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Abstract This chapter describes the application of Cuckoo Search in simulation-
based optimization of a real-world manufacturing process. The optimization problem
is a combinatorial problem of setting 56 unique decision variables in a way that
maximizes utilization of machines and at the same time minimizes tied-up capital.
As in most real-world problems, the two optimization objectives are conflicting and
improving performance on one of them deteriorates performance of the other. To
handle the conflicting objectives, the original Cuckoo Search algorithm is extended
based on the concepts of multi-objective Pareto-optimization.
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1 Introduction

Discrete-event simulation combined with optimization, so called simulation-based
optimization, is a powerful method to improve real-world systems [1]. While tradi-
tional, analytical optimization methods have been unable to cope with the challenges
imposed by many simulation-based optimization problems in an efficient way, such
as multimodality, non-separability and high dimensionality, so called metaheuristic
algorithms have been shown to be applicable to this type of problem [2][3]. Meta-
heuristic algorithms are powerful stochastic search algorithms with mechanisms
inspired from natural science. A metaheuristic algorithm optimizes a problem by
iteratively improving one or several candidate solution(s) with regard to a given
objective function. The algorithms are not guaranteed to find the optimal solution
for the given problem, but are instead computationally fast and make no explicit
assumptions about the underlying structure of the function to be optimized. These
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properties make them well suited for simulation-based optimization as the simulation
is often time consuming and can be seen as a black-box [4].

There exist plenty of metaheuristic algorithms, among the most well-known
including simulated annealing, tabu search, and genetic algorithms. One of the most
recently proposed is called Cuckoo Search, which is inspired by the parasitic breeding
behavior of cuckoos [5, 6]. Several studies indicate that Cuckoo Search is a powerful
algorithm and successful results have been achieved in various applications such as
welded beam design, nurse scheduling and wireless sensor networks [7–9]. A review
of the literature, however, reveals no applications in manufacturing optimization and
the aim of this study is therefore to investigate the algorithm’s performance in this
domain.

A real-world problem of engine manufacturing at a Volvo factory in Sweden is
focus of the study. In short, the problem is about finding the best prioritization of
the different engine components being simultaneously processed in a manufacturing
line. Basically, this is a combinatorial problem involving the setting of 56 unique
decision variables. The prioritization is used to determine which specific component
has precedence when two or more components are available at a machine or station.
Based on the priorities, it is possible to create a schedule showing which component
should be processed in which machine at each point in time. However, finding an effi-
cient processing schedule is not trivial, due to the considerable complexity of the cell
in combination with a fluctuating inflow and resource constraints. This fact has raised
a need to perform automatic simulation-optimizations and has motivated an evalua-
tion of different algorithms for this purpose. To perform simulation-optimizations, a
discrete-event simulation of the model is constructed by simulation experts at Volvo
using the SIMUL8 software. The next section of this chapter presents the optimiza-
tion in further detail.

2 Real-World Manufacturing Optimization

In Volvo’s manufacturing line under study, engine components of eleven different
types are being processed. The line includes ten different processing stations that
can perform single or multiple operations (including for example burring, welding,
and assembly). The operations performed at a specific station and the tools used
vary depending on the type of component. The high degree of variety in process-
ing of different components, in combination with a fluctuating inflow and several
resource constraints, make it virtually impossible to plan the production manually in
an efficient way. Automatic optimizations are instead needed, and for this purpose a
discrete-event simulation model of the line has been developed by simulation experts
at the company using the SIMUL8 software package.1 The simulation model has a
front-end interface developed in Excel, which facilitates the user in entering input
parameters to the model without the need to learn the simulation language. Valid-

1 www.simul8.com

www.simul8.com
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ity tests indicate that the simulation model represents reality well, and the model is
generally accepted among operators working in the line.

The optimization problem to be solved using the simulation model consists of
constructing a processing schedule for the manufacturing line by setting 56 unique
decision variables. These variables basically represent the order of operations for
different components and also which component has precedence in case of queues in
front of machines. According to the company, a processing schedule should prefer-
ably be configured so that a high utilization of all machines is achieved, as these
involve expensive investments. The company has also stated that it is important
to reduce tied-up capital by minimizing each component’s lead time (that is, the
time between a component entering and exiting the line). Altogether there are two
objectives that must be considered simultaneously in the optimization process: (a)
utilization, and (b) tied-up capital.

For high utilization, a large number of components within the line is needed in
order to avoid machine starvation. However, a large number of components imply
occasional queues in front of some machines, which results in longer lead-times for
components and thereby tied-up capital. In relation to each other, the two objectives
of maximal utilization and minimal tied-up capital are therefore conflicting. No single
optimal solution with respect to both objectives exists, as improving performance on
one objective deteriorates performance of the other objective.

One way to handle conflicting objectives is to derive a set of alternative trade-offs,
so called Pareto-optimal solutions [10]. Figure 1 illustrates the Pareto concept for a
minimisation problem with two objectives f1 and f2. In this example, solution A-D
are non-dominated, i.e. Pareto optimal, since for each of these solutions there exist
no other solution that is superior in one objective without being worse in another
objective. Solution E is dominated by B and C (but not by A or D, since E is better
than these two in f1 and f2, respectively).

Although it is important to find as many (trade-off) optimal solutions as possible
in multi-objective optimisation, the user needs only one solution regardless of the
number of objectives [10]. Which of the optimal solutions to choose is up to the user
to decide based on previous experiences and qualitative information (for example,
ergonomic conditions or set-up of factory workers for the day).

Fig. 1 Illustration of
dominance
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3 Cuckoo Search

This section presents the optimization of the manufacturing line using the Cuckoo
Search algorithm.

3.1 Algorithm Description

In nature, cuckoos lay eggs in other birds’ nests and rely on those other birds to rear
the cuckoo’s offspring. According to the so called “selfish gene theory” proposed by
Dawkins in 1989 [11], this parasitic behavior increases the chance of survival of the
cuckoo’s genes since the cuckoo needs not expend any energy rearing its offspring.
Instead, the cuckoos can spend more time on breeding and thereby increasing the
population. However, the birds whose nests are invaded have developed counter
strategies and increasingly sophisticated ways of detecting the invading eggs.

These behaviors found in nature are utilized in the Cuckoo Search algorithm in
order to traverse the search space and find optimal solutions. A set of nests with one
“egg” (candidate solution) inside are placed at random locations in the search space.
A number of “cuckoos” traverse the search space and records the highest objective
values for different encountered candidate solutions. The cuckoos utilize a search
pattern called Lévy flight which is encountered in real birds, insects, grazing animals
and fish according to Viswanathan et al. [12]. The Lévy flight is characterized by
a variable step size punctuated by 90-degree turns, as can be seen in Fig. 2. The
large steps occasionally taken make the algorithm suitable for global search. Lévy
flights, according to Yang [6] and Gutowski [13], are more efficient for searching
than regular random walks or Brownian motions.

Lévy flights are used in the Cuckoo Search algorithm to globally explore the search
space, while local random walks are used for exploitation. A switching parameter
pa is used to balance between exploration and exploitation. Eq. 1 describes how the

Fig. 2 Example of Lévy flight
starting at [0,0]
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local walks are performed.

x(t+1)
i = x(t)

i + αs ⊕ H(pa − ε) ⊕
(

x(t)
j − x(t)

k

)
(1)

In the equation, xj and xk are two different solutions randomly selected, is H a
Heaviside function, is a random uniform number, and is the step size. The global
random search using the concept of Lévy flights are described in Eq. 2.

x(t+1)
i = x(t)

i + αLévy(s, λ) (2)

In the equation, α > 0 represents the step size scaling factor, and this must be
fine-tuned for the specific problem at hand. Yang [6] advocates the use of α as
α = O(L/100), where L represents the difference between the maximum and min-
imum valid value of the given problem. In order to implement the Lévy flight, a
fast algorithm needed to be used to approximate the Lévy distribution. Leccardi [14]
compared three different approaches to generating Lévy distributed values and found
that the algorithm published in [14] proved to be the most efficient. Mantegna’s algo-
rithm is divided into three steps in order to generate the step length, in Eq. 3 needed
for the Lévy flight.

s = u

|ν| 1
β

(3)

The parameters u and ν are given by the normal distributions in Eq. 4.

u = N(0, σ 2
u ), ν = N(0, σ 2

ν ) (4)

The variance, σ , is calculated as Eq. 5 with 1 ≤ β ≤ 2 and where �(z) is the
gamma function.

σu =
{

�(1 + β) sin(πβ/2)

�[(1 + β)/2]β2(β−1)/2

} 1
β

, σν = 1 (5)

Cuckoo Search is a population based, elitist, single-objective optimization algo-
rithm. The pseudo code for the algorithm is presented in Fig. 3 [5]. Note that only
two parameters need to be supplied to the algorithm; the discovery rate pa ε [0, 1]
and the size of the population, n. When n is fixed, pa controls the elitism and the
balance of randomization and local search [6]. The fact that the algorithm comes
with just two parameters does not only increase the ease of implementation, but also
potentially makes it a more general optimization solution to be applied to a wide
range of problems.

The real-world problem to be optimized by Cuckoo Search in this study involves
the optimization of two objectives. The next section of this chapter describes how
the algorithm is adjusted to consider more than one objective.
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Generate initial population of n host nests 
while (t < MaxGeneration or stopCriterionFulfilled) 
 Generate a solution by Lévy flights and then evaluate its quality/fitness Fi

 Choose a nest among n (say, j) randomly 
if (Fi > Fj ),

  Replace j by the new solution 
end 

 Abandon the pa nests with worst quality and build new ones 
 Keep best solutions/nests 
 Rank the solutions/nest and find the current best 
 Pass the current best to the next generation. 
end while 

Fig. 3 Pseudo code for Cuckoo Search with Lévy flight

3.2 Multi-Objective Extension

In order to convert Cuckoo Search from a single-objective optimization algorithm
into multi-objective optimization algorithm, concepts from an existing Pareto-based
algorithm is used, namely elitist non-dominated sorting genetic algorithm (NSGA-
II). NSGA-II is a widely used multi-objective algorithm that has been recognized
for its great performance and is often used for benchmarking [16]. The pseudo-code
for NSGA-II can be seen in Fig. 4 and for details about the algorithm the reader is
referred to [17].

In the NSGA-II algorithm, the selection of solutions is done from a set R, which
is the union of a parent population and an offspring population (both of size N) [18].
Non-dominated sorting is applied to R and the next generation of the population
is formed by selecting solutions from one of the fronts at a time. The selection
starts with solutions in the best Pareto front, then continues with solutions in the
second best front, and so on, until N solutions have been selected. If there are more
solutions in the last front than there are remaining to be selected, niching is applied
to determine which solutions should be chosen. In other words, the highest ranked
solutions located in the least crowded areas are the ones chosen. All the remaining
solutions are discarded. The selection procedure is illustrated in Fig. 5 (adopted from
[10]).

The concept of non-dominated sorting utilized in the NSGA-II algorithm has been
used to create a multi-objective extension of Cuckoo Search (a similar approach is
presented in [19]). Besides the non-dominated sorting procedure, other differences
between NSGA-II and the new version of the Cuckoo Search algorithm include the
use Lévy flights instead of mutation and the abandonment and movement of nests
instead of crossover. The pseudo code for the multi-objective version of Cuckoo
Search is presented in Fig. 6.

The next section of this chapter presents results from applying the multi-objective
version of Cuckoo Search on the real-world manufacturing problem.
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Initialize Population 
Generate N random solutions and insert into Population 
for (i = 1 to MaxGenerations) do
 Generate ChildPopulation of size N 
 Select Parents from Population 
 Create Children from Parents 
 Mutate Children 
 Combine Population and ChildPopulations into CurrentPopulation with size  

2N
for each individual in CurrentPopulation do

Assign rank based on Pareto – Fast non-dominated sort 
 end for 
 Generate sets of non-dominated vectors along PF known

 Loop (inside) by adding solutions to next generation of Population starting  
       from the best front 
   until N solutions found and determine crowding distance between  
              points on each front 
end for 
Present results 

Fig. 4 Pseudo code for NSGA-II

Population

Offspring

Front 1

Front 2

Front 3

Rejected

Population

Non-dominated 
sorting

Niching
R

Fig. 5 Non-dominated sorting
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Initialize Population 
Generate N random solutions and insert into Population 
for (i = 1 to MaxGenerations) do
 Generate ChildPopulation using Cuckoo Search (pseudo code in Fig. 3)
 Non-dominated-sort 

for each individual in CurrentPopulation do
  Generate sets of non-dominated vectors along PFknown

  Loop (inside) by adding solutions to next generation starting from the   
best front 

       until N solutions found and determine crowding distance between  
                  points on each front 

end for 
end for 
Present results 

Fig. 6 Pseudo code for the proposed multi-objective Cuckoo Search

4 Evaluation

4.1 Configuration

As previously mentioned in Sect. 2 of this chapter, the real-world manufacturing
problem is basically a combinatorial problem with 56 unique decision variables rep-
resenting a processing schedule. The proposed multi-objective extension of Cuckoo
Search is applied on the problem with the maximum number of simulation evaluations
set to 1000 (according to the time budget stated by the company). The population
size is set to 20, and the percentage of abandoned nests to 40% (the values have
been found by trial-and-error tests). The algorithm uses a swap operator utilizing the
Lévy flights to determine the indices to swap. The step size for the Lévy flight is set
to upperbound

100 , where upperbound is the maximum permitted value of each parameter.
For comparison, the NSGA-II algorithm is also applied on the problem. NSGA-

II is run with the same number of simulation evaluations as Cuckoo Search and
implemented with the same population size. NSGA-II uses swap range mutation
with a mutation probability of 10%. Furthermore, the algorithm is implemented with
a partially mapped crossover operator and a crossover probability of 90%.

As baseline for the comparison between Cuckoo Search and NSGA-II, a basic
scheduling function defined by the company is being used. In this function, a Critical
Ratio (CR) value of each component is calculated to determine how well it is on
schedule. The CR value is derived by dividing the time to due date (i.e. scheduled
completion) by the time expected to finish the component, according to Eq. 6.

CR =
{

due ≥ now : 1+due−now
1+TRPT

due < now : 1
(1+now−due)∗(1+TRPT)

(6)
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In this equation, due is the due date of the component (i.e. deadline), now is the
current time, and TRPT is the theoretical total remaining processing time (the active
operation time including set-up times and movements between machines/stations).
A component with a CR value of 1.0 is “according to schedule”, while it is behind
if the value is less than 1.0 and ahead if the value is larger than 1.0. In case of a race
condition, the component with the lowest CR value has precedence.

4.2 Integrating the Optimization Algorithm and the Simulation

To run the algorithms along with the SIMUL8 simulation model, a component called
“simulation controller” is implemented. The simulation controller, whose purpose
is to start the simulation and collect results, is implemented using the application
programming interface (API) provided by SIMUL8. This API enables the simulation
model to be controlled programmatically. When the simulation controller receives a
request (i.e., a set of priority values to be evaluated) from the optimization algorithm,
the simulation controller invokes the simulation model with a “Run” command and
provides the priority values. When the simulation has been completed (after about
two seconds), the simulation controller collects the results and sends them back to
the optimization algorithm.

4.3 User Interface

The user interacts with the simulation-optimization through a web page displayed
in a web browser. Using a web page as user interface enables access to the platform
from any hardware (e.g., PC, mobile phone, tablet, etc.) at any site, as long as a web
browser and an internet connection are available. This is especially advantageous in
industrial environments, since employees often have limited (or no) possibilities of
installing, running, and maintaining software at their work stations.

The content of the web page was developed during an iterative process undertaken
in close cooperation between the company and the University’s software developers.
A screenshot of one part of the resulting web page is presented in Fig. 7 (for integrity
reasons, company specific information was deleted before the screenshot was taken).
The panel to the left in the screenshot constitutes the menu from which the user
accesses various functions in the platform. In the screenshot, the menu alternative
“RESULTS” have been chosen. This alternative shows the output from a simulation-
optimization run, namely, a production schedule derived from a prioritization of all
components to be processed during a specific time period. The aim of the production
schedule is to support the operators of the manufacturing cell by specifying which
component should be processed in which machine at each point in time.
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Fig. 7 Screenshot of user interface

4.4 Results

The optimization results achieved by Cuckoo Search and NSGA-II are presented in
Table 1 and stated in relation to the CR function. More specifically, the percentage
numbers given in the table represent the relative improvement achieved by each
algorithm when compared to the result of the CR function. No real numbers can be
presented due to company restrictions.

As shown in Table 1, the results clearly indicate that NSGA-II outperforms Cuckoo
Search considering both optimization objectives. An analysis of this result is given
in the next section of this chapter.

5 Analysis

This section presents an analysis of the results, both from a technical point of view
and from a user perspective.

Table 1 Results with CR function as baseline

Utilization (improvement) Tied-up capital (improvement)

Cuckoo Search (%) 10 15
NSGA-II (%) 19 23

Average of 20 replications
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5.1 Technical Analysis

As mentioned in the introduction, Cuckoo Search has proven to be able to efficiently
solve different optimization problems in various domains. Nevertheless the algorithm
shows a weak performance on the real-world manufacturing problem of focus for
this paper. When going through previous studies on Cuckoo Search and analyzing the
nature of the optimization problems solved in these papers, it is clear that continuous
problems have been the main target for Cuckoo Search so far. In this study, the
problem to be solved is combinatorial and a hypothesis is this fact is the reason
behind the results. To investigate the hypothesis, five continuous problems from
the well-known ZDT test suit are implemented. A detailed description of the ZDT
problems is provided in [20].

Results from applying the multi-objective version of Cuckoo Search on the contin-
uous ZDT problems are presented in Table 3. For comparison, the NSGA-II algorithm
has also been applied on the same problems. Two performance measures are being
used: convergence and spread (both are to be minimized). These two are commonly
used for the ZDT problems and a detailed explanation of their implementation can
be found in [10].

As can be seen in Table 2 Cuckoo Search achieves the best results on the ZDT1,
ZDT2 and ZDT4 problems. On the ZDT3 problem, it achieves a better convergence
than the NSGA-II algorithm, but a worse spread. On the ZDT6 problem, NSGA-II
performs the best on both objectives.

The results from the test suit show that Cuckoo Search outperforms NSGA-II on
the majority of the ZDT problems, which is probably due to use of the efficient Lévy
flight method. These results are in line with results from previous studies found in
the literature on applying Cuckoo Search on continuous optimization problems.

To investigate further if Cuckoo Search is better suited for continuous optimiza-
tion problems, the algorithm is also evaluated on a combinatorial test problem. The
problem implemented is the symmetrical traveling salesman problem named berlin52

Table 2 Results from ZDT problems

Convergence (minimize) Spread (minimize)

ZDT1 NSGA-II 0.037582 0.613663
Cuckoo Search 0.002561 0.613206

ZDT2 NSGA-II 0.030753 0.684501
Cuckoo Search 0.003855 0.649924

ZDT3 NSGA-II 0.001460 0.615773
Cuckoo Search 0.001149 0.616611

ZDT4 NSGA-II 0.075159 0.700399
Cuckoo Search 0.000437 0.623540

ZDT6 NSGA-II 0.002848 0.616384
Cuckoo Search 0.085899 0.675200

Average of 1000 replications
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Table 3 Results from combinatorial TSP problem

Distance (minimize)

Cuckoo Search 21716
NSGA-II 10961

Average of 1000 replications

[21], which was chosen due to the similar number of parameters to the real-world
problem. The objective of the problem is to find the shortest route between a number
of points, while only going through each point once, and then returning to the start-
ing point. The distance between the points is measured through Euclidean distance.
Results from applying Cuckoo Search and NSGA-II on the problem are presented
in Table 3. As shown in the table, NSGA-II clearly outperforms the Cuckoo Search
algorithm on the combinatorial TSP problem. It should be noted that there exist a
specialized Cuckoo Search tailor-made for the travelling salesman problem that has
been proven to perform very well [22], but as this version is single-objective it has
not been considered in the study.

Although a more extensive evaluation including a larger number of optimiza-
tion problems are needed for a general statement, the results obtained in this study
indicates that Cuckoo Search in the form implemented in this study is suited for
continuous problems rather than combinatorial ones. A probable reason for the weak
performance on combinatorial problems is that the Lévy flight pattern is not suited
to be used as a basis for swap mutation. As previously described, the algorithm uses
a swap operator utilizing the Lévy flights to determine the indices to swap.

5.2 User Perspective

The simulation-optimization has also been analyzed by a test group at Volvo Aero.
This test group included eight employees who represented all three user groups
supported by the platform (operator, shift leader, and manager), as well as logis-
tics engineers at the company. University representatives first demonstrated the
simulation-optimization on site at the company, after which it was made available to
the test group. They tried the system out for a couple of weeks, during which their
feedback was collected and compiled.

After the test period, the evaluation feedback was discussed and analyzed. The
feedback highlighted the great potential the simulation-optimization demonstrated
with regard to improving processing schedules, especially during periods of heavy
workloads. Besides improving the processing schedules, using the platform was also
considered a way of significantly reducing the human effort currently associated
with creating the schedules. A further advantage raised by the test group was the
possibility of easily sharing optimized production schedules in real-time among
stakeholders. Since the platform is web-based, it allows all users to easily view
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results simultaneously, which stands in contrast to traditional desktop applications
where results must be printed or e-mailed.

A negative aspect of the platform raised, more or less, by everyone in the test
group was the need to manually specify the current status and configuration of the
manufacturing cell before each simulation-optimization. The required data includes
shift period, status of components currently under process, list of components enter-
ing, availability of fixtures, availability of operators, and scheduled maintenance.
The simulation model needs all this data to be able to mimic the operations of the
cell as close to reality as possible. Collecting and specifying the data can be time-
consuming and should preferably be eliminated so that the optimization can be fully
automatic and run frequently, or even constantly. To realize this, the platform can
be integrated with the computerized control system of the manufacturing cell. It is
essential to strive for such integration, which would probably not be too difficult
considering the manufacturing cell has modern, built-in control systems that process
the data needed.

6 Conclusions

This paper describes a case study of applying Cuckoo Search, a recently proposed
metaheuristic algorithm, in simulation-based optimization of a real-world manufac-
turing line. The manufacturing line is highly automated and produces engine compo-
nents of eleven different types. The Cuckoo Search algorithm has previously shown
promising results in various problem domains, which motives to evaluate it also on
the optimization problem under study in this paper. The optimization problem is a
combinatorial problem of setting 56 unique decision variables in a way that maxi-
mizes utilization of machines and at the same time minimizes tied-up capital. As in
most real-world problems, these two objectives are conflicting and improving perfor-
mance on one of them deteriorates performance of the other. To handle the conflicting
objectives, the original Cuckoo Search algorithm is extended based on the concepts
of multi-objective Pareto-optimization. We argue that a multi-objective version of
Cuckoo Search is needed not only for this specific study, but for Cuckoo Search to
be truly useful in general as most real-world problems involve the optimization of
more than one objective.

Optimization of the manufacturing line is performed based on a discrete-event
simulation model constructed using the SIMUL8 software. Results from the
simulation-based optimization show that the extended Cuckoo Search algorithm is
inefficient in comparison with the multi-objective benchmark algorithm NSGA-II.
A possible reason might be that the Cuckoo Search algorithm is not suited for com-
binatorial optimization problems due to that the Lévy flight pattern is not suited to
be used as a basis for swap mutation. To investigate this further, the algorithm is
applied on five continuous test problems and also one combinatorial test problem.
Results from these test problems shows that the Cuckoo Search algorithm outper-
forms NSGA-II on a majority of the continuous test problems. However, the Cuckoo
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Search algorithm performs considerable worse than the NSGA-II algorithm on the
combinatorial test problem. An explanation for the weak results on this problem, as
well as the real-world problem, might be that the Lévy flight pattern is not suited to
be used as a basis for swap mutation. Further evaluations are needed, however, to
investigate this circumstance further. It is also recommended to study other possi-
ble ways to adapt Cuckoo Search to combinatorial optimization problems possibly
suggest an improved version that is able to handle this type of problem effectively.

Another interesting improvement of the Cuckoo Search algorithm would be to
consider simulation randomness. To capture the stochastic behavior of most real-
world complex systems, simulations contain randomness. Instead of modeling only
a deterministic path of how the system evolves in the process of time, a stochas-
tic simulation deals with several possible paths based on random variables in the
model. To tackle the problem of randomness of output samples is crucial because the
normal path of the algorithm would be severely disturbed if estimates of the objec-
tive function come from only one simulation replication. The common technique to
handle randomness is to send the algorithm with the average values of output sam-
ples obtained from a large number of replications. Although this technique is easy
to implement, the large number of replications needed to obtain statistically confi-
dent estimates from simulation of a complex system that requires long computation
time can easily render the approach to be totally impractical. There are methods
that guarantee to choose the “best” among a set of solutions with a certain statisti-
cally significance level, which require fewer replications in comparison to the others
(e.g. Kim-Nelson ranking and selection method found in [23]). However, combin-
ing statistically-meaningful procedures that require relatively light computational
burden with metheuristics is still an important topic for further research [24].

Besides technical issues, it is also important to carefully considering user aspects
for a successful realization of the optimization. During the Volvo case study, it was
clear that the graphical design and layout of the user interface was an important
factor in gaining user acceptance of the simulation-optimization. In general, software
development more easily focuses on algorithms and technical details, but putting at
least as great an effort into the graphical design is recommended. It is especially
important to keep usability in mind when developing systems for industrial adoption,
since the success of a system is dependent on its acceptance by its users [25].
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