
MPL—A Mission Planning Language
for Autonomous Surface Vehicles

Henrique M.P. Cabral, José C. Alves, Nuno A. Cruz, José F. Valente, and
Diogo M. Lopes

Abstract. In this paper we present the specification of a scripting language
for mission planning in Autonomous Surface Vehicles. Besides the specifica-
tion of common missions based on a sequence of waypoints, the main goal
was to extend the scope of application to specific need of autonomous sail-
ing boats. These include, for example, the ability to react to environmental
conditions in real time and reprogram accordingly. The proposed Mission
Planning Language (MPL) hides the details of underlying control and nav-
igation components, and focuses on the high-level procedures of a mission.
We discuss the requirements and principles behind the language and show
how oceanographic data collection missions can be significantly improved by
such a facility. Finally, we illustrate an application example inspired on a real
scenario of the FEUP Autonomous Sailboat (FASt).

1 Introduction

Autonomous surface vehicles (ASVs), in particular autonomous sailboats,
provide a particularly interesting platform for oceanographic experiments and
data collection. Their potential for large autonomy, together with the ability
to fit many different types of sensors and establish constant communication
with a remote base station, allow to carry missions of several weeks or months
without expensive and time-consuming local monitoring [3, 4].

However, and despite the advances in control algorithms for these vessels
in recent years, the specification of a mission remains, from the point of

Henrique M. P. Cabral · José F. Valente · Diogo M. Lopes
Master in Electrical and Computer Engineering, University of Porto,
Faculty of Engineering
e-mail: henrique.cabral@fe.up.pt

José C. Alves · Nuno A. Cruz
Department of Electrical and Computer Engineering, University of Porto,
Faculty of Engineering

F. Le Bars and L. Jaulin (eds.), Robotic Sailing 2013, 137
DOI: 10.1007/978-3-319-02276-5_11, c© Springer International Publishing Switzerland 2014

henrique.cabral@fe.up.pt

138 H.M. P. Cabral et al.

view of the end users, difficult and error-prone, sometimes requiring case-
by-case adjustments to the control software. Presently several applications
use friendly graphical user interfaces for specifying, simulating, monitoring
and analysing the behaviour of autonomous vehicles [5, 8]. Although such
environments hide the complexity of the low level systems and increase the
tolerance to faults due to lack of proficiency of operators, they also constrain
the variety of possible tasks that the systems are able to accomplish. For
example, if a given mission planning system for an autonomous vessel only
allows to define a sequence of waypoints, it may be impossible to specify
reactions to unanticipated events such as dynamic obstacles or changes in
environmental conditions.

Although there has been some effort to provide tools for high level mission
planning specification, based on flexible and highly parameterizable com-
mands, these have been mainly focused on motorized autonomous surface
vehicles [6]. In the particular case of autonomous sailing boats, a typical mis-
sion needs to take into account the environmental conditions, in special the
wind and sea state. Furthermore, as sailing boats have the potential for long
term deployments, they may end up facing weather conditions that are im-
possible to predict accurately when the mission is planned. The ability to
react to real time data and reprogram the remaining tasks according to these
dynamic conditions is essential for successfully completing a mission and it
is specially critical when safety is an issue.

In this paper we describe a mission planning language (MPL) capable
of both high-level specifications and also low level control over the system
operation. In this way, all control details and navigation restrictions (such
as wind conditions in sailboats) are hidden from the user, and the same
mission script could be executed transparently by both a sailboat and a
powerboat. We present the language requirements and specification, as well
as a discussion of the design principles behind MPL and some real use cases
based on previous missions with the FEUP Autonomous Sailboat (FASt) [1].

2 Requirements

As stated in the introduction (Sect. 1), the main requirements for MPL are
ease of use and, simultaneously, providing experienced users with the ability
to specify lower-level control:

Control-oriented. Unlike the detailed algorithms underlying the opera-
tion of the vehicle, a mission plan typically involves very few calculations or
complex data structures. Instead, the user should be able to specify simple1

1 From their point of view, not the system’s. Often, what seems simple to a user
(“follow a circle”) may require more or less complex maneuvers by the vehicle.
These should be entirely transparent.

MPL—A Mission Planning Language for Autonomous Surface Vehicles 139

actions directly, as well as higher control structures (loops, conditionals) over
these actions.

Modularity. Often during a mission—in particular during data collection—
the same composite action must be repeated at different points in time and
space. The language should provide mechanisms for the definition and reuse
of such actions, such as functions or procedures.

Abstraction. Most missions should not have any need to access lower-level
features of the system, such as direct actuator control. Instead, common
primitives should conceal the user from such details, guaranteeing stability
on the face of hardware and control system alterations.

Transparency. At the same time, more demanding applications should still
be able to tweak the core functionality to satisfy their own requirements. This
includes direct hardware access, as well as system state variables and control
procedures.

Taking into account the usage context, both from the user’s and the im-
plementer’s perspective, other requirements appear:

Instant feedback. Since operator failure or error in specifying the mission
may easily lead to loss of data, time, or even the vehicle, it is vital that they
receive immediate and accurate feedback in order to evaluate their actions.

Extensibility. If the language is to be used in a wide variety of ASVs,
the designer cannot presume to foresee every possible action the user may
want to perform. MPL should, therefore, provide mechanisms to define new
commands and structures, particularly for hardware control.

Resource efficiency. Given the reduced resources under which many ASV
systems operate, the language should be easy to parse and have a compact
representation for internal use.

Easy integration. The language must be easy to couple with existing con-
trol systems, as well as accurate simulation environments for fast evaluation
of the navigation pattern determined by a navigation script. This is par-
ticularly important for sailboats, where the true navigation path cannot be
entirely planned due to the mostly unforeseeable wind and sea conditions at
the time of the mission.

All considered, the requirements exposed above point to a command-based,
interpreted language, with uniform parsing and a simple interface with the
control system, as well as higher-level features such as loops and conditionals.
As such, we have decided to model MPL on Tcl [7], which provides a well-
tested boilerplate obeying several of the requirements.

140 H.M. P. Cabral et al.

3 The Language

MPL is, by design, a domain-specific language (DSL), in that it provides
facilities especially designed for the control of ASVs. On the other hand,
taking into account the variety of tasks one may want to perform in this
category, it must also allow the creation of even more specialised languages.
This thought informs not only the syntax but also the primitives supplied by
the language. These will be presented and discussed in this section.

3.1 Execution Context

Within MPL, the execution context is defined as the set of all procedures
(Sect. 3.3) and variables (Sect. 3.2) accessible to the user script at the cur-
rent point in time. Separate user contexts are used between global execution
and procedures, allowing the user to define local variables and nested
procedures.

3.2 Variables

MPL variables can be either user variables or system variables. The distinc-
tion between string, numerical, or boolean types exists only for the values
a user variable may take2. Strings may be of arbitrary length and are en-
coded internally as UTF-8; numerical values can be either real (stored as
double precision IEEE 754 floating-point values) or integer (stored as 64-bit
signed integers); and boolean values are stored as unsigned 8-bit values, with
0 interpreted as “false” and anything else as “true”.

User variables. These correspond to regular, user-defined variables. They
may take up any value of the types described below, and the type of value
stored may change over the course of execution. User variables exist solely
within the context of the script.

System variables. To access or modify any external system data (such as
configurations, sensor values, or actuations), system variables must be used.
These have direct correspondence with memory locations in the system and
will always reflect the current value at those locations. Together with system-
specific primitives, they make up the interface between user script and system
code that is specific to MPL.

2 The lack of an array or list value type is due only to the simplified syntax used
(see also Sect. 3.4).

MPL—A Mission Planning Language for Autonomous Surface Vehicles 141

3.3 Procedures

MPL supports user-defined procedures through the proc primitive
(Sect. 3.5.1). The initial execution context for a procedure contains, besides
the procedures defined in the calling context, only system variables and the
variables defined at the beginning of the procedure (i.e. those corresponding
to its arguments). This means that no outside user variables are accessible by
default. To bring external variables into the current execution context, the
procedure may invoke the extern primitive. Additionally, procedure defini-
tions may nest, since each is defined relative to the current execution context
(see also Sect. 3.1).

Procedures may end and return a value through the return primitive. If
no return statement is given, the value of the last executed statement is
returned.

3.4 Syntax

A MPL script is a string, consisting of a series of commands separated by
newlines. Each command, in its turn, is composed of a series of words, sepa-
rated by whitespace (except newlines). The first word of a command is used
to determine the procedure to be executed, which is passed the remaining
words as arguments. In the particular case that the first letter of the first
word of the command is a hash (“#”), the remainder of the line is ignored.

To enable the construction of complex commands, MPL provides two fea-
tures. Both work by literal substitution into the initial command, forming a
single word.

Command nesting. Anything between brackets (“[]”) is considered to be
a script in itself and is executed within the current context. Once everything
up to the closing bracket is executed, the result of the last command is
substituted for the original text.

Variable substitution. MPL variables can be referred using the dollar sign
(“$”). Whenever the symbol occurs and is followed by a valid variable name
(composed by alphanumeric characters and/or underscores), the value of that
variable is substituted into the word.3

The third type of substitution is used to include special characters without
attaching to them their usual meaning:

Backslash substitution. Whenever a character is preceded by a backslash
(“\”), it is inserted in the word and the backslash is eliminated. This includes

3 As mentioned before, there is no particular syntax for variables containing array
values. A possibility would be to use, as in Tcl, $var(<index>), but this has
not yet been implemented.

142 H.M. P. Cabral et al.

characters that would otherwise hold special meaning, such as dollar signs or
brackets.

All three substitutions are performed left to right, and no character is
parsed more than once. This way, once a substitution is made, it will not
trigger other substitutions. Furthermore, the result of a substitution is al-
ways included in the current word, never separated into two or more words.

The two remaining constructions, while somewhat redundant, provide a
more convenient way of writing complex words without resorting to escaping
(using backslashes) all whitespace or special characters:

Double quotes. Mainly intended for character strings. If a word starts
with a double quotation mark (“"”), it is only terminated by the next double
quote. Everything between the two marks is included in the word, but not
the marks themselves.

Curly braces. If a word starts with an opening brace (“{”), everything un-
til the next closing brace (“}”) is considered to be part of the word (except
for the braces themselves). Unlike in quote-enclosed strings, no substitutions
are performed.

This concludes the exposition of the language syntax. All of these construc-
tions aim, in one way or another, to improve the flexibility of the basic com-
mand structure while maintaining syntactic “sugar” low and parsing simple.
Additional syntax and meaning can always be added by specific commands,
either native or user-defined.

3.5 Primitives

MPL primitives are designed to achieve two main goals: first, to enable the
use of basic language features (namely, variables, control structures, and pro-
cedures); and second, to provide elementary navigation and control for the
ASV. Accordingly, they will be presented in this section according to their
purpose and functionality.

Note: in the following, [<param>] denotes an optional parameter, while
<par1|par2> denotes a choice between two parameters.

3.5.1 Basic Language Features

set <name> [<value>]
Return the value of the variable <name>. If <value> is given, set it as
the value of the variable. The variable is created if it doesn’t exist.

MPL—A Mission Planning Language for Autonomous Surface Vehicles 143

if <cond> <body1> [<body2>]
The condition <cond> is evaluated (in the same way as an expr
argument—see Sect. 3.5.4), and its result is interpreted as a boolean value
(true or false). The statements in <body1> are executed if the result is
true. If <body2> is given, it is executed if the result is false.

while <cond> <body>
The condition <cond> is evaluated, and its result is interpreted as a
boolean value. If true, the statements in <body> are executed. The con-
dition is reevaluated at the end of each execution, stopping only when it
becomes false.

proc <name> <args> <body>
Create a new procedure <name>. Whenever the procedure is invoked as
part of a command, the contents of <body> will be executed, with the
supplied arguments being assigned to the local variables with names listed
in <args>.

extern <var>
Look for the variable <name> in the global execution context, and bring
it into the current context.

return [<val>]
Return from the current procedure. If <val> is specified, it’s used as the
return value for the procedure. Otherwise, the return value is empty.

halt
Stop execution of script.

3.5.2 Navigation

coordinate <lat> <lon>
Returns a coordinate value for the specified latitude/longitude pair (in
decimal degrees), to be assigned to a variable such as a waypoint, or used
in other navigation commands.

add <coord> <dist> <direction>
Produces a new coordinate from <coord> by adding the indicated dis-
tance, <dist> (in metres), in the specified direction (angle in degrees,
clockwise from North).

Note: other convenience primitives could be included here, such as straight-
forward unit conversions (nautical miles to kilometres, decimal degrees to
DMS, etc.).

144 H.M. P. Cabral et al.

3.5.3 Control

go <coord> [<body>] [-at]
Direct the vehicle to the indicated point <coord>. If <coord> contains
more than one point, follow the points in sequence. Optionally, if a <body>
is supplied, its commands are executed in parallel while the final point
hasn’t been reached. The -at option can be used with a <body> to exe-
cute it at every point.

follow <var> [<body>]
Instruct the vehicle to follow a moving point. The variable <var> is read
once per control loop to find the point coordinates. If the optional <body>
is specified, it is executed in parallel with the command.

station <coord> <dist> [-square]
Keep the vehicle within <dist> of the point <coord>. The strategy to
keep the vehicle in place is implementation- and vehicle-dependent (such
as following “eights” for a sailboat or motor control for powerboats). The
metric can be changed to keep the vehicle within a square of side <dist>
using -square.

stop
Make the vehicle come to a stop, possibly by maneuvering to a favourable
position first. Note that currents and wind may still affect the position.

3.5.4 Miscellaneous

expr <str>
Evaluate the result of the arithmetic expression contained in the string
<str>. Supports basic arithmetic operators (+, -, *, /) and relational
operators (==, !=, <, <=, >, >=), as well as parenthesis grouping. Arith-
metic operators take precedence over relational operators, and precedence
among them is as usual. Associativity is left-to-right. Whitespace does not
affect evaluation.

log <str>
Write text string <str> to log, together with timestamp. Depending on
the implementation, this may be a local log or transmitted to a base
station.

time [-iso|-asc]
Return the current system time as a 64-bit Unix time value. If the -iso
option is used, the time is returned instead as an ISO 8601 string4. If the

4 <YYYY>-<MM>-<DD>T<HH>:<MM>

MPL—A Mission Planning Language for Autonomous Surface Vehicles 145

-asc option is used, the time is returned as a string in the format of the
standard C library function asctime5.

timer <interval> [<body>]
Start a timer with a duration of <interval> milliseconds. The proce-
dure returns only when the time is reached. If <body> is specified, it is
executed when this happens.

run <file>
Load and execute the MPL script contained in <file>. The script is
executed within the current context.

4 Use Case Analysis

In order to showcase the flexibility and applicability of MPL, we will now
present a real situation based on a mission with FASt. In this mission, the
boat was fitted with an electrical winch at the stern and a hydrophone was
attached to the end of the spool line. The objective was to sail to a set of
predetermined points, stopping at each point to lower the device to three
different depths for a certain length of time.

Typically, the command interface for FASt would not allow such detailed
procedures to be programmed, forcing us to adjust the existing communi-
cation protocols with mission-specific changes. This was neither desirable
nor elegant. However, using MPL to script the mission, the task becomes
straightforward. The used code may be found in Appendix. Some things
worth remarking:

• The convention used for FASt MPL is that all system variables have names
beginning with an underscore (“_”). In particular, _position contains
the current GPS position of the boat, _depth contains the current hy-
drophone depth, and _battery contains the battery charge in percentage
(0-100).

• Since actuator commands work through memory-mapped registers, some
wait cycles are required to allow the system to reach the desired state (line
22).

• Nesting the procedure lower within measure makes sense for this ap-
plication, since it isn’t required anywhere else. If finer-grained control was
necessary, it could be brought outside without changing any other part of
the script.

• The usage of variables named depth_1, depth_2, and depth_3 strongly
points to the usefulness of a list or array construction. This was recognised

5 <Www> <Mmm> <dd> <hh>:<mm>:<ss> <yyyy>

146 H.M. P. Cabral et al.

as an important feature early in development, but hasn’t yet been included
to keep the syntax and parsing as simple as possible (see footnotes 2 and
3). As mission scripts grow larger, it will quickly become necessary to
include it.

5 Conclusions

In this paper we presented a mission planning language (MPL) that provides
a simple to use and flexible framework for planning high-level missions for
ASVs. Although this is in an early stage of development, a significant set of
features have already been seamlessly integrated into the FASt autonomous
sailing boat. This proved to be an easy way to program complex missions that
react to dynamic conditions perceived from the on-board sensors in real time.
MPL is also well-suited to integration with high-level mission simulators, so
that users can plan a complete mission offline with a high degree of confidence
in the correctness of the real behaviour of the vehicle.

We believe MPL has the potential to be used in all ASV command systems,
but also to be expanded to include other autonomous vehicles, such as AUVs
and UAVs. For this, the existence of a standard implementation of the basic
language is paramount, and that will be the objective of future developments.

MPL—A Mission Planning Language for Autonomous Surface Vehicles 147

Appendix

1 # useful constants
2 set winch_perim [expr "2*3.14159*0.2"]
3

4 # define a square to take measurements at the vertices
5 set sw_corner [coordinate 38.408137 -9.134102]
6 set se_corner [add $sw_corner 1000 90]
7 set ne_corner [add $se_corner 1000 0]
8 set nw_corner [add $sw_corner 1000 0]
9

10 # define measurement depths (metres)
11 set depth_1 10
12 set depth_2 20
13 set depth_3 30
14

15 # get initial position to return to
16 set home $_position
17

18 # initial battery check
19 if {$_battery < 30} {
20 log "Low battery, refusing to perform mission"
21 stop
22 halt
23 }
24

25 # go to a point and perform measurements while stopped
26 proc measure {point} {
27 # lower hydrophone to given depth (in metres) and wait some time (minutes)
28 proc lower {d t} {
29 extern winch_perim
30 set _winch [expr "($d-$_depth) / $winch_perim"]
31 while {$_depth < $d} { }
32 timer [expr "$t*60000"]
33 }
34

35 # go to given point and lower hydrophone to specified depths
36 log "Going to point ($point)"
37 go $point {
38 log "Point reached, lowering hydrophone to $depth_1"
39 lower $depth_1 1
40 log "Lowering to $depth_2"
41 lower $depth_2 1.5
42 log "Lowering to $depth_3"
43 lower $depth_3 2
44 log "Raising hydrophone"
45 lower 0 0
46 } -at
47 }
48

49 # main mission
50 measure $sw_corner
51 measure $se_corner
52 measure $ne_corner
53 measure $nw_corner
54

55 # return home
56 go $home {stop} -at

148 H.M. P. Cabral et al.

References

1. Alves, J.C., Cruz, N.A.: FAST—an autonomous sailing platform for oceano-
graphic missions. In: Proceedings of the MTS-IEEE Conference—Oceans’(2008)

2. Benjamin, M.R., Schmidt, H., Newman, P.M., Leonard, J.J.: Nested autonomy
for unmanned marine vehicles with moos-ivp. Journal of Field Robotics 27(6),
834–875 (2010)

3. Caccia, M.: Autonomous surface craft: prototypes and basic research issues. In:
14th Mediterranean Conference on Control and Automation, MED 2006, pp.
1–6. IEEE (2006)

4. Cruz, N.A., Alves, J.C.: Autonomous sailboats: an emerging technology for ocean
sampling and surveillance. In: OCEANS 2008, pp. 1–6. IEEE (2008)

5. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.:
Pixhawk: A micro aerial vehicle design for autonomous flight using onboard
computer vision. Autonomous Robots 33(1-2), 21–39 (2012)

6. Newman, P.M.: Moos-mission orientated operating suite. Massachusetts Insti-
tute of Technology. Tech. Rep 2299(08) (2008)

7. Ousterhout, J.: Tcl-a universal scripting language. lecture at MIT (1995)
8. Zurich, E.: Qgroundcontrol: Ground control station for small air land wa-

ter autonomous unmanned systems (2013), http://qgroundcontrol.org/
(accessed July 2013)

 http://qgroundcontrol.org/

	MPL—A Mission Planning Language for Autonomous Surface Vehicles
	1 Introduction
	2 Requirements
	3 The Language
	3.1 Execution Context
	3.2 Variables
	3.3 Procedures
	3.4 Syntax
	3.5 Primitives

	4 Use Case Analysis
	5 Conclusions
	References

