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Abstract Intelligent firefly algorithm (IFA) is a novel global optimization algorithm
that aims to improve the performance of the firefly algorithm (FA), which was inspired
by the flashing communication signals among firefly swarms. This chapter introduces
the IFA modification and evaluates its performance in comparison with the original
algorithm in twenty multi-dimensional benchmark problems. The results of those
numerical experiments show that IFA outperformed FA in terms of reliability and
effectiveness in all tested benchmark problems. In some cases, the global minimum
could not have been successfully identified via the firefly algorithm, except with the
proposed modification for FA.

Keywords Global optimization · Nature-inspired methods · Intelligent firefly
algorithm.

1 Introduction

To date, a significant work has performed on global optimization and there have
been significant algorithmic and computational developments including their appli-
cations to a wide variety of real-life and engineering problems. For illustration, recent
advances in global optimization have been discussed by Floudas and Gounaris [1].
In particular, global optimization has and continues to play a major role in a number
of engineering and science applications. As expected, finding the global optimum

S.-E. K. Fateen
Department of Chemical Engineering, Cairo University, Giza, Egypt
e-mail: sfateen@alum.mit.edu

A. Bonilla-Petriciolet (B)

Department of Chemical Engineering, Instituto Tecnológico de
Aguascalientes, Aguascalientes, México
e-mail: petriciolet@hotmail.com

X.-S. Yang (ed.), Cuckoo Search and Firefly Algorithm, 315
Studies in Computational Intelligence 516, DOI: 10.1007/978-3-319-02141-6_15,
© Springer International Publishing Switzerland 2014



316 S.-E. K. Fateen and A. Bonilla-Petriciolet

is more challenging than finding a local optimum and, in some real-life applica-
tions, the location of this global optimum is crucial because it corresponds to the
correct and desirable solution. Basically, global optimization methods can be clas-
sified into two broad categories: deterministic and stochastic methods. The former
methods can provide a guaranteed global optimum but they require certain proper-
ties of objective function and constraints such as continuity and convexity. On the
other hand, stochastic global optimization methods aim at finding the global mini-
mum of a given function reliably and effectively. These methods are attractive for
solving challenging global optimization problems arising from real-life applications
because they are applicable to any problem without the assumptions of continuity
and differentiability of the objective function. Until now, several stochastic methods
have been proposed and tested in challenging optimization problems using continu-
ous variables and they include simulated annealing, genetic algorithms, differential
evolution, particle swarm optimization, harmony search, and ant colony optimiza-
tion. Recent nature-inspired optimization algorithms include cuckoo optimization
[2], artificial bee colony optimization [3–5], honey bee mating optimization [6],
and multi-colony bacteria foraging optimization [7]. In general, these methods may
show different numerical performances and, consequently, the search for more effec-
tive and reliable stochastic global optimization methods has been an active area of
research.

In particular, the Firefly algorithm (FA) [8] is a novel nature-inspired stochastic
optimization method. It was inspired by the flashing behavior of fireflies. A few
variants of this algorithm were recently developed, e.g.: discrete FA [9], multiob-
jective FA [10], Lagranian FA [11], Chaotic FA [12] and a hybrid between FA and
ant colony optimization [13]. This relatively new method has gained popularity in
finding the global minimum of diverse science and engineering application prob-
lems. For example, it was rigorously evaluated by Gandomi et al. [14] for solving
global optimization problems related to structural optimization problems, and has
been recently used to solve the flow shop scheduling problem [9], financial portfolio
optimization [13], economic dispatch problems with valve loading effects [15] and
phase and chemical equilibrium problems. Even FA is usually robust for continuous
global optimization; the performance of available FA algorithms may fail to solve
challenging application problems. Therefore, it is convenient to study new algorithm
modifications and improvements to enhance its reliability and efficiency especially
for large-scale problems. The aim of this chapter is to present a modification to the
existing FA algorithm and to evaluate its performance in comparison with the origi-
nal algorithm. The remainder of this chapter is divided as follows: Sect. 2 introduces
the Firefly algorithm. Section 3 introduces the proposed modification and our new
FA algorithm, namely the Intelligent Firefly Algorithm. The numerical experiments
performed to evaluate the modification are presented in Sect. 4. The results of the
numerical experiments are presented and discussed in Sect. 5. Section 6 summarizes
the conclusions of this chapter.
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2 Firefly Algorithm (FA)

As stated in this book, FA is a nature-inspired stochastic global optimization method
that was developed by Yang [8]. The FA algorithm imitates the mechanism of firefly
communications via luminescent flashes. In the FA algorithm, the two important
issues are the variation of light intensity and the formulation of attractiveness. The
brightness of a firefly is determined by the landscape of the objective function.
Attractiveness is proportional to brightness and, thus, for any two flashing fireflies,
the less bright one moves towards the brighter one.

In FA, the attractiveness of a firefly is determined by its brightness, which is equal
to the objective function. The brightness of a firefly at a particular location x was
chosen as I(x) = f(x). The attractiveness is judged by the other fireflies. Thus, it
was made to vary with the distance between firefly i and firefly j. The attractiveness
was made to vary with the degree of absorption of light in the medium between the
two fireflies. Thus, the attractiveness is given by

β = βmin + (βo − βmin) e−γ r2
(1)

The distance between any two fireflies i and j at xi and x j is the Cartesian distance:

ri j = xi − x j =
√
√
√
√

d
∑

k=1

(

xi,k − x j,k
)2 (2)

The movement of a firefly attracted to another more attractive (brighter) firefly j
is determined by

xi = xi + β
(

x j − xi
) + αεi (3)

The second term is due to the attraction, while εi in the third term is a vector
of random numbers usually drawn from a uniform distribution in the range [−0.5,
0.5]. α is a parameter that controls the step. It can also vary with time, gradually
reducing to zero, as used in many studies [8, 14, 16] which can help to improve the
convergence rate of the optimization method.

3 Intelligent Firefly Algorithm (IFA)

In the original FA, the move, i.e., Eq. (3), is determined mainly by the attractiveness of
the other fireflies; the attractiveness is a strong function of the inter distance between
the fireflies. Thus, a firefly can be attracted to another firefly merely because it is
close, which may take it away from the global minimum. The fireflies are ranked
according to their brightness, i.e. according to the values of the objective function
at their respective locations. However, this ranking, which is a valuable piece of
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information per se, is not utilized in the move equation. A firefly is pulled towards
each other firefly as each of them contributes to the move by its attractiveness. This
behavior may lead to a delay in the collective move towards the global minimum. The
idea behind of our Intelligent Firefly Algorithm (IFA) is to make use of the ranking
information such that every firefly is moved by the attractiveness of a fraction of
fireflies only and not by all of them. This fraction represents a top portion of the
fireflies based on their rank. Thus, a firefly is acting intelligently by basing its move
on the top ranking fireflies only and not merely on attractiveness.

A simplified algorithm for the IFA technique is presented in Fig. 1. The new
parameter φ is the fraction of the fireflies utilized in the determination of the move.
The original firefly algorithm is retained by setting φ to 1. This parameter is used as
the upper limit for the index j in the inner loop. Thus, each firefly is moved by the
top φ fraction of the fireflies only.

The strength of FA is that the location of the best firefly does not influence the
direction of the search. Thus, the fireflies are not trapped in a local minimum. How-
ever, the search for the global minimum requires additional computational effort as
many fireflies wander around uninteresting areas. With the intelligent firefly modifi-
cations, the right value of the parameter φ can maintain the advantage of not being
trapped in a local minimum while speeding up the search for the global minimum.
The right value of φ gives a balance between the ability of the algorithm not to
be trapped in a local minimum and its ability to exploit the best solutions found.
An iterative procedure can be used to reach a good value of φ that is suitable for

Fig. 1 Simplified algorithm of intelligent firefly algorithm (IFA)
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the problem to be solved. This iterative procedure is demonstrated in the numerical
experiments below. We will show that this straightforward modification can improve
significantly the performance of FA for continuous global optimization.

4 Numerical Experiments

Twenty classical benchmark functions were used to evaluate the performance of IFA
as compared to the original FA. Tables 1 and 2 show the benchmark functions used
along with their names, number of variables, variable limits and the value of the
global minimum. The value of the new FA parameter φ was made to vary at four
different values: 0.05, 0.1, 0.25 and 0.5. The effect of this parameter was studied
for the twenty benchmark problems. The parameters for the original FA were kept
constant in all experiments, i.e.: we used the value of 1 for βo, 0.2 for βmin , 1 for γ ,
and α was made to decrease with the increase in the iteration number, k, in order to
reduce the randomness according to the following formula:

αk =
(

1.11 × 10−4
)b/itermax

αk−1 (4)

Thus, the randomness is decreased gradually as the optima are approached. This
formula was adapted from Yang [16]. The value of the parameter b was taken equal to
5 except for the Himmelblau, Powell, Wood, Rastrigin, Rosenbrock, Sine envelope
sine wave, and Zacharov functions. This change in value was necessary to obtain
solutions closer to the global optimum for those functions.

The 20 problems constitute a comprehensive testing for the reliability and effec-
tiveness of the suggestion modification to the original FA. Eight functions have two
variables only, yet some of them are very difficult to optimize. Surface plots of these
functions are shown in Fig. 2.

To complete the evaluation of the IFE in comparison with the original FA algo-
rithm, we have employed performance profile (PP) reported by Dolan and Moré
[17], who introduced PP as a tool for evaluating and comparing the performance of
optimization software. In particular, PP has been proposed to represent compactly
and comprehensively the data collected from a set of solvers for a specified per-
formance metric. For instance, number of function evaluations or computing time
can be considered performance metrics for solver comparison. The PP plot allows
visualization of the expected performance differences among several solvers and to
compare the quality of their solutions by eliminating the bias of failures obtained in
a small number of problems.

To introduce PP, consider ns solvers (i.e. optimization methods) to be tested over a
set of n p problems. For each problem p and solver s, the performance metric tps must
be defined. In our study, reliability of the stochastic method in accurately finding the
global minimum of the objective function is considered as the principal goal, and
hence the performance metric is defined as
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Table 1 Benchmark functions used for testing the performance of FA and IFA

Name Objective function

Ackley f1 = 20

(

1 − e
−0.2

√

0.5
(

x2
1 +x2

2

)
)

− e0.5(cos 2πx1+cos 2πx2) + e1

Beale f2 = (1.5 − x1 + x1x2)
2 + (

2.25 − x1 + x1x2
2

)2 + (

2.625 − x1 + x1x3
2

)2

Booth f3 = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

Carrom table f4 = −
⎡

⎣cos x1 cos x2e

∣
∣
∣
∣
1−

√

x2
1 +x2

2 /π

∣
∣
∣
∣

⎤

⎦

2

/30

Cross-leg table f5 = −
⎡

⎣

∣
∣
∣
∣
∣
∣

sin (x1) sin (x2) e

∣
∣
∣
∣
100−

√

x2
1 +x2

2 /π

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

+ 1

⎤

⎦

−0.1

Himmelblau f6 = (

x2
1 + x2 − 11

)2 + (

x2
2 + x1 − 7

)2

Levy 13 f7 = sin2 (3πx1) + (x1 − 1)2 [

1 + sin2 (3πx2)
] + (x2 − 1)2 [

1 + sin2 (2πx2)
]

Schaffer f8 = 0.5 +
sin2

[√

x2
1 +x2

2

]

−0.5

[

0.001
(

x2
1 +x2

2

)+1
]2

Helical valley f9 = 100

[

(x3 − 10θ)2 +
(√

x2
1 + x2

2 − 1

)2
]

+ x2
3 where 2πθ = tan−1

(
x1
x2

)

Powell f10 = (x1 + 10x2)
2 + 5 (x3 − x4)

2 + (x2 − 2x3)
4 + 10 (x1 − x4)

4

Wood f11 = 100
(

x2
1 − x2

)2 + (x1 − 1)2 + (x3 − 1)2 + 90
(

x2
3 − x4

)2

+10.1
[

(x2 − 1)2 + (x4 − 1)2] + 19.8 (x2 − 1) (x4 − 1)

Cube f12 =
m−1∑

i=1
100

(

xi+1 − x3
i

)2 + (1 − xi )
2

Sphere f13 =
m∑

i=1
x2

i

Egg holder f14 =
m−1∑

i=1

{− (xi+1 + 47) sin
(√|xi+1 + xi /2 + 47|)

+ sin
[√|xi − (xi+1 + 47)|] (−xi )

}

Griewank f15 = 1
4000

[
m∑

i=1
(xi − 100)2

]

−
[

m∏

i=1
cos

(
xi −100√

i

)
]

+ 1

Rastrigin f16 =
m∑

i=1

(

x2
i − 10 cos (2πxi ) + 10

)

Rosenbrock f17 =
m−1∑

i=1
100

(

xi+1 − x2
i

)2 + (xi − 1)2

SES wave f18 =
m−1∑

i=1

{

0.5 + sin2
[√

x2
i+1+x2

i

]

−0.5
[

0.001
(

x2
i+1+x2

i

)+1
]2

}

Trigonometric f19 =
m∑

i=1

[

m + i (1 − cos xi ) − sin xi −
m∑

j=1
cos x j

]2

Zacharov f20 =
m∑

i=1
x2

i +
(

m∑

i=1
0.5i xi

)2

+
(

m∑

i=1
0.5i xi

)4
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Table 2 Decision variables and global optimum of benchmark functions used for testing the
performance of FA and IFA

Objective function nvar Search domain Global minimum

Ackley 2 [−35, 35] 0
Beale 2 [−4.5, 4.5] 0
Booth 2 [−10, 10] 0
Carrom table 2 [−10, 10] −24.157
Cross-leg table 2 [−10, 10] −1
Himmelblau 2 [−5, 5] 0
Levy 13 2 [−10, 10] 0
Schaffer 2 [−100, 100] 0
Helical valley 3 [−1000,1000] 0
Powell 4 [−1000, 1000] 0
Wood 4 [−1000, 1000] 0
Cube 5 [−100, 100] 0
Sphere 5 [−100, 100] 0
Egg holder 50 [−512, 512] 959.64
Griewank 50 [−600, 600] 0
Rastrigin 50 [−5.12, 5.12] 0
Rosenbrock 50 [−50, 50] 0
Sine envelope sine wave 50 [−100, 100] 0
Trigonometric 50 [−1000, 1000] 0
Zacharov 50 [−5, 10] 0

tps = fcalc − f ∗ (5)

where f ∗ is the known global optimum of the objective function and fcalc is the mean
value of that objective function calculated by the stochastic method over several
runs. In our study, fcalc is calculated from 30 runs to solve each test problem by
each solver; note that each run is different because of random number seed used and
the stochastic nature of the method. So, the focus is on the average performance of
stochastic methods, which is desirable [18].

For the performance metric of interest, the performance ratio rps is used to com-
pare the performance on problem p by solver s with the best performance by any
solver on this problem. This performance ratio is given by

rps = tps

min{tps : 1 ≤ s ≤ ns} . (6)

The value of rps is 1 for the solver that performs the best on a specific problem p.
To obtain an overall assessment of the performance of solvers on n p problems, the
following cumulative function for rps is used:
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Fig. 2 Surface plots of the two-variable benchmark functions used in this study: a Ackley, b Beale,
c Booth, d Carrom table, e Cross-leg table, f Himmelblau, g Levy 13, and h Schaffer
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ρs(ς) = 1

n p
size{p : rps ≤ ζ } (7)

where ρ(ς ) is the fraction of the total number of problems, for which solver s has
a performance ratio rps within a factor of ς of the best possible ratio. The PP of a
solver is a plot of ρs(ς ) versus ς ; it is a non-decreasing, piece-wise constant function,
continuous from the right at each of the breakpoints [17]. To identify the best solver,
it is only necessary to compare the values of ρs(ς ) for all solvers and to select the
highest one, which is the probability that a specific solver will “win” over the rest
of solvers used. In our case, the PP plot compares how accurately the stochastic
methods can find the global optimum value relative to one another, and so the term
“win” refers to the stochastic method that provides the most accurate value of the
global minimum in the benchmark problems used.

5 Results and Discussion

As stated, each of the numerical experiments was repeated 30 times with different
random seeds for IFA with four different-parameter values (φ = 0.05, 0.1, 0.25, 0.5)
and for the original FA algorithm (φ = 1). The objective function value at each
iteration for each trial was recorded. The mean and the standard deviation of the
function values were calculated at each iteration. The global optimum was considered
to be obtained by the method if it finds a solution within a tolerance value of 10−10.
The progress of the mean values is presented in Figs. 3, 4 and 5 for each benchmark
function and a brief discussion of those results follows.

The Ackley function has one minimum only. The global optimum was obtained
using all methods, as shown in Fig. 3a. However, the effectiveness of IFA is better than
FA for all parameter values. No difference in the impact of the parameter value was
observed. The improvement in performance was also clear with the Beale function
Fig. 3b for φ values of 0.05 and 0.1. Beale has one minimum only, which was obtained
satisfactory by all methods. Further iterations will improve their accuracies. The
most effective method was the IFA with φ = 0.05. The pattern of behavior for
the five methods was also observed for the Booth function; IFA was significantly
more effective than the FA as shown in Fig. 3c. The best performance was with the
parameter value of 0.05, 0.1 and 0.25. The first three functions are relatively easy to
optimize; the global optima were easily obtained.

For the Carrom table function, FA was unable to obtain the global minimum within
the used tolerance, as shown in Fig. 3d. The global minimum was obtained by IFA
with parameter value of 0.05, 0.1 and 0.25. On the other hand, the cross-leg table
function is a difficult one to minimize. Its value at the global minimum is −1. IFA
performed significantly better than FA with no apparent differences in performance
between the four values of φ, as shown in Fig. 3e.

FA and IFA were both able to identify the global minimum of the Himmelblau
function. Figure 3f shows the evolution of the mean best values. IFA performed more
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Fig. 3 Evolution of mean best values for IFA (with φ = 0.05, 0.1, 0.25, 0.5) and the original FA
algorithm (φ = 1) for: a Ackley, b Beale, c Booth, d Carrom table, e Cross-leg table, f Himmelblau,
g Levy 13 and h Schaffer functions
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Fig. 4 Evolution of mean best values for IFA (with φ = 0.05, 0.1, 0.25, 0.5) and the original
FA algorithm (φ = 1) for: a Helical valley, b Powell, c Wood, d Cube, e Sphere, f Egg holder,
g Griewank and h Rastrigin functions
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Fig. 5 Evolution of mean best values for IFA (with φ = 0.05, 0.1, 0.25, 0.5) and the original FA
algorithm ( φ = 1) for: a Rosenbrock, b Sine envelope sine wave, c Trigonometric and d Zacharov
functions

effectively than FA. The effect of the value of φ was minor. Both algorithms were
also able to identify the minimum of the Levy 13 function Fig. 3g. However, IFA was
significantly more effective when the φ parameter values of 0.1 and 0.05 were used.

The Schaffer function is multimodal. Both FA and IFA failed to converge to the
global minimum within the used tolerance. However, IFA was able to arrive at a
better solution when the φ parameter values of 0.1 and 0.05 were used, as shown in
Fig. 3h. IFA with φ = 2.5 and 0.5 failed to improve the solution in comparison with
that obtained by FA. Schaffer function concludes the 2-variable functions. IFA, with
φ = 0.05 and 0.1, performed better than FA in all of them.

The helical valley function has three variables. The evolution of the mean best
values of FA, shown in Fig. 4a, showed that performance of IFA with φ = 0.05 was
considerably better than the performance of FA. No improvement were observed,
when φ = 0.5, 0.25 or 0.1. In addition, all methods failed to obtain the global
minimum for the used tolerance. For the Powell function, which has four variables,
IFA with φ = 0.05 obtained ten orders of magnitude improvement in the solution,
as shown in Fig. 4b. Although the solution was not obtained within the acceptable
tolerance but it was very close. IFA with high values of the φ parameter were also
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unable to identify the global minimum and converged to a higher solution. Those
three algorithms seem to have been trapped in a local minimum.

A similar pattern was observed with the Wood function, which has four variables
as well. The global minimum was not obtained within the acceptable tolerance used
in this study. However, IFA with φ = 0.05 obtained a six orders of magnitude
improvement in the solution, as shown in Fig. 4c. Higher values of the φ-parameter
failed to improve the performance of the FA algorithm. In fact, IFA with φ = 0.5 and
0.25 obtained worse results. For the cube function, which has five variables, Fig. 4d
shows that IFA with φ = 0.05 improved the solution slightly. However, none of the
methods was able to identify successfully the global minimum for this function. The
sphere function also has five variables but it is easier to solve for its global optimum
than the cube function. All methods successfully identified the global optimum with
slight improvement in performance when IFA was used as shown in Fig. 4e.

The egg holder function was used with 50 variables and the stochastic methods
were run up to 5,000 iterations. IFA obtained solutions lower than that of FA, regard-
less of the value of the parameter φ, as shown in Fig. 4f. IFA with φ = 0.1 and
0.05 obtained the best result. Griewank function has 50 variables also. IFA with

Table 3 Values of the mean minima ( fcalc) and standard deviations (σ ) obtained by the FA and
IFA algorithms with different values of the φ—parameter for the benchmark problems used in this
study

Objective function Numerical performance of
FA IFA (φ = 0.5 ) IFA (φ = 0.05 )
fcalc σ fcalc σ fcalc σ

Ackley 0 0 0 0 0 0
Beale 0 0 0 0 0 0
Booth 0 0 0 0 0 0
Carrom table −23.43 1.75 −23.31 2.52 −24.16 0
Cross-leg table −6.6E−3 1.0E−2 −0.0857 8.0E − 2 −7.46E−2 2.6E−2
Himmelblau 0 0 0 0 0 0
Levy 13 0 0 0 0 0 0
Schaffer 8.5E−3 3.4E−3 0.0427 2.6E−2 0.0035 3.4E − 3
Helical valley 2.6E−2 5.4E−2 0.0389 8.5E−2 9.8E − 6 2.5E − 5
Powell 1.84E4 2.7E4 1.54E5 2.5E5 1.7E − 6 2.9E − 6
Wood 1.78E5 2.9E5 1.06E6 1.9E6 2.9E − 2 0.13
Cube 88.69 77.05 90.03 92.97 41.39 65.09
Sphere 0 0 0 0 0 0
Egg holder −1.52E4 1.6E3 −1.64E4 1.2E3 −2.5E4 2.1E3
Griewank 1.62E−4 6.1E−5 8.54E−5 5.1E−5 0 0
Rastrigin 45.47 12.7 38.14 7.92 66.63 16.44
Rosenbrock 296.8 652.3 213.1 572.9 70.57 109.6
Sine envelope sine wave 17.56 1.13 19.61 71.85 17.25 1.21
Trigonometric 1.05E−4 6.1E−5 1.19E−4 9.1E−5 2.9E − 6 2.9E − 6
Zacharov 36.68 13.2 106.9 30.42 0 0
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φ = 0.1 and 0.05 successfully identified the global minimum, whereas the other
methods failed, as shown in Fig. 4g. Improvement of performance with the IFA algo-
rithm is shown clearly with this benchmark problem.

The results of the optimization of Rastrigin function were peculiar. The global
optimum was not obtained by FA or IFA and the performance was improved with the
use of high values of φ (0.5 and 0.25) as shown in Fig. 4h. This is the only function
for which the use of IFA with φ = 0.05 did not improve the result.

The global minimum of the Rosenbrock function was also not successfully iden-
tified by all methods, as shown in Fig. 5a. IFA, in general, gave better results than FA.
The global minimum of the sine-envelope-sine function was also not successfully
identified by all methods. This is a multimodal function and it is easy for any opti-
mization method to be trapped in one of the local minima. IFA with φ = 0.1 gave
the best solution followed by IFA with φ = 0.05. The results of IFA with higher
values of φ were worse than the FA result, as shown in Fig. 5b.

The familiar improvement pattern with the use of IFA was obtained with the
trigonometric function, as shown in Fig. 5c. The lowest value of φ gave the best
solution but failed to find the global minimum within the acceptable tolerance used
in this study. This was not the case with the Zacharov function (Fig. 5d) since IFA
with φ = 0.05 successfully identified the global minimum within the required
tolerance with twelve orders of magnitude improvement in the solution. All other
methods were trapped in some local minima and no improvement in performance
was obtained with IFA with other values of the parameter φ.

Table 3 shows a summary of the evaluation results for the twenty benchmark
problems. IFA was able to provide better solutions to all challenging problems.

Fig. 6 Performance profiles
of the FA and IFA methods for
the global optimization of the
benchmark problems used in
this study
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For example, IFA with φ = 0.05, found the global optimum of the helical valley
function within 10−4 tolerance, Powell and Trigonometric functions within 10−5,
and Zacharov function, while the FA obtained a solution several orders of magnitude
higher as shown in Table 3. The performance profiles, shown in Fig. 6, summarize
the results of the IFA evaluation with the four different values of the φ-parameter
in comparison with FA. Figure 6 clearly shows IFA with φ = 0.05 was the best
performing algorithm in 18 out of the 20 cases considered. FA has not outperformed
IFA in any of the benchmark problems tested. Further, PP indicates that φ is an
important parameter to improve the performance of IFA. The value of φ = 0.05
appears to be the best value among those tested for reliability as indicated by the
cumulative highest performance ratio in Fig. 6.

6 Conclusions

In this chapter, we propose a modification to FA through limiting the number of
fireflies affecting the moves to a fraction of top performing fireflies. This modifica-
tion was evaluated by attempting to find the global optimum of twenty benchmark
functions. The newly developed IFA led to improved reliability and effectiveness of
the algorithm in all tested benchmark problems. In some cases, the global minimum
could not have been obtained via the firefly algorithm, except with this modification.
IFA was found to perform best, when the new parameter φ was set to 0.05, which
was the lowest value evaluated.
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