
The regularity problem for sub-Riemannian
geodesics

Roberto Monti

Abstract We review some recent results on the regularity problem of sub-Rie-
mannian length minimizing curves. We also discuss a new nontrivial example of
singular extremal that is not length minimizing near a point where its derivative is
only Hölder continuous. In the final section, we list some open problems.

1 Introduction

One of the main open problems in sub-Riemannian geometry is the regularity of
length minimizing curves, see [12, Problem 10.1]. All known examples of length
minimizing curves are smooth. On the other hand, there is no regularity theory of a
general character for sub-Riemannian geodesics.

It was originally claimed by Strichartz in [15] that length minimizing curves are
smooth, all of them being normal extremals. The wrong argument relied upon an
incorrect application of Pontryagin Maximum Principle, ingnoring the possibility
of abnormal (also called singular) extremals. In 1994 Montgomery discovered the
first example of a singular length minimizing curve [11]. In fact, manifolds with
distributions of rank 2 are rich of abnormal geodesics: in [9], Liu and Sussmann in-
troduced a class of abnormal extremals, called regular abnormal extremals, that are
always locally length minimizing. On the other hand, when the rank is at least 3 the
situation is different. In [4], Chitour, Jean, and Trélat showed that for a generic dis-
tribution of rank at least 3 every singular curve is of minimal order and of corank 1.
As a corollary, they show that a generic distribution of rank at least 3 does not admit
(nontrivial) minimizing singular curves.

The question about the regularity of lengthminimizing curves remains open. The
point, of course, is the regularity of abnormal minimizers. Some partial results in
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this direction are obtained in [8] and [13]. In this survey, we describe these and
other recent results. In Sect. 5.2, we present the classification of abnormal extremals
in Carnot groups [6], that was announced at the meeting Geometric control and sub-
Riemannian geometry held in Cortona in May 2012. The example of nonminimizing
singular curve of Sect. 7 is new.

We refer the reader to the monograph [2] for an excellent introduction to Geo-
metric Control Theory, see also the book in preparation [1].

2 Basic facts

Let M be an n-dimensional smooth manifold, n � 3, let D be a completely non-
integrable (i. e., bracket generating) distribution of r -planes on M , r � 2, called
horizontal distribution, and let g D gx be a smooth quadratic form on D.x/, vary-
ing smoothly with x 2 M . The triple .M;D ; g/ is called sub-Riemannianmanifold.

A Lipschitz curve � W Œ0; 1� ! M is D-horizontal, or simply horizontal, if
P�.t/ 2 D.�.t// for a.e. t 2 Œ0; 1�. We can then define the length of �

L.�/ D
�Z 1

0

g	.t/. P�.t// dt
�1=2

:

For any couple of points x; y 2 M , we define the function

d.x; y/ D inf
°
L.�/ W � is horizontal, �.0/ D x and �.1/ D y

±
: (1)

If the above set is nonempty for any x; y 2 M , then d is a distance onM , usually
called Carnot-Carathéodory distance.

By construction, the metric space .M; d/ is a length space. If this metric space
is complete, then closed balls are compact, and by a standard application of Ascoli-
Arzelà theorem, the infimum in (1) is attained. Namely, for any given pair of points
x; y 2 M there exists at least one Lipschitz curve � W Œ0; 1� ! M joining x to
y and such that L.�/ D d.x; y/. This curve, which in general is not unique, is
called a length minimizing curve. Its a priori regularity is the Lipschitz regularity. In
particular, length minimizing curves are differentiable a.e. on Œ0; 1�.

For our porpouses, we can assume thatM is an open subset of Rn or the whole
Rn itself, and that we have D.x/ D span¹X1.x/; : : : ; Xr .x/º, x 2 Rn, where
X1; : : : ; Xr are r � 2 linearly independent smooth vector fields in Rn. With respect
to the standard basis of vector fields in Rn, we have, for any j D 1; : : : ; r ,

Xj D
nX
iD1

Xj i
@

@xi
; (2)

where Xj i W Rn ! R are smooth functions. A Lipschitz curve � W Œ0; 1� !
M is then horizontal if there exists a vector of functions h D .h1; : : : ; hr/ 2
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L1.Œ0; 1�I Rr/, called controls of � , such that

P� D
rX

jD1
hjXj .�/; a.e. on Œ0; 1�:

We fix on D.x/ the quadratic form gx that makes X1; : : : ; Xr orthonormal. Any
other choice ofmetric does not change the regularity problem. In this case, the length
of � is

L.�/ D
�Z 1

0

jh.t/j2dt
�1=2

:

Let h D .h1; : : : ; hr/ be the controls of a horizontal curve � . When � is length
minimizing we call the pair .�; h/ an optimal pair. Pontryagin Maximum Principle
provides necessary conditions for a horizontal curve to be a minimizer.

Theorem 1. Let .�; h/ be an optimal pair. Then there exist 
0 2 ¹0; 1º and a Lip-
schitz curve 
 W Œ0; 1� ! Rn such that:

i) 
0 C j
j ¤ 0 on Œ0; 1�;
ii) 
0hj C h
; Xj .�/i D 0 on Œ0; 1� for all j D 1; : : : ; r ;
iii) the coordinates 
k , k D 1; : : : ; n, of the curve 
 solve the system of differential

equations

P
k D �
rX

jD1

nX
iD1

@Xj i

@xk
.�/hj 
i ; a.e. on Œ0; 1�. (3)

Above, h
; Xj i is the standard scalar product of 
 and Xj as vectors of Rn. If we
identify the curve 
 with the 1-form in Rn along �


 D 
1dx1 C : : :C 
ndxn;

then h
; Xj i is the covector-vector duality.
The proof of Theorem 1 relies upon the open mapping theorem, see [2, Chap. 12].

For any v 2 L2.Œ0; 1�I Rr/, let �v be the solution of the problem

P�v D
rX

jD1
vjXj .�

v/; �v.0/ D x0:

The mapping E W L2.Œ0; 1�I Rr/ ! Rn, E.v/ D �v.1/, is called the end-point
mappingwith initial point x0. The extended end-point mapping is the mapping F W
L2.Œ0; 1�I Rr/ ! RnC1

F .v/ D
� Z 1

0

jvj2dt;E.v/
�
:

If .�; h/ is an optimal pair with �.0/ D x0 then F is not open at v D h and then
its differential is not surjective. It follows that there exists a nonzero vector .�0; �/ 2
R�Rn D RnC1 such that for all v 2 L2.Œ0; 1�I Rr/ there holds hdF .h/v; .�0 ; �/i D
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0: The case �0 D 0 is the case of abnormal extremals, that are precisely the critical
points of the end-point mapping E, i. e., points h where the differential dE.h/ is
not surjective. In particular, the notion of abnormal extremal is independent of the
metric fixed on the horizontal distribution.

The curve 
 , sometimes called dual curve of � , is obtained in the followingway.
Let h be the controls of an optimal trajectory � starting from x0. For x 2 Rn, let �x
be the solution to the problem

P�x D
rX

jD1
hjXj .�x/ and �x.0/ D x:

The optimal flow is the family of mappings Pt W Rn ! Rn, Pt .x/ D �x.t/ with
t 2 R. We are assuming that the flow is defined for any t 2 R. Let .�0; �/ 2 R�Rn

be a vector orthogonal to the image of dF .h/. At the point x0 we have the 1-form

.0/ D �1dx1 C : : : C �ndxn, where .�1; : : : ; �n/ are the coordinates of �. Then
the curve t 7! 
.t/ given by the pull-back of 
.0/ along the optimal flow at time t ,
namely the curve


.t/ D P ��t .x0/
.0/; (4)

satisfies the adjoint Eq. (3).
We can use i)–iii) in Theorem 1 to define the notion of extremal. We say that

a horizontal curve � W Œ0; 1� ! Rn is an extremal if there exist 
0 2 ¹0; 1º and

 2 Lip.Œ0; 1�I Rn/ such that i), ii), and iii) in Theorem 1 hold. We say that � is a
normal extremal if there exists such a pair .
0; 
/ with 
0 ¤ 0. We say that � is an
abnormal extremal if there exists such a pair with 
0 D 0. We say that � is a strictly
abnormal extremal if � is an abnormal extremal but not a normal one.

If � is an abnormal extremal with dual curve 
 , then by ii) we have, for any j D
1; : : : ; r ,

h
; Xj .�/i D 0 on Œ0; 1�: (5)

Further necessary conditions on abnormal extremals can be obtained differentiating
identity (5). In fact, one gets for any j D 1; : : : ; r ,

rX
iD1

hih
; ŒXi ; Xj �.�/i D 0 a.e. on Œ0; 1�: (6)

When the rank is r D 2, from (6) along with the free assumption jhj ¤ 0 a.e. on
Œ0; 1�we deduce that

h
; ŒX1; X2�.�/i D 0 on Œ0; 1�: (7)

In the case of strictly abnormal minimizers, necessary conditions analogous to (7)
can be obtained also for r � 3.
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Theorem 2. Let � W Œ0; 1� ! Rn be a strictly abnormal length minimizer. Then any
dual curve 
 2 Lip.Œ0; 1�;Rn/ of � atisfies

h
; ŒXi ; Xj �.�/i D 0 on Œ0; 1� (8)

for any i; j D 1; : : : ; r .

Condition (8) is known asGoh condition. Theorem 2 can be deduced from second
order open mapping theorems. We refer to [2, Chap. 20] for a systematic treatment
of the subject. See also the work [3].

The Goh condition naturally leads to the notion of Goh extremal. A horizontal
curve � W Œ0; 1� ! Rn is aGoh extremal if there exists a Lipschitz curve 
 W Œ0; 1� !
Rn such that 
 ¤ 0, 
 solves the adjoint Eq. (3) and h
; Xi.�/i D h
; ŒXi ; Xj �.�/i D
0 on Œ0; 1� for all i; j D 1; : : : ; r .

3 Known regularity results

In this section, we collect some regularity results for extremal and length minimzing
curves. Other results are discussed in Sect. 4. The case of normal extremal is clear
and classical.

Theorem 3. Let .M;D ; g/ be any sub-Riemannianmanifold.Normal extremals are
C1 curves that are locally length minimzing.

In fact, with the notation of Sect. 2, if � is a normal extremal with controls h and
dual curve 
 , by condition ii) in Theorem 1 we have, for any j D 1; : : : ; r ,

hj D �h
; Xj .�/i a.e. on Œ0; 1�: (9)

This along with the adjoint Eq. (3) implies that the pair .�; 
/ solves a.e. the system
of Hamilton’s equations

P� D @H

@

.�; 
/; P
 D �@H

@x
.�; 
/; (10)

whereH is the Hamiltonian function

H.x; 
/ D �1
2

rX
jD1

h
; Xj .x/i2:

This implies that P� and P
 are Lipschitz continuous and thus �; 
 2 C 1;1. By iteration,
one deduces that �; 
 2 C1.

The fact that normal extremals are locally length minimizing follows by a cali-
bration argument, see [9, Appendix C]. Indeed, using the Hamilton’s Eq. (10), the
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1-form 
 along � can be locally extended to an exact 1-form 
 satisfying

rX
jD1

h
; Xj .x/i2 D 1:

This 1-form provides the calibration.

The distribution D D span¹X1; : : : ; Xrº onM is said to be bracket-generating
of step 2 if for any x 2 M we have

dim
�
span¹Xj .x/; ŒXi ; Xj �.x/ W i; j D 1; : : : ; rº� D n; (11)

where n D dim.M/. For distributions of step 2, Goh condition (8) implies the
smoothness of any minimizer.

Theorem 4. Let .M;D ; g/ be a sub-Riemannianmanifoldwhere D is a distribution
that is bracket generating of step 2. Then any length minimizing curve in .M;D ; g/

is of class C1.

In fact, if � is a strictly abnormal length minimizing curve with dual curve 
 then
by (5), (8), and (11) it follows that 
 D 0 and this is not possible. In otherwords, there
are no strictly abnormal minimizers and this implies the claim made in Theorem 4.

When the step of the distribution is at least 3, then there can exist strictly abnor-
mal extremals. When the step is precisely 3, the regularity question is clear within
the setting of Carnot groups. Let g be a stratified nilpotent n-dimensional real Lie
algebra with

g D g1 ˚ : : :˚ gs ; s � 2;

where giC1 D Œg1; gi � for i � s � 1 and gi D ¹0º for i > s.
The Lie algebra g is the Lie algebra of a connected and simply-connected Lie

groupG that is diffeomorphic to Rn. Such a Lie group is called Carnot group. The
horizontal distributionD onG is induced by the first layer g1 of the Lie algebra. In
fact, D is spanned by a system of r linearly independent left-invariant vector fields.
By nilpotency, the distribution is bracket-generating. So any quadratic form on g1
induces a left-invariant sub-Riemannian metric on G. The number r D dim.g1/ is
the rank of the group. The number s � 2 is the step of the group.

Theorem 5. Let G be a Carnot group of step s D 3 with a smooth left-invariant
quadratic form g on the horizontal distributionD . Any length minimizing curve in
.G;D ; g/ is of class C1.

This theorem is proved in [16]. A short and alternative proof, given in [6, Theo-
rem 6.1], relies upon the fact that a strictly abnormal length minimizing curve must
be contained in (the lateral of) a proper Carnot subgroup. Then a reduction argument
on the rank of the group reduces the analysis to the case r D 2, where abnormal ex-
tremals are easily shown to be integral curves of some horizontal left-invariant vector
field.
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When the step is s D 4, there is a regularity result only for Carnot groups of rank
r D 2, see [8, Example 4.6].

Theorem 6. Let G be a Carnot group of step s D 4 and rank r D 2 with a smooth
left invariant quadratic form g on the horizontal distribution D . Then any length
minimizing curve in .G;D ; g/ is of class C1.

The proof of this result relies upon two facts. First, one proves that the horizontal
coordinates of any abnormal extremal are contained in the zero set of a quadratic
polynomial in two variables. This shows that the only singularity that abnormal ex-
tremals can have is of corner type. Then using a general theorem proved in [8] (see
Sect. 4) one concludes that extremal curves with corners are not length minimizing.

When the rank is r D 2 and the step s is larger than 4, the best regularity known
for minimizers is the C 1;ı regularity.

Theorem 7. LetG be a Carnot group of rank r D 2, step s > 4 andwith Lie algebra
g D g1 ˚ : : :˚ gs satisfying

Œgi ; gj � D 0 for all i; j � 2 such that i C j > 4: (12)

Then any length minimizing curve in .G;D ; g/, where g is a smooth left-invariant
metric on the horizontal distributionD , is of class C 1;ı for any

0 � ı < min
° 2

s � 4
;
1

4

±
: (13)

This theorem is proved in [37, Theorem 10.1]. It is a byproduct of a technique that
is used to analyse the length minimality properties of extremals of class C 1 whose
derivative is only ı-Hölder continuos for some 0 < ı < 1. We give an example of
such techniques in Sect. 7. The restriction ı < 2=.s � 4/ is a technical one. The
estimates developed in [13], however, show that the restriction ı < 1=4 is deeper.
We shall discuss (12) it in the next section.

4 Analysis of corner type singularities

LetM be a smooth manifold with dimension n � 3, and let D be a completely non-
integrable distributiononM . Let D1 D D and Di D ŒD1;Di�1� for i � 2, i. e., Di

is the linear span of all commutators ŒX; Y � with X 2 D1 and Y 2 Di�1. We also
let L0 D ¹0º and Li D D1 C : : :C Di , i � 1. By the nonintegrability condition,
for any x 2 M there exists s 2 N such that Ls.x/ D TxM , the tangent space ofM
at x. Assume that D is equiregular, i. e., assume that for each i D 1; : : : ; s

dim
�
Li.x/=Li�1.x/

�
is constant for x 2 M . (14)

In [8], Leonardi and the author proved the following theorem.
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Theorem 8. Let .M;D ; g/ be a sub-Riemannian manifold, where g is a metric on
the horizontal distributionD . Assume that D satisfies (14) and

ŒLi ;Lj � � LiCj�1; i; j � 2; i C j > 4: (15)

Then any curve inM with a corner is not length minimizing in .M;D ; g/.

A “curve with a corner” is a D-horizontal curve � W Œ0; 1� ! M such that at some
point t 2 .0; 1/ the left and right derivatives P�L.t/ ¤ P�R.t/ exist and are different.
The proof of Theorem 8 is divided into several steps.

1) First one blows up the manifoldM , the distribution D , the metric g, and the
curve � at the corner point x D �.t/. The blow-up is in the sense of the nilpotent
approximation of Mitchell, Margulis andMostow (see e. g. [10]). The limit structure
is a Carnot group and the limit curve is the union of two half-lines forming a corner.

2) The limit curve is actually contained in a subgroup of rank 2, and after a suit-
able choice of coordinates one can assume that the manifold is M D Rn with a
2-dimensional distributionD D span¹X1; X2º spanned by the vector fields in Rn

X1 D @

@x1
and X2 D @

@x2
C

nX
jD3

fj .x/
@

@xj
; (16)

where fj W Rn ! R, j D 3; : : : ; n, are polynomials with certain properties. The
curve obtained after the blow-up is � W Œ�1; 1� ! Rn

�.t/ D
²�te2; t 2 Œ�1; 0�;

te1; t 2 Œ0; 1�; (17)

where e1; : : : ; en is the standard basis of Rn. If the limit curve is not length mini-
mizing in the limit structure, then the original curve is not length minimizing in the
original structure.

3) At this stage, one uses (15). If the original distribution satisfies (15), then the
limit Lie algebra satisfies (12) and the polynomials fj only depends on the variables
x1 and x2. This makes possible an effective and computable way to prove that the
curve � in (17) is not length minimizing. One cuts the corner of � in the x1x2 plane
gaining some length. The new planar curve must be lifted to get a horizontal curve,
changing in this way the end-point. One can use several different devices to bring
the end-point back to its original position. To do this, we can use a total amount
of length that is less than the length gained by the cut. This adjustment is in fact
possible, and the entire construction is the main achievement of [8].

The restriction (15) has a technical character. The problem of dropping this re-
striction is adressed in [14] (see also Sect. 6.2). The cut-and-adjust technique in-
troduced in [8] is extended in [13] to the analysis of curves having singularities of
higher order. In Sect. 7, we study a nontrivial example of such a situation.
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5 Classification of abnormal extremals

The notion of abnormal extremal is rather indirect or implicit. There is a differential
equation, the differential Eq. (3), involving the dual curve and the controls of the
extremal. Even though this equation can be translated into some better form (see
Theorem 2.6 in [6]), nevertheless the carried information is not transparent. In this
section, we present some attempts to describe abnormal extremals is a more geomet-
ric or algebraic way.

5.1 Rank 2 distributions

We consider first the case when M D Rn and D is a rank 2 distribution in M
spanned by vector fields X1 and X2 as in (16), where f3; : : : ; fn 2 C1.R2/ are
functions depending on the variables x1; x2. We fix on D the quadratic form g mak-
ingX1 and X2 orthonormal. Let K W Rn�2 � R2 ! R be the function

K.�; x/ D
n�2X
iD1

�i
@fiC2
@x1

.x/; (18)

where � D .�1; : : : ; �n�2/ 2 Rn�2 and x 2 R2.
In this special situation, Pontryagin Maximum Principle can be rephrased in the

followingway (see Propositions 4.2 and 4.3 in [8]).

Theorem 9. Let � W Œ0; 1� ! M be a D-horizontal curve that is length minimizing
in .M;D ; g/. Let 	 D .�1; �2/ and assume that j P	j D 1 almost everywhere. Then
one (or both) of the following two statements holds:

1) there exists � 2 Rn�2, � ¤ 0, such that

K.�; 	.t// D 0; for all t 2 Œ0; 1�I (19)

2) the curve � is smooth and there exists � 2 Rn�2 such that 	 solves the system
of differential equations

R	 D K.�; 	/ P	? ; (20)

where 	? D .�	2; 	1/.
The geometric meaning of the curvature Eq. (20) was already noticed by Mont-

gomery in [11].
The interesting case in Theorem 9 is the case 1): the curve 	, i. e., the horizontal

coordinates of � , is in the zero set of a nontrivial explicit function.

5.2 Stratified nilpotent Lie groups

In free stratified nilpotent Lie groups (free Carnot groups) there is an algebraic char-
acterization of extremal curves in terms of an algebraic condition analogous to (19).

LetG be a free nilpotentLie groupwithLie algebrag. Fix a Hall basisX1; : : : ; Xn
of g and assume that the Lie algebra is generated by the first r elementsX1; : : : ; Xr .
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We refer to [5] for a precise definition of the Hall basis. The basis determines a col-
lection of generalized structure constants cki˛ 2 R, where ˛ D .˛1; : : : ; ˛n/ 2 Nn

is a multi-index and i; k 2 ¹1; : : : ; nº. These constants are defined via the identity

ŒXi ; X˛� D
nX
kD1

cki˛Xk; (21)

where the iterated commutator X˛ is defined via the relation

ŒXi ; X˛� D ŒXi ; ŒX1; : : : ; ŒX1„ ƒ‚ …
˛1 times

; : : : ; ŒXn; : : : ; Xn„ ƒ‚ …
˛n times

� : : :� : : :��: (22)

Using the constants cki˛, for any i D 1; : : : ; n and for any multi-index ˛ 2 Nn, we
define the linear mappings 
i˛ W Rn ! R


i˛.v/ D .�1/j˛j

˛Š

nX
kD1

cki˛vk; v D .v1; : : : ; vn/ 2 Rn: (23)

Finally, for each i D 1; : : : ; n and v 2 Rn, we introduce the polynomials P vi W
Rn ! R

P vi .x/ D
X
˛2Nn


i˛.v/x
˛ ; x 2 Rn; (24)

where we let x˛ D x
˛1

1 � � �x˛n
n .

The groupG can be identified with Rn via exponential coordinates of the second
type induced by the basis X1; : : : ; Xn. For any v 2 Rn, v ¤ 0, we call the set

Zv D ®
x 2 Rn W P v1 .x/ D : : : D P vr .x/ D 0

¯
an abnormal variety ofG of corank 1. For linearly independent vectors v1; : : : ; vm 2
Rn, m � 2, we call the set Zv1

\ : : : \ Zvm an abnormal variety of G of corank
m. Recall that the property of having corank m for an abnormal extremal � means
that the range of the differential of the end-point map at the extremal curve is n�m
dimensional.

The main result of [6] is the following theorem.

Theorem 10. Let G D Rn be a free nilpotent Lie group and let � W Œ0; 1� ! G be a
horizontal curve with �.0/ D 0. The following statements are equivalent:

A) the curve � is an abnormal extremal of corank m � 1;
B) there exist m linearly independent vectors v1; : : : ; vm 2 Rn such that �.t/ 2

Zv1
\ : : : \Zvm for all t 2 Œ0; 1�.

A stronger version of Theorem 10 holds for Goh extremals. If g D g1 ˚ g2 ˚
� � � ˚ gs , we let r1 D dim.g1/ and r2 D dim.g2/. Then, for v 2 Rn with v ¤ 0 we
define the zero set

�v D ®
x 2 Rn W P vi .x/ D 0 for all i D r1 C 1; : : : ; r1 C r2

¯
:
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Theorem 11. Let G D Rn be a free nilpotent Lie group and let � W Œ0; 1� ! G be a
horizontal curve such that �.0/ D 0. The following statements are equivalent:

A) the curve � is a Goh extremal;
B) there exists v 2 Rn, v ¤ 0, such that �.t/ 2 �v for all t 2 Œ0; 1�.

The zero set �v is always nontrivial for v ¤ 0 and, moreover, there holds vi D 0

for all i D 0; : : : ; r1 C r2. See Remark 4.12 in [6].
These results are obtained via an explicit integration of the adjoint Eq. (3). Some

work in progress [7] shows that Theorems 10 and 11 also hold in nonfree stratified
nilpotent Lie groups.

6 Some examples

In this section, we present two examples. In the first one, we exhibit a Goh extremal
having no regularity beyond the Lipschitz regularity. In the second example, there
are extremals with corner in a sub-Riemannian manifold violating (15).

6.1 Purely Lipschitz Goh extremals

Let G be the free nilpotent Lie group of rank r D 3 and step s D 4. This group
is diffeomorphic to R32. By Theorem 11, Goh extremals of G starting from 0 are
precisely the horizontal curves � inG contained in the algebraic set

�v D ®
x 2 R32 W P v4 .x/ D P v5 .x/ D P v6 .x/ D 0

¯
;

for some v 2 R32 such that v ¤ 0 and v1 D : : : D v6 D 0. The structure constants
cki˛ are determined by the relations of the Lie algebra ofG. Using (24), we can then
compute the polynomials defining �v (for details, see [6]). These are

P v4 .x/ D �x1v7 � x2v8 � x3v9 C x5v30 C x6v31

C x21
2
v15 C x1x2v16 C x1x3v17 C x22

2
v18 C x2x3v19 C x23

2
v20

P v5 .x/ D �x1v10 � x2v11 � x3v12 � x4v30 C x6v32

C x21
2
v21 C x1x2v22 C x1x3v23 C x22

2
v24 C x2x3v25 C x23

2
v26

P v6 .x/ D x1.v9 � v11/ � x2v13 � x3v14 � x4v31 � x5v32
C x21

�
� 1

2
v17 C 1

2
v22 C v30

�
C x1x2.�v19 C v24 C v31/C x1x3.�v20 C v25/C x23

2
v29:

Theorem 12. For any Lipschitz function 
 W Œ0; 1� ! R with 
.0/ D 0, the hori-
zontal curve � W Œ0; 1� ! G D R32 such that �.0/ D 0, �1.t/ D t2, �2.t/ D t , and
�3.t/ D 
.t/ is a Goh extremal.
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With the choice v7 D 1, v18 D 2, and vj D 0 otherwise, the relevant polyno-
mials are P v4 .x/ D x22 � x1, P v5 .x/ D P v6 .x/ D 0. Then, the curve � is contained
in the zero set �v and, by Theorem 11, it is a Goh extremal. The Lipschitz function

 is arbitrary. It would be interesting to understand the length minimality properties
of � depending on the regularity of 
.

6.2 A family of abnormal curves

During the meeting Geometric control and sub-Riemannian geometry, A. Agrachev
and J. P. Gauthier suggested the following situation, in order to find a nonsmooth
length-minimizing curve.

InM D R4, consider the vector fields

X1 D @

@x1
C 2x2

@

@x3
C x23

@

@x4
; X2 D @

@x2
� 2x1 @

@x3
; (25)

and denote byD the distributionof 2-planes inR4 spanned pointwisebyX1 andX2.
Fix a parameter ˛ > 0 and consider the initial and final points L D .�1; ˛; 0; 0/ 2
R4 and R D .1; ˛; 0; 0/ 2 R4. Let � W Œ�1; 1� ! R4 be the curve

�1.t/ D t; �2.t/ D ˛jt j; �3.t/ D 0; �4.t/ D 0; t 2 Œ�1; 1�: (26)

The curve � is horizontal and joinsL to R. Moreover, it can be easily checked that
� is an abonormal extremal.

This situation is interesting because the distribution D violates condition (15)
with i D 2 and j D 3. In fact, we have

ŒŒX2; X1�; ŒŒX2; X1�; X1�� D 48
@

@x4
:

That condition (15) is violated is also apparent from the fact that the nonhorizontal
variable x3 do appear in the coefficients of the vector field X1 in (25). The fact that
the distributionD is not equiregular, is not relevant.

Agrachev and Gauthier asked whether the curve � is length minimizing or not,
especially for small ˛ > 0. The results of [8] cannot be used, because of the failure
of (15). In [14], we answered in the negative to the question, at least when ˛ ¤ 1.

Theorem 13. For any˛ > 0with˛ ¤ 1, the curve � in (26) is not lengthminimizing
in .R4;D ; g/, for any choice of metric g on D .

The proof is a lengthy adaptation of the cut-and-adjust technique of [8]. When
˛ D 1 the construction of [13] does not work and, in this case, the lengthminimality
property of � remains open.
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7 An extremal curve with Hölder continuous first derivative

On the manifoldM D R5, let D be the distribution spanned by the vector fields

X1 D @

@x1
; X2 D @

@x2
C x1

@

@x3
C x51

@

@x4
C x1x

3
2

@

@x5
: (27)

We look for abnormal curves passing through 0 2 R5. In view of Theorem 9, case 1),
we consider the functionK W R3 � R2 ! R, defined as in (18),

K.�; x/ D �1 C 5�2x
4
1 C �3x

3
2 :

With the choice �1 D 0, �2 D 1=5, and �3 D �1, the equationK.�; x/ D 0 reads
x41 � x32 D 0. Thus the curve 	 W Œ0; 1� ! R2, 	.t/ D .t; t4=3/, is in the zero set of
K. It can be checked that the horizontal curve � W Œ0; 1� ! M such that .�1; �2/ D
	 is an abnormal extremal with dual curve 
 W Œ0; 1� ! R5,


.t/ D �
0;
4

5
t5; 0;

1

5
;�1�:

Notice that we have, for any t 2 Œ0; 1�,
h
; ŒX1; ŒX1; X2��.�/i D 4t3;

h
; ŒX2; ŒX1; X2��.�/i D �3t8=3:
Then, when t > 0 the curve � is a regular abnormal extremal, in the sense of Defi-
nition 14 on page 36 of [9]. By Theorem 5 on page 59 of [9], the curve � is therefore
locally (uniquely) length minimizing on the set where t > 0.

The curve � fails to be regular abnormal at t D 0. Moreover, there holds � 2
C 1;1=3.Œ0; 1�I R5/ with no further regularity at t D 0. In this section, we show that
� is not length minimizing.

Theorem 14. Let g be any metric on the distribution D . The horizontal curve � W
Œ0; 1� ! M defined above is not length minimizing in .M;D ; g/ at t D 0.

Proof. For any 0 < � < 1, let T� � R2 be the set

T� D
°
.x1; x2/ 2 R2 W x4=31 < x2 < �

1=3x1; 0 < x1 < �
±
:

The boundary @T� is oriented counterclockwise. Let 	� W Œ0; 1� ! R2 be the curve
	�.t/ D .t; �1=3t/ for 0 � t � � and 	�.t/ D .t; t4=3/ for � � t � 1, and let
�� W Œ0; 1� ! R5 be the horizontal curve such that .��1 ; �

�
2 / D 	� .

We assume without loss of generality that g is the quadratic formonD thatmakes
X1 and X2 orthonormal. The gain of length in passing from � to �� is

�L.�/ D
Z 1

0

j P	j dt �
Z 1

0

j P	� j dt D 1

30
�5=3 C o.�5=3/: (28)
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On the generic monomial xiC11 x
j
2 with i; j 2 N, the cut T� produces the error

T
ij
� given by the formula

T ij� D
Z
@T�

xiC11 x
j
2dx2 D .i C 1/

Z
T�

xi1x
j
2dx1dx2

D i C 1

j C 1

h 1

i C j C 2
� 1

i C 4
3
.j C 1/C 1

i
�iC

4
3 .jC1/C1:

(29)

We are interested in this formula when i D j D 0, when i D 4 and j D 0, when
i D 0 and j D 3. The initial error produced by the cut T� is the vector of R3

E0.�/ D �
T 0;0� ; T 4;0� ; T 0;4�

�
D
� 1
14
�7=3;

5

114
�19=3;

1

95
�19=3

�
:

(30)

Only the exponents 7=3 and 19=3 of � are relevant, not the coefficients.
Our first step is to correct the error of order �7=3 on the third coordinate. For fixed

parameters b > 0, � > 0, and " > 0, let us define the curvilinear rectangle

Rb;�."/ D ®
.x1; x2/ 2 R2 W b < x1 < b C j"j�; x4=31 < x2 < x

4=3
1 C "

¯
: (31)

When " < 0, we let

Rb;�."/ D ®
.x1; x2/ 2 R2 W b < x1 < b C j"j�; x4=31 C " < x2 < x

4=3
1

¯
: (32)

The boundary @Rb;�."/ is oriented counterclockwise if " > 0, while it is oriented
clockwise when " < 0. The curve 	� is deviated along the boundary of this rectan-
gle and then it is lifted to a horizontal curve. The effect of Rb;�."/ on the generic
monomial xiC11 x

j
2 is

R
ij

b;�
."/ D

Z
@R

ij

b;

."/

xiC11 x
j
2dx2

D i C 1

j C 1

jX
kD0

 
j C 1

k

!
"jC1�k

i C 4
3
k C 1

h
.b C j"j�/iC 4

3kC1 � biC 4
3kC1

i
:

(33)

The cost of length ofRb;�."/ is

ƒ
�
Rb;�."/

� D 2j"j: (34)

When i D j D 0, formula (33) reads R0;0
b;�
."/ D "j"j�, whereas

R
4;0
b;�
."/ D 5"

�
.b C j"j�/5 � b5


D 5"

4X
kD0

 
5

k

!
j"j�.5�k/b�;

(35)
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and

R
0;3
b;�
."/ D 1

4

3X
kD0

 
4

k

!
"4�k
4
3
k C 1

h
.b C j"j�/ 4

3
kC1 � b 4

3
kC1


D "

5

�
.b C j"j�/5 � b5


C 1

4

2X
kD0

 
4

k

!
"4�k
4
3
k C 1

h
.b C j"j�/ 4

3kC1 � b 4
3kC1


D 1

25
R
4;0
b;�
."/C bR0;3

b;�
."/;

(36)

where bR0;3
b;�
."/ is defined via the last identity.

We choose b D �. The parameter 0 < � < 1 will be fixed at the end of the
argument. To correct the error on the third coordinate, we solve the equation

R
0;0

�;�
."/C T 0;0� D 0;

in the unknown ". In fact, this equation is "j"j� C 1
14
�7=3 D 0 and the solution is

" D �c0�ˇ ; where c0 D 1

141=.1C�/ and ˇ D 7

3.1C �/
:

The choice b D � is not relevant, here. By (28) and (34), the cost of length is admis-
sible if � > 0 is small enough and we have

7

3.1C �/
>
5

3
, � <

2

5
: (37)

This is our first restriction on �.
The rectangle R�;�."/ produces new errors on the fourth and fifth coordinates.

Namely, by (35) we have

R
4;0

�;�

� � c0�ˇ
� D �5c0�ˇ

4X
kD0

 
5

k

!�
c0�

ˇ
��.5�k/

�k: (38)

When � < 3=4, condition implied by (37), the leading term in � in the sum above is
obtained for k D 0.

By (36), the error produced on the last coordinate is

R
0;3

�;�

� � c0�ˇ
�D 1

4

3X
kD0

 
4

k

!� � c0�ˇ
�4�k 3

4k C 3

h�
�C �

c0�
ˇ
��� 4

3kC1� � 4
3
kC1

i
:

(39)

When � < 3=4, the bracket Œ: : :� in the sum over k above is�
c0�

ˇ
��. 4

3kC1/h
1C

�4
3
k C 1

�
c��
0 �1� 7


3.1C
/ C 2k

3

�4
3
k C 1

�
c�2�
0 �2� 14


3.1C
/ C : : :
i
:

The leading term in the sum in (39) is obtained for k D 3, and the second leading
term is obtained for k D 2.
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We have the new vector of errors

E1.�/ D
�
0; R

4;0

�;�

� � c0�ˇ
�C T 4;0� ; R

0;3

�;�

� � c0�ˇ
�C T 0;3�

�
: (40)

When � < 3=4, the errors on the fourth and fifth coordinates produced by the rect-
angle R�;� dominate the errors produced by the cut, see (30). In fact, we have

ˇ.1 C 5�/ <
19

3
, � <

3

4
:

Also the second leading term in R0;3
�;�

� � c0�ˇ
�
dominates T 0;3� . In fact, we have

ˇ
�
2C 11

3
�
�
<
19

3
, � <

3

4
:

Now we use a rectangle Rb;�."/ to correct the error on the fourth coordinate.
Here, 1

2
< b < 3=4 is position parameter and � > 0 is small enough. Concep-

tually, we could take � D 0. The parameter � > 0 is only needed to confine the
construction in a bounded region. We solve the equation

R
4;0
b;�
."/CR

4;0
�;�

� � c0�
ˇ
� D 0 (41)

in the unknown ". By the formulas computed above, we deduce that the solution
" D N" is

N" D c1�
ˇ 1C5


1C5� C : : : ;

where c1 > 0 is an explicit constant and the dots stand for lower order terms in �.
The cost of length of the rectangle Rb;�.N"/ is admissible for any � > 0 close to 0,
because ˇ.1 C 5�/ > 5=3.

By (36) and (41), we have the identity

R
0;3

b;�
.N"/CR

0;3

�;�

� � c0�ˇ
� D bR0;3

b;�
.N"/C bR0;3

�;�

� � c0�ˇ
�
;

and, therefore, the new vector of errors is

E2.�/ D
�
R
0;0
b;�
.N"/; T 4;0� ;bR0;3

b;�
.N"/C bR0;3

�;�

� � c0�ˇ
�C T 0;3�

�
; (42)

where we have

R
0;0

b;�
.N"/ D N"1C� D c2�

ˇ
.1C5
/.1C�/

1C5� C : : : ; (43)

with the coefficient c2 D c
1C�
1 .

In the next step, we correct simultaneously the errors on the fourth and fifth co-
ordinates. We need curvilinear squares. Let 0 < b < 1 be a position parameter. For
any " 2 .�1; 1/, we let

Qb."/ D Rb;1.j"j/: (44)
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The parameter � of the rectangle is set to � D 1. Set-theoretically, the definition is
the same for positive and negative ". However, when " > 0 the boundary @Qb."/ of
the square is oriented clockwise; when " < 0 the boundary is oriented counterclock-
wise. The cost of lengthƒ.Qb."// of the square is the sum of the length of the four
sides. For some constant C > 0 independent of b and " we have

ƒ.Qb."// � C j"j: (45)

By (33), when " > 0 the effect Qij

b
."/ of the square on the monomial xiC11 x

j
2 is

Q
ij

b
."/ D i C 1

j C 1

jX
kD0

 
j C 1

k

!
"jC1�k 1

i C 4
3
k C 1

h
.b C "/iC

4
3kC1 � biC 4

3kC1
i
:

When " < 0, we haveQij

b
."/ D �Qij

b
.j"j/.

Let 3=4 < b1 < b2 < 1 be position parameters and let � > 0 be close to 0. We
solve the system of equations8<:Q

4;0
b1
."1/CR4;0

b2;�
."2/C T 4;0� D 0

Q
0;3

b1
."1/CR

0;3

b2;�
."2/C bR0;3

b;�
.N"/C bR0;3

�;�

� � c0�
ˇ
�C T

0;3
� D 0

in the unknowns "1; "2. Subtracting the first equation from the second one and using
(36), we get the equivalent system8<:Q

4;0
b1
."1/CR

4;0
b2;�

."2/C T
4;0
� D 0bQ0;3

b1
."1/C bR0;3

b2;�
."2/C E.�/ D 0

(46)

where

E.�/ D bR0;3
b;�
.N"/C bR0;3

�;�

� � c0�ˇ
�C T 0;3� � T 4;0�

D c3�
ˇ.2C 11

3 �/ C : : :

for some c3 > 0. The dots stand for lower order terms in �. In fact, the leading term
in R0;3

�;�

� � c0�
ˇ
�
dominates the remaining terms. Using a notation consistent with

(35), we also let

bQ0;3
b1
."1/ D sgn."1/

1

4

2X
kD0

 
4

k

!
j"1j4�k
4
3
k C 1

h
.b1 C j"1j/ 4

3kC1 � b
4
3kC1
1



D c4"

3
1 C ::::

Above, c4 > 0 is a constant and the dots stand for negligible terms. Notice that we
have control on the sign of the leading term.
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The system (46) can thus be approximated in the following way´
sgn."1/"21 C c5"2j"2j5� C c6�

19
3 C : : : D 0

"31 C c7j"2j2C 11
3 � C c8�

ˇ.2C 11
3 �/ C : : : D 0;

(47)

where c5; : : : ; c8 > 0 are constants and the dots stand for negligible terms. We can
compute "2 as a function of "1 from the first equation and replace this value into
the second equation. This operation produces lower order terms. Thus the second
equation reads

"31 C c8�
ˇ.2C 11

3 �/ C : : : D 0;

and there is a solution "1 < 0 satisfying

"1 D �c9�ˇ.2C 11
3 �/=3 C : : : D �c9�

7.2C 11
3


/

9.1C
/ C : : : ;

where c9 > 0 and the dots stand for lower order terms in �. As a consequence, from
the first equation in (47) we deduce that

"2 D �c10� 19
3.1C5�/ C : : : :

The cost of length of the rectangleRb2;�."2/ is 2j"2j, and it is admissible because
for � > 0 close to 0 we have

19

3.1C 5�/
>
5

3
:

By (45), the cost of lenght of the squareQb1
."1/ is at most C j"1j, and, for small �,

it is admissible if and only if

7.2C 11
3
�/

9.1C �/
>
5

3
, � >

3

32
: (48)

Here, we have a nontrivial restriction for �. This restriction is compatible with (37).
Now the parameter � is fixed once for all in such a way that

3

32
< � <

2

5
: (49)

The deviceQb1
."1/ produces an error on the third coordinate of the order j"1j2,

that is of the order �14.2C 1
3
�/=9. The device Rb2;�."2/ produces an error on the third

coordinate of the order j"2j1C�, that is of the order �19.1C�/=3. These errors are neg-
ligiblewith respect to the errorR0;0

b;�
.N"/ appearing in (42)–(43). Eventually, after our

last correction we have the vector of errors

E3.�/ D �
c2�

7
3% C : : : ; 0; 0

�
; where % D .1 C 5�/.1 C �/

.1 C �/.1 C 5�/
; (50)
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the dots stand for lower order terms and the number % satisfies the key condition
% > 1, provided that 0 < � < �. Now also � is fixed.

Comparing the initial error E0.�/ in (30) and the error E3.�/ in (50), we realize
that the initial error �7=3 on the third coordinate decreased by a geometric factor
% > 1. Now we can iterate the entire construction to set to zero all the three com-
ponents of the error. Here, we omit the details of this standard part of the argument.
This finishes the proof.

Remark 1. The curve � studied in Theorem 14 is of class C 1;1=3. The curves con-
sidered in Theorem 7 are at most C 1;1=4. There is a gap between the two cases. In
the proof of Theorem 14, the key step is the choice of � made in (49). In particular,
there is a very delicate bound from below for �. In the proof of Theorem 7, there is
no such a bound from below.

8 Final comments

Concerning the question about the regularity of length minimizing curves in sub-
Riemannian manifolds, there are two possibilities. Either, in any sub-Riemannian
manifold every length minimizing curve is C1 smooth (answer in the positive);
or, there is some sub-Riemannian manifold with nonsmooth (non C 1, non C 2, etc.)
length minimizing curves (answer in the negative). The author has no clear feeling
on which of the two answers to bet.

Theorem 5 on step 3 Carnot groups suggests that, in sub-Riemannian manifolds
of step 3, any length minimizing curve is C1 smooth. This seems to be the first
question to investigate in view of an answer in the positive. In the same spirit, The-
orem 6 suggests that in sub-Riemannian manifolds of rank 2 and step 4 any length
minimizing curve is C1 smooth.

On the other hand, the first example to investigate in order to find a length min-
imizer with a corner type singularity is the one of Sect. 6.2 with the choice ˛ D 1.
Moreover, Theorem 7 and the computations made in Sect. 7 suggest to look for
nonsmooth length minimizing curves in the class of C 1;ı abnormal extremals with
0 < ı < 1 sufficiently close to 1. One interesting example could be the manifold
M D R5 with the distribution spanned by the vector fields

X1 D @

@x1
; X2 D @

@x2
C x1

@

@x3
C x2m1

@

@x4
C x1x

m
2

@

@x5
; (51)

form 2 N large.
Finally, the example of a purely Lipschitz Goh extremal of Sect. 6.1 proves that

the first and second order necessary conditions for strictly abnormal extremals do
not imply, in general, any further regularity beyond the given Lipschitz regularity.
New and deeper techniques are needed in order to develop the regularity theory.
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