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Abstract. Structure segmentation of patient CT images is an essential step for 
radiotherapy planning but very tedious if done manually. Atlas-based auto-
segmentation (ABAS) methods have shown great promise for getting accurate 
segmentation results especially when multiple atlases are used. In this work, we 
aim to further improve the performance of ABAS by integrating it with learn-
ing-based segmentation techniques.  In particular, the Random Forests (RF) 
supervised learning algorithm is applied to construct voxel-wise structure clas-
sifiers using both local and contextual image features. Training of the RF clas-
sifiers is specially tailored towards structure border regions where errors in 
ABAS segmentation typically occur. The trained classifiers are applied to re-
estimate structure labels at “ambiguous” voxels where labels from different at-
lases do not fully agree. The classification result is combined with traditional 
label fusion to achieve improved accuracy. Experimental results on H&N im-
ages and ribcage segmentation show clear advantage of the proposed method, 
which offers consistent and significant improvements over the baseline method.  
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forests, radiotherapy planning, CT image. 

1 Introduction 

Structure segmentation of patient CT images is an essential step for radiotherapy 
planning. Although manual contouring by human experts is still the common standard 
for high quality segmentation in clinics, it is tedious, time-consuming and suffers 
from large intra- and inter- rater variability. 

Automated segmentation of CT images is a very challenging problem due to image 
noise and other artifacts, as well as limited image contrast for most soft-tissue struc-
tures. In recent years, atlas-based auto-segmentation (ABAS) methods have shown 
great promise in helping solve the problem and been applied in commercial products 
[1-2]. Although the segmentation results still need be edited manually before they can 
be used clinically, ABAS methods have been proven to be able to greatly reduce ma-
nual labor and improve contouring consistency [1].  

The basic principle of ABAS is to perform segmentation of a novel patient image 
using expert-labeled images, called atlases. After aligning the new image to the atlas 
image through image registration, atlas structure labels can be mapped to the patient 
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image to get the automatic segmentation result. Large anatomical variation among 
different subjects often limits the accuracy of ABAS if only a single atlas is used. 
Thus, it becomes common standard to use multiple atlases, where each atlas is first 
applied independently and their results are combined in the end through label fusion.  

Even with multi-atlas and label fusion, accuracy of ABAS is still heavily depen-
dent on performance of image registration. Rather than relying on image registration 
alone, in this work we aim to combine the strength of multi-atlas ABAS with that of 
learning-based image segmentation techniques in order to get much improved accura-
cy. In the method developed here, we apply Random Forests (RF) – a state-of-the-art 
supervised learning algorithm (cf. [3]) to construct a voxel classifier for each structure 
using the existing atlases as training data. The RF algorithm can effectively handle a 
large number of training data with high data dimension, which allows us to explore a 
large number of image features to fully capture both local and contextual image in-
formation. We also specially tailor the training of the RF algorithm to focus on struc-
ture border regions where errors in ABAS typically occur. After a standard multi-atlas 
label fusion is performed, the RF classifier(s) are applied to re-estimate the label 
probability for voxels where labels mapped from different atlases do not fully agree. 
The RF result is then combined with the initial label fusion to get the final structure 
segmentation.  

There are some related works in the literature. The RF method itself has been ap-
plied for structure localization and lesion segmentation problems (cf. [3]). In [4], 
Powell et al used ANN-based voxel classifier to improve brain structure segmentation 
from a probabilistic atlas. Nie and Shen [6] designed a SVM-guided deformable sur-
face model to refine structure surface segmentation of mouse brain images. Hao et al 
[5] applied a Lagrangian SVM algorithm to train massive localized voxel classifiers 
on the fly for hippocampus segmentation with multiple atlases. The SVM classifica-
tion was directly used as final result instead of being combined with traditional label 
fusion. The method can be slow since one classifier is built for each voxel, and only a 
small number of features were used. Another recent work [7] combined multi-atlas 
ABAS with a simpler kNN classifier for brain image segmentation. Only six local 
intensity values were used as voxel features, which is unlikely to produce accurate 
voxel classification for CT images. Some other works [9, 11] applied machine learn-
ing driven statistical shape models for structure detection and segmentation in either 
CT or MR images. As a competing method, ABAS has its own advantages. For ex-
ample, spatial structure relationship and full image information are implicitly taken 
into account during atlas registration. But shape model can also be incorporated to 
further improve ABAS accuracy.  

2 Methods 

The proposed method integrates learning-based voxel classification at the label fusion 
stage within a multi-atlas ABAS framework. We first present the underlying multi-
atlas ABAS method and then discuss our design of RF-based voxel classification and 
the incorporation of it to improve the label fusion accuracy.  
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2.1 Multi-atlas ABAS Method 

Fig. 1 summarizes the workflow of a basic multi-atlas ABAS procedure that we adopt 
in this work, where the segmentation of a new subject is computed by applying mul-
tiple atlases separately and then combining the individual segmentation results 
through label fusion.  

 

Fig. 1. Overall workflow of ABAS with multiple atlases and label fusion 

The registration of each individual atlas to the subject image is performed using a 
hierarchical atlas registration method we previously developed in [8]. The method 
computes first a global mutual information (MI) linear registration followed by two 
non-linear registration steps with gradually increasing degrees-of-freedom. Structure 
surface information from the atlas is incorporated into the deformation field regulari-
zation to improve both the robustness and the accuracy of atlas registration.   

The popular STAPLE method [10] is used to combine multiple structure label 
maps from the different atlases. Although the STAPLE method appears to have a 
weakness in that it does not make use of image intensity information, we found it 
work well for CT images. We have also tried various intensity-weighted label fusion 
methods but found that the improvement is minimal or none since local intensity in-
formation is often ambiguous for CT images and sensitive to common CT artifacts. 

2.2 RF Voxel Classification 

Learning-based classification methods offer an alternative approach for object detec-
tion and segmentation. Voxel classifiers, once trained, can predict the structure label 
of a new image based on discriminative features computed at each voxel location. 
Voxel classification alone also has its limitations, and is thus often used together with 
other techniques such as statistical shape models [9, 11].  In this work, we apply 
learning-based voxel classification to complement ABAS – a registration-based ap-
proach. The expert-labeled atlases available in multi-atlas ABAS naturally serve as 
training data for building the voxel classifier. 
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We train a RF classifier for each structure to predict the probability of a voxel as 
belonging to the specific structure. Although RF can easily handle multi-class classi-
fication as well, there is minimal benefit for the structures we consider in this work 
since they are not directly adjacent to each other. RF is a state-of-the-art supervised 
learning method and often considered to have better generalization power than SVM 
or boosting [3]. It achieves high generalization by growing an ensemble of indepen-
dent decision trees on random subsets of the training data and by randomizing the 
features made available to each tree node during training. The RF algorithm is very 
efficient and can effectively deal with a very large number of features. In addition, RF 
also estimates the confidence of the prediction as a by-product of the training process. 
We apply the standard RF algorithm in this work, where decision stumps are used as 
weak classifiers and the Gini index is used as the impurity criterion.  

 

 
(a)             (b) 

Fig. 2. Illustration of RF training. (a) contextual feature definition; (b) training samples selection. 

Using image intensity alone is insufficient for accurate voxel classification. Rely-
ing on point-wise intensity comparison to predict voxel correspondence is also a ma-
jor limiting factor of image registration algorithms. Instead, we employ a large set of 
features in order to fully capture both local and contextual information at each image 
point, which include: 

• Image intensity values – the raw intensity value I and the smoothed ones: I∗σG , 

where σG  denotes a Gaussian filter with a kernel size (scale) of ߪ. Three differ-

ent scales are used in this work: 1.0 mm, 1.7 mm, and 2.5 mm.  
• Image gradients )G(),,( IIII zyx ∗∇= σ  and gradient magnitudes )G( I∗∇ σ  

computed at three different scales. 

• Eigen-values of the image Hessian matrix )G( IH T ∗∇∇= σ , which are again 

computed at three different scales. 
• Image location – the (ݔ, ,ݕ -coordinates of a voxel. The coordinates are norma (ݖ

lized first with respect to a common reference frame by aligning each image to a 
fixed reference image through a coarse B-spline image registration.  

• Generalized Haar-like features as proposed in [3], which help capture contextual 
information. As illustrated in Fig. 2a, each such feature is computed as the mean 
image property difference over two randomly displaced, asymmetric cubical re-
gions around the voxel: ݂ ൌ |ܴଵ|ିଵ ∑ ሺxሻܨ െxࡾא૚ |ܴଶ|ିଵ ∑ ૛ࡾאሺxሻ.xܨ  Such features 
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can be computed very efficiently with the use of integral images (cf. [3]). In this 
work, ܨሺxሻ is either the raw image intensity value or the image gradient magni-
tude. We typically sample 200 random features of each type.  

Training data are collected from the atlases with some special consideration. As illu-
strated in Fig. 2b, training samples are only taken within close proximity to the struc-
ture boundary, which helps the RF training focus on voxels close to the structure  
border – a region where ABAS segmentation error is most likely to occur. We use an 
8 mm distance threshold to define the sampling region. Training of the RF classifiers 
is performed offline and one RF classifier is trained for each structure of interest, as 
mentioned earlier. The RF algorithm is very fast, and different trees can be trained in 
parallel. It normally takes less than 20 minutes to build a RF classifier with 50 trees. 
Note that the RF classifier(s) only need be trained once after the atlases are collected. 

2.3 RF-Enhanced Label Fusion 

The trained RF classifiers are applied after the standard multi-atlas ABAS computa-
tion as described in Section 2.1 is finished. Our goal is to combine the strengths of 
both techniques. Hence, the RF classifier for each structure is only applied to re-
estimate the label probability of “ambiguous” voxels in the original ABAS result, 
which are voxels where labels mapped from different atlases do not fully agree. 

The RF classification result can be combined with the initial ABAS result in dif-
ferent ways. For example, we can use the RF result as an extra input to the STAPLE 
algorithm. Since both RF and STAPLE produce a probabilistic estimation of voxel 
labels, we choose to compute the final structure label probability as a simple weighted 
sum of the RF probability ( ோܲ) and the initial STAPLE estimation ( ௌܲ): 

 ܲ ൌ ோݓ ோܲ ൅ ௌݓ ௌܲ, (1) 

where  ݓோ and ݓௌ are the relative weights of the two terms. In this work, we assign 
a slightly higher weight for the RF result as ݓோ ൌ 0.6, then ݓௌ ൌ 0.4. Once the label 
probability is computed for every voxel of the subject image, it can be thresholded at 
0.5 or the 0.5-isosurface be computed to get the final structure segmentation result.  

3 Experimental Results 

3.1 Head & Neck (H&N)  Image Segmentation 

In the first experiment, we apply the learning-enhanced multi-atlas ABAS for the 
segmentation of H&N cancer patient CT images. Ten randomly collected patient im-
ages with manual expert segmentation are used as the test data. All images have a 

voxel size of 3mm5.29375.09375.0 ×× . The following 4 structures are considered 

in this study:  the mandible, the brainstem, and the left and the right parotids. 
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We use a leave-one-out strategy to evaluate the proposed method: for each subject, 
the remaining subjects are considered as atlases. The Dice similarity coefficient (cf. 
[1]) is used to quantify the accuracy when comparing automatic segmentation results 
with original manual labeling.  

 

Fig. 3. Qualitative comparison of H&N segmentation results. Blue: STAPLE label fusion results; 
red: Learning-enhanced label fusion. From left to right: parotid, mandible, and brainstem.  

 

Fig. 4. Quantitative comparison: the bar plots show mean Dice values over 10 subjects for the 4 
structures and the error bars indicate one standard deviation 

Fig. 3 shows some qualitative comparisons of the segmentation results between the 
proposed method and the baseline multi-atlas ABAS method with STAPLE label 
fusion. It can be seen that combining the RF classification clearly improves the seg-
mentation accuracy. Quantitative comparison results are summarized in the box plot 
of Fig. 4, where the mean and the standard deviation of Dice values for each structure 
are shown. As can be seen, the learning-enhanced label fusion consistently produces 
higher accuracy for all 4 structures than the STAPLE method. In addition, the 
weighted fusion (Eq. (1)) is also more accurate than directly using the RF results (RF-
only). Note that the RF-only results still rely on ABAS since RF classification is only 
computed for the ambiguous voxels as mentioned earlier.  It was verified through 
paired-t tests that the improvements of the combined label fusion over both STAPLE 
and RF-only are statistically significant at the 0.05 level for all 4 structures. Note that 
some of the remaining segmentation error is inherent to the data due to intra-observer 
variation, especially for structures with very low contrast such as the brainstem. 

The computation time for both the original multi-atlas ABAS method and the RF-
enhanced one is quite comparable. It takes about one minute to run a single atlas reg-
istration on a desktop computer with an Intel Xeon Quad-core 2.66 GHz CPU and a 
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NVIDIA GTX 480 graphics card. The STAPLE label fusion takes less than a minute. 
Computing the RF classification only adds one extra minute, which is about 1/10-th 
of the total computation time assuming 9 atlases are used. 

3.2 Ribcage Segmentation 

In the second experiment, we test the proposed method on ribcage segmentation of 
lung CT images. Expert labeled images from 15 different patients are used as the test 

data. The image resolution is about 3mm39765.09765.0 ×× . We again use the 

leave-one-out strategy for the validation study, where for each patient image the other 
14 are used as atlases for ABAS segmentation and RF training.  

 

Fig. 5. Illustration of ribcage segmentation results. Left: truth; middle: STAPLE result; right: 
STAPLE combined with RF classification. 

The ribcage segmentation is a difficult problem [12], and turns out to be very chal-
lenging for a registration-based segmentation method, i.e., ABAS. It is because the rib 
bones are all similar to each other and spatially clustered. After linear registration, one 
rib from the atlas image can partially overlap with two or more ribs from the subject 
image. Purely intensity-based image registration can never get out of the local opti-
mum of the image similarity function and cause large errors in the final image match-
ing. As a result, the segmentation accuracy is rather low even with 14-atlases, which 
can be seen from the STAPLE result shown as the middle figure in Fig. 5. 

Applying RF-based voxel classification greatly improves the segmentation accura-
cy, as shown in Fig. 5. Computing the Dice statistics over all 15 patients, we found 
that the original multi-atlas ABAS with STAPLE label fusion produced Dice values 
of 03.073.0 ± , whereas learning-enhanced label fusion improved the Dice values to 

02.086.0 ± . The 0.86 overlap ratio is actually very high, considering that the ribs are 
narrow tube-like structures.  This improvement is also statistically significant as veri-
fied by the paired-t test. 

4 Conclusion 

We have developed a hybrid multi-atlas ABAS method that effectively combines the 
strengths of traditional ABAS methods and learning-based segmentation approaches. 



24 X. Han 

 

Experimental results on H&N CT image segmentation and ribcage segmentation 
showed significant improvements of the proposed method over the baseline method 
without the learning-based enhancement. Future work will investigate extra image 
features such as local binary patterns and region co-variances. We also plan to con-
struct shape priors from the atlases and investigate whether incorporating explicit 
statistical shape information can further improve the ABAS segmentation accuracy. 
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