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Preface

In the last years, the world has observed the increasing complexity of integrated
circuits (ICs), strongly triggered by the proliferation of consumer electronic
devices. The design of complex system on a chip (SoC) is widespread in multi-
media and communication applications, where the analog and mixed-signal (AMS)
blocks are integrated together with digital circuitry. However, the analog blocks
development cycles are larger when compared to the digital counterpart. The two
main reasons identified are the lack of effective computer-aided-design (CAD)
tools for electronic design automation (EDA), and that analog circuits are being
integrated using technologies optimized for digital circuits. Given the economic
pressure for high-quality yet cheap electronics and challenging time-to-market
constraints, there is an urgent need for CAD tools that increase the analog
designers’ productivity and improve the quality of resulting ICs.

The work presented in this book belongs to the scientific area of electronic
design automation and addresses the circuit-level sizing and optimization of
analog ICs. Particularly, an innovative approach to enhance a state-of-the-art
layout-aware analog IC circuit-level optimizer, by embedding statistical knowl-
edge from an automatically generated gradient model into the multi-objective
multi-constraint optimization kernel based on a modified NSGA-II algorithm. The
gradient model is automatically generated by, first, using a design of experiments
(DOE) approach with two alternative sampling strategies, the full factorial design
and the fractional factorial design, which define the samples that will be accurately
evaluated using a circuit simulator (e.g., HSPICE�), second, extracting and
ranking the contributions of each design variable to each performance measure or
objective, and, finally, building the model based on series of gradient rules. The
gradient model is then embedded into the modified NSGA-II optimization kernel,
by acting on the mutation operator. The approach was validated with typical
analog circuit structures for an industry standard 0.13 lm integration process,
showing that, by enhancing the circuit sizing evolutionary kernel with the gradient
model, the optimal solutions are achieved, considerably, faster and with identical
or superior accuracy.

The book is organized into six chapters.
Chapter 1 gives a brief introduction to the area of analog IC design automation,

with special emphasis to the design flow hierarchy and the circuit-level sizing and
optimization.
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Chapter 2 presents an extensive state-of-the-art review on analog integrated
circuit (IC) design automation tools applied to the circuit-level synthesis problem.
Particularly, several circuit-level sizing techniques are sketched and compared,
and then, different model-based optimization approaches are outlined.

Chapter 3 illustrates the Gradient Model generation. The circuit is first sampled
using either the full factorial or the fractional factorial Design of Experiments
(DOE) techniques, and then the main effect is used to extract the gradient rules
which compose the Gradient Model.

Chapter 4 describes how the Gradient Model is used to enhance the circuit-level
optimization tool, GENOM-POF. GENOM-POF is part of the Analog Integrated
circuit Design Automation environment (AIDA), developed in the Integrated
Circuits Group at Instituto de Telecomunicações, Lisboa, Portugal. The integration
of the gradient model includes both embedding the model in the optimization
kernel, and add the model’s setup options to AIDA’s graphical user interface
(GUI), which allows the visualization of the results and the configuration of the
parameters, such as the objectives, constraints and input variables, ranges, etc.

Chapter 5 illustrates the application of the proposed methodology to practical
examples. The framework of the proposed methodology for the automatic gen-
eration of analog ICs layout has been coded in JAVA and is running, for the
presented examples, on an Intel� CoreTM 2 Quad CPU 2.4 GHz with 6 GB of
RAM.

Chapter 6 summarizes the provided book and supplies the respective conclusion
and future work.

Frederico A. E. Rocha
Ricardo M. F. Martins
Nuno C. C. Lourenço

Nuno C. G. Horta
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Chapter 1
Introduction

Abstract This chapter presents a brief introduction to analog integrated circuits
(ICs) design and to the area of analog IC design automation. First, the analog IC
design problem is presented, that led to the research in this area, then, the tradi-
tional analog design flow is sketched and, finally, the features of the proposed
methodology to enhance the circuit-sizing task are outlined.

Keywords Analog IC design � Circuit sizing � Gradient rules � Electronic design
automation � Computer-aided-design

1.1 Analog IC Design

In the last decades, Very Large Scale Integration (VLSI) technologies have been
widely improved, allowing the proliferation of consumer electronics and enabling
the growth of integrated circuits (IC) market from $10 billion in 1980 to over $300
billion in 2013 [1]. IC designers are building systems that are increasingly more
complex and integrated. The need of new functionalities, smaller devices, longer
battery life, e.g., more power efficiency, less production and integration costs, and
less design cost makes the design of electronic systems a truly challenging task,
which must be completed within strict time-to-market constraints.

Although most of the functionalities in a modern electronic system are
implemented using digital and digital signal processing (DSP) circuitry, analog
and radio frequency (RF) circuitry, being essentially the link between digital
circuitry and the continuous-valued external world, is integrated in the same chip.
In such systems on a chip (SoC), the analog part occupies only about 10 % of the
circuit area, however, the development time of analog blocks is considerably
higher when compared to the development time of the digital part. The three main
reasons identified for the larger development time of analog blocks are: the lack of
effective Computer Aided Design (CAD) tools for Electronic Design Automation
(EDA); analog circuits are being integrated using technologies optimized for

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_1, � The Author(s) 2014
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digital circuits; and, analog blocks are difficult to reuse because they are more
sensitive to environmental and process variations than its digital counterpart [2].

In digital IC design, several EDA tools and design methodologies are available
that help the designers keeping up with the new capabilities offered by the tech-
nology processes. By its part, electrical simulators are the only analog design
automation tool really established, despite the algorithms and techniques intro-
duced in the last 25 years [3]. Due to the lack of automation, designers keep
exploring the solution space almost manually. This method causes long design
cycles, and allied to the non-reusable nature of analog IC, makes analog IC design
a cumbersome task.

Designers have been replacing functions of analog circuits for digital pro-
cessing whenever possible; however, there are some typical blocks that are
appointed as remaining forever analog, such as [4]:

• On the input side of a system, the signals of a sensor, microphone or antenna
have to be detected or received, amplified and filtered, to enable digitalization
with good signal-to-noise and distortion ratio. Typical applications of these
circuits are in sensor interfaces, telecommunication receivers or sound
recording;

• Mixed-signal circuits like sample-and-hold, analog-to-digital converters, phase-
locked loops and frequency synthesizers. These blocks provide the interface
between the input/output of a system and digital processing parts of a SoC;

• On the output side of a system, the signal from digital processing must be
converted and strengthened to analog so that the signal achieves the output with
low distortion;

• Voltage/current reference circuits and crystal oscillators offer stable and absolute
references for the sample-and-hold, analog-to-digital converters, phase-locked
loops and frequency synthesizers;

The developments on the IC industry enabled the design of extremely complex
Analog and Mixed-Signal (AMS) systems, which are established in telecommu-
nications, medical and multimedia applications. To increase the performance of
the ICs, i.e., enhance the functionalities but with lower power consumption, there
is an exponential increase in the number of devices contained in a IC, as described
by Moore’s law. This means that the designers deal with the IC projects containing
billions of transistors, under extreme competitive market conditions.

Despite the developments in the recent years, analog design automation tools
and methodologies are still far from achieving a mature state, as there is no
automation tool really established to support the analog design flow. Today’s
analog design is supported by circuit simulators, layout editing environments and
verification tools, however the design cycle for AMS ICs is still long and error-
prone.

In order to understand the automation of analog IC design, the steps in the
design flow must be clear. After this brief introduction to the analog IC design
problem, the systematic approach to the analog design automation flow [4], which
intends to ease design automation, is covered in the next section.

2 1 Introduction



1.2 The Analog IC Design Automation Flow

A typical and well accepted design flow for AMS ICs is presented in Fig. 1.1. This
design flow consists of a series of top-down topology selection and specification
translation steps, repeated from system level to the device level, and bottom-up
layout generation, extraction and verification steps. Adopting a hierarchical top-
down design methodology is possible to perform system architectural exploration,
obtaining a better overall system optimization at a higher abstraction level before
starting more detailed implementations at the device level. Thus, problems are
found early in the design flow and, as a result, design have a higher chance of first-
time success, with fewer or no overall time consuming redesign iterations.

On the top-down path, the topology selection is the process where a set of
blocks and the connections between them in defined in order to implement the
input specifications of the current hierarchy level. In the specification translation
task, the higher-level specifications are translated in the specifications for each of
the blocks. Block specifications may be the definition of the Gain and bandwidth
for an amplifier, or the sizes of the transistors, depending of the models used in that
abstraction level. The sizing is then verified to ensure the fulfillment of the input
specifications.

At this point, the bottom-up flow is executed. Layout generation consists of
creating the geometrical layout of the block under design at the lowest level in the
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Fig. 1.1 System-level to device-level tasks of the analog IC design flow [4]
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design hierarchy, or place and route the layouts of the sub-blocks at higher levels.
Typically, the desired layout for a circuit is the one that minimizes the total area,
while reducing the parasitic effects in the circuit performance. Then, the layout
needs to be verified, which is done with design rule checkers and the layout-
versus-schematic tools. Finally, the layout parasitics are extracted and simulated to
verify its impact on the overall performance of the circuit.

The ascension to higher hierarchical levels is done when no potential problems
are detected at the lowest levels and the layout meet the target requirements. When
the topmost level verification is complete, the system is designed and ready for
fabrication.

1.3 Research Contributions

This work addresses the problem of automatic specification translation at circuit
level, also known as circuit sizing, where from the set of specifications, the
designer finds out the sizes for the components, e.g., widths and lengths of the
transistors, resistors, capacitors, etc. In the industry, this task is commonly done
manually. The designers start by finding an approximate solution using simplified
analytical expressions, and then, iteratively, adjust the solution until it meets all
specifications, which sometimes can be very time consuming. The verification is
done using circuit simulations that provide extra accuracy to the simplified (but
treatable) equations used to derive the initial solution. The analog designer is aided
by CAD frameworks comprised by many tools such as electrical simulators (e.g.,
Spectre� [5], HSPICE� [6]), layout editors (e.g., Virtuoso Layout Editor [5]), or
tools for layout verification (e.g., CALIBRE [7], DIVA [5]). Despite its func-
tionalities to support the manual IC design, these tools have limited automation
options, and the ones available are usually overlooked by the majority of the
designers. The time required to manually implement an analog project is usually of
weeks or months, which is in opposition to the market pressure to accelerate the
release of new and high performance ICs.

The designer’s experience and knowledge are of the utmost importance, as they
allow simplifications that speed up the design process, without compromising the
quality of the solution, particularly, in the specification translation at the circuit-
level, i.e., circuit sizing, the designer interacts manually with the available tools in
order to achieve the project objectives, e.g., achieve the best set of device sizes,
such that the circuit will meet the desired performance specifications (DC Gain,
power, area, etc.). However, the search space of the objective function, which
relates the design variables and the performance specifications of the circuit, is
characterized by a complex multidimensional and irregular space, turning the
manual search for the best solution into a cumbersome task.

In this research, GENOM-POF [8], which is a tool that performs a layout-aware
circuit-level optimization that stems from Barros et al. GENOM [9–11], is
enhanced by adding circuit specific knowledge that is automatically extracted using

4 1 Introduction



machine learning techniques. The circuit sizing is done using the Nondominated
Sorting Genetic Algorithm (NSGA-II) [12] for multi-objective multi-constraint
optimization, which addresses robust design requirements by considering Process
Voltage Temperature (PVT) corner analysis, where Mentor Graphics� ELDOTM

and Synopsys� HSPICE� circuit simulators are used for accurate evaluation of the
circuit performance. This work aims to demonstrate the advantage of embedding
simple statistical models, representing design knowledge, into the optimization
kernel in order to improve the performance of the sizing optimization. The main
objectives for this work are detailed below:

• Create a simple model that is capable of extracting a set of gradients rules,
automated and autonomously, i.e., without any human knowledge. This set of
gradients rules extracted should contain knowledge about any analog circuit in
study;

• Create a model of rules and integrate it with the mutation operator of the
(NSGA-II), in order to improve its efficiency during the optimization of the
analog circuit. Compare the performance of reference NSGA-II with the mod-
ified NSGA-II with the model of gradients, created in the previous paragraph,
and verify potential benefits of this modification;

• Evaluate and analyze the robustness of the models created previously, through
its application in highly complex analog circuits;

• Improve the quality of the achieved sizing solutions.

The designer provides the chosen topology for the project, the variables for
optimization and their ranges, the specifications to be met and the objective
functions, e.g., minimize area/power, maximize DC Gain, etc., the tool instantiates
the components to size, ensures that specifications are met and performs the search
objectives space for the optimum solutions. The modified GENOM-POF, produced
within this work, aims at helping the designer in his/her circuits sizing task, not
only by generating solutions faster but also by achieving better Pareto optimal
solutions.

1.4 Conclusions

The complexity of electronic systems imposes the use of CAD tools to support the
design process. In digital IC design, several EDA tools and design methodologies
are available that help the designers keeping up with the new capabilities offered
by the technology, however the analog design automation tools strive to close the
gap created due to the large investment made in the digital domain. This cause the
manual exploration of the solution space, that in its turn creates expensively long
designs that are difficult to reuse. In this context, the contributions of this research
were presented, that aim to ease the efforts of analog designers to successfully
complete this time-consuming task.

1.3 Research Contributions 5
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Chapter 2
State-of-the-Art on Automatic Analog IC
Sizing

Abstract In this chapter a state-of-the-art review on analog integrated circuit (IC)
design automation tools applied to the specification translation problem is
presented. Having the right topology for a given set of specifications is indis-
pensable for a high performance design. An inadequate topology makes the design
more difficult (or even impossible), and may require unnecessary resources, which
is not acceptable in high performance designs. Once the topology is selected, the
specifications for the overall block are translated to the specifications for the sub-
blocks. The specifications are, in this way, passed through the hierarchy. At the
lowest level, the translation reduces to circuit sizing, whereas at the higher levels it
produce the sub-blocks performance parameters. In the last years, the scientific
community proposed many techniques for the automation of the translation task;
some apply only at circuit-level or only at system level, while others apply to both.
In this study, several circuit-level sizing techniques are sketched and compared,
and then, different model-based optimization approaches are outlined.

Keywords Analog IC design � Automatic specification translation � Knowledge-
based sizing � Optimization-based sizing � Electronic design automation �
Computer-aided-design

2.1 Automatic Circuit-Level Sizing

The techniques for the automation of circuit-level IC sizing are classified into two
main groups [1], knowledge-based and optimization-based based on the techniques
used to address the problem.

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_2, � The Author(s) 2014
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2.1.1 Knowledge-Based Sizing

Early strategies tried to systematize the design by using a design plan derived from
expert knowledge. In these methods, a pre-designed plan is built with design
equations and a design strategy that produce the component sizes that meet the
performances requirements. Figure 2.1 shows the strategy flow of knowledge-
based sizing methodologies.

In IDAC [2], the designer expertise is captured in a design plan where all design
equations are explicitly solved during the execution of the plan. Once the topology
is selected, the plan is executed for the given specifications to produce a first
design. The tool also included local optimization around this first design. IDAC
includes a vast library of plans, featuring voltage references, opAmps, compara-
tors, oscillators, DACs and ADCs. OASYS [3] uses the same overall strategy, but
defines the circuits hierarchically, with a design plan for each sub-block. It also
adds backtracking with design-reuse methodologies to recover from failed designs.
OASYS was extended to include data converters in addition to the original
operational amplifiers. TAGUS [4–6] applies the design plan successfully at
system-level for CMOS data converters. A slightly different approach is found in
BLADES [7], CAMP [8] or ISAID [9, 10], these tools capture the designer’s
knowledge in expert systems using artificial intelligence techniques.

The knowledge-based approach was applied with moderate success. The main
advantage of this approach is the short execution time. On the other hand, deriving
the design plan is hard and time-consuming, the design plan requires constant
maintenance in order to keep it up to date with technological evolution, and the
results are not optimal, suitable only as a first-cut-design.
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2.1.2 Optimization-Based Sizing

Aiming for optimality, the next generations of sizing tools apply optimization
techniques to analog IC sizing. The optimization-based sizing can be classified into
three major subclasses based on different techniques, namely, equation-based,
simulation-based and model-based, which are addressed in the following sub-
sections. A general flow of an optimization-based strategy can be found in Fig. 2.2.

2.1.2.1 Equation-Based

The equation-based methods use analytic design equations to evaluate the circuit
performance. Different optimization techniques are used, the optimization in
OPASYN [11] is done using steepest descent, whereas in STAIC [12] it is used a
successive solution refinements technique. OPTIMAN [13] uses simulated
annealing (SA) applied to analytical models created automatically by ISAAC [14].
DONALD [15] is an interactive design space exploration tool that assists the
designer during circuit sizing by automatic analytical manipulations of the circuit
equations. Maulik et al. [16] define the sizing problem as a constrained nonlinear
optimization problem using spice models and DC operating point constraints,
solving it using sequential quadratic programming. In ASTRX/OBLX [17] a
simulated annealing optimization is performed using and cost function defined by
equations for dc operation point, and small signal Asymptotic Waveform Evalu-
ation based simulation. This evaluation technique is also used in DARWIN [18].

In GPCAD [19] a posynomial circuit model is optimized using Geometrical
Programming (GP), the execution time is in the order of few seconds, but the
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general application of posynomial models is difficult and the time to derive the
model for new circuits is still high. To reduce the long time spent in model
development, automatic techniques were proposed (Gielen et al. in [20] provide a
good overview on symbolic analysis applied to analog ICs). However, some
design characteristics are still not easy to describe in analytical expressions with
sufficient accuracy automatically. Kuo-Hsuan et al. [21] revisited the posynomial
modeling recently, surpassing the accuracy issue by introducing an additional
generation step, where local optimization using simulated annealing and a circuit
simulator is performed. The same strategy is applied in FASY [22, 23] were
analytical expressions are solved to generate an initial solution and a simulation-
based optimization is performed to fine tune the solution.

The equation-based approaches are applied mostly at circuit-level, but some
applications at system-level are also found. In SD-OPT [24] the optimal DR
modulator sub-blocks’ specifications are derived using symbolic equations solved
using stochastic optimization. The sub-blocks itself are then generated using
simulation based techniques. Doboli et al. [25] applies genetic programming
techniques to simultaneously derive the sub-blocks specifications, sub-block
topology selection and transistor sizing. Matsukawa et al. [26] design DR and
pipeline analog to digital converters solving via convex optimization the equations
that relate the performance of the converter to the size of the components.

The equation-based methods’ strong point is the short evaluation time, making
them, like the knowledge-based approaches, extremely suited to derive first-cut
designs. The main drawback is that, despite the advances in symbolic analysis, not
all design characteristics can be easily captured by analytic equations, in addition,
the approximations introduced in the equations yield low accuracy designs espe-
cially for complex circuits.

2.1.2.2 Simulation-Based

With the availability of computing resources simulation based optimization gained
ground. In simulation-based sizing a circuit simulator, like SPICE [27], is used to
evaluate the circuit. In DELIGTH.SPICE [28] the optimization algorithm (phase
I-II-III method of feasible directions) is used to perform local design optimization
around a user provided starting point. Kuo-Hsuan et al. [21] and FASY [22, 23]
use equation-based techniques to derive an approximate solution, and then use
simulation within a simulated annealing optimization kernel to optimize the
design. Cheng et al. [29] use the transistor bias conditions to constrain the problem
and instead of solving the circuit by finding transistor sizes, the problem is solved
by finding the bias of the transistors. The transistor sizes are derived from the bias
point using electric simulation.

FRIDGE [30] on the other hand aims for global optimality by using an
annealing-like optimization without any restriction to the starting point. However,
to restrict the dimensionality of the problem the user still must provide the range
for the optimization variables. In MAELSTROM [31] and ANACONDA [32] the
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evaluation time is reduced by a parallel mechanism that shares the evaluation load
among multiple computers. Given the affinity evolutionary algorithms have with
parallel implementations, it was the base technique chosen in MAELSTROM,
however and because the success of simulated annealing is demonstrated in many
implementations the authors option was to use parallel re-combinative simulated
annealing (PRSA). In ANACONDA the approach is similar but instead of the
PRSA it is applied a variation of pattern search algorithms, named by the authors
as stochastic pattern search.

In order to account for layout induced effects and layout characteristics Castro-
Lopez et al. [33] include the layout effects and parameters in the optimization.
A template based layout generator is integrated in the optimization loop and the
geometrical properties of the layout can be used as constraints or optimized. In
addition layout parasitic are also extracted and used during the circuit’s evaluation.
They use simulated annealing followed by a deterministic method for fine-tuning
to perform the optimization. The layout extraction is done using analytical
equations and layout sampling or using 3-D geometric extraction models.

A different approach is taken in GENOM-POF [34], where a multi-objective
strategy is applied through the use of evolutionary algorithms. The objectives and
constraint functions are evaluated by HSPICE

�
. GENOM-POF outputs the Pareto

optimal fronts (POF) with the tradeoff during the synthesis, so the designer has a
wider range of solutions and choices to the problem of sizing.

Generality and easy-and-accurate model (the circuit netlist), are the strong
points of simulation-based techniques. However, the execution time is large for
complex circuits (*100 variables) and prohibitive at system level, and without the
proper constraints the algorithm may not converge to a good result. Some heuristic
schemes exist to automate the process of defining the constraints [35]. However,
automatic constraint defining mechanisms are not integrated in sizing tools and
their application is somewhat circuit class specific. Cheng et al. [29] uses manually
derived DC point equations to limit the search space for the transistors dimensions.

Being the high execution time the weaker point of these methods, some tech-
niques had been proposed to cope with it. Kuo-Hsuan et al. [21] used equation-
based techniques to derive an approximate initial solution. Cheng et al. [29]
instead of solving the circuit by finding transistor sizes, solved it by finding the
bias of the transistors first, and then, the transistor sizes are derived from the bias
point using electric simulation. In MAELSTROM [31] and ANACONDA [32] the
evaluation time is reduced by a parallel mechanism that shares the evaluation load
among multiple computers.

2.1.2.3 Model-Based

For some simulation-based approaches, macro models, like neural-networks or
support vector machines (SVM), are also used to reduce the execution time caused
by the use of circuit simulator in the loop. These models are automatically gen-
erated using an electric simulator to evaluate the performance of the training set.

2.1 Automatic Circuit-Level Sizing 11



Unlike the equations-based modeling the learning based modeling application to
general circuits is easier; however, there is still the tradeoff between accuracy and
model size and generation time.

Alpaydin et al. [36] use a neural-fuzzy model combined with an evolutionary
optimization strategy where some of the AC performance metrics are computed
using an equation-based approach. De Bernardinis et al. [37] use a learning tool
based in SVMs to represent the performance space of analog circuits. The per-
formance space is modeled using the knowledge acquired from a training set via
circuit simulation.

Wolfe et al. [38] present a performance macro-model based in a neural network.
This model once constructed, is to be used to replace the SPICE [27] simulation
during the synthesis of analog circuits, increasing the efficiency of the performance
parameter estimates’ computation. The training and validation data sets are con-
structed with discrete points, sampled over the design space. The work explores
several sampling methodologies to adaptively improve model quality and applies a
sizing rules methodology in order to reduce the design space and ensure the correct
operation of analog circuits.

Barros et al. [1, 39] present a cell-level synthesis and optimization approach
based on SVMs and evolutionary strategies. The SVM is used to dynamically
model performance space and identify the feasible design space regions while at
the same time the evolutionary techniques are looking for the global optimum. The
evaluation is still done with HSPICE

�
to ensure accuracy, but the number of

evaluation is reduced by using the SVM to prune the candidate solutions.
A different approach is the use of POFs to explore circuit tradeoffs during

synthesis [40], and instead of using a model for the circuits, the non-dominated
solutions are generated (prior to the design task) and the suitable solution is
selected from the already sized solutions. In [41], hierarchically POFs are used to
perform system-level sizing. The POF-based-design execution time is large if the
setup time (the generation of the POFs) is considered, however with the correct
models, the POFs can be generated in a context free manner making then suitable
for reuse.

In Tables 2.1, 2.2 and 2.3 the several tools for analog sizing automation are
summarized and, in Table 2.4, the specification translation tools based on the
techniques applied are compared.

2.2 Motivation for Model-Based Optimization

According to McConaghy and Gielen [42], there is a great improvement on the
efficiency of an optimization cycle for analog IC sizing using electrical simulators, if
models containing knowledge about the circuit are used. In [42] is presented a study
to analyze the impact of different models in the optimization process, which were
conducted for several different techniques: polynomials [43], posynomials [44],
genetic programming [45], feedforward neural networks [46], boosted feedforward
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neural networks [47], multivariate adaptive regression splines [48], support vector
machines [49] and Kriging [50]. The choice of the models was based on their
performance, and the following modeling methods were considered:

• As reference models were used: a constant (set as the mean of the data), a linear
model and a 2nd-order polynomial;

• CAFFEINE [45] tool used a modified form of genetic programming (GP), which
restricts GP to canonical function forms via a grammar;

• Feed forward neural networks (FFNNs) [46] which used the state-of-art training
algorithm OLMAM;

• Boosting [47] creates a ‘‘stack’’ of models, each model is learned on a weighted
version of the data. The overall output is the average of the outputs of the
individual models;

• Multivariate Adaptive Regression Splines (MARS) [48] are piecewise polyno-
mials. In the constructive steps, input variables are iteratively added on as
‘‘as-needed’’ basis for greedily chosen sub-regions of input space. MARS scales
to a high number of input variables but is locally accurate;

• Support vector machines (SVMs) transform inputs into a space of much higher
dimension and do linear regression in that space. A fast-learning variant
LS-SVM [49] was used;

• Kriging [50] originated in geostatistics, but it has been shown to be useful
in optimization. In this model prediction is the value of nearby samples
‘‘corrected’’ by a correlated error calculation.

Of the several existing ways to improve the optimization process efficiency, the
study indicates that the construction of all models was based on the use of a Design
of Experiments (DOE) technique [51].

Since electrical simulation is the bottleneck of the simulator-in-loop techniques,
improving efficiency roughly translates to reducing the number of simulations. For
a proper comparison between different models, a point that must be taken into
account it is the setup time, i.e., the time necessary to create the model, which
generally produces a tradeoff between model performance (accuracy and/or range
of applicability) and model setup time.

Table 2.5 presents a summary of the study for the different models. From
Table 2.5, CAFEINE is the approach with the better performance concerning the
prediction error, while the Polynomial approach has the worst.. Based on this
study, it is fair to forecast that with the type of approach made in CAFFEINE
available, it could replace the simulator in the loop of an optimization process.
However, the setup time of this model is huge when compared to the remaining; a
model that has a setup time higher than the overall execution time is a huge
contradiction.

2.2 Motivation for Model-Based Optimization 17



2.3 Conclusions

Despite the evolution verified in the high and low abstraction levels, both archi-
tecture’s selection, sizing and layout optimization remain the focus of research in
analog EDA methodologies. The industrial commercial tools follow closely the
main trends in academia and R&D workgroups, focusing in the lower level of
abstraction levels dealing with device sizing and layout description levels.

Although much has been accomplished in automatic design of analog circuits,
the fact is that custom generators usable in industrial design environment are not
available. In this survey, some of the most significant analog design automation
tools for circuit-sizing were presented and analyzed to provide a better under-
standing of its advantages and shortcomings. The tools are classified according to
the techniques used and the applicability to cell and (or) system level.

Particularly, the results of Sect. 2.2 present a real motivation for a model-based
optimization. The opportunity to create a new and innovative model, with a good
performance both in terms of accuracy and setup time, arises. In this work, the idea
of acquire knowledge of a circuit and embedding it into the evolutionary opti-
mization kernel is explored. However, the model is used to guide the optimization
kernel in a more efficient search of the solution space rather than replacing the
usage of the circuit simulator to evaluate the performance of the circuit. The
methodology adopted is to automatically generate a model that estimates how
move to better solutions during the optimization. Chapter 3, describes the Gradient
Model introduced in this work, and how it is automatically generated using DOE

Table 2.5 Comparison between several models for sizing automation of ICs

Model Date Heuristics Circuits Simulator Time
setup/
execution

Lang. Error
prediction
(%)

Polynomial
[43]

2005 Polynomial High-speed
CMOS
OTA,
13 inputs
and
6 outputs

SPICE 1–4 min/
\10 min

Matlab 82,6

Posynomial
[44]

2002 Posynomial 1–4 min/
\10 min

Matlab 61,7

CAFFEINE
[45]

2005 Posynomial 12 h/
\10 min

Matlab 22,7

FFNNs
[46]

2002 Neural
networks

3,7 min/
\10 min

Matlab 41,7

Boosted
FFNN
[47]

2002 Neural
networks

7 min/
\10 min

Matlab 43,2

MARS [48] 1991 Polynomial 5 min/
\10 min

Matlab 29,4

LS-SVM
[49]

2002 Support vector
machine

5 min/
\10 min

Matlab 45,9

Kriging
[50]

1998 Geostatistics 5 min/
\10 min

Matlab 34,6
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with two alternatives strategies, the Full Factorial Design and the Fractional
Factorial Design. The model is then integrated into the synthesis tool AIDA, as
will be presented in Chap. 4, and the obtained results are shown in Chap. 5.
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Chapter 3
Gradient Model Generation

Abstract This chapter illustrates the Gradient Model generation. The circuit is
first sampled using either the Full Factorial or the Fractional Factorial Design of
Experiments (DOE) techniques, and then the main effect is used to extract the
gradient rules which compose the Gradient Model.

Keywords Analog IC design � Design of experiments � Full factorial design �
Fractional factorial design � Gradient model

3.1 Overview of Design of Experiments (DOE)

DOE is a highly used technique, as suggested in [1], to project and study the effects
on the output (or response variables), by varying the input (or factors). Moreover,
using this technique it is possible to make a statistical study of the output responses
with a low cost, i.e., less computational time. According to [2], the steps for the
development of the DOE are:

1. Characterization of the problem;
2. Selection of the response variables;
3. Choice of factor, levels, and ranges;
4. Choice of experimental design;
5. Conducting the experiment;
6. Statistical analysis of the data;
7. Conclusions and recommendations.

The purpose of using DOE is to extract the maximum amount of system
information with the smallest number of runs. Here, with DOE, the influence of the
inputs on outputs will be studied in order to enhance the process of automatically
generate the sizing of a circuit, based on a NSGA-II kernel [3].

The first step towards the use of a sampling technique is to recognize and
describe the problem to be tested and identify which are the objectives of the

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_3, � The Author(s) 2014
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experiment. In this case, the problem is to identify how the component sizes of an
electrical circuit influence its performance measures by extracting gradient rela-
tions in order to, finally, compose a gradient model. In the next step of the DOE, it
is necessary to select which output parameters are relevant (performance mea-
sures), due to a variation of the input. The output parameters and the ranges, as
well as, the choice of factor and levels are provided by the user through a graphical
user interface (GUI). Note that step 2 and 3 can be done simultaneously, or in the
reverse order. The selection of factor and levels must take into account that the
amount of simulations given by (3.1), where B is the base of the matrix, p it
the number of non-elementary variables and n the total number of variables, is
needed to construct the DOE matrix.

Number of Simulations ¼ Bðn�pÞ ð3:1Þ

The base of the matrix corresponds to the number of samples of input variables,
the number of non-elementary variables corresponds to the variables which don’t
have all the possible combinations of sampling with the others variables, and the
number of input variables corresponds to the variables defined by the designer as
circuit variables. On the opposite of the non-elementary variables, the elementary
variables correspond to the variables which have in the DOE matrix all the
sampling combinations between the DOE matrix.

There is a trade-off between the base of the matrix and the number of ele-
mentary variables with the number of simulations. On one hand, the increase of the
base matrix and the number of elementary variables produces a more robust
experience; on the other hand, it increases the cost of computing the solution by
increasing the number of simulations. The effect of the variation of the base and
number of elementary variables in the DOE matrix will be studied in a later
section.

In this model, the samples will only be obtained through the Factorial Design
and Fractional Factorial Design. Other commonly used types of experiment design
are:

• The Latin square design [2];
• The Greco-Latin square design [2].

In summary, and no matter the approach used, it is intended to create a DOE
matrix for an evaluation of the output based on the selected input variables, in
order to generate the gradient model. This process will be exemplified in the
following sections for the Full Factorial and Fractional Factorial designs. For
simplicity, only 2 levels (B ¼ 2) will be experienced for the DOE matrix base and
considering three inputs and two outputs, these values can be changed without loss
of generality. For large DOE matrixes, the simulation is split into blocks of 1024
points due to limitations in the interface with HSPICE

�
, and also the heap of Java

Virtual Machine is a limitation in terms of the maximum DOE matrix size.
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3.2 Design of Experiments with Full Factorial Design

This section describes the design of experiments using Full Factorial design. The
steps for the development of DOE, presented in the last section, are grouped in
2 sub-sections. The first, groups the problem definition steps (1 and 2) and the
generation steps (3, 4 and 5), while the second sub-section groups the analysis
steps (6 and 7).

3.2.1 Characterization and Construction of the DOE Matrix

The problem characterization is addressed by the presentation of an electrical
schematic, where the input variables of the circuit and their respective ranges are
used to set the choice of factor, levels and ranges. The selection of the response is
defined by the outputs of this circuit. This step serves also to choose the type of
experimental design used, the Full Factorial Design, and finally, the experiment is
conducted.

In order to illustrate the description, the differential amplifier circuit shown in
Fig. 3.1, with three input variables and two outputs, is used. The ranges for the
input variables are provided by the user and shown in Table 3.1. The input vari-
ables (W1, 2 and W3, 4 represent, respectively, the Ws (widths) of the transistors
pairs (M1, M2) and (M3, M4)). The output variables, also provided by the user, are
shown in Table 3.2, whose values are obtained from circuit simulation using
HSPICE

�
. Notice that both the inputs and outputs are intentionally a subset of the

overall design parameters, e.g., L1, 2 and L3, 4 are fixed values, the main idea is to
prove that even with an extremely simple gradient model it is possible to improve
the optimization kernel by embedding design knowledge into the automation loop.

Sampling these ranges with the DOE technique implies an association between
the values of the input variables within the range and the DOE levels to construct
the DOE matrix. If the ranges are changed, the values associated with the level
change, forcing a resampling. For this example two points in the range, i.e., the
DOE matrix base has a value of two, are considered. The two levels are defined as

M1

Ibias

Vdd

Vin

VCM

CloadM2

M3 M4

Vout

Fig. 3.1 Differential
amplifier schematics
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low and high, described by 0 and 1 respectively (these are not logic levels). The
range is divided into two equal parts, where the level 0 is associated to the middle
of the lower half and level 1 to the middle of the upper half. For better under-
standing, the process is illustrated in Fig. 3.2. This kind of design is called the 2k

factorial design. In accordance with Montgomery [2], it is highly used in factor
screening experiments, especially in systems where the response is approximately
linear with the range of the factors. It is also a more simplified and fast design for a
brief study of a system.

In the Full Fractional DOE the circuit is sampled in all the combinations of
variables values. For each variable (xi), B levels are defined and to each level a vi;b

value, derived from the variable’s range according to (3.2), is assigned.

vi;b ¼ XMin
i þ

XMax
i � XMin

i

� �

2B
� 1þ 2bð Þ; b ¼ 0; . . .;B� 1 ð3:2Þ

In Table 3.3 the mapping between level values and variable values is illustrated
for the differential amplifier introduced previously, when B is set to 2.

Once the variables mapping is complete, the next step is to construct the DOE
matrix. The matrix has one line per each possible combination of values, being the
total number of lines given by (3.1), where p is 0. The columns are the inputs (x),
identified with the levels, and the outputs (y) described by the measured values.
The concatenation of the input’s levels values is also referred as the code of the
sample, as it acts as unique identifier. Table 3.4 shows the 8(23) sample matrix,
obtained for the differential amplifier example. From the observation of the matrix,
it can be seen that simulation 2 does not have values in the outputs. This situation
occurs when HSPICE

�
cannot simulate the circuit, e.g. the simulation does not

Table 3.1 Range of input
variables

Inputs Minimum range Maximum range

W1, 2 (lm) 1 400
W3, 4 (lm) 1 400
IBias (lA) 100 500

Table 3.2 Objectives and
design constraints

Outputs Objective

DC gain (dB) C45
GBW (MHz) C35

Minimum 
Range

Maximum 
Range

Middle of the 
lower half

Middle of the 
upper half

Level 0 Level 1Fig. 3.2 Relation between
variable’s range and DOE’s
levels
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converge for that set of input parameters, or the circuit behavior renders the
measurements of the outputs inoperative. All vectors which produce an output that
is not measurable are not taken into consideration during the model generation.

For a better observation of space exploration performed through the DOE
matrix, a hypercube is represented in Fig. 3.3 for the output DC Gain, however,
this may be extrapolated to any other output. As can be seen through the hyper-
cube, the greater the number of levels used in the DOE, the finer is the sampling of
the search space, however, the tradeoff between search space and the execution
time must be taken into account.

3.2.2 Analysis of the DOE Matrix

This phase presents the statistical analysis of the experiment conducted in the
previous phase and the conclusions obtained from it. Having constructed the DOE
matrix with the respective output values obtained from the circuit simulation, it is
necessary to evaluate the effects of input variables on the outputs. This process is
called the main effect of the input in the output.

The analysis of the data obtained in the DOE matrix, by calculating the main
effect, is intended to identify which variable affects most each of the outputs. This
conclusion is reached through the highest magnitudes of the main effect. The main
effect is the effect of one independent (input) variable on the dependent (output)
variable, ignoring the effects of all other independent variables.

Table 3.3 Variables values for each level of the DOE

Variables Level 0 Level 1

x1 - W12 (lm) 100.75 300.25
x2 - W34 (lm) 100.75 300.25
x3 - IBias (lA) 200 400

Table 3.4 DOE matrix for Full Factorial design

x1

W12

x2

W34

x3

IBias
y1

DC gain
(dB)

y2

GBW
(MHz)

1 0 0 0 1.70 0.34
2 1 0 0 – –
3 0 1 0 32.62 2.25
4 1 1 0 56.46 20.34
5 0 0 1 44.44 0.30
6 1 0 1 30.56 10.24
7 0 1 1 31.13 12.18
8 1 1 1 46.00 25.40
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The Main Effect value is determined according to (3.3), where mi;j, is the main
effect of the input variable i in the output variable j, and k identifies the sample.

mi;j ¼
XBn�p

k¼1

wi;k � yk; wi;k ¼
þ1 when xi;k � B

2
�1 when xi;k\ B

2

�

ð3:3Þ

When the total Main Effect of an input variable is positive/negative, this is an
indication that if the value of that input variable is increased, the value of the
output will tend to increase/decrease. For the differential amplifier example,
Table 3.5 shows the main effects of the input variables to the outputs (DC Gain
and GBW) for the fully factorial DOE.

W12

IBias

W34

44.44 [dB]
W12 – Level 0; W34 – Level 0;

 Ibias – Level 1.

31.13 [dB]
W12 – Level 0; W34 – Level 1;

 Ibias – Level 1.

1.70 [dB]
W12 – Level 0; W34 – Level 0;

 Ibias – Level 0.

32.62 [dB]
W12 – Level 0; W34 – Level 1;

 Ibias – Level 0.

30.56 [dB]
W12 – Level 1; W34 – Level 0;

 Ibias – Level 1.

46.00 [dB]
W12 – Level 1; W34 – Level 1;

 Ibias – Level 1.

- [dB]
W12 – Level 1; W34 – Level 0;

 Ibias – Level 0.

56.46 [dB]
W12 – Level 1; W34 – Level 1;

 Ibias – Level 0.

Fig. 3.3 Full factorial (23)
hypercube for DC gain

Table 3.5 Main effect obtained from the full factorial DOE matrix

Input Effect on output y1 - DC GAIN (dB) mi, 1

x1 - W12 (56.46 ? 30.56 ? 46.00) –
(1.70 ? 32.62 ? 44.44 ? 31.13)

23.13

x2 - W34 (32.62 ? 56.46 ? 31.13 ? 46.00) –
(1.70 ? 44,44 ? 30.56)

89.51

x3 - Ibias (44.44 ? 30.56 ? 31.13 ? 46.00) –
(1.70 ? 32.62 ? 56.46)

61.35

Input Effect on output y2 - DC GBW (MHz) mi, 2

x1 - W12 (20.34 ? 10.24 ? 25.40) –
(0.34 ? 2.25 ? 0.30 ? 12.18)

40.91

x2 - W34 (2.25 ? 20.34 ? 12.18 ? 25.40) –
(0.34 ? 0.30 ? 10.24)

49.29

x3 - IBias (0.30 ? 10.24 ? 12.18 ? 25.4) –
(0.34 ? 2.25 ? 20.34)

25.19
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3.3 Design of Experiments with Fractional Factorial
Design

The increase in the number of input variables leads, for the Full Factorial Design
of experiments, to an exponential increase in the number of simulations, seen in
(3.1), which, as mentioned previously, increases exponentially the time required to
complete the whole DOE process. In order to attenuate this effect, the Fractional
Factorial DOE introduces the notion of non-elementary variable, as a variable that
is not used to generate the code of the sample, therefore reducing the size of the
matrix, and the level of the non-elementary variables is determined from the code,
i.e. from the levels of the elementary ones.

3.3.1 Characterization and Construction of the DOE Matrix

Fractional Factorial Design corresponds to increase the non-elementary variables
in the construction of the matrix DOE, i.e., p [ 0. Using p ¼ 1, with B ¼ 2 the
total number of simulations obtained from (3.1) is 23�1 ¼ 4. The number of
simulations decreases by half in comparison with Full Factorial Design studied
above. For the circuit in study, the reduction in the number of simulations is
irrelevant. However, it is used as a demonstration for future use in more complex
circuits. To illustrate the method, the variable IBias will be used as a non-
elementary variable.

The level values of the two elementary variables are generated in the same way
as in the Full Factorial Design. To compute the levels of the non-elementary
variables, several methods are available in the literature [2], in this work the level,
Lni, of the non-elementary variable i is given by (3.4), where mod is the modulo
operator, and L1 and L2 are the levels of the first and second elementary variables,
which ensures an even distribution in the levels.

Lni ¼ L1 þ L2ð Þmod B ð3:4Þ

Table 3.6 shows the 4(2ð3�1Þ) samples which compose the DOE matrix,
obtained for the differential amplifier example by considering the variable IBias as
a non-elementary variable.

3.3.2 Analysis of the DOE Matrix

After the construction of DOE matrix, the next step is to perform the statistical
analysis of the data. This statistical study is made through the calculation of the
main effect as performed in Sect. 3.2.2. Table 3.7 shows the main effects obtained
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from the fractional factorial DOE matrix. Both Tables 3.5 and 3.7 show all vari-
ables having a positive effect in the output, due to its highest absolute value in both
cases; X2 is the input variable that gives more certainty in its effect towards both
outputs. Observing the tables of Main Effects for both DOE strategies it is possible
to conclude that both strategies have concordant directions.

3.4 Extraction of the Gradient Model from DOE

The generation of the model aims to assign a direction for both inputs and outputs,
i.e., given a target variation of one of the outputs, it obtain the most likely variation
of the inputs that lead to that outcome. This knowledge about the gradient of input
variables and their respective response effect on the outputs is the final product that
will be introduced into the optimizer.

Once the main effects are computed, the N input variables, where N is a
parameter provided by the user, that have larger contributions to each output are
identified as the ones with the large absolute Main Effect, and then, a refinement
procedure is executed. For each output variable yj, a new DOE matrix is con-
structed using the fractional factorial sampling, with the N input variables that
have the larger contributions as the only elementary variables.

The refined DOE matrix is then converted to the set of gradient rules for that
output variable. This is done by discarding the columns referring to non-
elementary variables and transforming the levels of the elementary variables xi

Table 3.6 DOE matrix for Fractional Factorial design

x1

W12

x2

W34

x3

IBias
y1

DC gain (dB)
y2

GBW (MHz)

1 0 0 0 1.70 0.34
2 1 0 1 30.56 10.24
3 0 1 1 31.13 12.18
4 1 1 0 56.46 20.34

Table 3.7 Main effect obtained from the fractional factorial DOE matrix

Input Effect on output y1 - DC gain (dB) mi, 1

x1 - W12 (30.56 ? 56.46) – (1.70 ? 31.13) 54.19
x2 - W34 (31.13 ? 56.46) – (1.70 ? 30.56) 55.13
x3 - Ibias (30.56 ? 31.13) – (1.70 ? 56.46) 3.53

Input Effect on output y2 - DC GBW (MHz) mi, 2

x1 - W12 (10.24 ? 20.34) – (0.34 ? 12.18) 18.06
x2 - W34 (12.18 ? 20.34) – (0.34 ? 10.24) 21.94
x3 - IBias (10.24 ? 12.18) – (0.34 ? 20.34) 1.74
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into input gradient symbols sii;j;k according to (3.5), where k identifies the line of
the matrix.

sii;j;k ¼
ðþÞwhen xi;k � B

2
ð�Þwhen xi;k\ B

2

�

ð3:5Þ

The output gradient symbols Soj;k are converted from the output values using
(3.6), where YMax

j and YMin
j are respectively the maximum and minimum values of

the output yj obtained in the DOE matrix (not the refined matrix), and Dj is

YMax
j � YMin

j

�
�
�

�
�
�
.

3. The meanings of the symbols are: (-) a decrease; (+) increase

and (u) undefined. Tables 3.8 and 3.9 illustrate the process of extracting Gradient
Rules.

Soj;k ¼

ðþÞwhenyj;k� YMax
j � Dj

ðuÞwhen YMin
j þ Dj

� �
\yj;k\ YMax

j � Dj

� �

ð�Þwhenyj;k � YMax
j � Dj

8
>><

>>:
ð3:6Þ

From the example of Table 3.9 some conclusions can be drawn. Both rules 2
and 3 do not give information about a gradient for the output, thus these rules
cannot be applied. On the other hand, rules 1 and 4 show a gradient for the output,
rule 1 should be invoked when one intends to decrease/minimize the value of this
output, as set by the output gradient symbol (-). This rule dictates that to achieve
this variation in the output, both the values of W12 and W34 should be decreased.
Similarly, rule 3 indicates that by increasing the values of W12 and W34, the output
value should increase/maximize, since it has the gradient symbol (+).

Figure 3.4 summarizes the correspondence between the gradient symbols and
the directions of the output variables.

Table 3.8 Extraction of gradient rules for GBW

yj,k Yj
Max - Dj Yj

Min ? Dj Soj,k

y2, 1 = 0.34 So2,1: (-)
y2, 2 = 10.24 17.03 8.67 So2,2: (u)
y2, 3 = 12.18 So2,3: (u)
y2, 4 = 20.34 So2,4: (+)

Table 3.9 Set of gradient rules for GBW

si1,2

W1 2

si2,2

W3 4

So2

GBW

1 (-) (-) (-)
2 (+) (-) (U)
3 (-) (+) (U)
4 (+) (+) (+)
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For better understanding of the Gradient Model generation the pseudo-code is
presented in algorithm 3.1.

If the Output variable has:

Gradient Level: ‘Undefined’Gradient Level: (+) Gradient Level: (-)

Maximize the Output Undefined direction Minimize the Output

Fig. 3.4 Summary of the directions of the output variables

Table 3.10 Overview of designs: Full Factorial and Fractional Factorial

Design Full factorial Fractional factorial

Advantages Robust study of circuits
Considerer all selected variables of the

circuit as elementary

Lower runtime
Convenient for an early draft of the

circuit
Disadvantages High computational cost (for complex

circuits)
High runtime (for complex circuits)

Lower accuracy in the study of circuits
Difficulty in determining, which

variables are non-elementary
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3.5 Conclusions

In this chapter, two different techniques were demonstrated for the extraction of
knowledge for analog ICs through the use of sampling, the Full Factorial Design
and Fractional Factorial Design. Table 3.10 presents an overview of both tech-
niques. Additionally, the calculation of the effect of the input variables on the
output was also presented, this evaluation is extremely important to the extraction
of the gradient rules, since it is the main indicator of the variables that most
contribute to change the outputs as well as the direction of that change. Then, after
the sampling process and its statistical study, the extraction of the Gradient Model
step-by-step was presented. A refinement to the variables with larger main effect
was carried out in order to obtain a more accurate model for these variables.
Finally, it was explained how to generate the gradient rules for the input and output
variables based on the refined matrix. The model is intended to be included in the
optimization kernel to increase the performance, the process of integration is
described in the next chapter.
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Chapter 4
Enhanced AIDA’s Circuit-Level
Optimization Kernel

Abstract This chapter describes how the Gradient Model described in the
previous chapter is used to enhance the circuit-level optimization tool, GENOM-
POF [1]. GENOM-POF is part of the Analog Integrated circuit Design Automation
environment (AIDA) [2], developed in the Integrated Circuits Group at Instituto de
Telecomunicações, Lisboa, Portugal. The integration of the gradient model
includes both embedding the model in the optimization kernel, and add the
model’s setup options to AIDA’s graphical user interface (GUI), which allows
the visualization of the results and the configuration of the parameters, such as the
objectives, constraints and input variables, ranges, etc.

Keywords Analog IC design � Circuit-level sizing � Optimization-based sizing �
Genetic algorithm � Genetic operators � Gradient model

4.1 Architecture

The AIDA platform [2], whose general architecture is shown in Fig. 4.1, imple-
ments a fully automatic approach from a circuit level specification to physical
layout description. AIDA monitors the implemented design flow allowing the
designer to intervene, e.g., by stopping the synthesis process whenever an
acceptable solution is already achieved or by selecting the solution to be integrated
from a Pareto set of optimally sized circuits.

The automatic analog IC design flow supported by AIDA consists of two
phases. The first phase is the specification translation, or circuit sizing at circuit-
level, where the sizes of the devices are determined in such way that the circuit
fulfills the specifications. In AIDA, this task is performed by the circuit-level
sizing tool, GENOM-POF [1]. The second phase is the physical implementation of
the devices constrained to the technology design rules, which is generated by
LAYGEN II [3–5].

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_4, � The Author(s) 2014
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The contributions described in this book relate to GENOM-POF, it uses an
optimization kernel based on adapted implementation of the multi-objective
evolutionary algorithm NSGA-II [6] and the circuit simulator HSPICE

�
, to eval-

uate the design performance. Although GENOM-POF allows the inclusion of
corner cases during optimization, this does not fall within the scope of this book,
and is not addressed. The architecture of the GENOM-POF integrated with the
developed Gradient Model is shown in Fig. 4.2.
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As inputs, GENOM-POF receives the circuit net list and test bench. These two
files, provided by the designer, describe the circuit and specify both the optimi-
zation variables and the design objectives and constraints. The circuit is then
modeled as an optimization problem suitable to be optimized by the NSGA-II
kernel. As show in Fig. 4.2, the gradient model is used to modify the optimization
kernel operators, using the direction defined in the model to affect the new solu-
tions generated by the operators. The main idea is to accelerate the convergence
process by embedding some knowledge of the circuit in the optimization kernel.

The output is a set of Pareto Optimal Fronts (POFs) with different sizing
solutions, presenting the tradeoff between the objectives being optimized. From
these outputs, the designer selects the ones to be used in the automatic layout
generator tool, LAYGEN II, where the complete physical design is executed.

In the following sections, the single-ended folded cascode differential amplifier,
illustrated in Fig. 4.3, will be used to exemplify the proposed automatic design
flow.

4.1.1 Inputs

The inputs are provided by the designer, and consist in the netlist of the circuit and
test benches in the HSPICE

�
format. This netlist should contain both the param-

eterization of the optimization variables and the measurement statements for the
performance outputs.

The designer also has to define: the ranges of the optimization variables; the
design constraints; and the optimization objectives. Table 4.1 presents a possible
configuration that can be introduced as input for the single-ended folded cascade
example.

M1

Vdd

Vbp

Vbpc

inip

Vss

out

Vbnc

vb

M2

M4 M11M12

M9 M10

M7 M8

M5 M6

Fig. 4.3 Schematic of the
single-ended folded cascode
differential amplifier
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4.1.2 Optimization Problem Formulation

GENOM-POF optimization engine is based on the NSGA-II algorithm, modified
to interface with the circuit simulator, which performs the evaluation of each
potential solution, i.e., population element. The reason why the NSGA-II was
chosen over other multi-objective evolutionary algorithms was due to its excellent
characteristics to produce Pareto optimal fronts, as mentioned in [4]. Regarding the
choice of the circuit simulator to evaluate the performance of the circuits,
HSCPICE

�
, was chosen because of its high accuracy. The modified GENOM-POF

uses the same structure and the model is integrated into the evolutionary operators:
crossover and mutation. The integration of the model into the tool GENOM-POF
and its interface with the designer are explained in detail throughout the rest of this
chapter.

The NSGA II multi-objective optimization kernel was designed to solve the
problem defined in (4.1) where, x is a vector of N optimization variables, fm(x) is a
set of M objective functions to minimize, gj(x) is the set of J constraints to be met
and, finally, xi

L B xi B xi
U is the range of the variable xi to be optimized.

find x that minimize fm xð Þ m ¼ 1; 2; . . .M
subject to gj xð Þ� 0 j ¼ 1; 2; . . .J
xL

i � xi� xU
i i ¼ 1; 2; . . .N

ð4:1Þ

Thus, the first step to apply it to the circuit synthesis problem involves trans-
forming the design problem in an optimization problem that may be executed by
the NSGA-II kernel. The design objectives being minimized are used directly as
one fm(x), and the ones being maximized are multiplied by -1. The design con-
straints are normalized and multiplied by -1, if necessary, according to (4.2),
where, pj is the measured circuit characteristic, and Pj is the corresponding
acceptable limit. Table 4.2 illustrates the objective and constraint functions for the

Table 4.1 Range, objectives and design constraints example

Variables cn, cp, ib, l1, l4, l5, l7, l9, l11, w1, w4, w5, w7, w9, w11

Ranges 0.18e-6 \= l* \= 5.0e-6
0.24e-6 \= w* \= 200.0e-6
30.0e-6 \= ib \= 400.0e-6

Objectives min(area)
max(a0)

Constraints gb [= 3.5e7
65 \= pm \= 90

Table 4.2 fm(x) and gj(x) for the example from Fig. 4.3

Objectives: f0 xð Þ ¼ �a0 f1 xð Þ ¼ area

Constraints: g0 xð Þ ¼ gbw
35�106 � 1 g1 xð Þ ¼ pm

65 � 1 g2 xð Þ ¼ 1� pm
90
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differential amplifier circuit in Fig. 4.3 using the design specifications from
Table 4.1.

gi xð Þ ¼

pi�Pi

Pij j when the constraint is pi�Pi

pi when the constraint is pi� 0
�pi when the constraint is pi� 0
Pi�pi

Pij j when the constraint is pi�Pi

8
>><

>>:
ð4:2Þ

4.1.3 Outputs

Finally, the output is a set of feasible circuits with different sizing solutions, all
fulfilling the constraints, giving the designer the possibility to choose the most
appropriate tradeoff among the objectives being optimized. Figure 4.4 shows a
POF obtained after the optimization of the folded cascade amplifier from Fig. 4.3,
with several different sizing solutions. This set of sizing solutions allows the
designer not only to explore various solutions within the solution space, choosing
the one that is the most suitable, but also to save a huge time in the project
execution. The points highlighted in the POF illustrate with practical values the
tradeoff between objectives. For every point in the POF, the respective values for
the dimensions of each device of the circuit are defined, and their layout can be
generated automatically with LAYGEN II. Although, only two objectives are
presented for clarity, more objectives are supported.

       Area = 39,0 um2

DC gain = 54,4 dB

        Area = 100,2 um2

DC gain = 64, 2 dB

         Area = 781,2 um2

DC gain = 72,8 dB

Pareto Front of  
Sizing Solutions

25 100 225 400 425 900

-54

-56

-58

-60

-62

-64

-66

-68

-70

-72

-74

Fig. 4.4 POF obtained during the sizing task
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4.2 Integration of the Gradient Model in the Optimization
Kernel

The integration of the Gradient Model into GENOM-POF is done by embedding it in
the crossover and mutation evolutionary operators. Each element in the population,
chromosome, encodes the information of a different sizing solution, corresponding
each gene to one input variable. So, each chromosome has a fixed number of genes
equal to the number of optimization variables (Fig. 4.5).

As the traditional genetic algorithms (GA), the NSGA II kernel is an evolu-
tionary optimization scheme that simulates natural evolution. It operates over a
population composed by several chromosomes, each representing a different
candidate solution. Each chromosome differs from each other due to their different
variables’ values. The genetic operators, crossover and mutation, are used to create
new individuals from the initial population (usually obtained randomly), the first,
by combining the genetic information from the parents, and the second by intro-
ducing random changes in the individual. The new individuals’ fitness is evaluated
and they are mixed with the parents and ranked. The fittest individuals are selected
as the new parents, and the others discarded. The process is repeated until the
ending criterion is reached (usually a fixed number of iterations). The distinguish
characteristic of NSGA-II is that the ranking is made using Pareto dominance.
Figure 4.6 shows the evolution of the population during one generation in a
general evolutionary kernel.

The crossover operator recombines the genes in the population by generating
new chromosomes combining two parent chromosomes to produce new offspring
chromosomes. Figure 4.7 illustrates a common crossover operator. The idea is that
the new chromosomes may correspond to better solutions than both of the parents
by taking the best characteristics from each of the parents. Crossover can be
compared to reproduction in natural organisms which allows the swapping of
information between individuals.

The mutation operator is performed on the offspring, this operation changes the
value of one or more genes of each chromosome, as illustrated in Fig. 4.8. The
operator mutation increases the genetic diversity in the population, and thus
increases the capability of the algorithm to search other areas of the search space.
The mutation rate is the parameter that controls the number of genes changed by
the mutation operator.

The implementation of the new genetic operators, crossover and mutation, is
presented in the following subsections.

L1W1 IBias W2 ... W11

Input variables of a circuit

Fig. 4.5 Abstract
representation of the
chromosome in the
evolutionary kernel
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4.2.1 Gradient Model Applied to the Crossover Operator

The first approach to integrate the Gradient Model in the optimization kernel was
by applying it to the crossover operator. The gradient rules are here used to affect
the genes of the parents as they are recombined. The gradient rules are used to
select and change the genes, which have the desired effect on the output measures.
However, the mutation operator is applied over the resultant chromosomes which
can undo the changes. Figure 4.9 exemplifies an abstract integration of the
Gradient Model after the crossover. The grey color represents the affected genes.

Figure 4.10 illustrates the application of a Gradient Model in the crossover
operator, the selected gradient rule indicates that to increase the GBW output, both
W1 and IBias should be increased. The variation applied to these variables is
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Fig. 4.6 Evolution of the population in a GA
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Fig. 4.7 Illustration of a crossover operator

Chromosome – before Mutation Chromosome – after Mutation

Fig. 4.8 Illustration of the mutation operator

4.2 Integration of the Gradient Model in the Optimization Kernel 41



between 0 and 3 % of their value, and is defined by the Change Ratio (all changes
in the illustration were done considering 3 %). The Change Ratio is one of the
model parameter, the other is the Apply Rate which controls the application or not
of the model during crossover, later, in the subsection Graphical User Interface,
those parameters will be explained in detail.

4.2.2 Gradient Model Applied to the Mutation Operator

Another approach to integrate the Gradient Model in the optimization kernel is to
integrate the model into the mutation operator. This approach do not fall into the

Chromosome – Parent 1

Chromosome – Parent 2

Chromosome – Offspring 1

Chromosome – Offspring 2

Gradient Model

Fig. 4.9 Crossover operator integrated with the gradient model
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Fig. 4.10 Application example of the gradient model in the crossover
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same problem of applying the model to the crossover operator, which can drive
chromosomes for areas of optimization and then that direction be changed by the
intervention of the mutation operator.

As seen before, the chromosome is represented by the vector of continuous
variables {x1,…, xn} representing the design variables. To speed up the conver-
gence of the algorithm, the knowledge extracted from the gradient model is used to
make the mutation operator more efficient. The reference mutation operator in
GENOM-POF uses the continuous valued operator introduced by Deb and Goyal
in [7]. In this mutation operator, di is the mutation perturbation applied and is
defined as di ¼ xM

i � xi

� �
= XMax

i � XMin
i

� �
, where xM

i and xi are the mutated and
original values, respectively. Moreover, di is a random variable, with values in the
interval of -1 to 1, and probability density function given by (4.3), where, g is a
parameter used to control the distribution’s spread. Figure 4.11 shows the p.d.f. for
various values of g.

PðdÞ ¼ 0:5� ðgþ 1Þ � ð1� dj jÞg ð4:3Þ

A factor of disturbance �d of d can be obtained from a uniform random number

u 2 0; 1½ � using (4.3), which is obtained from (4.4) by solving
R d
�1 PðdÞ ¼ u.

d ¼ ð2uÞ
2

gþ2 � 1; if u\0:5

1� 2 1� uð Þ½ �
2

gþ2; if u� 0:5

(

ð4:4Þ

Then, the mutated value, xM
i , is given by xM

i ¼ xi þ d XMax
i � XMin

i

� �
. The gra-

dient rules obtained during the generation of the gradient model are then applied.
The application of the rules follows (4.5), where xG

i is the variable value after the
application of the rule, c Siið Þ is a function of the gradient symbol defined in (4.6),
and u 2 0; c½ � is a uniformly distributed random number between 0 and c, the
Change Rate model parameter.

xG
i ¼ 1þ l:c Siið Þð Þ xM

i ð4:5Þ

η = 0
η = 1
η = 5

δ

P(δ)

-1 10

1

0.5

3
Fig. 4.11 Probability
distribution for creating a
mutated value [7]
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c Siið Þ ¼
þ1 when Sii ¼ ðþÞ
�1 when Sii ¼ ð�Þ

�

ð4:6Þ

The application of the gradient rules is dependent on the existence of a suitable
rule for the optimization targets, i.e., it is irrelevant to have a rule to decrease the
gain, if the optimization target is to increase it. The rules are selected by searching
if there is a rule that causes the desired effect on each optimization objective. If
this rule is found, then the variables with larger contributions are affected as
described before. Figure 4.12 shows an example of applying a gradient rule.

Once again, in the example the Gradient Model indicates to increase the values
of W1 and IBias, and with a maximum percentage of changing the values of 3 %.
After the model application the chromosome may have incorporated the knowl-
edge needed to achieve faster the optimal solution. With the introduction of circuit
knowledge through the gradient it is expectable to reach sub-optimal solutions
faster than GENOM-POF without model, or even to reach optimal solutions that
GENOM-POF cannot reach alone. Figure 4.13 presents an example of the muta-
tion operator integrated with Gradient Model.
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4.3 Graphical User Interface (GUI)

The AIDA environment integrated with the Gradient Model, framework and GUI
are implemented in JavaTM 1.6. This GUI provides a simple and fast way for the
designer to set the values of constraints and the range of the optimization variables,
also through the GUI the designer can set the type of optimization to be made on
objectives (maximize or minimize), and monitor the results at any stage of the
evolutionary generation.

Figure 4.14 presents the overview of the AIDA’s GUI. From this overview is
already possible to identify in the upper left the schematic of the circuit in use.
Beneath the schematic are the options available to the user for controlling the
circuit, model and algorithm, which will be presented in detail below. In the right,
on top the estimated layout and on bottom the details, of each of the solutions in
the POF listed in the center, are presented.

Figure 4.15 shows possible objectives (DC Gain and area) for a design, how-
ever, these can be chosen by the designer through the GUI since they are defined in
the netlist. Also, using the GUI the designer can define the type of objective
intended to maximize or minimize.

In Fig. 4.16 it is possible to see the constraints of design and their limits. The
limits and type of the constraints ([= or \=) can be easily changed. Also, the
output being limited can be chosen from any of the available performance
measures.

Fig. 4.14 AIDA GUI: overview

4.3 Graphical User Interface (GUI) 45



Fig. 4.15 AIDA GUI: objectives

Fig. 4.16 AIDA GUI: constraints
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These two panels allow the designer to make several studies for the same
circuit, by changing the values of the objectives and their constraints. However,
the designer can also change the search space for the optimization problem by
changing the range of the input variables. Figure 4.17 shows the several optimi-
zation variables considered in optimization of this circuit, and their respective
minimum and maximum range. The designer can change these ranges values to his
own desire by introducing those values in the GUI. Changing the ranges of the

Fig. 4.17 AIDA GUI: ranges of the input variables
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design variables changes the search space, it reduces when the ranges are
decreased and expands as the ranges increase. The point to keep in mind is that
with narrower search space, the algorithm converges faster to the optimal solu-
tions, while with a larger search space the same algorithm will have more difficulty
in finding the optimal solutions.

Other options like the type of strategy to use or the possibility to use or not the
Gradient Model are included in GUI, also the designer can setup the parameters of
the NSGA-II and the Gradient Model. Figure 4.18 shows the type of strategy to be

Fig. 4.18 AIDA GUI: gradient model and optimization options
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adopted for the optimization problem, GENOM-POF supports both typical and
corner optimization, however, in this work only the typical strategy is considered.

The following settings, in Fig. 4.18, are: the use or not of the Gradient Model or
the Random Model; the model application parameters, respectively, Apply Rate,
which is the frequency/percentage of use of the model chosen in the optimizer, and
Change Ratio, which is the maximum percentage of change of the value of a
variable. The Random Model will be presented in the next chapter, together with
the results, and is used as reference for comparison with the Gradient Model; the
last options are the NSGA-II parameters, the mutation rate controls the percentage
of genes that are mutated in each generation and influences the diversity of the
population, the population size is the number of individuals (chromosomes) in a
population participating in the evolutionary process, and the crossover rate defines
the frequency/percentage of the crossover operation, and, finally, the number of
generations, which corresponds to the number of execution cycles of the algorithm.

4.4 Conclusions

This chapter introduced the architecture of the AIDA environment for the auto-
matic synthesis of analog integrated circuits. The more specific architecture of
GENOM-POF was also presented, which is the tool for circuit sizing optimization.
All the specifications like inputs, structure of the optimization kernel, design
strategies, and the outputs were explained. The integration of the model into the
optimization kernel was detailed described. The focus was kept on the evolu-
tionary operators since the Gradient Model is applied through the crossover or
mutation operator. Finally, this chapter also introduced the AIDA’s GUI.
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Chapter 5
Results

Abstract This chapter illustrates the application of the proposed methodology to
practical examples. The framework of the proposed methodology for the automatic
generation of analog integrated circuits (IC) layout has been coded in JAVA and
was executed, for the presented examples, on an Intel� CoreTM 2 Quad CPU
2.4 GHz with 6 GB of RAM.

Keywords Analog IC design � Circuit-level sizing � Evolutionary computation �
Gradient model

5.1 POFs Analysis

In this study, two objectives are considered to illustrate the multi-objective nature
of the proposed optimization approach, which also facilitates a clear graphical
representation of the Pareto optimal fronts (POF). In order to compare GENOM-
POF [1] with the integrated solution GENOM-POFGM (GENOM-POF ? Gradi-
ent Model) the following POF performance indicators are defined:

• Non-dominated area of the POF;
• Number of points in the POF;
• Standard deviation of points on the f1(x) axis of the POF;
• Standard deviation of points on the f2(x) axis of the POF.

Before entering into the details of the performance indicators, it is important to
grasp the meaning of Pareto dominance, illustrated in Fig. 5.1. The definition of
dominance states that a solution xi dominates a solution xj, if both the following
conditions are true:

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_5, � The Author(s) 2014
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• The solution xi is not worse than xj in any objectives;
• The solution xi is strictly better than xj in at least one objective.

If any of the above conditions is violated the solution xi does not dominate the
solution x3. For a given set of solutions, all possible pairwise comparison should be
performed in order to find which of those are the non-dominated solutions forming
the Pareto front.

Either the dominated or the non-dominated area of the POF are extremely
relevant indicators to make a quantitative comparison among POFs and are
computed as follow:

• The axis are normalized to be between 0 and 1;
• The dominated area, illustrated in Fig. 5.2 by A, is calculated by the sum of

trapezoidal areas defined by successive POF elements as described by expres-
sion (5.1):

A ¼
X 1� að Þ þ 1� bð Þ

2

� �

� h ð5:1Þ

• The non-dominated area, illustrated in Fig. 5.2 as area B, was defined as being
B = 1-A. Thus, the smaller the non-dominated area, the better is the generated
POF.

f1(x)

f2(x)

x2

x1
x3

Fig. 5.1 Pareto dominance:
x2 is dominated by x1 while x1

and x3 are not dominated,
assuming both f1 and f2 are
being minimized

Area

h

A

1

1a b

f1(x )

B

f2 (x )

Fig. 5.2 Dominated and
non-dominated areas
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5.2 Circuit Under Test: Single-Ended Folded Cascode
Amplifier

The single-ended folded cascade amplifier, which schematic and test bench are
presented in Fig. 5.3, is here used to compare GENOM-POF with GENOM-
POFGM. In all the studies, the l UMC (United Microelectronics Corporation
Group) complementary metal–oxide–semiconductor (CMOS) technology was
considered. Two different studies were performed, the first considering 15 input
variables (15th dimensional search space), which corresponds to a large solution
search space, and the second reducing the input variables to 12 (12th dimensional).
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Fig. 5.3 Schematic and
testbench of the single-ended
folded cascode amplifier
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5.3 Case Study I: 15 Input Variables

The first case study was performed considering 15 input/optimization variables, 2
objectives and the performance and functional constraints, as defined in Table 5.1.
The optimization variables include the W’s and L’s of all transistors, the cascode
bias tensions, represented by vbcp and vbcn respectively, and the bias current. This
optimization task is executed by GENOM-POF and by GENOM-POFGM for the
very same conditions.

5.3.1 GENOM-POF

Before proceeding with the evaluation of GENOM-POFGM, a brief study to tune
the optimal mutation rate was performed. The crossover rate, the number of ele-
ments in the population and the number of generations were fixed to the values
90 %, 128 and 2,000, respectively. As a starting point, GENOM-POF was exe-
cuted with the mutation rate of 3 %. Others tests were made for a mutation rate of
5, 15, 30 and 45 %. The best mutation rate found was 30 %, Fig. 5.4 shows the
evolution of the POF in one optimization run using the mutation rate of 3 %, and
Fig. 5.5 shows the evolution of the POF with the mutation rate of 30 %. Observing
both plots, it can be noticed that the POF obtained with a 3 % mutation rate is
more smooth, however the POF obtained with the mutation rate of 30 % clearly
dominates the one obtained with the 3 % mutation rate, for the same number of

Table 5.1 Range, objectives
and constraints

Variables vbcn, vbcp, l1, l4, l5, l7, l9, l11,
ib, w1, w4, w5, w7, w9, w11

Ranges 0.18 lm \= l* \= 5.0 lm
0.24 lm \= w* \= 200.0 lm
-400 mV \= vbcn \= 0.0 V
0.0 V \= vbcp \= 400 mV
30.0 lA \= ib \= 400.0 lA

Objectives Min(area)
Max(a0)

Constraints gb [= 12 MHz
dc_gain [= 80 dB
558\= pm \= 908
sr [= 10 V/ls
Overdrive_m(*) [= 30 mV
Delta_m(*) [= 1.2
osp [= 300 mV
osn \= -300 mV
(*) the constraints apply to:
M1, M4, M5, M7, M9 and M11
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generations. This difference is due to the fact that smaller mutation rates lead to
early convergence issues; moreover, the mutation operator used, unlike other
approaches where the new genes are set as random value within the allowed range
as the new genes, generates new genes that are in average close the original values,
thus the better performance when using a higher mutation rate.

With the mutation rate tuned, an exhaustive optimization with 60,000 genera-
tions was performed; the obtained POF is shown in Fig. 5.6. Both POFs provide a
reference to the evaluation of the performance of GENOM-POFGM.
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Fig. 5.4 GENOM-POF with mutation rate: 3 % and for 2,000 generations
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Fig. 5.5 GENOM-POF with mutation rate: 30 % and for 2,000 generations
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5.3.2 GENOM-POFGM

For this example a Gradient Model was generated considering a Design of
Experiments (DOE) matrix with base two (B = 2) and the contribution of one
optimization variable (N = 1). The resulted Gradient Model for both objectives is
shown in Tables 5.2 and 5.3.

The generated Gradient Model shows a positive gradient for both objectives,
i.e., for the maximization of the DC gain the model tells us to increase the value of
the variable L9, and for the minimization of area the model indicates to the
algorithm to decrease the value of W11. The generated model for this example
took less than 5 min to be generated and the model can be reused for the same
circuit and optimization variables but with different values of constraints. The
usage of the Gradient Model is tuned using the model parameters: Apply Rate and
Change Ratio, as detailed in Chap. 4. To tune these parameters several tests were
performed and the values of 50 and 3 % were found to be the respective best.
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Fig. 5.6 GENOM-POF for 60,000 generations

Table 5.2 Gradient
generated for DC gain

DC gain

L9 Gradient (-) (-)
L9 Gradient (+) (+)

Table 5.3 Gradient
generated for area

Area

W11 Gradient (-) (-)
W11 Gradient (+) (+)
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GENOM-POFGM was then used to optimize the same circuit in the same
conditions used for GENOM-POF (mutation rate of 30 %, crossover rate of 90 %
and population size of 128 and 2,000 generation). The POF obtained is shown in
Fig. 5.7.

Figure 5.8 shows the POFs obtained from 2,000, 4,000 and 60,000 optimization
generations in GENOM-POF, and, superimposed, the POF obtained from 2,000
optimization generations in GENOM-POFGM. The POF obtained with GENOM-
POFGM, with only 2,000 generations, clearly dominates the ones obtained with
GENOM-POF for 2,000 and 4,000 generations. Even the POF obtained after an
exhaustive optimization with 60,000 generations, thought generically better, does
not dominate completely the POF obtained with GENOM-POFGM, not reaching
the maximum value for DC Gain reached by GENOM-POFGM. These results
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Fig. 5.7 GENOM-POFGM (apply rate = 50 % and change ratio = 3 %) for 2,000 generations
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Fig. 5.8 GENOM-POF (60,000, 4,000, and 2,000 gen.) versus GENOM-POFGM (2,000 gen.)
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show the effectiveness of the knowledge captures by the Gradient Model to
achieve better solutions faster than the GENOM-POF for the same number of
generations.

The 2,000 generations were executed in approximately 30 min, for the 4,000
generations the time doubles, and for the 60,000 generations the optimization
process takes approximately 15 h. GENOM-POFGM for 2,000 generations shows
competitive results in comparison with GENOM-POF for 60,000 generations in
approximately less 14 h and 30 min. To confirm that this is not an isolated case, 20
executions with different seeds were performed. The results are shown in Fig. 5.9,
where it can be seen that the inclusion of the gradient model consistently lead to
better solutions.

5.3.3 Random Model

Additionally, and to show that selecting the variables with higher contribution and
determining their correct gradient assignment is crucial to improve the optimi-
zation kernel performance, a Random Model was created to validate the usefulness
of the Gradient Model. The Random Model consists of choosing N random
variables and affecting them with a random gradient, the pseudo-code is presented
in Algorithm 5.1 where the parameters N, Apply Rate and Change Ratio have the
same meaning as in the Gradient Model.

The random model was used together with GENOM-POF to optimize the
folded cascade amplifier 20 times as in the previous examples. The obtained POF
is shown in Fig. 5.10, where it can be seen that by embedding circuit knowledge in
GENOM-POF there are effective benefits to the sizing and optimization task.
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Fig. 5.9 20 different initial populations for comparison between GENOM-POF and gradient
model
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5.3.4 Comparison of Different Optimization/Sizing
Approaches

To quantify the graphical analysis described this far, Tables 5.4, 5.5 and 5.6
summarize for each run the following numerical and statistical indicators:

• Low Area: Finding the minimum circuit area is one of the objectives of this
design problem, so the lowest area reached is an indicator that a designer would
take into consideration. This indicator is represented by the coordinates in the
objective space (area, dc gain) of the solution with the lowest area.

• Max DC Gain: Finding the maximum DC gain is another objective of this design
problem, and is also used an indicators represented by the coordinates in the
objective space (area, dc gain) of the solutions with the greatest DC gain.
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Fig. 5.10 Random model for 20 different initial populations
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• Number of points in POF: This parameter counts the number of solutions which
compose the last generated POF.

• Area B: Represents the non-dominated area for both objectives.
• Standard deviation of area and dc gain and their product: these parameters are

the standard deviations of the difference between objective values of two con-
secutive solutions in the ordered POF; they aim to analyze the spread of solu-
tions for each objective and for both objectives.

The results in Tables 5.4, 5.5, 5.6 show that GENOM-POF reaches a maximum
DC Gain around 86.81 dB for the seed 12 and a minimum area around 1676 lm2

Table 5.4 POFs (20 different seeds) analysis for GENOM-POF

Population: 128 Mutation: 30 % Crossover: 90 % Nr. of Generations 2,000

Run ID Low area
[lm2, dB]

Max DC
gain
[lm2, dB]

#
Points

Area:
1 - A
= B

,area ,dc

gain

,area 9 ,dc gain

0 (2008,
80.21)

(5004,
85.19)

63 0.435 1.523 1.278 1.947

2 (1676,
80.67)

(4528,
85.36)

48 0.390 1.383 1.185 1.640

… … … … … … … …
12 (1736,

80.56)
(4204,

86.81)
47 0.231 1.302 0.837 1.091

19 (2304,
80.76)

(4963,
84.48)

46 0.511 1.093 1.118 1.223

Mean 51.55 0.426 1.549 1.188 1.842
Standard

deviation
8.438 0.085 0.479 0.163 0.621

Table 5.5 POFs (20 different seeds) analysis for gradient model

Population: 128 Mutation: 30 % Crossover: 90 % Nr. of Generations 2,000

Run ID Low area
[lm2, dB]

Max DC
gain
[lm2, dB]

#
Points

Area:
1 - A
= B

,area ,dc

gain

,area 9 ,dc gain

0 (1544,
80.10)

(5167,
87.85)

85 0.134 1.346 1.172 1.578

3 (1426,
80.18)

(6881,
87.20)

87 0.197 1.732 1.168 2.024

… … … … … … … …
11 (1596,

80.05)
(6493,

88.07)
95 0.117 1.197 1.159 1.388

19 (2257,
80.26)

(5647,
86.30)

66 0.348 1.220 1.023 1.249

Mean 81.7 0.200 1.527 1.162 1.784
Standard

deviation
16.799 0.081 0.496 0.116 0.619

60 5 Results



in the seed two. GENOM-POFGM reaches the maximum DC Gain of 88.07 dB at
seed 11 and the minimum area 1430 lm2 in the seed three. Finally, the GENOM-
POF plus the Random Model achieves the maximum of 84.86 dB at seed 10 and
the minimum area 1846 lm2 in the seed seven.

However, all these maximum and minimum values are achieved in different
seeds. So, the mean of the non-dominated areas becomes a relevant value to
different approaches. By observing these tables, the Gradient Model presents very
good results in terms of non-dominated area by having the lowest areas.

Finally, the observation of the non-dominated area, the number of points in the
POF and the standard deviations leads to the conclusion that GENOM-POFGM
performs significant better than the other tested approaches. Table 5.7 summarizes
all the comparisons between the gradient and random models and the reference
GENOM-POF implementation.

5.4 Case Study II: 12 Input Variables

Using the same circuit as before, but now with a number of optimization variables
reduced to 12, by removing the biasing variables ib, vbcn and vbcp, while keeping
the objectives and constraints.

Table 5.6 POFs (20 different seeds) analysis for random model

Population: 128 Mutation: 30 % Crossover: 90 % Nr. of Generations 2,000

Run ID Low area
[lm2, dB]

Max DC
gain
[lm2, dB]

#
Points

Area:
1 - A
= B

,area ,dc

gain

,area 9 ,dc gain

0 (2731,
80.18)

(7013,
84.29)

98 0.482 1.604 1.093 1.755

7 (1846,
80.11)

(4031,
84.42)

117 0.407 1.185 1.388 1.645

… … … … … … … …
10 (2102,

80.33)
(11480,

84.86)
91 0.416 2.639 1.196 3.1589

19 (2.359,
80.51)

(8147,
84.20)

72 0.467 3.592 1.260 4.529

Mean 93.8 0.455 2.444 1.281 3.156
Standard

deviation
16.516 0.029 0.873 0.155 1.253
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5.4.1 GENOM-POF

Figure 5.11 illustrates the GENOM-POF optimization runs with the mutation rate
of 30 %, crossover rate of 90 %, population size of 128, the number of generations
of 2,000 for 20 different runs.

It is clear that results are now below the ones in the previous example (shown in
Fig. 5.6). This is due to the reduction in the number of optimization variables,
especially the fixed biasing of the circuit. The previous example showed a max-
imum DC Gain around 85 dB and a minimum area around 2000 lm2 however, in
this example the maximum DC Gain is around the 84 dB and the minimum area is
around 3000 lm2.

Table 5.7 Comparison between the gradient and random models and GENOM-POF

Non-dominated
area

Nr. points POF ,area ,dc gain ,area 9 ,dc gain

Gradient
model

Better than
GENOM-
POF

Better than
GENOM-
POF

Similar to
GENOM-
POF

Similar to
GENOM-
POF

Similar to
GENOM-
POF

Random
model

Worse than
GENOM-
POF

Better than
GENOM-
POF

Worse than
GENOM-
POF

Similar to
GENOM-
POF

Worse than
GENOM-
POF
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Fig. 5.11 GENOM-POF optimization for case study II
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5.4.2 GENOM-POFGM

The Gradient Model for this example was generated like the one generated in the
previous example, and is shown in Tables 5.8 and 5.9.

Figure 5.12 shows the 20 POFs obtained for 20 different optimization runs with
GENOM-POFGM. Like the previous example the Apply Rate is 50 % and the
Change Ratio is 3 %.

Like the result obtained with GENOM-POF, this result, in comparison with the
results shown in Fig. 5.8, presents a real deterioration of the solutions. For this
optimization the maximum DC Gain obtained is around the 84 dB while before
was around 88 dB. Also for the area measure the solutions found are worse,
around the 3000 lm2 nm while before was around 2000 lm2.

The results for both GENOM-POF and GENOM-POFGM are worse in this case
than in the case with 15 optimization variables. This deterioration is explained
with the fixed variables ib, vbcn and vbcp, which limits the range of operation of
the circuit.

5.4.3 Comparison of Different Optimization/Sizing
Approaches

The first way to compare GENOM-POF and GENOM-POFGM is performed by
analyzing their POFs. Figure 5.13 shows the overlay of both POFs in the same
plot. It does not show significant improvements, as both results seem very similar.

Besides the visual analysis of the POFs does not allow any conclusion about the
improvement or not with the Gradient Model, the statistical study does confirm the
contribution of the proposed approach. Tables 5.10 and 5.11 show the analyses
performed for GENOM-POF and GENOM-POFGM respectively. As observed
before in the POFs, Tables 5.10 and 5.11 do not show significant improvements by
the integration of the Gradient Model. The lowest value of area of 2607 llm2

reached by GENOM-POF and 2577 lm2 reached by GENOM-POFGM, are, in
practical terms, the same. The same happens to the maximum DC Gain, GENOM-

Table 5.8 Gradient rules
generated for DC gain

DC gain

L11 Gradient (-) (-)
L11 Gradient (+) (+)

Table 5.9 Gradient rules
generated for area

Area

W5 Gradient (-) (-)
W5 Gradient (+) (+)
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POF presents the maximum of 84.1 dB while GENOM-POFGM achieves the
maximum DC Gain of 84.41 dB.

However, a careful analysis of the non-dominated area (defined as area B) show
that the non-dominated area is generically lower for the case of GENOM-POFGM.
To further study this phenomenon, for each seed, the POFs from the generation
500 to the generation 2,000 were analyzed showing that GENOM-POFGM had
consistently less non-dominated area, which means that reaches better solutions
faster than GENOM-POF. The summary of these results is presented in
Table 5.12.
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Fig. 5.12 GENOM-POFGM optimization for case study II
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Fig. 5.13 Comparison between GENOM-POF and GENOM-POFGM
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Table 5.10 POFs (20 different seeds) analyses for GENOM-POF

Population: 128 Mutation: 30 % Crossover: 90 % Nr. of Generations 2,000

Run ID Low area
[lm2, dB]

Max DC
gain
[lm2, dB]

#
Points

Area:
1 - A
= B

,area ,dc

gain

,area 9 ,dc gain

0 (2799,
80.00)

(8345,
84.10)

129 0.287 1.297 0.638 0.828

… … … … … … … …
11 (2607,

80.02)
(7501,

83.92)
130 0.293 1.593 0.605 0.965

19 (2646,
80.04)

(6590,
83.56)

128 0.333 1.640 0.658 1.079

Mean 128.75 0.329 1.467 0.659 0.970
Standard

deviation
1.2085 0.046 0.374 0.054 0.264

Table 5.11 POFs (20 different seeds) analyses for gradient model

Population: 128 Mutation: 30 % Crossover: 90 % Nr. of Generations 2,000

Run ID Low Area
[lm2, dB]

Max DC
Gain
[lm2, dB]

#
Points

Area:
1 - A
= B

,area ,dc

gain

,area 9 ,dc gain

0 (2647,
80.01)

(7238,
83.77)

128 0.308 1.789 0.729 1.305

2 (2577,
80.02)

(8784,
84.41)

128 0.241 1.583 0.533 0.843

… … … … … … … …
19 (2755,

80.25)
(8049,

84.23)
128 0.262 1.718 0.693 1.191

Mean 128.4 0.274 1.629 0.675 1.106
Standard

deviation
0.882 0.029 0.206 0.093 0.239

Table 5.12 Analyze of non-dominated area

Nr. of time that have less non-
dominated area then
GENOM-POF

Percentage that have less non-
dominated area then
GENOM-POF

Total number of
POFs analyzed

Gradient
model

270 84.64 % 319
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5.5 Conclusions

In this chapter the proposed approach was tested with different scenarios showing
its effective contribution to improve results and accelerate convergence.

First, an example considering an optimization for 15 input variables was per-
formed, which corresponds to a wide search space of solutions. For this example
the performance of GENOM-POF, GENOM-POFGM and GENOM-POF inte-
grated with Random Model was analyzed. The conclusions were quite clear and
proved that GENOM-POFGM presents significant improvements for the sizing/
optimization task. This study also shows that GENOM-POFGM reaches a better
solution for the maximization of DC Gain. In a second example, the number of
variables to be optimized was reduced to 12, and the reduction in the problem
complexity also lead to less significant improvement with GENOM-POFGM. In
Table 5.13 some closing remarks are presented.

Reference

1. N. Lourenço, N. Horta, in GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog
ICs with Corners Validation. GECCO’ 12: Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation Conference, July 2012, pp. 1119–1126

Table 5.13 Comparison between GENOM-POF and GENOM-POFGM

Advantages Disadvantages

GENOM-
POF

Good application to a unknown circuit
Good ability to adapt to any problem
Expandable to n dimensional space

The execution time can be high, because
the entire analysis requires many
evaluations of the outputs during the
execution of internal GA

The user has no control over the
optimization

GENOM-
POFGM

Time model generation greatly reduced
(even negligible), for both simple and
complex circuits

Simple and functional implementation
Possibility for the designer to change the

gradient of the variables, the rate of
application of the model and the rate
of change the value of the variables

Offers robustness for problems where
the search space is large
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Chapter 6
Conclusions and Future Work

Abstract The proposed methodology for the enhancement of a state-of-the-art
circuit-level synthesis approach, GENOM-POF [1], by incorporating a gradient
model into a multi-objective multi-constraint optimization kernel was proved by
the implementation of a tool, GENOM-POFGM (GENOM-POF ? Gradient
Model), which is able to generate robust circuit sizing solutions. This chapter
presents the closing remarks, and the future directions for the continuous devel-
opment of GENOM-POFGM.

Keywords Analog IC design �Circuit-level sizing �Electronic design automation �
Computer-aided-design

6.1 Conclusions

The presented methodology corresponds to an innovative integrated circuit (IC)
design automation approach by embedding a simple but effective design
knowledge model, Gradient Model, into the evolutionary optimization kernel of a
state-of-the-art analog circuit-level sizing tool. The new technique proved to be
capable to accelerate and reduce the execution time of the circuit-level optimizer
GENOM-POF. This integration of the Gradient Model with GENOM-POF
enhances the optimizer efficiency, forwarding the data to the desired objectives
and causing a significant reduction in the number of electrical simulations, i.e.,
required evaluations.

The model generation was performed using a Design of Experiments sampling
technique, with two alternative strategies, Full Factorial Design and Fractional
Factorial Design, and both showed no contradictions in their statistical analysis.

The Gradient Model has as main goal the description of a set of simple gradient
rules, providing the designer with a direct analysis showing the contribution of the
input variables to the desired objectives and/or performance measures. The model
also offers a set of parameters which the user can explore and vary to adapt to the

F. A. E. Rocha et al., Electronic Design Automation of Analog ICs Combining Gradient Models
with Multi-Objective Evolutionary Algorithms, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-02189-8_6, � The Author(s) 2014
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proposed problem, using the graphical user interface. This optimizer represents a
totally automated alternative to the traditional optimization techniques, where the
execution time is usually extremely high.

The Gradient Model integrated with the mutation operator of the genetic
algorithm proved to be useful to bias the search direction into the most promising
direction. The model application has been proved through the presentation of a
complex case study. This case study was divided in two different problems, where
in the first exists a large solution space and in the second the solutions space is
reduced. These two examples validated the fact that Gradient Model integrated in
GENOM-POF presents better solutions for large solutions space; and also, these
examples proved that even for the worst case, small solution space, the Gradient
Model does not worsened the results of GENOM-POF and still get small
improvements over the GENOM-POF results.

Finally, the proposed objectives for this work were achieved and a new opti-
mizer was created.

6.2 Future Work

In analog IC design automation, there is still a long way to end in this domain; the
improvement on productivity of analog design is a demand of economic market.
Based on this work and its large application on analog design, there are some
suggestions for future research which may improve even more its efficiency.

The first suggestion is the application of Gradient Model for the Corners val-
idation. The second suggestion is to improve the accuracy of the model by per-
forming an extra sample step of the circuit after reaching the first Pareto optimal
front (POF). Several other opportunities can easily be pointed out for future work
showing the large potential of the presented approach.

The integration of the model in the GENOM-POF optimization kernel can also
be performed in alternative ways. An alternative is its application to only one
objective variable, other alternative approach is an application of the Gradient
Model that is not always the same. Figure 6.1 shows an approach where the model
is applied to just one of the objectives half of the time (25 % each of the objec-
tives), while the other half of the time it is applied to all the objectives. The
expected result with this alternative approach is to accelerate the optimization
process by the application of the model to all the optimization objectives, and at
the same time to maximize/minimize even more the objectives by the single
application of the model to a specific objective.

68 6 Conclusions and Future Work



Reference

1. N. Lourenço, N. Horta, in GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog
ICs with Corners Validation. GECCO’ 12: Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation Conference, July 2012, pp. 1119–1126

50% of application of the 
Gradient Model to all 

Objectives

25% of application of the 
Gradient Model to Area

25% of application of the 
Gradient Model to Gain
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