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Abstract This chapter, dedicated to the memory of Mino Freund, summarizes the
Quantum Decision Theory (QDT) that we have developed in a series of publica-
tions since 2008. We formulate a general mathematical scheme of how decisions
are taken, using the point of view of psychological and cognitive sciences, with-
out touching physiological aspects. The basic principles of how intelligence acts
are discussed. The human brain processes involved in decisions are argued to be
principally different from straightforward computer operations. The difference lies
in the conscious-subconscious duality of the decision making process and the role
of emotions that compete with utility optimization. The most general approach for
characterizing the process of decision making, taking into account the conscious-
subconscious duality, uses the framework of functional analysis in Hilbert spaces,
similarly to that used in the quantum theory of measurements. This does not im-
ply that the brain is a quantum system, but just allows for the simplest and most
general extension of classical decision theory. The resulting theory of quantum de-
cision making, based on the rules of quantum measurements, solves all paradoxes of
classical decision making, allowing for quantitative predictions that are in excellent
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agreement with experiments. Finally, we provide a novel application by compar-
ing the predictions of QDT with experiments on the prisoner dilemma game. The
developed theory can serve as a guide for creating artificial intelligence acting by
quantum rules.

1 What Is Brain Intelligence

The brain is the center of the nervous system in all vertebrates and most inverte-
brates. Only a few invertebrates, such as sponges, jellyfish, sea squirts, and starfish
do not have one, though they have diffuse neural tissue. The brain of a vertebrate is
the most complex organ of its body. In a typical human, the cerebral cortex is esti-
mated to contain 86 ± 8 billion neurons [1], each connected by synapses to several
thousand other neurons.

The functioning of the brain can be considered from two different perspectives,
physiological and psychological. We do not touch here the physiological side of the
problem that is studied in neurobiology, medicine, and is also modeled by neuron
networks [2–4]. Our aim is to model the functioning of the psychological brain,
which is studied in cognitive sciences.

The ability of the brain to take decisions is termed intelligence. There exist nu-
merous and rather lengthy discussions attempting to describe what intelligence is
[5–12]. Summarizing these discussions, the basic feature of intelligence, which can
be accepted as its brief definition, is the ability of adaptation to the environment by
the process of making optimal decisions. This implies that the notion of intelligence
is foremost the ability of making decisions. It is generally accepted that humans
possess the highest level of intelligence in the animal kingdom. But animals also
are able to take decisions, to adapt to their environment and to solve problems [13].
Thence, animals also possess intelligence. This concerns all animals, such as birds,
fish, reptiles, amphibians, and insects. Moreover, other living beings, say plants, in
some sense, do adapt to surrounding by making decisions [14]. Therefore, we need
to accept that, to some degree, all alive beings have a kind of intelligence, since all
of them adjust to their environment by reacting to external signals. Thus, one can
talk of the intelligence of plants, fungi, bacteria, protista, amoebae, algae, and so
on. In that sense, any entity that is able to take decisions, adapting to surrounding
signals, can be assumed to have something like intelligence. If such an entity that is
able to take optimal decisions is created by humans, it is called artificial intelligence
[15].

In the following, we shall be mostly concerned with the functioning of the human
brain, though many parts of our considerations could be applied to the functioning
of the brains and nervous systems of other alive beings. The human brain, being
the most developed and complex, exhibits in the most explicit way the features
that could be met in the behavior of other animals. The aim of this paper is to
demonstrate that the human brain makes decisions in a rather intricate way that
cannot be described by the classical utility or prospect theory used in economics. We
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argue that decisions made by brains are not the same as straightforward computer-
like calculations. Human decisions are based on the functioning of and interplay
between conscious as well as subconscious processes of the brain. This complex
behavior can be represented by the techniques of quantum theory, which seems to be
the most general and simplest framework for realistically characterizing the decision
making process of human brains.

The plan of the paper is as follows. In Sect. 2, we recall how decisions are sup-
posed to be made by fully rational decision makers who evaluate the utility of
prospects and choose the one with the largest utility. Such a strictly deterministic
behavior is a strong simplification of the reality. Empirical observations show that
there always exists a distribution of choices made by different subjects, rather a sin-
gle optimal behavior. Even the same subject, under varying conditions or time, can
make different choices when confronted with the same set of competing prospects.

This implies that the first step towards a realistic representation of decision mak-
ing is the reformulation of classical utility theory within a probabilistic framework,
which is accomplished in Sect. 3. Analyzing the signals, the subject formulates a set
of possible actions, πj , termed prospects that are weighted with probabilities p(πj ).
Taking a decision means the selection of an optimal prospect π∗ characterized by
the largest probability, though other prospects can also be chosen, with lower prob-
abilities, that is, with lower frequency. The possible actions are always weighted
with a probability distribution. This describes the probability weighted diversity of
choices among a population of similar decision makers. There always exists a prob-
ability that some of the members choose one prospect, while others choose another
prospect, although the majority prefers the optimal prospect. This is the essence of
the probability weight that is associated with the frequentist interpretation, which
defines the fraction of those who choose the related prospect.

Although the probabilistic utility theory that we introduce in Sect. 3 generalizes
the standard deterministic utility theory, it does not take into account that real deci-
sion makers are not fully rational. Moreover, they experience a variety of emotions
and behavioral biases. As a result, decisions are taken not by a simple evaluation
of utilities but are essentially influenced by these biases and emotions. In taking
decisions, two brain processes are involved, conscious and subconscious. This dual
functioning of the brain makes its principally distinct from the straightforward cal-
culations by a computer, as is discussed in Sect. 4.

To take into account this complex dual behavior, Sect. 5 presents a generalization
of decision theory, which invokes the techniques of the quantum theory of measure-
ments. The developed Quantum Decision Theory (QDT) contains none of the para-
doxes that are so numerous in classical decision making. Importantly, we show that
classical decision theory constitutes a particular case of QDT. The latter reduces to
the former under a process that can be called “decoherence”, which describes how
the addition of reliable information decreases the emotional component of a deci-
sion, thus making it more and more controlled by the rational utility component.

To illustrate how QDT describes how decisions are made, avoiding the para-
doxes of classical decision making and providing quantitative predictions, we treat
in Sect. 6 the prisoner dilemma game.
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Section 7 summarizes the results, stressing that the developed QDT is, to our
knowledge, the sole decision theory that not merely removes classical paradoxes,
but provides quantitative predictions, with no adjustable parameters, which are in
good agreement with empirical observations.

Concluding this introduction, our main hypothesis is that the brain makes deci-
sions through a procedure that is similar to quantum measurements. This does not
require the brain to be a quantum object, but merely takes into account the dual
nature of the decision process, involving both conscious logical evaluations as well
as subconscious intuitive feelings. This chapter summarizes the Quantum Decision
Theory (QDT) that we have developed in a series of publications [16–21]. We also
provide a novel application on the prisoner dilemma game, comparing the predic-
tions of QDT with experiments.

2 Choosing a Prospect on Fully Rational Grounds

Assuming that the subject is fully rational and possesses the whole necessary in-
formation for making decisions, it is reasonable to suppose that such decisions are
based on the evaluation of the utility of the results following the corresponding ac-
tion. This is the central assumption of expected utility theory, which prescribes a
normative framework on how decisions are made. The basic mathematical rules of
expected utility theory have been compiled by von Neumann and Morgenstern [22]
and Savage [23]. Below, we give a brief sketch of the main features of utility theory
in order to introduce the terminology to be used in the following sections, where the
generalizations of this theory will be considered.

The outcomes of actions, that is, the consequences of events, are measured by
payoffs composing a set

X ≡ {xn ∈ R : n = 1,2, . . . ,Nout}. (1)

The number of outcomes Nout can be as small as two or asymptotically large. Pos-
itive outcomes correspond to gains, while negative ones to losses. Payoffs xn can
come with different probabilities pj (xn), being labeled by an index j = 1,2, . . . ,L,
and satisfying the normalization condition

Nout∑

n=1

pj (xn) = 1, 0 ≤ pj (xn) ≤ 1. (2)

The ensemble of payoffs and their probabilities is called a lottery, or a prospect

πj = {
xn,pj (xn) : n = 1,2, . . . ,Nout

}
. (3)

One also uses the notion of compound lotteries that are the linear combinations of a
given set of lotteries, with the same payoffs and with the linear combinations of the
related weights.

There can exist several prospects forming a family

L = {πj : j = 1,2, . . . ,L}. (4)
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The task of decision making is to decide between the prospects πj , choosing one
out of the given family.

The choice involves the classification of outcomes according to their utility
for the decision maker. One defines a utility function u(x) : X → R that can
also be called pleasure function, satisfaction function, or profit function. By def-
inition, the utility function is nondecreasing (more is always preferred), so that
u(x1) ≥ u(x2) for x1 ≥ x2 and concave (diminishing marginal utility), such that
u(α1x1 + α2x2) ≥ α1u(x1) + α2u(x2) for non-negative αi ’s normalized to one. The
first derivative u′(x) ≡ du(x)/dx is termed the marginal utility that is non-negative
for a non-decreasing function. The second derivative u′′(x) ≡ d2u(x)/dx2 is non-
positive for a concave function. Hence, the marginal utility u′(x) does not increase.
This implies that, with increasing payoff x, the utility function decelerates. Such
a function is termed risk averse [24, 25], since a sure payoff is always preferred
to different random payoffs with the same mean value. The risk aversion can be
captured by the so-called degree of risk aversion r(x) ≡ −u′′(x)/u′(x), which is
non-negative. Examples of utility functions are linear, power-law, logarithmic or
exponential functions. Usually, the utility of nothing is set to zero, u(0) = 0, but the
absolute utility level is inconsequential.

Generally, a payoff xn can be either positive, representing a gain, or negative
corresponding to a loss. Strictly speaking, it is impossible to lose something, while
having nothing. Even the poorest person can lose a gamble and go in debt, having an
instantaneous negative net worth. However, taking into account the value of future
incomes gives in general a positive net value and the debt then constitutes a loss of
a part of future incomes. There can be however situations where debt reaches levels
beyond the most optimistic expectations of future incomes, so that one has lost what
one did not own now or will ever have in the future. In its encyclopedic review of
the history of debt in human societies, Graeber documents that such situations were
quite common [26]. They were usually followed by slavery (and are still in various
explicit or disguised forms followed by some kind of slavery), where the person in
debt sells his children, wife or himself. A loss is then backed up by the ultimate
reservoir of wealth, being stored in the value of oneself [26]. Formally, this implies
that, before losing xn, one has an initial given amount x0 ≥ xn. Then, shifting all
payoffs by x0, one can redefine the lottery so that all its payoffs be non-negative.

Each prospect is characterized by the expected utility

U(πj ) =
Nout∑

n=1

u(xn)pj (xn). (5)

This notion was introduced by Bernoulli [27] and an axiomatic theory was devel-
oped by von Neumann and Morgenstern [22], where the payoff weights were treated
as objective. Savage [23] extended the notion to subjective probabilities evaluated
by decision makers.

Expected utility can be interpreted either as a cardinal or ordinal quantity. Car-
dinal utility is assumed to be precisely measured and the magnitude of the mea-
surement is meaningful. It can be measured in some chosen units, similarly to how
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distance is measured in meters, or time in hours, or weight in kilograms. However,
such a definition in precise units is often impossible and, actually, not necessary.
It is sufficient to interpret the expected utility as ordinal utility, for which its pre-
cise magnitude is not important, but the magnitude of the ratios between different
utilities carries sufficient meaning.

The prospect uncertainty is described by the prospect variance

var(πj ) ≡ 1

Nout

Nout∑

n=1

{
x2
npj (xn) − [

x(πj )
]2}

, (6)

whose square root can also be called the prospect volatility or spread. We have used
the following notation for the prospect mean

x(πj ) ≡ 1

Nout

Nout∑

n=1

xnpj (xn) . (7)

The ordering of the prospects is prescribed by the relations between their ex-
pected utilities. One says that a prospect is preferable to another one if its utility is
larger than that of the latter. Two prospects are termed indifferent when their utilities
coincide. The properties of the utility function u(x) prescribe the properties of the
expected utility.

(i) Completeness: For any two prospects π1 and π2, one of the following rela-
tions necessarily holds, either π1 = π2, or π1 < π2, or π1 > π2, or π1 ≤ π2,
or π1 ≥ π2, understood as the corresponding relations between their expected
utilities.

(ii) Transitivity: For any three prospects, such that π1 ≤ π2 and π2 ≤ π3, it follows
that π1 ≤ π3.

(iii) Continuity: For any three prospects ordered so that π1 ≤ π2 ≤ π3, there exists
α ∈ [0,1] such that π2 = απ1 + (1 − α)π3.

(iv) Independence: For any π1 ≤ π2 and an arbitrary π3, there exists α ∈ [0,1] such
that απ1 + (1 − α)π3 ≤ απ2 + (1 − α)π3.

The central aim of expected utility theory is to calculate the expected utilities
for all prospects from the given family L and, comparing their values, to find the
prospect possessing the largest utility. Then the decision is taken by selecting this
prospect corresponding to the largest utility, which is called the most useful prospect.
The decision making scheme based on expected utility theory is given in Fig. 1.

3 Probabilistic Approach to Expected Utility Theory

According to the expected utility theory delineated above, the choice of a prospect
is with certainty prescribed by the utility of the prospects. This theory is determinis-
tic, since the choice, with probability one, is required to correspond to the prospect
with the largest expected utility. Such a completely deterministic formulation con-
tradicts the known empirical facts demonstrating that, under the same conditions,
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Fig. 1 Scheme of the
deterministic decision making
process based on the choice
of the most useful prospect
with the largest expected
utility

different persons often choose different prospects. Of course, one could salvage the
deterministic theory by introducing heterogenous utility functions that describe the
variety of tastes of different people [28]. While this captures the evident observation
that tastes exhibit some heterogeneity, extending utility theory to heterogeneous or
random utility theory comes at the cost of a proliferation of parameters, making the
approach descriptive at best, while being non-parsimonious and non predictive. An
even more convincing attack to the deterministic approach comes from the observa-
tion that the same person, under the same conditions, may choose different prospects
at different times. This “intra-observer variation” has been largely documented in
the medical literature [29, 30]. This suggests to view the brain of a decision maker
as deliberating on the set of admissible prospects and evaluating them by involving
some probabilistic weighting. This is the motivation to reformulate utility theory by
generalizing it to a probabilistic approach.

The probabilistic weighting of prospects can be formalized by invoking the prin-
ciple of minimal information that allows one to find a probability distribution un-
der the minimal given information. The idea of this principle goes back to Gibbs
[31–33], who formulated it as a conditional maximization of entropy under the given
set of constraints. This principle is widely used in information science [34] and in
physics [35, 36]. A general convenient form of an information functional is given
by the Kullback-Leibler relative information [37, 38].

In order to weight the prospects according to their utility, let us consider a family
of prospects L. Assume that they can be weighted by means of a distribution defined
by utility factors f (πj ) that are normalized,

L∑

j=1

f (πj ) = 1, 0 ≤ f (πj ) ≤ 1. (8)

By definition, the utility factor of zero utility is to be zero,

f (πj ) = 0, U(πj ) = 0. (9)
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Since the utility factors f (πj ) weight the finite utilities U(πj ), the total finite ex-
pected utility defined by

U =
L∑

j=1

U(πj )f (πj ) (10)

should exist, given a finite number L of prospects.
Under these conditions, we can define the Kullback-Leibler information as

I [f ] =
∑

j

f (πj ) ln
f (πj )

f0(πj )
+ λ

[∑

j

f (πj ) − 1

]
− β

[∑

j

U(πj )f (πj ) − U

]
,

(11)

with a trial distribution f0(πj ) proportional to the expected utility U(πj ) in order
to take into account condition (9). The parameters λ and β are the Lagrange mul-
tipliers guaranteeing the validity of the imposed constraints (normalization (8) and
existence of a well-defined finite expected utility (10)).

Minimizing the information functional (11) yields the utility factor

f (πj ) = U(πj )

Z
exp

{
βU(πj )

}
, (12)

with a normalization coefficient

Z =
∑

j

U(πj ) exp
{
βU(πj )

}
.

The parameter β characterizes the level of belief or confidence of the decision maker
in the correct selection of the prospect set. Requiring that the utility factor, by its def-
inition, be an increasing function of utility makes the belief parameter non-negative
(β ≥ 0).

In the case of no confidence in the given set of prospects, we have

f (πj ) = U(πj )∑
j U(πj )

(β = 0). (13)

In the opposite case of absolute confidence, we get

f (πj ) =
{

1, πj = maxj πj

0, πj < maxj πj
(β → ∞), (14)

where maxj πj is the prospect whose expected utility is the largest. Thus, the latter
situation (β → ∞) retrieves the deterministic utility theory, which hence can be
seen as a particular case of the more general probabilistic approach.

The prospect utility factors {f (πj ) : j = 1,2, . . . ,L} give the fractions of deci-
sion makers selecting the corresponding prospects {πj : j = 1,2, . . . ,L}. The or-
dering of prospects in the probabilistic approach is the same as in the standard ex-
pected utility theory. But now, not all subjects are forced to choose the most useful
prospect, though it is the prospect whose choice is the most probable. There can
exist a fraction of decision makers choosing other prospects with lower utility. The
probabilistic decision making scheme is summarized in Fig. 2.
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Fig. 2 Scheme of the
probabilistic decision making
process based on the
evaluation of the prospect
utility factors characterizing
the fraction of decision
makers choosing the related
prospect

4 Human Decision Making and Computer Operations

It is widely believed that the human brain operates, during a decision making pro-
cess, as a complex and powerful computer. The network of neurons within the brain
accepts external signals and transforms them into decisions of the subject by accom-
plishing the corresponding actions [39]. Such a procedure could correspond to the
schemes depicted in Figs. 1 or 2.

However, if the brain would act as just described, this would correspond to mak-
ing decisions only on the basis of a well defined deterministic objective function,
called utility. But there exist numerous empirical studies demonstrating that hu-
mans often deviate from and even contradict the choices prescribed by utility theory.
Such contradictions are known as decision-making paradoxes. As examples, we can
mention the Allais paradox [40], the Ellsberg paradox [41], the Kahneman-Tversky
paradox [42], the Rabin paradox [43], the Ariely paradox [44], the disjunction ef-
fect [45], the conjunction fallacy [46], the planning paradox [47], and many others
[48, 49]. These paradoxes cannot be resolved by the approaches consisting in mod-
ifying the expected utility theory into so-called non-expected utility theories, as has
been proved in [50, 51].

The appearance of numerous paradoxes in decision making, based on utility the-
ory, is caused by the fact that this theory does not take into account the emotional
components always present in decision makers, which often compete and modify
the decisions that would result purely from utility-based processes. A human de-
cision maker not merely evaluates the objective utility of the prospects, but also is
influenced by subjective feelings, emotions, and behavioral biases that are produced
by subconscious brain activity. The brain takes decisions by combining (i) the objec-
tive knowledge of the prospect utility, by evaluating the utility factors, with (ii) the
subjective attractiveness of the prospects, which is hinted by subconscious feelings.
The latter means that, in addition to the utility factors measured by conscious logical
operations, there should exist attraction factors produced by subconscious feelings.
Then, the resulting weights of the prospects p(πj ) are defined not merely by the
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Fig. 3 Scheme of human
decision making, which is at
the basis of the Quantum
Decision Theory proposed
here

utility factors f (πj ), but are also dependent on some attraction factors q(πj ). We
thus suggest that the correct representation of the brain function during a decision
process is given by the scheme represented in Fig. 3, which should correct and re-
place those of Figs. 1 or 2.

Our theory views the human brain not just a powerful computer accomplishing
a great number of straightforward logical operations, but as an object that must in-
clude parallel functioning on two levels. One part, representing conscious logical
operations evaluating the utility factors, can be organized as a powerful computer.
And the other part, representing subconscious activity producing the attraction fac-
tors, should be a very different device that functions not as a straightforward com-
puter calculating numbers, but as an object estimating qualitative features of the
prospects.

In the sequel, we do not touch on the technical issues of how the devices, dis-
cussed above, are actually structurally realized, or how they could be constructed
in an artificial brain. Instead, we describe how their functioning can be represented
mathematically, characterizing the split dual action of evaluating the prospect utili-
ties and estimating their attractiveness.

5 Quantum Decision Making by Human Brain

The dualism of the brain, combining objective conscious operations with subjective
subconscious activity, suggests that its functions could be described by generaliz-
ing the real-valued way of defining the prospect weights to an approach involving
complex-valued quantities. In turn, this immediately points to quantum-theory tech-
niques, where the probability weights are defined through complex-valued quanti-
ties, such as wave functions.

The idea of employing quantum theory for describing brain functions was ad-
vanced by Bohr [52, 53]. Analyzing the quantum theory of measurements, von Neu-
mann [54] mentioned that the action of measuring observables could be interpreted,
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to some extent, as taking decisions. Using these ideas, we have developed [16–21]
the Quantum Decision Theory (QDT), using the mathematical techniques of quan-
tum theory of measurements.

Before formulating this theory, we would like to stress that the quantum approach
to describing human decision making does not assume that the brain is a quantum
object. The quantum techniques just provide the most straightforward way of gen-
eralizing decision making by taking into account the dual functioning of the human
brain.

The main points of QDT are as follows. We consider a set of elementary
prospects, represented by vectors |n〉, whose closed linear envelope

H ≡ Span
{|n〉} (15)

composes the space of mind. The prospects πj from the given set L are represented
by the vectors |πj 〉 in the space of mind. The prospect operators are defined as

P̂ (πj ) ≡ |πj 〉〈πj |. (16)

These operators play the same role as the operators from the algebra of local ob-
servables in quantum theory.

The state of a decision maker is characterized by a non-negative operator ρ̂ acting
on the space of mind and normalized as

Tr ρ̂ = 1,

with the trace taken over the space of mind. Defining the decision-maker state by a
statistical operator, but not by a simple wave function, takes into account that this
decision maker is not an absolutely isolated subject, but can be influenced by its
environment.

The prospect probabilities, playing the role of observable quantities, are defined
as the averages of the prospect operators

p(πj ) ≡ Tr ρ̂P̂ (πj ), (17)

with the trace again taken over the space of mind. Writing down the explicit expres-
sion for the trace over the elementary prospect states and separating the diagonal
and off-diagonal parts leads to the sum

p(πj ) = f (πj ) + q(πj ), (18)

in which the first term comes from the diagonal part and the second term, from
the off-diagonal part. The first term represents the classical utility factor, while the
second term, caused by the prospect quantum interference, is the attraction factor.
By definition, the prospect probability is non-negative and normalized, so that

L∑

j=1

p(πj ) = 1, 0 ≤ p(πj ) ≤ 1. (19)

In view of the normalization condition for the utility factor (8), the attraction factor
lies in the range

−1 ≤ q(πj ) ≤ 1 (20)
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and satisfies the alternation law
L∑

j=1

q(πj ) = 0. (21)

Generally, the attraction factor is a contextual quantity that can vary for different
decision makers and even for the same decision maker at different times. This looks
as an obstacle for the ability to give quantitative predictions for the prospect proba-
bilities. However, it is possible to show [18, 21] that the aggregate attraction factor,
averaged over many decision makers, enjoys the property called quarter law:

1

L

L∑

j=1

∣∣q(πj )
∣∣ = 1

4
. (22)

Since the utility factor is uniquely defined by the corresponding expected utility, it
is possible to estimate quantitatively the prospect probabilities, assuming that the
typical attraction factor satisfies the quarter law.

When the decision maker is a member of a society from which he/she gets ad-
ditional information, then the attraction factor varies depending on the amount μ

of the received information. The attraction factor, as a function of the information
measure μ, can be presented [55] in the form

q(πj ,μ) = q(πj ,0)e−γμ. (23)

The information can be positive, with μ > 0 as well as negative, or misleading,
with μ < 0. Respectively, the attraction factor can either decrease or increase. The
attenuation of behavioral biases with the receipt of additional information has been
confirmed by empirical studies [56, 57].

The reduction of QDT to the probabilistic variant of classical decision theory
corresponds to the attraction factor tending to zero. This is similar to the reduction
of quantum theory to classical statistical theory in the process of decoherence.

6 Cooperation Paradox in Prisoner Dilemma Games

Let us briefly summarize the status of QDT with respect to its empirical sup-
port. First, the disjunction effect, studied in different forms in a variety of exper-
iments [45], has been analyzed in details in [18, 21], where we found that the em-
pirically determined absolute value of the aggregate attraction factor |q(πj )| was
found to coincide with the value 0.25 predicted by expression (22), within the typi-
cal statistical error of the order of 20 % characterizing these experiments. The same
agreement, between the QDT prediction for the absolute value of the attraction fac-
tors and empirical values, holds for experiments testing the conjunction fallacy. The
planning paradox has also found a natural explanation within QDT [17]. Moreover,
it has been shown [20] that QDT explains practically all typical paradoxes of clas-
sical decision making, arising when decisions are taken by separate individuals.
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In order to illustrate how QDT resolves classical paradoxes, let us consider a
typical paradox happening in decision making. In game theory, there is a series of
games, in which several subjects can choose either to cooperate with each other or
to defect. Such setups have the general name of prisoner dilemma games. The coop-
eration paradox consists in the real behavior of game participants who often incline
to cooperate despite the prescription of utility theory for defection. Below, we show
that this paradox is easily resolved within QDT, which gives correct quantitative
predictions.

The generic structure of the prisoner dilemma game is as follows. Two partici-
pants can either cooperate with each other or defect from cooperation. Let the coop-
eration action of one of them be denoted by C1 and the defection by D1. Similarly,
the cooperation of the second subject is denoted by C2 and the defection by D2.
Depending on their actions, the participants receive payoffs from the set

X = {x1, x2, x3, x4}, (24)

whose values are arranged according to the inequality

x3 > x1 > x4 > x2. (25)

There are four admissible cases: both participants cooperate (C1C2), one cooperates
and another defects (C1D2), the first defects but the second cooperates (D1C2), and
both defect (D1D2). The payoffs to each of them, depending on their actions, are
given according to the rule

[
C1C2 C1D2
D1C2 D1D2

]
→

[
x1x1 x2x3
x3x2 x4x4

]
. (26)

As is clear, the enumeration of the participants is arbitrary, so that it is possible to
analyze the actions of any of them.

Each subject has to decide what to do, to cooperate or to defect, when he/she is
not aware about the choice of the opponent. Then, for each of the participants, there
are two prospects, either to cooperate,

π1 = C1(C2 + D2), (27)

or to defect,

π2 = D1(C2 + D2). (28)

In the absence of any information on the action chosen by the opponent, the prob-
ability for each of these actions is 1/2 (non-informative prior). Assuming for sim-
plicity the linear utility as a utility function of the payoffs, the expected utility of
cooperation for the first subject is

U(π1) = 1

2
x1 + 1

2
x2, (29)

while the utility of defection is

U(π2) = 1

2
x3 + 1

2
x4. (30)
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The assumption of linear utility is not crucial, and can be removed by reinterpreting
the payoff set (24) as the utility set. Because of condition (25), the utility of defec-
tion is always larger than that of cooperation, U(π2) > U(π1). According to utility
theory, this means that all subjects have always to prefer defection.

However, numerous empirical studies demonstrate that an essential fraction of
participants choose to cooperate despite the prescription of utility theory. This con-
tradiction between reality and the theoretical prescription constitutes the coopera-
tion paradox [58, 59].

Considering the same game within the framework of QDT, we have the proba-
bilities of the two prospects,

p(π1) = f (π1) + q(π1), p(π2) = f (π2) + q(π2). (31)

The propensity to cooperation and the presumption of innocence propose that the at-
traction factor for cooperative prospect is larger than that for the defecting prospect,
that is, q(π1) > q(π2). In view of the alternation law (21) and quarter law (22), we
have

q(π1) = −q(π2) = 1

4
. (32)

Hence, we can estimate the considered prospects by the equations

p(π1) = f (π1) + 0.25, p(π2) = f (π2) − 0.25. (33)

From here, we see that, even if defection seems to be more useful than cooperation,
so that f (π2) > f (π1), the cooperative prospect can be preferred by some of the
participants.

To illustrate numerically how this paradox is resolved, let us take the data from
the experimental realization of the prisoner dilemma game by Tversky and Shafir
[45]. Subjects played a series of prisoner dilemma games, without feedback. Three
types of setups were used: (i) when the subjects knew that the opponent had de-
fected, (ii) when they knew that the opponent had cooperated, and (iii) when sub-
jects did not know whether their opponent had cooperated or defected. The rate of
cooperation was 3 % when subjects knew that the opponent had defected, and 16 %
when they knew that the opponent had cooperated. However, when subjects did not
know whether their opponent had cooperated or defected, the rate of cooperation
was 37 %.

Treating the utility factors as classical probabilities, we have

f (π1) = 1

2
f (C1|C2) + 1

2
f (C1|D2),

f (π2) = 1

2
f (D1|C2) + 1

2
f (D1|D2).

According to the Tversky-Shafir data,

f (C1|C2) = 0.16, f (C1|D2) = 0.03.

Hence,

f (π1) = 0.095, f (π2) = 0.905. (34)
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Then, for the prospect probabilities (33), we get

p(π1) = 0.345, p(π2) = 0.655. (35)

In this way, the fraction of subjects choosing cooperation is predicted to be about
35 %. This is in remarkable agreement with the empirical data of 37 % by Tversky
and Shafir. Actually, within the statistical accuracy of the experiment, the predicted
and empirical numbers are indistinguishable.

If we would follow the classical approach, the fraction of cooperators should be
not larger than 10 % (f (π1)), which is much smaller than the observed 37 %. But in
QDT, there are no paradoxes and its predictions are in quantitative agreement with
empirical observations.

7 Conclusion

We have presented the Quantum Decision Theory that we have developed since
2008, which is based on combining utility-like calculations with emotional influ-
ences in the representation of the decision making processes. We have emphasized
that decision making by humans is principally different from the direct calculations
by, even the most powerful, computers. This basic difference is in the duality of
the human decision-making procedure. The brain makes decisions by a parallel pro-
cessing of two different jobs: by consciously estimating the utility of the available
prospects and by subconsciously evaluating their attractiveness.

We have shown how the duality of the brain functioning can be adequately rep-
resented by the techniques of quantum theory. The process of decision making has
been described as mathematically similar to the procedure of quantum measure-
ment. The self-consistent mathematical theory of human decision making that we
have been developed contains no paradoxes typical of classical decision making. It
is important to stress that this theory is the first theory allowing for it quantitative
predictions taking into account behavioral biases.

We stress that the description of the functioning of the human brain by means of
quantum techniques does not require that the brain be a quantum object, but this ap-
proach serves as an appropriate mathematical tool for characterizing the conscious-
subconscious duality of the brain processes. This duality must be taken into account
when one attempts to create an artificial intelligence imitating the human brain. Such
an artificial intelligence has to be quantum in the sense explained above [60].
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