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Practice to Inform Design of General
Mathematics Curricula

Geoff Wake

In this article, I explore how we might develop general mathematics education
curricula that reflect understanding of the nature of activity in relation to mathe-
matics in both schools and workplaces. In doing so, I like many other researchers
in the field of workplace mathematics, adopt a sociocultural theoretical perspec-
tive. Ideas of expansive learning and developmental transfer appear to offer
potential for vocational and possibly well-focused prevocational education. For
more general mathematics education, it is the nature of mathematical activity in
horizontal and vertical senses that perhaps provide a way forward. Further, I
suggest that learning communities need to not only consider the content of the
curriculum but also to reconsider the didactical contract in their mathematical
activity.

1 Introduction: The Transfer Problem

This chapter reflects on research that explored the boundaries between workplace
practice and school/college mathematics (Wake and Williams 2001). In the
development of about a dozen case studies, each of which focused on the practice
of a particular worker, in a range of different settings we engineered ‘breakdown’
moments (Pozzi et al. 1998) by asking workers to explain their activity to
researchers and students with their teachers. This generated understanding not only
of the activity of the worker and its relation to mathematics but also provided
insight into the use of academic mathematics and the affordances and constraints
of current curricula. More recently, my involvement in research into proposed
curriculum changes in mathematics in England, and into transitions into
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‘mathematically demanding’ courses in university has provided additional insight
into the central issue of transfer: that is, the use, or application, of mathematics in a
range of different settings.

In the last two decades or so many researchers have contemplated the over-
arching question of how ‘transfer’ might be conceptualised and better supported.
Extreme positions in the debate might be characterised as those of, on the one
hand, proponents of situated cognition (that is, that knowledge is developed in
social settings by individuals in interaction with others and is dependent on the
cultures, traditions and values of the community: see, for example, Lave (1988)
and Lave and Wenger (1991)), whilst on the other hand, proponents of the classical
psychology and information processing perspective (with knowledge being
abstract generalisable and applicable in a range of different situations (e.g.
Anderson et al. 1996). Our own research in many ways appeared to support the
former contention as we found that students appeared ill-equipped to use their
knowledge of school mathematics to understand workplace practices. We found
their mathematical competence to be very much situated in a school culture that
values technical competence with well-defined procedures for solving problems in
familiar, and often mathematical, settings. This particular genre of mathematics
appeared not well suited to support transferability, or transformation, of mathe-
matics into unfamiliar settings. To illustrate this consider the following brief
vignette which I have written about in more detail elsewhere.

As part of one case study we investigated the work of Alan, a railway signal
engineer, who explained some of his day-to-day workplace activity to a group of
students on a prevocational engineering course. As part of his work, Alan checked
calculations of colleagues of where to place signal boards to give advance warning
to train drivers that, at a signal ahead, they may be required to bring their train to a
halt. The example training calculations that show how to find the average gradient
over a number of sections of track proved particularly problematic for the students
to understand. Alan explained that such averaging is required so that account can
be taken of the gradient of the track when positioning signal boards because uphill
gradients assist, and downhill gradients oppose, the braking of the train. Crucially
the students were unable to bring together their understanding of the concepts of
gradient and of averages to make sense of the process illustrated. This brief extract
from the transcript of the discussions between researcher and one student from a
group of three illustrates this.
Researcher Yes… So can you just explain what’s going on in there [indicating a

table which systemised using different gradients to find the total rise/
fall over sections of track of different lengths]

Student used different gradients for each slope and he’s averaged it out…
R yes can you sort of explain the detail …
S you started adding them together—adding the gradients together and

divide by two
R Perhaps if we describe what each column is doing
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Here, the student appears to associate finding an average with the school
mathematics procedure of ‘‘adding the values together and dividing by the number
of values’’ rather than finding the total fall of track and dividing by its total length.
The ensuing discussion was lengthy requiring the researcher to explain the basic
concept of gradient, by drawing a number of diagrams.

Throughout our case studies we found students similarly ill-equipped to
understand how workers were using mathematics in relation to their day-to-day
work. In this article, therefore, I revisit the findings from the project that generated
this vignette and reflect on these in light of current understanding of the nature of
workplace activity involving use of mathematics with the aim of considering how
this might inform future development of mathematics curricula in general
education. At a time when many countries seek to encourage more of our young
people to be motivated towards further study in science and technology-based
subjects this provides an important challenge in strategic design (Burkhardt 2009).

2 The Nature of Mathematics in Workplaces

In summary we noted the following important features relating to the practices of
workers as they went about those of their day-to-day activities that involved use of
mathematics (in some way):

• Knowledge is often crystallised (e.g. Hutchins 1995) in artefacts, including tools
and signs, often as a result of reification by workplace communities (Wenger
1998).

• Use of mathematics is often ‘black-boxed’ (Williams and Wake 2007) and
engagement with mathematics often only occurs at ‘breakdown’ moments.

• The fusion (Meira 1998) of mathematical signs (in the sense of Pierce) with the
reality they represent reduces cognitive effort.

Further, we identified the following important issues relating to mathematics
content and competences that might usefully inform future development of both
(pre-)vocational and general mathematics curricula:

• School/college mathematics is just one genre of mathematics and should be
recognised as such with attention being drawn to the diversity of ways in which
mathematics might appear elsewhere. This suggests that it is important to focus
clearly on key mathematical concepts and principles and for students to expe-
rience how these can be applied in a variety of different situations using a range
of different notations, inscriptions and so on.

• Mathematics is used in a rich variety of contexts both in workplaces and more
generally in communicating information in all walks of life; these contexts are
often complex and detailed, although often simplified to allow mathematical
analysis. Mathematics curricula should allow time and space for students to
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experience using their developing mathematical knowledge, skills and under-
standing in increasingly complex situations.

• Students appear armed with competencies in relation to mathematics that sees
them particularly inadequately prepared to engage in using mathematics in
workplaces. Particularly important in this regard is their lack of skill in making
sense of the ‘‘mathematics of others’’. This is something that many workers have
to do, given that they often take over parts of the work process that have
previously been established. We note that our research pointed to a number of
strategies useful in this regard (Wake 2007) and these should be highlighted in
curriculum specification.

• Workers are often so immersed in their practice that the mathematics becomes
‘fused’ with the workplace reality it models. Underpinning assumptions are not
made explicit but workers fully understand how a change in these will affect
outcomes in terms of workplace processes. Curricula should provide students
with experiences of working with mathematics in complex situations that mirror
such scenarios with particular attention being paid to interpretation, variation
and adaptation of models.

• Our research identified seven general mathematical competences (for example,
interpreting large data sets, costing a project) (Wake and Williams 2001) each of
which we saw in use across a number of different workplaces. Fundamental to
these is the expectation that technology is integral as a tool when mathematics is
being applied. This is mirrored in other recent research that identifies and
organises mathematics around techno-mathematical literacies (Hoyles et al.
2007). Curricula should recognise and emphasise such competences.

At the time of this research, and in much of my research in schools/colleges
since, it seems the case that mathematical content, often due to curriculum
specification, is seen as compartmentalised around major content themes such as
number, algebra, geometry, statistics and probability with statements of require-
ments and resulting curriculum implementation often being atomised. Resulting
pedagogies are often transmissionist (Pampaka et al. 2011) and concerned with the
development of instrumental, rather than relational, understanding (Skemp 1976).
Consequently consideration should be given to how connections can be made
across mathematical content areas cognisant of how concepts are often blended in
workplaces and other areas of application.

3 Theoretical Perspectives

To understand the different practices we observed, and to explore the relationship
between workers, mathematics and their socially constituted workplace practices,
our analysis of case studies from a sociocultural perspective drew in particular on
Cultural Historical Activity Theory (CHAT). Before attempting to synthesise the
above to reach a strategic overview that might inform future curriculum
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development I, therefore, reflect further on considerations and understanding of
‘transfer’ from a CHAT perspective.

The well-known schema of Fig. 1 (Engeström 1987) draws our attention to the
complexity of the interacting factors that mediate the actions of an individual
within the activity of a system such as a workplace or school community. Building
on Vygotsky’s (1978) conceptualisation of artefact mediated actions of the indi-
vidual in the upper triangle, in second generation Activity Theory, Leont’ev (1981)
and followers expanded the unit of analysis to take into account the activity of the
collective, as represented by the lower part of the triangular structure. This draws
attention to how an individual’s actions are socially constructed and mediated by
rules (both implicit and explicit and which are historically evolved) and the
division of labour between members of the community. Further, in third generation
activity theory, Engestrom (2001) and others consider the interaction of two or
more activity systems leading to notions of boundary objects (Star 1989) (artefacts
that have ‘currency’ in each system) and boundary crossing (Engeström et al.
1995) by individuals who move between systems.

It is in the ‘boundary space’ between workplace and college that Hoyles et al.
(2010) identify the potential for workplace training or perhaps, ‘education for the
workplace’. In such situations there is the potential for expansive learning and
developmental transfer as participants in activity systems question and develop
their practices in each and with each system consequently learning from the other.
However, in general curriculum provision for mathematics that might better pre-
pare students to be able to transform, mathematics into a range of different
practices in which they might engage in the future, the development of such a
boundary space does not at first sight appear to provide a solution. It is this
unknown future participation that poses the problem: how can we second-guess the
nature of the knowledge, skills and understanding that might be needed?

I suggest that the way forward is to consider the generality of the actions of
individuals that emerged in the boundary space activity that our research, like that
of others, developed. In particular, I draw attention to how, as an outsider intro-
duced to a novel practice, one is required to strive to make sense of the mathe-
matical activity as it has been historically and culturally constituted. This requires
skills that allow one to de-construct these existing practices; in other words, to de-
couple the mathematics and the reality it models, prior to being able to reconstruct
and if required build on these practices. It is also important to recognise the
mathematics itself may comprise of a blend of mathematical concepts across
domains as in the vignette reported here. This suggests that ideas of horizontal and
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vertical mathematisation, in the sense of Freudenthal and colleagues (e.g. Treffers
1987), are important, with ‘models of’ situations being generative of ‘models for’
further mathematical development. Crucially here mathematical models and
mathematical modelling competencies here have an important role to play.

This is perhaps best exemplified by referring back to the illustrative vignette
introduced above. Here we have a workplace activity relying on the blending of
two important mathematical concepts (each potentially difficult in their own right):
those of gradient and average. The students in the ‘boundary space’ afforded by the
research activity struggled to unearth their understanding of these concepts beyond
a most elementary procedural understanding. A more productive attempt to make
sense of the mathematics would have understood that what had been developed
was in effect a model for an average gradient over the whole length of track. It is in
the development of this model that we detect vertical mathematisation as models
for gradients of contributing sections of track are deconstructed to provide values
for total rise/fall and total length of track. In terms of mediated actions we might
view this as the learner having to switch from mathematics as being initially a tool
for understanding the workplace artefact of gradient for a section of track and then
becoming the object of study itself as the student/researcher uses it to reconstruct
average gradient over a number of sections. In either of these interpretations of
student action it is essential that the student is able to switch back and forth
between the ‘model for’ and ‘model of’ the situation with ease and with under-
standing of one reinforcing understanding of the other.

This suggests that we require a curriculum formulation that

1. develops understanding of mathematical concepts in addition to procedural
fluency with techniques

2. prioritises competencies in mathematical modelling and applications
3. requires students to engage with making sense of, and developing existing

mathematical models (of others) of non-trivial situations.

In general, this suggests that mathematical modelling needs added emphasis in
future curricula, and that in addition to developing a meta-cognitive understanding
of modelling, it is also important that students engage with, and grapple with
coming to understand, the models of others. It is important that students develop
the enquiry skills that those in our research project lacked as it is such critical
inquiry that is quintessential to the curriculum development proposed.

This draws attention to the nature of the activity of the learning community and
how this needs to be reformulated: in essence a renegotiation of the didactic contract
(Brousseau 1997). It was noticeable how in our workplace research and more recent
research in classrooms, workshops and lectures in schools, colleges and universities
in their implementation of the curriculum teachers adopt mainly transmissionist
teaching practices (Pampaka et al. 2011). This suggests that teachers generally
believe that competence in transfer is achieved through learners firstly acquiring
technical and procedural competence prior to application (which in many cases can
be an afterthought if it is suggested at all). The proposal here that the curriculum
requires, at least in part, substantial connection with a non-mathematical reality, and

314 G. Wake



that exploring this becomes the focus of collective activity building from individual
actions, suggests a very different approach and consequently adoption of different
roles by both teachers and learners affecting the division of labour in learning
communities as it is generally currently constituted.

4 Conclusion: The Challenge for Curriculum Design

In summary my proposal is for future general mathematics curricula to introduce
new practices for students that prioritise making sense of, and developing further,
the mathematical models of others. This provides a major challenge in strategic
curriculum design and I draw attention to three major factors that such design
needs to take into account.

1. Specification. Mathematics curricula are often specified by stating mathemat-
ical content that should be learned. In developing a curriculum as suggested
here it is important to emphasise expected outcomes in terms of new skills and
competencies that learners require in understanding, and being able to develop,
mathematical models. There is currently limited understanding of how learners
might best de-couple mathematics and reality in ways that allow them insight
into each. This an under-researched area, but one that might be informed by the
substantial body of research into use of mathematics in workplaces.

2. Support. Because of the novel nature of the proposed curriculum there is a need
to identify a range of rich resources to support the required activity: again there
is perhaps the potential to draw on workplace research case studies to develop
some of these.

3. Pedagogy. It is important that teachers do not consider how they might reduce
the expected enquiry activity to a set of new heuristics. It is likely that they may
need to re-conceptualise their role to become a supporter of joint enquiry rather
than transmitter of mathematical expertise. This suggests a major shift in the
typical didactic contract with mathematics learning being considered a work-
shop-situated and inquiry-based activity.

The approach proposed here tackles issues of transfer directly by placing the
study of how mathematics models reality at the core of the curriculum. Uncoupling
mathematical concepts from the situation they model and making sense of each
and their interrelatedness becomes central to the mathematical activity of the
student. Consequently students will be expected to explore how mathematics can
be transformed to meet the needs of a range of diverse situations, with at times a
focus on the coupling, and at other times a focus on the development of the
mathematics itself. This suggests the need for continued research and development
in this area of major importance to future worker expertise and adaptability.
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