee+ef ≤ 2, the former two become the

same as those in (3.4). In general, we must determine e+ and f+ iteratively.

Remark 1. The result of square-free decomposition is very accurate. If a nonzero
FLOAT f contains an error e then we say that the accuracy of f is |e/f |.
If we compute m multiple roots or very close roots numerically, say by fa-
mous Durand-Kerner’s method with FLOATs of machine-epsilon εM, then the
accuracies of the results are O(m

√
εM). On the other hand, in the approxi-

mate square-free decomposition, it is assumed that F (x) can be expressed as
F (x) = Fm(x)mG(x)+D(x), ‖D‖/‖F‖ = ε, where ε is much smaller than 1, and
Fm(x) is computed as appgcd(dm−2F/dxm−2, dm−1F/dxm−1), where appgcd is
the operation of approximate GCD computation. In [20,11], it is shown that if
the size of a cluster containing m close roots is δ then ε = O(δ2). The reason is
as follows: let c be the center of the cluster containing m close roots of Fm(x)
then the center of the cluster containingm−1 corresponding close roots of dF/dx
is c + O(δ2). Note that if F (x) and G(x) have no special relation except that
they have mutually close roots of “closeness” δ then ε = O(δ).

The above computation is for the simplest case. General case is that we search
for uc such that C̄(X,uc) has multiple roots at X = Xc �= 0, with unknown Xc.
Even in this case, if ‖uc‖ 1 1 then the approximate square-free decomposition
tells us an approximate value of Xc. Hence, the decomposition is more useful in
this case.

The first decomposition in (3.4) is also utilized as follows.

Empirical rule-1: For treating a cluster of m close-roots around the origin,
we had better regularize F (x) as F (x) /→ xn + · · ·+ xm + cm−1x

m−1 + · · · .
Following this rule, we regularize C̄(X,u) as

C̄(X,u) /→ C̃(X,u)
def
= C̄(s̄X,u)/s̄8, s̄ = {coef(C̄(X,0), X4)}1/4. (3.5)

Here, coef(F (x), xm) denotes the coefficient of xm-term of F (x).
In the following, we consider only critical points uc2 and uc3, and we put⎧⎪⎪⎪⎨⎪⎪⎪⎩

S2(X,u)
def
= C̃(X,u− uc2),

S2(X,0) = X8 + · · ·+ 0.00214· · X3 + 4.81· · e−8X2,

S3(X,u)
def
= C̃(X,u− uc3),

S3(X,0) = X8 + · · ·+ 1.000012· · X4 + 0.00212· · X3.

(3.6)

It is quite interesting to note that, although C̃(X,u) contains no X0, X0αm0,
X0e+, X

0f+ terms, S2(X,u) contains X0αm0 term and S3(X,u) contains no
XeXuet term for eX+et ≤ 2.

3.3 Separation of Critical Factors and Effective FLOATs

In order to compute algebraic functions in Hensel series, we must separate crit-
ical factors Ŝ2(X,u) and Ŝ3(X,u) from S2(X,u) and S3(X,u), respectively.
However, we must notice the following rule; see [24].

324 T. Sasaki, D. Inaba, and F. Kako

Empirical rule-2: Suppose we perform the Hensel construction of F (x,u)
with initial factors G0(x) and H0(x), where G0, H0 ∈ F[x]. We should choose
G0(x) and H0(x) so that they have no mutually close roots, otherwise we
will encounter large cancellation errors.

If G0(x) and H0(x) have mutually close roots, the Hensel construction will
often give fully-erroneous terms (terms with coefficients having no significant
bit). We remove the fully-erroneous terms by eFLOATs. An eFLOAT is expressed
as #e(f, e), where f is the conventional FLOAT and e is an error computed by
the following arithmetic.⎧⎪⎪⎪⎨⎪⎪⎪⎩

#e(fa, ea) + #e(fb, eb) =⇒ #e[fa + fb, max{ea, eb}],
#e(fa, ea)−#e(fb, eb) =⇒ #e[fa − fb, max{ea, eb}],
#e(fa, ea)×#e(fb, eb) =⇒ #e[fa × fb, max{|fbea|, |faeb|}],
#e(fa, ea)÷#e(fb, eb) =⇒ #e[fa ÷ fb, max{|ea/fb|, |faeb/f2

b |}].

(3.7)

Remark 2. The error part e is set initially as follows. For the aircraft constant c,
we set e to be 10−15|c|. For numerically computed root r, we set e to be Smith’s
error bound for r [26].

Remark 3. An eFLOAT #e(f, e) is simplified to 0 if |f | < e.

We show an example of simple computation for G0(x) and H0(x) having
mutually close roots, as follows:

G0 = (x− 0.0001) · (3x2+x− 2)/3.0, H0 = (x2 +0.0002x) · (7x2− 5x+3)/7.0.

In the Hensel construction (and in EHC, too), Moses-Yun’s polynomials Ai(x)
and Bi(x) satisfying Ai(x)G0(x) + Bi(x)H0(x) = xi, (i= 0, 1, . . . , n−1), play
crucial role. We check these relations for 0 ≤ i ≤ n−1 by computing Ai(x) and
Bi(x) with double-precision FLOATs and eFLOATs, respectively.

Table I shows comparison of the computations by FLOATs and eFLOATs,
for i = 1, 3, 5. We see that the initial errors are magnified by 106 ∼ 107 and that
many small terms are created by the computation with FLOATs. The small
terms are unnecessary and fully-erroneous; they appear because terms which
will cancel exactly in the exact arithmetic do not cancel in the FLOAT arith-
metic. The eFLOATs over-estimate errors considerably, but they remove the
fully-erroneous terms successfully due to the mechanism of Remark 3.

Table 1. Computation of Ai(x)G0(x) +Bi(x)H0(x)

i computation by FLOATs computation by eFLOATs

1 +2.24e−8 x5 + · · ·+ 0.9999999999998 x #e(0.9999999999998, 5.43e−12)x
3 −7.75e−9 x6 + · · ·+ 1.000000001092 x3 + · · · #e(1.000000001092, 0.000121) x3

5 −1.66e−9 x6 + 0.9999999967943 x5 + · · · #e(0.9999999967943, 0.000258) x5

Towards Industrial Application of Approximate Computer Algebra 325

Remark 4. If G0(x) = xm then Moses-Yun’s polynomials can be computed more
accurately. The reason is as follows: the division by G0(x) is performed many
times in the computation, and the division in this case is exact.

Following Empirical rule-2, we first separate clusters of 4 close-roots around
X = 0 from Sl(X,u) (l = 1, 2).{

Sl(X,u) ≡ S̄
(k)
l (X,u)H

(k)
l (X,u) (mod 〈u〉k+1),

S̄
(k)
l (X,0) = X4 + s̄l,3X

3 + · · · , contains 4 close-roots.
(3.8)

Since the initial factors of this Hensel construction have no mutually close roots,
we can perform this separation quite accurately.

The computation of Hensel series is similar to the computation of close roots
of univariate polynomials proposed by the first author and his collaborators
[19,18,23]. First, perform the approximate square-free decomposition to get in-
formation on close-roots clusters: their locations, their sizes and the numbers of
close-roots contained. Second, move the origin to one of the close-root cluster,
separate the cluster, and enlarge the cluster size to O(1). Finally, determine the
roots contained in the cluster. Following this method, we perform the scaling of

X . Consider S̄
(k)
3 (X,0), for example, which contains three zeros and one small

root. So, we perform the following scaling for S̄
(k)
l (X,u) (l = 2, 3).{

S̄
(k)
l (X,u) /→ S̃

(k)
l (X,u)

def
= S̄

(k)
l (s̄lX,u)/s̄

4
l ,

s̄l = coef(S̄
(k)
l (X,0), X3) = 0.0021· · .

(3.9)

This scaling makes S̃
(k)
l (X,0) (l=1, 2) as follows: X4+X3+0.01046283125455X2

for l = 2, and X4 + X3 for l = 3. Finally, we separate the critical factors

Ŝ
(k)
l (X,u), (l = 2, 3), by the Hensel construction of S̃

(k)
l (X,u), with initial

factors (G2(X), H2(X)) = (X2, X2+X+0.01046283125455) for l = 2, and
(G3(X), H3(X)) = (X3, X+1) for l = 3.

3.4 Approximate Factorization of Newton Polynomials

We show low-order terms of Ŝ
(k)
l (X,u) (l = 2, 3) computed in the previous

subsection.

Ŝ
(k)
2 =X2 +X1 (− 46.00· ·αm0 − 0.2537· · e+ + 0.8499· · f+

+ 202961.· ·α2
m0 − 1106.· ·αm0e+ + 3715.· ·αm0f+

+ 4.86· · e−5e2+ − 0.00033· · e+f+ + 0.00055· · f2
+ + · · ·)

+ X0 (− 5.665· ·α2
m0 − 11.70· ·αm0e+ − 39.20· ·αm0f+

+ 24745.· ·α3
m0 − 51624.· ·α2

m0e+ + 172562.· ·α2
m0f+

+ 280.7· ·αm0e
2
+ − 1880.· ·αm0e+f+ + 3150.· ·αm0f

2
+ + · · ·).

(3.10)

326 T. Sasaki, D. Inaba, and F. Kako

Ŝ
(k)
3 =X3 +X2 (+ 0.7532· ·αm0 − 0.5128· · e+ + 2.434· · f+

+ 4.011· ·α2
m0 − 7.81· · e−5αm0e+ + 8.387· ·αm0f+

+ 6.24· · e−5 e2+ − 0.00049· · e+f+ + 0.00105· · f2
+ + · · ·)

+ X1 (− 15.96· ·α2
m0 − 0.1931· ·αm0e+ + 0.0657· · e2+

+ 1.352· · f2
+ + 2.993· ·α3

m0 − 1.027· ·α2
m0e+ + · · ·)

+ X0 (+ 4.093· ·α2
m0e+ − 13.71· ·α2

m0f+ + 8.559· ·αm0e+f+
− 28.67· ·αm0f

2
+ − 0.0020· ·αm0e

2
+f+ + 0.0152· ·αm0e+f

2
+

− 0.027· ·αm0f
3
+ − 0.00099· ·α2

m0e
2
+ + · · ·).

(3.11)

The Newton polynomials for Ŝ
(k)
2 and Ŝ

(k)
3 , let them be Ŝ2,New and Ŝ3,New,

respectively, are as follows.

Ŝ2,New=X2

+X1 (−46.00100771767αm0 −0.2536988065195e+ +0.8498910018404f+) (3.12)

+X0 (−5.664934365224α2
m0 +11.70156007615αm0e+ −39.20022625510αm0f+),

Ŝ3,New=X3

+X2 (+0.7532833020638αm0 −0.5128205128205e+ +2.434021263290f+) (3.13)

+X1 (−15.96482577252α2
m0 −0.1931495646317αm0e+ −32.73394830102αm0f+

+0.06574621959237e2+ −0.6241080162281e+f+ +1.352924904989f2
+)

+X0 (+4.093545069876α2
m0e+ −13.71337598409α2

m0f+

+8.559230600651αm0e+f+ −28.67342251218αm0f
2
+).

The authors thought that Ŝ2,New may be factorizable but Ŝ3,New is not. How-
ever, surprisingly, the computer has factored them approximately as follows.

Ŝ2,New = (X − 46.12382784406αm0)×
(X + 0.1228201263873αm0 − 0.2536988065195e+ (3.14)

+ 0.8498910018404f+) (tol 1.07e−12),

Ŝ3,New = (X − 0.2564102564101e++ 0.8589743589743f+)×
(X2 + 0.7532833020638Xαm0 − 0.2564102564104Xe+ (3.15)

+ 1.575046904316Xf+

− 15.96482577252α2
m0 − 33.38099934254αm0f+) (tol 1.82e−13).

Smallness of the above tolerances indicates that the above factorizations are
nearly exact, because the coefficients of Ŝ

(k)
2 and Ŝ

(k)
3 are contaminated by errors

of FLOATs.

3.5 Computation of Hensel Series by Using FLOATs

With the factorization (3.14), we performed the EHC of Ŝ2 up to order 1, without
using eFLOATs. The result is as follows; very small terms will be fully-erroneous.

Towards Industrial Application of Approximate Computer Algebra 327

G
(1)
2 = X + 0.1228201263873αm0 − 0.2536988065195e++ 0.8498910018404f+

+ (182.7α3
m0 − 2.461α2

m0e+ + 388.8α2
m0f+ − 4.918e−11α2

m0

+ 7.401e−3αm0e
2
+ − 2.156αm0e+f+ − 1.781e−12αm0e+

+ 7.109αm0f
2
+ − 2.943e−16αm0f+ − 1.234e−5e3+

+ 1.240e−4 e2+f+ − 4.155e−4 e+f
2
+ + 4.640e−4f3

+)
/(46.25αm0 − 0.2537e+ + 0.8499f+),

H
(1)
2 = X − 46.12382784406αm0

+ (9.386e+6α3
m0 − 1.027e+4α2

m0e+ + 3.439e+5α2
m0f+

+ 1.741e−10α2
m0 + 280.7αm0e

2
+ − 1.881e+3αm0e+f+

+ 1.096e−12αm0e+ + 3.151e+3αm0f
2
+ + 2.295e−12αm0f+)

/(46.25αm0 − 0.2537e+ + 0.8499f+).

We have also performed the EHC of Ŝ3; we omit the result to save the space.
Note the denominator above, which is a characteristic feature of the Hensel

series. The denominator appears by the following reason. Let FNew(x,u) be an
irreducible Newton polynomial, and put G0 = (x−α) and H0 = FNew(x,u)/(x−
α), where α is a root of FNew. Then, Moses-Yun’s “polynomials” Aj and Bj

satisfying AjG0 + BjH0 = xj , 0 ≤ j ≤ degx(FNew)−1, have the denominator
F ′
New(αi,u) [14].
In the generalized Hensel construction, the initial factors are determined by

factoring univariate polynomial F (x,0), and the factorization is quite easy even
if F (x,0) ∈ F[x]. In the extended Hensel construction, the initial factors are
determined to be factors of Newton polynomial which is multivariate. Therefore,
if the Newton polynomial can be factored exactly then the computation of Hensel
series can be simplified largely; otherwise, we must introduce the roots of the
Newton polynomial symbolically and perform the computation by using the
Newton polynomial as a defining polynomial, which is quite time-consuming.
Therefore, the nearly exact factorization of Newton polynomials is very useful.

4 Conclusion and Comments

In this paper, we have convinced the following three points.

Usefulness of eFLOATs. The algebraic expression handled in industry may
contain terms of very different magnitudes. In fact, C̄(X,0) in (3.2) con-
tains terms of magnitudes 180 and 10−8. On the other hand, computation of
expressions with coefficients of FLOATs creates many fully-erroneous terms
usually, as Table I in Subsect. 3.3 shows. Therefore, we must distinguish
small meaningful terms from fully-erroneous terms strictly. The eFLOAT is
an easy and useful device, although it often over-estimates errors. Without
such a device as eFLOAT, it is too dangerous to apply approximate computer
algebra to industrial computations.

Usefulness of approximate square-free decomposition.The approximate
square-free decomposition is based on a simple algorithm but it is extremely
useful because it gives almost full informationonwell-separated close-root clus-
ter; the location, the size and the number of close-roots contained.

328 T. Sasaki, D. Inaba, and F. Kako

Usefulness of approximate factorization. The factorization is a very strong
operation which simplifies the analysis largely. We think the people in many
application areas cannot imagine to factor multivariate polynomials with
FLOAT coefficients. However, in approximate computer algebra, the approx-
imate factorization is a standard operation.

Unfortunately, the Hensel series obtained in this paper are not useful for the
aircraft control: they are quite small in value near the expansion point hence they
are not influential for the aircraft motion. This fact is due to that the slope of the
Newton line is negative. We are now looking for other industrial computations
in which the slope of the Newton line is positive at the expansion point.

We asked an expert on aircraft design to criticize our model. His main com-
ments are as follows. 1) Authors’ linear model can also be divided into two sets.
2) The attack angle α is usually not treated as a variable; when α is treated as
an input variable, the rigid-body motion of the aircraft is ignored. 3) Authors’
model cannot treat large angles; large angles are treated as constants in linear
models. 4) The aircraft-fixed coordinate system is used commonly, as the authors
do so, but the aircraft center of gravity is expressed usually in the ground-fixed
coordinate system. 5) Currently, there is no aircraft whose left and right flaps
are controllable independently. 6) Except for these points, authors’ model is not
much strange, so long as only small angles are treated.

Currently, people in the industry express their machine models by sets of
mathematical formulas containing many symbols usually and perform the com-
putation as exactly as possible. However, the final answers required are mostly
numbers. In such cases, the computation is extremely simplified by substituting
actual numbers for symbols. Then, it is inevitable to handle expressions with
FLOAT coefficients. Therefore, we are convinced of wide usage of approximate
computer algebra in the industry in future.

Acknowledgments. The authors are very grateful to an anonymous reviewer
for many comments on revising the manuscript. They also thank very much Pro-
fessor Seiya Ueno of Yokohama National University for very valuable comments
on our aircraft model from the viewpoint of expert.

References

1. Katayanagi, R.: Introduction to Aircraft Design. Nikkan Kohgyo Shinbun (Manu-
facturing Newspaper, Co.), Tokyo (2009) (in Japanese)

2. Suzuki, T., Itamiya, K.: Fundamentals of Modern Control. Morikita Publ. Co.,
Tokyo (2011) (in Japanese)

3. Corless, R.M., Giesbrecht, M.W., Jeffrey, D.J.: Approximate polynomial decom-
position. In: Proceedings of ISSAC 1999 (Intn’l Symp. on Symbolic and Algebraic
Computation), pp. 213–219. ACM Press (1999)

4. Giesbrecht, M., Pham, N.: A symbolic computation approach to the projection
method. In: Proceedings of ASCM 2012 (Asian Symp. on Computer Mathematics)
(2012) (to appear)

Towards Industrial Application of Approximate Computer Algebra 329

5. Inaba, D., Sasaki, T.: A numerical study of extended Hensel series. In: Proceedings
of SNC 2007 (Intn’l Workshop on Symbolic-Numeric Computation), pp. 103–109.
ACM Press (2007)

6. Kako, F., Sasaki, T.: Proposal of “effective” floating-point number. Preprint of
Univ. Tsukuba (May 1997) (unpublished)

7. Kitamoto, T.: On Puiseux expansion of approximate eigenvalues and eigenvectors.
IEICE Trans. Fundamentals E81-A, 1242–1251 (1998)

8. Li, Z., Yang, Z., Zhi, L.: Blind image deconvolution via fast approximate GCD.
In: Proceedings of ISSAC 2010 (Intn’l Symp. on Symbolic and Algebraic Compu-
tation), pp. 155–162. ACM Press (2010)

9. Noda, M.-T., Sasaki, T.: Approximate GCD and its application to ill-conditioned
algebraic equations. J. Comput. App. Math. 38, 335–351 (1991)

10. Ochi, M., Noda, M.-T., Sasaki, T.: Approximate GCD of multivariate polynomials
and application to ill-conditioned system of algebraic equations. J. Inf. Proces. 14,
292–300 (1991)

11. Sasaki, T.: The subresultant and clusters of close roots. In: Proceedings of ISSAC
2003 (Intn’l Symp. on Symbolic and Algebraic Computation), pp. 232–239. ACM
Press (2003)

12. Sasaki, T.: A theory and an algorithm of approximate Gröbner bases. In: Proceed-
ings of SYNASC 2011 (Symbolic and Numeric Algorithms for Scientific Comput-
ing), pp. 23–30. IEEE Computer Society Press (2012)

13. Sasaki, T., Inaba, D.: Hensel construction of F (x, u1, . . . , u�), � ≥ 2, at a singular
point. ACM SIGSAM Bulletin 34, 9–17 (2000)

14. Sasaki, T., Inaba, D.: Convergence and many-valuedness of Hensel series near
the expansion point. In: Proceedings of SNC 2009 (Intn’l Workshop on Symbolic-
Numeric Computation), pp. 159–167. ACM Press (2009)

15. Sasaki, T., Inaba, D.: A study of Hensel series in general case. In: Proceedings of
SNC 2011 (Intn’l Workshop on Symbolic-Numeric Computation), pp. 34–43. ACM
Press (2011)

16. Sasaki, T., Inaba, D.: Approximately singular systems and ill-conditioned polyno-
mial systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2012. LNCS, vol. 7442, pp. 308–320. Springer, Heidelberg (2012)

17. Sasaki, T., Kako, F.: Solving multivariate algebraic equation by Hensel construc-
tion, pp. 257–285. Preprint of Univ., Tsukuba (1999); Japan J. Indust. Appl. Math.
16, 257–285 (1999)

18. Sasaki, T., Kako, F.: An algebraic method for separating close-root clusters and
the minimum root separation. In: Proceedings of SNC 2005 (Intn’l Workshop
on Symbolic-Numeric Computation), pp. 126–143. ACM Press (2005); Trends in
Mathematics (Symbolic-Numeric Computation), Birkhäuser, 149–166 (2007)

19. Sasaki, T., Noda, M.-T.: Approximate square-free decomposition and root-finding
of ill-conditioned algebraic equations. J. Inf. Proces. 12, 159–168 (1989)

20. Sasaki, T., Sasaki, M.: Analysis of accuracy decreasing in polynomial remainder
sequence with floating-point number coefficients. J. Inf. Proces. 12, 394–403 (1989)

21. Sasaki, T., Suzuki, M., Kolář, M., Sasaki, M.: Approximate factorization of mul-
tivariate polynomials and absolute irreducibility testing. Japan J. Indust. Appl.
Math. 8, 357–375 (1991)

22. Sasaki, T., Saito, T., Hirano, T.: Analysis of approximate factorization algorithm
I. Japan J. Indust. Appl. Math. 9, 351–368 (1992)

23. Sasaki, T., Terui, A.: Computing clustered close-roots of univariate polynomials. In:
Proceedings of SNC 2009 (Intn’l Workshop on Symbolic-Numeric Computation),
pp. 177–184. ACM Press (2009)

330 T. Sasaki, D. Inaba, and F. Kako

24. Sasaki, T., Yamaguchi, T.: An analysis of cancellation error in multivariate Hensel
construction with floating-point number arithmetic. In: Proceedings of ISSAC 1998
(Intn’l Symp. on Symbolic and Algebraic Computation), pp. 1–8. ACM Press
(1998)

25. Shirayanagi, K.: An algorithm to compute floating-point Gröbner bases. In: Mathe-
matical Computation with Maple V. Ideas and Applications, Birkäuser, pp. 95–106
(1993)

26. Smith, B.T.: Error bounds for zeros of a polynomial based on Gerschgorin’s theo-
rems. J. ACM 17, 661–674 (1970)

27. Stetter, H.J., Thallinger, G.H.: Singular systems of polynomials. In: Proceedings
of ISSAC 1998 (Intn’l Symp. on Symbolic and Algebraic Computation), pp. 9–16.
ACM Press (1998)

A Note on Sekigawa’s Zero Separation Bound

Stefan Schirra

Otto von Guericke University Magdeburg,
Faculty of Computer Science,

Department of Simulation and Graphics,
39106 Magdeburg, Germany

Abstract. Regarding zero separation bounds for arithmetic expressions,
we prove that the bfms bound dominates the Sekigawa bound for divi-
sion-free radical expressions with integer operands.

1 Introduction

In computational geometry software [5, 11], the exact decision geometric compu-
tation paradigm [20, 24] has been succesfully applied to avoid robustness prob-
lems [9, 16, 22] due to inconsistencies caused by numerical imprecision and to
allow for the use of symbolic perturbation schemes [6, 17] in order to avoid the
handling of degeneracies. Exact decision computation requires exact sign com-
putation. However, if we compute the sign numerically using arbitrary precision
floating-point arithmetic, high precision is required only if the value whose sign
we want to compute is close to or equal to zero. Adaptive precision computations
compute approximations starting with low precision and iteratively increasing
the precision as long as the sign computation has not been verified. User-friendly
implementations of this approach [1, 8, 13] record the computation history in
expression trees, more precisely, in expression dags, in order to have an exact
representation that allows one to repeatedly compute approximations with in-
creasing precision.

The adaptive precision approach faces the numerical halting problem [23]. If
the exact value is not zero, computing a sufficiently close approximation with an
error bound smaller than its absolute value gives us the verified correct sign which
we are interested in. Thus iteratively increasing the precision and computing
error bounds, i.e., basically using interval arithmetic, we will finally reach our
goal. If the value is zero, however, we can not verify the sign this way, since
the numerical error will most likely be non-zero. This is where constructive zero
separation bounds come into play.

Given an arithmetic expression E over a set of allowed operations, a con-
structive zero separation bound comprises rules to derive a positive real number
sep(E) that is a lower bound on the absolute value of E, unless this value is
zero. Let ξ denote the value of E. Then, sep(E) is a separation bound if

ξ �= 0 ⇒ sep(E) ≤ |ξ|.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 331–339, 2013.
c© Springer International Publishing Switzerland 2013

332 S. Schirra

Here, we consider the case where all operands are integers and the basic arith-
metic operations +,−, · and radical operations (k

√
) are permitted. Fortunately,

these operations suffice for many geometric computations. A constructive sepa-
ration bound allows us to resolve our numerical halting problem: Once we know
that the sum of the absolute value |ξ̃| of the current approximation ξ̃ and the
corresponding error bound is less than the computed zero separation bound we
may conclude that the actual value ξ is actually zero.

Fortunately, constructive zero separation bounds exist for arithmetic expres-
sions whose values are real algebraic numbers. In particular, such constructive
zero separation bounds exist for real algebraic integers and subsets of the set of
real algebraic integers. Let E be the class of arithmetic expressions with opera-
tions +,−, · and k

√
and integer operands. Several constructive zero separation

bounds have been proposed for E and more general classes of expressions in the
literature, most notably the degree-length bound [21, p. 177], the degree-measure
bound [2, 10, 12], Canny’s polynomial system bound [4], the bfms bound [2],
Li and Yap’s conjugate bound [10], Scheinerman’s eigenvalue bound [15], and
the bfmss bound [3]. Sekigawa [18, 19] proposes an improved version of the
degree-measure bound. We call this the Sekigawa bound. Pion and Yap present
a technique that leads to improved bounds for expressions involving k-ary ra-
tional numbers [14]. The improvement on Canny’s gap theorem [4] by Emiris
et al. [7] gives rise to a constructive zero separation bound better than Canny’s
polynomial system bound. Note that for the division-free expressions in E , bfms,
Li and Yap’s conjugate bound, and bfmss are identical.

We say a separation bound sep dominates another bound sep′ for a class of
expressions, if sep(E) ≥ sep′(E) for all expressions E in this class. We prove
that bfms dominates the Sekigawa bound for the class E .

2 Constructive Bounds for Division-Free Radical
Expressions

If an annihilating integer polynomial for the value ξ of an arithmetic expression
E is known, i.e., a non-zero polynomial P (X) ∈ Z[X] such that P (ξ) = 0, root
bounds for polynomials provide us with a zero separation bound. Usually, for
a real algebraic number given by an arithmetic expression E, we do not know
such a polynomial and in most cases it would be too expensive to compute one
explicitly, since the adaptive approach will resolve the sign more quickly. The
rules of constructive zero separation bounds typically allow us to derive bounds
on certain quantities of such a polynomial based on the structure of E. These
bounds then provide us with a separation bound. Most of the constructive zero
separation bounds involve a bound on the degree of ξ. This degree bound is
computed as

D(E) =
r∏

i=1

ki,

where k1, . . . , kr are the indices of the radical operations in E.

A Note on Sekigawa’s Zero Separation Bound 333

The length and the height of a polynomial P (X) =
∑d

i=0 aiX
i ∈ Z[X] are the

sum of the magnitudes and the maximum of the magnitudes, respectively, of its
coefficients:

length(P) =
d∑

i=1

|ai| and height(P) =
d

max
i=1

|ai|.

The degree-length bound [21, p. 177] computes a bound on the length of an
annihilating polynomial by the following rules, where the degree is computed
as described above. It computes a quantity �(E) inductively according to the
structure of expression E.

E �(E)

integer N |N |

A · B �(A)D(B) · �(B)D(A)

A±B �(A)D(B) · �(B)D(A) · 2D(A)D(B)+min(D(A),D(B))

k
√
A �(A)

Since �(E) is an upper bound on the length of an annihilating polynomial for
the value ξ of E, we know that

�(E)−1

is a zero separation bound for E.
Similarly, the following rules [24] compute a bound h(E) on the height of an

annihilating polynomial for the value ξ of E.

E h(E)

integer N |N |

A · B (h(A)
√

1 +D(A))D(B) · (h(B)
√

1 +D(B))D(A)

A±B (h(A)21+D(A))D(B) · (h(B)
√
1 +D(B))D(A)

k
√
A h(A)

The corresponding zero separation bound, called the degree-height bound, is

(1 + h(E))−1

Both degree-length bound and degree-height bound are based on resultant cal-
culus.

Scheinerman [15] presents a constructive zero separation bound based on ma-
trix eigenvalues. He computes quantities n(E) and b(E) as shown in the table
below.

334 S. Schirra

E n(E) b(E)

integer N 1 |N |

A · B n(A) · n(B) b(A) · b(B)

A±B n(A) · n(B) b(A) + b(B)

k
√
A k · n(A) b(A)

The corresponding zero separation bound is

(n(E)b(E))
1−n(E)

The measure of a polynomial P (X) =
∑d

i=0 aiX
i = ad

∏d
i=1(X − αi) ∈ Z[X]

is

|ad|
d∏

i=1

max(1, |αi|).

The degree-measure bound [2, 10, 12] is based on the rules

E M̂(E)

integer N |N |

A ·B M̂(A)D(B) · M̂(B)D(A)

A±B M̂(A)D(B) · M̂(B)D(A) · 2D(E)

k
√
A M̂(A)

The corresponding zero separation bound is then

M̂(E)−1.

Sekigawa [18, 19] splits the measure in the leading coefficient and the remain-
ing part and provides rules to bound both quantities. In our case, the values
of all expressions are real algebraic integers. Therefore, the leading coefficient is
always one. Thus there is no need to maintain it. Therefore, in the division-free
case, the rules for the Sekigawa bound simplify to

E M(E)

integer N |N |

A · B M(A)D(B) ·M(B)D(A)

A±B (∗)
k
√
A M(A)

A Note on Sekigawa’s Zero Separation Bound 335

where (∗) is the product of the D(E) largest values of

M(A)+M(B),M(A) + 1, ...,M(A) + 1︸ ︷︷ ︸
D(B)−1

,M(B) + 1, ...,M(B) + 1︸ ︷︷ ︸
D(A)−1

, 2, . . . , 2︸ ︷︷ ︸
(D(A)−1)(D(B)−1)

Then
M(E)−1

is a separation bound.
The bfms bound [2] computes a quantity U(E) that is an upper bound on

the absolute value of the conjugates of the value ξ of E. For expressions in E we
have the following rules:

E U(E)

integer N |N |

A±B U(A) + U(B)

A · B U(A) · U(B)

k
√
A k

√
U(A)

Then
U(E)−(D(E)−1)

is a separation bound for E.
For division-free arithmetic expressions involving radicals, the Li and Yap’s

conjugate bound and the bfmss bound use exactly the same rules.

3 Dominance Results

Remember that we consider dominance with respect to the class E of division-
free radical expressions over the integers only.

It is easy to see that the degree-measure bound dominates both the degree-
length bound and the degree-height bound.

Burnikel et al. [2] show that bfms dominates the degree-measure bound. Li
and Yap [10] show that bfms dominates Scheinerman’s eigenvalue bound.

Sekigawa’s bound refines and improves the degree-measure bound. By inspect-
ing the rules given in the previous section we see that

M(E) ≤ M̂(E)

for all expressions E in E . Thus we have

Theorem 1. The Sekigawa bound dominates the degree-measure bound for di-
vision-free radical expressions with integer operands.

However, the bfms separation bound still dominates Sekigawa’s improved mea-
sure bound. We prove

336 S. Schirra

Theorem 2. The bfms bound dominates the Sekigawa bound for division-free
radical expressions with integer operands.

Theorem 2 follows from

Lemma 1
U(E)D(E) ≤ M(E)

We prove Lemma 1 by structural induction. The lemma holds for the base case
where E is an integer N , since the rules are identical and D(E) = 1.

For the induction step, we are left with three cases: E = k
√
A, E = A ·B, and

E = A±B. By induction hypothesis we have

U(A)D(A) ≤ M(A) and U(B)D(B) ≤ M(B).

First, let E = k
√
A. Then M(E) = M(A) and U(E) = k

√
U(A). Furthermore

D(E) = k ·D(A). Thus

U(E)D(E) = (k
√
U(A))k·D(A)

= U(A)D(A)

≤ M(A) by induction hypothesis

= M(E)

Next, let E = A ·B. Then M(E) = M(A)D(B)M(B)D(A) and U(E) = U(A) ·
U(B). Then

U(E)D(E) = (U(A) · U(B))D(E)

≤ (U(A) · U(B))D(A)·D(B)

= U(A)D(A)·D(B) · U(B)D(B)·D(A)

≤ M(A)D(B) ·M(B)D(A) by induction hypothesis

=M(E)

Finally, let E = A ± B. This is the non-trivial case. Let us assume D(E) =
D(A) · D(B). Then M(E) is (M(A) + M(B)) · (M(A) + 1)D(B)−1 · (M(B) +
1)D(A)−1 · 2(D(A)−1)(D(B)−1) and U(E) = U(A) + U(B).

The proof uses the following lemma by Sekigawa [18]:

Lemma 2. Let S be a set of pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, and let

F (x1, . . . , xm, y1, . . . , yn) =
∏

(i,j)∈S

(xi + yj).

For constants a,b ≥ 1, the maximum value of the continous function F on the
compact set

D =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(x1, . . . , xm, y1, . . . , yn) ∈ Rm+n

∣∣∣∣∣∣∣∣∣∣

m∏
i=1

xi = a, xi ≥ 1, i = 1, . . . ,m

m∏
j=1

yj = b, yj ≥ 1, j = 1, . . . , n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

A Note on Sekigawa’s Zero Separation Bound 337

is not greater than the product of the |S| largest numbers among the following
mn numbers:

a+ b, a+ 1, . . . , a+ 1︸ ︷︷ ︸
n−1

,b+ 1, . . . ,b+ 1︸ ︷︷ ︸
m−1

, 2, . . . , 2︸ ︷︷ ︸
(n−1)(m−1)

We have

U(E)D(E) = (U(A) + U(B))D(E)

≤
(

D(A)
√
M(A) + D(B)

√
M(B)

)D(E)

by induction hypothesis

Now we apply Lemma 2 with

m = D(A)

xi =
D(A)
√
M(A) for i = 1, . . . ,m

a = M(A)

n = D(B)

yj =
D(B)
√
M(B) for j = 1, . . . , n

b = M(B)

Then we get (
D(A)
√
M(A) + D(B)

√
M(B)

)D(E)

=

m∏
i=1

n∏
j=1

(xi + yj)

≤ (a+ b) · (a+ 1)n−1 · (b+ 1)m−1 · 2(m−1)(n−1)

= (M(A) +M(B)) · (M(A) + 1)D(B)−1

·(M(B) + 1)D(A)−1 · 2(D(A)−1)(D(B)−1)

= M(E)

If we have D(E) < D(A)D(B), we apply Lemma 2 with a set S with cardi-
nality D(E) < nm. The remaining part is analogous.

4 Conclusions

We have shown that bfms also dominates Sekigawa’s improved measure bound
for division-free radical expressions over the integers and thus all constructive
zero separation bounds currently known. Thus, the relevance of the Sekigawa
bound is rather as a substitute for the degree-measure bound in combined
bounds, e.g. the Li-Yap bound.

338 S. Schirra

As for expressions involving division operations, there is no bound among the
known ones that dominates all others. Thus, in this case, the best approach is
to combine bounds not dominated by any others, i.e., Li and Yap’s conjugate
bound, bfmss, and the degree-measure bound.

References

[1] Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric
computation made easy. In: Proc. 15th Annu. ACM Sympos. Comput. Geom.,
pp. 341–350 (1999)

[2] Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily com-
putable separation bound for arithmetic expressions involving radicals. Algorith-
mica 27(1), 87–99 (2000)

[3] Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound
for real algebraic expressions. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS,
vol. 2161, pp. 254–265. Springer, Heidelberg (2001)

[4] Canny, J.F.: The complexity of robot motion planning. MIT Press, Cambridge
(1988)

[5] Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
[6] Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms. ACM Trans. Graph. 9(1), 66–104 (1990)
[7] Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: The DMM bound: multivariate (ag-

gregate) separation bounds. In: ISSAC 2010, pp. 243–250 (2010)
[8] Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric

and geometric computation. In: Proceedings of the 15th Annual ACM Symposium
on Computational Geometry, Miami, Florida, pp. 351–359 (1999)

[9] Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of
robustness problems in geometric computations. Computational Geometry: The-
ory and Applications 40(1), 61–78 (2008)

[10] Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA) (January 2001)

[11] Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (2000)

[12] Mignotte, M.: Mathematics for computer algebra. Springer-Verlag New York, Inc.,
New York (1992)

[13] Mörig, M., Rössling, I., Schirra, S.: On design and implementation of a generic
number type for real algebraic number computations based on expression dags.
Mathematics in Computer Science 4(4), 539–556 (2010)

[14] Pion, S., Yap, C.: Constructive root bound for k-ary rational input numbers.
Journal of Theoretical Computer Science (TCS) 369(1-3), 361–376 (2006)

[15] Scheinerman, E.R.: When close enough is close enough. Am. Math. Mon. 107(6),
489–499 (2000)

[16] Schirra, S.:Robustness andprecision issues in geometric computation. In: Sack, J.R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, ch. 14, pp. 597–632. Else-
vier (1999)

[17] Seidel, R.: The nature and meaning of perturbations in geometric computing.
Discrete & Computational Geometry 19(1), 1–17 (1998)

[18] Sekigawa, H.: Using interval computation with the Mahler measure for zero
determination of algebraic numbers. Josai University Information Sciences Re-
search 9(1), 83–99 (1998)

http://www.cgal.org

A Note on Sekigawa’s Zero Separation Bound 339

[19] Sekigawa, H.: Zero Determination of Algebraic Numbers using Approximate Com-
putation and its Application to Algorithms in Computer Algebra. PhD thesis,
University of Tokyo (2004)

[20] Yap, C.K.: Towards exact geometric computation. Computational Geometry: The-
ory and Applications 7, 3–23 (1997)

[21] Yap, C.-K.: Fundamental problems of algorithmic algebra. Oxford University Press
(2000)

[22] Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, ch. 41, 2nd edn., pp. 927–952.
Chapmen&Hall/CRC, Boca Raton (2004); revised and expanded from 1997 version

[23] Yap, C.K.: In praise of numerical computation. In: Albers, S., Alt, H., Näher, S.
(eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 380–407. Springer, Heidelberg
(2009)

[24] Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.-Z., Hwang,
F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on
Computing, vol. 4, pp. 452–492. World Scientific, Singapore (1995)

Applications of Symbolic Calculations

and Polynomial Invariants to the Classification
of Singularities of Differential Systems�

Dana Schlomiuk1 and Nicolae Vulpe2

1 Département de Mathématiques et de Statistiques Université de Montréal
dasch@dms.umontreal.ca

2 Institute of Mathematics and Computer Science, Academy of Science of Moldova
nvulpe@gmail.com

Abstract. The goal of this paper is to present applications of symbolic
calculations and polynomial invariants to the problem of classifying pla-
nar polynomial systems of differential equations. For these applications,
we use some previously defined, and some new polynomial invariants.
This is part of a much larger work by the authors together with J.C.
Artés and J. Llibre which is in progress. We show here how polynomial
invariants and their symbolic calculations are instrumental in obtain-
ing the bifurcation diagram of the global configurations of singularities
(finite and infinite), of quadratic differential systems having a unique
simple finite singularity. This bifurcation diagram is given in the twelve-
dimensional space of the coefficients of the systems, and the bifurcation
points form an algebraic set. The classification of singularities is done
using the notion of geometric equivalence relation of configurations of
singularities, which is finer than the topological equivalence. The bifur-
cation diagram is expressed in terms of polynomial invariants. The results
can, therefore, be applied to any family of quadratic systems, given in
any normal form. Determining the configurations of singularities for any
family of quadratic systems thus becomes a simple task using computer
symbolic calculations.

1 Introduction and Statement of Main Results

We consider here differential systems of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of
a system (1) the integer m = max(deg p, deg q). In particular, we call quadratic
a differential system (1) with m = 2. We denote here by QS the whole class of
real quadratic differential systems.

� This work was supported by NSERC. The second author is partially supported by
FP7-PEOPLE-2012-IRSES-316338 and by the grant 12.839.08.05F from SCSTD of
ASM.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 340–354, 2013.
c© Springer International Publishing Switzerland 2013

Applications of Symbolic Calculations to the Classification of Singularities 341

Quadratic differential systems occur very often in many areas of applied math-
ematics. Yet several problems on the class QS, formulated more than a century
ago, are still open for this class. We do not have the topological classification of
these systems in spite of consistent attempts to advance our knowledge about
them. There are three reasons for this situation, the first one being the elusive
nature of limit cycles. These periodic solutions, which are an essential ingredient
in the construction of phase portraits, are hard to pin down. The second reason is
the rather large number of parameters involved. This family of systems depends
on twelve parameters but due to the group action of real affine transformations
and time homotheties, the class ultimately depends on five parameters. This
means that to obtain the bifurcation diagram of this class we need to work in a
five dimensional space which is not R5 but a much more complicated topological
space, quotient of R12 by this group action.

The third reason is the fact that to gain global insight into this class one
needs to perform a large number of ample calculations which could not have
been done before the more powerful methods of symbolic and numerical calcu-
lations emerged. This situation is, however, now changing. We have now several
tools for performing such calculations, among them computer algebra systems
like Mathematica, Maple, Reduce, Cocoa, Macaulay 2. With the help of these
programs progress is now being made. We also have the program P4 (see [18])
which combines both symbolic and numerical calculations for drawing phase
portraits of individual planar polynomial differential systems.

For example, some subclasses of QS depending on at most three parame-
ters were studied globally, including global bifurcation diagrams (for example
[2]) with the help of Mathematica, Maple, and P4. For the moment, the global
studies of four-dimensional subclasses of QS, modulo the group action, remain
a challenge. On the other hand, we can restrict the study of the whole quadratic
class by focusing on specific global features of the systems in this family. We
may thus focus on the global study of singularities and their bifurcation diagram.
The singularities are of two kinds: finite and infinite. The infinite singularities
are obtained by compactifying on the sphere or on the Poincaré disk (see, for
example, [18] or [23]) the planar polynomial differential systems.

It is now possible to do a complete study of the global configurations of singu-
larities, finite and infinite of the class QS. Indeed, the whole bifurcation diagram
of the global configurations of singularities, finite and infinite, in quadratic vector
fields and more generally in polynomial vector fields can be obtained by using
only algebraic means, among them, the algebraic tool of polynomial invariants
computed using symbolic computations.

The goal of this article is to show how this is done for the family of quadratic
differential systems having a single finite singularity which, in addition, is simple.
What we show here for this particular family can also be done in the general
case, and work of the authors, together with J.C. Artés and J. Llibre, in this
direction is in progress.

For the classification of configurations of singularities, finite and infinite we
use the notion of geometric equivalence relation, a notion which was introduced

342 D. Schlomiuk and N. Vulpe

in [3] (see also [4]) and which is finer than the topological equivalence relation
(for these equivalence notions see the next section). Unlike the topological equiv-
alence relation, the geometric one distinguishes between foci and nodes, between
the strong and weak foci, between strong and weak saddles, between foci of dif-
ferent orders, between saddles of different orders, between integrable saddles and
weak saddles of positive orders, and between the different kinds of nodes. Such
distinctions are important in the production of limit cycles. Indeed, for example,
the maximum number of limit cycles which can be produced close to the weak
foci in perturbations depends on the orders of the foci. The notion of geometric
equivalence relation is completely defined in terms of an algebraic nature.

This equivalence relation is also finer than the qualitative equivalence relation
introduced by Jiang and Llibre in [22] since it distinguishes among the foci of
different orders and among the various types of nodes.

Algebraic information may not be significant for the local (topological) phase
portrait around a singularity. For example, topologically there is no distinction
between a focus and a node or between a weak and a strong focus. However, as
indicated before, algebraic information plays a fundamental role in the study of
perturbations of systems possessing such singularities.

At this point, the following question comes to mind:
How far can we go in the global theory of quadratic (or more generally poly-

nomial) vector fields by using mainly algebraic means?
While algebraic methods are not sufficient for attacking such difficult tran-

scendental problems as Hilbert’s 16th problem, the applications of these methods
have not yet been exhausted. For example, the purely algebraic problem of con-
structing the global bifurcation diagram of configurations of singularities has not
yet been completed.

To distinguish among the foci (or saddles) of various orders we use the alge-
braic concept of Poincaré–Lyapunov constants. We call strong focus (or strong
saddle) a focus with non–zero trace of the linearization matrix at this point. Such
a focus (or saddle) will be considered to have the order zero. A focus (or saddle)
with trace zero is called a weak focus (or weak saddle). It is known that a singu-
lar point with purely imaginary eigenvalues is either a center or a focus in which
case we call it weak focus. We may assume the systems to be dx/dt = −y+ . . . ,
dy/dt = x+ In this case, it is easily shown that there exists a formal power
series with coefficients in Q[a20, . . . , b0,n] such that dF/dt = Σ∞

i=1Vi(x
2+ y2)i=1.

A weak focus is of the order i if for all j < i we have Vj = 0 and Vi �= 0.
In this work, we show how to merge the results for infinite singularities in

[3] (see also [4]) with work on finite singularities, when we have a single finite
singularity which is in addition simple.

We distinguish two cases:
1) Suppose we have a finite number of infinite singular points. In this case,

we call configuration of singularities, finite and infinite, the set of all these sin-
gularities each endowed with its own multiplicity together with their local phase
portraits endowed with additional geometric structure involving the concepts of
tangent, order and blow–up equivalences defined in [3] (see also [4]).

Applications of Symbolic Calculations to the Classification of Singularities 343

2) If the line at infinity Z = 0 (see [23]) is filled up with singularities, in both
charts at infinity X �= 0 and Y �= 0, the system is degenerate, and we need to
do a rescaling of an appropriate degree of the system, so that the degeneracy
be removed. The resulting systems have only a finite number of singularities on
the line Z = 0. In this case, we call configuration of singularities, finite and
infinite, the union of the set of all points at infinity (they are all singularities)
with the set of finite singularities, taking care of singling out the singularities of
the “reduced” system at infinity, taken together with the local phase portraits
of finite singularities endowed with additional geometric structure as above and
of the infinite singularities of the reduced system.

We obtain the following

Main Theorem. (A) The configurations of singularities, finite and infinite, of
all quadratic vector fields with a single finite singularity which is simple (the total
multiplicity of finite singularities is mf = 1) are classified in Figure 1 according
to the geometric equivalence relation. We have 52 geometrically distinct global
configurations of singularities. We have: only one configuration with a center but
5 configurations with a finite integrable saddle; 6 configurations with a strong
focus but 7 configurations with a strong finite saddle; 4 configurations with a
weak focus of order one but 2 configurations with a weak finite saddle of order
one; no configurations with either weak focus or a finite weak saddle of order
greater than one.

(B) Necessary and sufficient conditions for each one of the 52 different equiv-
alence classes can be assembled from these diagram in terms of 25 invariant
polynomials with respect to the action of the affine group and time rescaling,
indicated by Remark 1.

(C) The Figure 1 actually contains the global bifurcation diagram in the 12-
dimensional space of parameters, of the global configurations of singularities,
finite and infinite, of this family of quadratic differential systems.

Remark 1. The invariants and comitants of differential equations used for prov-
ing our main results are obtained following the theory of algebraic invariants of
polynomial differential systems, developed by Sibirsky and his disciples (see, for
instance, [39,42,27,8,13]). More exactly:

– the invariant polynomials μi(a, x, y), i ∈ {0, 1, . . . , 4},, κ(a), κ1(a), η(a),
M̃(a, x, y), C2(a, x, y), L̃(a, x, y), K̃(a, x, y), K1(a, x, y) and K3(a, x, y) were
constructed in [32];

– the invariant polynomials W4(a), W7(a), W8(a) and W11(a, x, y) were con-
structed in [5];

– the invariant polynomials T4(a), B1(a, x, y), B3(a, x, y) and σ(a, x, y) were
constructed in [40];

– the invariant polynomials U3(a, x, y), U4(a, x, y), and U5(a, x, y) were con-
structed here in Section 4.

We point out that we keep the notations introduced in the indicated papers for
all invariant polynomials.

344 D. Schlomiuk and N. Vulpe

Fig. 1. Global configurations: case μ0 = μ1 = μ2 = 0, μ3 �= 0

Applications of Symbolic Calculations to the Classification of Singularities 345

Fig. 1. (Continued.)

2 Equivalence Relations for Singularities of Planar
Polynomial Vector Fields

We first recall the topological equivalence relation as it is used in most of the liter-
ature. Two singularities p1 and p2 are topologically equivalent if there exist open
neighborhoods N1 and N2 of these points and a homeomorphism Ψ : N1 → N2

346 D. Schlomiuk and N. Vulpe

carrying orbits to orbits and preserving their orientations. To reduce the number
of cases, by topological equivalence we shall mean here that the homeomorphism
Ψ preserves or reverses the orientation.

In [22], Jiang and Llibre introduced another equivalence relation for singu-
larities which is finer than the topological equivalence: We say that p1 and p2
are qualitatively equivalent if i) they are topologically equivalent through a local
homeomorphism Ψ ; and ii) two orbits are tangent to the same straight line at p1
if and only if the corresponding two orbits are also tangent to the same straight
line at p2 = Ψ(p1).

Intuitively it is clear what we mean by an orbit γ to be tangent to a line L
passing through a limit point p (singular point of the system) of the orbit γ. It
is an exercise to make this notion precise.

We say that two simple finite nodes, with the respective eigenvalues λ1, λ2
and σ1, σ2, are tangent equivalent if and only if they satisfy one of the following
three conditions: a) (λ1 − λ2)(σ1 − σ2) �= 0; b) λ1 − λ2 = 0 = σ1 − σ2 and both
linearization matrices at the two singularities are diagonal; c) λ1 − λ2 = 0 =
σ1 − σ2 and the corresponding linearization matrices are not diagonal.

We say that two infinite simple nodes P1 and P2 are tangent equivalent if and
only if their corresponding singularities on the sphere are tangent equivalent and
in addition, in case they are generic nodes, we have (|λ1| − |λ2|)(|σ1| − |σ2|) > 0
where λ1 and σ1 are the eigenvalues of the eigenvectors tangent to the line at
infinity.

Finite and infinite singular points may either be real or complex. In case we
have a complex singular point we will specify this with the symbols c© and c©
for finite and infinite points, respectively. We point out that the sum of the
multiplicities of all singular points of a quadratic system with a finite number of
singular points is always 7. (Here of course we refer to the compactification on the
complex projective plane P2(C) of the foliation with singularities associated to
the complexification of the vector field (see [23]). The sum of the multiplicities of
the infinite singular points is always at least 3, more precisely it is always 3 plus
the sum of the multiplicities of the finite points which disappeared at infinity.

We use here the following terminology for singularities:

We call elemental a singular point with its both eigenvalues not zero;
We call semi–elemental a singular point with exactly one of its eigenvalues
equal to zero;
We call nilpotent a singular point with both its eigenvalues zero but with its
Jacobian matrix at that point not identically zero;
We call intricate a singular point with its Jacobian matrix identically zero.

In the literature, intricate singularities are usually called linearly zero. We
use here the term intricate to indicate the rather complicated behavior of phase
curves around such a singularity.

Roughly speaking, a singular point p of an analytic differential system χ is a
multiple singularity of multiplicity m if p generates m singularities, as close to p
as we wish, under analytic perturbations χε of this system and m is the maxi-
mal such number. In polynomial differential systems of fixed degree n, we have

Applications of Symbolic Calculations to the Classification of Singularities 347

several possibilities for obtaining multiple singularities. i) A finite singular point
splits into several finite singularities in n-degree polynomial perturbations. ii)
An infinite singular point splits into some finite and some infinite singularities in
n-degree polynomial perturbations. iii) An infinite singularity splits only in infi-
nite singular points of the systems in n-degree perturbations. To all these cases,
we can give a precise mathematical meaning using the notion of intersection
multiplicity at a point p of two algebraic curves (see [30], [31]).

We will say that two foci (or saddles) are order equivalent if their correspond-
ing orders coincide.

Semi–elemental saddle–nodes are always topologically equivalent.
The notion of geometric equivalence relation of singularities involves the no-

tion of blow–up equivalence for nilpotent and intricate singular points. The blow–
up equivalence is a technical notion, and we refer to [3] (see also [4]) for the
technical details involved in defining this notion based on the process of desin-
gularization (see, for example, [18]).

Definition 1. Two singularities p1 and p2 of two polynomial vector fields are
locally geometrically equivalent if and only if they are topologically equivalent,
they have the same multiplicity, and one of the following conditions is satisfied:

– p1 and p2 are order equivalent foci (or saddles);
– p1 and p2 are tangent equivalent simple nodes;
– p1 and p2 are both centers;
– p1 and p2 are both semi–elemental singularities;
– p1 and p2 are blow–up equivalent nilpotent or intricate singularities.

Definition 2. Let χ1 and χ2 be two polynomial vector fields each having a fi-
nite number of singularities. We say that χ1 and χ2 have geometric equivalent
configurations of singularities if and only if we have a bijection ϑ carrying the
singularities of χ1 to singularities of χ2 and for every singularity p of χ1, ϑ(p)
is geometrically equivalent with p.

3 Notations for Singularities of Polynomial Differential
Systems

We denote the finite singularities with lower case letters and the infinite ones
with capital letters placing first the finite ones, then the infinite ones, separating
them by a semicolon‘;’.

Elemental Points.Weuse the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”; ‘f ’
for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite (respectively
infinite) singularities. We distinguish the finite nodes as follows:

– ‘n’ for a node with two distinct eigenvalues (generic node);
– ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose

Jacobian matrix is not diagonal;

348 D. Schlomiuk and N. Vulpe

– ‘n∗’ (a star–node) for a node with two identical eigenvalues whose Jacobian
matrix is diagonal.

Moreover, in the case of an elemental infinite generic node, we want to distin-
guish whether the eigenvalue associated to the eigenvector directed towards the
affine plane is, in absolute value, greater or lower than the eigenvalue associated
to the eigenvector tangent to the line at infinity. We will denote them as ‘N∞’
and ‘Nf ’, respectively.

When the trace of the Jacobian matrix of an elemental saddle or focus is zero,
in the quadratic case, one may have up to 3 finite orders. We denote them by
‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the order. In addition, we have the centers
which we denote by ‘c’ and saddles of infinite order (integrable saddles) which
we denote by ‘$’.

Non–elemental singular points are multiple points, i.e., in perturbations they
can produce at least two elemental singular points as close as we wish to the
multiple point. For finite singular points, we denote with a subscript their mul-
tiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the singular point
is semi–elemental and ‘ ̂ ’ indicates that the singular point is nilpotent). In or-
der to describe the various kinds of multiplicity for infinite singular points we
use the concepts and notations introduced in [32]. Thus, we denote by ‘

(
a
b

)
...’

the maximum number a (respectively b) of finite (respectively infinite) singular-
ities which can be obtained by perturbation of the multiple point. For example,

‘
(
1
1

)
SN ’ means a saddle–node at infinity produced by the collision of one finite

singularity with an infinite one; ‘
(
0
3

)
S’ means a saddle produced by the collision

of 3 infinite singularities.

Semi–elemental Points. We always denote the semi–elemental points with an
overline, for example, ‘sn’, ‘s’ and ‘n’ with the corresponding multiplicity. In the
case of infinite points, we will put ‘ ’ on top of the parenthesis with multiplicities.

Nilpotent Points. They can either be saddles, nodes, saddle–nodes, elliptic–
saddles, cusps, foci or centers. The first four of these could be at infinity. We
denote the nilpotent singular points with a hat ‘̂’ as in ês(3) for a finite nilpotent
elliptic–saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point of
multiplicity 2. In the case of nilpotent infinite points, we will put the ‘̂’ on top

of the parenthesis with multiplicity, for example,
(̂
1
2

)
PEP −H (the meaning of

PEP − H will be explained in next paragraph). The relative position of the
sectors of an infinite nilpotent point, with respect to the line at infinity, can
produce topologically different phase portraits. This forces us to use a notation
for these points similar to the notation which we will use for the intricate points.

Intricate Points. The neighborhood of any singular point of a polynomial
vector field (except for foci and centers) is formed by a finite number of sectors
which could be: parabolic, hyperbolic, and elliptic (see [18]). To describe intricate
and nilpotent points we use a sequence formed by the types of their sectors
taken in clockwise order (starting anywhere). In this article, we only have one
finite singularity which is simple. For infinite intricate and nilpotent singular

Applications of Symbolic Calculations to the Classification of Singularities 349

points, we insert a dash (hyphen) between the sectors appearing on one side or
the other of the equator of the sphere. In this way, we will distinguish between(
2
2

)
PHP−PHP and

(
2
2

)
PPH−PPH . Whenever we have an infinite nilpotent or

intricate singular point, we will always start with a sector bordering the infinity
(to avoid using two dashes).

We are interested in additional geometrical features such as the number of
characteristic directions which figure in the final global picture of the blow-up
(or the desingularization) of the singularity.

We call borsec (contraction of border and sector) any orbit of the original
system which carried through consecutive stages of the desingularization ends
up as an orbit of the phase portrait in the final stage which is either a separatrix
or a representative orbit of a characteristic angle (as defined in [3]) of a node or
a of saddle–node in the final desingularized phase portrait.

Using the concept of borsec, we define a geometric local sector with respect
to a neighborhood V as a region in V delimited by two consecutive borsecs.

If two consecutive borsecs arrive at the singular point with the same slope
and direction, then the sector will be denoted by H�, E� or P�, and it is called
cusp-like. In the case of parabolic sectors, we want to distinguish whether the
orbits arrive tangent to one or to the other borsec. We distinguish the two cases

by
�

P if they arrive tangent to the borsec limiting the previous sector in clock–

wise sense or
�

P if they arrive tangent to the borsec limiting the next sector. A
parabolic sector denoted by P ∗ is a sector in which orbits arrive with all possible
slopes between those of the borsecs.

Line at Infinity Filled up with Singularities. It is known that any such
system has in a sufficiently small neighborhood of infinity one of 6 topologically
distinct phase portraits (see [35]). To determine these portraits we study the
reduced systems on the infinite local charts after removing the degeneracy of
the systems within these charts. In case a singular point still remains on the
line at infinity we study such a point. If after the removal of the degeneracy
in the local charts at infinity a node remains, this could either be of the type
Nd, N or N� (this last case does not occur in quadratic systems as shown in
[3] or [4]). To point out the lack of an infinite singular point after removal of a
degeneracy, we will use the symbol ∅. Other types of singular points at infinity
of quadratic systems, after removal of the degeneracy, can be saddles, centers,
semi–elemental saddle–nodes or nilpotent elliptic–saddles. To convey the way
these singularities were obtained as well as their nature, we use the notation

[∞; ∅], [∞; N], [∞; Nd], [∞; S], [∞; C], [∞;
(
1
0

)
SN] or [∞;

(̂
3
0

)
ES].

4 Invariant Polynomials

Consider real quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(2)

350 D. Schlomiuk and N. Vulpe

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of
the coefficients of systems (2) and denote the corresponding polynomial ring by
R[a, x, y] = R[a00, . . . , b02, x, y].

The group Aff (2,R) of the affine transformations on the plane acts on the set
QS (cf. [32]). For every subgroup G ⊆ Aff (2,R), we have an induced action of
G on QS. We can identify the set QS of systems of the form (2) with a subset of
R12 via the map QS −→ R12 which associates to each such system the 12-tuple
a = (a00, a10, . . . , b02) of its coefficients.

The action of Aff (2,R) on QS yields an action of this group on R12. For
every g ∈ Aff (2,R) let rg : R12 −→ R12, rg(a) = ã where ã is the 12-tuple of

coefficients of the transformed system S̃. It is known that rg is linear and that the
map r : Aff(2,R) −→ GL(12,R) thus obtained is a group homomorphism. For
every subgroup G of Aff(2,R), r induces a representation of G onto a subgroup
G of GL(12,R).

Definition 3. A polynomial U(a , x, y) ∈ R[a, x, y] is called a comitant of sys-
tems (2) with respect to a subgroup G of Aff(2,R), if there exists χ ∈ Z such
that for every (g, a) ∈ G×R12 and for every (x, y) ∈ R2 the following relation
holds:

U(rg(a), g(x, y)) ≡ (det g)−χ U(a, x, y),

where det g is the determinant of the linear matrix of the transformation g ∈
Aff (2,R). If the polynomial U does not explicitly depend on x and y then it is
called invariant. The number χ ∈ Z is called the weight of the comitant U(a, x, y).
If G = GL(2,R) (or G = Aff(2,R)) then the comitant U(a, x, y) of systems
(2) is called GL-comitant (respectively, affine comitant).

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ Q[a, x, y], i = 0, 1, 2,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ Q[a, x, y], i = 1, 2.

As it was shown in [39] the polynomials{
C0(a, x, y), C1(a, x, y), C2(a, x, y), D1(a), D2(a, x, y)

}
(3)

of degree one in the coefficients (variable parameters) of systems (2) are GL-
comitants of these systems.

Let f, g ∈ R[a, x, y] and we denote

(f, g)(k) =

k∑
h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
. (4)

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [20], [24]).

Applications of Symbolic Calculations to the Classification of Singularities 351

Theorem 1. [42] Any GL-comitant of systems (2) can be constructed from the
elements of the set (3) by using the operations: +, −, ×, and by applying the
differential operation (f, g)(k).

For the definitions of a GL–comitant with some specific properties (i.e., of a
T –comitant and a CT –comitant) we refer the reader to the paper [32] (see also
[39]). Here we only construct a few invariant polynomials which are responsible
for the singularities (finite and infinite) of systems (2).

Consider the differential operator L = x · L2 − y · L1 acting on R[a, x, y]
constructed in [10], where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1
2a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1
2b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1
2a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1
2b10

∂
∂b11

.

Using this operator and the affine invariant μ0 = Res x
(
p2(a, x, y), q2(a, x, y)

)
/y4

we construct the following polynomials

μi(a, x, y) =
1

i!
L(i)(μ0), i = 1, .., 4,

where L(i)(μ0) = L(L(i−1)(μ0)).
These polynomials are in fact comitants of systems (2) with respect to the

group GL(2,R) (see [10]). Their geometrical meaning is revealed in Lemmas 1
and 2 below.

Lemma 1. ([9]) The total multiplicity of all finite singularities of a quadratic
system (2) equals k if and only if for every i ∈ {0, 1, . . . , k − 1} we have
μi(a, x, y) = 0 in R[x, y] and μk(a, x, y) �= 0. Moreover a system (2) is de-
generate (i.e., gcd(P,Q) �= constant) if and only if μi(a, x, y) = 0 in R[x, y] for
every i = 0, 1, 2, 3, 4.

Lemma 2. ([10]) The point M0(0, 0) is a singular point of multiplicity k (1 ≤
k ≤ 4) for a quadratic system (2) if and only if for every i ∈ {0, 1, . . . , k − 1}
we have μ4−i(a, x, y) = 0 in R[x, y] and μ4−k(a, x, y) �= 0.

Here we apply the invariant polynomials previously constructed (see Remark 1)
to a new situation to obtain new results (Main Theorem). In addition, we con-
struct new invariant polynomials, which are responsible for the existence and
number of star nodes, arbitrarily located on the plane, as we indicate in the
following lemma.

Lemma 3. A quadratic system (2) possesses one star node if and only if one
of the following sets of conditions hold:

(i) U1 �= 0, U2 �= 0, U3 = Y1 = 0;
(ii) U1 = U4 = U5 = U6 = 0, Y2 �= 0;

and it possesses two star nodes if and only if

(iii) U1 = U4 = U5 = 0, U6 �= 0, Y2 > 0,

352 D. Schlomiuk and N. Vulpe

where

U1(a, x, y) = K̃ + H̃, U2(a, x, y) = (C1, H̃ − K̃)(1) − 2D1(K̃ + H̃),

U3(a, x, y) = 3D̃(D2
2 − 16K̃) + C2

[
(C2, D̃)(2) − 5(D2, D̃)(1) + 6 F̃

]
,

U4(a, x, y) = 2T5 + C1D2, U5(a, x, y) = 3C1D1 + 4T2 − 2C0D1,

U6(a, x, y) = H̃, Y1(a) = Ã, Y2(a, x, y) = 2D2
1 + 8T3 − T4.

Here we use the following invariant polynomials constructed through the polyno-
mials appearing in (3):

Ã =
(
C1, T8 − 2T9 +D2

2

)(2)
/144, D̃ =

[
2C0(T8 − 8T9 − 2D2

2)

+C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ẽ =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̃ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ẽ

− 24
(
C2, D̃
)(2)

+120
(
D2, D̃

)(1)
−36C1 (D2, T7)

(1)
+8D1 (D2, T5)

(1)
]
/144,

K̃ =(T8 + 4T9 + 4D2
2)/18, H̃ = −(8T9 − T8 + 2D2

2)/18.

where
T1 = (C0, C1)

(1) , T2 = (C0, C2)
(1) , T3 = (C0, D2)

(1) ,

T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

, T6 = (C1, C2)
(2)

,

T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

.

For more information the interested reader could consult [5],[6],[7],[33],[34],[36],
[37],[40],[41] for more applications of polynomial invariants and computer calcu-
lations; [20],[24],[12] for the theory of algebraic invariants; [14],[1],[29],[26],[43]
for quadratic differential systems and singularities.

References

1. Artés, J.C., Llibre, J.: Quadratic Hamiltonian vector fields. J. Differential Equa-
tions 107, 80–95 (1994)

2. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential sys-
tems with a weak focus of second order. International J. Bifurcation and Chaos 16,
3127–3194 (2006)

3. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: From topological to geometric
equivalence in the classification of singularities at infinity for quadratic vector fields.
Rocky Mountain J. Math. (accepted)

4. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Global analysis of infinite singu-
larities of quadratic vector fields. CRM–Report No.3318. Université de Montreal
(2011)

5. Artés, J.C., Llibre, J., Vulpe, N.I.: Singular points of quadratic systems: A complete
classification in the coefficient space R12. International J. Bifurcation and Chaos 18,
313–362 (2008)

Applications of Symbolic Calculations to the Classification of Singularities 353

6. Artés, J.C., Llibre, J., Vulpe, N.: Complete geometric invariant study of two classes
of quadratic systems. Electron. J. Differential Equations 2012(9), 1–35 (2012)

7. Artés, J.C., Llibre, J., Vulpe, N.: Quadratic systems with an integrable sad-
dle: A complete classification in the coefficient space R12. Nonlinear Analysis 75,
5416–5447 (2012)

8. Baltag, V.A.: Algebraic equations with invariant coefficients in qualitative study
of the polynomial homogeneous differential systems. Bull. Acad. Sci. of Moldova.
Mathematics 2, 31–46 (2003)

9. Baltag, V.A., Vulpe, N.I.: Affine-invariant conditions for determining the number
and multiplicity of singular points of quadratic differential systems. Izv. Akad.
Nauk Respub. Moldova Mat. 1, 39–48 (1993)

10. Baltag, V.A., Vulpe, N.I.: Total multiplicity of all finite critical points of the poly-
nomial differential system. Planar nonlinear dynamical systems (Delft, 1995). Dif-
ferential Equations & Dynam. Systems 5, 455–471 (1997)

11. Bendixson, I.: Sur les courbes définies par des équations différentielles. Acta
Math 24, 1–88 (1901)

12. Bularas, D., Calin, I., Timochouk, L., Vulpe, N.: T–comitants of quadratic systems:
A study via the translation invariants. Delft University of Technology, Faculty of
Technical Mathematics and Informatics, Report No. 96-90 (1996),
ftp://ftp.its.tudelft.nl/publications/tech-reports/

1996/DUT-TWI-96-90.ps.gz

13. Calin, I.: On rational bases of GL(2,R)-comitants of planar polynomial systems of
differential equations. Bull. Acad. Sci. of Moldova. Mathematics 2, 69–86 (2003)

14. Coppel, W.A.: A survey of quadratic systems. J. Differential Equations 2, 293–304
(1966)

15. Dumortier, F.: Singularities of vector fields on the plane. J. Differential Equa-
tions 23, 53–106 (1977)

16. Dumortier, F.: Singularities of Vector Fields. Monografias de Matemática, vol. 32.
IMPA, Rio de Janeiro (1978)

17. Dumortier, F., Fiddelaers, P.: Quadratic models for generic local 3-parameter bi-
furcations on the plane. Trans. Am. Math. Soc. 326, 101–126 (1991)

18. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential
Systems. Universitext. Springer, Berlin (2008)

19. Gonzalez Velasco, E.A.: Generic properties of polynomial vector fields at infinity.
Trans. Amer. Math. Soc. 143, 201–222 (1969)

20. Grace, J.H., Young, A.: The algebra of invariants. Stechert, New York (1941)
21. Hilbert, D.: Mathematische Probleme. In: Nachr. Ges. Wiss., Second Internat.

Congress Math., Paris, pp. 253–297. Göttingen Math.–Phys., Kl (1900)
22. Jiang, Q., Llibre, J.: Qualitative classification of singular points. Qualitative Theory

of Dynamical Systems 6, 87–167 (2005)
23. Llibre, J., Schlomiuk, D.: Geometry of quadratic differential systems with a weak

focus of third order. Canad. J. Math. 6, 310–343 (2004)
24. Olver, P.J.: Classical Invariant Theory. London Math. Soc. Student Texts, vol. 44.

Cambridge University Press (1999)
25. Nikolaev, I., Vulpe, N.: Topological classification of quadratic systems at infinity.

J. London Math. Soc. 2, 473–488 (1997)
26. Pal, J., Schlomiuk, D.: Summing up the dynamics of quadratic Hamiltonian sys-

tems with a center. Canad. J. Math. 56, 583–599 (1997)
27. Popa, M.N.: Applications of algebraic methods to differential systems. Piteşi

Univers., The Flower Power Edit., Romania (2004)

ftp://ftp.its.tudelft.nl/publications/tech-reports/1996/DUT-TWI-96-90.ps.gz
ftp://ftp.its.tudelft.nl/publications/tech-reports/1996/DUT-TWI-96-90.ps.gz

354 D. Schlomiuk and N. Vulpe

28. Roussarie, R.: Smoothness property for bifurcation diagrams. Publicacions
Matemàtiques 56, 243–268 (1997)

29. Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the
center. Trans. Amer. Math. Soc. 338, 799–841 (1993)

30. Schlomiuk, D.: Basic algebro-geometric concepts in the study of planar polynomial
vector fields. Publicacions Mathemàtiques 41, 269–295 (1997)

31. Schlomiuk, D., Pal, J.: On the geometry in the neighborhood of infinity of quadratic
differential phase portraits with a weak focus. Qualitative Theory of Dynamical
Systems 2, 1–43 (2001)

32. Schlomiuk, D., Vulpe, N.I.: Geometry of quadratic differential systems in the neigh-
borhood of infinity. J. Differential Equations 215, 357–400 (2005)

33. Schlomiuk, D., Vulpe, N.I.: Integrals and phase portraits of planar quadratic differ-
ential systems with invariant lines of at least five total multiplicity. Rocky Mountain
J. Mathematics 38(6), 1–60 (2008)

34. Schlomiuk, D., Vulpe, N.I.: Integrals and phase portraits of planar quadratic dif-
ferential systems with invariant lines of total multiplicity four. Bull. Acad. Sci. of
Moldova. Mathematics 1, 27–83 (2008)

35. Schlomiuk, D., Vulpe, N.I.: The full study of planar quadratic differential systems
possessing a line of singularities at infinity. J. Dynam. Differential Equations 20,
737–775 (2008)

36. Schlomiuk, D., Vulpe, N.I.: Global classification of the planar Lotka–Volterra differ-
ential system according to their configurations of invariant straight lines. J. Fixed
Point Theory Appl. 8, 177–245 (2010)

37. Schlomiuk, D., Vulpe, N.I.: The global topological classification of the
Lotka–Volterra quadratic differential systems. Electron. J. Differential Equa-
tions 2012(64), 1–69 (2012)

38. Seidenberg, E.: Reduction of singularities of the differential equation Ady = Bdx.
Amer. J. Math. 90, 248–269 (1968); Zbl. 159, 333

39. Sibirskii, K.S.: Introduction to the Algebraic Theory of Invariants of Differential
Equations, Translated from the Russian. Nonlinear Science: Theory and Applica-
tions. Manchester University Press, Manchester (1988)

40. Vulpe, N.: Characterization of the finite weak singularities of quadratic systems
via invariant theory. Nonlinear Analysis. Theory, Methods and Applications 74(4),
6553–6582 (2011)

41. Vulpe, N.I.: Affine–invariant conditions for the topological discrimination of
quadratic systems with a center. Differential Equations 19, 273–280 (1983)

42. Vulpe, N.I.: Polynomial bases of comitants of differential systems and their appli-
cations in qualitative theory, “Ştiinţa”, Kishinev (1986) (in Russian)

43. Żo�la̧dek, H.: Quadratic systems with center and their perturbations. J. Differential
Equations 109, 223–273 (1994)

Singularities of Implicit Differential Equations

and Static Bifurcations

Werner M. Seiler

Institut für Mathematik, Universität Kassel, 34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

Abstract. We discuss geometric singularities of implicit ordinary differ-
ential equations from the point of view of Vessiot theory. We show that
quasi-linear systems admit a special treatment leading to phenomena not
present in the general case. These results are then applied to study static
bifurcations of parametric ordinary differential equations.

1 Introduction

The Vessiot theory [17] provides a powerful framework for analysing differential
equations geometrically. It uses vector fields in contrast to the differential forms
of the more familiar Cartan-Kähler theory [2]. Fackerell [3] applied it in the
context of symmetry analysis of partial differential equations. In [5, 6], we gave
a rigorous proof that Vessiot’s construction of solutions works, if and only if one
is dealing with an involutive equation.

Vessiot’s intention was to provide an alternative proof of the basic existence
and uniqueness theorem for general systems of partial differential equations,
the Cartan-Kähler Theorem. In our opinion, there are better approaches for
this (see e. g. the proof in [14] which mainly follows [9]). However, his results
are very useful for the further geometric analysis of involutive equations. In
particular, one can easily see that Arnold’s treatment of singularities of implicit
ordinary differential equations in [1] is in fact based on what we call the Vessiot
distribution. This identification provides us with a starting point for extending
singularity theory to more general systems. For example, Tuomela [15, 16] used
it for differential algebraic equations and we considered in [7] partial differential
equations of finite type.

In this work, we first review the theory of geometric singularities of general
nonlinear systems of ordinary differential equations which are not underdeter-
mined. Then we discuss the particularities appearing in quasi-linear systems. In
contrast to the general case, the Vessiot distribution is here projectable to the
base manifold which leads to types of singular behaviour which are not admitted
by fully non-linear equations. In particular, solutions can be extended to certain
points where strictly speaking the differential equation is not even defined. We
recover and clarify here results by Rabier [10–12] with alternative proofs.

Finally, we apply the obtained results to the analysis of static bifurcations
in parametric autonomous ordinary differential equations. This is possible due

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 355–368, 2013.
c© Springer International Publishing Switzerland 2013

356 W.M. Seiler

to the simple observation that differentiation of the equilibrium condition yields
a quasi-linear equation. The projected Vessiot distribution contains now much
information about bifurcations: turning points (also called saddle-node bifur-
cations) are characterised by a vertical distribution, whereas at pitchfork or
transcritical bifurcations the distribution vanishes. Furthermore, the bifurcation
diagram consists of integral manifolds of the Vessiot distribution.

2 Geometric Theory of Differential Equations

The geometric modelling of differential equations is based on jet bundles [8, 9, 13,
14]. Let π : E → T be a fibred manifold. For ordinary differential equations, we
may assume that dim T = 1. For simplicity, we will work in local coordinates,
although we will use throughout a “global notation”. As coordinate on the base
space T weuse t and fibre coordinates in the total space E will beu = (u1, . . . , um).
The first derivative of uα will be denoted by u̇α; higher derivatives are written
in the form uαk = dkuα/dtk. Adding all derivatives uαk with k ≤ q (collectively
denoted by u(q)) defines a coordinate system for the q-th order jet bundle Jqπ.
There are natural fibrations πq

r : Jqπ → Jrπ for r < q and πq : Jqπ → T . Sections
σ : T → E of the fibration π correspond to functions u = s(t), as locally they can
always be written in the form of a graph σ(t) =

(
t, s(t)
)
. To such a section σ, we

associate its prolongation jqσ : T → Jqπ, a section of the fibration πq given by
jqσ(t) =

(
t, s(t), ṡ(t), s̈(t), . . .

)
.

The geometry of Jqπ is to a large extent determined by its contact structure
describing intrinsically the relationship between the different types of coordi-
nates. The contact distribution is the smallest distribution Cq ⊂ T (Jqπ) that
contains the tangent spaces T (im jqσ) of all prolonged sections and any field in
it is a contact vector field. In local coordinates, Cq is generated by one transversal
and m vertical fields:

C
(q)
trans = ∂t +

q−1∑
j=0

uαj+1∂uα
j
, (1a)

C(q)
α = ∂uα

q
, 1 ≤ α ≤ m . (1b)

Proposition 1. A section γ : T → Jqπ is of the form γ = jqσ with σ : T → E,
if and only if Tγ(t)(im γ) ⊆ Cq|γ(t) for all points t ∈ T where γ is defined.

The following intrinsic geometric definition of a differential equation gener-
alises the usual one, as it allows for certain types of singular behaviour. It imposes
considerably weaker conditions on the restricted projection π̂q which in the stan-
dard definition is expected to be a surjective submersion. Note that we do not
distinguish between scalar equations and systems. Indeed, when we speak of a
differential equation in the sequel, we will always mean a system, if not explicitly
stated otherwise.

Definition 2. An (ordinary) differential equation of order q is a submanifold
Rq ⊆ Jqπ such that the restriction π̂q of the projection πq : Jqπ → T to Rq

Singularities of Implicit Differential Equations and Static Bifurcations 357

has a dense image. A (strong) solution is a (local) section σ : T → E such that
im jqσ ⊆ Rq.

Locally, a differential equation Rq ⊆ Jqπ can be described as the zero set of
some smooth functions Φ : Jqπ → �. Differentiating every function yields the
prolonged equation Rq+1 ⊆ Jq+1π defined by all equations Φ(t,u(q)) = 0 and
DtΦ(t,u

(q+1)) = 0 with the formal derivative

DtΦ = C
(q)
trans(Φ) +

m∑
α=1

uαq+1C
(q)
α (Φ) . (2)

Iteration of this process gives the higher prolongations Rq+r ⊆ Jq+rπ. A sub-

sequent projection leads to the differential equation R(1)
q = πq+1

q (Rq+1) ⊆ Rq

which will be a proper submanifold, if integrability conditions are hidden. Rq is

formally integrable, if at any prolongation order r > 0 the equality R(1)
q+r = Rq+r

holds (see [14] for more details). It is easy to show that (under some regular-
ity assumptions) every consistent ordinary differential equation Rq leads after
a finite number of projection and prolongation cycles to a formally integrable

equation R(s)
q ⊆ Rq. Therefore, without loss of generality, we will always assume

in the sequel that we are already dealing with a formally integrable equation.
More precisely, we will study in this work only square first-order equations

with a local representation

R1 :
{
Φ(t,u(1)) = 0 (3)

where Φ : J1π → �
m (thus we have as many equations as unknown functions)

and where we furthermore assume that the symbol matrix, i. e. the Jacobian
∂Φ/∂u̇, is almost everywhere non-singular. These assumptions are less restrictive
as they may appear. Whenever a first-order equation is not underdetermined,
its symbol matrix has almost everywhere rank m. Thus locally we may always
assume that a general first-order equation splits into an equation of the form
considered here plus some purely algebraic equations. Solving the latter ones,
we can eliminate some of the dependent variables uα and obtain then a smaller
equation of the desired form. At least theoretically this is always possible.

By a classical result on jet bundles, the fibration π1
0 : J1π → E is an affine

bundle. A first-order differential equation R1 ⊂ J1π is quasi-linear, if it de-
fines an affine subbundle. For such equations, we assume in the sequel a local
representation of the form

R1 :
{
A(t,u)u̇ = r(t,u) (4)

where the m×m matrix function A is almost everywhere non-singular.

Assumption 3. In the sequel, R1 ⊆ J1π will always be a formally integrable
square first-order ordinary differential equation with a local representation of the
form (3) or (4), respectively, which is not underdetermined.

358 W.M. Seiler

3 The Vessiot Distribution

A key insight of Cartan was to study infinitesimal solutions of a differential
equation R1 ⊆ J1π, i. e. to consider at any point ρ ∈ R1 those linear subspaces
Uρ ⊆ TρR1 which are potentially part of the tangent space of a prolonged solu-
tion. We will follow here an approach pioneered by Vessiot [17] which is based
on vector fields and dual to the more familiar Cartan-Kähler theory of exterior
differential systems (see [4, 6, 14] for modern presentations in the context of the
geometric theory). By Proposition 1, the tangent spaces Tρ(im j1σ) of prolonged
sections at points ρ ∈ J1π are always subspaces of the contact distribution C1|ρ.
If the section σ is a solution of R1, it furthermore satisfies im j1σ ⊆ R1 by
Definition 2 and hence T (im j1σ) ⊆ TR1. These considerations motivate the
following construction.

Definition 4. The Vessiot distribution of a first-order ordinary differential
equation R1 ⊆ J1π is the distribution V [R1] ⊆ TR1 defined by

V [R1] = TR1 ∩ C1|R1 . (5)

Computing the Vessiot distribution is straightforward and requires only linear
algebra. It follows from Definition 4 that any vector field X contained in V [R1]
is a contact field and thus can be written as a linear combination of the basic
contact fields (1): X = aC

(1)
trans +

∑
α b

αC
(1)
α . On the other hand, X must be

tangent to the manifold R1. Hence, if R1 is described by the local system (3),
then the field X must satisfy the equations dΦ(X) = X(Φ) = 0. Evaluation of
this condition yields a linear system of equations for the coefficients a, bα:

C
(1)
trans(Φ

μ)a+

m∑
α=1

C(1)
α (Φμ)bα = 0 , μ = 1, . . . ,m . (6)

Note that X is vertical with respect to π1, if and only if the coefficient a vanishes.
Concerning our Assumption 3 on the differential equation R1, we remark that
equations of lower order are irrelevant for the Vessiot distribution provided that
the equation is indeed formally integrable [14, Prop. 9.5.10].

Determining the Vessiot distribution of R1 requires essentially the same com-
putations as prolonging it. Indeed, the prolongation R2 ⊆ J2π is locally de-
scribed by the original equations Φμ = 0 together with their prolongations

C
(1)
trans(Φ

μ) +
m∑

α=1

C(1)
α (Φμ)üα = 0 , μ = 1, . . . ,m . (7)

These coincide with (6), if we set a = 1 and bα = üα, i. e. for transversal solutions
of (6). One may say that (6) is a “projective” version of (7).

It should be stressed that we allow that the rank of a distribution varies from
point to point. In fact, this will be important for certain types of singularities.
The following, fairly elementary result is the basis of Vessiot’s approach to the

Singularities of Implicit Differential Equations and Static Bifurcations 359

existence theory of differential equations. It relates solutions with certain sub-
distributions of the Vessiot distribution. We formulate it here only for first-order
ordinary differential equations; for the general case see [14, Prop. 9.5.7].

Lemma 5. If the section σ : T → E is a solution of the first-order ordinary
differential equation R1 ⊆ J1π, then the tangent bundle T (im j1σ) is a one-
dimensional subdistribution of V [R1]|im j1σ transversal to the fibration π1. Con-
versely, if the subdistribution U ⊆ V [R1] is one-dimensional and transversal,
then any integral curve of U has locally the form im j1σ for a solution σ of R1.

Definition 6. A generalised solution of the first-order ordinary differential
equation R1 ⊆ J1π is an integral curve N ⊆ R1 of the Vessiot distribution
V [R1]. The projection π1

0(N) ⊆ E is a geometric solution.

Note that generalised solutions live in the jet bundle J1π and not in the base
manifold E . If the section σ : T → E is a classical solution, then the image of
its prolongation j1σ : T → J1π is a generalised solution. However, not every
generalised solution N projects on a classical one: this will be the case, if and
only if N is everywhere transversal to the fibration π1 : J1π → T .

4 Geometric Singularities

A geometric singularity of a differential equation R1 is a critical point ρ ∈ R1 of
the restricted projection π̂1

0 : R1 → E , i. e. a point where the tangent map Tρπ̂
1
0

is not surjective. Following the terminology of Arnold [1] in the scalar case, we
distinguish three types of points on R1. Note that this taxonomy makes only
sense for formally integrable equations which are not underdetermined.

Definition 7. Let R1 ⊆ J1π be a first-order ordinary differential equation sat-
isfying Assumption 3. A point ρ ∈ R1 is regular, if Vρ[R1] is one-dimensional
and transversal to π1, and regular singular, if Vρ[R1] is one-dimensional and
vertical. If dimVρ[R1] > 1, then ρ is an irregular singularity.

For an equation of the form (3), we define the m ×m matrix A(t,u(1)) and
the m-dimensional vector r(t,u(1)) by

A =
∂Φ

∂u̇
, d =

∂Φ

∂t
+
∂Φ

∂u
· u̇ . (8)

In addition to the (symbol) matrix A(t,u(1)), we introduce its determinant
δ(t,u(1)) = detA(t,u(1)) and its adjugate C(t,u(1)) = adjA(t,u(1)). Because
of the well-known identity δ�m = AC = CA, we find imC(ρ) ⊆ kerA(ρ) and
imA(ρ) ⊆ kerC(ρ) for any point ρ ∈ J1π where δ(ρ) = 0. For later use, we note
that if additionally dimkerA(ρ) = 1 at such a point, then C(ρ) �= 0, as A(ρ)
must possess at least one non-vanishing minor. Hence in this case, we even find
imC(ρ) = kerA(ρ) and imA(ρ) = kerC(ρ).

The following considerations recover results by Rabier [10] from the point of
view of Vessiot’s theory and provide simpler alternative proofs. They show in

360 W.M. Seiler

particular that geometric singularities are characterised by the vanishing of δ.
We therefore call the subset S1 = {ρ ∈ R1 | δ(ρ) = 0} the singular locus of the
differential equation R1.

Theorem 8. Let R1 ⊆ J1π be a first-order ordinary differential equation sat-
isfying Assumption 3. A point ρ ∈ R1 is regular, if and only if rkA(ρ) = m
and regular singular, if and only if rkA(ρ) = m − 1 and d(ρ) /∈ imA(ρ). A
regular point ρ has an open simply connected neighbourhood U ⊆ R1 without any
geometric singularity and there exists locally a unique strong solution σ such
that ρ ∈ im j1σ ⊆ U . A regular singular point ρ has an open simply connected
neighbourhood U ⊆ R1 without any irregular singularity and there exists locally
a unique generalised solution N such that ρ ∈ N ⊆ U . If the neighbourhood U is
chosen sufficiently small, then in both cases the Vessiot distribution is generated
in U by the vector field

X = δC
(1)
trans − (Cd)tC(q) . (9)

Proof. The first two assertions follow from the fact that the matrix of the linear
system (6) evaluated at a point ρ ∈ R1 is

(
d(ρ) | A(ρ)

)
and that the Vessiot

distribution is one-dimensional, if and only if its rank ism. Since rank is an upper
semicontinuous function, the Vessiot distribution will remain one-dimensional in
a whole neighbourhood U of such a point. Hence any such neighbourhood cannot
contain an irregular singularity where the rank of the matrix

(
d(ρ) | A(ρ)

)
must

be less than m. If the point ρ is regular, we can apply the same argument to the
matrix A(ρ) and find that U cannot even contain a regular singularity.

If the neighbourhood U is chosen simply connected, then the one-dimensional
distribution V [R1] can be generated in it by a single vector field without any
zero. The explicit generator X of (9) is now obtained by simply multiplying (6)
with the adjugate C. Note that the field X does indeed vanish nowhere, as even
at a regular singularity where δ(ρ) = 0 we find by the considerations above that
kerC(ρ) = imA(ρ) and thus C(ρ)d(ρ) �= 0 since d(ρ) /∈ imA(ρ).

The existence of a unique local integral curve N ⊆ U of X and thus of a
unique generalised solution through ρ follows now by the usual existence and
uniqueness theorems for vector fields. If ρ is a regular point, then X (and thus
also N) is everywhere on U transversal to π1

0 and we can write N = im γ for
some section γ : T → J1π. By Proposition 1, γ = j1σ for a section σ : T → E .
Thus in this case ρ even lies on a unique (prolonged) strong solution.
�

A different formulation of the existence and uniqeness part of Theorem 8 can
be found in [7, Thm. 4.1]. There the standard existence and uniqueness result for
ordinary differential equations solved for the derivatives is generalised to arbi-
trary formally integrable equations without irregular singularities. In particular,
it is shown that any strong solution can be extended until its prolongation hits
either the boundary of R1 or a regular singularity.

Note that at a regular singularity δ = 0 and hence the vector field X defined
by (9) is indeed vertical. By an extension of the above argument, one can prove
the following statement about irregular singularities [7, Thm. 4.2]. Any irregular

Singularities of Implicit Differential Equations and Static Bifurcations 361

singularity ρ lies on the boundary of an open simply connected neighbourhood
U ⊆ R1 without further irregular singularities. By Theorem 8, V [R1] is generated
on U by a vector field X . Then any extension of X to ρ will vanish. The dynamics
around an irregular singular point ρ is now to a large extent determined by the
eigenvalues of the Jacobian of X at ρ. Usually, there are infinitely many strong
(prolonged) solutions beginning or ending at such point.

Example 9. From a geometric point of view, it is straightforward to understand
what happens at a regular singularity ρ (cf. also [7]). There are two possibilities.1

If the sign of the ∂t-component of X along N does change at ρ (the generic
behaviour), then there exist precisely two strong solutions which both either
end or start at π1

0(ρ) and which arise through the “folding” of the generalised
solution N during the projection. No prolonged strong solution can go through
ρ in this case, as the projection of N is not a graph at π1

0(ρ). Otherwise, the
projection of N is a strong solution which, however, is only of class C1, as its
second derivative at ρ cannot exist by the above comparison of prolongation and
determination of the Vessiot distribution.

As a concrete example, we con-
sider the equation u̇3 − uu̇ − t =
0 whose surface R1 ⊆ J1π corre-
sponds to the elementary catastro-
phe known as gather or Whitney
pleat. We call this equation the el-
liptic gather. The blue surface in
the picture on the right is R1; the
short black lines indicate the direc-
tion defined by the Vessiot distribu-
tion V [R1] at some points ρ ∈ R1.
The white curve shows the singular
locus. All points on it are regular sin-
gular points. The yellow curves de-
pict some generalised solutions de-
termined by numerically integrating
the vector field X of Theorem 8
(which has also been computed nu-
merically). Their projection to E is
shown on the red plane.

Whenever a generalised solution crosses the singular locus, the projected curve
changes its direction and thus ceases to be the graph of a function. An exception
is the one generalised solution that goes through the “tip” of the singular locus,
as here the Vessiot distribution is tangential to the singular locus. Its projection
is still the graph of a function which, however, is at t = 0 only once differentiable;
the second derivative blows up at this point.

1 We ignore here the degenerate case that the generalised solution N through ρ is
completely vertical, i. e. N ⊆ (π1

0)
−1
(
π1
0(ρ)
)
; see, however, the next section.

362 W.M. Seiler

As the following result shows, generically the Vessiot distribution is transversal
to the singular locus at regular singularities and the singular locus is almost
everywhere a smooth manifold. We omit a proof of this proposition, as we can
simply use the one given by Rabier [10]. He does not interpret the non-degeneracy
condition in terms of the Vessiot distribution. But given the expression (9) for
the generatorX of V [R1], it is easy to see that his results imply the transversality
of V [R1] to S1.

Proposition 10. Let ρ ∈ R1 be a regular singular point. If

vt ∂A

∂u̇
(ρ)v /∈ imA(ρ) (10)

for all non-vanishing vectors v ∈ kerA(ρ), then the Vessiot distribution Vρ[R1]
is transversal to the singular locus S1 and the singular locus S1 is a smooth
manifold in a neighbourhood of ρ.

Remark 11. One should note that we do not get here an equivalence between
the condition (10) and transversality of the Vessiot distribution—or the vector
field X—to the singular locus. The converse may become invalid when the deter-
minant δ is of the form δ = ζk for some function ζ and an exponent k > 1. In this
case, transversality cannot be decided by using the differential dδ, as it vanishes
everywhere on the singular locus S1. However, Rabier’s proof of Proposition 10
uses dδ and thus cannot be inverted in such situations.

5 Quasi-linear Equations

We specialise now the results of the previous section to quasi-linear equations of
the form (4). As we already indicated with our notations, the matrix A is then
indeed the Jacobian with respect to the derivatives. Thus here the only difference
is the fact that in the quasi-linear case A does not depend on the derivatives and
we will continue to denote its determinant by δ and its adjugate by C. However,
the vectors r and d are not related.

Lemma 12. Let R1 ⊆ J1π be a quasi-linear equation satisfying Assumption 3.
According to Theorem 8, on a simply conncected open subset U ⊆ R1 without
any irregular singularity the Vessiot distribution V [R1] is generated by the vector
field X given by (9). This field is projectable to a vector field Y = (π1

0)∗X defined

on π1
0(U) ⊆ R(1)

0 ⊆ E by
Y = δ∂t + (Cr)t∂u . (11)

Proof. Multiplication of (4) with the adjugate C yields the equation δu̇ = Cr.
Thus on R1 we may write X = Y + (Cd)t∂u̇. As all coefficients of Y depend
only on t and u, the field X is projectable to E and (π1

0)∗X = Y .
�
The coordinate form (11) shows that the field Y can be locally continued to

points outside of the projectionR(1)
0 . More precisely, it follows from the definition

of the adjugate that Y can be defined at any point ξ ∈ E where both A and r are
defined. This observation allows us to study the singularities of R1 on E using the
vector field Y instead of working in J1π with the Vessiot distribution V [R1].

Singularities of Implicit Differential Equations and Static Bifurcations 363

Definition 13. Let R1 ⊆ J1π be a quasi-linear differential equation with local
representation (4) and D ⊆ E the subset where both A and r are defined. ξ ∈ D
is a regular point for R1, if Yξ is transversal to the fibration π : E → T , and an
impasse point otherwise. An impasse point is irregular, if Yξ = 0, and regular
otherwise. The set of all impasse points is the impasse hypersurface S0 ⊆ E. A
geometric solution of the differential equation R1 is an integral curve N ⊆ E of
the vector field Y .

In analogy to Theorem 8, one obtains the following characterisation of the
different cases. We stress again that for quasi-linear equation all conditions live
in E and not in J1π.

Theorem 14. Let R1 ⊆ J1π be a quasi-linear differential equation satisfying
Assumption 3. A point ξ ∈ D is regular for R1, if and only if rkA(ξ) = m. It is

a regular impasse point, if and only if rkA(ξ) = m− 1 and ξ /∈ R(1)
0 .

Proof. The case of a regular point is obvious. If rkA(ξ) < m−1, then all minors
of A(ξ) of size m− 1 and thus also the adjugate C(ξ) vanish. This fact implies
then trivially that Yξ = 0. Hence there only remains the case rkA(ξ) = m − 1.

Recall from above that then imA(ξ) = kerC(ξ). Since ξ /∈ R(1)
0 is equivalent to

r(ξ) /∈ imA(ξ), we thus find in this case that Yξ �= 0, if and only if ξ /∈ R(1)
0 .
�

We compare now these notions with the corresponding ones for general equa-
tions introduced in Definition 7. Let ρ ∈ R1 be a point on our given differential
equation and ξ = π1

0(ρ) its projection to E . If ρ is a regular point, then trivially
ξ is regular, too. Indeed, it follows immediately from (9) that in this case Xρ is
transversal to π1 and hence its projection Yξ to π. As discussed above, it follows
from [7, Thm. 4.2] that Xρ vanishes, if ρ is an irregular singularity. Hence in this
case ξ is an irregular impasse point.

Implicit in the above proof is the observation that regular singular points of
a quasi-linear equation R1 always show a degenerate behaviour. Indeed, if ρ is
a regular singularity, then the fibre N = (π1

0)
−1(ξ) ∩R1 is one-dimensional and

consists entirely of regular singularities. Furthermore, in this degenerate case N
is the unique generalised solution through ρ and it does not project onto a curve
in E but the single point ξ.

The behaviour normally associated with regular singularities appears for quasi-
linear equations at regular impasse points. One possibility is that two strong
solutions can be extended so that they either start or end at ξ and together
define the geometric solution through ξ. This will happen, if the sign of the
∂t-component of Y changes at ξ. If the sign remains the same, then we find a
unique “strong” solution through ξ which, however, is only C0 in ξ and thus
strictly speaking cannot be considered as a solution. Concrete examples for both
cases will be given in the next section.

Again a degenerate situation may arise. Let R1 be a semi-linear equation
where the symbol matrix A depends only on the independent variable t. If now
rkA(t0) = m− 1 for some point t0 ∈ T , then at all points ξ ∈ π−1(t0) ⊂ E the
vector Yξ is either vertical or vanishes. Assuming that the latter happens only on

364 W.M. Seiler

some lower-dimensional subset, we find geometric solutions N lying completely
in the fibre π−1(t0). As these project on the single point t0 ∈ T , they cannot be
interpreted as strong solutions with some singularities.

Example 15. Consider the quasi-linear equation 2uu̇− t = 0. Its singular locus
S1 is the vertical line t = u = 0 which is simultaneously a generalised solution.
Two points on it, (0, 0,±1), are irreg-
ular singularities; all other points are
regular singularities. The impasseman-
ifold S0 given by u = 0 contains one ir-
regular impasse point at the origin. An
explicit integration of this equation is
easily possible and the solutions are of
the implicit form u2 − t2/2 = c for a
constant c ∈ �. For c < 0, the two
branches of the square root alwaysmeet
on S0 where the solution is not differen-
tiable. Note that on one branch u̇ → ∞
whereas on the other branch u̇ → −∞.
For c = 0 one obtains the two lines
intersecting at the origin. For c > 0
each branch of the square root yields
one strong solution.

There also exists a special version of Proposition 10 for autonomous quasi-
linear equations. In this case the condition (10) must be replaced by

vt ∂A

∂u
(ξ)v /∈ imA(ξ) (12)

for all non-vanishing vectors v ∈ kerA(ξ) and it ensures that the field Y is
transversal to the impasse surface S0 at the impasse point ξ and that S0 is
a smooth manifold in a neighbourhood of ξ. As already discussed in Remark
11, this condition is only sufficient but not necessary. The quasi-linear equation
associated with a hysteresis point (see Example 18 below) represents a concrete
counterexample where condition (12) fails at the hysteresis point but nevertheless
the vector field Y is there transversal to the smooth manifold S0.

6 Static Bifurcations

We apply the results of the last section to the analysis of static bifurcations of
a parametrised autonomous ordinary differential equation of the standard form
u′ = φ(t,u). Opposed to the conventions used so far in this work, t represents
now the parameter and we denote the (not explicitly appearing) independent
variable by x and hence derivatives with respect to it by u′. We continue to
consider t and u as coordinates on a fibred manifold π : E → T .

Singularities of Implicit Differential Equations and Static Bifurcations 365

For static bifurcations one analyses the dependence of solutions of the alge-
braic system φ(t,u) = 0 on the parameter t, i. e. how the equilibria change as t
varies. The solution set may be considered as a bifurcation diagram. Note that
this represents a purely algebraic problem in E . At certain bifurcation values of
the parameter t the number of equilibria changes.

Definition 16. The point ξ = (t,u) ∈ E is a turning point, if

φ(ξ) = 0 ∧ dimker
∂φ

∂u
(ξ) = 1 ∧ ∂φ

∂t
(ξ) /∈ im

∂φ

∂u
(ξ) . (13)

At a bifurcation point ξ ∈ E, the third condition is replaced by its converse:

φ(ξ) = 0 ∧ dimker
∂φ

∂u
(ξ) = 1 ∧ ∂φ

∂t
(ξ) ∈ im

∂φ

∂u
(ξ) . (14)

The rationale behind the above distinction is that at a turning point ξ all
solutions of φ = 0 still lie on one smooth curve and the number of solutions only
changes because this curve “turns” at ξ. At a bifurcation point several solution
curves meet. In the bifurcation literature, much emphasis is put on distinguishing
simple turning or bifurcation points from higher ones. In particular, the numer-
ical analysis differs for non-simple points. It will turn out that in our approach
such a distinction is irrelevant. We try to write the solutions as a function u(t).
Differentiating the given algebraic system with respect to the parameter t yields
then a square quasi-linear differential equation for this function:

∂φ

∂u
(t,u)u̇ +

∂φ

∂t
(t,u) = 0 . (15)

Thus we set A(t,u) = ∂φ
∂u (t,u) and d(t,u) = ∂φ

∂t (t,u). The bifurcation diagram
consists now of those geometric solutions of (15) on which φ vanishes.

Theorem 17. ξ ∈ E is a turning point, if and only if φ(ξ) = 0 and ξ is a regular
impasse point of (15). ξ ∈ E is a bifurcation point, if and only if φ(ξ) = 0 and
ξ is an irregular impasse point of (15) where rkA(ξ) = m− 1. In this case each
branch of the bifurcation diagram is tangent to an eigenvector of the Jacobian of
the vector field Y at ξ for an eigenvalue with non-vanishing real part.

Proof. The first two assertions follow immediately from comparing Definition 16
with Theorem 14. For the last assertion we note that an irregular impasse point
is, by definition, an equilibrium of the vector field Y and hence it follows from
basic dynamical systems theory.
�
Example 18. We compare a simple turning point or (saddle node bifurcation)
with a hysteresis point (a degenerate turning point). As all our geometric consid-
erations remain invariant under coordinate transformation, we take for simplicity
the well-known normal forms of such points: φ1(t, u) = t− u2 and φ2 = t− u3.
The corresponding quasi-linear equations are 2uu̇ = 1 and 3u2u̇ = 1. Thus in
both cases the impasse manifold is given by the equation u = 0 and consists
entirely of regular impasse points. A straightforward calculation yields for the
vector field defined by (11) Y1 = 2u∂t+ ∂u and Y2 = 3u2∂t + ∂u, respectively. In
both cases the origin is the sole turning point in the sense of Definition 16.

366 W.M. Seiler

Simple Turning Point Hysteresis Point

The above pictures show the fields Y1 and Y2 and their streamlines.2 The red
curve is the bifurcation diagram. One clearly sees that even in the degenerate
case there are no particular numerical problems. The only difference between the
two cases is the behaviour of the ∂t-component of Y : on the left it changes sign
when going through the impasse point, on the right it does not. As explained in
the previous section, this observation entails that on the left we have two strong
solutions starting arbitrarily close to the origin and extendable to the origin,
whereas on the right we find one solution going through the origin which is,
however, not differentiable there.

Example 19. The normal form of a pitchfork bifurcation is φ(t, u) = tu− u3. The
associated quasi-linear equation is then (t−3u2)u̇+u = 0with singular locus S1 ⊆
R1 given by the points satisfying in addition 3u2 = t. The impasse surface S0 ⊆ E
is also described by this equation. The origin is an irregular impasse point; all other
points on S0 are regular. The vector field of (11) is given by Y = (t− 3u2)∂t −u∂u
and vanishes at the origin as required for an irregular impasse point.

The picture on the right ex-
hibits the vector field Y , its stream-
lines and the eigenvectors of the
Jacobian of Y at the origin J =(
1 0
0 −1

)
. Obviously, they are tan-

gent to the bifurcation diagram
consisting of the invariant mani-
folds of Y . The picture also nicely
shows how the pitchfork bifurca-
tion arises when two turning points
moving on the dashed green line
collide.
2 Only one of the streamlines satisfies the algebraic equation φ(ξ) = 0 and thus
represents the bifurcation diagram we want. The other streamlines can be interpreted
as bifurcation diagrams of the perturbed problems φ(ξ) = ε with a constant ε ∈ �.
Indeed, such a constant disappears when we differentiate in order to obtain our quasi-
linear equation. Thus strictly speaking, we simultaneously analyse a whole family of
bifurcation problems in our approach.

Singularities of Implicit Differential Equations and Static Bifurcations 367

We remark that from this geometric point of view a pitchfork and a trans-
critical bifurcation are very similar. There arise only minor differences how the
invariant manifolds lie relative to the eigenspaces. We omit therefore the details
for a transcritical bifurcation.

7 Conclusions

In this work we used Vessiot’s vector field based approach to differential equa-
tions for an analysis of geometric singularities of ordinary differential equations
satisfying certain basic assumptions. We clarified the special role of quasi-linear
equations where the geometric analysis can be performed on the basic fibred
manifold E instead of the jet bundle J1π. This observation is not surprising,
as one can see similar effects also at other places in the theory of differential
equations. In [14, Addendum Sect. 9.5] the method of characteristics is reviewed
from a geometric point of view. There it also turns out that one may consider
the characteristics for linear equations even on T and for quasi-linear ones also
on E . Only for fully non-linear equations one must use the jet bundle J1π.

As an application we studied the theory of static bifurcations of autonomous
ordinary differential equations. We associated a quasi-linear differential equa-
tion and thus a certain vector field Y on the base manifold E with such a bi-
furcation problem. Then we showed that the distinction between turning and
bifurcation points corresponds to the distinction between regular and irregular
impasse points of the associated quasi-linear equation. For equations admitting
only static bifurcation points, these results may lead to a simpler way to de-
termine bifurcation diagrams. Instead of using continuation methods one can
simply integrate the vector field Y . Furthermore, around a bifurcation point ξ
there is no need to search where branches may head, as they can only emerge in
the direction of eigenvectors of the Jacobian of Y at ξ.

We did not consider the question of recognising simple turning or bifurcation
points. As already noted by Rabier and Rheinboldt [11], simple turning points
are characterised by the fact that there also the condition (10) is satisfied. We
discussed in Remark 11 that from a geometric point of view this condition and
consequently the concept of a simple turning point is not fully satisfactory (or
of a more technical nature), since (10) is not equivalent to the transversality of
the vector field X to the singular locus S1 (or the transversality of Y to the
impasse hypersurface S0, respectively). The condition (10) always fails, if the
determinant δ provides a degenerate description of S1 (or S0).

References

1. Arnold, V.: Geometrical Methods in the Theory of Ordinary Differential Equations,
2nd edn. Grundlehren der mathematischen Wissenschaften, vol. 250. Springer, New
York (1988)

2. Bryant, R., Chern, S., Gardner, R., Goldschmidt, H., Griffiths, P.: Exterior Dif-
ferential Systems. Mathematical Sciences Research Institute Publications, vol. 18.
Springer, New York (1991)

368 W.M. Seiler

3. Fackerell, E.: Isovectors and prolongation structures by Vessiot’s vector field formu-
lation of partial differential equations. In: Martini, R. (ed.) Geometric Aspects of
the Einstein Equations and Integrable Systems. Lecture Notes in Physics, vol. 239,
pp. 303–321. Springer, Berlin (1985)

4. Fesser, D.: On Vessiot’s Theory of Partial Differential Equations. Ph.D. thesis,
Fachbereich Mathematik, Universität Kassel (2008)

5. Fesser, D., Seiler, W.: Vessiot connections of partial differential equations. In:
Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories,
pp. 111–134. Universitätsverlag Karlsruhe, Karlsruhe (2006)

6. Fesser, D., Seiler, W.: Existence and construction of Vessiot connections. SIGMA 5,
092 (2009)

7. Kant, U., Seiler, W.: Singularities in the geometric theory of differential equations.
In: Feng, W., Feng, Z., Grasselli, M., Lu, X., Siegmund, S., Voigt, J. (eds.) Dynami-
cal Systems, Differential Equations and Applications (Proc. 8th AIMS Conference,
Dresden 2010, vol. 2, pp. 784–793. AIMS (2012)

8. Lychagin, V.: Homogeneous geometric structures and homogeneous differential
equations. In: Lychagin, V. (ed.) The Interplay between Differential Geometry
and Differential Equations. Amer. Math. Soc. Transl., vol. 167, pp. 143–164. Amer.
Math. Soc., Providence (1995)

9. Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups.
Gordon & Breach, London (1978)

10. Rabier, P.: Implicit differential equations near a singular point. J. Math. Anal.
Appl. 144, 425–449 (1989)

11. Rabier, P., Rheinboldt, W.: On impasse points of quasilinear differential algebraic
equations. J. Math. Anal. Appl. 181, 429–454 (1994)

12. Rabier, P., Rheinboldt, W.: Theoretical and numerical analysis of differential-
algebraic equations. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Anal-
ysis, vol. VIII, pp. 183–540. North-Holland, Amsterdam (2002)

13. Saunders, D.: The Geometry of Jet Bundles. London Mathematical Society Lecture
Notes Series, vol. 142. Cambridge University Press, Cambridge (1989)

14. Seiler, W.: Involution — The Formal Theory of Differential Equations and its
Applications in Computer Algebra. Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010)

15. Tuomela, J.: On singular points of quasilinear differential and differential-algebraic
equations. BIT 37, 968–977 (1997)

16. Tuomela, J.: On the resolution of singularities of ordinary differential equations.
Num. Algo. 19, 247–259 (1998)

17. Vessiot, E.: Sur une théorie nouvelle des problèmes généraux d’intégration. Bull.
Soc. Math. Fr. 52, 336–395 (1924)

A Quantum Measurements Model

of Hydrogen-Like Atoms in Maple�

L. Sevastianov, A. Zorin, and A. Gorbachev

Joint Institute For Nuclear Research
Peoples’ Friendship University of Russia

sevast@sci.pfu.edu.ru, zorin@mx.rudn.ru, alexarus1986@gmail.com

Abstract. Interaction effects between a quantum system and the quan-
tum part of a measurement system leads to the complexification of
the initial system’s observable operator. Computer algebra methods of
Maple help to express operators of the hydrogen-like atom observables
in explicit form. We use these operators to solve a spectrum estimation
problem using a procedure for computation of the Ritz matrix in Maple.

Keywords: Observable operator of quantum system, Quantum mea-
surement model, Ritz matrix explicit form in Maple, General eigenvalue
problem in Maple.

1 Introduction

Description of a quantum-mechanical object usually consists of either theoretical
research of a mathematical model or the analysis of experimental observations.
Combining these two parts requires specification of the quantum measurement
model. Among all quantum measurement models, there are two most popular:
the operational model and the quantum estimation model.

Both models can be treated in terms of Hilbert state-space representation and
phase-space representation. In his work Wódkiewicz K. [1] suggested phase-space
representation of the quantum measurement’s operational model. This model,
though unfinished by the author, is equal to the model of quantum mechanics
with a non-negative quantum distribution function suggested by Kuryshkin V.
and well described in detail [2–16].

Ozawa M. [17–20] developed the ideas of Wigner–Araki–Yanaze [21] opera-
tional approach to the quantum measurements problem and made them math-
ematically rigor. In his recent works [22–25], Ozawa proved the equivalence of
the operational model of quantum measurements and the quantum estimation
model. That makes the Kuryshkin–Wódkiewicz constructive model of quantum
measurements the universal model of quantum measurements.

However, explicit form of the observables’ operators Oρ (A) is very complex,
even for a simple quantum object. In this work, we introduce dedicated package
QDF for the computer algebra system Maple. With the help of this package,

� The work is partially supported by RFBR grants No. 11-01-00278, 13-01-00595.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 369–380, 2013.
c© Springer International Publishing Switzerland 2013

370 L. Sevastianov, A. Zorin, A. Gorbachev

we calculate explicit form of the observables’ operators, construct a Ritz matrix,
and describe spectral characteristics of hydrogen-like atoms and atoms of alkaline
metals in terms of the quantum Kepler problem.

2 Analytical Calculations of the O{ϕk} (A) Operators in
Explicit Form

We apply the operational model of quantum measurements to the Kepler prob-

lem with Hamilton function H (q, p) = p2

2 − 2
|q| . Weyl operator of the observable

H for the isolated quantum system is Ĥ ≡ OW (H) = −�
2

2 Δ− 2
|q| .

When the process of measurement is applied to the system with a quantum fil-
ter in a state ρ̂2 =

∑
Ck |ψk〉 〈ψk|, the observable of the measured value Oρ2 (H)

can be described by the following expression

[OW (H ∗Wρ2)u] (q) =

∫
(H ∗Wρ2)

(
q + q̃

2
, p

)
exp

{
i

�
p (q − q̃)

}
u (q̃) dq̃ (1)

where Wρ2 (q, p) =
∑
CkWψk (q, p) , and

Wψk (q, p) =
1

π�

∫
ψ̄k (q + η)ψk (q − η) exp

{
− i

�
2pη

}
dη

To study measured values of the hydrogen observables (and all alkalines with
one outer-shell electron) we use Sturm functions Ψnlm (r, θ, ϕ) = Snl (r) Ylm (θ, ϕ)
of the hydrogen atom as basis functions {ψk (r)}∞k=1 . Here

Rnl (r) = p (κr) exp (−κr)

and κ is a constant, p (κr) is a κr polynomial (see [12, 28, 29]).

Sturmian functions in Maple

Sturm:=proc(np,lp,b) local kk,alpha_nl,N_nl,altLaguerreL; kk:=1/b:

alpha_nl:=kk*np: N_nl:=-sqrt((np-lp-1)!/((np+lp)!)^3/2):

An alternative notation of the Laguerre polynomial

instead of the internal(LaguerreL) is used:

altLaguerreL := (n,a,x) -> (-1)^a*n!*LaguerreL(n-a,a,x):

N_nl*exp(-kk*r)*(2*kk*r)^(lp+1)

*simplify(altLaguerreL(np+lp,2*lp+1,2*kk*r)): end proc;

The full energy operator O (H) equals to the sum of kinetic energy O
(
p2/2μ

)
and potential energy O

(
−Ze2/ |r|

)
operators of the Coulomb field.

The function p2/2μ of the kinetic energy operator does not depend on the
coordinates. Therefore, we can reduce the ninefold-iterated integral to the three-
fold:

O

(
p2

2μ

)
=

∫
(η − i�∇)2

2μ
β0 (η) dη =

∑
j

CjOj

(
p2

2μ

)
,

A Quantum Measurements Model of Hydrogen-Like Atoms in Maple 371

where Oj

(
p2

2μ

)
=
∫ (η−i�∇)2

2μ

∣∣∣ψ̃j (η)
∣∣∣2d3η , ψ̃j (η) =

1

(2π�)
3
/2

∫
ψj (r) e

i
�
(p,r)d3r.

Similar to the kinetic energy operator, the function −Ze2/ |r| of the potential
energy operator does not depend on the momentum:

O

(
−Ze2

r

)
=

∫
− Ze2

|r + ξ|α0 (ξ) dξ =
∑
j

CjOj

(
−Ze2

r

)
,

where Oj

(
−Ze2

r

)
= −Ze2

∫ |ψj(ξ)|2
|r+ξ| d

3ξ.

For evaluation of the potential energy operators Oj

(
−Ze2/ |r|

)
we use series

expansion:

1

|−→r1 +−→r2 |
= 4 π

∞∑
l=0

1

2l+ 1

rl−

rl+1
+

l∑
m=−l

Ylm (θ1, φ1)× Y ∗
lm (θ2, φ2) ,

where r− = min (r1, r2) , r+ = max (r1, r2) and

1

|−→r1 − −→r2 |
= 4 π

∞∑
l=0

1

2l+ 1

rl−

rl+1
+

l∑
m=−l

Ylm (θ1, φ1)× Y ∗
lm (θ2, π + φ2)

This leads to the following equation

On l m

(
−Ze2

|−→r |

)
= −4 π Z e2

∞∑
l=0

1

2l+ 1

∫
rl−

rl+1
+

R2
n l

(r2)
l∑

m=−l

Ylm (θ1, φ1)×∫
Y ∗
lm (θ2, π + φ2)

∣∣Yl m (θ2, φ2)
∣∣2r22 sin θ2 dr2 dθ2 dφ2 (2)

Products of spherical harmonics can be transformed using the formula

Yl1,m1 (θ, φ) Yl2,m2 (θ, φ) =
∑
L,M

√
(2l1 + 1) (2l2 + 1)

4π (2L+ 1)
CL0

l10l20C
LM
l1m1l2m2

YLM (θ, φ) .

To use the orthonormality property of spherical harmonics and extract the
finite number of components from the infinite sum (2) we expand the abso-

lute value squared of spherical harmonic
∣∣Yl m (θ2, φ2)

∣∣2 into the following linear
combinations of spherical harmonics:

|Υ00|2 = Υ00/
√
4π ,

|Υ10|2 = Υ00/
√
4π + Υ20/

√
5π ,

|Υ11|2 = |Υ1−1|2 = Υ00/
√
4π − Υ20/

√
20π .

There is a finite number of terms in the expansion of
∣∣Yl m (θ2, φ2)

∣∣2. Thus,
there is a finite number of non-zero terms in the infinite sum (2). Due to orthog-
onality of spherical harmonics, non-zero terms after the integration of angular

372 L. Sevastianov, A. Zorin, A. Gorbachev

variables are given only by l,m combinations. This means that we only need to
calculate integrals over r2. These integrals split in two parts:∫ ∞

0

rl−
rl+1
+

S2
n l (

r2/b) r22 dr2 =

∫ |r1|

0

rl2

rl+1
1

S2
n l (

r2/b) r22 dr2+

∫ ∞

|r1|

rl1

rl+1
2

S2
n l (

r2/b) r22 dr2 .

Here we present Maple-assisted analytical calculations of the first five
potential and kinetic energy operators for the hydrogen-like atom:

O1(−Ze2

r
) = −Ze2

r
+ Ze2 exp

{
− 2r

b1r0

}(
1

r0
+

1

br0

)
,

O2(−Ze2

r
) = −Ze2

r
+

Ze2

b2r0
exp

{
− r

b2r0

}[
3

4
+

b2r0
r

+
1

4

r

b2r0
+

1

8

(
r

b2r0

)2
]
,

O3(−Ze2

r
) = −Ze2

r
+

Ze2

b3r0
exp

{
− r

br0

}[
b3r0
r

+
3

4
+

1

4

r

b3r0
+

1

24

(
r

b3r0

)2
]
−

−Ze2

b3r0

(
3cos2θ − 1

)
exp

{
− r

b3r0

}
×

×
[
1

24

(
r

b3r0

)2

+
1

4

r

b3r0
+ 6

(
b3r0
r

)3

− exp

{
r

b3r0

}
6

(
b3r0
r

)3
]
,

O4(−Ze2

r
) = −Ze2

r
+

Ze2

b4r0
exp

{
− r

b4r0

}[
b4r0
r

+
3

4
+

1

4

r

b4r0
+

1

24

(
r

b4r0

)2
]
−

−Ze2

b4r0
(3cos2θ − 1) exp

{
− r

b4r0

}
×

×
[
1

48

(
r

b4r0

)2

+
1

8

r

b4r0
+

1

2
+

3

2

b4r0
r

+ 3

(
b4r0
r

)2

+ 3

(
b4r0
r

)3
]
−

+3
Ze2

b4r0
(3cos2θ − 1)

(
b4r0
r

)3

,

O5(−Ze2

r
) = −Ze2

r
+

Ze2

b5r0
exp

{
− r

b5r0

}[
b5r0
r

+
3

4
+

1

4

r

b5r0
+

1

24

(
r

b5r0

)2
]
−

−Ze2

b5r0

(
3cos2θ − 1

)
exp

{
− r

b5r0

}
×

×
[
1

48

(
r

b5r0

)2

+
1

8

r

b5r0
+

1

2
+

3

2

b5r0
r

+ 3

(
b5r0
r

)2

+ 3

(
b5r0
r

)3
]
+

+3
Ze2

b5r0
(3cos2θ − 1)

(
b5r0
r

)3

,

Oi

(
p2

2μ

)
= − �2

2m
Δ+

�2

2mb2i
, i = 1, ..., 5 .

A Quantum Measurements Model of Hydrogen-Like Atoms in Maple 373

Procedure for calculations of the potential energy operators

OH:=proc(np,lp,mp,b)

local l,m,sumout,sumin,intr;

sumout:=0;

for l from 0 to 2*lp do

sumin:=0;

intr:=int(r2^l/r^(l+1)*subs(r=r2,R(np,lp,b))^2*r2^2,r2=0..r)

+int(r^l/r2^(l+1)*subs(r=r2,R(np,lp,b))^2*r2^2,r2=r..infinity);

for m from -l to l do

sumin:=sumin+Y(l,m)*int(int(conjugate((-1)^l*Y(l,m))

*YY(lp,mp,lp,mp,true)*sin(theta),theta=0..Pi),phi=0..2*Pi);

od;

sumout:=sumout+1/(2*l+1)*sumin*intr;

od;

expand(-4*Pi*Z*e^2*simplify(sumout));

end proc;

Calculations of the Kinetic Energy Operators

for i from 1 by 1 to matrsize

do

for j from 1 by 1 to matrsize

do

OHM_cin_sturm[i,j]:=simplify(int(int(int(conf[i]*(diff(r^2*_

diff(f[j],r),r)/r^2+diff(sin(theta)*diff(f[j],theta),theta)/_

r^2/sin(theta)+diff(f[j],phi$2)/r^2/sin(theta)^2)*r^2*sin(theta)_

,phi=0..2*Pi),theta=0..Pi),r=0..infinity));

od;

od;

If we use the same parameter b for both terms O4(−Ze2/r) and O5(−Ze2/r)
of the potential energy operator, these terms will be equal to each other. Finally
we get explicit form of the Hamiltonian, which is due to linearity

O (H) =

5∑
j=1

Cj

(
Oj

(
p2

2μ

)
+Oj(−

Ze2

r
)

)
,

where
5∑

j=1

Cj = 1 .

3 Asymptotics and Spectral Properties of the O{ϕk} (A)
Operators

To make the discussion on properties of the operators presented above more
reasonable we consider asymptotics of the potential energy partial multipole
contributions:

V1 (r → 0, θ, ϕ) = −Z

b1
+

2Z

3b31
r2 − 2Z

3b41
r3 +

2Z

5b51
r4 +O

(
r5
)
,

374 L. Sevastianov, A. Zorin, A. Gorbachev

Spherical harmonics
Y(l,m)

Inverse transformation
of spherical harmonic

TransY(l,m)

Sturmian functions
Sturm(np,lp,b)

Normalized
Sturmian functions

R(n,l,b)

Coulomb
radial functions

R_coul(n,l)

Functions
Rnlpq(m,n,p,q)

Auxiliary functions
psi_sturm(m,n,p,q)=R*Y

Coulomb
wave-functions

psi_coul(n,l)

Fourier transform of
auxiliary functions

Xi(n,l,m,b)

Functions F(l)=2π(-
i)lBessel(l+½,(p*r)/h)

Function P(l,m,b)

Betta-functions
beta(l,m,n,b)=|Xi|2

Alfa-functions
alpha(l,m,n,b)=|R*Y|2

Clebsch–Gordan
coefficients

KGKoeff(a,a1,b,b1,c,c1)

Product of spherical
harmonics

YY(l1,m1,l2,m2)

Fig. 1. “SourceFunctions” library

V2 (r → 0, θ, ϕ) = − Z

4b2
+

Z

12b32
r2 − Z

12b42
r3 +

7Z

16b52
r4 +O

(
r5
)
,

V3 (r → 0, θ, ϕ) = − Z

4b3
−
Z
(
3cos2θ − 1

)
120b33

r2 +
Z
(
10cos2θ − 1

)
1120b53

r4 +O
(
r5
)
,

V4 (r → 0, θ, ϕ) = − Z

4b4
+
Z
(
3cos2θ − 1

)
120b34

r2 −
Z
(
5cos2θ − 1

)
1120b54

r4 +O
(
r5
)
,

and

V1 (r → ∞, θ, ϕ) = −Z

r
+ O

(
exp

(
−2r

b1

))
,

V2 (r → ∞, θ, ϕ) = −Z

r
+O

(
exp

(
− r

b2

))
,

V3 (r → ∞, θ, ϕ) = −Z

r
−

6Zb23
(
3cos2θ − 1

)
r3

+O

(
exp

(
− r

b3

))
,

V4 (r → ∞, θ, ϕ) = −Z

r
−

3Zb24
(
3cos2θ − 1

)
r3

+O

(
exp

(
− r

b4

))
.

The following properties of pseudodifferential operators Oρ2 (H) were proved
for the operators (1) in a number of papers.

A Quantum Measurements Model of Hydrogen-Like Atoms in Maple 375

Proposition 1. Operators Oρ2 (H) are bounded from below and essentially
self-adjoint operators.

Proposition 2. Operators Oρ2 (H) are Ĥ-compact and C (ρ̂2) are bounded at
infinity.

Proposition 3. Sturmian functions ψk of Ĥ operator form a complete function
system, which is almost orthogonal with respect to the operator Oρ2 (H).

Proposition 4. Operator Oρ2 (H) spectrum consists of discrete and essentially
continuous parts. The discrete part of the spectrum belongs to the interval
[C (ρ̂2)− 1, C (ρ̂2)], where C (ρ̂2) is a constant that depends on the state of the
filter ρ̂2, and lies below continuous part of the spectrum. Therefore, minimax
principle can be used to find eigenvalues of the operator Oρ2 (H).

Theorem 1. 1. Ritz matrix MN
kl (H, ρ̂2) = 〈ψk, Oρ2 (H)ψl〉 , k, l = 1, ..., N of

the operator Oρ2 (H) with Sturmian functions of the operator Ĥ as coordinate
functions is well conditioned for any dimension N (the number of coordinate
functions {ψk, k = 1, ..., N}).

2. Eigenvalues of the Ritz matrix MN
kl (H, ρ̂2) form the monotonic sequence λNj

converging to the eigenvalues λ∞j of the Oρ2 (H) operator.

3. Eigenvectors of the Ritz matrix MN
kl (H, ρ̂2) form the minimizing sequence

ψN
j , j = 1, ..., N of the Ritz functional for the Rayleigh relationship in

the minimax principle and converge to the eigenvectors ψ∞
j of the Oρ2 (H)

operator.

Eigenvalues’ estimations of O (H) were obtained in several works [9, 30,
31]. These estimations can be specified more precisely by applying a specific
numerical method to the equation O (H)ψ = λψ. The discrete spectrum of
the operator O (H) lies beneath its continuous spectrum [9, 31]. A minimax
Rayleigh method, applied to the operator bounded below in essentiality [32],
first gives us the eigenvalues of the operator and only after that reaches the lower
bound of the continuous spectrum. Numerical implementation of the Rayleigh
method is possible only in the case of finite-dimensional approximation of the
initial operator O (H) using the Ritz matrix. To construct the Ritz matrix we
chose Sturmian functions with the energy parameter E [27] to be coordinate
functions as they form an orthonormal basis in the representation space of the
operator O (H).

The N × N Ritz matrix MN [c1, . . . , cn; b1, . . . , bn;E] (H) for the operator
O (H) with coordinate functions Snl (r;E)Ylm (θ, ϕ) was calculated in Maple and
depends on the parameter E ∈ (−∞, 0) , 2n parameters (c1, . . . , cn; b1, . . . , bn)
and auxiliary functions {ϕ1, . . . , ϕn}. The matrixMN (H) is a hermitian strongly
sparse almost orthogonal matrix [11, 33] for all values of the operator. Spectra
λN1 , . . ., λ

N
N of the matrix can be calculated with different algorithms. We chose

the Jacobi method as it works fine with complex matrices. Obtained eigenvalues
λj depend on the parameters (c1, . . . , cn; b1, . . . , bn;E).

376 L. Sevastianov, A. Zorin, A. Gorbachev

4 Constructing Ritz Matrix in Maple

The Hamiltonian O (H) of the hydrogen-like atom is defined in terms of quantum
mechanics with a non-negative quantum distribution function by the following
equations

D(O(H)) = D(Ĥ),

O{φk}(H) = Ĥ + C{φk}Î + V{φk}(r)

for the set of the acceptable functions {φk ∈ L2(R
3)}

Operator O (H) is self-adjoint and bounded below with a constant (C − 1).
Value of C depends on a selection of the auxiliary functions.

To calculate the Ritz matrix OM
k (H) in Maple analytically, where M is the

number of dimensions corresponding to the operators Ok(H), first M Sturmian
functions ψE0

nlm (r) = S̃nl (kr)Ylm (θ, φ), k =
√
−E0 were used as basis functions.

Potential energy operator
OH(np,lp,mp,b)

Spherical harmonics
Y(l,m)

Product of spherical
harmonics

YY(l1,m1,l2,m2)

Normalized
Sturmian functions

R(n,l,b)

Auxiliary functions
psi_sturm(m,n,p,q)=

R*Y

Coordinate Ritz functions
f(b)

Complex-conjugate
functions conf(b)

Potential energy operator
OHM_sturm_pot_energ(I,j)

Kinetic energy operator
OHM_cin_sturm(I,j)

Constant operator
OHM_sturm_pot_energ(I,j)

Matrix elements
of total energy

operator’s components

Pair-to-pair sca lar products of
coordinate functions B_E0(I,j)

Write to file total energy
operator OHMi, i=1..4 matrix

Write to file B_E0 and inverse
inv_B_E0 matrices

Fig. 2. Matrix coefficients computations

We need to solve a generalized eigenvalue problem Mx = λBx because of
the non-orthogonal character of the described system. Here M is a Ritz matrix
of OM (H) and B is an inner product of coordinate functions matrix. The Ritz
matrix elements are defined by the formula

M
(j)
kl =

∫
ψE0

k (r)

[
Oj

(
p2

2μ

)
+Oj(−

Zeffe
2

r
)

]
ψE0

l (r) dr

Each of the matrices OHM1, OHM2, OHM3, and OHM4 is calculated us-
ing only one of the auxiliary functions. Let us compose a linear combination
of these matrices with the arbitrary coefficients a1, a2, a3, and a4. The latter,
however, are not completely independent since their sum must equal to 1. That’s
why we can assume a4 = 1− a1− a2− a3. Besides, we can substitute different
values b1, b2, b3, b4 in these four matrices to vary each parameter b independently.

A Quantum Measurements Model of Hydrogen-Like Atoms in Maple 377

Procedure for calculation of the Hamilton operators spectra

spectre:=proc(E0q,b1qq,b2qq,b3qq,b4qq, a1qq,a2qq,a3qq, Z1q, meq,

matrsize)

local Ritz,MM,eigen_vls,L1,Nrgy_spctr;

MM:=matrix(matrsize,matrsize): Ritz:=matrix(matrsize,matrsize):

Ritz:=subs({a1q=a1qq,a2q=a2qq,a3q=a3qq,E0=E0q,Z=Z1q,

me=meq,b1q=b1qq,b2q=b2qq,b3q=b3qq,b4q=b4qq},evalm(matr_E0_)):

MM:=evalm(inv_B_E0&*Ritz): eigen_vls:=eigenvals(MM): L1:=

[seq(eigen_vls[i],i=1..matrsize)]: Nrgy_spctr:=sort(L1); end proc;

As a result, the elements of the calculated Ritz matrix depend on E0, Z, me,
a1, a2, a3, b1, b2, b3, b4 (the latter are denoted by a1q, a2q, a3q, b1q, b2q, b3q,
b4q):
According to the Ritz method, eigenvalues of the Ritz matrix are the spectral
values of the observable, i.e., energy.

Read from file
matrices OHMi

Read from file
inv_B_E0 matrix

Ritz matrix
Ritz(E0,Z,me,ai,bi)=

ai*OHMi

Generalized eigenvalue
problem

MM=inv_B_E0*Ritz

Spectrum
Spectre(E0,Z,me,ai,bi)=

eigenvals(MM)

Coefficients Cmnl
calculations’

Cmnl=eigenvectors(MM)

Transition probabilities
dW_alf_bet(E0,Z,me,ai,bi,m,n,p,q)

Functions
Rnlpq(m,n,p,q)

Polarization
calculations

polariz(n,l,m,p,q,s)

Penalty function
Penaltyfunc(E0,Z,me,ai,bi)

Parameters
optimization

Optimized parameters

Fig. 3. Transition probabilities computations

5 Conclusion

Spectral properties of the observables’ expected values, i.e., operators of the
observables obtained by the Weyl (Weyl–Berezin [29, 30]) quantization are well
studied for a wide class of quantum systems. Models verification of the studied
systems are usually based on the comparison of the calculated values and their
characteristics to the corresponding experimental values.

During last several decades, many researches experimentally measured and
discussed dependency between the position and characteristics of quantum an-
alyzers and detectors. This dependency decreases the quality of verification

378 L. Sevastianov, A. Zorin, A. Gorbachev

process, because theoretically calculated observables in terms of Born postu-
late do not depend on the properties and characteristics of the measurement
instruments.

Generalization of Born postulate in terms of quantum measurement theory
solves this contradiction [26]. However, observable operators emerging in this
theory seem to be rather complicated and, thus, are studied much less than
traditional Weyl operators.

In previous works, we proved the possibility of describing observable operators
in terms of Weyl–Kuryshkin quantization rule. Explicit form of these operators
is given by the constructive model of Kuryshkin–Wódkiewicz. Model studying
bases on the symbolic computations of the Weyl–Kuryshkin operators in explicit
form. First part of the paper describes these computations.

Explicit form of the measured observables (Weyl–Kuryshkin operators) al-
lows us to perform comparative analysis with corresponding expected observ-
able values (Weyl–Berezin operators). The analysis leads to the computational
investigation of the discrete spectrum of the Weyl–Kuryshkin operators for the
hydrogen-like atoms. Main instrument in this research is a Ritz matrix of the
corresponding operator in the basis of Sturmian functions for hydrogen atom.
Symbolic computation of the Ritz matrix has been described in the second part
of this paper.

All symbolic computations were performed in Maple computer program. Ded-
icated package QDF has been developed to define the Kuryshkin–Wódkiewicz
quantization rule, auxiliary and Sturmian functions, products of spherical
harmonics, and other necessary functions. However, most of the functions neces-
sary for the study already exists in Maple, makes it easy to construct complex-
conjugate functions, solve the generalized eigenvalue problem and scale the Ritz
matrix dimension to optimize calculation times.

Carried out symbolic computations open up the opportunities for the fur-
ther numeric investigations of the observable spectrum. Current numeric studies
prove consistency of the Kuryshkin–Wódkiewicz model.

References

1. Wódkiewicz, K.: Operational approach to phase-space measurements in quantum
mechanics. Phys. Rev. Lett. 52, 1064 (1984)

2. Kuryshkin, V.V.: On the construction of quantum operators. Izv. VUZov. Phys. 11,
102–106 (1971)

3. Kuryshkin, V.V.: La mécanique quantique avec une fonction nonnegative de dis-
tribution dans 1’espace des phases. Annales Inst. Henri Poincaré 17, 81–95 (1972)

4. Kuryshkin, V.V.: Une généralisation possible de la mécanique quantique non rela-
tiviste. Compt. Rend. Acad. Sc. Paris 274 Série B, 1107–1110 (1972)

5. Kuryshkin, V.V.: L’ossilateur harmonique à une dimension dans la mecanique
quantique a fonction de distribution non negative dans 1’espace des phases. Compt.
Rend. Acad. Sc. Paris 274 Série B, 1163–1165 (1972)

6. Kuryshkin, V.V.: Some problems of quantum mechanics possessing a non-negative
phase-space distribution function. Int. J. Theor. Phys. 7, 451–466 (1973)

A Quantum Measurements Model of Hydrogen-Like Atoms in Maple 379

7. Zorin, A.V., Kuryshkin, V.V., Sevastyanov, L.A.: Description of the spectrum of
a hydrogen-like atom. Bull. PFUR. Ser. Phys. 6(1), 62–66 (1998)

8. Zorin, A.V.: Approximate determination of states in quantum mechanics of
Kuryshkin. Bull. PFUR, Ser. Physics 12, 81–87 (2004)

9. Zorin, A.V.: The method of study of essential and discrete spectra of the Hamil-
tonian in quantum mechanics of Kuryshkin. Bull. PFUR, Ser. Appl. and Comp.
Math. 3(1), 121–131 (2004)

10. Zorin, A.V., Sevastianov, L.A., Belomestny, G.A., Laveev, E.B.: Quantum systems’
modeling by methods of computer algebra. In: Proc. CASC 2004, pp. 497–506.
TUM Publ., Munich (2004)

11. Zorin, A.V., Sevastianov, L.A., Belomestny, G.A.: Numerical search for the states
with minimal dispersion in quantum mechanics with non–negative quantum distri-
bution function. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS,
vol. 3401, pp. 613–620. Springer, Heidelberg (2005)

12. Zorin, A.V., Sevastianov, L.A.: Hydrogen-like atom with nonnegative quantum
distribution function. Nuclear Phys. 70, 792–799 (2007)

13. Zorin, A.V., Sevastianov, L.A., Tretyakov, N.P.: Computer modeling of hydrogen-
like atoms in quantummechanics with nonnegative distribution function. Program-
ming and Computer Software 33(2), 94–104 (2007)

14. Gorbachev, A.V.: Modeling of Alkaline Metal Spectra using Quantum Mechanics
with Nonnegative Quantum Distribution Function. Master’s thesis. PFUR (2010)
(in Russian)

15. Zorin, A.V., Sevastianov, L.A.: Kuryshkin-Wódkiewicz quantum measurements
model. Bull. PFUR. Ser. Math. Inform. Phys. (3), 99–104 (2010)

16. Sevastyanov, L., Zorin, A., Gorbachev, A.: Pseudo-differential operators in an oper-
ational model of the quantum measurement of observables. In: Adam, G., Buša, J.,
Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 174–181. Springer, Heidelberg
(2012)

17. Ozawa, M.: Measurements of nondegenerate discrete observables. Phys. Rev. A 62,
062101(1–13) (2000)

18. Ozawa, M.: Operations, disturbance, and simultaneous measurability. Phys. Rev.
A 63, 032109(1–15) (2001)

19. Ozawa, M.: Conservation laws, uncertainty relations, and quantum limits of mea-
surements. Phys. Rev. Lett. 88, 050402(1–4) (2002)

20. Kimura, G., Meister, B.K., Ozawa, M.: Quantum limits of measurements induced
by multiplicative conservation laws: Extension of the Wigner–Araki–Yanase theo-
rem. Phys. Rev. A 78, 032106 (2008)

21. Araki, H., Yanase, M.M.: Measurement of quantum mechanical operators. Phys.
Rev. 120, 622–626 (1960)

22. Ozawa, M.: Quantum reality and measurement: A quantum logical approach. Foun-
dations of Physics 41, 592–607 (2011), doi:10.1007/s10701-010-9462-y

23. Ozawa, M.: Simultaneous measurability of non-commuting observables and the uni-
versal uncertainty principle. In: Proc. 8th Int. Conf. on Quantum Communication,
Measurement and Computing, pp. 363–368. NICT Press, Tokyo (2007); Ozawa, M.,
Kitajima, Y.: Reconstructing Bohr’s reply to EPR in algebraic quantum theory.
Foundations of Physics 42(4), 475–487 (2012), doi:10.1007/s10701-011-9615-7

24. Ozawa, M.: Mathematical foundations of quantum information: Measurement and
foundations. Sugaku 61-2, 113–132 (2009) (in Japanese)

25. Mehta, C.L.: Phase-space formulation of the dynamics of canonical variables. J.
Math. Phys. 5(5), 677–686 (1964)

380 L. Sevastianov, A. Zorin, A. Gorbachev

26. Zorin, A.V., Sevastianov, L.A.: Mathematical modeling of quantummechanics with
non-negative QDF. Bull. PFUR. Ser. Phys. 11(2), 81–87 (2003)

27. Rotenberg, M.: Theory and applications of Sturmian functions. In: Bates, D.R.,
Esterman, I. (eds.) Adv. in Atomic and Molec. Phys., vol. 6, pp. 233–268. Academic
Press, New York (1970)

28. Avery, J.: Generalised Sturmians and Atomic Spectra. World Scientific, Singapore
(2006)

29. Weyl, H.: Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46
(1927)

30. Sevastianov, L.A., Zorin, A.V.: The method of lower bounds for the eigenvalues of
the Hamiltonian differential operator in quantum mechanics of Kuryshkin. Bull.
PFUR, Ser. Appl. and Comp. Math. 1(1), 134–144 (2002)

31. Zorin, A.V., Sevastianov, L.A.: Spectral properties of the Hamilton operator in
quantum mechanics with non-negative QDF. In: Proc. Second Int. Conf. on Func.
Anal. and Diff. Op., pp. 169–170. Fizmatlit-Publ., Moscow (2003)

32. Zorin, A.V., Sevastianov, L.A., Belomestny, G.A.: Analytical calculation of observ-
ables’ matrices of Hydrogen-like atom in Kuryshkin’s Quantum Mechanics. Bull.
PFUR, Ser. Appl. and Comp. Math. 3(1), 106–120 (2004)

33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Analysis of Op-
erators, vol. IV. Academic Press, New York (1977)

CAS Application to the Construction

of the Collocations and Least Residuals Method
for the Solution of 3D Navier–Stokes Equations

Vasily P. Shapeev and Evgenii V. Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics,
Russian Academy of Sciences, Novosibirsk 630090, Russia

{shapeev,vorozh}@itam.nsc.ru

Abstract. In the present work, the computer algebra system (CAS) is
applied for constructing a new version of the method of collocations and
least residuals (CLR) for solving the 3D incompressible Navier–Stokes
equations. The CAS is employed at all stages from writing, deriving, and
verifying the formulas of the method to their translation into arithmetic
operators of the Fortran language. The verification of derived formulas
of the method has been done on the test problem solution. Comparisons
with the published numerical results of solving the benchmark problem of
the 3D driven cavity flow show a high accuracy of the developed method
at the level of the most accurate known solutions.

1 Introduction

In the present work, the tools of computer algebra systems are applied for con-
structing a new version of the method of collocations and least residuals (CLR)
for solving the 3D Navier–Stokes (NS) equations. In this version of the method,
the solution is sought in the form of the second-degree polynomials in three in-
dependent variables. There are here three substantial circumstances. First, the
basis of solenoidal polynomials used for solution representation contains 30 ele-
ments. Second, the system of the 3D NS equations is in itself a complex nonlinear
analytic object. And, third, it is required in the CLR method for improving the
properties of the collocation technique that the minimum of the solution residuals
be reached on the problem solution.

These circumstances cause the necessity of using the CASs. And the fact
that symbolic manipulations with fractional rational functions have been imple-
mented in the leading CASs sufficiently well makes their application for the CLR
method development efficient.

In the present work, the CAS is at first applied at the laborious stage of the
derivation of the formulas of the method for solving the 3D NS equations with
the use of useful functions of CAS Mathematica.

The verification of obtained formulas is carried out with the aid of test
computations directly in the CAS to identify the algorithmic and other errors.

The CAS is further used for optimizing the analytic solution formulas in terms
of arithmetic operations with regard for the fact that they have polynomial form.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 381–392, 2013.
c© Springer International Publishing Switzerland 2013

382 V.P. Shapeev and E.V. Vorozhtsov

The CAS is applied at the laborious stage of translating the analytic solu-
tion formulas, matrix elements, and other expressions in the form of Fortran
arithmetic operators. An intermediate result of the Fortran code work is the
solution in the form of a polynomial in three variables. It can be differentiated
and integrated exactly without using the numerical procedures, which introduce
additional errors. Solution recalculation at a passage from one grid to another at
the application of the multigrid versions of the CLR method is implemented by
a simple change of coordinates also without introducing the extra errors in the
constructed solution unlike the smoothing and interpolation procedures, which
are applied for these purposes in other methods. The requirement of the error
minimization on the solution contributes in itself to the damping of various dis-
turbances arising in the process of the numerical solution of problems. All the
needed formulas are obtained at first in CAS and are programmed in Fortran.
So that the Fortran code then outputs all final results in the automatic regime.

2 Description of the Modified CLR Method

2.1 Problem Statement

Consider the system of stationary NS equations

(V · ∇)V +∇p = (1/Re)ΔV − f , divV = 0, (x1, x2, x3) ∈ Ω, (1)

which govern the flows of a viscous, non-heat-conducting, incompressible fluid
in the cube

Ω = {(x1, x2, x3), 0 ≤ xi ≤ X, i = 1, 2, 3} (2)

with the boundary ∂Ω, where X > 0 is the user-specified length of the edge
of the cubic region Ω, and x1, x2, x3 are the Cartesian spatial coordinates. In
equations (1), V = V(x1, x2, x3) is the velocity vector having the components
v1(x1, x2, x3), v2(x1, x2, x3), and v3(x1, x2, x3) along the axes x1, x2, and x3, re-
spectively; p = p(x1, x2, x3) is the pressure, f = (f1, f2, f3) is a given vector

function. The positive constant Re is the Reynolds number, Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
,

(V · ∇) = v1
∂

∂x1
+ v2

∂
∂x2

+ v3
∂

∂x3
.

Four equations (1) are solved under the Dirichlet boundary condition V
∣∣
∂Ω

=
g, where g = g(x1, x2, x3) = (g1, g2, g3) is a given vector function.

2.2 Local Coordinates and Basis Functions

In the CLR method, the spatial computational region (2) is discretized by a grid
with cubic cellsΩi,j,k, where i, j, k vary along the axes x1, x2, and x3, respectively.
We search for the solution in the form of a piecewise smooth function on this grid.
To write the formulas of the CLR method it is convenient to introduce the local
coordinates y1, y2, y3 in each cell Ωi,j,k. The dependence of local coordinates on
the global spatial variables x1, x2, x3 is determined by the relations ym = (xm −
xm,i,j,k)/h, m = 1, 2, 3, where xm,i,j,k is the value of the coordinate xm at the

Collocations and Least Residuals Method for the Solution 383

geometric center of the cellΩi,j,k, and h is the halved length of the edge of the cubic
cell Ωi,j,k. The local coordinates then belong to the interval ym ∈ [−1, 1]. We now
introduce the notationsu(y1, y2, y3) = V(hy1+x1,i,j,k, hy2+x2,i,j,k, hy3+x3,i,j,k),
p(y1, y2, y3) = p(hy1+x1,i,j,k, hy2+x2,i,j,k, hy3+x3,i,j,k). After the above change
of variables the Navier–Stokes equations take the following form:

Δum − Reh

(
u1
∂um
∂y1

+ u2
∂um
∂y2

+ u3
∂um
∂y3

+
∂p

∂ym

)
= Re · h2fm; (3)

1

h

(
∂u1
∂y1

+
∂u2
∂y2

+
∂u3
∂y3

)
= 0, (4)

where Δ = ∂2/∂y21 + ∂2/∂y22 + ∂2/∂y23 , m = 1, 2, 3.
The basic idea of the method is to use the collocation method in combination

with the method of least residuals to obtain numerical solution. We call such a
combined method the “collocation and least residuals” (CLR) method. One of
the reasons for using this combination was that the application of the least resid-
uals method often improves the properties of the numerical method. In turn, the
collocation method is simple in implementation.

We now linearize the Navier–Stokes equations(3) after Newton directly in terms
of the functions at the next iteration, which are to be found:

ξ
[
Δus+1

m − (Re · h)
(
us1u

s+1
m,y1

+ us+1
1 usm,y1

+ us2u
s+1
m,y2

+ us+1
2 usm,y2

+ us3u
s+1
m,y3

+ us+1
3 usm,y3

+ ps+1
ym

)]
= ξFm, m = 1, 2, 3, (5)

where s is the iteration number, s = 0, 1, 2, . . ., Fm = Re[h2fm−h(us1u
s
m,y1

+
us2u

s
m,y2

+ us3u
s
m,y3

)], um,yl
= ∂um/∂yl, pym = ∂p/∂ym, l,m = 1, 2, 3.

One can see in (5) another difference from the linearization used in [8]: we
have introduced a positive user-defined parameter ξ. The optimal choice of this
parameter enables the convergence acceleration of the iteration technique. The
linearization (5) has the following two advantages over the procedure used in
[8]: (i) the right-hand sides Fm have become shorter; (ii) to update the iterative
solution one has now no need to add a small increment to the solution from the
previous iteration. The both of these features lead to the CPU time savings at
the numerical stage of our symbolic-numeric method.

We now present the approximate solution in each cell Ωi,j,k as a linear com-
bination of the basis vector functions ϕl

(us1, u
s
2, u

s
3, p

s)
T
=
∑
l

bsi,j,k,lϕl, (6)

where the superscript T denotes the transposition operation. The explicit expres-
sions for the basis functions ϕl may be found in [8]. To approximate the velocity
components we use the second-degree polynomials in variables y1, y2, y3, and
the first-degree polynomials are used for the approximation of the pressure. The
basis functions for the velocity components are solenoidal, that is divϕl = 0.

384 V.P. Shapeev and E.V. Vorozhtsov

2.3 Derivation of the Overdetermined System
from Collocation and Matching Conditions

The number of collocation points and their positions inside each cell Ωi,j,k are
specified by the user, and this can be done in different ways. Let us denote by
Nc the number of collocation points inside the cell. We have implemented four
variants of the specification of collocation points in our computer code: Nc = 6,
Nc = 8, Nc = 14, and Nc = 27. For example, at Nc = 6, the coordinates of
collocation points are as follows: (±ω, 0, 0), (0,±ω, 0), (0, 0,±ω), where ω is the
user-specified value in the interval 0 < ω < 1.

Substituting the coordinates of collocation points in equations (5) we obtain
3Nc equations of collocations:

a(1)ν,m · bs+1
m = f s

ν , ν = 1, . . . , 3Nc ; m = 1, . . . , 30. (7)

As in [8] we use on the cell faces the matching conditions ensuring the only
piecewise polynomial solution. These conditions of the solution continuity are
the linear combinations of the form

h∂(u+)n/∂n+ η1(u
+)n = h∂(u−)n/∂n+ η1(u

−)n;

h∂(u+)τ1/∂n+ η2(u
+)τ1 = h∂(u−)τ1/∂n+ η2(u

−)τ1 ; (8)

h∂(u+)τ2/∂n+ η2(u
+)τ2 = h∂(u−)τ2/∂n+ η2(u

−)τ2 ;

p+ = p−.

Here n is the external normal to the cell face, (·)n, (·)τ1 , and (·)τ2 are the normal
and tangential components of the velocity vector with respect to the face between
the cells, u+ and u− are the limits of the function u at its tending to the cell
face from within and from outside the cell; η1, η2 are positive parameters, which
can affect the conditionality of the obtained system of linear algebraic equations

(SLAE) and the convergence rate; h ∂
∂n =h

(
n1

∂
∂x1

+n2
∂

∂x2
+n3

∂
∂x3

)
= n1

∂
∂y1

+

n2
∂

∂y2
+n3

∂
∂y3

. The points at which equations (8) are written are called the
matching points. As in the case of collocation points, the specification of the
number of matching points for the velocity components and their position on
each face may be done in different ways. Let us denote by Nm the number
of matching points for the velocity components on the faces of each cell. We
have implemented in our Fortran code the cases when Nm = 6, Nm = 12, and
Nm = 24. We substitute the coordinates of these points in each of the first three
matching conditions in (8) and obtain 3Nm matching conditions for velocity
components.

If the cell face coincides with the boundary of region Ω, then we use the
boundary conditions instead of the matching conditions: um = gm, m = 1, 2, 3.

The matching conditions for the pressure are specified at six points (±1, 0, 0),
(0,±1, 0), (0, 0,±1). To identify the unique solution we specified the pressure at
the coordinate origin in the same way as in [8]. Thus, the matching conditions
for velocity components and the pressure give in the total 3Nm + 6 + δ1i δ

1
j δ

1
k

Collocations and Least Residuals Method for the Solution 385

linear algebraic equations in each cell (i, j, k), where δji is the Kronecker symbol,

δji = 1 at i = j and δji = 0 at i �= j. Let us write these equations in the form

a(2)ν,m · bs+1
m = gs,s+1

ν , ν = 1, . . . , 3Nm + 6 + δ1i δ
1
j δ

1
k; m = 1, . . . , 30. (9)

The right-hand sides gs,s+1
ν depend both on the quantities bsm and on the quan-

tities bs+1
m , which were just computed in some of the neighboring cells.

Let us introduce the matrix Ai,j,k, which unites the matrices of systems (7)

and (9), as well as the column vector of the right-hand sides fs,s+1
i,j,k . The following

SLAE is then solved in each cell:

Ai,j,k · bs+1 = f s,s+1
i,j,k , (10)

where bs+1 = (bs+1
i,j,k,1, . . . , b

s+1
i,j,k,30)

T . Equations (9) in this system are similar
to the boundary conditions for subdomains in the well-known decomposition
method. In the given version, each grid cell is the subdomain. And for solving
the problem on the whole, the Schwarz alternating method has been applied
here. The matrix Ai,j,k contains 3Nc + 3Nm + 6+ δ1i δ

1
j δ

1
k rows and 30 columns.

The system (10) is solved with respect to 30 unknowns bs+1
i,j,k,l, l = 1, 2, . . . , 30, by

the QR expansion method. The advantages of this method over the least-squares
method are discussed below in Section 4. All these equations were derived on
computer in Fortran form by using symbolic computations with Mathematica.

At the obtaining of the final form of the formulas for the coefficients of the
equations, it is useful to perform the simplifications of the arithmetic expressions
of polynomial form to reduce the number of the arithmetic operations needed for
their numerical computation. To this end, we employed standard functions of the
Mathematica system, such as Simplify and FullSimplify for the simplification
of complex symbolic expressions arising at the symbolic stages of the construc-
tion of the formulae of the method. Their application enabled a two-three-fold
reduction of the length of polynomial expressions.

3 The Multigrid Algorithm

The multigrid methods are now known as very efficient methods for the numerical
solution of various mathematical physics problems. The main idea of multigrid is
to accelerate the convergence of a basic iterative method by solving the problem
on the grids of different resolution. As a result, selective efficient damping of the
error harmonics occurs. This constitutes the essence of the efficiency of multigrid
algorithms. The convergence of multigrid methods was studied in most detail for
the numerical solution of partial differential equations of elliptic type.

The general structure of multigrid algorithms as applied to the system of 3D
incompressible Navier–Stokes equations (1) is as follows. Denote the system (3),
(4) in local variables y1, y2, y3 as Lu = f . Let h1 > h2 > · · · > hN (N ≥ 2) be
a sequence of decreasing grid cell sizes. The discretization corresponding to the
parameter hm (levelm) is denoted by Lmum = fm, where Lm is the discretization

386 V.P. Shapeev and E.V. Vorozhtsov

matrix, um and fm are grid functions (m = 1, . . . , N). We now introduce the
restriction operator R, that is the operator for the interpolation from the fine
grid to coarse grid. In addition, we also introduce the prolongation operator P
for the interpolation from the coarse grid to fine grid.

The CLR method is well suitable for the interpolation of the solution from
one grid to another because the solution is presented in the analytic form in each
cell of the spatial computing mesh. Let us now describe the implementation of
the prolongation and restriction operators within the CLR method.

1◦. Prolongation. Let us illustrate the prolongation algorithm by the exam-
ple of the velocity component u1(y1, y2, y3, b1, . . . , b30). Let h1 = h, where h is
the half-step of the coarse grid, and let h2 = h1/2 be the half-step of a fine grid
on which one must find the decomposition of the function u1 over the basis.
Step 1. Let X1, X2, X3 be the global coordinates of the center of a coarse grid
cell. We make the following substitutions in the polynomial expression for u1:

yl = (xl −Xl)/h1, l = 1, 2, 3. (11)

As a result we obtain the function

U1(x1, x2, x3, b1, . . . , b30) = u1

(
x1 −X1

h1
,
x2 −X2

h1
,
x3 −X3

h1
, b1, . . . , b30

)
. (12)

Step 2. Let (X̃1, X̃2, X̃3) be the global coordinates of the center of any of the
eight cells of the fine grid, which lie within the coarse grid cell. We make in (12)
the substitution xl = X̃l + ỹl · h2, l = 1, 2, 3. As a result we obtain the function

Ũ1 = b̃1 + b̃4ỹ1 + b̃12ỹ
2
1 + b̃19ỹ

2
1 + b̃7ỹ2 − 2b̃15ỹ1ỹ2 + b̃20ỹ

2
2

+ b̃10ỹ3 − 2b̃17ỹ1ỹ3 + b̃23ỹ2ỹ3 + b̃25ỹ
2
3 .

The analytic expressions for coefficients b̃1, . . . , b̃30 were found efficiently with
the aid of the Mathematica function Coefficient[...]. To reduce the length
of the obtained expressions for the above coefficients we have applied a number of
transformation rules as well as the Mathematica function FullSimplify[...].
As a result, the length of the final expressions for b̃1, . . . , b̃30 proved to be five
times shorter than the length of the original expressions. It turns out that the
coordinates X1, X2, X3 and X̃1, X̃2, X̃3 enter the b̃l (l = 1, . . . , 30) only in the
form of combinations δxl = (Xl − X̃l)/h1. For example, b̃4 = (h2/h1) · (b4 −
2b12δx1 − 2b19δx1 + 2b15δx2 + 2b17δx3). In accordance with (11) the quantity
−δxl = (X̃l −Xl)/h1 has the meaning of the local coordinate on the coarse grid
of the coordinate X̃l of the center of the fine grid cell.

2◦. Restriction. The purpose of the restriction algorithm is to project the
approximate numerical solution from the fine grid onto the coarse grid. To this
end, we use eight cells of the fine grid, from which we compose a single cell of the
coarse grid. In view of the availability of the analytic solution obtained on the
fine grid, we have used instead of the averaging operation, which is applied for
obtaining the initial approximation on coarse grid at a passage from the fine grid

Collocations and Least Residuals Method for the Solution 387

to coarse grid, a more accurate procedure of constructing the necessary initial
condition by recalculating the local coordinates on fine grid at first to global
coordinates and then to the local coordinates on coarse grid.

The work formulas both for the prolongation and restriction operators were
calculated in symbolic form and then were stored in external files in the Fortran
form. After that these Fortran operators were included in our Fortran code.

4 Convergence Acceleration Algorithm Based on
Krylov’s Subspaces

To accelerate the convergence of the iterations used for the approximate solution
construction we have implemented here a new variant [3,7] of the well-known
method [4,9,5,6,3,7], which is based on Krylov’s subspaces [4]. Different variants
of this method are described in [5]. Let us present the formulas of the new variant
by using, for convenience of explanations, the iteration process

Xn+1 = TXn + f , n = 0, 1, . . . (13)

of solving the SLAE AX = d, where A and T are the square real matrices,
f and d are the vectors of right-hand sides, Xn is the approximation to the
solution at the iteration with number n. Let the iteration process (13) converge,
and the system AX = d is equivalent to the system

X = TX + f . (14)

Substituting the value Xn in system (14) and accounting for (13), we have a
residual of equation (14) at the nth iteration r n= TX n+f−X n = X n+1−X n.
Using the last relationship it is not difficult to show that the relation Zn+1 =
TZ n takes place for the solution error at the nth iteration Z n = X −Xn and
similarly for the residual T r n = r n+1. Accounting for the last relations, one
can also show after simple transformations that the following equation is valid
for any n:

(T−1 − E)Z n+1 = r n. (15)

In the method under consideration, we search at the k + 1th iteration for the

Y k+1 =
k∑

i=1

αi r
i as an approximate value of the error Zk+1. The requirement

that the approximate error value satisfies equation (15) at n = k implies the
following SLAE for the sought αi:(

r 1 − r 0
)
α1 + . . .+

(
r k − r k−1

)
αk = −r k. (16)

Its solution αi, i = 1, 2, ..., k enables the obtaining of an approximation to the
solution of SLAE (14), which is obtained at the (k + 1)th iteration, assuming
X ≈ X ∗k+1 = Xk+1 + Y k+1. This technique accelerates considerably the con-
vergence of the iterations of the solution of SLAE (14). Its application does not
depend on the way of writing the iteration process of the solution of the given

388 V.P. Shapeev and E.V. Vorozhtsov

SLAE AX = d. Let the SLAE be obtained by the linearization of the original
nonlinear problem. If the iterations in nonlinearity are combined with the itera-
tions of solving such a SLAE, and at a single combined iteration, the coefficients
of nonlinear equations of the original problem vary in their modulus much less
than ‖Xk+1 −Xk‖, then the presented technique may accelerate substantially
the process of solving the original nonlinear problem. Numerous numerical ex-
periments conducted for the application of this algorithm at the solution of the
Navier–Stokes equations showed that depending on the Re number and the value
of k, more than a five-fold reduction of the CPU time was reached. At Re=1000,
the acceleration of the iterative process increased when k was increased up to
10. The application of the given algorithm for the correction of the kth iteration
with k > 20 did not produce a significant further acceleration of the process in
comparison with the cases of k ≤ 10.

At the convergence of iterations, the residual vector r n decreases, and system
(16) becomes worse and worse conditioned. In order to avoid a catastrophic drop
of the accuracy of corrections computation additional techniques are necessary
in the region of small residuals. The normalization of the columns of the matrix
of system (16) is done at first to avoid the arithmetic operations on the numbers
close to the machine zero. The substitution of unknowns is carried out: βi =
αi|| r i − r i−1||2, i = 1, . . . , k. As a result, SLAE (16) takes the form

Bβ =
(
B1

)
β1 + . . .+

(
Bk

)
βk = − r k, (17)

whereBi = (r i− r i−1)/|| r i− r i−1||2 are the columns of matrix B, i = 1,. . . ,k.
System (16)was solved in [6] by the method of least squares (MLS). The MLS is
known to yield the pseudo-solution of the overdetermined system, on which the
minimum of the residual is reached among all its pseudo-solutions. In the given
case, this is the solution of system BTBβ = −BT r k, where the superscript T
by the matrix denotes its transposition. But the shortcoming of the MLS is that
the conditionality of matrix BTB may be much worse than the conditionality of
matrix B. Here, as in [3], (17) is solved by the QR-decomposition with column
pivoting at the construction of matrix Q. And the solution of system (17) reduces
to the solution of system Rβ = −QT r k. The conditionality of matrix R is
equal to the conditionality of matrix B. It is not difficult to show that at some
choice of the sequence of equations in system (17), the pseudo-solutions obtained
by the MLS method and by the QR decomposition coincide in the absence of
rounding errors at their computation. This constitutes a significant advantage
of the given realization of the algorithm for acceleration of iterations, which
makes the computation of corrections after Krylov more stable in the region of
small residuals. We omit here for the sake of brevity the presentation of one
more technique for increasing the stability of the construction of the Krylov’s
subspace, which was also applied in [3].

The refined vector of the k + 1th approximation X ∗k+1 is used as the initial
approximation for further continuation of the sequence of iterations.

One of the advantages of the considered method for acceleration of iterations
is that it can easily be applied to already programmed iteration processes. To

Collocations and Least Residuals Method for the Solution 389

k � 0
k � 2
k � 5
k � 9

n

log10Δbn

2000 4000 6000 8000 10 000

�6

�5

�4

�3

�2

(a)

n

log10Δu k � 0
k � 2
k � 5
k � 9

2000 4000 6000 8000 10 000

�3.0
�2.5
�2.0
�1.5
�1.0

(b)

Fig. 1. The influence of the quantity k in (16) on the convergence rate of the CLR
method: (a) the logarithm of error δbn; (b) the logarithm of the error δu

this end, it is sufficient to incorporate into the existing computer code a small
procedure for computing the correction Y k+1 in accordance with the above.

5 Numerical Results

5.1 Test with Exact Analytic Solution

Let us take the exact solution of the Navier–Stokes equations (1) in the cubic
region (2) from [8]. The region (2) was discretized by a uniform grid of cubic
cells. The half-size h of the cell edge was equal to h = X/(2M), where M is the
number of cells along each coordinate direction.

Since the present method uses the linearization of the Navier–Stokes equa-
tions, the iterations in nonlinearity are necessary. The zero initial guess for the
quantities ui and p was used.

To determine the absolute numerical errors of the method on a specific uniform
grid with half-step h we have computed the same root mean square errors δu(h)
and δp(h) as in [8]. Let us further use the same formulas for convergence orders
νu and νp as in [8]. Let us denote the value of the coefficient bi,j,k,l in (6) at
the nth iteration by bni,j,k,l, n = 0, 1, The following condition was used for

termination of the iterations in nonlinearity: δbn+1 < ε, where

δbn+1 = max
i,j,k

(
max

1≤l≤30

∣∣∣bn+1
i,j,k,l − bni,j,k,l

∣∣∣) (18)

and ε is a small positive user-specified number, ε < h2.
Figure 1 illustrates the influence of quantity k in (16) on the convergence rate

of the CLR method. These computations were done on the grid of 20× 20× 20

390 V.P. Shapeev and E.V. Vorozhtsov

v1

x3

�1�
M � 40

�0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(a)

v1

x3

�1�
M � 160
M � 80
M � 40

�0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 2. Profiles of the velocity component v1 on the central line x1 = x2 = 0.5 for Re
= 100 (a) and Re = 1000 (b)

cells; η1 = η2 = 2 in (8), ξ = 0.01 in (5). The satisfaction of inequality δbn <
2 · 10−7 was the criterion for the finalization of computation. The case k = 0
corresponds to the computation without using the Krylov’s algorithm. It is seen
that the convergence rate of the numerical solution by the CLR method increases
with increasing number of residuals k employed in the Krylov’s method. The
number of iterations needed for satisfying the inequality δbn < 2 · 10−7 was less
than in the case when the Krylov’s algorithm was not used by the factors of 11,
13, and 17, respectively, at k = 2, k = 5, and k = 9.

The numerical results presented in Tables 1 and 2 were obtained by using
the value ω = 1/2 at the specification of collocation points. It can be seen from
Table 1 that in the case of the Reynolds number Re = 100, the convergence order
νu lies in the interval 2.10 ≤ νu ≤ 3.05, that is it is somewhat higher than the
second order. But with the increasing Reynolds number the convergence order
νu decreases, see Table 2.

Table 1. The errors δu, δp and the con-

vergence orders νu, νp on a sequence of

grids, Re = 100

M δu δp νu νp

10 0.364 · 10−3 0.585 · 10−2

20 0.852 · 10−4 0.232 · 10−2 2.10 1.33

30 0.247 · 10−4 0.131 · 10−2 3.05 1.41

Table 2. The errors δu, δp and the con-

vergence orders νu, νp on a sequence of

grids, Re = 1000

M δu δp νu νp

10 0.462 · 10−3 0.341 · 10−2

20 0.189 · 10−3 0.240 · 10−2 1.29 0.51

30 0.112 · 10−3 0.155 · 10−2 1.29 1.08

It is to be noted that at the application of the CLR method for solving any
problems, it is important that the equations in the overdetermined system, which
play the equal role in the approximate solution, have equal weight coefficients.

Collocations and Least Residuals Method for the Solution 391

x1

x3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a)
x2

x3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b)
x1

x2

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(c)

Fig. 3. Pseudo streamlines in different sections of the cubic cavity at Re = 1000: (a)
section x2 = 0.5; (b) section x1 = 0.5; (c) section x3 = 0.5

5.2 Flow in the Lid-driven Cavity

Consider the flow of a viscous incompressible fluid in a cubic cavity whose lid
moves in the given direction at a constant speed. The computational region is the
cube (2). The coordinate origin lies in one of the cube corners, and the Ox3 axis
is directed upwards. The cube upper face moves in dimensionless coordinates at
the unit velocity in the positive direction of the Ox1 axis. The remaining faces
of cube (2) are at rest. The no-slip conditions are specified on all cube faces:
v1 = 1, v2 = v3 = 0, if x3 = X , and vm = 0, m = 1, 2, 3, at the remaining
boundary faces.

Some results of the numerical computations of the problem under considera-
tion were presented in [8] for the Reynolds number Re = 100. Figures 2 and 3
show some results for the Reynolds numbers Re = 100 and Re = 1000.

The high-accuracy numerical solutions of the lid-driven cubic cavity problem,
which were obtained in [1], are until now the only benchmark solutions of the
given problem. The computations were done in [1] with the aid of a method
representing the extension of the method of [2] for the case of three spatial vari-
ables. The flow fields are singular along the edges between the moving wall and
stationary walls. These singularities deteriorate the convergence of the numer-
ical method and the accuracy of the final solution. Therefore, a superposition
of stationary local asymptotic solutions was applied in [1] for all singular edges
and the remaining smooth solution. Figure 2 presents, for comparison, also the
solutions obtained in [1]. It can be seen that the numerical solution by the CLR
method agrees very well with the result from [1] despite the fact that we have
not used in our computation the asymptotic solutions near singular edges as
this was done in [1,3]. Figure 2, (b) shows the convergence dynamics with the
increasing number of the grid cells M in each spatial direction.

We have used the so-called pseudo streamlines for a clear graphic represen-
tation of the 3D computed results. Let us give the definition of this concept.
Let us project the velocity vector of each fluid particle lying in the chosen plane
onto this plane. We obtain a planar vector field. We call the lines, which are
tangent to the vectors of this field, the pseudo streamlines. Figure 3 presents the
patterns of pseudo streamlines in different sections, and only in section x2 = 0.5,

392 V.P. Shapeev and E.V. Vorozhtsov

the pseudo streamlines coincide with the true streamlines. The pseudo stream-
lines, as the streamlines, show clearly the flow structure. The pseudo streamlines
shown in Fig. 3 were obtained on the grid of 80×80×80 cells with the aid of the
Mathematica function ListStreamPlot[...].

6 Conclusions

The computer algebra system Mathematica has been applied for constructing a
new version of the method of collocations and least residuals (CLR) for solv-
ing the 3D Navier–Stokes equations. A large amount of symbolic computations,
which arose in the work, was done efficiently with Mathematica. It is very im-
portant that the application of CAS has facilitated greatly this work, reduced at
all its stages the probability of errors usually introduced by the mathematician-
numerist at the development of a new algorithm.

The verification of the method accuracy by solving the well-known bench-
mark problem of the lid-driven cubic cavity flow and comparison with the most
accurate published solutions of this problem [1], which were obtained by other
researchers, have shown a high accuracy of the constructed method. This has
confirmed additionally the efficiency and benefit of using the CASs for construct-
ing new analytic-numerical methods.

References

1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow.
J. Comp. Phys. 206, 536–558 (2005)

2. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow.
Comput. Fluids 27, 421–433 (1998)

3. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier–Stokes equations. Com-
putat. Math. and Math. Phys. 50, 1670–1681 (2010)

4. Krylov, A.N.: On the numerical solution of the equation, which determines in tech-
nological questions the frequencies of small oscillations of material systems. Izv. AN
SSSR, Otd. Matem. i Estestv. Nauk. (4), 491–539 (1931) (in Russian)

5. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University
Press, Manchester (1991)

6. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least -squares method
for Stokes equations. Computat. Technologies 1(2), 90–98 (1996) (in Russian)

7. Shapeev, V.P., Isaev, V.I., Idimeshev, S.V.: The collocations and least squares
method: application to numerical solution of the Navier-Stokes equations. In: CD-
ROM Proc. 6th ECCOMAS. Vienna Univ. of Tech (September 2012) ISBN: 978-3-
9502481-9-7

8. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method
of collocations and least squares for 3D Navier–Stokes equations. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442,
pp. 321–333. Springer, Heidelberg (2012)

9. Sleptsov, A.G.: On convergence acceleration of linear iterations II. Modelirovanie v
Mekhanike 3(5), 118–125 (1989) (in Russian)

Construction of Classes

of Irreducible Bivariate Polynomials

Doru Ştefănescu

University of Bucharest, Romania
stef@rms.unibuc.ro

Abstract. We describe a method for constructing classes of bivariate
polynomials which are irreducible over algebraically closed fields of char-
acteristic zero. The constructions make use of some factorization condi-
tions and apply to classes of polynomials that includes the generalized
difference polynomials.

Keywords: Irreducible polynomials, Polynomial factorization, Algebraic
algorithms.

Introduction

We consider bivariate polynomials polynomials over an algebraically closed field
k of characteristic zero. It is known that the ring k[X,Y] of these polynomials
is a unique factorization domain. The irreducible elements in k[X,Y] are the
irreducible polynomials, and they play the key role in polynomial factorization.

There exist several results concerning the construction of bivariate irreducible
polynomials, see [1], [5], [6], [7]. They apply for polynomials for which the leading
coefficient of a variable is a nonzero constant, namely

F (X,Y) = cY n +

n∑
i=1

Pi(X)Y n−i , (1)

where c ∈ k \ {0}, ∈ N∗, Pi(X) ∈ k[X] .

We remind that such a polynomial is called a generalized difference polynomial
if

deg(Pi) < i
deg(Pn)

n
for all i, 1 ≤ i ≤ n− 1 .

We consider the degree-index

pY (F) = max

{
deg(Pi)

i
; 1 ≤ i ≤ n

}
considered by Panaitopol–Ştefănescu [6]. It was proved that for particular values
of pY (F), the polynomial F (X,Y) is irreducible in k[X,Y], see, for example [1],
[2], [3], [5], [6]. They key tool for constructing irreducible polynomials using the
degree index is the consideration of the Newton polygon of a product of two
polynomials, see [6]. In fact:

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 393–400, 2013.
c© Springer International Publishing Switzerland 2013

394 D. Ştefănescu

Proposition 1 (Panaitopol–Ştefănescu, 1990). If F = F1F2 is factoriza-
tion in k[X,Y] and pY (F) = deg(Pn)/n, we have

pY (F) = pY (F1) = pY (F2) .

The previous result can be restated for univariate polynomials with coefficients
in a valued field, see, for example [4].

In this paper, we give a method for the construction of bivariate irreducible
polynomials of the form (1) for which the degree index is not equal to deg(Pn)/n.
Such polynomials are called quasi–difference polynomials (cf. [3]). More precisely,
we will give factorization conditions in function of the difference between the
degree index pY (F) and deg(Pn)/n .

Factorization Conditions

From now on, we consider a family of polynomials F ∈ k[X,Y] which contains
the generalized difference polynomials.

Theorem 1. Let

F (X,Y) = cY n +

n∑
i=1

Pi(X)Y n−i ∈ k[X,Y], c ∈ k \ {0}

for which there exists s ∈ {1, 2, ..., n} such that the following conditions are
satisfied:

(a)
degPi

i
≤ degPs

s
, for all i ∈ {1, 2, ..., n}.

(b) (degPs, s) = 1.

(c)
degPs

s
− degPn

n
≤ 1

sn
.

Then F (X,Y) is irreducible in k[X,Y] or has a factor whose degree with respect
to Y is a multiple of s.

Proof: Let us suppose that there exists a nontrivial factorization F = F1F2 of
the polynomial F . We put m = deg(Pn) and a = deg(Ps). By hypothesis (a) we
have

PY (F) =
a

s
.

On the other hand, by condition (c),

an− sm ≤ 1 .

If an− sm = 0 we have
PY (P) =

m

n

and by Proposition 1 we have

Construction of Classes of Irreducible Bivariate Polynomials 395

pY (F) = pY (F1) = pY (F2) . (2)

We have an=sm and, by hypotheses, (a, s)=1, so s should divide n=degY (F) .

On the other hand, by (2)

a

s
= pY (F1) =

m1

n1
,

where n1 = deg(F1), m1 = degX F (X, 0) . Therefore,

an1 = sm1 .

But (a, s) = 1, so s should divide n1 = degY (F1).

We consider now the case an− sm = 1 .

By Theorem 1 from [6], we know that pY (F) = max{pY (F1), pY (F2)}
We observe that

m1

n1
≤ pY (F1) ≤ pY (F) =

a

s
,

which gives
an1 − sm1 ≥ 0 . (3)

We put n2 = degY (F2) and m2 = degX F2(X, 0) and we observe that

m2

n2
=

m−m1

n− n1
≤ pY (F2) ≤ pY (F) =

a

s
.

We successively obtain

s(m−m1) ≤ a(n− n1),
sm− sm1 ≤ an− an1,
(an− sm) + (sm1 − an1) ≥ 0,
1 + (sm1 − an1) ≥ 0,
an1 − sm1 ≤ 1 .

Therefore, using (3), we have an1 − sm1 ∈ {0, 1} .
In the case an1−sm1 = 0 , because a and s are coprime, it follows that s divides
n1 = degY (F1), hence the conclusion.

If an1 − sm1 = 1 we successively obtain

an1 − sm1 = 1,
a(n− n2)− s(m−m2) = 1,
(an− sm) + (sm2 − an2) = 1,
1 + (sm2 − an2) = 1,
sm2 − an2 = 0 .

From sm2 = an2 and the assumption that a and s are coprime, it follows that s
divides n2 = degY (F2).

396 D. Ştefănescu

Corollary 1. If s ∈ {1, n− 1} and F has no linear factors with respect to Y ,
the polynomial F is irreducible in k[X,Y] .

Proof. By Theorem 1, if F is not irreducible it must have a divisor of degree s
with respect to Y . So F = F1F2, where one of the polynomials F1 or F2 has the
degree 1 with respect to Y . But F has no linear factors with respect to Y .
�

Corollary 2. If n > 3 and s > n/2 the polynomial F is irreducible or has a
divisor of degree s with respect to Y .

Proof. By Theorem 1 the polynomial F is irreducible or has a divisor G of degree
ds. In the second case we have

n > ds > d .
n

2
.

It follows that d < 2 , so d = 1 .
�

Proposition 2. Let F (X,Y) = Y n +

n∑
i=1

Pi(X)Y n−i ∈ k[X,Y] and suppose

that there exists s ∈ {1, 2, ..., n} such that (degPs, s) = 1 ,
degPi

i
≤ degPs

s
for

all i ∈ {1, 2, ..., n} and

degPs

s
− degPn

n
=

u

sn
, where u ∈ {2, 3} .

Then one of the following statements is satisfied:
1. The polynomial F (X,Y) is irreducible in k[X,Y].
2. The polynomial F has a divisor whose degree with respect to Y is a multiple

of s.
3. The polynomial F factors in a product of two polynomials such that the

difference of their degrees with respect to Y is a multiple of s.
4. The polynomial F factors in a product of two polynomials such that the

difference between the double of the degree of one of them and the degree of the
other with respect to Y is a multiple of s.

Proof. With the notation from Theorem 1 we have

as− sm = 2 or 3 .

The case as− sm = 2 .

This gives
a(n1 + n2)− s(m1 +m2) = 2 ,

i.e.,
(an1 − sm1) + (an2 − sm2) = 2 .

If an1 − sm1 = 0 or an1 − sm1 = 2 we have the conclusions from Theorem 1,
i.e., in this case the polynomial F (X,Y) is irreducible in k[X,Y] or has a divisor
of degree with respect to Y which is a multiple of s.

Construction of Classes of Irreducible Bivariate Polynomials 397

If
an1 − sm1 = 1 ,
an2 − sm2 = 1

we consider the solution of the Diophantine equation ax− sy = 1 . If (x0, y0) is
a solution, we have {

n1 = x0 + t1, n2 = x0 + t2s ,
n2 = y0 + t1, m2 = y0 + t2 ,

where t1, t2 ∈ Z .

We obtain
n1 − n2 = (t1 − t2)s,
m1 −m2 = (t1 − t2)a .

It follows that the difference of the degrees with respect to Y of the two divisors
is a multiple of s.

The case as− sm = 3 .

It follows that

a(n1 + n2)− s(m1 +m2) = 3 ,

that is

(an1 − sm1) + (an2 − sm2) = 3 .

We have the following possibilities:

an1 − sm1 = 0 and an2 − sm2 = 3 ,
an1 − sm1 = 1 and an2 − sm2 = 2 ,
an1 − sm1 = 2 and an2 − sm2 = 1 ,
an1 − sm1 = 3 and an2 − sm2 = 0 .

(4)

It is sufficient to examinate the first two cases.

If an1− sm1 = 0 and an2 − sm2 = 3 we have an1 = sm1, so s divides n1, and
we are in case 2 of the conclusions.

Suppose that an1 − sm1 = 1 and an2 − sm2 = 2. Substracting these relations
we obtain

a(n2 − n1) + s(m2 −m1) = 1

and substracting from this the relation an1 − sm1 we finally have

a(n2 − 2n1)− s(m2 − 2m1) = 0 . (5)

Relation (5) proves that s divides n2 − 2n1, so we are in case 4 from the conclu-
sions.
�

Remark 1. Note that if u = 2 we have the conclusions 1, 2 or 3, while if u = 3
one of the statements 1, 2 or 4 is satisfied.

398 D. Ştefănescu

Applications

We use the previous results for studying factorization properties of some families
of polynomials and the construct of classes of irreducible polynomials.

Example 1. Corollary 1 produces families of irreducible polynomials in k[X,Y].
It is sufficient to apply the following steps:

– Fix n ≥ 4 and s = n− 1 .
– Fix the natural numbers a1, a2, . . . , an−2 and an .
– Compute

M = max
{ai
i
; 2 ≤ i ≤ n, i �= s

}
.

– Compute a = as ∈ N∗ such that

a

n− 1
> M and (a, n− 1) = 1 .

– Compute polynomials Pi such that deg(Pi) = ai for all i ∈ {1, 2, . . . , n} .
– Check if the polynomial F (X,Y) = Y n+

∑n
i=1 Pi(X)Y n−i has linear factors

with respect to Y .

If F (X,Y) has no linear divisors with respect to Y conclude that it is irreducible
in k[X,Y] .

Example 2. We consider

F (X,Y) = Y n + p(X)Y 2 + q(X),

where p, q ∈ k[X], n ∈ N, n ≥ 4, and 3 does not divide n .

Note that in this case m = deg(q).
We suppose that deg(p) and n− 2 are coprime and that

deg(p)

n− 2
>

deg(q)

n
.

and we can apply Theorem 1 or Proposition 2 provided we have

a

s
− m

n
=

deg(p)

n− 2
− deg(q)

n
≤ 3

(n− 2)n
.

Particular Case:

We consider deg(p) = n− 1 and deg(q) = n+ 1 . Then we have

a

s
− m

n
=

n(n− 1)− (n− 2)(n+ 1)

(n− 2)n
=

2

(n− 2)n
.

The hypotheses of Proposition 2 are fulfilled. We have a = n− 1 and s = n− 2.
Indeed, n− 1 and n− 2 are coprime and

s = n− 2 ≥ n

2
.

Construction of Classes of Irreducible Bivariate Polynomials 399

If we are in case 2, let G be a nontrivial divisor. Then degY (G) = k(n − 2),
with k ≥ 1 . It follows that k = 1, so degY (G) = n − 2. We deduce that the
other divisor of F has the Y -degree equal to 2, so F has a quadratic factor with
respect to Y .

If we are in case 3, let F = GH be a nontrivial factorization in k[X,Y]. Since
| degY (G) − degY (H)| = k(n − 2) we have | degY (G) − degY (H)| = n − 2. Let
us suppose that degY (G) ≥ degY (H) . We have degY (G) − degY (H) = n − 2 ,
hence degY (G) = degY (H) + n− 2 ≥ n− 1 .

Because degY (H) ≥ 1 we have degY (G) = n− 1 and degY (H) = 1 , therefore,
one of the divisors of F is linear with respect to Y .

Therefore, if deg(p) = n − 1 and deg(q) = n + 1 the polynomial F (X,Y) =
Y n + p(X)Y 2 + q(X) is irreducible or has a factor of degree 1 or 2 with respect
to Y .

Remark 2. If, in the previous case, the polynomial q(X) is square free, then
F (X,Y) is irreducible or has a quadratic factor with respect to Y . Indeed, if
there is a linear factor Y − r(x) then rn + pr2 + q = 0 , so r2 would divide q .

Example 3. The polynomial F (X,Y) = Y n+X2Y 2+X3 is irreducible in Z[X,Y]
for all n ∈ N∗ , n is not divisible by 3 .

If n ≥ 7 we have
m

n
=

3

n
>

2

n− 2
=
a

s
,

so pY (F) = 3/n and F is a generalized difference polynomial. By hypotheses n
is not a multiple of 3, by Corollary 3 from [6], the polynomial F is irreducible.

For n < 7 we have to check the irreducibility for n ∈ {1, 2, 4, 5} . In each case,
the polynomial is irreducible.

Example 4. We consider

F (X,Y) = Y n + p(X)Y 3 + q(X)Y 2 + r(X), where p, q, r ∈ k[X] , n ≥ 5 .

In this case, m = deg(r).
We suppose that

deg(q)

n− 2
>

deg(r)

n
=
m

n
.

We consider

deg(p) = n− 4 , deg(q) = n− 1 , deg(r) = n+ 1

the previous conditions are satisfied. We note that we have

a

s
− m

n
=

3

sn
,

so we can use Proposition 2.

If a factor has the degree multiple of s = n − 2, then it has degree n− 2. So
the other factor is quadratic or the square of a linear factor.

400 D. Ştefănescu

If we are in case 4 from the conclusions, let G,H be two factors such that
deg(G) − 3 deg(H) be a multiple of s = n − 2 . This gives information on the
divisors in particular cases.

In the case n = 5, for example, we have deg(G) = 3 deg(H) + 3t with t ∈ N,
so deg(G) is a multiple of 3. Therefore, deg(G) = 3, and the other factor is
quadratic or the square of a linear factor.

References

1. Angermüller, G.: A generalization of Ehrenfeucht’s irreducibility criterion. J. Num-
ber Theory 36, 80–84 (1990)

2. Ayad, M.: Sur les polynômes f(X,Y) tels que K[f] est intégralement fermé dans
K[X,Y]. Acta Arith. 105, 9–28 (2002)

3. Bhatia, S., Khanduja, S.K.: Difference polynomials and their generalizations. Math-
ematika 48, 293–299 (2001)

4. Bishnoi, A., Khanduja, S.K., Sudesh, K.: Some extensions and applications of the
Eisenstein irreducibility criterion. Developments in Mathematics 18, 189–197 (2010)

5. Cohen, S.D., Movahhedi, A., Salinier, A.: Factorization over local fields and the
irreducibility of generalized difference polynomials. Mathematika 47, 173–196 (2000)

6. Panaitopol, L., Ştefănescu, D.: On the generalized difference polynomials. Pacific J.
Math. 143, 341–348 (1990)

7. Rubel, L.A., Schinzel, A., Tverberg, H.: On difference polynomials and hereditary
irreducible polynomials. J. Number Theory 12, 230–235 (1980)

Algebraic Attacks Using IP-Solvers�

Ehsan Ullah

Universität Passau, Passau, Germany
ehsanmath@gmail.com

Abstract. The main task for carrying out a successful algebraic attack
on a cipher (or for examining the security of a cipher) is to solve a mul-
tivariate polynomial system over a finite field. We study recent sugges-
tions of using IP-solvers for this task. After formulating the solution of a
system of polynomial equations as a mixed integer linear programming
problem, we apply state-of-the-art IP-solvers, such as CPLEX [12], in-
side our algebraic techniques. In particular, we highlight a new technique
and develop several strategies for converting the polynomial system to a
set of linear equalities and inequalities. We also generalize the approach
in [7,14]. Finally, the efficiency of these techniques is examined using
standard cryptographic examples such as Small Scale AES, and CTC.

Keywords: algebraic attacks, IP-solver, system solving, conversion
technique.

1 Introduction

Cryptosystems or encryption schemes are important building blocks in crypto-
graphic protocols that play an essential role in software engineering to ensure
IT-security. It is well-known that any encryption map between finite dimensional
vector spaces over a finite field is polynomial (see page 330, [6]). Thus, it is nat-
ural to represent the task of breaking a cryptosystem by the problem of solving
a multivariate polynomial system of equations over a finite field, especially over
F2. This type of attacks is known as algebraic attacks and is studied in algebraic
cryptanalysis. Therefore, in this paper we study techniques that can be used in
the context of polynomial systems derived from algebraic attacks to examine the
security of different ciphers.

There are several techniques, for an overview see [14], which solve systems
of multivariate polynomial equations over finite fields. It is well-known that the
problem of solving a system of multivariate polynomial equations, even over a
finite field, is NP-hard. On the other hand, the Mixed Integer Linear Program-
ming (MILP) problem (a problem from discrete optimization) is also NP-hard.
Inspired by the possibility that solution of either one of them could be used for
solving the other, since all NP-complete problems are polynomially equivalent,
we study recent suggestions of transferring the problem of solving a system of
polynomial equations into a mixed integer linear programming problem. Until

� This work was completed with the support of an HEC-DAAD Scholarship.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 401–411, 2013.
c© Springer International Publishing Switzerland 2013

402 E. Ullah

now, the use of IP-solvers in polynomial system solving over finite fields is very
new and limited.

Some methods for representing polynomials over F2 as polynomials over R
(resp. Z) can be found in the literature, but they have not been used for our
purpose. In [6], an overview of possible representations is listed. Later, this study
was extended slightly in [17], but the main idea behind the representation meth-
ods was basically unaltered. Very recently, some techniques have been proposed
for transferring the problem of solving a system of polynomial equations over F2

into a MILP problem. In [14], M. Kreuzer provided a conversion algorithm based
on converting polynomial equations over F2 into polynomial equations over Z. In
[7], J. Borghoff et. al provided another conversion technique based on converting
polynomial equations over F2 into polynomial equations over R. J. Borghoff et.
al studied their method for systems of polynomial equations coming from stream
cipher Bivium, but an algorithm for general systems of polynomial equations is
missing. The commercial solver package CPLEX [12] was then used to solve the
resulting MILP problem, which corresponds to recovering the internal state of
Bivium. In the case of stream cipher Bivium A, solving this MILP problem us-
ing CPLEX takes less than 4.5 hours, which is faster than Raddums approach
(about a day) [19], but much slower than using MiniSAT (21 seconds) [8].

Recently, solving a system of polynomial equations over F2 by converting it
to a set of propositional logic clauses achieved a lot of success. The first study
of efficient methods for converting boolean polynomial systems to CNF clauses
was presented in [5]. Later this study was extended slightly in [3,9] and [20] but
the procedure was basically unaltered. The latest effort is due to P. Jovanovic
and M. Kreuzer [13]. They examined different conversion strategies, i.e. different
ways to convert the polynomial system into a satisfiability problem.

Our first contribution, presented in Section 2 of this paper, is to highlight a
new conversion technique based on propositional logic and pseudo-boolean op-
timization. In particular, first we convert a system of polynomial equations to
a set of propositional logic clauses, according to proposals in [13], and then ex-
ploit the connection between propositional clauses and 0-1 inequalities to model
the polynomial system as a MILP problem. This enables us to export several
strategies from propositional logic for modeling a MILP problem. Therefore, the
new conversion technique also has the ability to exploit several strategies for
formulating more economical MILP models.

The connection between propositional clauses and linear 0-1 inequalities not
only provides a new conversion technique, but also provides strategies to gener-
alize the methods proposed by M. Kreuzer [14] and J. Borghoff et. al [7]. This is
the topic of Section 3. Such strategies can be used to achieve more economical
constraints while replacing nonlinear terms with new 0-1 variables. This leads
us towards the development of new hybrid conversion techniques which seem to
outperform their standard versions proposed by M. Kreuzer [14] and J. Borghoff
et al. [7].

In Section 4 we report on some experiments and timings using the author’s
implementation of techniques and strategies in C++ which are also available

Algebraic Attacks Using IP-Solvers 403

online in package glpk of the computer algebra system ApCoCoA [2]. The ex-
periments, on the Courtois Toy Cipher (CTC), and small scale AES, show that
our new polynomial conversion technique and strategies perform better than the
known techniques. Moreover, we show that a suitably chosen conversion strategy
can save a substantial amount of newly introduced variables and inequalities in
the MILP problem. The benefit of a suitably chosen conversion technique and
strategy is then a significant speed-up of the IP-solvers which are applied to these
MILP problems. We shall also see that, for sparse systems, our techniques are
highly competitive to state-of-the-art solving techniques coming from Gröbner
basis theory. Our new additions, make IP techniques perform better than Magma
implementations in certain cases.

The implementations of the techniques are made available by the author in
package glpk of ApCoCoA and the polynomial systems used for experiments
can be download from http://apcocoa.org/polynomialsystems/. This paper
is based on a part of the authors Ph.D. thesis. We adhere to the notation and
terminology introduced in the books [15,16] unless mentioned otherwise.

2 Converting Boolean Polynomials to Inequalities

Let F2 be the finite field with two elements and let f1, . . . ,fm∈P =Fqt[x1, . . . , xn]
be non-zero polynomials. Let each fi be a squarefree polynomial (boolean poly-
nomial), i.e. all terms in the support of fi will be squarefree, but this is not
an essential hypothesis. We are interested in finding F2-rational solutions of the
following system of polynomial equations.

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

This task can be restated as follows: Find a tuple (a1, . . . , an) ∈ {0, 1}n such
that

F1(a1, . . . , an) ≡ 0 (mod 2)
...

Fm(a1, . . . , an) ≡ 0 (mod 2)

(1)

where Fi ∈ Z[X1, . . . , Xn] is a canonical representative of fi. So we are looking
for an integer solution (a1, . . . , an) of the system (1) which satisfies 0 ≤ ai ≤ 1.
The idea is to formulate these congruences (1) as a system of linear equalities
and inequalities over Z and solve it using an IP-solver. There could be many
ways to reach such a formulation. In the following we highlight a new technique
for this purpose.

In what follows, let X = {X1, . . . , Xn} be a set of boolean variables (atomic

formulas), and let X̂ be the set of all (propositional) logical formulas that can
be constructed from them, i.e. all formulas involving the operations ¬, ∧, and
∨. The conversion procedure for converting boolean polynomial systems to CNF
clauses as suggested in [5] consists of the following steps.

http://apcocoa.org/polynomialsystems/

404 E. Ullah

(1) Linearize the system by introducing a new indeterminate for each term in
the support of one of the polynomials.

(2) Having written a polynomial as a sum of indeterminates, introduce new
indeterminates to cut it after a certain number of terms. (This number is
called the cutting number.)

(3) Convert the reduced sums into their logical equivalents using a XOR-CNF
conversion.

The topic discussed in [13], is to examine different conversion strategies, i.e. dif-
ferent ways to convert the polynomial system into a satisfiability problem. The
crucial point is that the linearization phase (1) usually produces too many new
indeterminates. The goal is to substitute not single terms, but term combina-
tions, in order to save indeterminates and clauses in the CNF output. In partic-
ular, author’s introduce standard strategy (SS), linear partner strategy (LPS),
double partner strategy (DPS), quadratic partner substitution (QPS), and cubic
partner substitution (CPS). By combining the choice of a substitution strategy
with the other steps of the conversion procedure, we can benefit from these con-
version strategies while converting boolean polynomial systems to CNF clauses.

Surprisingly, it turns out that there are deep connections between proposi-
tional logic, and pseudo-boolean optimization (see [11], Chapter 5). In particular,
there is a connection, as given by the following lemma, between propositional
clauses and 0-1 inequalities which can be used to model the solution of poly-
nomial system over F2 (boolean polynomial system) as a MILP problem. This
enables us to use the above conversion technique and strategies to model a MILP
problem.

Lemma 1. Let C = {X1 ∨ · · · ∨ Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys | 1 ≤ r, s ≤ n} be a
set of clauses. Then the set C is satisfiable if and only if the system of clausal
inequalities Ic = {X1 + · · ·+Xr − Y1 − · · · − Ys ≥ 1− s | 1 ≤ r, s ≤ n} together
with the bounds 0 ≤ Xi, Yj ≤ 1 for all i, j ∈ {1, . . . , n}, has an integer solution.

Proof. Let c ∈ C be a clause. If c = X1 ∨ · · · ∨ Xr then by the definition of
satisfiability at least one of the Xi is true. In other words at least one of the Xi

is 1. This gives us the clausal inequality X1 + · · · + Xr ≥ 1 together with the
bounds 0 ≤ Xi ≤ 1. If c = ¬Y1 ∨ · · · ∨ ¬Ys then by the definition of satisfiability
at least one of the Yj is false. In other words at least one of the 1 − Yj is 1.
This gives us the clausal inequality (1 − Y1) + · · · + (1 − Ys) ≥ 1 together with
the bounds 0 ≤ Yj ≤ 1. If c = X1 ∨ · · · ∨ Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys then it follows
from the first two cases that X1 + · · ·+Xr + (1− Y1) + · · ·+ (1− Ys) ≥ 1 is the
corresponding clausal inequality together with the bounds 0 ≤ Xi, Yj ≤ 1.
Therefore, the clause

c = X1 ∨ · · · ∨Xr ∨ ¬Y1 ∨ · · · ∨ ¬Ys

can be translated into a clausal inequality

X1 + · · ·+Xr + (1− Y1) + · · ·+ (1− Ys) ≥ 1

Algebraic Attacks Using IP-Solvers 405

or X1 + · · ·+Xr − Y1 − · · · − Ys ≥ 1− s

and the clause set C is satisfiable if and only if the corresponding system of
clausal inequalities Ic together with the bounds 0 ≤ Xi, Yj ≤ 1 has an integer
solution. Therefore, reasoning in propositional logic can be seen as a special case
of reasoning with linear inequalities in integer variables.

Now its time to explicitly describe our first conversion algorithm using several
strategies which we implemented and used for the applications and timings.

Proposition 1. (Logical Polynomial Conversion (LPC))
Let f1, . . . , fm ∈ F2[x1, . . . , xn] be a system of polynomials which has at least
one zero in Fn

2 . Let � ≥ 3 be the desired cutting number. Then the following
instructions define an algorithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n
whose residue class in Fn

2 represent a zero of the 0-dimensional radical ideal
I = 〈f1, . . . , fm, x21 + x1, . . . , x

2
n + xn〉.

1) Let G = ∅. Perform the following steps 2)−5) for i = 1, . . . ,m.
2) Repeat the following step 3) until no polynomial g can be found anymore.
3) Find a subset of Supp(fi) which defines a polynomial g of the type required

by the chosen conversion strategy. Introduce a new indeterminate yj, replace
fi by fi − g + yj, and append g + yj to G.

4) Perform the following step 5) until #Supp(fi) ≤ �. Then append fi to G.
5) If #Supp(fi) > � then introduce a new indeterminate yj, let g be the sum of

the first �− 1 terms of fi, replace fi by fi − g+ yj, and append g+ yj to G.
6) For each polynomial in G, compute a logical representation in CNF and form

the set of all clauses C of all these logical representations.
7) For each clause c ∈ C form a clausal inequality Ic.
8) For all α ∈ {1, . . . , n}, let Iα : Xα ≤ 1 and for each j let Ij : Yj ≤ 1.
9) Choose a linear polynomial L ∈ Q[Xi, Yj] and use an IP-solver to find the

tuple of natural numbers (ai, bj) which solves the system of equations and
inequalities {Ic, Ij , Iα} and minimizes C.

10) Return (a1, . . . , an) and stop.

Proof. Consider the conversion procedure in the introduction of this section. It
can be seen easily that steps 2)−3) correspond to the linearization part (1) of the
procedure. Steps 4−5) are an explicit description of the cutting part (2) of the
procedure. Step 6) is based on [13], Lemma 2, [13], Lemma 3, [13], Proposition
6 or [13], Proposition 8 for the conversion of polynomials g + yj from step 3),
and on the standard XOR-CNF conversion for the linear polynomials from steps
4)−5). Finally, step 7) follows from Lemma 1. This concludes our claim.

Remark 1. Assume that we are in the setting of the algorithm in Proposition 1.
A natural question could be to ask about the nature of the clausal inequalities in
step 7). As claimed by Lemma 1, the variables Yj are continuous in the interval
[0, 1]. Since the initial variables Xα are forced to be binary, the variables Yj
take on integer values automatically. The good news is the continuity of these
variables because the difficulty of solving a mixed-integer program depends more

406 E. Ullah

on the number of integer variables than on the number of continues variables.
Another nice property of these conversion strategies is the possibility to reduce
the number of new variables and inequalities.

3 New Hybrid Conversion Techniques

The strategies described in Section 2 can be used to achieve more economical
constraints while replacing nonlinear terms with new 0-1 variables. Actually, in
[7], J. Borghoff et. al suggested two conversion methods. The first conversion
method, which is based on converting polynomial equations over F2 into polyno-
mial equations over Z, is the same as given by M. Kreuzer in [14] and we called
it Integer Polynomial Conversion (IPC). The second conversion method, which
is based on converting polynomial equations over F2 into polynomial equations
over R, will be called as Real Polynomial Conversion (RPC). Essentially, the
idea behind the IPC conversion is that the problem of solving the polynomial
equation system f1 = · · · = fm = 0 can be restated as finding a tuple for
congruence system 1. In the following, we combine the choice of a substitution
strategy with the other steps of the IPC and spell out the generalized version
which we implemented and used for the applications and timings in Section 4.
In the following we also refer some times the boolean variables X1, . . . , Xn as
integer indeterminates which may assume value 0 or 1.

Proposition 2. (Integer Polynomial Conversion (IPC))
Let f1, . . . , fm ∈ P = F2[x1, . . . , xn]. Then the following instructions define an
algorithm which computes a tuple (a1, . . . , an) ∈ {0, 1}n whose residue class in
Fn
2 represent a zero of the 0-dimensional radical ideal I = 〈f1, . . . , fm, x21 +

x1, . . . , x
2
n + xn〉 of P .

1) Reduce f1, . . . , fm modulo the field equations, i.e. make their support square-
free. Let G = ∅.

2) Repeat the following step 3) until no polynomial g can be found anymore.
3) Find a subset of Supp(fi) which defines a polynomial g of the type required by

the chosen conversion strategy. Introduce a new indeterminate xn+j , replace
fi by fi − g + xn+j, and append g + xn+j to G.

4) For each polynomial in G, compute a logical representation in CNF and
form the set of all clauses C of all these logical representations.

5) For each clause c ∈ C form a clausal inequality Ic.
6) For i = 1, . . . ,m, let Si be the set of new indeterminates xn+j in fi, and let

si = #Supp(fi).
7) For i = 1, . . . ,m, introduce a new integer indeterminate Ki and write down

the linear inequality Ii : Ki ≤ �si/2�.
8) For i = 1, . . . ,m, write fi =

∑
j xn+j + �i where the sum extends over

all j such that xn+j ∈ Si and where �i ∈ P≤1. Form the equation Fi :∑
j Xn+j + Li − 2Ki = 0, where Li ∈ Z[X1, . . . , Xn]≤1.

9) For all α ∈ {1, . . . , n}, let I ′α : Xα ≤ 1.

Algebraic Attacks Using IP-Solvers 407

10) Choose a linear polynomial L ∈ Z[Xα, Xn+j,Ki] and use an IP-solver to
find the tuple of natural numbers (aα, an+j , ci) which solves the system of
equations and inequalities {Ii, Fi, Ic, I

′
α} and minimizes L.

11) Return (a1, . . . , an) and stop.

Proof. Note that steps 2)−3) linearize the polynomials fi by introducing new
indeterminates xn+j . It is easy to see that step 4) is based on [13], Lemma 2, [13],
Lemma 3, [13], Proposition 6 or [13], Proposition 8 for the polynomials g+xn+j

from step 3). Step 5) follows from Lemma 1. In step 8) the polynomials fi are
linear polynomials in the indeterminates xα and xn+j . Next it follows from Fi

that Fi(a1, . . . , an) = 2Ki is an even number, and Ii is nothing but the trivial
bound for Ki implied by the size of the support of fi.

For α = 1, . . . , n, we are looking for natural numbers aα for which I ′α holds,
so we have aα ∈ {0, 1}. Moreover, we have an+j ∈ {0, 1} by I ′α and steps 2)
− 5). In this way the solutions of the IP problem correspond uniquely to the
tuples (a1, . . . , an) ∈ {0, 1}n which satisfy the above reformulation of the given
polynomial system. The claim follows easily from these observations.

Note that the indeterminates Xα take on binary values. The clausal inequali-
ties in step 5) of the algorithm keep the variables Xn+j continuous. Finally, the
variables Ki will take on integer values in the interval [0, �si/2�]. If we use the
standard strategy, the algorithm coincides with the method given by M. Kreuzer
and J. Borghoff et al. Furthermore, it is straightforward to see that the above
strategies can also be used in the settings of the RPC conversion.

4 Applications and Timings

In this section we report on experimental results with the new conversion method
and strategies. We compare the LPC and IPC conversions using the SS, LPS,
DPS, and QPS strategies. Furthermore, we compare some of the timings we
obtained to the straightforward Gröbner basis technique. For the CTC and AES
cryptosystem, we used the ApCoCoA implementations by J. Limbeck [18]. The
output of the conversion algorithms are files in the format which is used by
CPLEX [12]. The LPC conversion generally used the cutting number 4 unless
mentioned otherwise. All timings are obtained on a computer with a 2.1 GHz
AMD Opteron 6172 processor having 48 cores and 64GB RAM. For each timing,
we run CPLEX in parallel on two cores.

The conversion algorithms are implemented in C++. All timings are in sec-
onds, unless mentioned otherwise. The timings for the conversion algorithms
were ignored, since they do not contribute to the complexity of solving and
take very little time. While modeling a MILP problem, we choose the objective
function as the sum over all the initial variables and maximization as optimiza-
tion direction. Finally, we note that all timings can be reproduced, if we do not
permute the set of input linear equalities and inequalities. The reason for this
is that IP-solvers also implement randomized algorithms which rely heavily on
heuristical methods.

408 E. Ullah

4.1 The Courtois Toy Cipher CTC

Given the CTC cryptosystem and a plaintext-ciphertext pair, we construct an
overdetermined algebraic system of equations in terms of the indeterminates
representing key bits and certain intermediate quantities (see [57]). Then the
task is to solve the system for the key bits. The size of the system depends mainly
on two parameters: the number B of simultaneous S-boxes and the number N
of encryption rounds used. We denote a particular instance of CTC by CTCB,N .
The S-boxes were modelled using first 7 equations out of 14. In the following table
we collect the number of additional variables (#v), equalities (#e), inequalities
(#i), and CPLEX timings we obtain using LPC and IPC conversions along with
different strategies.

Table 1. LPC and IPC conversion for CTC

LPC IPC
CTC4,4 CTC5,5 CTC6,6 CTC7,7 CTC4,4 CTC5,5 CTC6,6 CTC7,7

SS

#v 225 326 505 687 396 630 900 1218
#i 2257 3191 5137 6969 920 1460 2088 2828
#e 0 0 0 0 268 430 612 826
time 45 1145 53915 40260 49 1517 46910 >15h

LPS

#v 209 351 469 638 396 630 900 1218
#i 2001 3591 4561 6185 920 1460 2088 2828
#e 0 0 0 0 268 430 612 826
time 8 827 30726 208352 13 1286 39604 >15h

DPS

#v 161 251 361 491 396 630 900 1218
#i 1713 2741 3913 5303 920 1460 2088 2828
#e 0 0 0 0 268 430 612 826
time 21 436 3417 53915 14 318 3555 10415

Table 1 shows that by combining our techniques with other conversion tech-
niques, significantly larger CTCB,N examples can be solved.

4.2 Small Scale AES

In [10], C. Cid et. al defined small scale variants of the AES. These variants
inherit the design features of the AES and provide a suitable framework for
comparing different cryptanalytic methods. Without going into details, let us
recall the arguments of possible configurations of the small scale AES cryptosys-
tem, denoted by AES(n, r, c, e), presented in [10]. We denote by

- n ∈ {1, . . . , 10} the number of (encryption) rounds,
- r the number of rows in the rectangular arrangement of the input,
- c the number of columns in the rectangular arrangement of the input,
- e the size (in bits) of a word.

The word size e describes the field F2e over which the equations are defined. For
instance, e = 4 corresponds to F16 and e = 8 to F256. For more details and a

Algebraic Attacks Using IP-Solvers 409

way to express this cipher as a multivariate equation system over F2 we refer to
[10,13]. Note that the polynomial systems arising from an algebraic attack on
small scale variants of AES [10] are naturally defined over a finite extension field
F2e of F2. To convert a polynomial system over F2e to a polynomial system over
F2, we use the method given in [13], Section 3. Small scale AES yields linear
polynomials and homogeneous polynomials of degree 2 only. Thus SS and QPS
are the only conversion strategies suitable for small scale AES.

Table 2. Sizes of small scale AES MILP problems

LPC IPC
(#vSS, #iSS) (#vDPS,

#iDPS)
(#vSS, #iSS,
#eSS)

(#vDPS, #iDPS,
#eDPS)

AES(6,1,1,4) (1692,1216) (1652,11489) (1568,3904,800) (1568,4480,800)

AES(8,1,1,4) (2263,16233) (1943,15337) (2080,5184,1056) (2080,5952,1056)

AES(9,1,1,4) (2540,18223) (2180,17215) (2336,5824,1184) (2336,6688,1056)

AES(10,1,1,4) (2829,20279) (2429,19159) (2592,6464,1312) (2592,7424,1312)

AES(4,2,1,4) (2778,20499) (2458,19603) (1212,5248,1088) (1212,6016,1088)

AES(1,2,2,4) (969,7595) (849,7259) (960,2304,576) (960,2592,576)

AES(2,2,2,4) (2336,17981) (2096,17309) (1792,4352,1024) (1792,4928,1024)

AES(1,1,1,8) (3859,28389) (3491,26613) (1664,4352,640) (1664,7088,640)

In Table 2 we list the number of additional variables (#v), equalities (#e),
and inequalities (#i), each technique and strategy produces. Furthermore, we
provide some timings for CPLEX in Table 3. The timings also depend on the
chosen plaintext-ciphertext pairs. Above we used one plaintext-ciphertext pair
in all examples.

For sparse systems the running times of the IP techniques are better than
the running times of a Gröbner basis technique, even with individually tailored
Gröbner basis methods, such as the ones reported in [1]. Furthermore, when we

Table 3. Timings for small scale AES MILP problems

LPC IPC
SS DPS SS DPS

AES(6,1,1,4) 67 119 44 6

AES(8,1,1,4) 1975 3908 1986 226

AES(9,1,1,4) 527 26406 417 236

AES(10,1,1,4) 14298 6994 2655 1982

AES(4,2,1,4) 7416 1377 789 3147

AES(1,2,2,4) 51 42 13 20

AES(2,2,2,4) 21735 19970 7830 81014

AES(1,1,1,8) 56815 42354 4684 9323

compare these timings to the Gröbner basis approach in [18], we see that IP-
solvers are highly competitive to state-of-the-art solving techniques coming from

410 E. Ullah

Gröbner basis theory. In certain cases, this technique outperforms the Magma
implementations in terms of both time and memory consumption. This can be
easily seen by comparing Table 3 with the timings given in [18].

Finally, we note that the timings seem to depend on the cutting number,
optimization direction, objective function and chosen restrictions on variables in
a rather subtle and unpredictable way. We consider CTC(6,6) and AES(6,1,1,4)
to present the impact of the LPC conversion algorithm using different strategies
and cutting numbers. Table 4 lists the number of additional variables (#v) and
inequalities (#i) each strategy produces during the conversion of CTC(6,6) and
AES(6,1,1,4) to a set of clausal inequalities. The symbol ∞ indicates that the
respective strategy is ineffective due to structure properties of the system or do
not appear to provide substantial improvements over the standard strategy.

Table 4. LPC conversion with different cutting numbers

CTC(6,6) using half Sbox AES(6,1,1,4)
3 4 5 6 3 4 5 6

SS
#v 1021 505 397 361 2845 1692 1254 1076
#i 5509 5137 5497 6793 12621 12164 14307 18237

LP
#v 841 469 361 289 ∞ ∞ ∞ ∞
#i 4789 4561 4849 5713 ∞ ∞ ∞ ∞

DLP
#v 769 361 325 325 ∞ ∞ ∞ ∞
#i 4573 4201 4345 4777 ∞ ∞ ∞ ∞

QP
#v ∞ ∞ ∞ ∞ 2701 1596 1206 1028
#i ∞ ∞ ∞ ∞ 12333 11873 13827 1781

Clearly, the use of IP-solvers in polynomial system solving techniques opens
up a wealth of new possibilities.

Acknowledgment. First, the author is thankful to IBM for providing their
commercial software CPLEX for academic research. The author is also thankful
to M. Kreuzer (Universität Passau, Passau, Germany) for deep and valuable
discussions on the subjects of this paper. The author is indebted to Jan Limbeck
for providing his implementations of various cryptosystems in ApCoCoA [18].

References

1. Albrecht, M.: Algebraic attacks on the Courtois Toy Cipher. Diploma thesis, Uni-
versität Bremen (2006)

2. The ApCoCoA Team.: ApCoCoA: Approximate Computations in Commutative
Algebra, http://www.apcocoa.org

3. Bard, G.V.: Algebraic cryptanalysis. Springer (2009)
4. Bard, G.V.: On the rapid solution of systems of polynomial equations over lowde-

gree extension fields of GF(2) via SAT-solvers. In: 8th Central European Conf. on
Cryptography (2008)

http://www.apcocoa.org

Algebraic Attacks Using IP-Solvers 411

5. Bard, G.V., Courtois, N.C.: Efficient methods for conversion and solution of sparse
systems of low-degree multivariate polynomials over GF(2) via SAT-Solvers. Cryp-
tology ePrint Archive 2007(24) (2007)

6. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. Springer, New York (1993)

7. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a Mixed-Integer linear pro-
gramming problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 133–152. Springer, Heidelberg (2009)

8. Cameron, M., Chris Charnes, J.P.: An algebraic analysis of Trivium ciphers based
on the Boolean Satisfiability problem, Cryptology ePrint Archive, Report 2007/129
(2007), http://eprint.iacr.org/

9. Chen, B.: Strategies on algebraic attacks using SAT solvers. In: 9th Int. Conf. for
Young Computer Scientists. IEEE Press (2008)

10. Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the AES. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Heidelberg
(2005)

11. Hooker, J.: Logic-based methods for optimization: combining optimization and
constraint satisfaction. John Wiley and Sons, Canada (2000)

12. ILOG CPLEX, http://www.ilog.com/products/cplex/
13. Jovanovic, P., Kreuzer, M.: Algebraic attacks using AST-Solvers. Groups - Com-

plexity - Cryptology 2, 247–259 (2010)
14. Kreuzer, M.: Algebraic attacks galore! Groups - Complexity - Cryptology 1, 231–

259 (2009)
15. Kreuzer, M., Robbiano, L.: Commputational commutative algebra 1. Springer,

Heidelberg (2000)
16. Kreuzer, M., Robbiano, L.: Commputational commutative algebra 2. Springer,

Heidelberg (2005)
17. Lamberger, M., Nad, T., Rijmen, V.: Numerical solvers in cryptanalysis. J. Math.

Cryptology 3, 249–263 (2009)
18. Limbeck, J.: Implementation und optimierung algebraischer angriffe. Diploma the-

sis, Universität Passau (2008)
19. Raddum, H.: Cryptanalytic results on Trivium. eSTREAM report 2006/039 (2006),

http://www.ecrypt.eu.org/stream/triviump3.html

20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

http://eprint.iacr.org/
http://www.ilog.com/products/cplex/
http://www.ecrypt.eu.org/stream/triviump3.html

Stationary Points for the Family

of Fermat–Torricelli–Coulomb-Like Potential
Functions

Alexei Yu. Uteshev and Marina V. Yashina

Faculty of Applied Mathematics, St. Petersburg State University
Universitetskij pr. 35, Petrodvorets, 198504, St. Petersburg, Russia

{alexeiuteshev,marina.yashina}@gmail.com

Abstract. Given the points {Pj}Kj=1 ⊂ IRn and the positive numbers
{mj}Kj=1 we investigate the set of stationary points of the function F (P)=∑K

j=1 mj |PPj |L for different values of the exponent L ∈ IR.

Keywords: Multivariate irrational functions, Stationary points,
Fermat–Torricelli problem, Coulomb potential

1 Introduction

Given the coordinates of K points {Pj}Kj=1 ⊂ IRn , find the coordinates of the
stationary point P∗ ∈ IRn for the function

F (P) =
K∑
j=1

mj |PPj |L . (1)

Here {mj}Kj=1 are assumed to be real positive numbers, the exponent L ∈ IR is
nonzero while |·| stands for the euclidean distance.

The stated problem in its particular case L = 2 has a well-known solution:
the point

P∗ =

∑K
j=1mjPj∑K
j=1mj

provides the global minimal value for the function F (P). If {mj}Kj=1 are inter-
preted as masses, then P∗ is just the center of mass (barycenter).

For the case L = 1, n ≥ 2, the problem is known as the generalized Fermat–
Torricelli (or the Fermat–Weber) problem [2], [5]; this problem is the origin of the
branch of Operation Research known as Facility Location or Location Analysis
[3], [4].

The case L = −1, n ∈ {2, 3} corresponds to the Electrostatics problem of find-
ing the equilibrium position for the charged particle of the positive charge being
subjected to the Coulomb repulsing forces created by the system of point charges
{mj}Kj=1 fixed at the positions {Pj}Kj=1. One may also interpret this problem in

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 412–426, 2013.
c© Springer International Publishing Switzerland 2013

Stationary Points of Potential Functions 413

the language of Mechanics with {mj}Kj=1 treated again as masses of station-
ary particles and with the potential of the induced gravitational field equal to
(−F). Potential functions with other values of the exponent L appear in Atomic
Physics problems. For instance, the van der Waals interaction is most often
modelled using the Lennard–Jones potential

∑K
j=1(mj |PPj |−12 − m̃j |PPj |−6

).
The aim of the present paper is to analyze the set of stationary points of (1)

for different values of the exponent L. We will mainly treat the case K = n+1,
and our approach will be based on analytical computations.

2 Direct Problem

We first treat the planar case, i.e., let n = 2. Let the points {Pj = (xj , yj)}3j=1 be
noncollinear. The generalized Fermat–Torricelli problem possesses an analytical
solution:

Theorem 1. Denote by α1, α2, α3 the corner angles of the triangle P1P2P3. If
the conditions ⎧⎨⎩m

2
1 < m2

2 +m2
3 + 2m2m3 cosα1,

m2
2 < m2

1 +m2
3 + 2m1m3 cosα2,

m2
3 < m2

1 +m2
2 + 2m1m2 cosα3

(2)

are satisfied then there exists a unique stationary point P∗ = (x∗, y∗) ∈ IR2 for
the function

F (P) = m1|PP1|+m2|PP2|+m3|PP3| (3)

lying inside the triangle P1P2P3. Its coordinates are as follows:

P∗ =
K1K2K3

4|S|σd

(
P1

K1
+

P2

K2
+

P3

K3

)
, (4)

with
F (P∗) = min

P∈�P1P2P3

F (P) =
√
d .

Here

d =
1

2σ
(m2

1K1 +m2
2K2 +m2

3K3) (5)

= 2 |S|σ+ 1

2

[
m2

1(r
2
12 + r213 − r223) +m2

2(r
2
23 + r212 − r213) +m2

3(r
2
13 + r223 − r212)

]
.

(6)
and

rj� =
√
(xj − x�)2 + (yj − y�)2 = |PjP�| for {j, �} ⊂ {1, 2, 3} ;

S = x1y2 + x2y3 + x3y1 − x1y3 − x3y2 − x2y1 ; (7)

414 A.Y. Uteshev and M.V. Yashina

σ =
1

2

√
−m4

1 −m4
2 −m4

3 + 2m2
1m

2
2 + 2m2

1m
2
3 + 2m2

2m
2
3 ; (8)

and ⎧⎨⎩K1 = (r212 + r213 − r223)σ + (m2
2 +m2

3 −m2
1)S,

K2 = (r223 + r212 − r213)σ + (m2
1 +m2

3 −m2
2)S,

K3 = (r213 + r223 − r212)σ + (m2
1 +m2

2 −m2
3)S.

(9)

If any of the conditions (2) is violated, then F (P) attains its minimal value at
the corresponding vertex of the triangle.

For the proof of (and geometrical sense of the constants appeared in) this
theorem we refer to [7]. This result states that at least for the case L = +1, n =
2,K = 3, the problem of stationary point localization of potential function (1)
can be solved in radicals1. This is not true for the case L = +1, n = 2 and
K ≥ 5 points in general position: even the equal weighted (m1 = · · · = mK =
1) Fermat–Torricelli problem does not allow the computational algorithm with
arithmetic operations and extraction of roots [1].

We failed to find publications where the problem of stationary point localiza-
tion for Coulomb potential

F (P) =
m1

|PP1|
+

m2

|PP2|
+

m3

|PP3|
(10)

is treated in the ideology of analytical computations. The lack in such a treat-
ment can probably be explained by the following reasoning.

Example 1. Let P1 = (1, 1), P2 = (5, 1), P3 = (2, 6). Analyse the behavior of the
set of stationary points of the function (10) lying inside the triangle P1P2P3 for
m1 = 1 and m2,m3 treated as parameters.

Solution. Stationary points of the function (10) are given by the system of
equations

−∂F

∂x
=

x− 1√
(x− 1)2 + (y − 1)2

3 +
m2(x− 5)√

(x− 5)2 + (y − 1)2
3

+
m3(x− 2)√

(x− 2)2 + (y − 6)2
3 = 0,

−∂F

∂y
=

y − 1√
(x− 1)2 + (y − 1)2

3 +
m2(y − 1)√

(x− 5)2 + (y − 1)2
3

+
m3(y − 6)√

(x− 2)2 + (y − 6)2
3 = 0.

1 More formally, in extended radicals, since the solution formulae include modulus
taking operation.

Stationary Points of Potential Functions 415

Denote by A1, A2, and A3 the summands in any of the above equations. In order
to eliminate radicals, one may utilize the following squaring procedure:

A1+A2+A3 = 0 ⇒ (A1+A2)
2 = A2

3 ⇒ (2A1A2)
2 = (A2

3−A2
1−A2

2)
2 .

The resulting system can be reduced to an algebraic one

F1(x, y,m2,m3) = 0, F2(x, y,m2,m3) = 0

where F1 and F2 are polynomials of the degree 28 with respect to the variables x
and y and with the coefficients of the orders up to 1019. Finding all the real solu-
tions of this system with the aid of elimination of variable procedure (resultant
or the Gröbner basis computation) is a hardly feasible task.

In the next section, the stated problem will be solved via a more effective
approach. For now we mention only the fact that, in comparison with the gener-
alized Fermat–Torricelli problem, solution to the present one is not unique. The
set of stationary points of the Coulomb potential (10) inside the triangle P1P2P3

contains from 2 to 4 points depending on the values of the parameters m2 and
m3. �

3 Inverse Problem

Given the point P∗ ∈ IRn, we wish to find the values for the weights {mj}n+1
j=1

with the aim for the corresponding objective function
∑n+1

j=1 mj |PPj |L to posses
a minimum point precisely at P∗. Although this problem looks like equivalent in
complexity to the direct one, it admits a surprisingly simple solution.

Theorem 2. Let the points {Pj = (xj1, . . . , xjn)}n+1
j=1 be counted in such a man-

ner that the condition

V =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
x11 x21 . . . xn+1,1

...
...

...
x1n x2n . . . xn+1,n

∣∣∣∣∣∣∣∣∣ > 0 (11)

is satisfied. Denote by Vj the determinant obtained on replacing the j-th column

of (11) by the column2 [1, x∗1, . . . , x∗n]
�. Then for the choice{

m∗
j = |P∗Pj |2−LVj

}n+1

j=1
(12)

the function

F∗(P) =

n+1∑
j=1

m∗
j |PPj |L (13)

2 Here � denotes transposition.

416 A.Y. Uteshev and M.V. Yashina

has its stationary point at P∗ = (x∗1, . . . , x∗n). If P∗ lies inside the simplex
P1P2 . . . Pn+1, then the values (12) are all positive, and

F∗(P∗) =
n+1∑
j=1

Vj |P∗Pj |2 (14)

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
x11 x21 . . . xn+1,1 x∗1
...

...
...

...
x1n x2n . . . xn+1,n x∗n
n∑

�=1

x21�

n∑
�=1

x22� . . .

n∑
�=1

x2n+1,�

n∑
�=1

x2∗�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (15)

Proof. One has:

∂F∗
∂x1

= L

n+1∑
j=1

m∗
j |PPj |L−1 (x1 − xj1)

|PPj |
and

∂F∗
∂x1

∣∣∣∣
P=P∗

(12)
= L

n+1∑
j=1

(x∗1 − xj1)Vj .

The sum in the right-hand side can be represented in the determinantal form as

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
x∗1 x11 x21 . . . xn+1,1

...
...

...
...

x∗n x1n x2n . . . xn+1,n

0 (x∗1 − x11) (x∗1 − x21) . . . (x∗1 − xn+1,1)

∣∣∣∣∣∣∣∣∣∣∣
.

Add the second row of this determinant to the last one:

= (−1)n

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
x∗1 x11 x21 . . . xn+1,1

...
...

...
...

x∗n x1n x2n . . . xn+1,n

x∗1 x∗1 x∗1 . . . x∗1

∣∣∣∣∣∣∣∣∣∣∣
.

The first row is now proportional to the last one; therefore, the determinant
equals just zero. Similar arguments lead one to the conclusion {∂F∗/∂xj = 0}nj=2

for P = P∗.
For the idea of the proof of the second statement of the theorem, we refer to

[7] where the case L = 1, n = 2 is treated. �

Remark 1. For the particular case n = 2, we will use different notation for the
values3 (12). Set

S1(x, y) =

∣∣∣∣∣∣
1 1 1
x x2 x3
y y2 y3

∣∣∣∣∣∣ , S2(x, y) =

∣∣∣∣∣∣
1 1 1
x1 x x3
y1 y y3

∣∣∣∣∣∣ , S3(x, y) =

∣∣∣∣∣∣
1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣ . (16)

3 One of the reasons for this is to keep the coherence with the notation of the paper
[7].

Stationary Points of Potential Functions 417

The following equality is easily verified:

S1(x, y) + S2(x, y) + S3(x, y) ≡

∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ (7)= S . (17)

For the choice {
m∗

j = |P∗Pj |2−LSj(x∗, y∗)
}3
j=1

(18)

the critical value of the corresponding function

F∗(P) =

3∑
j=1

m∗
j |PPj |L (19)

is given by

F∗(P∗) =
3∑

j=1

Sj(x∗, y∗)|P∗Pj |2 =

∣∣∣∣∣∣∣∣
1 1 1 1
x∗ x1 x2 x3
y∗ y1 y2 y3

x2∗ + y2∗ x
2
1 + y21 x

2
2 + y22 x

2
3 + y23

∣∣∣∣∣∣∣∣ . (20)

Remark 2. Solution of the inverse problem is determined up to a common
positive multiplier: if (m∗

1, . . . ,m
∗
n+1) is a solution, then (τm∗

1, . . . , τm
∗
n+1) is

also a solution for any value of τ > 0.
The last remark gives one an opportunity to obtain an approach for solv-

ing the problem of finding the stationary point set for the function F (P) =∑n+1
j=1 mj|PPj |L which is an alternative to the traditional one based on treating

the system of equations

∂F/∂x1 = 0, . . . , ∂F/∂xn = 0 . (21)

Let us find this set via the inversion of the solution for the inverse problem. We
generate a new system from the ratio

m1 : . . . : mn+1 =
(
|PP1|2−LV1

)
: . . . :

(
|PPn+1|2−LVn+1

)
. (22)

Theorem 3. Any solution of the system (21), not coinciding with {Pj}n+1
j=1 , is

a solution of the system (22).

Proof. We outline the idea of the proof treating the case n = 2, i.e., we consider
system (21) in the form{

m1|PP1|L−2(x− x1) +m2|PP2|L−2(x− x2) +m3|PP3|L−2(x− x3) = 0,
m1|PP1|L−2(y − y1) +m2|PP2|L−2(y − y2) +m3|PP3|L−2(y − y3) = 0.

Let it posses a solution P = (x0, y0) ∈ C2. Then, for these values of x and y, let
us treat this system as a linear one with respect to m1,m2, and m3. Since this

418 A.Y. Uteshev and M.V. Yashina

system possesses a nontrivial solution, then any triple of these solution values
(m1,m2,m3) should satisfy the generalized Cramer’s rule:

m1 : m2 : m3

=

∣∣∣∣ |PP2|L−2(x− x2) |PP3|L−2(x − x3)
|PP2|L−2(y − y2) |PP3|L−2(y − y3)

∣∣∣∣
: −
∣∣∣∣ |PP1|L−2(x− x1) |PP3|L−2(x− x3)
|PP1|L−2(y − y1) |PP3|L−2(y − y3)

∣∣∣∣
:

∣∣∣∣ |PP1|L−2(x− x1) |PP2|L−2(x − x2)
|PP1|L−2(y − y1) |PP2|L−2(y − y2)

∣∣∣∣
= |PP1|L−2|PP2|L−2|PP3|L−2

×
(
|PP1|2−LS1(x, y) : |PP2|2−LS2(x, y) : |PP3|2−LS3(x, y)

)
with {Sj(x, y)}3j=1 defined by (16). This completes the proof. �

It can easily be verified that for the even values of the exponent L ≥ 2,
the system (22) does not have any advantage over (21), since the degrees of the
algebraic equations generated by (22) equal to L−1. However, for the odd values
of L, manipulations with the system (22) look more promising compared to (21).
We back up this statement with the treatment of the case n = 2. For this case,
system (22) gives rise to the following one[

m2S1

m1S2

]2
=

[
|PP2|
|PP1|

]2(2−L)

,

[
m2S3

m3S2

]2
=

[
|PP2|
|PP3|

]2(2−L)

. (23)

Solution to Example 1. For this example, the system (23) reduces to

F̃1(x, y,m2,m3) = 0, F̃2(x, y,m2,m3) = 0 , (24)

where

F̃1(x, y,m2,m3) = (5 x+ 3 y − 28)2(x2 + y2 − 2 x− 2 y + 2)3m2
2

−(5 x− y − 4)2(x2 + y2 − 10 x− 2 y + 26)3, (25)

F̃2(x, y,m2,m3) = (4 y − 4)2(x2 + y2 − 4 x− 12 y + 40)3m2
2

−m2
3(5 x− y − 4)2(x2 + y2 − 10 x− 2 y + 26)3 (26)

and the degree of F̃1 and F̃2 with respect to the variables x and y equals 8. This
time, in comparison with the direct squaring algorithm outlined in Section 2,
it is realistic to eliminate any variable from the obtained algebraic system. For
instance, the resultant of these polynomials treated with respect to x

Y(y,m2,m3) = Rx(F̃1, F̃2) (27)

is4 the polynomial of the degree 34 in y . For any specialization of parametersm2

and m3, it is possible to find the exact number of real zeros and to localize them

4 On excluding an extraneous factor.

Stationary Points of Potential Functions 419

in the ideology of symbolic computations (e.g., via the Sturm series construc-
tion). For instance, there are two stationary points (3.631035, 1.747577) and
(1.495580, 2.820345) for the case m2 = 0.5,m3 = 3 and four stationary points
(2.096880, 2.735988), (2.667764, 2.666618), (2.723424, 1.427458) and (2.996571,
2.818614) for the case m2 = 1.8,m3 = 3 (inside the triangle).

An extra advantage of the proposed approach consists in possibility of evalu-
ating the influence of parameters m2 and m3 variation on the geometry of the
stationary point set. Indeed, if we eliminate the parameter m2 from system (24),
then we obtain the algebraic equation in the form Ψ(x, y,m3) = 0 which defines,
for every particular value of m3, the implicitly represented curve containing the
stationary points of the function (10) for all the values of m2. However, in our
example, it would be more wiser to eliminate first the parameter m3. Since the
polynomial (25) does not depend on m3, the first equation of system (24) gives
the answer. Branches of the curve F̃1 = 0 corresponding to some values of m2

are displayed in Fig. 1 (only the ovals lying inside the triangle).

1 2 3 4 5
0

1

2

3

4

5

6

P1

P3

P2

3

3

2
21.8

1.8
1

1

0.4

0.4

Fig. 1. Bifurcation diagram

The figure drops a hint at the existence of the bifurcation value for m2 lying
in the interval [1.8, 2.0]. To evaluate it, one needs to eliminate the variables x
and y from the system

F̃1 = 0, ∂F̃1/∂x = 0, ∂F̃1/∂y = 0 .

This results in the equation

84500000m8
2−1177878637m6

2+3414199390m4
2−1540302833m2

2+144500000 = 0

which indeed has a zero m2 ≈ 1.81315.
More topical is the problem of establishing the bifurcation diagram in the

parameter (m2,m3)-plane. Bifurcation values for these parameters can be found
from the condition of changing the number of real solutions for the system (24).
Hence, the bifurcation values correspond to the case when the multiple zero

420 A.Y. Uteshev and M.V. Yashina

for polynomial (27) appears. This condition is equivalent to vanishing of the
discriminant

Dy(Y) = Ry(Y,Y ′
y) .

This is a huge expression, which5 gives rise to the discriminant curve of the order
48 in the (m2,m3)-plane. As yet, we have failed to establish its geometry. Every
point in this curve corresponds to the values of m2 and m3 such that the number
of stationary points of the function F lying inside the triangle P1P2P3 equals
exactly 3. For instance, the bifurcation pair m2 ≈ 1.842860,m3 ≈ 4.157140
provides the stationary points

(2.691693, 1.930238); (1.821563, 2.558877); (3.374990, 2.739157)

with the first point being a degenerate one. �
The proof of Theorem 3 drops a hint on how it is possible to extend the

approach outlined in the present section for investigation of stationary points of
potential function (1) to the case when K > n + 1. Consider, for instance, the
case n = 2,K = 4; let L be an odd number. One can first resolve the system

4∑
j=1

mj |PPj |L−2(x− xj) = 0,

4∑
j=1

mj |PPj |L−2(y − yj) = 0 (28)

with respect to, e.g., m1 and m2:{
m1|PP1|L−2S3 = m3|PP3|L−2S1 +m4|PP4|L−2S4,
m2|PP2|L−2S3 = m3|PP3|L−2S2 +m4|PP4|L−2S5,

(29)

Here S1, S2, and S3 are defined by (16) while

S4(x, y) =

∣∣∣∣∣∣
1 1 1
x x2 x4
y y2 y4

∣∣∣∣∣∣ , S5(x, y) =

∣∣∣∣∣∣
1 1 1
x1 x x4
y1 y y4

∣∣∣∣∣∣ .
Next, the squaring procedure can be applied for both equations of the system
(29). For the Coulomb case L = −1, this procedure results in the algebraic
equations of degree 12 in x and y. This result should be treated as an essential
simplification in comparison with the squaring algorithm applied directly to
system (28): the latter generates algebraic equations of degree 24.

4 Stability

Our aim now is to establish the conditions under which the stationary point P∗
is in fact the minimum point for (13). For the case of Coulomb potential, this
task has the meaning that we wish to guarantee the stability property for the
charged particle (of the positive charge) placed at P∗. We start with the case
n = 2.

5 On excluding an extraneous factor.

Stationary Points of Potential Functions 421

Theorem 4. Let the points {Pj = (xj , yj)}3j=1 be noncollinear and counted

counterclockwise, {Sj(x, y)}3j=1 be defined by (16) and S by (7). Denote

Φ(x, y) =
S1(x, y)S2(x, y)S3(x, y)

|PP1|2|PP2|2|PP3|2

∣∣∣∣∣∣∣∣
1 1 1 1
x x1 x2 x3
y y1 y2 y3

x2 + y2 x21 + y21 x
2
2 + y22 x

2
3 + y23

∣∣∣∣∣∣∣∣ . (30)

Stationary point P∗ = (x∗, y∗) is a minimum point for the function (19) if

1. L ≥ 1 or
2. L < 1 and the condition

Φ(x∗, y∗) >
1− L

(L− 2)2
S2 . (31)

is valid.

Proof. In the following proof, it will be assumed that L �∈ {0, 2}. Construct the
Hessian matrix for F∗ at the point P∗. First compute the second-order partial
derivatives6

∂2F∗/∂x
2 = L

∑
m∗

j

(
(L− 2) |PPj |L−4

(x − xj)
2 + |PPj |L−2

)
and

∂2F∗
∂x2

∣∣∣∣
P=P∗

(18)
= L(L− 2)

∑
Sj

(x∗ − xj)
2

|P∗Pj |2
+ L
∑

Sj

(17)
= L(L− 2)

∑
Sj

(x∗ − xj)
2

|P∗Pj |2
+ LS .

Similar expression can be obtained for the value ∂2F∗/∂y
2 at P = P∗ while

∂2F∗
∂x∂y

∣∣∣∣
P=P∗

= L(L− 2)
∑

Sj
(x∗ − xj)(y∗ − yj)

|P∗Pj |2
.

Thus, the Hessian matrix is as follows:

H(x∗, y∗) =

[
∂2F∗/∂x

2 ∂2F∗/∂x∂y
∂2F∗/∂x∂y ∂2F∗/∂y

2

] ∣∣∣∣∣
P=P∗

=

⎡⎢⎢⎣ LS + L(L− 2)
∑

Sj
(x∗ − xj)

2

|P∗Pj |2
L(L− 2)

∑
Sj

(x∗ − xj)(y∗ − xj)

|P∗Pj |2

L(L− 2)
∑

Sj
(x∗ − xj)(y∗ − xj)

|P∗Pj |2
LS + L(L− 2)

∑
Sj

(y∗ − yj)
2

|P∗Pj |2

⎤⎥⎥⎦ .
6 In the rest of the proof, the sum is always taken for j ∈ {1, 2, 3}, and Sj stands for
Sj(x∗, y∗).

422 A.Y. Uteshev and M.V. Yashina

Compute its characteristic polynomial:

det

(
H(x∗, y∗)− λ

[
1 0
0 1

])
.

Substitution

λ̃ =
λ

L(L− 2)
− S

L− 2
(32)

yields:

L2(L− 2)2 det

⎡⎢⎢⎣
∑

Sj
(x∗ − xj)

2

|P∗Pj |2
− λ̃

∑
Sj

(x∗ − xj)(y∗ − xj)

|P∗Pj |2∑
Sj

(x∗ − xj)(y∗ − xj)

|P∗Pj |2
∑

Sj
(y∗ − yj)

2

|P∗Pj |2
− λ̃

⎤⎥⎥⎦
(in what follows we neglect the factor L2(L− 2)2)

= λ̃2 −
(∑

Sj
(x∗ − xj)

2

|P∗Pj |2
+
∑

Sj
(y∗ − yj)

2

|P∗Pj |2

)
λ̃

+

(∑
Sj

(x∗ − xj)
2

|P∗Pj |2

)(∑
Sj

(y∗ − yj)
2

|P∗Pj |2

)
−
(∑

Sj
(x∗ − xj)(y∗ − xj)

|P∗Pj |2

)2

(17)
= Sλ̃2 − Sλ̃

+S1S2
[(y∗ − y1)(x∗ − x2)− (x∗ − x1)(y∗ − y2)]

2

|P∗P1|2 |P∗P2|2

+S1S3
[(y∗ − y1)(x∗ − x3)− (x∗ − x1)(y∗ − y3)]

2

|P∗P1|2 |P∗P3|2

+S2S3
[(y∗ − y2)(x∗ − x3)− (x∗ − x2)(y∗ − y3)]

2

|P∗P2|2 |P∗P3|2

= λ̃2 − Sλ̃+
S1S2S

2
3

|P∗P1|2 |P∗P2|2
+

S1S
2
2S3

|P∗P1|2 |P∗P3|2
+

S2
1S2S3

|P∗P2|2 |P∗P3|2

= λ̃2 − Sλ̃+
S1S2S3

|P∗P1|2 |P∗P2|2 |P∗P3|2
(
S1 |P∗P1|2 + S2 |P∗P2|2 + S3 |P∗P3|2

)
(20)
= λ̃2 − Sλ̃+

S1S2S3F∗(P∗)

|P∗P1|2 |P∗P2|2 |P∗P3|2

and now we come back to the variable λ and recall the neglected factor L2(L−2)2:

= λ2 − L2Sλ+ L2(L− 2)2
(

L− 1

(L− 2)2
S2 +

S1S2S3F∗(P∗)

|P∗P1|2|P∗P2|2|P∗P3|2

)
.

Hessian matrix H(x∗, y∗) is positive definite iff its characteristic polynomial has
both its (real!) roots positive. Due to Descartes rule of signs and the formula
(20), the latter is equivalent to the statement of the theorem. �

Stationary Points of Potential Functions 423

In the language of the charged particles, the last theorem claims that for the
case L ≥ 1, any point inside the triangle P1P2P3 can be made the minimum
point for the function F (P) by means of an appropriate choice of the charges
m1,m2, and m3. This will not be true for the case L < 1: one can stabilize
the charge placed at the point P∗ ∈ 4P1P2P3 only if it belongs to the domain
surrounded by the branch of the curve

Φ(x, y) =
1− L

(L− 2)2
S2 (33)

where Φ(x, y) is defined by (30). We will further refer to this domain as the
stability domain (corresponding to the value of L).

Example 2. Let P1 = (1, 1), P2 = (5, 1), P3 = (2, 6). Construct the stability
domains for different values of L.

Solution. Here S = 5 and

Φ(x, y) =
(28− 5 x− 3 y)(5 x− y − 4)(y − 1)(−52 + 30 x+ 32 y − 5 x2 − 5 y2)

((x− 1)2 + (y − 1)2)((x − 5)2 + (y − 1)2)((x − 2)2 + (y − 6)2)
.

Therefore, curve (33) is an algebraic one of order 6. Its level curves for some
values of L are displayed in Fig. 2 (only the ovals lying inside the triangle).

1 2 3 4 5
0

1

2

3

4

5

6

P
1

P
3

0.95

0.9

0.7

0.5
J

P
2

Fig. 2. Stability domains

We restrict ourselves to the case L ∈ [0, 1] since the curve corresponding to a
negative value of L coincides with the curve corresponding to the positive value
1 + 1/(L− 1) ∈ [0, 1]. Thus, the stability domain for the Coulomb case L = −1
coincides with the domain corresponding to L = 1/2. �
Hypothesis. There exists a unique point common for all the stability domains:
the point J with the coordinates

x
J
=
x1|P2P3|+ x2|P1P3|+ x3|P1P2|

|P2P3|+ |P1P3|+ |P1P2|
, y

J
=
y1|P2P3|+ y2|P1P3|+ y3|P1P2|

|P2P3|+ |P1P3|+ |P1P2|

424 A.Y. Uteshev and M.V. Yashina

is a stationary point for the function Φ(x, y). It coincides with the center of the
circle inscribed into the triangle P1P2P3 (the incenter of the triangle). For the
previous example, one gets

J =

(√
34 + 5

√
26 + 8√

34 +
√
26 + 4

,

√
34 +

√
26 + 24√

34 +
√
26 + 4

)
≈ (2.634034, 2.339587) .

We now consider the case n = 3, i.e.,

F∗(P) =
4∑

j=1

m∗
j |PPj |L . (34)

with {m∗
j}4j=1 defined by (12).

Theorem 5. Let the points {Pj = (xj , yj , zj)}4j=1 satisfy the assumptions of
Theorem 2 and P∗ be chosen inside the tetrahedron P1P2P3P4. Stationary point
P∗ = (x∗, y∗, z∗)

1. is not a minimum point for the function (34) if L ≤ −1;
2. is a minimum point for the function (34) if L ≥ 2.

Proof. The idea of the proof is similar to that one of Theorem 4. Let us compute
the characteristic polynomial for the Hessian matrix H(x∗, y∗, z∗) of the function
(34) at P = P∗:

det(H − λI) .

Here I stands for the identity matrix of the third order. Substitution similar to
(32)

λ̃ =
V

L− 2
− λ

L(L− 2)

allows one to represent this polynomial in the form

L3(L − 2)3
(
λ̃3 + t1λ̃

2 + t2λ̃+ t3

)
.

Expressions for its coefficients can be obtained in a similar manner to their
counterparts from the planar case7

t1 = V ;

t2 =
∑

1≤j<k≤4

VjVk
det(Mjk ·M�

jk)

|P∗Pj |2|P∗Pk|2

where

Mjk =

[
x∗ − xj y∗ − yj z∗ − zj
x∗ − xk y∗ − yk z∗ − zk

]
;

7 Although this time the intermediate computations are much more longer and, in the
mercy to the reader, we skip them.

Stationary Points of Potential Functions 425

and

t3 =
V1V2V3V4F∗(P∗)

|P∗P1|2|P∗P2|2|P∗P3|2|P∗P4|2
.

Note that the values t1, t2, t3 are nonnegative for all the permissible by the
conditions of the theorem values of parameters. Coming back to the variable λ,
one gets:

= −λ3 + L(L+ 1)V λ2 − L2
[
(2L− 1)V 2 + t2(L− 2)2

]
λ

+L3
[
(L− 1)V 3 + t2V (L− 2)2 + t3(L− 2)3

]
.

For L ≤ −1, the coefficient of λ2 is not positive, therefore, due to Descartes rule
of signs, at least one of the eigenvalues of the Hessian matrix should be non-
positive. From this follows the first statement of the theorem. On the contrary,
for L ≥ 2, we get three variations in sign in the sequence of the coefficients of the
characteristic polynomial. This means that all the eigenvalues of H(x∗, y∗, z∗)
are positive. Wherefrom follows the second statement of the theorem. �

For the Coulomb case L = −1, the last theorem states that, in comparison
to the planar case, in IR3 it is impossible to stabilize the charged particle via an
appropriate choice of charges {mj}4j=1 fixed at the given positions {Pj}4j=1. This
negative result might be treated as a particular case of the so-called Earnshaw’s
theorem which states that a collection of point charges in IR3 cannot be main-
tained in a stable stationary equilibrium configuration solely by the electrostatic
interaction of the charges [6].

5 Conclusions

Analytical approach for the investigation of the set of stationary points for the
general potential function F (P) =

∑K
j=1mj |PPj |L in IRn is developed. This

approach is based on the replacement of system (21) by an algebraic one more
simple for dealing with. This gives one an opportunity of studying the influence
of parameters {mj}Kj=1 on the geometry of the stationary point set. For further
investigation, there remains the problem of discriminant curve geometry men-
tioned in Section 3 and also the stability problem in IR3 for the cases not covered
by the statement of Theorem 5.

Acknowledgments. The authors are grateful to the anonymous referees for
valuable suggestions that helped to improve the quality of the paper and to
Professor Sergei Andrianov for his patient consulting on complex matters of the
modern physics. This work was supported by the St.Petersburg State University
research grant # 9.38.674.2013.

426 A.Y. Uteshev and M.V. Yashina

References

1. Bajaj, C.: The algebraic degree of geometric optimization problems. Discr. Comput.
Geom. 3, 177–191 (1988)

2. Courant, R., Robbins, H.: What is Mathematics? Oxford University Press, London
(1941)

3. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory.
Springer, Heidelberg (2004)

4. Eiselt, H.A., Marianov, V. (eds.): Foundations of Location Analysis. Springer, Hei-
delberg (2011)

5. Fermat–Torricelli problem. Encyclopedia of Mathematics (2012),
http://www.encyclopediaofmath.org/

index.php?title=Fermat-Torricelli problem&oldid=22419

6. Tamm, I.: Fundamentals of the Theory of Electricity. Mir Publishers, Moscow (1979)
7. Uteshev, A.Y.: Analytical solution for the generalized Fermat–Torricelli problem.

ArXiv. 1208.3324.; Amer. Math. Monthly (to appear)

http://www.encyclopediaofmath.org/index.php?title=Fermat-Torricelli_problem&oldid=22419
http://www.encyclopediaofmath.org/index.php?title=Fermat-Torricelli_problem&oldid=22419

Symbolic-Numerical Algorithm for Generating

Cluster Eigenfunctions: Tunneling of Clusters
through Repulsive Barriers

Sergue Vinitsky1, Alexander Gusev1, Ochbadrakh Chuluunbaatar1,
Vitaly Rostovtsev1, Luong Le Hai1,2,

Vladimir Derbov3, and Pavel Krassovitskiy4

1 Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
vinitsky@theor.jinr.ru

2 Belgorod State University, Belgorod, Russia
3 Saratov State University, Saratov, Russia

4 Institute of Nuclear Physics, Almaty, Kazakhstan

Abstract. A model for quantum tunnelling of a cluster comprising A
identical particles, coupled by oscillator-type potential, through short-
range repulsive potential barriers is introduced for the first time in the
new symmetrized-coordinate representation and studied within the s-
wave approximation. The symbolic-numerical algorithms for calculating
the effective potentials of the close-coupling equations in terms of the
cluster wave functions and the energy of the barrier quasistationary
states are formulated and implemented using the Maple computer al-
gebra system. The effect of quantum transparency, manifesting itself in
nonmonotonic resonance-type dependence of the transmission coefficient
upon the energy of the particles, the number of the particles A = 2, 3, 4,
and their symmetry type, is analyzed. It is shown that the resonance
behavior of the total transmission coefficient is due to the existence of
barrier quasistationary states imbedded in the continuum.

1 Introduction

During a decade, the mechanism of quantum penetration of two bound parti-
cles through repulsive barriers [1] attracts attention from both theoretical and
experimental viewpoints in relation with such problems as near-surface quan-
tum diffusion of molecules [2–4], fragmentation in producing very neutron-rich
light nuclei [5, 6], and heavy ion collisions through multidimensional barriers
[7–14]. Within the general formulation of the scattering problem for ions having
different masses, a benchmark model with long-range potentials was proposed
in Refs. [15–17]. The generalization of the two-particle model over a quantum
system of A identical particles is of great importance for the appropriate descrip-
tion of molecular and heavy-ion collisions. The aim of this paper is to present the
convenient formulation of the problem stated above and the calculation methods,
algorithms, and programs for solving this problem.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 427–442, 2013.
c© Springer International Publishing Switzerland 2013

428 S. Vinitsky et al.

We consider a new method for the description of the penetration of A identical
quantum particles, coupled by short-range oscillator-like interaction, through a
repulsive potential barrier. We assume that the spin part of the wave function
is known, so that only the spatial part of the wave function is to be consid-
ered, which may be symmetric or antisymmetric with respect to a permutation
of A identical particles. The initial problem is reduced to the penetration of a
composite system with the internal degrees of freedom, describing an (A−1)×d-
dimensional oscillator, and the external degrees of freedom describing the center-
of-mass motion of A particles in d-dimensional Euclidian space. For simplicity,
we restrict our consideration to the so-called s-wave approximation [1] corre-
sponding to one-dimensional Euclidean space (d = 1).

We seek for the solution in the form of Galerkin expansion in terms of clus-
ter functions in the new symmetrized coordinate representation (SCR) [18] with
unknown coefficients having the form of matrix functions of the center-of-mass
variable. As a result, the problem is reduced to a boundary-value problem for
a system of ordinary second-order differential equations with respect to the
center-of-mass variable. Conventional asymptotic boundary conditions involv-
ing unknown amplitudes of reflected and transmitted waves are imposed on the
desired matrix solution. Solving the problem was implemented as a complex of
the symbolic-numeric algorithms and programs in CAS MAPLE and FORTRAN
environment. The results of calculations are analyzed with particular emphasis
on the effect of quantum transparency that manifests itself as nonmonotonic
energy dependence of the transmission coefficient due to resonance tunnelling of
the bound particles in S (A) states through the repulsive potential barriers.

The paper is organized as follows. In Section 2, we present the problem state-
ment in symmetrized coordinates. In Section 3, we introduce the SCR of the clus-
ter functions of the considered problem and the asymptotic boundary conditions
involving unknown amplitudes of reflected and transmitted waves. In Section 4,
we formulate the boundary-value problem for the close-coupling equations in the
Galerkin form using the SCR. In Section 5, we analyze the results of numerical
experiment on the resonance transmission of a few coupled identical particles in
S(A) states, whose energies coincide with the resonance eigenenergies of the bar-
rier quasi-stationary states embedded in the continuum. In Conclusion, we sum
up the results and discuss briefly the perspectives of application of the developed
approach.

2 Problem Statement

We consider a system of A identical quantum particles having the mass m and
a set of the Cartesian coordinates xi ∈ Rd in d-dimensional Euclidian space,
considered as vector x̃ = (x̃1, ..., x̃A) ∈ RA×d in A×d-dimensional configuration
space. The particles are coupled by the pair potentials Ṽ pair(x̃ij) depending
upon the relative coordinates, x̃ij = x̃i − x̃j , similar to a harmonic oscillator

potential Ṽ hosc(x̃ij) = mω2

2 (x̃ij)
2 with the frequency ω. The resulting clusters

are subject to the influence of the potentials Ṽ (x̃i) describing the external field

Tunneling of Clusters through Repulsive Barriers 429

of a target. The appropriate Schrödinger equation takes the form⎡⎣− h̄2

2m

A∑
i=1

∂2

∂x̃2i
+

A∑
i,j=1;i<j

Ṽ pair(x̃ij)+

A∑
i=1

Ṽ (x̃i)−Ẽ

⎤⎦ Ψ̃(x̃)=0,

where Ẽ is the total energy of the system of A particles, and P̃ 2 = 2mẼ/h̄2, P̃ is
the total momentum of the system, and h̄ is Planck constant. Using the oscillator

units xosc =

√
h̄/(mω

√
A), posc =

√
(mω

√
A)/h̄ = x−1

osc, and Eosc = h̄ω
√
A/2 to

introduce the dimensionless coordinates xi = x̃i/xosc, xij = x̃ij/xosc = xi − xj ,

E = Ẽ/Eosc = P 2, P = P̃ /posc = P̃ xosc, V
pair(xij) = Ṽ pair(xijxosc)/Eosc,

V hosc(xij) = Ṽ hosc(xijxosc)/Eosc = 1
A (xij)

2 and V (xi) = Ṽ (xixosc)/Eosc, one
can rewrite the above equation in the form⎡⎣− A∑

i=1

∂2

∂x2i
+

A∑
i,j=1;i<j

1

A
(xij)

2+

A∑
i,j=1;i<j

Upair(xij)+

A∑
i=1

V (xi)−E

⎤⎦Ψ(x)=0, (1)

where Upair(xij) = V pair(xij)−V hosc(xij), i.e., if V
pair(xij) = V hosc(xij), then

Upair(xij) = 0.
The problem of tunnelling of a cluster of A identical particles in the sym-

metrized coordinates (ξ0, ξ), where ξ = {ξ1, ..., ξA−1}:

ξ0 =
1√
A

(
A∑

t=1

xt

)
, ξs =

1√
A

(
x1 +

A∑
t=2

a0xt +
√
Axs+1

)
, s = 1, ..., A− 1,(2)

in terms of total potential U(ξ0, ξ) = V (ξ0, ξ) + Ueff (ξ0, ξ) reads as [18][
− ∂2

∂ξ20
+

A−1∑
i=1

(
− ∂2

∂ξ2i
+ (ξi)

2

)
+ U(ξ0, ξ)− E

]
Ψ(ξ0, ξ) = 0, (3)

Ueff (ξ0, ξ) =

A∑
i,j=1;i<j

Upair(xij(ξ)), V (ξ0, ξ) =

A∑
i=1

V (xi(ξ0, ξ)),

which is invariant under permutations ξi ↔ ξj at i, j = 1, ..., A − 1, i.e., the
invariance of Eq. (1) under permutations xi ↔ xj at i, j = 1, ..., A survives the
transformation.

3 Cluster Functions and Asymptotic Boundary
Conditions

For simplicity we restrict our consideration to the so-called s-wave approxima-
tion [1], i.e., one-dimensional Euclidian space (d = 1). Cluster functions Φ̃j(ξ0, ξ),

430 S. Vinitsky et al.

where ξ = {ξ1, ..., ξA−1}, corresponding to the threshold energies ε̃j(ξ0) depen-
dent on ξ0 as a parameter, are solutions of the parametric eigenvalue problem(

− ∂2

∂ξ2
+ ξ2 + U (ξ0, ξ)− ε̃j(ξ0)

)
Φ̃j(ξ0, ξ) = 0,

∫ +∞

−∞
Φ̃i(ξ0, ξ)Φ̃j(ξ0, ξ)d

A−1ξ = δij ,(4)

where U(ξ0, ξ) = V (ξ0, ξ)+U
eff (ξ0, ξ) is the total potential that enters Eq. (3).

The effective potential Ueff (ξ0, ξ) can be approximated also by the deformed
Wood–Saxon potential in the single-particle oscillator approximation [9]. We
seek for the cluster functions Φi(ξ0, ξ) in the form of an expansion over the

eigenfunctions Φ
S(A)
j′ (ξ), symmetric (S) or antisymmetric (A) with respect to a

permutation of the initial A Cartesian coordinates of A identical particles. These

functions correspond to eigenenergiesE
S(A)
i of the (A−1)-dimensional oscillator,

generated by the algorithm SCR [18], with unknown coefficients α̃
(i)
j′ (ξ0):

Φ̃i(ξ0, ξ) =

j′max∑
j′=1

α̃
(i)
j′ (ξ0)Φ

S(A)
j′ (ξ). (5)

Thus, the eigenvalue problem (4) is reduced to a linearized version of the Hartree–
Fock algebraic eigenvalue problem

j′max∑
j′=1

(
δij′E

S(A)
i + Uij′ (ξ0)− δij′ ε̃i(ξ0)

)
α̃
(i)

j′ (ξ0) = 0,

j′max∑
j′=1

α̃
(i′)
j′ (ξ0)α̃

(i)

j′ (ξ0) = δii′ , (6)

where the potentials Upair
ij′ and Vij′ (ξ0) are expressed in terms of the integrals

Upair
ij′ =

∫
dA−1ξΦ

S(A)
i (ξ)Ueff (ξ)Φ

S(A)
j′ (ξ), (7)

Vij′ (ξ0) =

∫
dA−1ξΦ

S(A)
i (ξ)

(
A∑

k=1

V (xk(ξ0, ξ))

)
Φ
S(A)
j′ (ξ). (8)

The parametric algorithm SCR, i.e., algorithm PSCR, for solving the above para-
metric eigenvalue problem was implemented by means of subroutines [19, 20],
or in the single-particle approximation by means of the subroutine [9] in CAS
MAPLE and FORTRAN environment.
(G) If Uij′(ξ0) = Upair

ij′ are independent on ξ0, then ε̃i(ξ0) = ε̃i and α̃
(i)
j′ (ξ0) = α̃

(i)
j′

are also independent of ξ0, and (5) reduces to Φ̃i(ξ) =
∑j′max

j′=1 α̃
(i)
j′ Φ

S(A)
j′ (ξ).

(O) If V pair(xij) = V hosc(xij) and Upair
ij′ = 0, then ε̃i = E

S(A)
i and α̃

(i)
j′ = δij′ .

For the short-range barrier potentials V (ξ0, xi(ξ)) in terms of the asymp-
totic cluster functions Φ̃j(ξ) → Φ̃j(ξ0, ξ) at |ξ0| → ∞ the asymptotic boundary

conditions for the solution Ψ(ξ0, ξ) = {Ψio(ξ0, ξ)}No

io=1 in the asymptotic region
|ξ|/|ξ0| 1 1 have the form [16]

Ψ
←→
io (ξ0 → ±∞, ξ) → Φ̃io(ξ)

exp (∓ı (pioξ0))√
pio

+

No∑
j=1

Φ̃j(ξ)
exp (±ı (pjξ0))√

pj
R

←→
jio (E),

Tunneling of Clusters through Repulsive Barriers 431

Fig. 1. The Gaussian-type potential (16) at σ = 0.1 (in oscillator units) and the
corresponding 2D barrier potential at α = 1/10, σ = 0.1

Ψ
←→
io (ξ0 → ∓∞, ξ) →

No∑
j=1

Φ̃j(ξ)
exp (∓ı (pjξ0))√

pj
T

←→
jio (E), (9)

Ψ
←→
io (ξ0, |ξ| → ∞) → 0.

Here v =←,→ indicates the initial direction of the particle motion along the ξ0
axis, No is the number of open channels at the fixed energy E and momentum
p2io = E−Eio > 0 of cluster; R←

jio
= R←

jio
(E), R→

jio
= R→

jio
(E) and T←

jio
= T←

jio
(E),

T→
jio = T→

jio(E) are the unknown amplitudes of the reflected and transmitted

waves. We can rewrite Eqs. (9) in the matrix form Ψ = Φ̃
T
F describing the

incident wave and the outgoing waves at ξ+0 → +∞ and ξ−0 → −∞ as(
F→(ξ+0) F←(ξ+0)
F→(ξ−0) F←(ξ−0)

)
=

(
0 X(−)(ξ+0)
X(+)(ξ−0) 0

)
+

(
0 X(+)(ξ+0)
X(−)(ξ−0) 0

)
S. (10)

Here the unitary and symmetric scattering matrix S

S =

(
R→ T←
T→ R←

)
, S†S = SS† = I, (11)

where S† is the conjugate transpose of S. It is composed of the matrices, whose
elements are reflection and transmission amplitudes that enter Eqs. (9) and
possess the following properties[16, 17]:

T†
→T→ +R†

→R→ = Ioo = T†
←T← +R†

←R←,

T†
→R← +R†

→T← = 0 = R†
←T→ +T†

←R→, (12)

TT
→ = T←, RT

→ = R→, RT
← = R←.

4 Close-Coupling Equations in the SCR

We seek for the solution of problem (3) in the symmetrized coordinates in the
form of Galerkin (G) expansion over the asymptotic cluster functions Φ̃j(ξ)

432 S. Vinitsky et al.

Fig. 2. Diagonal Vjj (solid lines) and nondiagonal Vj1, (dashed lines) effective poten-
tials for A = 2, A = 3 and A = 4 of the S- (upper panels) and A- (lower panels) of the
particles at σ = 1/10

corresponding to the eigenvalues ε̃i, which are also independent of ξ0, from (6)
under the (G) condition, with unknown coefficient functions χjio(ξ0):

Ψio(ξ0, ξ) =

jmax∑
j=1

Φ̃j(ξ)χjio (ξ0), χjio (ξ0) =

∫
dA−1ξΦ̃j(ξ)Ψio(ξ0, ξ). (13)

The set of close-coupling Galerkin equations in the symmetrized coordinates
has the form[

− d2

dξ20
+ ε̃i − E

]
χiio (ξ0) +

jmax∑
j=1

Ṽij(ξ0)χjio (ξ0) = 0, (14)

where the effective potentials Ṽij(ξ0) are calculated using the set of eigenvectors

α̃
(i)
j′ of the noparametric algebraic problem (6) under the above condition (G):

Uij′(ξ0) = Upair
ij′ �= 0,

Ṽij(ξ0) =

j′max∑
j′=1

j′max∑
j′′=1

α̃
(i)
j′ Vj′j′′(ξ0)α̃

(j)
j′′ , (15)

and the integrals Vij′ (ξ0) are defined in (8) and calculated in CAS MAPLE. In

the examples considered below, we put Uij′ (ξ0) = Upair
ij′ = 0 in (6), then we have

the (O) condition: ε̃i = E
S(A)
i , α̃

(i)
j′ = δij′ and Ṽij(ξ0) = Vij(ξ0). The repulsive

barrier is chosen to have the Gaussian shape

V (xi) =
α√
2πσ

exp(−x2i
σ2

). (16)

Tunneling of Clusters through Repulsive Barriers 433

Table 1. Resonance values of the energy ES (EA) for S (A) states for A = 2, 3, 4
(σ = 1/10, α = 20) with approximate eigenvalues ED

i , for the first ten states i =
1, ..., 10, calculated using the truncated oscillator basis (D) till jmax = 136, 816, 1820
at A = 2, 3, 4. The asterisk labels two overlapping peaks of transmission probability

i 1 2 3 4 5 6 7 8 9 10

A = 2

ES 5.72 9.06 9.48 12.46 12.57 13.46 15.74 15.78 16.65 17.41

EA 5.71 9.06 9.48 12.45 12.57 13.45 15.76∗ 15.76∗ 16.66 17.40

ED
i 5.76 9.12 9.53 12.52 12.64 13.52 15.81 15.84 16.73 17.47

A = 3

ES 8.18 11.11 12.60 13.93 14.84 15.79 16.67
8.31 11.23 14.00 14.88 16.73

EA 11.55 14.46 16.18
11.61 14.56 16.25

ED
i 8.19 11.09 11.52 12.51 13.86 14.42 14.74 15.67 16.11 16.53

A = 4

ES 10.12 11.89 12.71 14.86 15.19 15.41 15.86 16.37 17.54 17.76

ED31
i 10.03 12.60 14.71 15.04 16.18 17.34 17.56

ED22
i 11.76 15.21 15.64

Figure 1 illustrates the Gaussian potential and the corresponding barrier poten-
tials in the symmetrized coordinates at A = 2. This potential has the oscillator-
type shape, and two barriers are crossing at the right angle. In the case A ≥ 3,
the hyperplanes of barriers are crossing at the right angle, too.

The effective potentials Vij(ξ0) calculated using the algorithm SCR [18] and
algorithm DC (see Section 5), are shown in Fig. 2. In comparison with the
symmetric basis, for antisymmetric one the increase of the numbers i and/or j
results in stronger oscillation of the effective potentials Vij and weaker decrease
of them to zero at ξ0 → ∞. At A = 2, all effective potentials are even functions,
and at A ≥ 3, some effective potentials are odd functions.

Thus, the scattering problem (3) with the asymptotic boundary conditions (9)
is reduced to the boundary-value problem for the set of close-coupling equations
in the Galerkin form (14) under the boundary conditions at d = 1, ξ0 = ξmin

and ξ0 = ξmax:

dF (ξ0)

dξ0

∣∣∣∣
ξ0=ξmin

= R(ξmin)F (ξmin),
dF (ξ0)

dξ0

∣∣∣∣
ξ0=ξmax

= R(ξmax)F (ξmax), (17)

where R(ξ) is an unknown jmax×jmax matrix function, F (ξ0) = {χio(ξ0)}
No

io=1 =

{{χjio(ξ0)}
jmax

j=1 }No

io=1 is the required jmax × No matrix solution, and No is the
number of open channels,No = max

2E≥ε̃j
j ≤ jmax, calculated using the third version

of KANTBP 3.0 program [21, 22], implemented in CAS MAPLE and FORTRAN
environment and described in [16, 17].

434 S. Vinitsky et al.

Fig. 3. The total transmission probability |T |211 vs energy E (in oscillator units) for the
system of A = 2, 3, 4 S- (upper panels) and A- (lower panels) particles coupled by the
oscillator potential and being initially in the ground cluster state penetrating through
the repulsive Gaussian-type potential barriers (16) with σ = 0.1 and α = 2, 5, 10, 20

5 Resonance Transmission of a Few Coupled Particles

In the (O) case, i.e., V pair(xij) = V hosc(xij), the solution of the scattering prob-
lem described above yields the reflection and transmission amplitudes Rjio (E)
and Tjio (E) that enter the asymptotic boundary conditions (9) as unknowns.
|Rjio (E)|2 (|Tjio(E)|2) is the probability of a transition to the state described
by the reflected (transmitted) wave and, hence, will be referred as the reflection
(transmission) coefficient. Note that |Rjio (E)|2 + |Tjio(E)|2 = 1.

In Figs. 3 and 4, we show the energy dependence of the total transmission
probability |T |2ii =

∑No

j=1 |Tji(E)|2. This is the probability of a transition from a
chosen state i into any of No states found from Eq. (13) by solving the boundary-
value problem in the Galerkin form, (14) and (17), using the KANTBP 3.0
program [21, 22] on the finite-element grid Ωξ{−ξmax

0 , ξmax
0 } with Nelem fourth-

order Lagrange elements between the nodes. For S-solutions at A = 2, 3, 4

Tunneling of Clusters through Repulsive Barriers 435

Fig. 4. The total transmission probability |T |2ii vs the energy E (in oscillator units) for
the system of A = 2, 3, 4 particles, coupled by the oscillator potential and being initially
in the ground and excited S-states, penetrating through the repulsive Gaussian-type
potential barriers (16) with σ = 0.1 and α = 10. We use the notation of the S-states,
[i1, ..., iA−1] = 1/

√
Nβ

∑
i′1,...,i

′
A−1

∏
Φ̄i′

k
(ξk), with summation over all (Nβ) multiset

permutations of i1, ..., iA−1 of A− 1-dimensional oscillator functions [18]

the following parameters were used: jmax = 13, 21, 39, ξmax
0 = 9.3, 10.5, 12.8,

Nelem = 664, 800, 976, while for A-solutions we used jmax = 13, 16, 15, ξmax
0 =

9.3, 10.5, 12.2,Nelem = 664, 800, 976 that yield an accuracy of the solutions of an
order of the fourth significant figures.

Figure 3 demonstrates non-monotonic behavior of the total transmission
probability versus the energy, and the observed resonances are manifestations of
the quantum transparency effect. With the barrier height increasing, the peaks
become narrower, and their positions shift to higher energies. The multiplet
structure of the peaks in the symmetric case is similar to that in the antisym-
metric case. For three particles, the major peaks are double, while for two and
four particles, they are single. For A = 2 and α = 10, 20, one can observe the
additional multiplets of small peaks.

Figure 4 illustrates the energy dependence of the total transmission probabil-
ities from the exited states. As the energy of the initial excited state increases,
the transmission peaks demonstrate a shift towards higher energies, the set of
peak positions keeping approximately the same as for the transitions from the
ground state and the peaks just replacing each other, like it was observed in
the model calculations [12]. For example, for A = 3, the position of the third
peak for transitions from the first two states (E = 10.4167 and E = 10.4156)
coincides with the position of the first peak for the transitions from the second
two states (E = 10.4197 and E = 10.4298).

Calculation of Energy Position of the Barrier Quasistationary States.
In the considered case, the potential barrier V (xi) is narrow, and V pair(xij) =
V hosc(xij), so that we solve Eq. (1) in the Cartesian coordinates x1, ..., xA in one

436 S. Vinitsky et al.

Fig. 5. The probability densities |χi(ξ0)|2 for the coefficient functions of the decom-
position (13), representing the incident wave function of the ground S-state of the
particles at the values of the collision energy E corresponding to individual maxima
and minima of the transmission coefficient in Fig. 3. The parameters of the Gaussian
barrier are α = 10 and σ = 0.1

of the 2A−2 subdomains, defined as pixi > 0, pi = ±1, under the Dirichlet condi-
tions (DC): Ψ(x1, ..., xA)|∪A

i=1{xi=0} = 0 at the internal boundaries ∪A
i=1{xi = 0}.

Here the value pi = ±1 indicates the location of the ith particle at the right or
left side of the barrier, respectively. Thus, in the DC procedure we seek for the
solution in the form of a Galerkin expansion over the orthogonal truncated os-
cillator basis, ΨD

i (x) =
∑jmax

j=1 Φ̄j(x)Ψ
D
ji composed of A-dimensional harmonic

oscillator functions Φ̄j(x), odd in each of the Cartesian coordinates x1, ..., xA
in accordance with the above DCs, with unknown coefficients ΨD

ji . As a result,

we arrive at the algebraic eigenvalue problem DΨD = ΨDED with a dense
real-symmetric jmax × jmax matrix. So, in the DC procedure we seek for an
approximate solution in one of the potential wells, i.e., we neglect the tunnelling
through the barriers between wells. Therefore, we cannot observe the splitting
inherent in exact eigenvalues corresponding to S and A eigenstates, differing in
permutation symmetry. However, we can explain the mechanism of their appear-
ance and give their classification, which is important, too. This algorithm DC
was implemented in CAS MAPLE and FORTRAN environment.

Tunneling of Clusters through Repulsive Barriers 437

Remark. The DC procedure is similar to solving Eq. (3) in the symmetrized
coordinates ξ0, ξ related to the Cartesian ones by Eq. (2), implemented the
following two steps:

(i) we approximate the narrow barriers by impenetrable walls xk(ξ0, ξ) = 0;
(ii) we superpose these mutually perpendicular walls with the coordinate hyper-
planes using rotations.

Actually, the two approaches yield the same boundary-value problem formulated
in different coordinates (1), (3).

The algorithm DC :

Input:
A is the number of identical particles;
xk, k = 1, ..., A are the Cartesian coordinates of the identical particles;
pk = ±1 indicates the location of the kth particle ;
jmax is the number of the eigenfunctions of A-dimensional harmonic oscillator;

Output:
D = {Dj′j} is the jmax × jmax matrix ;
ED

i and ΨD
ji are the real-value eigenenergies and eigenvectors;

Local:
Φj =

√
2A
∏A

k=1 Φ̄ik(xk);

I(i′k, ik) =
∫∞
0 Φ̄i′k (x)Φ̄ik (x)dx =

2
(i′

k
+ik)/2

2F1(i
′
k,ik;(2−i′k−ik)/2;1/2)

Γ ((2−i′k−ik)/2)
√

i′k!ik!
;

Γ (∗) is the gamma-function, 2F1(∗, ∗; ∗; ∗) is the hypergeometric function;

1: Eq := (−Δ+
∑

(pkxk − pk′xk′)/2A);
2: Eq :=

√
A/(A− 1)(Eq,Δ → Δ/(A/(A− 1)), xk → xk

4
√
A/(A− 1);

3: Eq := Eq, p2k → 1, Δ =
∑

k(x
2
k − (2nk + 1));

4: Eq := Eq
∏
Φ̄ik(xk);

5: Eq := xk = (
√
ik + 1Φ̄ik+1(xk) +

√
ikΦ̄ik−1(xk))/(

√
2Φ̄ik(xk));

6: for j, j′ = 1, ..., jmax do
Dj′j := Φik(xk) → I(i′k, ik);
end for

7: DΨD
ji = ΨD

jiE
D
i → ED

i and ΨD
ji ;

In Table 1, we present the resonance values of the energy ES (EA) calculated
by solving the boundary-value problem (14) and (17), using the KANTBP 3.0
program, for S (A) states at A = 2, 3, 4 σ = 1/10, α = 20 that correspond to
the maxima of transmission coefficients |T |2ii in Fig. 3 up to values of energy
E < 18 and corresponding resonance values of the energy ED calculated by
means of the algorithm DC. One can see that the accepted approximation of
the narrow barrier with impermeable walls using in the algorithm DC provides
the appropriate approximations ED

i of the above high accuracy results ES (EA)
with the error smaller than 2%. Below we give a comparison and qualitative
analysis of the obtained results.

438 S. Vinitsky et al.

Fig. 6. a. The comparison of convergence rate of Galerkin (cc*) and Kantorovich (k*)
close-coupling expansions in calculations of transmission coefficient |T |211 for the S-
states, A = 2 at α = 10, σ = 0.1, like epure of the first peak from Fig. 3. b. The
comparison of Galerkin and Kantorovich methods (G=K) with Finite-Difference Nu-
merov method (N)

For two particles, A = 2 (see Fig. 1), there are two symmetric potential wells.
In each of them both symmetric and asymmetric wave functions are constructed.
Since the potential barrier separating the wells is sufficiently high, the appro-
priate energies are closely spaced, so that each level describes the states of both
S and A type. The lower energy levels form a sequence “singlet-doublet-triplet,
etc.”, which is seen in Fig. 3. The resonance transmission energies for a pair of
particles in S states are lower than that for a pair of those in A states. This is due
to the fact that in the vicinity of the collision point, the wave function is zero.
When A = 3 there are six similar wells, three of them at each side of the plane
ξ0 = 0. The symmetry with respect to the plane ξ0 = 0 explains the presence
of doublets. The presence of states with definite symmetry is associated with
the fact that the axis ξ0 is a third-order symmetry axis. However, in contrast
to the case A = 2, one can obtain either S or A combinations of states. For
example, the first four solutions of the problem, in one of the wells (e.g., the one
restricted with the pair-collision planes “13” and “23”) possess the dominant
components 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) + Φ̄3(x1)Φ̄1(x2))Φ̄1(x3),

2(Φ̄1(x1)Φ̄3(x2)− Φ̄3(x1)Φ̄1(x2))Φ̄1(x3), 2
√
2Φ̄1(x1)Φ̄1(x2)Φ̄3(x3). Note that the

first, second, and fourth of these functions are symmetric with respect to the
permutation x1 ↔ x2, while the third one is antisymmetric. Hence, in all six
wells using the first four solutions one can obtain six S and two A states.

When A = 4 there are 14 wells. Six wells at the center correspond to the case
when two particles are located at one side of the barrier and the rest two at the
other side. The corresponding eigenenergy is denoted ED22

i . The rest eight wells
correspond to the case when one particle is located at one side of the barrier
and the rest three at the other side. The corresponding eigenenergy is denoted
ED31

i . For these states, doublets must be observed, similar to the case of three
particles. However, the separation between the energy levels is much smaller,
because the 4-well groups are strongly separated by two barriers, instead of only
one barrier in the case A = 3.

Tunneling of Clusters through Repulsive Barriers 439

ξ

ξ1

�����

����
��	
	��
��	��

ξ

ξ
1

0

����� ����
��	
	��
��	��

ξ

ξ1

0

����� ����
��	
	��
��	��

ξ

ξ 1

0

����� ����
��	
	��
��	��

��������
���		

��	�	����

ξ

ξ1

0

����� ����
��	
	��
��	��

��������
���		

�����	���

ξ

ξ

1

0

����� ����
��	
	��
��	��

��������
���		

������	��

Fig. 7. The profiles of probability densities |Ψ(ξ0, ξ1)|2 for the S- (upper panel) and
A- (lower panel) states of A = 2 particles, revealing resonance transmission and total
reflection at resonance energies, shown in Figs. 3

The necessary condition for the quasi-stationary state being symmetric (anti-
symmetric) is that the wave functions must be symmetric (antisymmetric) with
respect to those coordinates xi and xj , for which pi = pj .

The effect of quantum transparency is caused by the existence of barrier qua-
sistationary states imbedded in the continuum. Fig. 5 shows that in the case
of resonance transmission, the wave functions depending on the center-of-mass
variable ξ0 are localized in the vicinity of the potential barrier center (ξ0 = 0).

For the energy values corresponding to some of the transmission coefficient
peaks in Fig. 3 at α = 10 within the effective range of barrier potential action,
the wave functions demonstrate considerable increase (from two to ten times)
of the probability density in comparison with the incident unit flux. This is a
fingerprint of quasistationary states, which is not a quantitative definition, but
a clear evidence in favor of their presence in the system[23]. In the case of total
reflection, the wave functions are localized at the barrier side, on which the wave
is incident, and decrease to zero within the effective range of the barrier action.

Note that the explicit explanation of the quantum transparency effect is
achieved in the framework of Kantorovich close-coupling equations because of
the multi-barrier potential structure of the effective potential, appearing explic-
itly even in the diagonal or adiabatic approximation, in particular, in the S case

440 S. Vinitsky et al.

for A = 2 [1, 16]. Nevertheless, in Galerkin close-coupling equations, the multi-
barrier potential structure of the effective potential is observed explicitly in the
A case (see Fig. 2).

As an example, Fig. 6a, which is an epure of Fig. 3, shows the comparison of
convergence rates of Galerkin (13) and Kantorovich close-coupling expansions
in calculations of transmission coefficient |T |211 for S wave functions, A = 2 at
α = 10, σ = 0.1. One can see that the diagonal approximation of the Kan-
torovich method provides better approximations of the positions of the trans-
mission coefficient |T |211 resonance peaks. With the increasing number of basis
functions, i.e., the number jmax of close-coupling equations with respect to the
center-of-mass coordinates in Galerkin (14) and Kantorovich form, respectively,
the convergence rates are similar and confirm the results obtained by solving the
problem by means of the Finite-Difference Numerov method in 2D domain [1],
see Fig. 6 b. This is true for the considered short-range potentials (16), while
for long-range potentials of the Coulomb type, the Kantorovich method can be
more efficient [16].

Figure 7 shows the profiles of |Ψ |2 ≡ |Ψ (−)
Em→|2 for the S and A total wave

functions of the continuous spectrum in the (ξ0, ξ1) plane with A = 2, α = 10,
σ = 1/10 at the resonance energies of the first and the second maximum and
the first minimum of the transmission coefficient demonstrating resonance trans-
mission and total reflection, respectively. It is seen that in the case of resonance
transmission, the redistribution of energy from the center-mass degree of free-
dom to the internal (transverse) ones takes place, i.e., the transverse oscillator
undergoes a transition from the ground state to the excited state, while in the to-
tal reflection, the redistribution of energy is extremely small, and the transverse
oscillator returns to infinity in the same state.

6 Conclusion

We considered a model cluster of A identical particles bound by the oscillator-
type potential that undergo quantum tunnelling through the short-range repul-
sive barrier potentials. The model was formulated in the new representation,
which we referred as the Symmetrized Coordinate Representation (SCR, see
forthcoming paper [18]), that implies construction of symmetric (asymmetric)
combinations of oscillator wave functions in new coordinates. The approach was
implemented as a complex of the symbolic-numeric algorithms and programs.

For clarity, a system of several identical particles was considered in one-
dimensional Euclidian space (d = 1). We calculated only the spatial part of
the wave function, symmetric or antisymmetric under permutation of A identi-
cal particles. If necessary, the spin part of the wave function can be introduced
using the conventional procedure for more rigorous calculation.

We analyzed the effect of quantum transparency, i.e., the resonance tunnelling
of several bound particles through repulsive potential barriers. We demonstrated
that this effect is due to the existence of sub-barrier quasistationary states imbed-
ded in the continuum. For the considered type of symmetric Gaussian barrier

Tunneling of Clusters through Repulsive Barriers 441

potential, the energies of the S and A quasistationary states are slightly different
because of the similarity of the multiplet structure of oscillator energy levels at
a fixed number of particles. This fact explains a similar behavior of transmis-
sion coefficients for S and A states shifted by threshold energies. The multiplet
structure of these states is varied with increasing the number of particles, e.g.,
for three particles, the major peaks are double, while for two and four parti-
cles, they are single. Our calculations have also shown that with increasing the
energy of the initial excited state of few-body clusters, the transmission peaks
demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the
peaks just skipping from one position to another.

The proposed approach can be adapted and applied to tetrahedral-symmetric
nuclei, quantum diffusion of molecules and micro-clusters through surfaces, and
fragmentation mechanism in producing very neutron-rich light nuclei. In con-
nection with the intense search for superheavy nuclei, a particularly significant
application of the proposed approach is the mathematically correct analysis of
mechanisms of sub-barrier fusion of heavy nuclei and the study of fusion rate
enhancement by means of resonance tunnelling.

The authors thank Professors V.P. Gerdt, A. Góźdź, and F.M. Penkov for
collaboration. The work was supported by grants 13-602-02 JINR, 11-01-00523
and 13-01-00668 RFBR, 0602/GF MES RK and the Bogoliubov-Infeld program.

References

1. Pen’kov, F.M.: Quantum transmittance of barriers for composite particles.
JETP 91, 698–705 (2000)

2. Pijper, E., Fasolino, A.: Quantum surface diffusion of vibrationally excited molec-
ular dimers. J. Chem. Phys. 126, 014708-1–014708-10 (2007)

3. Bondar, D.I., Liu, W.-K., Ivanov, M.Y.: Enhancement and suppression of tunneling
by controlling symmetries of a potential barrier. Phys. Rev. A 82, 052112-1–052112-
9 (2010)

4. Shegelski, M.R.A., Pittman, J., Vogt, R., Schaan, B.: Time-dependent trapping of
a molecule. European Phys. J. Plus 127, 17-1–17-13 (2012)

5. Ershov, S.N., Danilin, B.V.: Breakup of two-neutron halo nuclei. Phys. Part.
Nucl. 39, 1622–1720 (2008)

6. Nesterov, A.V., Arickx, F., Broeckhove, J., Vasilevsky, V.S.: Three-cluster descrip-
tion of properties of light nuclei with neutron and proton access within the algebraic
version of the resonating group method. Phys. Part. Nucl. 41, 1337–1426 (2010)

7. Hofmann, H.: Quantummechanical treatment of the penetration through a two-
dimensional fission barrier. Nucl. Phys. A 224, 116–139 (1974)

8. Krappe, H.J., Möhring, K., Nemes, M.C., Rossner, H.: On the interpretation of
heavy-ion sub-barrier fusion data. Z. Phys. A 314, 23–31 (1983)

9. Cwiok, S., Dudek, J., Nazarewicz, W., Skalski, J., Werner, T.: Single-particle en-
ergies, wave functions, quadrupole moments and g-factors in an axially deformed
Woods-Saxon potential with applications to the two-centre-type nuclear problems.
Comput. Phys. Communications 46, 379–399 (1987)

442 S. Vinitsky et al.

10. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calcula-
tions with all order couplings for heavy-ion fusion reactions. Comput. Phys. Com-
mun. 123, 143–152 (1999)

11. Zagrebaev, V.I., Samarin, V.V.: Near-barrier fusion of heavy nuclei: coupling of
channels. Phys. Atom. Nucl. 67, 1462–1477 (2004)

12. Ahsan, N., Volya, A.: Quantum tunneling and scattering of a composite object
reexamined. Phys. Rev. C 82, 064607-1–064607-19 (2010)

13. Shotter, A.C., Shotter, M.D.: Quantum mechanical tunneling of composite particle
systems: Linkage to sub-barrier nuclear reactions. Phys. Rev. C 83, 054621-1–
054621-11 (2011)

14. Shilov, V.M.: Sub-barrier fusion of intermediate and heavy nuclear systems.
arXiv:1012.3683 [nucl-th] Phys. Atom. Nucl. 75, 485–490 (2012)

15. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.:
Channeling problem for charged particles produced by confining environment.
Phys. Atom. Nucl. 72, 768–778 (2009)

16. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.:
Symbolic-numerical algorithms to solve the quantum tunneling problem for a cou-
pled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

17. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I.: Computational scheme for calcu-
lating reflection and transmission matrices, and corresponding wave functions of
multichannel scattering problems. In: Uvarova, L.A. (ed.) Proc. Second Interna-
tional Conference “The Modeling of Non-linear Processes and Systems”, Yanus,
Moscow, pp. 978–975 (2011)

18. Gusev, A., Vinitsky, S., Chuluunbaatar, O., Rostovtsev, V., Hai, L., Derbov, V.,
Góźdź, A., Klimov, E.: Symbolic-numerical algorithm for generating cluster eigen-
functions: identical particles with pair oscillator interactions. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136,
pp. 155–168. Springer, Heidelberg (2013)

19. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A.,
Samoilov, V.N., Tupikova, T.V., Chuluunbaatar, O.: A symbolic-numerical algo-
rithm for the computation of matrix elements in the parametric eigenvalue problem.
Programming and Computer Software 33, 105–116 (2007)

20. Bunge, C.F.: Fast eigensolver for dense real-symmetric matrices. Comput. Phys.
Communications 138, 92–100 (2001)

21. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
2.0: New version of a program for computing energy levels, reaction matrix and
radial wave functions in the coupled-channel hyperspherical adiabatic approach.
Comput. Phys. Commun. 179, 685–693 (2008)

22. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0
- New version of a program for computing energy levels, reflection and transmis-
sion matrices, and corresponding wave functions in the coupled-channel adiabatic
approach, Program library “JINRLIB”,
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp/indexe.html

23. de Carvalho, C.A.A., Nussenzweig, H.M.: Time delay. Phys. Rept. 364, 83–174
(2002)

http://wwwinfo.jinr.ru/programs/jinrlib/kantbp/indexe.html

Author Index

Abramov, S.A. 1
Adrovic, Danko 10
Alvandi, Parisa 30
Amodio, Pierluigi 46
Anai, Hirokazu 194
Arnold, Andrew 61

Barkatou, M.A. 1
Blinkov, Yuri 46
Bruno, Alexander D. 75

Chen, Changbo 30
Chuluunbaatar, Ochbadrakh 155, 427

Derbov, Vladimir 155, 427

Edneral, Victor F. 75
Eiswirth, Markus 88
Errami, Hassan 88

Gastineau, Mickaël 100
Gerdt, Vladimir P. 46, 116
Giesbrecht, Mark 61
Gorbachev, A. 369
Góźdź, Andrzej 155
Griewank, Andreas 130
Grigoriev, Dima 88, 136, 140, 148
Gusev, Alexander 155, 427
Gutnik, Sergey A. 169

Hai, Luong Le 155
Higuchi, Hiroyuki 194

Inaba, Daiju 315
Irtegov, Valentin 179
Iwane, Hidenao 194

Johnson, Jeremy 243
Jolly, Raphaël 209

Kako, Fujio 315
Klimov, Evgenii 155
Klin, Mikhail 219
Krassovitskiy, Pavel 427

La Scala, Roberto 46
Laskar, Jacques 100
Le Hai, Luong 427

Malaschonok, Gennadi 231
Masui, Takaaki 257
Maza, Marc Moreno 30
Meng, Lingchuan 243

Nagasaka, Kosaku 257

Pan, Victor Y. 273
Phisanbut, Nalina 301
Prokopenya, Alexander N. 116

Roanes-Lozano, Eugenio 288
Roanes-Maćıas, Eugenio 288
Roche, Daniel S. 61
Rosenkranz, Markus 301
Rostovtsev, Vitaly 155, 427

Sarychev, Vasily A. 169
Sasaki, Tateaki 315
Schirra, Stefan 331
Schlomiuk, Dana 340
Schwarz, Fritz 140
Seiler, Werner M. 88, 355
Sevastianov, L. 369
Shapeev, Vasily P. 381
Ştefănescu, Doru 393
Sturm, Thomas 88

Titorenko, Tatyana 179

Ullah, Ehsan 401
Uteshev, Alexei Yu. 412

Verschelde, Jan 10
Vinitsky, Sergue 155, 427
Vorozhtsov, Evgenii V. 381
Vulpe, Nicolae 340

Weber, Andreas 88

Yashina, Marina V. 412

Ziv-Av, Matan 219
Zorin, A. 369

	Preface
	Organization
	Table of Contents
	On the Dimension of Solution Spaces of Full Rank Linear Differential Systems
	1 Introduction
	2 Preliminaries
	3 Differentiating of an Equation of a Full Rank System
	3.1 Formulation of the Main Theorem
	3.2 Invertible Leading Matrix Case
	3.3 General Case of a System of Full Rank

	4 Some Applications
	4.1 The Dimension of the Solution Space of a Given Full Rank System
	4.2 Faster Computation of l-Embracing Systems

	References

	Polyhedral Methods for Space Curves Exploiting Symmetry Applied to the Cyclic n-rootsProblem
	1 Introduction
	2 Initial Forms, Cyclic n-roots, and Backelin’s Lemma
	2.1 Newton Polytopes, Initial Forms, and Tropisms
	2.2 The Cyclic n-roots Problem
	2.3 A Tropical Version of Backelin’s Lemma

	3 Exploiting Symmetry
	3.1 The Cyclic 5-roots Problem
	3.2 A General Approach

	4 Computing Pretropisms
	4.1 Using the Cayley Embedding
	4.2 Using Tropical intersection of Gfan

	5 The Second Term of a Puiseux Series
	5.1 Computing the Second Term
	5.2 Series Developments for Cyclic 8-roots
	5.3 Cyclic 12-roots

	6 Concluding Remarks
	References

	Computing the Limit Points of the Quasi-component of a Regular Chainin Dimension One
	1 Introduction
	2 Preliminaries
	3 Puiseux Expansions of a Regular Chain
	4 Puiseux Parametrization in Finite Accuracy
	5 Computing in Finite Accuracy
	6 Accuracy Estimates
	7 Algorithm
	8 Experimentation
	9 Concluding Remarks
	References

	On Consistency of Finite Difference Approximations to the Navier-Stokes Equations
	1 Introduction
	2 Preliminaries
	3 Consistency of Difference Approximations
	4 Three Difference Approximations to the Navier–Stokes Equations
	5 Numerical Comparison
	6 Conclusion
	References

	Faster Sparse Interpolation of Straight-Line Programs
	1 Introduction
	1.1 The Straight-Line Program Model and Interpolation
	1.2 Previous Work
	1.3 Deterministic Zero Testing
	1.4 Summary of Results

	2 A Recursive Algorithm for Interpolating
	2.1 A Weaker Notion of “Good” Primes
	2.2 Generating an Approximation
	2.3 Recursively Interpolating
	2.4 A Cost Analysis

	3 Conclusions
	References

	On Possibility of Additional Solutions of the Degenerate System Near Double Degenerationat the Special Value of the Parameter
	1 Introduction
	2 About First Quasi-Homogeneous Approximation
	3 About Normal Form and the Condition A
	4 Necessary Conditions of Local Integrability
	5 About Sufficient Conditions of Integrability
	6 Caseb2 = 2/3
	7 Conclusions
	References

	Efficient Methods to Compute Hopf Bifurcations in Chemical Reaction Networks Using ReactionCoordinates
	1 Introduction
	2 Condition for a Hopf Bifurcation
	2.1 Using Reaction Coordinates
	2.2 Sufficient Conditions for a Positive Solution of a Single Multivariate Polynomial Equation
	2.3 Summarizing the Algorithm for Checking the Existence of Hopf Bifurcations

	3 Algorithmic Determination of Hopf bifurcations in the Methylene Blue Oscillator System
	References

	Highly Scalable Multiplication for Distributed Sparse Multivariate Polynomials on Many-CoreSystems
	1 Introduction
	2 Algorithm on Shared Memory Computers
	3 Adaptation to Computer Cluster
	4 Adaptation to Specialized Many-Core Hardware
	5 Choice of the Set
	6 Benchmarks
	6.1 Shared Memory Multiprocessors
	6.2 Distributed Memory Computers
	6.3 Specialized Many-Core Hardware

	7 Conclusions
	References

	Simulation of Quantum Error Correction with Mathematica
	1 Introduction
	2 Basic Concepts of Quantum Error Correction
	3 General Case of Five-Qubit Error Correcting Code
	4 Conclusion
	References

	From the Product Example to PDE Adjoints, Algorithmic Differentiation and Its Application(Invited Talk)
	References

	Polynomial Complexity of Solving Systems of Few Algebraic Equations with Small Degrees
	Introduction
	1 Testing Points for Sparse Polynomials
	2 Reduction of Solvability to Systems in Few Variables
	3 Test of Solvability and Its Complexity
	References

	Computing Divisors and Common Multiples of Quasi-linear Ordinary Differential Equations
	Introduction
	1 A Bound on the Degree and an Algorithm for Generalized Divisors
	2 Computing Common Multiples of Quasi-linear Differential Equations
	References

	Complexity in Tropical Algebra (Invited Talk)
	1 Introduction and Basic Concepts
	2 Complexity of Solving Tropical Linear Systems
	3 Tropical, Kapranov and Barvinok Ranks
	4 Tropical Polynomial Systems and Nullstellensatz
	References

	Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Identical Particleswith Pair Oscillator Interactions
	1 Introduction
	2 Problem Statement
	3 The SCR Algorithm: Symmetrized Coordinate Representation
	4 Examples of the SCR Generation
	5 Conclusion
	References

	Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics
	1 Introduction
	2 Equations of Motion
	3 Equilibrium Orientations
	4 Stability Analysis of Equilibria
	5 Conclusion
	References

	On Stationary Sets of Euler’s Equations on so(3, 1) and Their Stability
	1 Introduction
	2 On Stationary Sets of Euler’s Equations with an Additional Cubic First Integral
	2.1 Problem Formulation
	2.2 Finding Stationary Sets
	2.3 Motions on the Invariant Manifolds

	3 On Stationary Sets of Euler’s Equations with an Additional First Integral of 6th Degree
	3.1 Problem Formulation
	3.2 Finding Stationary Sets

	4 On Stability of the Stationary Sets
	5 Conclusion
	References

	An Effective Implementation of a Special Quantifier Elimination for a Sign DefiniteCondition by Logical Formula Simplification
	1 Introduction
	2 Quantifier Elimination for Sign Definite Condition
	2.1 Sign Definite Condition and Real Root Counting by Sturm-Habicht Sequence
	2.2 A Specialized QE Algorithm for SDC

	3 Necessary Condition for SDC
	4 Simplification of Boolean Expressions
	4.1 Boolean Algebra and Simplification of Boolean Expressions
	4.2 Simplification of ϕn Based on Boolean Expression Minimization

	5 Computational Results
	6 Conclusion
	References

	Categories as Type Classes in the Scala Algebra System
	1 Introduction
	2 Outline
	3 Categories
	4 Categorical Programming in Java: The JAS Example
	5 Type Classes in ScAS
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Enumeration of Schur Rings over the Group A5
	1 Introduction
	2 Schur Rings, Related Concepts, and Computer-Aided Activities
	3 Computer Results for the Group A5
	4 Rational S-rings over A5
	5 General Outline of Non-Schurian S-rings over A5
	6 The Exceptional Non-schurian S-ring #115
	7 S-ringsoverAGL(1, 8)
	8 Concluding Remarks
	References

	Generalized Bruhat Decomposition in Commutative Domains
	1 Introduction
	2 Triangular Decomposition in Domain
	3 LDU Algorithm
	4 Proof of the Correctness of the LDU Algorithm
	5 Complexity
	6 The Exact Triangular Decomposition
	7 Conclusion
	8 Example
	References

	Automatic Parallel Library Generation for General-Size Modular FFT Algorithms
	1 Introduction
	2 Background
	3 Modular FFT
	4 General Size Parallel Library Generation for Modular FFT
	4.1 Vectorization and Parallelization
	4.2 Library Generation

	5 PerformanceResults
	6 Conclusions
	References

	Extended QRGCD Algorithm
	1 Introduction
	1.1 Notations
	1.2 Framework and Algorithm

	2 ImprovedQRGCDFramework
	2.1 Detectability of Approximate GCD by QR Factoring
	2.2 Roots Outside the Unit Circle

	3 Improved QRGCD Algorithm
	3.1 The Matrix Norm Used
	3.2 Approximate Coprime Condition
	3.3 Trial Divisions
	3.4 The Polynomials to be Applied to “Split”
	3.5 The Fail-Safe Retry Loop

	4 NumericalExperiments
	4.1 Against SNAP and QRGCD
	4.2 Against Fastgcd and UVGCD

	5 Concluding Remarks
	References

	Polynomial Evaluation and Interpolation and Transformations of Matrix Structures
	1 Introduction
	2 Definitions and Auxiliary Results
	3 Dense Structured Matrices. Polynomial and Rational Evaluation and Interpolation. DFT, IDFT, FFT, and Some Transformations of Matrix Structures
	4 HSS Matrices and Neutered Blocks
	5 �-approximation of CV Matrices by HSS Matrices
	5.1 Small-rank Approximation of Cauchy Matrices Where the KnotSets S and T Are Separated from One Another (cf. [3])
	5.2 An Extended Block Diagonal of a CV Matrix
	5.3 The �-ranks of Basic Neutered Block Columns
	5.4 The ((2k − 1)�)-ranks of Neutered Blocks

	6 Multiplication of CV and Vandermonde Matrices andTheir Transposes and Inverses by a Vector
	7 Conclusions
	References

	A Note on the Need for Radical Membership Checking in Mechanical Theorem Provingin Geometry
	1 Introduction
	1.1 Some Preliminary Notes about Algebraic Geometry
	1.2 Yet another Preliminary Note

	2 Chou’s Remark Regarding Mechanical Theorem Proving in Geometry and the Radical Membership Checking
	3 Pavel Pech’s Counterexample Revisited
	3.1 Continuing with Pavel Pech’s Example

	4 Designing Other Counterexamples
	4.1 First Example
	4.2 Second Example
	4.3 Other Examples

	5 Remark
	6 Conclusions
	References

	A Symbolic Approach to Boundary Problems for Linear Partial Differential EquationsApplications to the Completely Reducible Caseof the Cauchy Problem with Constant Coefficients
	1 Introduction
	2 An Algebraic Language for Boundary Data
	3 Green’s Operators for Signals and States
	4 The Cauchy Problem for Analytic Functions
	5 Conclusion
	References

	Towards Industrial Application of Approximate Computer Algebra
	1 Introduction
	2 Eigenpolynomial in an Aircraft Model
	3 Expansion of Multivariate Algebraic Functions at Critical Points
	3.1 Hensel Series: A Brief Survey
	3.2 Determination of Critical Points and Approximate Square-Free Decomposition
	3.3 Separation of Critical Factors and Effective FLOATs
	3.4 Approximate Factorization of Newton Polynomials
	3.5 Computation of Hensel Series by Using FLOATs

	4 Conclusion and Comments
	References

	A Note on Sekigawa’s Zero Separation Bound
	1 Introduction
	2 Constructive Bounds for Division-Free Radical Expressions
	3 Dominance Results
	4 Conclusions
	References

	Applications of Symbolic Calculations and Polynomial Invariants to the Classificationof Singularities of Differential Systems
	1 Introduction and Statement of Main Results
	2 Equivalence Relations for Singularities of Planar Polynomial Vector Fields
	3 Notations for Singularities of Polynomial Differential Systems
	4 Invariant Polynomials
	References

	Singularities of Implicit Differential Equations and Static Bifurcations
	1 Introduction
	2 Geometric Theory of Differential Equations
	3 The Vessiot Distribution
	4 Geometric Singularities
	5 Quasi-linear Equations
	6 Static Bifurcations
	7 Conclusions
	References

	A Quantum Measurements Model of Hydrogen-Like Atoms in Maple
	1 Introduction
	2 Analytical Calculations of the O{ϕk} (A) Operators inExplicit Form
	3 Asymptotics and Spectral Properties of the O{ϕk} (A)Operators
	4 Constructing Ritz Matrix in Maple
	5 Conclusion
	References

	CAS Application to the Construction of the Collocations and Least Residuals Methodfor the Solution of 3D Navier–Stokes Equations
	1 Introduction
	2 Description of the Modified CLR Method
	2.1 Problem Statement
	2.2 Local Coordinates and Basis Functions
	2.3 Derivation of the Overdetermined System from Collocation and Matching Conditions

	3 The Multigrid Algorithm
	4 Convergence Acceleration Algorithm Based on Krylov’s Subspaces
	5 Numerical Results
	5.1 Test with Exact Analytic Solution
	5.2 Flow in the Lid-driven Cavity

	6 Conclusions
	References

	Construction of Classes of Irreducible Bivariate Polynomials
	1 Introduction
	References

	Algebraic Attacks Using IP-Solvers
	1 Introduction
	2 Converting Boolean Polynomials to Inequalities
	3 New Hybrid Conversion Techniques
	4 Applications and Timings
	4.1 The Courtois Toy Cipher CTC
	4.2 Small Scale AES

	References

	Stationary Points for the Family of Fermat–Torricelli–Coulomb-Like PotentialFunctions
	1 Introduction
	2 Direct Problem
	3 InverseProblem
	4 Stability
	5 Conclusions
	References

	Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Tunneling of Clustersthrough Repulsive Barriers
	1 Introduction
	2 Problem Statement
	3 Cluster Functions and Asymptotic Boundary Conditions
	4 Close-Coupling Equations in the SCR
	5 Resonance Transmission of a Few Coupled Particles
	6 Conclusion
	References

	Author Index

