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Abstract In this report we present selected simulations performed on the HLRS
clusters. Our simulation framework is based on the Discontinuous Galerkin method
and consists of four different codes, each of which is developed with a distinct
focus. All of those codes are written with a special emphasis on (MPI) based high
performance computing. In this report, we show results of our newest code, FLEXI,
which is tailored solely towards high performance computing of three dimensional
advection dominated problems. Currently, we are interested in extending our direct
numerical simulation framework to large eddy simulations and present computa-
tions and comparisons of our framework for the flow past a cylinder and the flow
past a wing. Furthermore, first results on a MPI based multi-physics extension of
our framework is presented. All simulations are typically performed on hundreds
and thousands of CPU cores.

1 Introduction

The central goal of our research is the development of high order discretiza-
tion schemes for a wide range of continuum mechanic problems with a special
emphasis on fluid dynamics. Therein, the main research focus lies on the class
of Discontinuous Galerkin (DG) schemes. The in-house simulation framework
consists of four different Discontinuous Galerkin based codes with different fea-
tures, such as structured/unstructured grids, non-conforming grids (h-adaptation),
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non-conforming approximations spaces (p-adaptation), high order grids (curved)
for approximation of complex geometries, modal and nodal hybrid finite elements
and spectral elements with either Legendre-Gauss or Legendre-Gauss-Lobatto
nodes. The time discretization is an important aspect in our research and plays a
major role in the computing performance of the resulting method. The simulation
framework includes standard explicit integrators such as Runge-Kutta, a time
accurate local time stepping scheme developed in-house and an implicit time
discretization based on implicit Runge-Kutta methods. The general layout of the
framework outsources all aspects of a specific physical problem to be solved
(e.g. fluid dynamics) in an encapsulated module separated from the main code
by clearly defined interfaces. Thus by exchanging this physical problem definition
module, the framework is able to solve various partial differential equations such
as the compressible Navier-Stokes equations (fluid dynamics), linearized Euler
equations (aeroacoustics), Maxwells equations (electrodynamics) and Magnetohy-
drodynamics equations (Plasma simulation). One of the major foci in the group
is the simulation of unsteady compressible turbulence in the context of Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS). Due to the occurrence of
multiple spatial and temporal scales in such problems and the resulting high demand
in resolution for both, space and time, a high performance computing framework is
mandatory. Each new code iteration is based and improved on findings and insights
learned during the development of its predecessor. Our newest code iteration called
FLEXI (unstructured successor of the structured code STRUKTI) is build from
ground up with high performance computing in mind and is currently our main
tool to simulate three dimensional PDE based problems.

2 Description of Methods and Algorithms

Discontinuous Galerkin (DG) schemes may be considered a combination of finite
volume (FV) and finite element (FE) schemes. While the approximate solution is a
continuous polynomial in every grid cell, discontinuities at the grid cell interfaces
are allowed which enables the resolution of strong gradients. The jumps on the cell
interfaces are resolved by Riemann solver techniques, already well-known from the
finite volume community. Due to their interior grid cell resolution with high order
polynomials, the DG schemes can use coarser grids. The main advantage of DG
schemes compared to other high order schemes (Finite Differences, Reconstructed
FV) is that the high order accuracy is preserved even on distorted and irregular
grids. The formal order of the scheme can be set by a parameter, namely the
polynomial degree of freedom N . Additionally to the formal order of convergence,
the polynomial degree N has a strong influence on the dispersion and dissipation
behavior. The artificial dissipation of the method is generated via the numerical
flux function which is typically based on Riemann solver technology borrowed
from the FV community. It can be shown that the overall dissipation in the
resolved spectrum decreases with increasing polynomial degree N . Furthermore,
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Fig. 1 Dissipation behavior of the DG-derivative operator for different polynomial degrees N

the dissipation behavior for large N acts like a cut-off filter at a certain wavelength,
as can be seen in Fig. 1. We have low dissipation in the resolved spectrum and high
dissipation in the underresolved part. This is the ideal situation for implicit large
eddy simulation (iLES) of turbulent flow.

The low dissipation of high order DG methods also comes with a price: we have
a higher sensitivity with respect to aliasing errors which may even lead to aliasing
instabilities. A cure for those instabilities lies in the proper evaluation of all spatial
integrals [6]. By choosing a sufficient accurate quadrature rule, which also accounts
for the non-linearity of the flux function, stability is re-established, also in case of
severe underresolution which is typical for large eddy simulations. In conclusion,
we use a high order accurate Discontinuous Galerkin discretization with sufficient
number of integration points to get a stable and accurate iLES type approach. We
use the computing power provided by HLRS to investigate the performance and
accuracy of this approach.

In the following subsections, our simulation codes are detailed. All of our codes
are developed in FOTRAN 90 with MPI based parallelization.

2.1 High Order DGSEM Solver STRUKTI

A very efficient variant of a Discontinuous Galerkin formulation is the Dis-
continuous Galerkin spectral element method (DGSEM). This special variation
of the DG-method is based on a nodal tensor-product basis with collocated
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integration and interpolation points on hexahedral elements, allowing for very
efficient dimension-by-dimension element-wise operations.

An easy-to-use structured code (STRUKTI) was set up to test the performance
of this method, especially for large scale calculations. As a time integration method,
a five stage fourth order accurate explicit Runge-Kutta method is implemented and
used for all test cases.

2.2 High Order DGSEM Solver FLEXI

To enable the efficient simulation of complex geometries, a second DGSEM based
solver was developed. Sharing the same numerical discretization as STRUKTI,
FLEXI is tailored to handle unstructured and even non-conforming hexahedra
meshes. A base tool for grid pre-processing was developed. This program allows
us to process grid files from different commercial grid generators and translate them
into readable FLEXI meshes. Furthermore, a module for curved grid generation
and for non-conforming grid connection is included in this tool [5]. As FLEXI
shares the same efficient discretization as STRUKTI, the performance of both
codes is comparable as in a high order method, the effort of managing the grid
is negligible. The difference lies in the parallelization of both codes. FLEXI uses
domain partition based on space filling curves, whereas STRUKTI is optimized for
structured meshes. Benchmarking of STRUKTI and FLEXI and improvements of
FLEXI’s parallelization is an ongoing important task in the group.

However, the performance results we already have for FLEXI on the HLRS
CRAY-XE6 cluster are at least promising and show great strong scalability of
the framework. Figure 2 shows the strong parallel scaling of FLEXI up to 1,024
processors for different polynomial degrees N and a fixed mesh of 1,024 grid cells.
This means that we are able to perform strong scaling up to the limit of domain
decomposition based MPI, namely with only one grid cell on a processor left.

In DG, the load on the processor is not only determined by the number of grid
cells, but also likewise by the polynomial degree N . In the left part of Fig. 2 the
influence of the polynomial degree on the strong scaling capabilities is investigated.
By choosing a polynomial degree of N D 8, we get a super-linear strong scaling
of over 100 %. With only one or two grid cells on a processor left, the load but also
the memory resources are so small, that strong caching effects can be observed. The
right part of Fig. 2 shows investigations of the influence of the load per processor for
a fixed number of processors (64 cores in this case) on the PID. The performance
index (PID) is a very good measure to compare different simulation setups: it is
the computational time needed to update one degree of freedom for one time step,
and is computed from the total core-h, the total number of timesteps and degrees of
freedom

PID D Wall-clock-time #cores

#DOF #Timesteps
:
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Fig. 2 Strong scaling results for discretizations with constant mesh size and different polynomial
degree N . Left figure shows the total runtime speedup and right shows the behavior of the specific
CPU time index PID

It helps to compare the performance of the different runs. For example, a perfect
strong scaling would result in a constant performance index. However, the right
part of Fig. 2 shows that there is a strong influence of the local processor load
on the PID and that the PID drastically decreases when reducing the load on a
processor although the number of processors is constant. This holds until a certain
minimum load per processor (2000 DOF/processor) is reached. For even lower
values communication overhead causes an increase of the PID. Our experience
shows that the minimum value of load/processor depends on the HPC architecture,
with 2000 DOF/processor (the lower this value, the better the architecture) being a
very good value. When performing a strong scaling investigation where we reach the
limits of MPI (one grid cell on a processor), the load on a processor is in the range of
hundreds of DOF, thus the caching effects augment the increasing communication
overhead resulting in a very good strong scaling capability. If choosing high order
polynomials, i.e. N D 7, the load on a processor is in the range of the limit of
positive caching effects resulting in a real super-linear speed up of the computation
as can be seen in Fig. 2.

3 Flow Past a Cylinder at Reynolds number Re D 3;900

In this section we use a standard LES benchmark example, namely the flow past
a cylinder with Reynolds number Re D 3;900, as a test case to validate our
framework. There are many results in literature available, e.g. Kravchenko and Moin
used a B-spline based spectral element method with an explicit Smagorinsky model
[7] with a resolution varying in-between 1–2 mill DOF, Blackburn and Schmidt
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Fig. 3 Zoomed view of the computational grid with mean streamlines of the resulting simulation

used a continuous spectral element method with a dynamic Smagorinsky model [1]
with about 1.5 mill DOF; Meyer, Hickel and Adams a finite volume based implicit
LES method called ALDM with 6 mill DOF resolution [8]. To compare our results
achieved with a compressible solver to the literature results which are all based
on simulating the incompressible Navier-Stokes equations, we choose a low Mach
number of M D 0:1.

For our investigations, we choose two different setups: a setup with a coarse grid
of 8 � 6 � 6 grid cells and polynomial degree N D 11 resulting in about 500k DOF
and a setup with a medium grid of 16 � 12 � 12 grid cells and polynomial degree
N D 7 resulting in about 1.2 mill DOF. A zoomed view on the computational
grid is plotted in Fig. 3. All computations are dealiased with approximately 2 N

quadrature points.
After the initial transient phase from uniform flow conditions to the development

of the steady vortex shedding, turbulent statistics where gathered over 144 shedding
cycles. The N D 7 computations were run on 2,304 processors on the Cray
XE6, which means that only one element was located on a processors (limit of
MPI scaling). The wall-clock time for this run was about 3 h. For the coarse
grid calculation with N D 11, only 288 processors could be used due to the
MPI limit of one grid cell on a processor. The wall-clock time for this run was
about 17 h.

3.1 Results

In the first part of the results section, integral quantities are compared to results
available in literature. As listed in Table 1, there is a certain spread of the values and
no clear reference value can be determined. Both our computations, the computation
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Table 1 Comparison of
current results with
simulations from literature

Author CpBase St r CD Lr =D

Kravchenko and Moin �0:94 0.21 1.04 1.35
Blackburn and Schmidt �0:93 0.218 1.01 1.63
Meyer and Hickel �0:92 0.21 1.05 1.38
Current: N D 11 �1:0 0.212 1.09 1.26
Current: N D 7 �0:93 0.208 1.04 1.37
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Fig. 4 Distribution of pressure and mean centerline velocity and comparison to results from
literature

with coarse mesh and N D 11 and the medium mesh computation with N D 7, fit
well to the range of literature results while using less degrees of freedom than the
other approaches. This is also confirmed by the distribution of the pressure and
the mean centerline velocity, which compares again well to the available literature
results, see Fig. 4.

In a second step, the influence of our artificial dissipation mechanism on the
numerical result is investigated. As stated above, artificial dissipation is introduced
via the numerical flux functions which are typically based on approximate Riemann
solvers. Two very common variants used in the DG community is either the very
simple local Lax-Friedrichs flux (LLF) function which is generally known to be
highly dissipative and the approximate Riemann solver of Roe which is used
because of its low inherent dissipation. Averaged velocity profiles at different
distances x=d are compared in Fig. 5 and reveal that the simulation based on the
Roe dissipation mechanism is more accurate than the simulation based on the local
Lax-Friedrichs flux.

This is an important result for us and will be the base for further investigations in
future projects.
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Fig. 5 Comparison of averaged velocity profiles at fixed distances x=d for different numerical
flux functions

4 Flow Past an SD7003 Wing at Reynolds number
Re D 60;000

Following the test case C3.3 from the High Order CFD Workshop 2013 (Köln), we
perform simulations of the low Reynolds number flow around an SD7003 airfoil at
high angle of attack (Re D 60;000, ˛ D 8). The Mach number is fixed at Ma D 0:1.
The aim of this test case is to investigate the capability of implicit LES approaches
for mixed laminar, transitional and fully turbulent flows. The described setup results
in a short separation bubble at the leading edge of the suction side and subsequent
turbulent reattachment.

4.1 Simulation Setup

For the discretization, we choose the polynomial degree N D 3 and use a fourth
order accurate explicit Runge-Kutta time integration method. In this case, only
1:5 N quadrature points are chosen for dealiasing, as the rather low polynomial
degree N D 3 offers already a certain amount of artificial dissipation.

For the presented case, we use an unstructured mesh with 21; 660 cells, corre-
sponding to 1:39 106 degrees of freedom at a polynomial degree of 3. Isothermal
walls are applied at the wing surface, the geometry curvature is maintained through
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Fig. 6 2D cut of the
computational mesh

curved boundaries. In the spanwise direction, we resolve 0:2 chords and employ
periodic boundary conditions. The farfield boundary with free-stream conditions is
located five to seven chords away from the wing. Since the influence of the farfield
boundaries cannot be guaranteed to vanish with this domain size, further work will
use larger domains and address this issue. The grid used in this simulation is shown
in Fig. 6.

4.2 Results

In order to collect a sufficient amount of statistical data, the simulation is run for
20 convective times (C=U1 with the chord C and the free-stream velocity U1).
The simulation was performed on the Cray XE6 Hermit cluster at HLRS with 2;272

processors and took 8:35 h.
As can be seen in the lift and drag coefficients evolution in Fig. 7, an unsteady

transition phase is followed by a statistical steady state.
We plot iso-surfaces of the Q criterion at t D 10 in Fig. 8 as a qualitative

visualization of the instantaneous near-wall shear flow. Vortical structures emerge
at the leading edge of the suction side due to the high angle of attack, the remainder
of the suction side’s boundary layer remains turbulent.

More quantitative features of this flow are discussed using time averaged data.
We extract the data in the time interval t 2 Œ8; 20�. In Table 2, the mean aerodynamic
loads (lift and drag coefficient) are compared to results from literature. Our results
compare favorably to the published data.

Figure 9 (left) shows the computed negative pressure coefficient in comparison
with LES results from literature. While the distribution on the pressure coefficients



290 Andrea Beck et al.

Time
4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

CL

CD

Fig. 7 Evolution of the drag and lift coefficient over time

Fig. 8 Iso-surfaces of the Q criterion (Q D 50), colored with vorticity magnitude, after 10

convection times

Table 2 Mean aerodynamic
loads and comparison to
literature

CL CD

DGSEM, N D 3 0:943 0:0455

Garmann and Visbal [4] 0:9696 0:0391

Galbraith and Visbal [3] �0.91 �0.043
Catalano and Tognaccini [2] �0.94 �0.044

on the pressure side is in good agreement between all references and our solution,
some differences are visible in the separation region on the first half of the suction
side.

The friction coefficient shown in the left part of Fig. 9 reveals an even wider
spread between the different results for this case. The negative peak in Cf is in good
quantitative agreement with the results of Garmann and Visbal as well as Catalano
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Fig. 9 Time-averaged pressure coefficient (left) and friction coefficient (right)

Table 3 Separation (x1) and
reattachment (x2) locations
and comparison to literature

x1 x2

DGSEM, N D 3; NO D 4 0:025 0:312

Garmann and Visbal [4] 0:023 0:259

Galbraith and Visbal [3] 0:040 0:280

Catalano and Tognaccini [2] 0:030 0:290

and Tognaccini, while the location of this peak is slightly shifted. The computed
separation and reattachment points on the suction side are listed in Table 3.

Evaluation of this test case is very difficult, since no DNS data is available
for reference. We will continue our work on this case with mesh convergence
investigations and higher polynomial degrees as well as larger computational
domains.

5 Fluid-Structure Coupling

In the last example, we are presenting the first result obtained with an extension
of our framework to a complex multi-physics application. We are considering a
fluid-structure interaction, where the flow solver FLEXI is coupled using MPI
to a structural solver. The problem is a membrane water pump. The membrane
moves up and down and induces the flow to move through the pump, without
the need of valves. A sketch of the pump is shown in Fig. 10. In Fig. 11, the
unstructured hexahedral mesh, consisting of 1;162 elements, and the flow solution
with a deformed membrane is shown. A polynomial degree of N D 2 was used,
which leads to 31;374 degrees of freedom. The simulation was run with up to 1;162

cores, using only one element per core.
With this test case, the interaction of fluid and structure is investigated. Because

of the unsteady nature of the problem and large deformations, a strong coupling
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Fig. 10 Setup of the membrane pump fluid-structure interaction

Fig. 11 Mesh of the quarter part of the pump, and flow velocity with a deformed membrane

is envisaged, explicitly in time. We need to solve not only for the flow dynamics,
but also the structure dynamics, and as well realize a coupling between the two
physics. We will follow a separated approach, where the flow solver works on a
moving mesh, and is coupled via MPI to a structural solver. The flow solver FLEXI
introduced in Sect. 2.2 was modified, to be able to treat moving meshes. Here, we
implemented the approach presented in [9], which leads to a time-consistent DG
method on moving meshes for the simulation of unsteady flows.

Up to now, the structure dynamics of the circular membrane is modeled via a
one-dimensional fourth order equation, making use of the axial symmetry of the
membrane. It is solved on one core with a fast Chebyshev-Collocation method and
integrated implicitly in time. The pressure forces are integrated over the membrane
surface and communicated from the flow solver to the structure solver in each time
step. Then the one-dimensional deformation is passed via MPI messages to the flow
solver, which is transformed to a three-dimensional mesh movement. A sketch of the
coupling methodology is shown in Fig. 12. Both codes run separately, but inside the
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Fig. 12 MPI methodology for the coupling between flow and structure solver

Table 4 Pump simulations (FLEXI N D 2, coupled and not coupled) on the HLRS CRAY XE6
system

#cores DOF per core Sim. time Wall-clock time (h) Core-h PID (�s)

Not coupled 581 54 0.4 3.38 1,940 27
Not coupled 1,162 27 0.15 0.78 914 32
Coupled 581 54 0.3 0.13 76.2 28.5

global communicatorMPI_COMM_WORLD. This is a multiple program multiple data
approach (MPMD), and both executables are executed in the same MPI universe
using the command

mpiexec -n 1 ./struct structure.ini : -n 512 ./flexi flow.ini

where the flow solver runs on 512 cores and the structural solver on a single
core. This gives a lot of flexibility in both codes, since only the coupling data is
interchanged via MPI communication, and the data structures of each program are
not affected. In addition, since both codes run parallel to each other, and a timestep
for the flow solution takes more time than the structure solution, the coupling data is
always ready for communication, leading to a very low overhead, see the difference
in the performance index (PID) in Table 4. The uncoupled reference PID is 27 �s
whereas the coupled computation has a PID of 28 �s.

Table 4 summarizes the computational time spend on different runs of the
problem. Factoring in the different physical runtimes of the simulation (sim. time in
the table), a strong scaling from two (PID = 27 �s) to one element (PID = 32 �s) per
core has still a scaling efficiency of 84 %.
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6 Summary and Outlook

In this project, we have extended our framework to simulate compressible high
Reynolds number flows by means of a large eddy type approach and successfully
computed the turbulent flow past a cylinder and a wing with typical runs on > 1;000

processors. The available CPU resources are used to demonstrate the high accuracy
of this novel approach in comparison to standard methods from the literature.
Furthermore, in the last test case, an extension of this code to a multi-physics
application where the MPI interface is used as a connector of the different field
models is shown.

Our typical reliable “production” runs use O.1;000/ processors. In the future,
we plan to extend and improve our framework to support reliable simulation runs
on O.10;000/ and even on O.100;000/ processors to fully unleash the available
(and projected) processing power of the HLRS CRAY-XE6 cluster.
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