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Abstract. This paper presents a method to obtain a full 6 degrees of freedom
dynamic model of a robotic sailing boat starting from the description of forces
and torques acting on it. A general 6-DOF model is first described and then
simplified to obtain a 3-DOF control-oriented one. Relying on it, a rudder
controller and a sail’s trimming calculator are proposed. This controller has
been validated using a numerical implementation of the proposed dynamic
model.

1 Introduction

Thanks to their low energy consumption, autonomous sailing robots provide
a promising solution for long-term missions and semi-persistent presence in
the oceans and a lot of sailing robot projects have been launched recently all
around the world [1, 3, 3, 4, 6, 8, 10, 12]. However, the nature of sailing boats
implies restrictions on their navigation capabilities: thrust forces depend on
uncontrollable and partially unpredictable wind. Furthermore, such vehicles
exhibit complex behavior due to aero and hydrodynamic properties of sails
and hull. Therefore, in order to improve the control of sailboats, a model re-
flecting the dynamic of the system and its relation with physical phenomenon
(wind speed and marine current) is necessary.

One of the contributions of the present paper is the proposition of a simple
but representative model for control design and also for the validation of the
proposed controllers via simulation means.

The paper is organized as follow: first, the sailboat is divided into three
subsystems (hull, mainsail and rudder) and the forces and torques acting
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on each subsystem are described. Then, a general 6-DOF similar to [5] is
proposed. Some assumptions are made to simplify the model to a 4-DOF
one with roll and yaw as in [16]. For control design, a more simplified 3-
DOF model without roll is proposed. Analysis of this model leads to the
definition of a new heading controller using backstepping control method [7]
with variable gains and a sail’s trimming algorithm, both presented in the
last section of this paper.

A numerical implementation of the 3-DOF model and controllers is done
and some simulation results are presented.

2 Notation

• For any x ∈ R
m×n, x� denotes the transpose of x and ẋ its time-derivative.

• −→x denotes an affine vector associated with the vector space x ∈ R
3.

• The scalar product of two vectors −→x and −→y is denoted as −→x .−→y , and their
cross product as −→x ×−→y .

• {e1, e2, e3} denotes the canonical basis of R3. The Euclidean norm is de-
noted as | · |.

• For any x ∈ R
3, the notation x× denotes the skew-symmetric matrix

associated with x, i.e. x×y = x× y, ∀y ∈ R
3.

• For any affine vector −→x and any frame X , xX denotes the vector of coor-
dinates of −→x in the basis of the frame X .

• RY
X ∈ SO(3) denotes the rotation matrix representing the orientation of

the frame X with respect to (w.r.t.) the frame Y. For any affine vector −→x ,
one verifies xY = RY

Xx
X .

• G: sailboat’s center of mass (CoM).
• Gs, Gr, Gk: center of pressure of the sail, the rudder and the keel, all

assumed to be fixed.
• I = {0;−→ı 0,

−→j 0,
−→
k 0}: Inertial frame chosen as the North-West-Up frame.

• B = {G;−→ı ,−→j ,−→k }: Body frame fixed to the hull.

• S = {Gs;−→ı s,−→j s,−→k s}: Sail-fixed frame.

• R = {Gr;−→ı r,−→j r,−→k r}: Rudder-fixed frame, with
−→
k ≡ −→

k s ≡ −→
k r.

• m0 ∈ R, J0 ∈ R
3×3: sailboat’s mass and inertia matrix.

• −→x , −→x s, −→x r: position of G, Gs and Gr w.r.t. the inertial frame.
• −→ω : angular velocity of the body-fixed frame w.r.t. the inertial frame.
• −→v : linear velocity of G w.r.t. the inertial frame.
• −→v s, −→v r, −→v k: linear velocity of Gs, Gr and Gk w.r.t. the inertial frame.
• −→vw: wind velocity w.r.t. the inertial frame.
• −→v c: water current velocity w.r.t. the inertial frame.
• −→v as, −→v ar, −→v ak: apparent velocity of the sail, the rudder and the keel.
• x, R, ω, v: short notation of xI , RI

B, ω
B, vB, respectively.

• ν := [v, ω]�.
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• δs, δr: sail’s angle and rudder’s angle, respectively.
• αs: sail’s angle of attack.
• αr: rudder’s angle of attack.
• αk: keel’s angle of attack.
• Ss, Sr, Sk: surface of the sail, rudder and keel, respectively.
• ρair, ρwater: air and water density, respectively.
• CLs (·), CDs (·): lift and drag coefficients of the sail, respectively.
• CLr (·), CDr (·): lift and drag coefficients of the rudder, respectively.
• CLk (·), CDk (·): lift and drag coefficients of the keel, respectively.

−→
j o

−→
i o

•G

−→
j

−→
i

•
Gs

−→
j s

−→
i s

•
Gr

−→
j r −→

i r

δs

δr

ψ

rs
rr

ls

lr

Fig. 1 Notation

3 System Modeling

3.1 Forces And Torques Acting on the System

The sailboat under consideration can be divided into three rigid parts: a sail,
a rudder, and a main body composed of a keel and a hull. In what follows,
the modeling of forces and torques acting on the sailboat is presented.

3.1.1 Aerodynamic Forces and Torques Acting on the Sail

Interactions between a rigid body and the surrounding fluid are governed
by the Navier–Stocks equations. In the first approximation, the aerodynamic

forces
−→
F s acting on the sail can be expressed by a function dependent upon

the constant air density ρair , the Reynolds number Re and the angle of at-
tack αs. The latter variable is the angle between the apparent velocity −→v as
of the sail (defined as the difference between the velocity of Gs and the wind
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velocity −→vw, i.e. −→v as := −→v s−−→vw) and the zero-lift line which coincides with
the orthogonal projection of −→v as onto the sail’s plane.

First, let us derive the expression of the velocity −→v s of Gs. Using the

relations
−−→
GGs = rs

−→ı − ls
−→ı s + hs

−→
k and −→xs = −→x +

−−→
GGs, one obtains the

following relation expressed in the inertial frame:

xIs = x+R(rse1 + hse3 − lsR
B
Se1)

Differentiating both sides of the above equation w.r.t. time, one gets:

RvBs = Rv +Rω×(rse1 + hse3 − lsR
B
Se1)− lsδ̇sRR

B
Se3 × e1

⇒ vBs = v + ω×(rse1 + hse3 − lsR
B
Se1)− lsδ̇sR

B
Se2

which also yields in the form of affine vectors:

−→v s = −→v +−→ω ×−−→
GGs − lsδ̇s

−→j s
Consequently, the expression of the apparent velocity of the sail satisfies:

−→v as = −→v −−→vw +−→ω ×−−→
GGs − lsδ̇s

−→j s
From here, the sail’s angle of attack can be computed as:

αs := atan

⎛
⎝ −−→v as.−→j s√

(−→v as.−→ı s)2 + (−→v as.−→k s)2

⎞
⎠ = atan

⎛
⎝ −vSas,2√

(vSas,1)2 + (vSas,3)2

⎞
⎠

The aerodynamic force vector
−→
F s can be decomposed in two compo-

nents: the lift force
−→
F L
s , perpendicular to the apparent velocity, and the

drag force, parallel to the apparent velocity. The lift force direction is char-

acterized by the unit vector −→e Ls := sinαs
−→
βs + cosαs

−→j s, where −→
β s is the

unit vector collinear with the vector −→v as,1,3 := (−→v as.−→ı s)−→ı s + (−→v as.−→k s)−→k s.
Besides, since the apparent velocity −→v as can be expressed in the form
−→v as = |−→v as|(cosαs−→βs − sinαs

−→j s), one easily deduces that: From here, the
aerodynamic lift and drag forces can be modeled as:

⎧⎪⎨
⎪⎩

−→
F D
s = −λsCDs (αs)|−→v as|−→v as

−→
F L
s = λsC

L
s (αs)|−→v as|2−→e Ls = λsC

L
s (αs)|−→v as|

(
tanαs

−→v as + |−→v as|
cosαs

−→j s
)

with λs := 1
2ρairSs, C

L
s (αs) the lift coefficient and CDs (αs) > 0 the drag

coefficient. Thus, the expression of the total resulting aerodynamic force−→
F s :=

−→
F D
s +

−→
F L
s satisfies:
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−→
F s = −λs

(
CDs (αs)− CLs (αs) tanαs

) |−→v as|−→v as + λs
CLs (αs)

cosαs
|−→v as|2−→j s (1)

Finally, one deduces the resulting torque vector:

−→τ s = −−→
GGs ×−→

F s (2)

The above deduction can be directly applied to obtain the expressions of
the hydrodynamic forces and torques acting on the rudder and the keel.

3.1.2 Hydrodynamic Forces and Torques Acting on the Rudder

Similarly to the previous case, one deduces that the velocity of Gr satisfies
−→v r = −→v +−→ω ×−−→

GGr−lrδ̇r−→j r, with −−→
GGr = −rr−→ı −lr−→ı r−hr−→k . Subsequently,

the apparent velocity of the rudder, defined as −→v ar := −→v r −−→v c, is given by:

−→v ar = −→v −−→v c +−→ω ×−−→
GGr − lr δ̇r

−→j r (3)

Then, similarly to the sail case, the total hydrodynamic force acting on the
rudder can be modeled as:

−→
F r = −λr

(
CDr (αr)− CLr (αr) tanαr

) |−→v ar|−→v ar + λr
CLr (αr)

cosαr
|−→v ar|2−→j r (4)

with λr = 1
2ρwaterSr, C

L
r (αr) the lift coefficient, CDr (αr) > 0 the drag coef-

ficient and αr the rudder’s angle of attack defined as:

αr := atan
(
−vRar,2/

√
(vRar,1)2 + (vRar,3)2

)

Finally, the resulting torque vector is:

−→τ r = −−→
GGr ×−→

F r (5)

3.1.3 Hydrodynamic Forces and Torques Acting on the Keel

Since the keel is rigidly attached to the sailboat’s hull and its x-axis coincides
with the one of the vehicle, one deduces that the apparent velocity of the keel
satisfies: −→v ak = −→v −−→v c +−→ω ×−−→

GGk

with
−−→
GGk = −hk−→k . The keel’s angle of attack is defined as:

αk := atan
(
−vBak,2/

√
(vBak,1)2 + (vBak,3)2

)
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Similarly to the sail and rudder case, the total hydrodynamic force acting on
the keel is given by:

−→
F k = −λk

(
CDk (αk)− CLk (αk) tanαk

) |−→v ak|−→v ak + λk
CLk (αk)

cosαk
|−→v ak|2−→j (6)

with λk = 1
2ρwaterSk. Finally, the resulting torque vector is:

−→τ k =
−−→
GGr ×−→

F k (7)

3.1.4 Hydrodynamic Resistance Forces and Torques

Hydrodynamic resistance is caused by the friction and the waves. In the first
approximation, the resistance force on the hull can be modeled as the sum
of linear and quadratic terms:

−→
Fd =− cı1(

−→v a · −→ı )2 · −→ı − cı2(
−→v a · −→ı )−→ı − cj1(

−→v a · −→j )2 · −→j − cj2(
−→v a · −→j )−→j

− ck1(
−→v a · −→k )2 · −→k − ck2(

−→v a · −→k )−→k

with −→v a := −→v − −→v c. A similar form for the resistance torque generated by
rotational movement is:

−→τd = −cı3ω2
1
−→ı − cı4ω1

−→ı − cj3ω
2
2
−→j − cj4ω2

−→j − ck3ω
2
3

−→
k − ck4ω3

−→
k

Translation resistance coefficients along −→j and
−→
k are higher than along −→ı ,

making damping more important on lateral movement. This is due to the
shape of the hull (its length is more important than its height or width). For

the same reason, rotational resistance coefficients around −→j and
−→
k are less

than around −→ı .

3.1.5 Restoring Force and Torque Acting on the Hull

Let ∇ be the displacement volume of water, B the center of buoyancy andM

the ship metacenter,
−→
F B the buoyancy force and

−→
F G the gravity one. The

restoring force and torque can be modeled as (see e.g. [5]):

−→
F res. =

−→
F G +

−→
F B = −mg−→k 0 +∇ρwater−→k 0

−→τ res. = −→
FB ×−−→

GB =
−→
FB × (

−−→
GM +

−−→
GB) =

−→
FB ×−−→

GM

where the last equality is obtained under the approximation
−→
k 0×−−→

MB ≈ −→
0 .
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3.2 Rigid-Body Equations of Motion

3.2.1 General 6-DOF Equations of Motion

The kinematic equations of motion of the sailboat are given by:

{
ẋ = Rv

Ṙ = Rω×
(8)

For modeling the dynamics of the sailboat, the added mass effects are also
taken into account. Some definitions are recalled (see, e.g., [5]). Since the
center of mass G coincides with the origin of the body-fixed frame B, the
rigid-body inertia matrix MRB and the Coriolis and centripetal rigid-body
matrix CRB(ν) have the following form [5]:

MRB :=

[
mI3 0
0 J0

]
, CRB(ν) :=

[
mω× 0
0 −(J0ω)×

]

The added inertia and Coriolis/centripetal added matrices are denoted as [5]:

MA :=

[
A11 A12

A21 A22

]
, CA(ν) :=

[
0 −(A11v +A12ω)×

−(A11v +A12ω)× −(A21v +A22ω)×

]

Let us also define MT := MRB +MA and CT (ν) := CRB(ν) + CA(ν). From
here, the general 6 DOF dynamic equations of motion are given by [5]:

MT ν̇ + CT (ν)ν =

[
FB
d + FB

res. + FB
s + FB

r + FB
k

τBd + τBres. + τBs + τBr + τBk

]
(9)

We now simplify the expressions of lift and drag forces and torques acting
on the sailboat by assuming that the lift and drag coefficients of the sail, the
rudder and the keel satisfy the relation:

CDi (αi)− CLi (αs) tan(αi) = ci0, i = s, r, k (10)

with ci0 some very small positive numbers, i.e. ci0 � 1. An exemplified model
for which relation (10) holds is (11), which is convenient for NACA 00XX
profiles [11]. {

CDi (αi) = ci0 + 2ci1 sin
2(αi)

CLi (αi) = ci1 sin(2αi)
(11)

with ci0, c
i
1 some positive parameters. This lift and drag coefficients model

can be used for sails, rudder and keel and remains convenient for control
and design purpose although it neglects the stall phenomenon. For modeling
purpose, more accurate sails models can be used as [15]. From here, using
Eqs. (1), (4), (6) and model (11), one deduces:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FB
s ≈ λs

CLs (αs)

cosαs
|−→v as|2RB

Se2 = 2λsc
s
1|vSas|vSas,2(sin δse1 − cos δse2)

FB
r ≈ λr

CLr (αr)

cosαr
|−→v ar|2RB

Re2 = 2λrc
r
1|vRar |vRar,2(sin δre1 − cos δre2)

FB
k ≈ λk

CLk (αk)

cosαk
|−→v ak|2e2 = −2λkc

k
1 |vBak|vBak,2e2

(12)

The approximations made in (12) also indicate that the aero(hydro)-dynamic
forces acting on the sail, rudder and keel are approximately orthogonal to
their average planes. This approximation can also be found in [1, 6].

Then, using Eqs. (2), (5), (7), and the approximations in (12), the
aero(hydro)-dynamic torques are simplified as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τBs = ((rs − ls cos δs)e1 − ls sin δse2 + hse3)× FB
s

≈ 2λsc
s
1|vSas|vSas,2(hs cos δse1 + hs sin δse2 + (ls − rs cos δs)e3)

τBr = (−(rr + lr cos δr)e1 − lr sin δre2 − hre3)× FB
r

≈ 2λrc
r
1|vRar |vRar,2(−hr cos δre1 − hr sin δre2 + (lr + rr cos δr)e3)

τBk = −hke3 × FB
k ≈ −2λkc

k
1hk|vBak|vBak,2e1

(13)

We will show next that the general 6-DOF equations of motion (8)–(9) can
be greatly simplified to 4-DOF and 3-DOF models under some assumptions
and approximations.

3.2.2 Simplified 4-DOF Equations of Motion

By approximating the hull to a volume with three mutually perpendicular
axes of symmetry, the contributions of the off-diagonal elements in the added
mass matrix can be neglected, i.e. A12 ≈ A21 ≈ 0 and A11 and A22 are
diagonal.

In this case, Eqs. (9) can be rewritten as:

{
Mv̇ = −S(ω)Mv + FB

d + FB
res. + FB

s + FB
r + FB

k

Jω̇ = −S(ω)Jω + τBd + τBres. + τBs + τBr + τBk
(14)

with M := m0I3 +A11 = diag(m11,m22,m33) and J := J0 +A22.
In order to derive a 4-DOF simplified model, let us assume that the trans-

lational motion along
−→
k0 direction and the pitch rotational motion are negli-

gible w.r.t. other motions. This leads to the approximations x3 = ẋ3 = 0 and
θ = θ̇ = 0. The assumption on the pitch motion can be justified in practice
due to the fact that the restoring level arm related to the pitch motion is
sufficiently large w.r.t. the one related to the roll motion.
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Under these approximations, the rotation matrix R can be simply ex-
pressed as a product of a yaw and a roll rotation matrix, i.e. R = RψRφ,
with:

Rψ :=

⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ , Rφ :=

⎡
⎣1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦

On the other hand, the fact that θ = θ̇ = 0 leads to the following relations
between the angular velocities and the time-derivative of the roll and yaw
Euler angles [13]:

⎧⎪⎨
⎪⎩

φ̇ = ω1

ψ̇ = ω3(cosφ)
−1

ω2 = ω3 tanφ

⇒
{
φ̈ = ω̇1

ψ̈ = ω̇3(cosφ)
−1 + ω1ω3 tanφ(cosφ)

−1

Besides, the relation ẋ3 = 0 can be rewritten as:

e�3 RψRφv = v2 sinφ+ v3 cosφ = 0 ⇒ v3 = −v2 tanφ (15)

The assumption on the vertical motion also implies that
−→
FB = −−→

FG leading

to
−→
F res. =

−→
0 . The restoring torque can also be approximated by τBres. =

−mglφ sinφe1, with a constant restoring level arm lφ > 0.
The longitudinal and lateral velocities Vlong., Vlat. of the sailboat are de-

fined as:

V :=

⎡
⎣Vlong.Vlat.

0

⎤
⎦ := R�

ψ ẋ = Rφv =

⎡
⎣ v1
v2 cosφ− v3 sinφ
v2 sinφ+ v3 cosφ

⎤
⎦ =

⎡
⎣ v1
v2(cosφ)

−1

0

⎤
⎦

where the last equality is obtained using (15). The dynamics of V satisfy:

V̇ = Rφφ̇S(e1)v +RφM
−1(−S(ω)Mv + FB

d + FB
s + FB

r + FB
k )

= ω1S(e1)V −RφM
−1S(ω)MR�

φ V +RφM
−1(FB

d + FB
s + FB

r + FB
k )

which yields:

{
V̇long.=−e�1 M−1S(ω)MR�

φ V + e�1 M
−1(FB

d + FB
s + FB

r + FB
k )

V̇lat.=−e�2 RφM−1S(ω)MR�
φ V + e�2 RφM

−1(FB
d +FB

s +FB
r +FB

k )
(16)

3.2.3 Simplified 3-DOF Equations of Motion

Now, we provide a more simplified 3-DOF model for control design purposes
by further assuming that the roll rotational motion can also be neglected, i.e.
φ = φ̇ = 0. This assumption is well satisfied for particular design of sailboats
for which the restoring torque −→τ res. dominates all the other external torques
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along the roll and pitch axes. Also, considering a null roll angle leads to
maximize forces and torques since they are proportional to cosφ [9,14]. Using
this additional assumption and the approximation m22 ≈ m33, one deduces
from Eq. (16) that the translational dynamics satisfy:

{
m11V̇long. = FB

d,1 + FB
s,1 + FB

r,1 + FB
k,1 +m22ω3Vlat.

m22V̇lat. = FB
d,2 + FB

s,2 + FB
r,2 + FB

k,2 −m11ω3Vlong.
(17)

The rotational dynamics is approximately given by:

{
ψ̇ = ω3

J33ψ̈ = τBd,3 + τBs,3 + τBr,3 + τBk,3
(18)

If the approximations given in (12) and (13) are further used, one also
ensures that FB

k,1 ≈ τBk,3 ≈ 0, τBs ≈ 2λsc
s
1|vSas|vSas,2(ls − rs cos δs) and

τBr ≈ 2λrc
r
1|vRar |vRar,2(lr + rr cos δr).

4 Heading Control and Sail’s Angle Computation

The control design for sailboat’s heading and longitudinal motion is con-
sidered based on the simplified 3-DOF model proposed previously. In the
following, they are decoupled and studied separately.

4.1 Heading Control Design

Controlling the sailboat’s heading cannot be assigned independently to the
rudder’s angle δr in all circumstances. In fact, this can be done only if the

component around the
−→
k 0 axis of the torque generated by the rudder is un-

bounded. However, this is obviously not true since this torque component is
approximately proportional to the square of the norm of the rudder’s appar-
ent velocity −→v ar, and thus tends to zero if the apparent velocity −→v ar vanishes.
Therefore, the coordination between the sail’s and rudder’s angles would be
necessary for the success of a given mission. This is the topic of our future
work. In the current study we make the assumption that the torque produced

by the rudder can compensate all other external torques around the
−→
k 0 axis.

Thus, for control design let us simply consider the following second-order
system:

ψ̈ = u+ c(t) (19)

with u := τBr,3/J33 the control input assumed to be unbounded for control

design purpose, and c(t) := (τBs,3 + τBk,3 + τBd,3)/J33 the perturbation term



Modeling and Control Design of a Robotic Sailboat 105

assumed to be slowly time-varying (i.e. ċ ≈ 0) so that it can be compensated
by an integral action.

Let ψr be the reference heading angle to be stabilized. Then, the control
objective may be considered as the stabilization of ψ about ψr, or equivalently
the stabilization of the error angle ψ̃ := ψ−ψr about zero. However, since the
heading evolves on a circle, there is no distinction between ψ̃ and ψ̃ + k2π,
with k ∈ N, and winding problem may occur. Therefore, it is geometrically
more relevant to stabilize sin ψ̃ about zero.

The control design is based on the backstepping procedure. Consider the
first storage function V1 = 1− cos(ψ̃). By choosing a desired value for ω3 as
ω3,d = −k1 sin(ψ̃) + ψ̇r, with k1 a positive gain, one deduces:

V̇1 = sin(ψ̃)(ω3 − ψ̇r) = sin(ψ̃)(ω3,d − ψ̇r) + sin(ψ̃)(ω3 − ω3,d)

= −k1 sin2(ψ̃) + sin(ψ̃)(ω3 − ω3,d)

Next, consider the second storage function V2 = V1 + (1/2k2)(ω3 − ω3,d)
2.

One verifies that the time-derivative of V2 satisfies:

V̇2 = −k1 sin2(ψ̃) + 1

k2
(ω3 − ω3,d)(u + c− ω̇3,d + k2 sin(ψ̃)) (20)

The disturbance term c is unknown but can be compensated by its estimate
ĉ whose dynamics are given by:

˙̂c = k4(ω3 − ω3,d) , ĉ(0) = 0 (21)

with k4 a positive gain. Then, by choosing the control input:

u = −k2 sin(ψ̃)− k3(ω3 − ω3,d) + ω̇3,d − ĉ (22)

with k3 a positive gain and ω̇3,d = −k1 cos(ψ̃)(ω3− ψ̇r)+ ψ̈r, one verifies that
the time-derivative of the candidate Lyapunov function V defined as:

V := V2 +
k2
2k4

(c− ĉ)2 = (1 − cos(ψ̃)) +
1

2k2
(ω3 − ω3,d)

2 +
k2
2k4

(c− ĉ)2

satisfies (using Eqs. (20), (21)):

V̇ = −k1 sin2(ψ̃)− (k3/k2)(ω3 − ω3,d)
2 ≤ 0

From here, by application of LaSalle’s theorem one deduces that V̇ converges
to zero, which in turn implies the convergence of sin ψ̃ to zero and of ω3

to ψ̇r. In fact, the convergence of sin ψ̃ to zero implies that ψ̃ converges to
either k2π or π + k2π. In practice, this is not a problematic issue since the
equilibrium ψ̃ = π + k2π is unstable and the good equilibrium ψ̃ = k2π is
stable, i.e. the equilibrium (ψ̃, ω, ĉ) = (k2π, ψ̇r, c) is almost globally stable.
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Now, it matters to determine the real control input for the rudder, i.e.
the angle δr, as a function of the intermediary control variable u (see Eq.
(22)). This is a nonlinear control allocation problem that necessitates further
studies. Here, in order to deal with this problem we introduce some ap-

proximations. First, we assume that there is no water current, i.e. −→v c = −→
0 .

Secondly, the contribution of the rotation motion is negligible w.r.t. the trans-
lational motion in the computation of the apparent velocity −→v ar. Finally, the
influence of the rudder dynamics on the sailboat is small so that the term
dependent upon δ̇r in the definition (3) of −→v ar can be neglected. Thus, in the
first approximation one has −→v ar ≈ −→v . Besides, in practice the distance lr is
often very small w.r.t. rr (i.e., lr � rr). We also assume that the sailboat’s
lateral velocity is small w.r.t. its longitudinal velocity. Therefore, with a good
approximation one verifies that:

τBr,3 ≈ −λrcr1rr|v|2 sin(2δr)

and deduces:

δr = −1

2
arsin

(
sat1

(
J33u

λrcr1rr|v|2
))

with the classical saturation function satΔ(x) := xmin(1, Δ/|x|), ∀x ∈ R.

4.2 Sail’s Optimum Angle Computation

The stability limit of the previous heading controller depends on the bounds
of the rudder torque which, in turn, is roughly proportional to the square of
the boat’s velocity. Thus, maximizing this velocity by choosing an optimum
sail’s angle is of primary concern. This will be achieved by assuming that the
maximum longitudinal force generated by the sail will lead to a maximum
longitudinal speed of the sailboat.

This can be done by maximizing FB
s,1. Let us calculate such an optimum

value of δs. From Eq. (12) and using the assumption of (11) one obtains

FB
s,1 = 2cs1λs|vBas|

(−(sin δs)
2vBas,1 + sin δs cos δsv

B
as,2

)

One obtains:
∂FB

s,1

∂δs
= −2cs1λs|vBas| sin(2δs − β)

with β = atan2
(
vBas,2, v

B
as,1

)
. The optimal condition leads to

∂FB
s,1

∂δs
= 0 which

yields δopts = β/2+kπ/2 with k ∈ {0, 1, 2, 3}. These four values represent two
positive and two negative peaks of FB

s,1. The peak of FB
s,1 can be calculated

to determine δmaxs the best new configuration (i.e. realistic value of δs that
lead to a positive speed).
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Fig. 2 Variation of the longitudinal force as a function of δs; 4 peaks are found:
two negatives two positives. One of the positive peaks is unrealizable |δs| > 90 deg.

A major drawback of this algorithm is that it does not take into account
FB
s,2, which may be important at δopts , thus generating an important leeway.

Besides, the yaw torque generated by Fs at the chosen δs angle may become
very large and cannot be compensated by the rudder.

5 Simulation Results

The model described in 3.2.3 and both trimming algorithm and heading con-
troller have been implemented using Matlab and a variable-step solver with
a maximum time step of 0.5s.

To test this model, a first simulation set is done disabling trimming al-
gorithm, using a fixed real wind speed but different real wind direction and
setting different values of δs . Rudder’s controller with k4 = 0 is used to main-
tain the desired heading. Speed’s polar diagram is then reconstructed as the
one that embrace curves from the simulations (fig. 3). One can observe that
when the boat attempts to navigate in irons, velocity decreases and reaches
zero. In this reconstructed diagram, one can notice that the maximum ve-
locity is reached when sailing downwind. This is due to simulator constants
that may not be well tuned.

The heading and speed response to a sudden change of heading reference
are illustrated fig 4. In this case, the wind speed is set to 5m/s with a coming
angle of 0 and both sail’s trimming algorithm and rudder’s controller are
used. Heading reference is first set to π/2 and is changed to π/4 at t = 50 s.
Simulation is done using the controller with parameters k1 = 4, k2 = 1.4,
k3 = 2.5 and k4 = 0.2. As previously mentioned, the term c(t) of Eq. (19)
includes torque from both sail and hull and is assumed to be varying slowly.
In the case where these torques can directly be measured or estimated, a
feedforward term may be added to the controller in order to obtain a faster
response of the system.
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Fig. 4 Response of the system with ψr = π
2
for t < 50 s, ψr = π

4
elsewhere

6 Conclusion

Based on a general 6-DOF dynamic model, a simplified 3-DOF (x−y displace-
ment and yaw rotation) sailboat’s model has been derived and implemented
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on a computer program. This 3-DOF model has been used to design a new
heading control law. The controller acts on yaw angle to maintain a desired
heading no matter the route direction is. Notice that this controller reaches
its limit when boat’s velocity is too low because the generated rudder’s torque
(approximately proportional to the square of the boat velocity) is not suf-
ficient to counter the sail’s torque and other disturbances. A sail trimming
algorithm is also presented to compute an optimal sail’s angle from lift and
drag curves, maximizing longitudinal force in order to maximize longitudinal
speed. This assertion hold true only for boats with few leeway. Besides, since
no verification is done on the torque generated when using this optimal angle,
the resulting torque may become too large to be compensated by the rudder,
i.e. the yaw controllability is loss. Our future works will focus on designing
new controllers overcoming these drawbacks and taking into account roll ef-
fect, implementing the 4-DOF and the 6-DOF models and finally comparing
their simulation results with real sailboat tests.
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