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To Andrei Agrachev,
on the occasion of his 60" birthday



Preface

Geometric Control Theory and sub-Riemannian geometry are two areas whose fruit-
ful interaction has been witnessed over the last decades.

On the one hand Geometric Control Theory used the differential geometric and
Lie algebraic language for studying controllability, motion planning, stabilizabil-
ity and optimality for nonlinear and linear control systems. Reflected in one of the
contributions to the volume is the fact that the foundational result of optimal con-
trol theory — Pontryagin Maximum Principle — has differential geometric/Lie alge-
braic interpretation. The geometric approach turned out to fruitful in applications
to robotics, vision modeling, mathematical physics etc. Current research in geomet-
ric control theory is concerned with polydynamic models, described by systems of
nonlinear ODEs or PDEs with (control) parameters, or, geometrically speaking, by
linear or affine subdistributions of tangent/cotangent bundles of manifolds of finite
or infinite dimension.

On the other hand Rimemannian geometry and its generalizations, like sub-Rie-
mannian, semi-Riemannian, Finslerian geometry etc., have been actively adopting
methods developed in the scope of geometric control. Application of these methods
has led to important results regarding geometry and topology of sub-Riemannian
spaces, regularity of sub-Riemannian distances, properties of the group of diffeo-
morphisms of sub-Riemannian manifolds, local geometry and equivalence of distri-
butions and sub-Riemannian structures, regularity of the Hausdorff volume etc.

Directions of active studies, partially reflected in the present collection are
sketched below.

Geometric optimal control. This area is naturally drawn to invariant Hamilto-
nian formulations and use of the concepts and methods of symplectic geometry.
Of particular use are the notions of Jacobi curve and Maslov cycle in Lagrangian
Grassmanian, which are central for studying sub-Riemannian length minimization
problems. Hamiltonian lifts to cotangent bundle allow for establishing second-order
optimality conditions for extremals in optimal control problem with parameters. The
same Hamiltonian approach, together with numerical schemes, is used for computa-
tion of conjugate and cut loci of metrics on Riemannian surfaces. Some integrabil-
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ity problems are addressed for Pontryagin-Hamilton optimality conditions for high-
dimensional generalizations of Euler elastica and of Dubins’s minimal path problem.
Study of topology of configuration space of complex robotic systems allows to dis-
cover topological obstructions to continuous feedback stabilizability.

Geometry of sub-Riemannian manifolds. Natural range of issues is an extension of
concepts and results of Riemannian geometry for sub-Riemannian manifolds. Those
include, for example, curvature-dimension inequalities and Li-Yau-type estimates,
as well as smoothness of length-minimizing curves in sub-Riemannian geometry,
which is a long standing open problem. Curvature-type (feedback) invariants (intro-
duced by A.A. Agrachev) can be computed for extremals of “least action principle”
for natural mechanical systems on sub-Riemannian manifolds.

Classification problem for distributions is a long time challenge. It has been dis-
covered some decades ago, that the geometry of distributions on manifolds can be
characterized via Hamiltonian flows which define abnormal sub-Riemannian geode-
scis. In several symmetric cases the analysis of the abnormal geodesic flow can
lead to a construction of canonical moving frames and to description of the moduli
spaces for the rank-2 distributions in R”. Some conjectures regarding classification
of (affine) line fields in C" with transitive symmetry algebrae, are confirmed for
n=2,73.

Analysis and topology of Carnot-Caratheodory spaces. Analysis in Carnot-
Caratheodory spaces is a well established area, whose interaction with sub-
Riemannian geometry and the geometric control theory is natural. Topics, illustrat-
ing such interaction include: intrinsic notions of Lipschitz maps and Lipschitz do-
mains in Carnot groups, computation of Hausdorff dimension of sub-Riemannian
manifolds and of Hausdorff volume of small balls in sub-Riemannian metrics, lo-
cal approximation theorem for Carnot-Caratheodory spaces, comparison of various
topologies in sub-Lorentzian manifolds.

Controllability and optimal control problems for PDEs. Geometric control for
infinite-dimensional systems and PDE’s is a rather new research area, whose dif-
ferential geometric/Lie algebraic apparatus is yet to be created. Recent progress
concerns the approximate controllability of the viscous Burger’s equation on a line
by means of trigonometric polynomial control, the null controllability property for
parabolic Grusin equation with singular potential, the optimality of steady state
modes for a model of exploitation of size-structured population.

The volume contains contributions of the participants of the Meeting on Geomet-
ric Control Theory and sub-Riemannian Geometry, which took place in Cortona on
May 21-25,2012. The Meeting has been kindly sponsored by the Istituto Nazionale
di Alta Matematica “F. Severi” (INdAM).

The editors would like to thank INdAAM, who supported the organization of the
Workshop and the publication of this volume in Springer INAAM Series.

The editors would also like to thank the other sponsors of the workshop: SISSA,
INRIA team GECO, ERC StG 2009 “GeCoMethods”, contract number 239748, ANR
“GCM”, and PRIN “Geometric approach to controlled dynamics and applications”.
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The Workshop has been dedicated to 60th anniversary of professor Andrei A.
Agrachev, whose ideas are deeply influential in geometric control and adjacent ar-
eas. Many contributors of the present volume are his coauthors, former and current
students, scholars inspired by his work in the above mentioned fields. On request
of the editors professor A.Agrachev contributed a survey of some open problems in
geometric control theory and sub-Riemannian geometry.

July 2013 The Editors
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Some open problems

Andrei A. Agrachev

Abstract We discuss some challenging open problems in the geometric control the-
ory and sub-Riemannian geometry.

1 Singularities of time-optimal trajectories

It is getting harder to prove theorems and easier to force other people to prove them
when you are sixty. Some colleagues asked me to describe interesting open problems
in geometric control and sub-Riemannian geometry. Here I list few really challeng-
ing problems; some of them are open for a long time and were publicly or privately
stated by well-known experts: J.-M. Coron, I. Kupka, R. Montgomery, B. Shapiro,
H. Sussmann, and others.

Let f, g be a pair of smooth (i.e. C°) vector fields on a n-dimensional manifold
M . We study time-optimal trajectories for the system

qg=f(q@) +uglq), [ul=<l1, qeM,

with fixed endpoint. Admissible controls are just measurable functions and admis-
sible trajectories are Lipschitz curves in M. We can expect more regularity from
time-optimal trajectories imposing reasonable conditions on the pair of vector fields.

A. (f.g) is a generic pair of vector fields. Optimal trajectories cannot be all
smooth; are they piecewise smooth? This is true for n = 2. More precisely, if
dim M = 2, then any point of M has a neighborhood such that any contained in the

The author has been supported by the grant of the Russian Federation for the state support of re-
search, Agreement No 14.b25.31.0029 and the program “Scientific and Scientific-Pedagogical Per-
sonnel of Innovative Russia,” Agreement No. 8209.
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2 A.A. Agrachev

neighborhood time-optimal trajectory is piecewise smooth with atmost 1 switching
point (see [11,32]). According to the control theory terminology, a switching point
of an admissible trajectory is a point where the trajectory is not smooth.

The question is open for n = 3. What is known? Let sw(g) be minimal among
numbers k such that any contained in a sufficiently small neighborhood of ¢ € M
time-optimal trajectory has no more than k switching points. We set sw(g) = oo if
any neighborhood of g contains a time-optimal trajectory with an infinite number of
switching points. It is known that sw(g) = 2 for any ¢ out of a 2-dimensional Whit-
ney stratified subset of the 3-dimensional manifold M (see [28,33]) and sw(g) < 4
for any ¢ out of a 1-dimensional Whitney stratified subset of M (see [7]). Some fur-
ther results in this direction can be found in [31]. We do not know if sw(g) < oo for
any g € M. We also do not know if a weaker property, the finiteness of the number
of switching points for any individual time-optimal trajectory is valid.

Higher dimensions. There is a common opinion that starting from some (not very
big) dimension, time-optimal trajectories with accumulating switching points cannot
be eliminated by a C ®°-small perturbation of the system and thus survive any gener-
icity conditions. However, to my knowledge, this opinion was never supported by a
proof. There are very interesting examples of extremals with accumulating switch-
ing points whose structure survives small perturbations (see [21, 37]) but nobody
knows if these extremals are optimal.

B. f, g are real analytic vector fields. Let M be a real analytic manifold and f, g
analytic vector fields, not necessary generic. Here we cannot expect any regularity
of an arbitrary time-optimal trajectory. Indeed, it is possible, even for linear systems,
that all admissible trajectories are time-optimal. We can however expect that among
all time-optimal trajectories connecting the same endpoints there is at least one not
so bad.

If n = 2, then any two points connected by a time-optimal trajectory can be
connected by a time-optimal trajectory with a finite number of switching points (see
[35,36]). This is not true for n > 3. Indeed, classical Fuller example with accumulat-
ing switching points [17] can be easily reformulated as a 3-dimensional time-optimal
problem. Main open question here is as follows: Given two points connected by a
time-optimal trajectory, can we connect them by a time-optimal trajectory with no
more than a countable number of switching points?

What is known? The points can be connected by a time-optimal trajectory whose
set of switching points is nowhere dense [34], is not a Cantor set (can be derived
from [1]), and satisfies some additional restrictions [31]. We do not know if we can
avoid a positive measure set of switching points.

All mentioned open questions are not easy to answer. In my opinion, the most
interesting is one on generic 3-dimensional systems.
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2 Cutting the corners in sub-Riemannian spaces

Unlikely the just discussed problems, optimal paths in sub-Riemannian geometry
are usually smooth. However we do not know if they are always smooth. A natu-
ral open question here is as follows. Let y; : [0, 1] — M be two smooth admis-
sible paths of a sub-Riemannian structure on the manifold M, y4(0) = y1(0) =
qo. Y0(0) A y1(0) # 0. Does there exist an admissible path connecting yo(1) with
y1(1) that is strictly shorter than the concatenation of the curves yo and y;?

Admissible paths are integral curves of a bracket generating vector distribution
A C TM.1tis easy to show that positive answer to the question for rank 2 distri-
butions implies positive answer in the general case. Let A = span{ fo, f1}, where
fo. f1 are smooth vector fields on M, dim M = n. We set

ni(q) = dimspan {[fi,.[---. fi;,]---1(q) 1 ij €{0. 1}, j <k},

m = min{k : ng(qo) = n}. If m < 4, then the answer to our question is positive:
it is proved in [22]. Moreover, an example studied in [24] supports the conjecture
that the answer is perhaps positive form = 5, n < 4 as well. Any improvement of
the estimates for m and n would be very interesting. We still know very little about
sub-Riemannian structures with big m and it may happen that the answer is negative
for some m and n.

3 “Morse-Sard theorem” for the endpoint maps

We continue to consider admissible paths of a sub-Riemannian structure on M.
Given go € M, the space of starting at go admissible paths equipped with the H -
topology forms a smooth Hilbert manifold. The endpoint map is a smooth map from
this Hilbert manifold to M ; it sends a path y : [0, 1] — M to the point y(1). Critical
points of the endpoint map are called singular curves of the distribution.

The Morse—Sard theorem for a smooth map defined on a finite dimensional man-
ifold states that the set of critical values of the map has zero measure. It is not true
in the infinite dimensional case: there are smooth surjective maps without regular
points from any infinite dimensional Banach space to R? (see [9]).

The endpoint maps have plenty of regular points but we do not know if they al-
ways have regular values. This is an interesting open question. We can reformulate
the question as follows: is it possible that starting from g¢ singular curves fill the
whole manifold M?

Optimal (i. e. length minimizing) singular curves are better controlled; we know
that starting from go optimal singular curves fill a nowhere dense subset of M (see
[2]). An important open question: can they fill a positive measure subset of M ?
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4 Unfolding the sub-Riemannian distance

The problem concerns singularities of the distance function for generic sub-Rie-
mannian structures. Let go € M and Sy, : M — [0, +00) be the sub-Riemannian
distance from the point gg. Sufficiently small balls S~! ([0, ¢]) are compact. Let
q € M be a point from such a ball. Then ¢ is connected with g¢ by an optimal path.
If this optimal path is not a singular curve and any point from a neighborhood of ¢
is connected with go by a unique optimal path, then Sy, is smooth at g.

The points connected with g¢ by more than one optimal path form the cut locus.
The function Sy, is not smooth in the points of the cut locus and it is not smooth
at the points connected with g¢ by optimal singular curves but these two types of
singularities are very different.

If all connecting go and ¢ optimal paths are not singular curves, then the singular-
ity of Sy, at g is similar to singularities of Riemannian distances and, more generally,
to singularities of the optimal costs of regular variational problems. The function Sy,
is semiconcave [12] and typical singularities in low dimensions are well-described
by the theory of Lagrangian and Legendrian singularities [8, Ch.3] developed by
V. Arnold and his school.

On the other hand, if g¢ is connected with ¢ by an optimal singular curve, then Sy,
is not even locally Lipschitz at go (see [3, Ch. 10]); moreover, classical singularities
theory does not work and the structure of typical singularities is totally unknown.
There are few studied models [4,27] but they are too symmetric to be typical and
the structure of their singularities is easily destroyed by small perturbations.

Let us consider, in particular, the Martinet distributionthat is a rank 2 distribution

inR3 in a neighborhood of a point gq such that n5(go) = 2, n3(go) = 3 (see IL. for
the definition of n; (go)). The points ¢ in a neighborhood of g9 where n,(g) = 2 form
a smooth 2-dimensional submanifold N C M, the Martinet surface. Moreover, the
distribution A is transversal to N and A; N Ty N, ¢ € N is a line distribution on
N . Integral curves of this line distribution are singular curves whose small segments
are optimal. There are no other singular curves for such a distribution.
Example. Let f1 = 3521 , fa= 322 +x? 3)23, then A = span{ f1, f>} is a Martinet
distribution and the Martinet surface is a coordinate plane defined by the equation
x1 = 0. The fields fi, f> form an orthonormal frame of the so called ‘flat’ sub-
Riemannian metric on the Martinet distribution. Let g9 = 0, singularities of Sy are
well-known (see [4]). The cut locus has the form: {x € R3 : x; = 0, x5 # 0}, the
Martinet surface with the removed singular curve through ¢g¢. The singular locus of
a sphere S q_ol (e) is a simple closed curve and its complement (the smooth part of the
sphere) is diffeomorphic to the disjoint union of two discs.

The ‘flat” metric is rather symmetric, in particular, it respects the orthogonal re-
flection of R3 with respect to the Martinet plane. Simple topological arguments show
that for generic metric with a broken symmetry, the smooth part of a sphere is con-
nected and is not contractible. The singular locus of the sphere should be cut at the
points where the sphere intersects the optimal singular curve but the shape of the
sphere near these points is unknown.
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An important open question is to find a C ! -classification of the germs of spheres
at the points of optimal singular curves for generic metrics. Here we say that two
germs are C !-equivalent if one can be transformed into another by a germ of C!-
diffeomorphism of R3.

The next step is the Engel distribution, i.e. a rank 2 distribution in R* such that
n3(q) = 3, na(q) = 4. There is exactly one singular curve through any point and
small segments of singular curves are optimal. We repeat our question for this case;
the spheres are now 3-dimensional hypersurfaces in R*.

Generic germ of a rank 2 distributionin R” possesses a (n —4)-dimensional fam-
ily of singular curves through go € R” (see, for instance, [25]). Take a generic curve
from this family; its small segments are optimal. Take a point ¢ where the selected
singular curve intersects the sphere S 1 (¢). The points of singular curves from the
family in a small neighborhood of ¢ in our sphere form a smooth (n —4)-dimensional
submanifold ¥ C R”. The intersection of the sphere with a transversal to X smooth
4-dimensional submanifold should have a shape similar to the germ of the sphere
in the Engel case. A neighborhood of ¢ in the sphere is fibered by such intersec-
tions. Hence the solution of the problem in the 4-dimensional Engel case is a very
important step in the unfolding of the sphere for any n > 4.

The desired classification seems to be complicated. There is a 2-dimensional mod-
ification of the problem that, in my opinion, already contains the main difficulty.
Ones resolved, it will reduce the study of higher dimensional problems to the con-
ventional singularities theory techniques. Consider the germ at ¢¢ € R? of a pair of
smooth vector fields fp, f1 such that fo(go)A f1(q0) = 0, n2(qo) = 1, n3(go) = 2.
The almost Riemannian distance Sy, (¢) is the optimal time to get ¢ from g by an
admissible trajectory of the system

g =uofolq) +uifilg). ui+u3=1.

The question is to find a C'-classification of the germs of distance functions Sy, for
generic pairs of vector fields fy, fi among the pairs that satisfy conditions n,(go) =
1, n3(qo) = 2. See [10] for some partial results.

5 Symmetries of vector distributions

A symmetry of a distribution A C TM is a diffeomorphism ® : M — M such
that &, A = A. The differential geometry appeals to search most symmetric objects
in the class, those with a maximal symmetry group. The singularities theory, on the
contrary, encourages the study of less symmetric generic objects. Both paradigms
have their reasons and complement each other. Anyway, a fundamental problem is
to characterize objects whose symmetry groups are finite-dimensional Lie groups.
Our objects are vector distributions. Any symmetry transfers singular curves of
the distribution in singular curves and these curves often play a key role in the cal-
culation of symmetry groups (see [15,20]). We say that a distribution is singular
transitive if any two points of M can be connected by a concatination of singu-
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lar curves. A natural open question is as follows: Is it true that singular transitiv-
ity of the distribution implies that its symmetry group is a finite dimensional Lie
group?

All known examples support the positive answer to this question. Moreover, the
group of symmetries is infinite dimensional for many popular classes of not sin-
gular transitive distribution: codimension 1 distributions, involutive distributions,
Goursat—Darboux distributions. We can even expect that any not singular transitive
rank 2 distribution has an infinite dimensional symmetry group. Some results of [15]
seem to be rather close to this statement.

6 Closed curves with a nondegenerate Frenet frame

Lety : S — R” be a smooth closed curve in R”. We say that y is degenerate at ¢ €
SYifp(t)A---Ap(t) = 0. Degeneracy points are the points where velocity or cur-
vature of the curve vanishes if n = 2, where velocity or curvature or torsion vanishes
ifn = 3e.t.c. The curve is nondegenerate if it has no degeneracy points. Any nonde-
generate curve admits the orthonormal Frenet frame E(t) = (eq(¢),...,e,(t)), t €
S, that is a smooth closed curve in the orthogonal group O(n).

Now letn = 3 and y be a plane convex curve, y(t) € R? C R3, V¢ € S!. Then
any small perturbation of y as a spatial curve is degenerate in some points. On the
other hand, an appropriate small perturbation of a plane convex curve run twice (say,
of the curve t — y(2¢), t € S') makes it a nondegenerate curve in R3. Everyone
can get evidence of that playing with a cord on the desk. This is also a mathematical
fact proved in [16,23].

Frenet frame of the plane convex curve treated as a spatial curve is a one-para-
metric subgroup SO(2) C O(3), a shortest closed geodesic in O(3) equipped with a
standard bi-invariant metric. It is proved in [23] that the length of the Frenet frame
of any regular curve in R3 is greater than the double length of SO(2).

Come back to an arbitrary . Let i (n) be minimal m such that run m times con-
vex plane curves have regular small perturbations in R”. We know that u(2) =
1, ©(3) = 2. An important open problem is to find p(n) for n > 3 and to check if
the length of the Frenet frame of any regular curve in R” is greater than the length
of SO(2) C O(n) multiplied by w(n).

Let me explain why this problem is a challenge for the optimal control theory
and why its study may bring important new tools to the theory. The Frenet structural
equations for a regular curve y in R” have a form:

y=e1, € =urt)ei+1 —ui—1(t)ei—1, i=1,...,n—1, (1)

whereug =u, =0, u;(¢1) >0,i=1,....n—1,te Sh

In other words, regular curves together with there Frenet frames are periodic
admissible trajectories of the control system (1) with positive control parame-
ters uy,...,u,. The length of the Frenet frame on the segment [0, #1] is equal
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1
to [y (u3(t) + -+ +u2_, (1)) dt. We are looking for a periodic trajectory with

shortest Frenet frame.

A shortest frame is unlikely to exists since control parameters belong to an open
cone. It is reasonable to expect that minimizing sequences converge to a solution
of (1) with up(t) = --- = u,—1(t) = 0, while u;(¢) stays positive to guarantee
the periodicity of y. In other words, the infimum is most likely realized by a plane
convex curve run several times. Obviously, the length of the Frenet frame does not
depend on the shape of the convex curve.

So we have to take the m times run circle: u1(¢) = 1, uz(t) =--- = up,—1(t) =
0, 0 <t < 2mm, and try to find small positive perturbations of control parameters in
such a way that the perturbed curve stays periodic. Then p(n) is minimal among m
for which such a perturbation does exist. Unfortunately, we cannot use typical in ge-
ometric control sophisticated two-side variations that produce iterated Lie brackets:
only one-side variations are available. I think, it is a very good model to understand
high order effects of time-distributed one-side variations.

The study of the 3-dimensional case by Milnor in [23] was not variational; it was
a nice application of the integral geometry. However, the integral geometry method
is less efficient in higher dimensions (see [26] for some partial results).

7 Controllability of the Navier—Stokes equations controlled by a
localized degenerate forcing

We consider the Navier—Stokes equation of the incompressible fluid:

27: + u,VYu —vAu + Vp = n(t,x), divu =0, 2)
with periodic boundary conditions: x € T?/2x7Z%, d = 2,3. Here u(z, x) € R?
is the velocity of the fluid at the point x and moment ¢; v is a positive constant
(viscosity), p is the pressure and 7 external force.

We treat (2) as an evolution equation in the space of divergence free vector fields
on the torus T¢ controlled by the force. In other words, u(z, ) is the state of our
infinite dimensional control system and 7 is a control. These notations are against
the control theory tradition where u is always control but we do not want to violate
absolutely standard notations of the mathematical fluid dynamics. By the way, sym-
bol u for the control was introduced by Pontryagin as the first letter of the Russian
word “upravlenie” that means control.

The state spaceis V = {u e HY(T?,R?) : divu = O},control parameters 7(z, -)
belong to a subspace £ C V. We say that the system is approximately control-
lable (controllable in finite dimensional projections) in any time if for any ug, u; €
V. t; > 0 and any ¢ > 0 (any finite dimensional subspace F C V') there exists
a bounded control 1, n(t,-) € E, 0 <t < t1, and a solution u of (2) such that
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u(0,-) = uo., |lutr.) —uille, <& (Pr@u(ti,") —uy) = 0, where Pr is the
L»-orthogonal projector on F )

Of course, controllability properties depend on the choice of the space of con-
trol parameters E. It is known that the systems is controllable in both senses by
a localized forcing when E = {u € V : suppu C D} and D is an arbitrary
open subset of T¢. Moreover, such E provides a much stronger exact controllabil-
ity (see [13,14,18,19]).

On the other hand, the system is approximately controllable and controllable in
finite-dimensional projections by a degenerate forcing (or forcing with a localized
spectrum) when E is a finite dimensional space of low frequency trigonometric poly-
nomials (see [5,6,29,30]). This kind of controllability illustrates a mechanism of the
energy propagation from low to higher frequencies thatis a necessary step in the long
way towards a reliable mathematical model for the well-developed turbulence.

It is important that the control parameters space E does not depend on the viscos-
ity v. Moreover, if d = 2, then the described controllability properties are valid also
for the Euler equation (i.e. for v = 0); the Cauchy problem for the Euler equation
is well-posed in this case.

Now an important open question: is the system approximately controllable and
(or) controllable in the finite dimensional projections by a localized degenerate forc-
ing when FE is a finite dimensional subspace of the space {u € V : suppu C i)}"
The question is about existence and effective construction of such a space E that
does not depend on the viscosity v.

The independence on v is important for eventual applications to the well-devel-
oped turbulence that concerns the case of very small v (or very big Reynold num-
ber). Of course, similar problems for other boundary conditions and other functional
spaces are also very interesting.

We have arrived to a sacral number of seven problems and can relax a little bit. To
conclude, I would like to discuss one more problem; it is less precise than already
stated questions but, to my taste, is nice and fascinating. The problem concerns con-
tact 3-dimensional manifolds and is inspired by the Ricci flow story.

8 Diffusion along the Reeb field

I recall that a contact structure on a 3-dimensional manifold M is a rank 2 distri-
bution A C M such that n,(q) = 3, Vg € M. According to a classical Martinet
theorem, any orientable 3-dimensional manifold admits a contact structure. I am go-
ing to introduce some dynamics on the space of sub-Riemannian metrics on a fixed
compact contact manifold (M, A).

First, to any sub-Riemannian metric on (M, A) we associate a transversal to A
Reeb vector field e on M. In what follows, we assume that A is oriented; other-
wise e(q) is defined up-to a sign but further considerations are easily extended to
this case. Let w be a nonvanishing differential 1-form on M that annihilates A. The
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condition n15(g) = 3 is equivalent to the inequality wg A dyw # 0. The form w is
defined up-to the multiplication by a nonvanishing function; the sign of the 3-form
wg A dgow does not depend on the choice of @ and defines an orientation on M. We
have: dqa)|Aq # 0; moreover, dg (aa))|Aq = a(q)dqa)|Aq for any smooth function
aof M.

Given a sub-Riemannian metric on A, there exists a unique annihilating A form
 such that the 2-form d, | Aq coincides with the area form on A, defined by the

inner product and the orientation. The kernel of d,w is a 1-dimensional subspace
of Ty M transversal to Ay, and e(g) is an element of this kernel normalized by the
condition (wy, e(q)) = 1.

In other words, the Reeb vector field is defined by the conditions:
iew =1, iedw = 0. Hence L,w = 0, where L, is the Lie derivative along e, and
the generated by e flow on M preserves w. In general, this flow does not preserves
the sub-Riemannian metric. We may try to classify contact structures by selecting
best possible sub-Riemannian metrics on them.

Assume that there exists a metric preserved by the flow generated by the Reeb
vector field. Take a standard extension of the sub-Riemannian metric to a Rieman-
nian metric on M : simply say that e is orthogonal to A and has length 1. The gener-
ated by e flow preserves this Riemannian metric as well. So our compact Riemannian
space admits a one-parametric group of isometries without equilibria. Hence M is a
Seifert bundle. Do not care if you do not remember what is Seifert bundle: it is suffi-
cient to know that they are classified as well as invariant contact structures on them.

The invariant with respect to the Reeb field sub-Riemannian metric gives a lot
of information about the manifold. Let ¢ € M ; our sub-Riemannian metric induces
a structure of Riemannian surface on a neighborhood of ¢ factorized by the trajec-
tories of the local flow generated by the restriction of e to the neighborhood. Let
k(gq) be the Gaussian curvature of this Riemannian surface at the point g; then « is a
well-defined smooth function on M, a differential invariant of the sub-Riemannian
metric. Moreover, k is a first integral of the flow generated by the Reeb field e. If
k = 0, then universal covering of the sub-Riemannian manifold is isometric to the
Heisenberg group endowed with the standard left-invariant metric. If k is a negative
(positive) constant, then universal covering of the sub-Riemannian manifold is iso-
metric to the universal covering of the group SL(2) (group SU(2)) equipped with a
left-invariant sub-Riemannian metric induced by the Killing form.

Assume that function k isnota constantand ¢ € R isitregular value. Then k! (c)
is a compact 2-dimensional submanifold of M; we treat it as a 2-dimensional Rie-
mannian submanifold of the Riemannian manifold M equipped with the standard
extension of the sub-Riemannian structure. It is easy to see that k! (c) is isometric
to a flat torus. Indeed, T (k! (c)) contains the field e[, (¢) and is transversal to A;
the field e|,—1(, and the unit length field from the line distribution Tk () NnA
commute and form an orthonormal frame.

So preserved by the Reeb field sub-Riemannian metrics have plenty of nice prop-
erties. Unfortunately, not any compact contact manifold admits such a metric be-
cause not any compact 3-dimensional manifold admits a structure of Seifert bundle.
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I am going to discuss a natural procedure that may lead to a generalized version of
such a metric with reasonable singularities.

It is more convenient to work in the cotangent bundle than in the tangent one. A
sub-Riemannian metric is an inner product on A C T'M; let us consider the dual in-
ner product on A* = T*M/A~+, where AL is the annihilator of A. This is a family
of positive definite quadratic forms on A* = Tq* M/ A;, q € M, or, in other words,
a family of nonnegative quadratic forms A, on Tq*M such that ker hy = A;. The
function

h:T*M — R, where h(§) = hq(§), VYEeT/M, qeM,

is the Hamiltonian of the sub-Riemannian metric. Hamiltonian vector field on 7* M
associated to /& generates the sub-Riemannian geodesic flow.

The Hamiltonian 4 determines both the vector distribution and the inner product.
We denote by uy, : T*M — R the Hamiltonian lift of the Reeb field e,

up(€) = (€.e(q)), VYE€T M qeM,

and by ‘U;l :T*M — T*M, t € R, the Hamiltonian flow generated by the Hamil-
tonian field associated to uj. The flow ‘U;l is a lift to the cotangent bundle of the flow
on M generatedbye.Let P; : M — M be such aflow, Z)Pét(q) =eoP(q), Po(q) =
g, g € M;then U, = P*, The flow P; preserves the sub-Riemannian metric if
and only if the flow u; preserves h; in other words, if and only if {uy, h} = 0,
where {-, -} is the Poisson bracket. Note that &

Trm 182 quadratic form and uy, M

is a linear form, Vg € M ; hence {uy, h}

M 182 quadratic form.

Recall that the flow Uj = P, preserves the I-form w, and w is a non-

vanishing section of the line distribution A+. Hence ALl is contained in the

. t —

kernel of the quadratic forms / o ‘uh|Tq*M and i“h’i';'{“ﬁ,’h}"'}|T;M =
14

jtli |t=0 (h °© ‘u;z)

T M:

We are now reaély to introduce the promised dynamics on the space of sub-Rie-
mannian metrics on A, where metrics are represented by their Hamiltonians. Let ¢
be a positive smooth function on M. A discrete time dynamical system transforms
a Hamiltonian /,, into the Hamiltonian

1 &
hpt1 = 25[ hno W, di, n=0,12,....

—&

a partial average of h, with respect to the flow ‘U;l.

The Hamiltonian 4, is equal to hj, if and only if {uy, ,h,} = 0. Indeed, let
()¢ be an inner product in Ay and H, ; : Ay — Ay the symmetric operator associ-
ated to the quadratic form 1,0 Uj, | S by this inner product: hyoUj, (1) = (H,:,)g.
Recall that the flow u;ﬂ is generated by the Reeb field of /,,, hence the area form
on A7 defined by /iy o Uj, [,
const. The equation det H = const defines a strongly convex hyperboloid in the

does not depend on ¢; in other words, det H,ﬁ =
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3-dimensional cone of positive definite symmetric operators on the plane, and H}, is
a curve in such a hyperboloid; hence ), [°, H} dt = HY if and only if H! = HJ,
i.e. hpo ‘U;ln = h,.

If the sequence h, converges, then its limit is the Hamiltonian of a sub-Rie-
mannian metric on A preserved by the Reeb field. Otherwise we may modify the
sequence and take scaled averages:

&n
]’Zn+1 = C‘n[ hy o ‘U;ln dt.
—en

There is a good chance to arrive to a nonzero limiting Hamiltonian /1, by a clever
choice of the sequences of positive functions &, ¢,. Then hieo |, is @ nonnegative
q

quadratic form and A} C kerh

rank (heo
sub-Riemannian metric; we can treat it as a generalized version of such a metric.

A continuous time analogue of the introduced dynamics is a “heat along the Reeb
field” equation

00 |T; 4 forany g € M. It may happen however that

T M) < 2 for some ¢ € M and h is not the Hamiltonian of a contact
q

= cun un. )

in the space of sub-Riemannian metrics on the given contact distribution. It is easy
to show that the equality {uj, {up, h}} = 0 implies {u;, h} = 0 and stationary
solutions of this equation are exactly the metrics preserved by the Reeb fields. I con-
clude with an explicit expression for this nice and mysterious evolution equation in
the appropriate frame.

All contact distributions are locally equivalent according to the Darboux theorem.
Let f1, f> be abasis of the contact distribution A such that f1, f> generate a Heisen-
berg Lie algebra: [ f1, [f1. f2]] = [f2. [f2, 1]l = 0. Wesetv; (§) = (€, fi(q)). § €
Tq* M, g € M, the Hamiltonian lift of the field f;, i = 1, 2; then

{v1.{v1, v2}} = {v2, {v2, v1}} = 0. (3)
Hamiltonian of any sub-Riemannian metric on A has a form:
h = Cl11U12 + 2a1zv1v2 + azzv§, 4)

where a;; are smooth functions on the domain in M where f1, f, form a basis of

: : — (an(@ ai2(q) \ ; e
A, and the quadratic form defined by the matrix A(g) = (a}; @ a; (q)> is positive

definite for any ¢ from this domain. Let § = det A; this is a function on M and
we treat it as a constant on the fibers function on 7*M. A key for us function uj,
depends only on ¢ and has a form:

—up = 6{v1, va} + vi{va, 6} + v2{6, v1}. (%)



12

A.A. Agrachev

The relations (3)—(5) give an explicit expression for the equation ‘?ft’ = c{up, {up, h}}
as a system of third order partial differential equations for the functions a;; .
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Geometry of Maslov cycles

Davide Barilari and Antonio Lerario

Abstract We introduce the notion of induced Maslov cycle, which describes and uni-
fies geometrical and topological invariants of many apparently unrelated situations,
from real algebraic geometry to sub-Riemannian geometry.

1 Introduction

In this paper, dedicated to Andrei A. Agrachev in the occasion of his 60th birthday,
we survey and develop some of his ideas on the theory of quadratic forms and its
applications, from real algebraic geometry to the study of second order conditions
in optimal control theory. The investigation of these problems and their geometric
interpretation in the language of symplectic geometry is in fact one of the main con-
tributions of Agrachev’s research of the 80s-90s (see [1,5,6]) and these techniques
are still at the core of his more recent research (see the preprints [7,8]).

Also, this survey can be interpreted as an attempt of the authors to give a uni-
fied presentation of the two a priori unrelated subjects of their dissertations under
Agrachev’s supervision, namely sub-Riemannian geometry and the topology of sets
defined by quadratic inequalities. The unifying language comes from symplectic ge-
ometry and uses the notion of Maslov cycle, as we will discuss in a while.

To start with we introduce some notation. The set L(#n) of all n-dimensional La-
grangian subspaces of R2” (endowed with the standard symplectic structure) is called
the Lagrangian Grassmannian; it is a compact submanifold of the ordinary Grass-
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mannian and once we fix one of its points A, we can consider the algebraic set
Y ={IleLn)|AnI#0},

(this is what is usually referred to as the train of A, or the universal Maslov cycle).
The main idea of this paper is to study generic maps f : X — L(n), for X a smooth
manifold, and the geometry of the preimage under f of the cycle X. Such a preimage
f~H(Z) is what we will call the induced Maslov cycle.

It turns out that many interesting problems can be formulated in this setting and
our goal is to describe a kind of duality that allows to get geometric information on
the map f by replacing its study with the geometry of f~!(%).

To give an example, the Maslov cycle already provides information on the topol-
ogy of L(n) itself. In fact X is a cooriented algebraic hypersurface smooth outside
a set of codimension three and its intersection number with a generic map y : S —
L(n) computes [y] € 71(L(n)) ~ Z.

The theory of quadratic forms naturally appears when we look at the local geom-
etry of the Lagrangian Grassmannian L (n) : it can be seen as a compactification of
the space Q(n) of real quadratic forms in n variables and, using this point of view,
the Maslov cycle ¥ is a compactification of the space of degenerate forms.

Given k quadratic forms ¢y, ..., gr € Q(n) we can construct the map:

f Sk=1 L(n), (x1,....x) > x191 + -+ Xxqk.

In fact the image of this map is contained in the affine part of L(n) and its homotopy
invariants are trivial. Neverthless the induced Maslov cycle #~!(X) has a nontrivial
geometry and can be used to study the topology of:

X ={lx] e RP""|q1(x) = -+ = gi(x) = 0}.

More specifically, it turns out that as a first approximation for the topology of X we
can take the “number of holes” of f~1(X). Refining this approximation procedure
amounts to exploit how the coorientation of X is pulled-back by f.

In some sense this is the idea of the study of (locally defined) families of quadratic
forms and their degenerate locus, and the set of Lagrange multipliers for a variational
problem admits the same description. One can consider two smooth maps between
manifolds FF : U — M and J : U — R and ask for the study of critical points
of J on level sets of F. With this notation the manifold of Lagrange multipliers is
defined to be:

Cr.y = {(u.A) € F*(T*M)|ADyF — dyJ = 0}.

Attached to every point (4, A) € Cr,; there is a quadratic form, namely the Hes-
sian of J | p—1(p(yy) evaluated at u, and using this family of quadratic forms we can
still define an induced Maslov cycle X r ; (the definition we will give in the sequel
is indeed more intrinsic).
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This abstract setting includes for instance the geodesic problem in Riemannian
and sub-Riemannian geometry (and even more general variational problems). In this
case the set U parametrizes the space of admissible curves, F is the end-point map
(i. e. the map that assigns to each admissible curve its final point), and J is the energy
of the curve. The problem of finding critical points of the energy on a fixed level set
of F corresponds precisely to the geodesic problem between two fixed points on the
manifold M. In this context X F ; corresponds to points where the Hessian of the
energy is degenerate and its geometry is related to the structure of conjugate locus
in sub-Riemannain geometry. Moreover the way this family of quadratic forms (the
above mentioned Hessians) degenerates translates into optimality properties of the
corresponding geodesics.

Rather than a systematic and fully detailed treatment we present here the main
ideas, giving only some sketches of the proofs (providing references where possi-
ble) and offering a different perspective in these well-estabilshed research fields.

In Sect. 2 we introduce the basic terminology: the geometry and topology of La-
grangian Grassmannians and the universal Maslov cycle are discussed. In Sec. 3 we
present the “local” part of the theory: we define the induced Maslov cycle and we
use it to study the topology of intersections of real quadrics. In Sect. 4 we intro-
duce Lagrangian maps and extend the definition of induced Maslov cycle. In Sect. 5
we introduce a special class of Lagrangian maps: the projection of the manifold of
Lagrange mutlipliers of an extremal problem to the variable space; we discuss how
families of Morse functions can be handled using this setting; finally we translate the
geodesic problem in subriemannian geometry in the language of Lagrange multipli-
ers and show that the structure of the Maslov cycle gives in this case partial answers
to optimality.

Our presentation is strongly influenced by the deep insight and the ideas of A. A.
Agrachev. We are extremely grateful to him for having shown us, both in mathe-
matics and in life, the elegance of simpleness.

2 Lagrangian Grassmannian and universal Maslov cycles

2.1 The Lagrangian Grassmannian

Let us consider R?"* with its standard symplectic form o. A vector subspace A of
R?" is called Lagrangianif it has dimensionn and 0| = 0. The Lagrangian Grass-
mannian L(n) in R?" is the set of its n-dimensional Lagrangian subspaces.

Proposition 1. L(n) is a compact submanifold of the Grassmannian of n-planes in
R?"; its dimension isn(n + 1)/2.

Consider the set AT = {A € L(n)| A N A = 0} of all Lagrangian subspaces that
are transversal to a given one A € L(n). Clearly AN C L(n) is an open subset and

L= |J a™ (1)

AeL(n)
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It is then sufficient to find some coordinates on these open subsets. Let us fix a La-
grangian complement IT of A (which always exists but is not unique). Every n-
dimensional subspace A C R?" which is transversal to A is the graph of a linear
map from IT to A. Choosing a Darboux basison ¥ = A @ IT adapted to the splitting,
this linear map is represented in coordinates by a symmetric matrix S such that:

ANA=0& A ={(x,5x), x eIl ~R"}.

Hence the open set A™ of all Lagrangian subspaces that are transversal to A is
parametrized by the set of symmetric matrices, that gives coordinates on A™. This
also proves that the dimension of L (n) isn(n 4 1)/2. Notice finally that, being L (n)
a closed set in a compact manifold, it is itself compact.

Fix now an element A € L(n). The tangent space T L(n) to the Lagrangian
Grassmannian at the point A can be canonically identified with set of quadratic forms
on the space A itself:

TaL(n) >~ Q(A).

Indeed consider a smooth curve A(¢) in L(n) such that A(0) = A and denote by
A € TjL(n) its tangent vector. For any point x € A and any smooth extension
x(t) € A(t) we define the quadratic form:

A:x>o(x, %), %=x(0).

An easy computation shows that this map is indeed well defined; moreover writing
A(t) = {(x, S(t)x), x € R"} then the quadratic form A associated to the tangent
vector of A(7) at zero is represented by the matrix S (0), i.e. A(x) = x7 S(0)x.

We stress that this representation using symmetric matrices works only for coor-
dinates induced by a Darboux basis associated with a Lagrangian splitting R?" =
IT® A,i.e. ITand A are both Lagrangian.

Example 1 (The Lagrangian Grassmannians L(1) and L(2)). Since every line in
R2 is Lagrangian (the restriction of a skew-symmetric form to a one-dimensional
subspace must be zero), then L(1) ~ RP!.

The case n = 2 is more interesting. Each 2-plane W in R* defines a unique (up
to a multiple) degenerate 2-form w in A2R*, by W = ker w. Thus there is a map:

p:G2,4) — P(A2R*) ~ RP>.

This map is called the Pliicker embedding; its image is a projective quadric of sig-
nature (3, 3). The restriction of p to L(2) is

p(LQ2)) ={[w]| kerw #0 and w Ao =0},

which is the intersection of the image of p with an hyperplane in RP> (i.e. the zero
locus of the restriction of the above projective quadric to such hyperplane). In par-
ticular L(2) is diffeomorphic to a smooth quadric of signature (2, 3) in RP*.
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2.2 Topology of Lagrangian Grassmannians

It is possible to realize the Lagrangian Grassmannian as a homogeneous space,
through an action of the unitary group U(n). In fact we have a homomorphism of
groups ¢ : GL(n,C) — GL(2n, R) defined by:

. A B
¢.A~|—1B|—>(_BA),

and the image of the unitary group is contained in the symplectic one. In particular
for every Lagrangian subspace A C R?” and every M in U(n) the vector space
¢ (M)A is still Lagrangian. This defines the action of U(n) on L(n); the stabilizer
of a point is readily verified to be the group O(n) and we get:

L(n) ~ U(n)/O0(n).

The cohomology of L(n) can be studied applying standard techniques to the fibra-
tion U(n) — L(n) and working with Z, coefficients (unless differently stated, we
always make this assumption) we get a ring isomorphism H*(L(n)) ~ H*(S! x
---x 8™); we refer the reader to [13] for more details.

For our purposes we need an explict description of the fundamental group of L(n)
and this can be obtained as follows. We first consider the map det®> : U(n) — S
defined by M > det?>(M). Multiplication by a matrix of O(n) does not change the
value of the square of the determinant, thus we get a surjective map det® : L(n) —
S1. This map also is a fibration, its fibers are contractible (in fact they are diffeo-
morphic to SU(n)/SO(n)) and it realizes an isomorphism of fundamental groups:

w1 (L(n)) ~ Z.

2.3 The universal Maslov cycle

Since the fundamental group of L(n) is Z, then the 1-form d@/2 on S! (the class of
this form generates the first cohomology group with integer coefficients) pulls-back
via det? to a 1-form on L (n) whose cohomology class u generates H'(L(n), Z):

w= [ ! (det®)* d@] e H'(L(n),7Z).
21

Such a class is usually referred to as the universal Maslov class (see [9, 11]). Once
we fix a Lagrangian space A € L(n) it is possible to define a cooriented algebraic
cycle in L(n) which is Poincaré dual to u; such cycle is called the train of A and is
defined as follows:

Sa={AeLm|ANA#0=Ln\AM

Here the subscript denotes the dependence on A and when no confusion arises we
will omit it: a different choice of A produces an homologous train (in fact just differ-
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ing by a symplectic transformation). We discuss the geometry of X in greater detail
in the next section; what we need for now is that ¥ is an algebraic hypersurface
whose singularities have codimension three and is cooriented. The fact that ¥ is an
algebraic set makes it a cycle, the fact that it is an hypersurface whose singularities
have codimension three allows to define intersection number with it and the fact that
is cooriented makes this intersection number an integer. Here coorientation means
that X is two-sided in L(n), i. e. there is a canonical orientation of its normal bundle
along its smooth points. Using the above diffeomorphism L(n) >~ U(n)/O(n) itis
easy to choose a positive normal at a smooth point A € X: we represent A as [M] for
a unitary matrix M and we take the velocity vector at zero of the curve ¢ > [e!' M].

Example 2 (The trainin L(2)). We have seen that L(2) is diffeomorphic to a quadric
of signature (2, 3) in RP?; thus it is double covered by S x S? (i. . the set of points
in S* C R satisfying the equation x§ + x7 = x3 + x5 + x7).

We fix now a plane A and study the geometry of the train Xa. We let IT be a
Lagrangian complement to A and using symmetric matrices charts on ™" we have:

Ta NI ~ (S det(S) = 0.

The set of symmetric matrices with determinant zero is a quadratic cone in R with
a singular point at the origin; to get XA we have to add its limit points in L(2) and
this results into an identification of the two boundaries components of such a cone.
What we get is a Klein bottle with one cycle collapsed to a point. More generally
one can show that H*(L(n)) = H*(S! x--- x §").

The main idea of this paper is to study generic maps f : X — L(n), for X a smooth
manifold, and the geometry of the preimage under f of the cycle X (together with its
coorientation). Such a preimage f~!(X) is what we call the induced Maslov cycle.
Sometimes in the sequel the map f will be defined only locally but it will still pro-
duce a Maslov type cycle on X. Our goal is to describe a kind of duality that allows
to get geometric information on the map f by replacing its study with the one of the
geometry of f~1(X). We discuss these ideas in greater detail in the next section.

Example 3 (Generic loops). Consider a smooth map:
y:S'— L)

transversal to the smooth points of 2. Such a property is generic and we might ask
for the meaning of the number of points in y ~!(X). Since the intersection number
with 3 computes the integer [y] € 1(L(n)), in a very rough way we can write:

Iyl < by~ (D)), 2)

where the r.h.s. denotes the sum of the Betti numbers, which in this case coincides
with the number of connected components (i.e. number of points). This inequality
is simply what we obtain by forgetting the coorientation in the sum defining the in-
tersection number. The comparison through the inequality between what appears on
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the Lh.s. and what on the r.h.s. is the first mirror of the mentioned duality between
the geometric properties of y and the topological ones of y~1(X).

Remark 1 (Schubert varieties). It is indeed possible to give L(n) a cellular struc-
ture using Schubert varieties in a fashion similar to the ordinary Grassmannian: the
cells are in one to one correspondence with symmetric Young diagrams (we refer
the reader to [15] for more details). Given one of such diagram the corresponding
Schubert cell is the one obtained by considering a flag that is isotropic with respect
to the symplectic form. More precisely let {0} C V; C Va--- C Vs, = R?" be
a complete flag such that o(V}, V2,—;) = 0 forevery j = 1,...,n (this means
the flag is isotropic; in particular V;, is Lagrangian). If now we let a be the parti-
tiona : n > a; > ay > -+ > ap > 0, then the corresponding Schubert variety
is:
Yo={A e Ln)| dm(A N Vyyig,)>i for i=1,...,n}

The codimension of Y, is (|a| 4+ [(a))/2, where [(a) is the number of boxes on the
main diagonal of the associated Young diagram (such a diagram has a; boxes in its
i-th row). Since this diagram must be symmetric along its diagonal we see that there
are only 2" possible good partitions. Geometrically this shows that the combina-
torics of the cell structure of the Grassmannian G (1, 2n) descends (by intersection)
to the one of L(n). Moreover, since the incidence maps have even degree, cellular
homology with Z, coefficients gives again the above formula for H* (L(n)).

Notice in particular that ¥ is a Schubert variety: letting the n-th element of the
isotropic flag to be A itself, then:

.....

Example 4 (Schubert varieties of L(2)). We consider again the case of L(2) and fix
an isotropic flag {0} C V; C A C V3 C R*. The cell structure is given by the
four following possible partitions (0, 0), (1, 0), (2, 1), (2, 2). Let us see how the cor-
responding Schubert varieties look like. To this end let us write R?* = A @ II,
where IT is a Lagrangian complement to A. In this way every A in 0" is of the
form A = {(x,Sx)|S = ST}.

We immediately get Y(g,0) = L(n); moreover XA = Yy ). The Schubert variety
Y(2,2) equals A itself (in the symmetric matrices coordinates it is the zero matrix).
Finally we have Y31y = {A|A D Vi, A C V3}. The intersection of this vari-
ety with nh equals all the symmetric matrices S whose kernel contains V; C A:
such matrices are all multiple one of the other and they form a line, thus Y, 1) ~
RP.
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3 Linear systems of quadrics

3.1 Local geometry and induced Maslov cylces

In this section we study in more detail the local geometry of the Lagrangian Grass-
mannian. If no data are specified, being a differentiable manifold, each one of its
points looks exactly like the others. Once we fix one of them, say A, the situation
drastically enriches: we have seen, for example, that we can choose a cycle X A rep-
resenting the generator of the first cohomology group.

The following proposition gives a more precise structure of the local geometry
we obtain on L(n) after we have fixed one of its points A.

Proposition 2. Let A in L(n) be fixed. Every A € L(n) has a neighborood U such
thatif AN A ~ R there is a smooth algebraic submersion:

¢:U —>W,

where W is an open set of the space of quadratic forms on R¥: moreover the fol-
lowing properties are satisfied:

() (da@)A = Alana;
(ii) dim(ker ¢ (I1)) = k — dim(A N IT) for every I in U;
(i) for every T1 in W the fiber ¢~ (I1) is contractible.

Let A’ be a Lagrangian complement to A transversal to A. Then, giving coordinates
to the open set {I1 € L(n)|II h A’} using symmetric matrices, this proposition is
just a reformulation of Lemma 2 from [1].

The fact that ¢ is a submersion allows to reduce the study of properties of L (n)
to smaller Grassmannians, via the Implicit Function Theorem. For the first property,
recall that we have a natural identification of the vector space Ty L(n) with the space
of quadratic forms on A; each one of these quadratic forms can be restricted to the
subspace A N A and this restriction operation is what d s ¢ does. The second prop-
erty says that ¢ transforms the combinatorics of intersections with A with the one
of the kernels of the corresponding quadratic forms.

Thus locally ¥ A looks like the space of degenerate quadratic forms and it is inter-
esting to see how all these local charts are glued together. Let us consider A in X
and some TT; Lagrangian complement to A such that IT; h A. Given a symplectyc
transformation ¥ : R?" — R2”" preserving A, the matrix T representing it in the
coordinates given by the Lagrangian splitting A & I1; has the form:

-1 T
T = (Ao ZAT ) with B = BT.

If A is represented by the symmetric matrix S, the change of coordinates ¥ changes
its representative to (A7 SA)(I + BAT SA)~! (indeed this formula works for every
A transversal to IT).
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Remark 2 (Local topology of the train). The local topology of XA can be described
using Proposition 2. Let Ba be a small ball centered at A € X with boundary
0B . Then the intersection Bp N X A is contractible: it is a cone over the inter-
section dBx N X a; moreover dBA N XA is Spanier-Whitehead dual to a union of
ordinary Grassmannians' and:

k
H*(@BANZa) ~ @ He(G(j. k). k =dim(A N A) 3)
j=0

Theorem 3 from [16] gives the statement for A = A and the general result follows by
applying Proposition 2. This means that if we picka A € XA withdim(ANA) =k,
then a sufficiently small neighborhood of A in ¥ A is homeomorphic to a cone with
vertex A and base a space whose cohomology is given by (3), i.e. this base space

has 2% “holes”:
k k k

J=0 J=0

For every r > 1 we can define the sets:
20 ={AeLm|dmANA)>r} and Z, = O\S{HY.

Using this notation, Proposition 2 implies that XA is stratified by Ur Z, and the
codimension of Z, in L(n) is (rgl) (the reader is referred to [12] for properties of
such stratifications).

Remark 3 (Cooorientation revised). Let A be a smooth point of ¥ and y
(—e,€) — L(n) be a curve transversal to all strata of XA and with y(0) = A (the
transversality condition ensures that y meets only XA \Z(Az), i.e. the set of smooth
points of X). Since Tp L(n) >~ Q(A), the velocity y(0) can be interpreted (by re-
striction) as a quadratic form on A N A. Proposition 2 together with the transversality
condition ensures that this restriction is nonzero. We say that the curve y is positively
oriented at zero if y(0)|ana > 0. Since this definition is intrinsic, it gives a coori-
entation on X and it is not difficult to show that it coincides with the one described
before.

Definition 1 (Induced Maslov cycle). Let X be a smooth manifold and f : X —
L(n) be amap transversal to all strataof ¥ = X . The cooriented preimage f~!(Z)
will be called the Maslov cycle induced by f.

A genericmap f : X — L(n) isindeed transversal to all strataof ¥ and £~ (Z)
is itself stratified?(its strata being the preimage of the strata of X); the transversal-
ity condition ensures that the the normal bundle of the smooth points of f~1(X)
(which is the pull-back of the normal bundle of ¥) has a nonvanishing section, i.e.
the induced Maslov cycle also has a coorientation.

! This simply means that its complement on the sphere is homotopy equivalentto a union of Grass-
mannians; in particular these spaces have the same cohomology, see [14].

2 In fact these stratifications are also “good” in the sense of Whitney and Nash, see [12].
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3.2 Linear systems of quadrics

We turn now to the above mentioned duality between the geometry of a map f :
X — L(n) transversal to all strata of XA and the cooriented cycle induced by f.
We consider a specific example, namely the case of a map from the sphere, whose
image is contained in one coordinate chart.

More precisely let A @ IT ~ R?" be a Lagrangian splittingand W ~ R* be a linear
subspace of ot~ O(A) (the space of quadratic forms on A):

W = span{qi,...,qr} with q1,...,qx € Q(A) =~ Q(n)

(here Q(n) denotes the space of quadratic forms in n variables).
Notice that the above isomorphism is defined once a scalar product on A is given:
this allows to identify symmetric matrices with quadratic forms.
In this context W is called a linear system of real quadrics; the inclusion S¥~1 <
W defines a map:
J85 = 0m)

and for a generic choice of W such a map is transversal to all strata of ¥ = Y.
Notice that ¥ equals the discriminant of the set of quadratic forms in n variables and
Eq. (3) gives a descritpion of its cohomology.

To every linear space W as above we can associate an algebraic subset Xy, of the
real projective space RP"~! = PP(A) (usually referred to by algebraic geometers as
the base locus of W):

Xw = {[x] e RP"' [q1(x) = -+ = gie(x) = 0}.

The study of the topology of Xy was started by Agrachev in [1,5] and continued
by Agrachev and the second author in [6].

Remark 4 (The spectral sequence approach). The main idea of Agrachev’s approach
is to study the Lebesgue sets of the positive inertia index function on W, i.e. the
number of positive eigenvalues i (¢) of a symmetric matrix representing ¢. More
specifically we can consider:

W/={qeWl|it@) =}, j=1

and Theorem A from [6] says that roughly we can take the homology of these sets
as the homology of Xy :

n
@ H*(W,W7) “approximates” H*(Xw).
j=1

The cohomology classes from H* (W, W) are just the canditates for the homology
of Xw. The requirements they have to fulfill in order to represent effective classes
in H*(Xw) are algebro-topological conditions. The way to make these statements
precise is to use the language of spectral sequences (the above conditions on the
canditates translate into them being in the kernels of the differentials of the spectral
sequence). The reader is referred to [6] for a detailed treatment.
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Going back to the map f : ¥ — Q(n) defined by W, for simplicity of notation we
set:
(r) _ gk-1 (
2y =8zt

Thus to all these data there correspond two objects: Xy € RP"~! and Z%l,) c Sk1,
The induced Maslov cycle is X : notice that the cohomology class it represents in
H'(Sk=1) is clearly zero, though its geometry has a nontrivial meaning. In fact we
can relate the sum of the Betti numbers of Xy to the ones of Xy and its singular
points:

1
b(Xw) <n+ ) Zb(Zg,)) for a generic W. 4)

r>1

This formula is one of the expressions of the above mentioned duality: the Lh.s. is
the homological complexity of the intersection of k quadrics in RP"™!, the r.h.s. is
the complexity of the Maslov cycle induced on the span of these quadrics. The reader
should compare (4) with (2): in both cases the complexity of the induced Maslov cy-
cle gives arestriction (in the form of an upper bound) on some geometrical invariants
associated to f.

Example 5 (The intersection of three quadrics). Let us consider the intersection X
of three quadrics in RP"~!. Such intersection arises by considering a three dimen-
sional space W = span{Q1, Q», O3} in a coordinate chart nh ~ O(A). Hence the
Q; are symmetric matrices and X is given by the equations ¢; = ¢ = g3 = 0 on
P(A); notice that the definition of each ¢; depends on the choice of a scalar product
on A but two different choices give the same X up to a projective equivalence. The
induced Maslov cycle is the curve Sy on S? given by the equation:

det(x1 Q1 + X202 + x303) =0, (x1,x2,x3) € S* C W.

This is a degree n curve on S? and for a generic choice of W it is smooth: in fact
Sw = S2 N X4 and since the codimension of Sing(X ) is three, by slightly per-
turbing W this singular locus can be avoided on the sphere.
The curve Zy has at most O(n?) components and the manifold X at most O(n?)
“holes” (the sum of its Betti numbers is less than n? 4+ O(n)) ; in this case Eq. (4)
tells that:

|b(X) = bo(2)| = O(n),

i.e. if we replace the homology of X with the one of the associated Maslov cycle the
error of such replacement has order O(n). The coorientation of the induced Maslov
cycle in this case assigns a number £1 to each oval of the curve Xy : this number is
obtained by looking at the change of the number of positive eigenvalues when cross-
ing the oval. The knowledge of the coorientation on each oval allows to compute the
error term in (4); the reader is referred to [1,6, 16].
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4 Geometry of Gauss maps

4.1 Lagrange submanifolds of R*"

Consider a Lagrangian submanifold M of the symplectic space T*R” ~ R2". The
Gauss map of M is:
v: M — L(n)

and associates to each point x € M the tangent space T, M (which is by definition
a Lagrangian subspace of R?").

We consider the Lagrangian splitting R?” = IT @ A and we are interested in the
description of the induced Maslov cycle v™!(Z ) on M. To this end we consider
the projection on the first factor 7 : R?* — II and its restriction to M:

Ty M — TI.

The critical points of 77 |5 are those points x in M such that the tangent space T M
does not intersect A transversally; in other words:

Crit(z|p) = v (Za). )

Thus the induced Maslov cycle in this case coincides with the set of critical points
of a map from M to R”: this critical set represents the Poincaré dual of w,(TM),
the first Stiefel-Whitney class of TM (see Remark 5 below). In fact v pulls-back the
tautological bundle 7(n) of L(n) to the tangent bundle of M and, by functoriality
of characteristic classes, it also pulls-back the first Stiefel-Whitney class of t(n) to
w1(TM). Notice that wq(t(n)) equals the modulo two reduction of the universal
Maslov class u defined above.

Remark 5 (Characteristic classes revised). Consider an n-dimensional manifold M
and a smooth function f : M — R"k+1 For a generic f we can relate the k-th
Stiefel-Whitney class of M to the critical points of f by:

wg (T M) = Poincaré dual of Crit( f). (6)

For k = n the generic f is a Morse functionand w,(TM) € H* (M) ~ Z, isthe
Euler characteristic of M modulo two, thus the previous equations reads y(M) =
Card(Crit(f)) mod 2.

In the case k = 1 we can apply (6) to:

f=nlmy: M—>R",

and Eq. (5) implies that the Maslov cycle induced by v represents the Poincaré dual
of wi(TM).

We know from Remark 1 that the cohomology of L(n) is generated by the
Poincaré duals of its Schubert varieties. Each of these varieties is labelled using
symmetric Young diagrams and their intersections are computed using Schubert cal-
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culus. The variety corresponding to the diagram having only one box is ¥ 0,....0):
this is the train of A (the middle space in the isotropic flag) and it represents the
Poincaré dual of u = w;(tr(n)) (again reduction modulo two is considered).

4.2 Lagrangian maps

Generalizing the construction of the previous section, we consider a Lagrangian sub-
manifold M of the symplectic manifold 7*N (with the standard symplectic struc-
ture); we denote by 7 : T*N — N the bundle projection. In this case we do not
have a global Gauss map, but in analogy with (5) we can still define the induced
Maslov cycle as:

Yy = Crit(|p).

The case of a submanifold M of T* N projectingto N isitself a special case of a La-
grangian map; this is defined as follows. First we say that a fibration : E — N is
Lagrangian if E is a symplectic manifold and each fiber is Lagrangian. A Lagrangian
map is thus a smooth map f : M — N between manifolds of the same dimension
obtained by composition of a Lagrangian inclusioni : M — E followed by 7 :

M-S EZ N
We refer the reader to [10] for more details and examples.

Example 6 (Normal Gauss maps of hypersurfaces). Consider a smooth oriented hy-
persurface M in R"!; the normal Gauss map of M is the map:

f:M — 8", x> oriented normal of M at x.

This map is Lagrangian; in fact we can set £ = T*S" ~ TS" with projection
w . E — S" and define the Lagrangian inclusioni : M — FE as x — (f(x),
projr, arX). The image in §” of the induced Maslov cycle under f is called the
focal surface of M.

Thus a Lagrangian map f : M — N is a special case of map between two
manifolds of the same dimension; the set of its critical values is called a caustic.
Proposition 2 allows to give a local description of the set of critical points of a La-
grangian map.

Proposition 3. The set of critical points of a Lagrangian map is a cooriented hyper-
surface, smooth outside a set of codimension three.
5 Lagrange multipliers

Let U be an open set in a Hilbert space (or a finite dimensional manifold) and let
M be a smooth n-dimensional manifold. Assume we have a pair of smooth maps
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F:U — M,and J : U — R. We want to characterize critical points of the
functional J when restricted to level sets of F':

min J, x e M. (7
F=1(x)

Recall that for a smooth function f : M — R and a smooth submanifold N C M
apoint x € N is said a critical point of f|N if de|TxN = 0. We state the geomet-
ric version of the Lagrange multipliers rule, which characterizes regular constrained
critical points.

Proposition 4 (Lagrange multipliers rule). Assume u € U is a regular point of
F : U — M such that F(u) = x. Then u is a critical point 0fJ|F_1 @) if and only

if:
INeT;M st dyJ =ADyF. ®)

The above discussion suggests to consider pairs (1, A) such that the identity d,,J =
A Dy, F holds true. More precisely we should consider the pair (1, A) as an element
of the pullback bundle F*(T* M), and set

Cr.y = {(u.A) € F*(T*M)|dyJ = A D,F).

Notice that by definition of pullback bundle, if (u, 1) € F*(T*M), then F(u) =
w(A) (r : T*M — M is the bundle projection). The study of the geometry of the
set Cr,y leads us to investigate the constrained critical points for the whole family
of problems (7), as x varies on M. The following regularity condition ensures that
Cr, has nice properties: the pair (F, J) is said to be a Morse problem if the function

6:F*(T*M)— T*U,  (u.A) > dyJ — A D,F. 9)

is transversal to the zero section in 7*U. Notice that, if M = {0}, then F is the
trivial map and with this definition we have that (F, J) is a Morse problem if and
only if J is a Morse function.

If (F, J) defines a Morse problem, then Cf s is a smooth n-dimensional mani-
foldin F*(T*M). Inthe case U is a finite dimensional manifold this is easy to show
it, since by a standard transversality argument:

dim Cpy = dim F*(T*M) — dim U
= (dim U + rank T*M) — dim U
=rank T*M = n.

The above argument is no more valid in the infinite dimensional case but one can
show that the same result holds (under some additional technical assumptions, see

[4D.



Geometry of Maslov cycles 29

Let us now consider the map F : F*(T*M) — T*M given by (u, ) — A. We
can consider theset Cr,y = F(Cp,y)inT*M :

Cry "=T*Mm (10)
)
U r > M

It turns out that F' is an exact Lagrangian immersion, i. e. it pulls-back the Liou-
ville form p dg to an exact form.
We assume now that C r_; is an embedded submanifold (and not only immersed).

Theorem 1. Let (F, J) be a Morse problem and assume (u, A) is a Lagrange multi-
plier such that u is a regular point for F, where F(u) = x. The following properties
are equivalent:

(i) Hessy J|F_1(x) is degenerate;

(i1) (u, A) is a critical point for themap w o F : Cp j — M.

Moreover w o F : Cp,j — M is a Lagrangian map; the induced Maslov cycle
Y F,J, i. e. the set of critical points of this map, coincides with the set of those (u, A)
such that the Hessian of J | p—1(py) is degenerate at u.

We discuss the proof in the special case of Morse functions in the next section; the
general proof follows the same line.

5.1 Morse functions

Let us consider two Morse functions fy, f1 : M — R and an homotopy of maps
ft : M — R. Then we define U = [0, 1] x M and:

F:[0,1]xM —- R, F(,x)=t
J:[0,1]xM — R, J(t,x)= fi(x).

We have that J | Fe = f; and we can study the critical points of the family of

L)

maps { f;}se,1] With the Lagrange multipliers technique. If u = (¢, x), writing
dyJ = (0:J,0xJ) and D, F = (1, 0) the Lagrange multipliers rule reads
A=0,J(,x
tJ(t,x) (an
dxJ(t,x) = 0.

Namely Cr,s is the set of (4, ¢, x) such that (11) holds true (the second identity is
equivalent to the fact that x is a critical point of f;). This is a system of n + 1 equa-
tions in a n 4 2-dimensional space and Cr ; defines a 1-dimensional manifold if the
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problem is Morse, i. e. the linearized system in the variables (1’, 7, x)

{/’V =32, J(t,x)t' + 9%, J(t, x)x' 1

2. J(t, x)" + 32, J(t,x)x' =0

is regular, that means rank{d?, f, 92, '} = n. In particular this condition is satisfied
if the function f; is Morse for every 7 € [0, 1], i.e. 2 f; is non degenerate. The
tangent space to Cr, at the point (A, 7, x) is the set of (A, ¢/, x”) such that (12) are
satisfied.

F

(A, t,x) > (A, 1) (13)
(t,x) P

Hence the point (A, ¢, x) € Cr,y is critical for the map if and only if there exists a
nonzero element (A', ¢/, x") such that 7, o F.(A,¢',x’) = ¢/ = 0. From (12) it is
easy to see that this is equivalent to x” # 0 and 92, J (7, x)x’ = 0.

Let now f; be a generic homotopy between two Morse functions fo and f7.
Then the corresponding pair (F, J) defines a Morse problem and the above discus-
sion holds. Moreover the genericity assumption on the homotopy ensures that if f,
has a critical point at xo, the Hessian of f, at xo has a one-dimensional kernel. It is
indeed possible to show that near the point (g, xo) the family f; can be written in
coordinates as:

i) =co+xPttx; £ x2 4+ Ex2, teftg—e. to+ €l
1 2 n

As t passes from ty — € to tp + € two critical points merge or vanish, according to
the sign of +7x (see [18]).

The induced Maslov cycle X ; in this case consists of those points (4,1, x)
on Cr,y such that f; is not a Morse function. If (A, ¢, x) isin Cr, s\ XF, s, then in
a neighborood [a, b] of ¢ the function # is a coordinate for Cr,y and we can “fol-
low” the critical point x (). Property 1 of Proposition 1 implies that as long as ¢
varies on [a, b], the index of such critical point never changes. The genericity as-
sumption on the homotopy implies that if two critical points merge, their indices
must differ by one. If (A(s), 7(s), x(s)) is a parametrization of Cr ; near a point
(A(0),1(0), x(0)) € X F,s, the change in the sign of the determinant of the Hessian
of fi(s) at x(s) when passing through s = 0 is determined by the coorientation of
XF,g at (A(0),2(0), x(0)).

In this case the number of points of X ¢ ; tells how many functions in our fam-
ily are not Morse; the coorientation tells how the Morse index changes when two
critical points merge or vanish.

Example 7 (Depth of Morse functions). Assume M is a smooth hypersurface in R”
defined by a polynomial of degree d and py, p; are two Morse functions obtained
by restricting to M two polynomials of degree k > d. Using the above technique it
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is possible to prove that pg and p; can be joined by a homotopy p; : M — R such
that:
Card{z € [0, 1]| p; is not Morse} < dk"(d + nk).

In the case k < d the bound is "2 (n + 1).

5.2 Riemannian and sub-Riemannian geometry

In this section we discuss how the problem of finding geodesics in Riemannian or
sub-Riemannian geometry fits in the above setting. For a comprehensive presenta-
tion of Riemannian and sub-Riemannian geometry see for instance [4, 17].

A sub-Riemannian manifold is a triple (M, O, g) where M is a smooth manifold
and D is a constant rank k < n distribution endowed with a scalar product g on it.
The case k = n,i.e. when D = T M, corresponds to Riemannian geometry.

A curve on M defined on the interval [0, 1] is said horizontal if it is almost ev-
erywhere tangent to the distribution. Once fixed a local orthonormal basis of vector
fields f1, ..., fx on D, every horizontal curve is described by the dynamical system:

k
X(0) =) ui(0) fi(x (1),  x(0) = xo, (14)

i=1

for some choice of the control u; the length of such horizontal curve is defined by:

1 1 k
L) =[0 V(). x(1)) dt =[0 > u2(r)dt.
i=1

It is well known that the problem of minimizing the length with fixed final time is
equivalent, by Cauchy-Schwartz inequality, to the minimization of the energy

k
J() = ;[01 > u@)d.
i=1

For this reason it is convenient to parametrize horizontal curves by admissible con-
trols u € L2([0, 1], R¥). By the classical theory of ODE, for every such control u
and every initial condition xo € M, there exists a unique solution x,, to the Cauchy
problem (14), defined for small time (see for instance [2] for a proof).

The resulting non autonomous local flow defined on M by the ODE associated
with u, i. e. the family of diffeomorphisms Py : M — M, defined by Py ;(x) :=
Xy (t) is smooth in the space variable and Lipschitz in the time variable. Analogously
one can define the flow Py; : M — M fixing the initial condition at time s, i.e.
x(s) = xo (Ps, is defined for s, ¢ close enough).

Fix a point xo € M. The end-point map of the system (14) is the map

F:U—->M uw x,01),
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where U C L2(]0, 1], ]Rk) is the open subset of controls u such that the solution
t — Xxy,(t) to the Cauchy problem (14) exists and is defined on the whole inter-
val [0, 1]. The end-point map is a smooth map. Moreover its differential D, F :
L2([0,1],R¥) — T M at a pointu € U is computed by the following well-known
formula (see [2])

k
DyF(v) = Z[l i () (Ps,1)x fi (xu(s))ds, v e L2([0,1],RF).  (15)
i=1"0

where x,,(¢) is the trajectory associated with u and x = x,,(1).
Notice that when u = 0 we have rank Do F = rank D = k. Indeed x,(f) = x¢
and the above formula reduces to:

k 1
DoF(v) = Zaifi(xo), Q; =[ v; (s) ds.
i=1 0

In this framework, the problem of finding constrained critical points of the func-
tional J : U — R on the level set F~!(x) is equivalent to find critical points of the
energy among those curves that join x¢ to x in fixed final time equal to 1.

Hence the solutions of the problem (7) represent exactly sub-Riemannian
geodesics starting at xo and ending at x.

Notice that in the Riemannian case the map F is always a submersion, while in
the sub-Riemannian case it can happen that rank(D, F) < n for some u (this is
the case for the control ¥ = 0 as we explained above). In this case u is said ab-
normal and x,, is an abnormal geodesic. If u satisfies the Lagrange multipliers rule
ADyF = D, J for some A, then u is said normal and x,, is a normal geodesic (this
happens in particular at regular point of F'). A control u can be at the same time
normal and abnormal.

In what follows we focus our attention to strongly normal controls, i. e. those con-
trols such that all the family u(¢) := su(st) is not abnormal for all s €]0, 1]. Notice
that, by the linearity of (14) with respect to u, we have x,,, (f) = x,(st). Notice also
that in Riemannian geometry all geodesics are strongly normal.

Given a sub-Riemannian structure on a manifold M it is natural to build the sub-
Riemannian Hamiltonian H : T*M — R defined by

1
H(}) = 2||/\||2, [All=""sup  [(A,v}].
vEDy,|v|<1
This is a smooth function on 7* M which is quadratic on fibers. The canonical sym-
plectic structure allows to define a vector field H by the identity o (-, ?I)) = dH.

The flow of ﬁ defines the normal geodesic flow and characterizes the manifold of
Lagrange multipliers as follows (see [3,4]).
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Proposition 5. The sub-Riemannian pair (F, J) defines a Morse problem. More-
—

over the manifold of Lagrange multipliers satisfies C g j = et (Tx*o M).

We discuss some related ideas, giving an outline of the proof. Let x € M and
(u,A) € Cr,; associated with a critical point of J | F-1(x) Then for every v €
kerD, F :

Hessud 19 @) = 012 = (1 [[ 1Pu0e fuor (Prn)e fuold ).
0<t=<t<l1

(16)

Indeed one can compute that in coordinates Hess,, J | Flx) = d2J — AD2F and
that the second differential of the end-point map is expressed as the commutator

D2F(v.v) = [/ [(Po)n focor. (Pra)s fowld e,

0<t<t<l1

where Ps; is the flow associated with u and f, = Zle v; fi.Let (u,A) € CF,j.
The relation d,,J = AD, F can be rewritten as follows, using the fact that J(u) =
> lull7
2 1%l 2

ui(t) = (A0), fi(x(@®)).  A@) := (Pr1)*A € Tz M. A7)

Moreover the curve A(t) € T;(t)M is a solution of the Hamiltonian system i(t) =

FI)(/\ (t)) and A(1) = A. This allows to parametrize geodesics via their initial covec-
tor rather than the final one. We define the exponential map starting from x¢ as:

E:TEM — M, &) =moe(ho)

—
Since e (Tx*o (M)) = CF,, then this map is Lagrangian. Moreover, by homogene-

N
ity of the Hamiltonian, for all t > 0 we have &(tAg) = moe! ™ (1g) = x,(¢), which
permits to recover the whole normal geodesic associated with A (here u is the con-
trol defined by (17) and A(¢) = (Pr,0)*Ao). Thus the exponential map parametrizes
normal geodesics starting from a fixed point with covectors attached to the fiber
T M. If Ag is a critical point of & then the point x = x, (1) = &(A¢) is said to be
conjugate to xq along the geodesic x,,(?).

Theorem 2. Let x,,(t) be a strongly normal geodesic joining xg to x. The following
are equivalent:

(i) Hessy J|F_1(x) is degenerate;

(ii) x is conjugate to xo along x,/(t).

Moreover the geodesic x,(t) loses its local optimality at its first conjugate point.
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The induced Maslov cycle X, i. e. the set of critical points of €, coincides with
the set of those A € T;O M such that the Hessian of J | p—1 (g ) at the corresponding
geodesic is degenerate.

By the homogeneity of the Hamiltonian, to study the local optimality of a piece
Xul[0,s] of the fixed trajectory x,, it is enough to apply the functional J to the control
us(t) = su(st), whose final point is x,, (1) = x,(s).

Thus we have the following picture: the map & : Ty M — M is a Lagrangian
map with the property that & (1) is the final point of a geodesic x starting at x¢; this
geodesic is the one associated to the control u defined by Eq. (17).

We can indeed consider the all ray {sA}s~¢: the image of such ray is the geodesic
associated with A. For small s > 0 the Hessian Hess,,, J | F1(xu(s)) is positive def-
inite (as a consequence of formula (16)), and it becomes degenerate exactly when
sA belongs to the induced Maslov cycle Xy, (in particular the first degeneracy point
coincide with the first conjugate point).

With a normal geodesic x (¢) (with lift A(7)) one can associate also the so-called
Jacobi curve:

R
A@) = e Tyoy (T M).

which is a curve of Lagrangian subspaces in the symplectic space T}, (Tx*o M). Us-
ing this curve we can compute the index of the Hessian: in fact if ¢ is a cocycle
representing the Maslov class |1, we have:

c¢(A(s)) = —Ind Hess,, J F1(ru(s))"
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How to Run a Centipede: a Topological
Perspective

Yuliy Baryshnikov and Boris Shapiro

Abstract In this paper we study the topology of the configuration space of a de-
vice with d legs (“centipede”) under some constraints, such as the impossibility to
have more than k legs off the ground. We construct feedback controls stabilizing
the system on a periodic gait and defined on a ‘maximal’ subset of the configuration
space.

A centipede was happy quite!

Until a toad in fun

Said, “Pray, which leg moves after
which?”

This raised her doubts to such a pitch,
She fell exhausted in the ditch

Not knowing how to run.

Katherine Craster

1 Introduction

How the centipedes move? This question becomes nontrivial once one starts to think
about it, or when one is designing a multi-legged robotic device [2]. Indeed, the mo-
tivation for this work comes from a class of agile robotic devices, RHex [3]. Our take
on the centipede’s quandary is that it is caused by essentially fopological reasons,
preventing continuous feedback controls.
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Fig. 1 A specimen of the RHex family of legged robots, designed in University of Pennsylvania.
Reproduced with permission from [4]

In this note we consider a caricature of an automotive robot moving around us-
ing rotating “legs”, making the configuration space a torus T, i.e. a d-fold prod-
uct of the circle, T'!. The similarities with the wheeled vehicles end here: for ob-
vious reasons, there exist regions in the configuration space, a “forbidden” sub-
set, where the system should avoid at any cost. The picture below, taken from
http://kodlab.seas.upenn.edu/RHex/Home illustrate the kind of sys-
tems we are dealing here.

As an example, the configuration where all the legs point up should be forbid-
den. Of course the forbidden configurations are design specific: thus in RHex, the
forbidden configurations also include those with all legs up on one side of the robot,
or those with just two legs (out of six) pointing down.

Excluding the forbidden regions makes the topology of the configuration space
interesting, and the control problems (even in the fully actuated setting) nontrivial.
Typically, the control design problem aims at a closed-loop feedback control that
stabilizes the system on a (say, periodic) trajectory, a gait. As the homotopy type
of the configuration space differs from that of the limiting attractor, a continuous
feedback control is impossible, and a locus of discontinuity emerges. This locus of
discontinuity is not canonical, and depends on the realization of the feedback con-
trol, but its topology is, as it turns out, more or less fixed by the mismatch of the
homotopy types of the configuration space and the attractor.

This motivates our attention to the topology of the configuration space and con-
structions of the minimal, in a suitable sense, discontinuity loci.

In this paper our objective is to analyze from this viewpoint the topology of the
configuration spaces of RHex-like robots which we will be referring to as the cen-
tipedes. To do this we:

¢ describe the topology of the discontinuity loci;

e present an explicit construction of the discontinuity loci for a large class of robots
(and their corresponding forbidden regions), and

* find a feedback control for rotation of centipede’s legs stabilizing the system on
a prespecified (diagonal) gait.
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1.1 Setup

Let us fix the notation. We denote the total number of legs as d, which are fully
actuated and can (apriori) take all possible positions. The space of legs positions,
the d -dimensional torus T is coordinatized by the angles ¢;,i = 1,....d,¢; €
T! = [0,27]/(0 = 27). We will assume that ¢; = 0 corresponds to the position
of the i-th leg pointing vertically up.

To describe the class of forbidden configurations, we will need the notion of co-
ordinate toric arrangements. Let I be an ideal in the Boolean lattice B; of subsets
of {1,...,d} (i.e.if Ael,and B C Athen B € I).

The coordinate toric arrangement +j is the union of all coordinate tori 74, A € I:

A = UTA,

Ael

where T4 = {¢; = 0 fori & A} (the size of A is the dimension of T 4). We remark
that the tori T4 provide a natural stratification of the arrangement ;. The inclusion
I C I, implies A7, C Ap,.

One typical example is I = {4 : |A| > k}, the configurations with at least
k < d legs are pointing up. In this case, the corresponding toric arrangement is just
the k-skeleton of the torus.

A toric arrangement is good approximation for a forbidden region: the fact that
a whole coordinate torus is forbidden is equivalent to the natural assumption, that if
having some collection of legs up causes failure of the device when the rest of the
legs point down, then bringing these remaining legs into any configuration still will
result in a failure. Thus, for the original RHex, having three right legs up, and three
leftlegs down s a failure, and any other position of the left legs will still be a failure.

Of course, having the forbidden set a toric arrangement is merely a caricature of
the physical set of forbidden configurations: clearly, the stability of a robotic device
cannot fail exactly when some collection of legs is pointing upwards, and not in
nearby points. However, from the topological perspective, this assumption is rather
reasonable, if one adopts its softer version.

1.2 Conventions

We will be assuming (relying on the intuition outlined above, and developed in the
literature on RHex, see, e. g. [3,4]) that set of failure positions Fb;  T< is an open
domain containing #; with smooth boundary, such that A; C Fby is a deformation
retract. Its complement Fr; = T¢ \ Fby is the set of safe configurations.

Further, we assume that Fby is an open and Fry is a closed manifold with a smooth
boundary dFry.

We are interested in closed loop feedback stabilization, that is in vector fields v
defined at least in Fry (including its boundary dFr;) and such that the field v points
into Fry on dFr;. The vector field v should have as an attractor a periodic trajectory

(gait) y.
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If (as is typical) Fb; does not have the homotopy type of a circle, it is impos-
sible to have Fb; as the basin of attraction for y. Hence, we need to find a subset
Bs; C Fry which contains the attractor y, is as large as possible and is a basin of
attraction for y. (We are deliberately vague here about the meaning of the expression
“as large as possible” which will be clarified below.)

The complement to such a basin will be called a cut. The fact that a continuous
feedback stabilization is impossible if the topologies of the configuration space and
the attractor do not match has been noticed long ago (see, e. g. [6]). What we empha-
size here is the nontrivial topology of the cuts (implying that it has to be non-empty),
and some useful criteria for its minimality.

1.3 Outline

The general theory of the topologically forced cuts in the closed loop feedback sta-
bilization will be addressed elsewhere; this note serves as an extended example of
the stabilization in nontrivial configuration spaces, rich and relevant to applications
yet simple to be analyzed completely.

The structure of the paper is as follows. In Sect. 2 we describe some relevant topo-
logical preliminaries. In Sect. 3 we introduce a construction of a cut that is optimal
for all ideals 7. In Sect. 4 we describe a vector field stabilizing the system to a pe-
riodic trajectory on the optimal Bs;y . Finally, in Appendix we describe an intriguing
discrete dynamical system associated with our choice of the basin and cut.

2 Topology of A; and Fby

2.1 Topology of forbidden set

By assumption, the set Fb; of forbidden configurations is retractable to the toric
arrangement +; so that the embedding of its complement Fr; to 7% \ 4; is a ho-
motopy equivalence.

The space T¢ \ /A; is in its turn is retractable to a certain toric arrangement. We
refer for the detailed exposition to, e. g. [1], and present here just the result.

Anideal I (of the partition lattice) can be considered as a non-increasing Boolean
function f7: of the vector of 0, 1’s is the indicator function of A4, then f7(A) = 1 iff
A € I. The function

fro:(x1,...,xg) > 1— f1(l—x1,....1 —xq)

is also non-increasing and therefore defines a Boolean ideal 7°; we call it the dual
idealto I.
The toric arrangement corresponding to 1° on which T9 \ #; retracts can be

described as
A7 = T3
Bel®°
where Ty = {¢; = m for j & B}.
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In particular, if 7° contains all singletons (or, equivalently, if each leg can make
a full turn avoiding forbidden configurations, with the remaining legs in some fixed
positions), then the first homology of Fr; coincides with that of the torus. More gen-
erally, if 1° contains the all subsets of size k (or I does not contain subset of size
(d — k) or more), then the integer (co)homology groups of Fry coincide with these
of T up to the dimension d — k — 1 and the isomorphism of (co)homology groups
is induces by the inclusion Fr; C T¢.

Also the fundamental group 71 (Fr;) of Fr; is isomorphic to that of 7¢ and thus
coincides with Z< if I does not contain subsets of size (d — 2).

2.2 Feedback stabilization

2.2.1 Attractors

We are concerned primarily with the stabilization on a specific gait, a periodic trajec-
tory representing the diagonal homology class in H(T ¢, Z). (Note that in principle
other classes are possible, for example a multiple of the diagonal class, correspond-
ing to a periodic gait.)

Remark 1. Knotted attractors present a potential complicating twist. If the number
of legs is three, there are infinitely many nonequivalent (under an ambient isotopy)
trajectories representing the same (free) homotopy class in the space Fry. We will
be ignoring this problem — there are few plausible engineering designs with mere
three legs, and in d > 4 piece-wise smoothly embedded closed curves are isotopic
when they represent the same homotopy class.

However, it would be interesting to try to construct a knotted gait for three-legged
robots, and a feedback control stabilizing on such a gait.

We fix this closed simple oriented curve y in Fry, the attractor convergence
to which we are seeking, representing the diagonal homology class in Hy(T¢, Z)
(which means, in words, that over the trajectory, each leg makes exactly one turn
around).

If Foy is a sufficiently small neighborhood of #4; we can choose y among the
geodesics of the flat metrics on T, i.e. among ve = ¢ +1t(1,....,1)on T4 where
¢ € R and y is a sufficiently generic point in T<. (This does not reduce generality
as by assumption, one can always find a diffeomorphism — fixing #; — that would
shrink Fby to a small vicinity of #y.)

2.3 Vector fields and their basins

As we mentioned above, the closed loop feedback stabilization of Fr;y on y is im-
possible in nontrivial situations: there is no vector field v on Fry, pointing inward
Fry on the boundary, such that all solutions tend to the attractor y. This means one
need to reduce the domain where the vector field is defined.

Definition 1. We will be calling an open subset Bs C Fry an admissible basin, if
there exists a smooth vector field on Fr such that:
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* the gait y is an attractor of the positive time flow g/ defined by v;
* the negative trajectories g’ x,¢ < 0 starting outside y leave Bs in finite time (de-
pending on the starting point x & y).

The complement Ct; to the admissible basin Bs; will be called an admissible cut,
or simply a cut.

We will call an admissible basin Bsy set maximal in Fry if no proper superset of
Bsy in Fry has the same homotopy type as Bsj.

The set-maximality property of Bsy is rather basic and departs from the natural
geometric characteristics like volume of Ct or its dimension, Hausdorff measure and
suchlike. The reason is obvious: the definition is universal, and independent of any
extraneous data save the topological ones.

3 Universal cut

One of the main contributions of this paper is the construction of a universal cut, that
is one that serves all arrangements Ay .

3.1 Main construction

Represent T as the d -dimensional cube Ky = [—, r]¢ withts parallel sides iden-
tified in the standard way. We use the system of coordinates v, with v; = & — ¢;,
so that the origin O = (0, 0, ..., 0) corresponds now to the position ‘all legs down’.

The tori T4, A C {l1,...,d} introduced above define a stratification of T, Its
open strata are cells of different dimensions, again indexed by the subsets A. We
will be referring to these open cells as the cubes Cby. The union of the cells of the
stratification of dimensions < k - the k-skeleton - is denoted as Sky.

Consider the cone Cog in T? over the (d — 2)-skeleton Sky_, with the vertex at
O. This cone is a singular hypersurface in T¢ stratified by the cones over different
coordinate subtori contained in Sky_5. Notice that Coy —Sky_» contains 2% (i) strata
of codimension (k — 1) (the factor 2¥ comes from various ways to connect the torus
Ty, |A| = d —k with O), so that the total number of cones over (d —2)-dimensional
cubes in Coy, that is flats of codimension 1 is 2d(d — 1).

The complement T¢ \ Coy consists of d open polyhedra, each being the union
of two pyramids over the (d — 1)-dimensional open cube Cb_;, the open cell in
T_i ={¢i =0}

Let us denote these polytopes as Pyr;,i = 1, ..., d: here i is the coordinate miss-
ing in the (d — 1)-dimensional cube Cb_; which is coned. The gait y intercepts the
boundary of each Pyr; at two points belonging to some faces FciJr , Fc;” onits bound-
ary. Each such face is the interior of a cone (one of 4 possible), still with apex at O,
over some (d — 2)-dimensional cube Cb_;_;.

The face where the trajectory y enters (resp. leaves) Pyr; is called the i-th en-
trance face FciJr (resp. the i th exit face Fc;) and the corresponding points are called
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Fig. 2 Left: some of the strata of the cone Co3. Right: a pyramid

the entrance/exit points. Another important point within Pyr; besides the entrance
and exit points is the point where y intersects the base of Pyr;, i. e. the corresponding
(d — 1)-dimensional cube, see Fig. 2.

We remark that y defines a cyclic order on the set of all Pyr; according to the
order in which the trajectory hits them, see Fig.1. Note that the exit face for any pyra-
mid is at the same time the entrance face of the next one in this cyclic order. Without
loss of generality, we can assume that this cyclicorderis 1 <2 <3 < .. <d < 1.

In the configuration space, the exit face Fc;  of the pyramid Pyr; is identified
with the entrance face of Pyr; ;. We will be calling this face, which is, again, a
cone over Cb_;_(; 11), the i-th door.

Finally, we define

d d
Ctgy = Cog \ UFC?_ = Coqg \ U Fc;
i=1 j=1

to be the union of the cones (with the apex O) over all codimension 2 cubes in the
(d —2) skeleton of T4 with exception of the doors. Equivalently, it is the cone over
the full (d — 2)-skeleton with the doors removed.

Theorem 1. The stratified hypersurface Cty is a set-minimal cut for any Foy, as
long as the boundary of Foy is transversal to Ctg.

The transversality required in the theorem is automatic if, for example, Fby is a
small enough tubular neighborhood of ;.

Before moving to the proof of the Theorem 1, we will describe the cut in more
“engineering” terms.
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3.2 Forbidden leg positions

For the sake of clarity let us present a simple description of Ct; in terms of config-
urations of legs. Let (Y1, ..., ¥q), —m < ¢; < 7 be the usual angular coordinates
on the torus T4, y = 0 corresponding to the “leg down” position.

The i -th open pyramid Pyxr; consists then of exactly those leg positions, for which
the i-th leg has the maximal height,i.e. | —cosy; > 1 —cos vy, Vj #i.

Its entrance face is the set of all leg positions when exactly the (i — 1)-st leg and
the i -th leg are at the maximal height among all legs. Additionally, their positions are
not allowed to coincide (1; # ;) and the corresponding angles are in the correct
cyclic position (i.e. ¥; > V¥i+1).

The Fig. 3 illustrates the positions in the cut and outside it.

Proof (Proof of the Theorem 1). The torus T ¢ with the cut Coy deleted can be con-
structed by identifying the d pyramids Pyr;,i = 1,...,d along the pairs of exit-
entrance faces: the exit face of the pyramid Pyr; is identified with the entrance face
of Pyr; , ;. This immediately implies that the admissible basin Bsy = T4 — Coy is
homeomorphic to the d -dimensional solid torus, the product of (d — 1)-dimensional
(open) ball and T !. The trajectory y is embedded into the basin and, again by con-
struction, generates H (Bsg, Z). Now, the assumption of unknottedness implies im-
mediately that y is a deformation retract of Bs;. (In fact, we will construct an explicit
flow on Bs, realizing such a deformation.)

Now, it remains to show that the cut is set-minimal. Assume that a superset S of
Bsg contains a point x € Cog N Fry. As the intersection of a small ball around x
in T, intersected with Bs; contains more than one connected components (corre-
sponding to different pyramids), one can choose (piecewise-linear) curves that con-
nects x to some points x, xo on the segments of the gait y in the corresponding
pyramids. Combining these curves with a segment of y connecting x; and x» one
obtains a closed curve that represents a class 8 in H; (T, Z) different from the di-
agonal class § = [y]. Hence, H; (S, Z) has rank at least two, and the homotopy type
of S cannot be that of T!. O

Fig. 3 Left: a typical configuration inside Pyr;; middle and right: configurations on the entrance
and exit faces of Pyr;
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4 Feedback stabilization on y

In this section we will construct two explicit vector fields on Bsy for Fb; = Ay,
such that applying one for a short period of time (one full rotation of a leg) and then
switching on the other, all trajectories will converge to a prespecified gait (for exam-
ple, the equispaced gait y; with the phases ¢; of the d legs uniformly spaced over the
circle and moving with constant speed. This particular trajectory is not necessarily
arealistic one and is chosen just to simplify the presentation.

We remark that any control mechanism that stabilizes on the equispaced ordered
gait Y can be considered as a continuous-time sorting algorithm: starting with any
leg configuration, we align them, after some time, in a prearranged cyclic order. In
fact, this is precisely the task that the first vector field will perform: we will show
that after one period, all the legs are cyclically ordered (say, in the standard order as-
sumed above). The second stage is then a straightforward synchronization, locking
the gait on the exponentially stable period trajectory y;.

Not to overload the exposition, we consider just the case where Fb = Ay, al-
though quite general sets of forbidden configurations (tubular neighborhoods of 47
can be handled in a similar fashion.

4.1 Rearranging the legs

Itis piece-wise smooth and analytic in each of the open pyramids where the single leg
is the highest one. (In principle, the idea behind this dynamics is very similar to that
of the time-dependent dynamics described in the next section.) Take a pyramid Pyr;
where the i-th leg has the strictly largest height among all legs, i.e. h; = 1 —cos ¥;
is greater than all the other /;’s. (Recall that ;, j = 1,...,d are the angle coor-
dinates on our torus T¢ normalized so that ¥ = 0 corresponds to the “leg down”
position.)
Define v on Pyr; as

Vi1 = (hi —maxj g0 )72

{x/}j =1forj #i+1,

This vector field is well defined outside of the “diagonals” Ag; = {hx = h;},1 <
k <l < d (in fact, it is real-analytic on the complement to the union of these diag-
onals).

Conceptually, on Pyr;, where the leg i is at the highest position, the (i + 1)-th
coordinate accelerates so that it overtakes all other coordinates while i is still the
highest height leg - that is while still in Pyr;.

The structure of the trajectories on Bsy is given by the following

Proposition 1. The vector field v defines a continuous flow on each pyramid Pyx;.
Furthermore:

* for any point inside Pyxr;, the forward trajectory reaches the exit door (a point
on the exit face {h; = hjy1,¢; <0 < ¢;i11}) of the pyramid Pyr; in finite time;
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* moreover, for any point on the entrance door of Pyr; (that is a point with h; =
hi—i, hi > hj, j #i,i+1,¢i—1 <0 < ¢;)there exists a unique trajectory of v
on Pyr; having that point as its initial value.

Proof. The proof of these claims is pretty straightforward. The first statement fol-
lows from the evident fact that v is smooth as long as (i + 1)-th leg is not the second
in height, and near the diagonal h; > hjy1 = hy > h;, 1 # i,i + 1,k (where v
loses smoothness - but not continuity), the flow can be constructed explicitly.

The second statement follows from the fact as long as the (i + 1)-stleg is not the
second in height after i -st leg, the velocity of ¥; .1 behaves like (£, —t)~! (where
is the instant when the the height of i -th leg equals to the height of some of the other
legs with index # i + I - recall that on Pyr;, all legs but (i + 1)-st have constant
velocity). It follows that (i + 1)-st leg becomes the closest competitor to the leader
i overtaking all other legs.

Once the (i + 1)-st leg become the competitor to i-th one, it remains second in
height, eventually taking over the leadership, as can be computed explicitly, again.

The sorting to which we alluded above is achieved after just one full rotation (of
the initial leader leg).

4.2 Asymptotic stability

Once we know that the legs are in a required cyclic order, it is a routine matter to sta-
bilize them on a desired trajectory y;: as an example, one can consider the following
vector field,
Vi =1—(pim1 —¥i) > + (i — Y1) 2

Note that the phase differences are well defined as the phases are cyclically ordered.

This system can be interpreted as d particles constrained to the circle, under the
Coulomb’s repulsive force between nearby particles and constant drift. It is imme-
diate to see that the flow preserves the cyclic order, and has the gait y; as the global
asymptotically stable attractor.

Remark 2. The above dynamics consists of two phases: the 1st turn of the legs and
the remaining motion. During the first turn all the legs are placed in the clockwise or-
der coinciding with their cyclic order. This is done within a rather small time interval
and might be difficult to technically realize in practice since it requires quick motions
of legs and quick stops. One observes that small measurement mistakes can result
in the instability of the motion since the order of leading legs can experience big
changes. The second phase, on the other hand, presents no difficulties, and the mo-
tion quickly converges to the rotation of the equally spaced legs with the unit speed.

5 Further remarks and speculations

In the present note we introduced and discussed the notion of a set-theoretical max-
imality of the set Bs;. Obviously, this is a rather weak notion: there are many set
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maximal basins (just act by a diffeomorphism of the torus identical near Fby), and
our definition does not single out any of them. To do so one needs some alternative
notions of minimality for the cuts (on top of set-minimality). As an example of an-
other notion of maximality that makes sense one can suggest the (d — 1)-volume of
the cut Ct; C T4,

While in our situation, the cut is always a (singular) hypersurface, there are simi-
lar models, where the cut has higher co-dimension. In such cases one should consider
the volume form of the appropriate dimension.

We remark that the set Bs; which was constructed above is not volume minimal
in the above sense: the easiest way to see it is to remember that in the minimal soap
films, the codimension 1 sheets come together at a codimension 2 strata in triples, at
the angle of 120°. The problem of finding of the set Bsy of the minimal volume is
interesting even in the standard case Fby of the configuration “no more than k legs

Lt}

up”...

Appendix
A Discrete autonomous control

A.l1 Entrance-Base-Exit Flows

Below we describe an interesting discrete dynamical system associated with our
construction above. It addresses a somewhat different problem - not the stabiliza-
tion on a single attractor, but rather generating a simple flow with piece-wise linear
trajectories, but its nice mathematical features compelled us to present it here.

We construct a flow through the union of the pyramids Pyr; such that on each of
them this flow enters only through its entrance face, F := FciJr and leaves through
the exit face, G := Fc; .

Both faces are cones over certain (d — 2)-dimensional cubes (corresponding to
the legs i, (i — 1) and i, (i + 1) being simultaneously leaders, in the proper order).
The flow we are looking for should move from the entrance face F through the
(d — 1)-cube B := Cb_; of the whole pyramid and then further to the exit face G.

A.2 Birational mappings

Let us define two natural maps from the (open) entrance face F to the (open) base
cube B and then from B to the (open) exit face G. Each such map can be transformed
into a (continuous) flow by connecting the preimage and its image by a straight line
within the pyramid. (Thus each trajectory of such a flow within Pyr; will be the
union of two straight segments.)

The most natural way to do it is by using the so-called blow-up/blow down ra-
tional transformations [5]. We present these transformations explicitly below for the
cases d = 3 and d > 4. (The essential distinction of these two cases is explained by
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the fact that for d = 3 the entrance/exit faces are the usual triangles and, therefore,
they allow additional symmetry transformations unavailable for d > 4.)

Cased =3

The entrance/exit faces F' and G are usual triangles and the base cube B is a usual
square. Let us identify the entrance triangle F with the triangle with the vertices
(0,0),(1,0), (1, 1) in R?; the base square B with the square whose vertices are
(0,0), (1,0), (0, 1), (1, 1) and, finally, the exit triangle G with the triangle with the
vertices (0, 0), (0, 1), (1, 1).

The blow-up map @ : (x,y) — (x, f; ) sends F to B. (It sends the pencil of
lines through the origin to the pencil of horizontal lines.) Its inverse blow-down map
W (s,1) = (st,t) maps B to G. It sends the pencil of vertical lines to the pencil of
lines through the origin. Their composition y = W o & : (x,y) — (y, i ) sends F
to G, see Fig.1

To get the whole discrete dynamical system assume that the three (since d = 3)
pyramids Pyr,, Pyr,, Pyr; are cyclically ordered as 1 < 2 < 3 < 1 by the choice
of I'y,. Denote their entrance faces as Fy, F»>, F3 and their exit faces as G1, G2, G3.
Notice that F; = G, F, = G3, F3 = G1. Assume now that we apply our trans-
formation y three times consecutively, i.e first from F; to Gy = F», then from F»
to G, = F3, and, finally back to G3 = Fj. The resulting self-map ® : F; — F;
is classically referred to as the Poincare return map of the dynamical system. To
calculate it explicitly we need to find a suitable affine transformation A sending G
back to F in the above example. Then we get the self-map ® by composing y with
A and taking the 3-rd power of the resulting composition. As such a map A one can
choose A : (u,v) — (1 —u, 1 —v) which implies that the required Poincare return
map is the third power of ® = A o y where:

®:(x,y)—>(1—y,1—i}).

Lemma 1. The above map ® has a unique fixed point within the triangle F and its
fifth power is identity.

Fig.1 Birational transformation from the entrance face to base to exit face
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Proof. The system of equations defining fixed points reads as

x=1-—y,
y=1-7
and its two solutions are Y; = 2*/5_1, yi = 3_22\/2 and Y, = —1+§\/2, y2 =

3+§*/2. One can easily check that only the first solution belongs to F;. Direct cal-
culations show that

2. y y(—x) 3. royoox=y
© '(x’y)_)(x’x(l—y))’ © '(x’y)ﬁ(x(l—y)’(l—x))
®4:(x,y)—>(1:;,1—X), ©°: (x,y) = (x.y).

The Poincare return map is thus equals to ©3 : (x, y) — (x)(cl__yy), é‘:%) )

Cased > 4

Analogously, we have d pyramids each being a cone over a (d — 1)-cube. Their
entrance and exit faces are cones over a square respectively. The map & sends the
open entrance face F to the open base (d — 1)-cube B and the map W sends the
open base cube B to the open exit face G. They can be given explicitly as follows.
Let us identify F with the domain {0 < ¥, < ¢¥1 < ;0 < ¢¥3 <Yy <1;..0<
Ya—1 < Y1 < 1}, i.e. with the cone over the square {0 < ¥, < 1, 0 < ¥y < 1}
with the vertex at the origin. The base B will be identified with the cube {0 < ¥ <
1,0< vy < 1,0 < y¥y_1 < 1},and, finally, the exit face G with {0 < 1 < ¥ <
1, 0<ys3 <y <1,..,0<v¥i_1 < < 1}. Then the blow-up map ® and the
blow-down map W can be chosen as follows:

S (Y1, ¥2, s Ya—1) = (1//1’ V2 Vs I»/’d—l)

o
W (15 Y25 w0 Ya—1) = (V1Y2, Y2, oo Yd—1)2) -

Their composition y : F — G coincides with

Va2 Y3 1/f21/fd—1)
wogr gl .

An appropriate linear map A4 sending G back to F is just a cyclic permutation of
coordinates:

X (wl’ VIZ’ ey 1/fd—1) - (1/f2,

A:(z1,22, 00, 2g—1) = (22,23, ..., Z1).
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Thus we get the composition® = Aoy : F — F (whose d-thpower is the Poincare
return map) given by:

O (V1. V2. Vi) — (wz Va3 wzx/fd_l’%).

T

Proposition 2. The above map ® has a curve of fixed points parameterized by
(t, 2,62, ..., 12), t € R. Moreover, for any d > 3 one has that e4 1 =id.

Proof. Indeed, the system of equations defining fixed points reads as

Y2 Y23 Y24 Yaa—

I;[/1 = ) I/IZ = ) I)[/3 = 5 ‘ 'wd—Z = 5 I)[/d—l = I/IZ'
Y1 U Y A

which immediately implies 2 = ¥, = ¥3 = ... = ¥4_;. To show that @9~ =

id notice that since ® is a monomial map it suffices to show that Ma‘,"_1 =idg_
where My is the matrix of exponents of the map ® and idy_; is the identity matrix
of size d — 1. (Indeed, the matrix of exponents for ©®' coincides with MZ,.) This is
done in the following lemma.

Lemma 2. The characteristic polynomial of the (d — 1) x (d — 1)-matrix My equals
(=41 —t47Y). Therefore, by the Hamilton-Cayley theorem Mg_l =idg_;.

Proof. Looking at the exponents of ® we see that the matrix M, has the form

-11 0 0...0
-2 1 1
-2 1 0

- O
(=)

M,

. 0
21 0 0 ... 1

To make our calculations easy we introduce two families of (k x k)-matrices Dy
and Ej given by:

1 1.0 0...0 21 0 0...0
I -1 0...0 2 -1 0...0
pe=| L0 mes | DT
I 0 0. -1 2 0 0 - =11
I 0 0 -0 -vr —¢ 0 0 0-- 0 —1

Expanding by the first row one obtains the following recurrences

Det(Dy) = (—=)¥™' — Det(Dg_1) Det(Ex) = 2(—1)¥' — Det(Ex_1)
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resulting in the formulas

Det(Dy) = (=D V(@ 4052 4 4 1),
Det(Ey) = (=D 12(k 1 4152 4 +1).

Expanding now the characteristic polynomial Chy4(t) of M; by the first row (after
the sign change in the first row) we get the relation

—Chg(t) = (t + D[(1 = 1)(=1)*"> = Det(Dg—3)] = Det(Eq—).

Substituting of the expressions for Det (D _3) and Det(E;_,) in the latter formula
one gets Chy (1) = (=14 (1 — 47 1).

This completes the proof.

Corollary 1. The Poincare return map equals ®% = ©.
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Geometric and numerical techniques to compute
conjugate and cut loci on Riemannian surfaces

Bernard Bonnard, Olivier Cots, and Lionel Jassionnesse

Abstract We combine geometric and numerical techniques — the Hampath code —
to compute conjugate and cut loci on Riemannian surfaces using three test bed ex-
amples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on
S? associated to spin dynamics.

1 Introduction

On a Riemannian manifold (M, g), the cut point along the geodesic y emanating
from g is the first point where y ceases to be minimizing, while the first conjugate
point is where it ceases to be minimizing among the geodesics C !-close to y. Con-
sidering all the geodesics starting from ¢ they will form respectively the cut locus
C.ui(qo) and the conjugate locus C(gg). The computations of the conjugate and cut
loci on a Riemannian surface is an important problem in global geometry [1] and
it can be extended to optimal control with many important applications [4]. Also
convexity property of the injectivity domain of the exponential map is related to the
continuity property of the Monge transport map 7" on the surfaces [6]. The structure
of the conjugate and cut loci on surfaces diffeomorphic to S? was investigated in
details by Poincaré and Myers [9, 10]. In the analytic case, the cut locus is a finite
tree and the extremity of each branch is a cusp point. But the explicit computation
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of the number of branches and cusps points is a very complicated problem and only
very recently was proved the four cusp Jacobi conjecture on ellipsoids [7, 12].

The aim of this article is to present techniques which lead to the explicit compu-
tation of the cut and conjugate loci based on three examples, combining geometric
techniques and numerical simulations using the Hampath code [5]. Geometry is used
in a first step to choose appropriate coordinates to analyze the metric (for instance
the computation of curvature and principal lines of curvature) and the geodesic flow.
Also the explicit computations will be related to the micro-local complexity of this
flow. This is clear in the example of an ellipsoid of revolution: geodesics can be
meridians, the equator and a family of geodesics such that representing the metric
in the normal form g = d¢? + m(p)d6?, 6 increases or decreases monotonously
while ¢ oscillates between ¢~ and ¢. The important task is to evaluate the first
conjugate point 71, which corresponds to the existence of a solution of the Jacobi
equation J (1) + G(y(¢))J(t) = 0 such that J(0) = J(t;c) = 0, G being the Gauss
curvature. Since in our case the usual Sturm theorem [8] is not very helpful to esti-
mate conjugate points, our approach is to compute them in relation with the period
mapping T of the p-variable.

In the case of an ellipsoid of revolution it can be shown that conjugate and cut
loci can be computed with only the first and second order derivative of the period
mapping [3].

The Hampath code is useful to analyze the geodesics and to evaluate conjugate
points and the conjugate locus, using Jacobi fields and continuation method. In par-
ticular the analysis of the case of revolution can be easily extended to a general
ellipsoid.

The time optimal transfer of three linearly coupled spins with Ising coupling de-
scribed in [13] leads to study a one parameter Riemannian metric on S? with equa-
torial singularity which is a deformation of the Grushin case g = dg? + tan? pd62.
Again the analysis of the flow and conjugate points computation lead to describe the
conjugate and cut loci for various values of the parameter.

2 Riemannian metrics on surfaces of revolution

We briefly recall the general tools to handle the analysis of surfaces of revolution
with applications to the ellipsoids [3,11].

2.1 Generalities

Taking a chart (U, ¢) the metric can be written in polar coordinates as
g = dg? + m(p)d6?.

We use Hamiltonian formalism on 7T*U, 33 is the vertical space, 33 is the hori-
zontal space and @ = pdgq is the (horizontal) Liouville form. The associated Hamil-
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1 P
H = 2 6
2 (” o m(q)))
and we denote explﬁ the one-parameter group. Parameterizing_b)y arc length
amounts to fix the level set to H = 1/2. Extremals solution of H are denoted
y:t —(q(t, qo0, po), p(t,qo, po)) and fixing go it defines the exponential mapping

exp,, : (. o) = q(t.qo. po) = T1(exp 1H (qo. po)) where T1 : (. p) — q is the
standard projection. Extremals are solutions of the equations

tonian is

dop dd  pe dpy _ 1 ,m'(p) dpg
= Do, = s = pe 2 s =0.
dr dr m(¢p) dt 27" m2(p) dt

Definition 1. The relation pg = Constant is called Clairaut relation on surfaces
of revolution. We have two types of specific solutions: meridians for which pg = 0
and 6(¢t) = 6y and parallels for which i,‘f (0) = pp(0) = 0and ¢(r) = ¢(0).

To analyze the extremal behaviours, we fix H = 1/2 and we consider the me-

where V (g, pg) = pg /m(gp) is the potential mapping depending upon the parame-
ter pg and parallels correspond to local extrema.

Assumptions 1. In the sequel we shall assume the following:

(A1) @ = 0is a parallel solution with a local minimum of the potential and the
corresponding parallel is called the equator;
(A2) the metric is reflectionally symmetric with respect to the equator:

m(—¢) = m(¢p).

Micro-local behaviors of the extremals

We describe a set of solutions confined to the segment [—¢™**, 4+¢™**] where
@™ is the local maximum of V' closest to 0. Let / be the open interval pg €
(\/ m(pmax), \/ m(¢(0)). Taking such an extremal, ¢ oscillates periodically between
¢~ and ¢ . The dynamics is described by:

d¢_:|:1 dd  pg
dt g dt m(p)’

g(p, po) = @)
m(p) — pg

where
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and for an increasing branch one can parameterize 6 by ¢ and we get

do _ g(g. pe)pe

dg m@) f(@. o),

h
where e

Jmig)\Jmig) ~ p}

The trajectory ¢ — (¢, pg) is periodic and one can assume ¢(0) = 0. The period
of oscillation T is given by

S, po) =

(p+
T:4L ¢(0. po)dy

and the first return to the equator is at time 7'/2 and the variation of 6 at this time is

given by
ot

AD =2 S (@, pe)de.
0

Definition 2. The mapping pg € I — T(pg) is called the period mapping and
R : pg — A0 is called the first return mapping.

Definition 3. The extremal flow is called tame on / if the first return mapping R is
such that R’ < 0.

Proposition 1. For extremal curves with pg € I, in the tame case there exists no
conjugate times on (0, T /2).

Proof. If R’ < 0, the extremal curves initiating from the equator with pg € I are
not intersecting before returning to the equator. As conjugate points are limits of
intersecting extremals curves, conjugate points are not allowed before returning to
the equator.

Assumptions 2. In the tame case we assume the following

1 92Vm(p)

(A3) at the equator the Gauss curvature G = — Jm(e) 902

maximum.

is positive and

Using Jacobi equation we deduce:

Lemma 1. Under assumption (A3), the first conjugate point along the equator is
at time 7/ \/ G (0) and realizes the minimum distance to the cut locus Cq, (6(0) =
0, 9(0) = 0). It is a cusp point of the conjugate locus.

Parameterization of the conjugate locus under assumptions (A1-2-3) for
po €1
Fixing a reference extremal y, Jacobi equation is the variational equation:

520y = 08 gz(’)) §2(). 8z = (84.5p)
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and a Jacobi field J(¢) is a non trivial solution of Jacobi equation. According to stan-

dard theory on surfaces, if y is parametrized by arc length, let J; () = (8¢ (t), 5p(t))

denotes the Jacobi field vertical at time ¢ = 0, that is §¢(0) = 0 and such that

(p(0),6p(0)) = 0. Since J1(0) is vertical, @(J1(0)) = 0 and then a(J1(¢)) = 0.
We have [8,11]:

Proposition 2. Conjugate points are given by the relation dT1(J1(¢)) = 0 and

de(t, a0(t,
= (74 )

In particular we have at any time the collinearity condition:

dp a6
p +po, =0.
¢ dpo ape
The conjugate locus will be computed by continuation, starting from the cusp
point at the equator. Let pg € I andt € (T/2,T/2 + T/4). One has the formula
t

e(z,pe)=A9(pe)+[ PO g

T/2 m(p)
andon [T/2,1], % <0, ¢ < 0. Hence

> dt
t 0
1z
/ dr = [ S (@, po)de.
7/2 M(@) o(t,p6)
We have:

Lemma 2. For pg € I and conjugate times between (T /2, T /2 + T/4) the conju-
gate locus is solution of
30(¢, po) _
dpe
0
where 0(p, pg) = A0(pg) + [, f(¢. po)de.

This gives a simple relation to compute the conjugate locus by continuation. One
notes pg — @1.(pg) the solution of Eq. (1) initiating from the equator. Differenti-
ating one has

0, ey

09
f dg
) dpe
at 1. (pg). Differentiating again one obtains

0 32 9 9
A9”+[ Lag-20e 0 _y
o1 9Py dpe  9pe

AO + =0

af 2 f :
e 0 and 092 > 0. In particular

0 92 -1
O1e _ (Ae” +[ ! ];dw)( 8f)
8[79 Plc 8179 8[79

and one deduces the following.

One can easily check that
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Proposition 3. If A6” > 0 on I, then %‘gg # 0 and the curve py —

(p1c(pg), 01c(pg)) is a curve defined for pg € I and with no self-intersection in
the plane (¢, 0). In particular it is without cusp point.

Remark 1. Self-intersections are depending upon the parameterization of the conju-
gate locus but not cusp points of the conjugate locus.

To simplify the computations we use the following lemma:
Lemma 3. We have the relation
T'(po)
R'(pe) = :

2pg

2.2 Ellipsoids of revolution
The ellipsoid of revolution is generated by the curve
y =sing, z =¢gcosSQ

where 0 < ¢ < 1 corresponds to the oblate (flattened) case while ¢ > 1 is the prolate
(elongated) case. The restriction of the Euclidian metric is

g = Fi(p)d¢® + F>(p)do>

where F; = cos? p+¢2sin” ¢, F, = sin” ¢. The metric can be written in the normal
form setting:
1/2
do = F%(p)d.

Observe that ¢ oscillates periodically and 6 is monotonous. Hence the period map-
ping can be computed in the (¥, 6)-coordinate, ¥ = 7/2 — ¢ and v = 0 is the
equator. The Hamiltonian is

(e, P
=, (Fl(w) " F2(§0))

and with H = 1/2, one gets
dy (cos? y — pj)'/?
dt  cosy(sin® ¢ + &2 cos? y)1/2’
Denoting 1 — pg = sin? y; and making the rescaling ¥ = siny; Z, where ¥ =
sin Y, one gets
(62 4 Z%sin® y2(1 —g2))1/2
(1 _ 22)1/2
Hence the formula for the period mapping is
T (1 + Z2sin’ Yy (1 —2))1/2
4 Jo (1—2z2)1/2

which corresponds to an elliptic integral. The discussion is the following.

dZ =dr.

dz
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Oblate Case

In this case the Gauss curvature is increasing from the north pole to the equator and
the problem is tame and the period mapping is such that

T'(pe) <0 < T"(pg)

for each admissible py > 0. The cut point of ¢(0) = (¢(0), 0) is given by #o(pg) =
T (pg)/2 and corresponds to the intersection of the two extremal curves associated
to ¢(0), and —¢(0). The cut locus C.y(¢(0)) of a point different of a pole is a seg-
ment of the antipodal parallel. If g (0) is not a pole nor on the equator, the distance
to the cut locus is the half-period of the extremal starting from ¢(0) with ¢(0) = 0
and the injectivity radius is realized for ¢(0) = 7/2 on the equator, and is given
by 7/ \/ G (7t/2) where G is the Gauss curvature. The conjugate locus C(g(0)) of a
point different of a pole has exactly four cusps, two on the antipodal parallel which
are the extremities of the cut locus segment and two on the antipodal meridian.

Prolate Case

In this case, the Gauss curvature is decreasing from the north pole to the equator
and the first return mapping to the equator is an increasing function of pg > 0.
Let a geodesic being not a meridian circle, the cut point #y(pg) is given by solving
O(to, pg) = m and corresponds to the intersection of the two extremal curves asso-
ciated respectively to py and — pg. The cut locus of a point which is not a pole is a
segment of the antipodal meridian. The conjugate locus C(g(0)) of such a point has
exactly four cusps, two on the antipodal meridian which are the extremities of the
cut locus and two on the antipodal parallel.

Conclusion

To resume both cases are distinguished by the monotonicity property of the Gauss
curvature or equivalently of the first return mapping. The cut loci are computed us-
ing the symmetric property of the extremal curves: in the oblate case, the symmetry
of the metric with respect to the equator and in the prolate case the symmetry of the
metric with respect to the meridian. Additionaly to this discrete symmetry, the sym-
metry of revolution ensures the existence of an additionnal one-dimensional group
of symmetry which gives according to Noether theorem the first integral pg linear
with respect to the adjoint vector and corresponds to a Clairaut metric [2].

3 General Ellipsoids

We shall extend the result on ellipsoids of revolution to general ellipsoids. Roughly
speaking, the general case intertwines the oblate and the prolate case, which will be
easily seen in the classification of the extremal flow.
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3.1 Geometric Properties [7]
A general ellipsoid E is defined by the equation

xj  x3  x3
=1, a1>a2>a3>0
a as as

and we use the double covering parameterization of E(0;, 6,) € T>?=S'xS' — E:
X1 = J/aj cos 0y \/(1 — B)cos2 B, + sin® 6,
X2 = J/ay sin 0y sin 6,
X3 = J/as cos 0, \/ﬂ cos2 6y + sin? 6,

where § = (az —asz)/(a1 —az) € (0, 1) and the (61, 62)-coordinates are related to
the elliptic coordinates (11, A») by

A1 = agsin? 0; + azcos? 0y, Ay = ascos® B, + azsin? 6;.

Inthe (9;, 6)-coordinates the restriction of the euclidian metric on R3 takes the form

A A
g=0A1— 1) ( ! do,* + 2 d922) .

AL —as ap— Az

The metric has two main discrete symmetries defined for i = 1, 2 by the change of
variables: §; — m — 0; and 0; — —0;. The associated Hamiltonian is

1 Al —as 2 ap— Az 2
2H =
/\1 —/\2 ( /\1 p91 * /\2 p92

and an additional first integral quadratic in (pg, , ps,) is given by

1 A —as 2 ap— Az 2
F = —A — A — .
A ( " (a2 — A2) py, s (A1 — a2) pg,

According to Liouville theory [2], the metric can be written in the normal form
g = (Fi(u1) + F>(u2)) (dui + du3),

where u1, u, are defined by the quadratures

/\1 /\2
du; = dby, du, = do
“ \//\1 —das ! "2 \/611 — A2 ?
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and see [8] for the relation with elliptic coordinates. The third fondamental form is
given for x3 # 0 by

X1X2X 1 1 X1X2X 1 1
IT1(dxy,dxy) =2 3( - )dx%— 2 3( - )dxg
ayazas as aq ayazas an as

L 1 1) (x3)? 1 1) (x1)?
as ai dar as as as ai
1 1) (x2)°
o) (i) Jona
as an an

and we get the four umbilical points (:I: Jai \/1 —B,0, = /a3 ﬂ) . Besides in ellip-

tic coordinates the lines A; = Constant are the curvature lines. Finally, taking the
Liouville normal form, the Gauss curvature is given by

Fl{(u1)? + F3(u2)? F"(uy) + F"(uz)

U = (Fyun) + ) 2(Fitun) + Fatua))®

or similarly, in the elliptic coordinates, one has

aiazas

G(/\],/\2) = 5
AA3

(/\1,/\2) € [az,al] X [Cl3,(l2].

We represent in Fig. 1 the Gauss curvature in the (61, 6,)-coordinates restricted to
(01, 6,) € [0, 7/2] x [0, 7/2] by symmetry.

Remark 2. We have the following correspondences with the ellipsoid of revolution:
in the limit case a; = ap > a3 (oblate case), the metric g reduces to the form
presented in 2.2 where (¢,0) = (62, 601) and we have F' > 0. In the limit case
ap > ap = as (prolate case), the metric g reduces to the form presented in 2.2
where (¢, ) = (61, 62) and we have F < 0.

0 91 pi/2

Fig.1 Gauss curvaturein (67, 62)-coordinates for (61, 62) € [0, 7w/2]x[0, 7/2]. The maximum
ai/(azas) of G isat (0, r/2) which is the intersectionof the longest and the middle ellipses while
the minimum as/(aza;) is at (;t/2, 0), the intersection of the shortest and the middle ellipses
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3.2 Geodesic Flow [7]

Parameterizing by arc length H = 1/2 and setting F = c, the extremal equations
are described by

g14/A1d0; _ g2/ A2d6;
Vi —as/hi—az ¢ Nar—davaz —c =Xy
and
dr = e1vA 1V —612+Cd91 n 82\//\2\/612—6—/\2(192
VAL —as Vay =2,

where &; = +1 is the sign of df;/d¢, i = 1,2. The value ¢ of F varies between
—(a1 —az) and (az —as3) and the behavior of the extremals depends on the sign of c.

e If 0 < ¢ < ap — as, then 60;(¢) increases or decreases monotonously and 6,(¢)
oscillates between v, (c) and w — v (c), where v2(c) is defined by

b4
sinvy(c) = \/ ¢ , 0<wv(e) < .
az —as 2

These trajectories do not cross transversely the segments 6, = 0 and 6, = 7
which degenerate into two poles in the oblate case. Here the longest ellipse 6, =
7t/ 2 plays the role of the equator from the oblate case.

e If—(a;—az) < ¢ < 0,then 6,(¢) increases or decreases monotonously and 6, (¢)
oscillates periodically between vy (c) and = — vy (¢) where v (c) is defined by

- b4
sinvy(c) = \/ ¢ , 0<vi(e) < .
ay —dap 2

These trajectories do not cross transversely the segments §; = 0 and 61 = 7
which degenerate into two poles in the prolate case. Here the longest ellipse plays
the role of the meridian circle from the prolate case.

* The separating case ¢ = 0 is the level set containing the umbilical points.

Arc length geodesic curves y(¢) = (01(¢), 02(t)) can be parameterized by ¢ but we
introduce the parameter 1 defined by:

v(n) = cos nej + sinne;

where (eq, e3) is a orthonormal basis

. _((Al—/\z)xl —12 . _((Al—/\z)xz)‘”z 9
' /\1 —das 891’ - aq —/\2 892
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3.3 Results on the Conjugate and Cut Loci

According to [7] we have the following proposition which generalizes the case of
an ellipsoid of revolution.

Proposition 4. The cut locus of a non-umbilical point is a subarc of the curvature
lines through its antipodal point and the conjugate locus has exactly four cusps.

The Analysis
Fixing the initial point to (6 (0), 6,(0)), the relation between 7 and c¢ is given by:

c(n) = (a2 — A2(62(0))) cos® n — (A1(61(0)) — az) sin®

and let 19 be the unique 7 such that c¢(n9) = 0,0 < no < 7.

» The case ¢ > 0 (cf. Fig. 2). We use the parameterization (0;, 6,) with §; € T!
and 0 < 6, <.

— Forn € (0,n9) U (r — no, ) the value of 6, along the geodesic increases
until it reaches a maximum 92+ and then it decreases. The cut time #y(7) is the
second positive time such that 0, takes the value & — 65(0).

— For n = 2 —n, the value of 6, along the geodesic decreases until it reaches a
minimum 65 and then it increases. The cut time fo(n) is the first positive time
such that 8, takes the value 7 — 6,(0).

— Besides, we have 19(17) = 1o(n) and yy(to(n)) = yn(to(n)).

¢>0,n¢€[0,ny)

< pir2t

0 pi/2 gi 3pi/2 2pi
1

Fig. 2 Trajectories, cut and conjugate points in the case ¢ > 0. The trajectory with 82(0) > 0

corresponds to n € (0, o) while the other correspondsto 7 = 27 — 7. The two conjugate points

are plotted in red and come after the cut point in black. The period T of the 8>-variable is equal

for each trajectory and is represented with the half-period
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pi

< pil2

Fig. 3 Trajectories, cut and conjugate points in the case ¢ < 0. The trajectory with 82(0) > 0
corresponds to n € (0, o) while the other correspondsto 7 = 27 — . The two conjugate points
are plotted in red and come after the cut point in black. The periods of the 0,-variable are not equal
for each trajectory and are represented with the half-period

e The case ¢ < 0 (cf. Fig. 3). We use the parameterization (6, 6,) with0 < 6; <
wand 6, € T,

— For n € (no, m — no), 0> increases monotonously and let 7 (n) be the first
positive time ¢ such that 6, takes the value 8,(0) + 7. The cut time is given
by 70(n).

— For n = 2n — 1, 6, decreases monotonously and let ¢y (1) be the first positive
time ¢ such that 6, takes the value 8,(0) — 7. The cut time is given by #4(n).

— Besides, we have #9(7) = to(n) and 01, (to (7)) = 01,50 (n)).

Numerical Computation of Conjugate and Cut Loci

We fix the parameters of the ellipsoid ay > a, > a3 > O such thata; —ap # ax —
a3 to avoid any additionnal symmetry. We take (a1, az,a3) = (1.0,0.8,0.5) and
(61(0), 62(0)) = (7r/3,2m/5) for the computations, which correspond to a generic
situation. Indeed, if the initial point is on 6, = 0 or m, ¢(n) < O then there are
only oblate-like extremals. Similarly, if #1(0) = 0 or 7, there are only prolate-like
extremals.

First of all we represent the conjugate and cut loci in Fig. 4 using the double cov-
ering parameterization, with several trajectories for n € [0, 277) on the top subplot.
The conjugate and cut loci are given on Fig. 5 in (x1, x2, x3)-coordinates. Finally,
the cut time 7y, the first conjugate time #; and the half-period 7'/2 of the oscillating
variable is plotted in Fig. 6.
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2pi

3pil2

n—0,(0)

pi 3pi2

65

Fig. 4 On the top subplot is represented several trajectories ¥y, n € [0, 27), with the conjugate
(in red) and cut (in black) loci, using the double covering parameterization. In blue are plotted the
trajectories for 7 € (0, ) and in magenta for n = 27 — 7. The four trajectories in red such
that ¢(n) = 0 pass through an umbilical point. They separate oblate-like (¢ > 0) behaviour from
prolate-like (¢ < 0) one. The two intersections of these trajectories are junction of parts of the
cut locus coming from oblate-like extremals and the cut locus coming from prolate-like extremals.
One should notice that in red are plotted the four trajectories passing through the umbilical points
with the parameterization (61, 82), 8; € T' and 0 < 6, < 7. (Bottom) Conjugate and cut loci
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Fig. 5 Conjugate (in red) and cut (in black) loci in (x1, X2, x3)-coordinates obtained from Fig. 4.
The center segment of the cut locus corresponds to prolate-like case while the two extreme parts
come from oblate-like case

1.7
1.6
15
1.4
1.3

1.2

1.1

‘ ‘ L T2
0 pi/2 pi 3pi/2 2pi

Fig. 6 The cut time to, the first conjugate time #; and the half-period T'/2 of the oscillating vari-
able, with respect to the parameter n € [0, 27t]. In the generic case, the half-period is not equal to
the cut time, even for oblate-like trajectories. This is still true for an initial pointon 81 = 0 or 7.
The period is discontinuous when ¢ (7) = 0 since the oscillating variable changes. The only rele-
vant symmetry is on the period mapping. Indeed, for 7 such thatc(n) > 0, T(n) = T(2x — n)
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4 Dynamics of spin particles

The problem fully described in [13, 14] arises in the case of a spin chain of three lin-
early coupled spins with Ising coupling. Using appropriate coordinates the dynamics
takes the form:

d (" 0 —cos (1) 0 r
(rz) = (cos@(t) 0 —k sin@(l))(rz)
de 3 0  ksinf(t) 0 3

where k = 1 corresponds to equal coupling. Setting u3 = —cos 6, u; = —k sin9,
the dynamics is:

F1 =U3rp, T2 = —U3ri +Uirs, 73 =—UuUir.

The optimal problem is transferring the system from ro = (1,0,0) to r(T) =
(0,0, 1) and minimizing the functional:

I

T
[ (Ilu% + I3u§) dt — min, k%= .
0 I3

We introduce the metric:

dr? + I 17 'dr2
g:]lu%—{-l:ﬂ/l%:]?,( r1+ 173 r3)

2
T3

and this defines an almost Riemannian metric on the sphere S2:

dr} + k?dr3 , I
g= ) , k= .
l’2 ]3
Lemma 4. In the spherical coordinates r, = cos@, ri = singcosf, r3 =

sin @ sin 0 the metric g takes the form:

g = (cos? 0 + k? sin? 0)dg?* + 2(k* — 1) tan ¢ sin 6 cos Odpd6
+ tan? ¢(sin? 6 + k2 cos? 0)d6?,

while the associated Hamiltonian function is given by

1
H = A2 (pé (sin® 6 + k% cos? ) + pg cot® p(cos® @ + k? sin” 9)
—2 (k* = 1) py po cotg sin 6 cos §) .
We deduce the following

Lemma 5. Fork = 1

1
H = A (pe + pj cot® ¢)

and it corresponds to the so-called Grushin case g = dg? + tan? pd62.
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The Grushin case is analyzed in details in [3]. Moreover, we have

Lemma 6. The family of metrics g depending upon the parameter k have a fixed
singularity on the equator ¢ = 1 /2 and a discrete symmetry group defined by the
two reflexions: H(@, py) = H(w — ¢, —py) and H(0, pg) = H(—0, —pyg).

Numerical Computation of Conjugate and Cut Loci

Next the conjugate and cut loci are computed for the fixed initial conditions:
©(0) = =m/2, 6(0) = 0, and are represented via the deformation of the pa-
rameter k starting from k = 1. There are two different cases to be analyzed:
k > 1 and k < 1. Starting from the axis of symmetry, the Hamiltonian reduces
to H(6(0), 9(0), p(0), pp(0)) = pé (0)/4, and restricting the extremals to H = 1,
we can parameterize the geodesics by p,(0) = %2, pg(0) € R. By symmetry we
can fix py(0) = —2 and consider pg(0) > 0. For any k, the conjugate locus has a
contact of order two at the initial point, as pg(0) — oo.

¢ k > 1. We study the deformation of the conjugate locus for k > 1 in Figs. 7-9.

The key point is: when k > 1, 6 is not monotonous for all the trajectories. This is
true even for small k, like k = 1.01, taking pg(0) = 0.1 and ¢ > 14.

We denote 71(pg, k) the first conjugate time and q1(pg. k) = (0, ) jr=1, (py.k)
the associated conjugate point. In Fig. 7, we represent the map k € [1, 1.5] — ¢ (k)
for pg fixed to 10™#. The value 1.5 is heuristically chosen to simplify the analysis.
We can notice that 0(z; (k)) only takes approximately the values 0 and 7 and so it is
on the same meridian as the initial point. It switches three times at 1 < k; < k <
k3 < 1.5, withkp — k1 # k3 — ko. We then restrict the study of the conjugate locus
to k < k3 to simplify.

We can see in Fig. 8, three subplots which represent the deformation of one branch
(p(0) = —2 and pg(0) > 0) of the conjugate locus resp. for k in [1, k1], [k1, k2]
and [k3, k3]. For any k € [1, k3], the branch is located in the half-plane 6§ > 0. If

pi7 ””””” T

T Ianh EEEEE CEEE

0,,, ,,,,,,,,,, S
1 ki1 k2 k3

Fig. 7 The first conjugate point with respect to k, for pg(0) fixed to 10™*. In red is plotted
0(t1(po, k)) while we have in blue ¢(¢; (po, k)). The -variable takes the values 0 and 7. The
values k1, k2, k3 are approximately and respectively 1.061, 1.250, 1.429
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< pir2

< pil2 4ﬂ —————————————————————————— S

Fig. 8 The deformation of one branch (p,(0) =—2 and pp(0) > 0) of the conjugate locus with
respectto the parameterk € [1, k3]. (top)k = 1.0,1.05.(left)k = 1.1,1.2.(right)k = 1.3,1.4

we denote k; < k < k,, the parameter value such that ¢(t;(k)) = 7/2, then the
branch form a loop for k < k < k3.

The deformation of the conjugate locus can be explained analysing the behaviors

of the trajectories. We describe four types of trajectories in (6, ¢)-coordinates (see
Fig. 9), limiting the study to k < k3 to simplify and pg(0) > 0 by symmetry. These
trajectories clarify the evolution of the conjugate locus.

The first type occuring for any k such that 1 < k < ks, is represented in the top
left subplot of Fig. 9. Its characteristic is that the -variable is monotonous non-
decreasing on [0, #1].

The three others trajectories do not have a monotonous 6-variable on [0, #;].
We denote ¢ the first time when the trajectory leaves the domain 0 < 6 < 7.
The second type (top right) existing for k1 < k < k3 has no self-intersection on
[0, 7] and is such that 8(z) = 0.

The last types of extremals have a self-intersection in the state-space in [0, z].
The third kind of trajectories (bottom left) is such that 8(z) = 0 and occurs for
k <k <ks.

The last one (bottom right) exists only for k; < k < k3 and has 0(¢) = «.

k < 1. The deformation of the conjugate locus in the case k < 1 is easier to an-
alyze. We give on Fig. 10 the conjugate locus for k € {0.8,0.5,0.2,0.1}
with 15 chosen trajectories. The key point is the non-monotony of the
@-variable for k < 1.
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< pifef

< pirzf

- pil2r

pi

< piret +
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< pirzf

< pil2r

Fig. 10 Conjugate locus with 15 trajectories for k = 0.8,0.5,0.2,0.1 from top left-hand to
bottom right-hand

The deformation of the conjugate locus on the sphere is given Fig. 11. Only the half:
Po(0) = =2, pg(0) € R is plotted to clarify the figures. The deformation is clear:
the cusp moves along the meridian with respect to the parameter k. It does not cross
the equator for k < 1 while for k > 1 it first crosses the North pole (k = k1), then
the equator (k = k). For k > k, the conjugate locus has self-intersections. Then,
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0.5

Fig. 11 Half of the conjugate locus on the sphere. (left) For k = 1.0 in magentaand k = 0.8,
1.15 in red. (right) For K = 1.0 in magentaand kK = 1.18 inred

it crosses poles again for k = k, and k3. This is repeated for greater values of k
making the loops smaller and smaller.

We give a preliminary experimental result about the cut loci to conclude these
numerical computations. We denote pg(0) > 0 — Abi(pg) € (0, 7) the variation
of 6 at the first return to the equator (or first return mapping) as in §2.1. The previ-
ous numerical simulations show that A6y is well defined for k € [0, k3]. The Fig. 12
indicates that for any k, the first return mapping is monotonous non-increasing and
surjective. As a consequence, for a fixed k and starting from ¢(0) = /2, 6(0) = 0,
if there is no intersection between trajectories before the first return to the equator,
then the cut locus is the equator minus the initial point. The Fig. 10 shows that there is
no intersection before the first return to the equator for k < 1. Similar computations
for k € [1, k3] lead to the same conclusion.

pify

3 pil2

1/(1+py)

Fig. 12 First return mapping for different values of the parameter k € [0.1, 50]. In red is plotted
the curve fork =1
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On the injectivity and nonfocal domains of the
ellipsoid of revolution

Jean-Baptiste Caillau and Clément W. Royer

Abstract In relation with regularity properties of the transport map in optimal trans-
portation on Riemannian manifolds, convexity of injectivity and nonfocal domains
is investigated on the ellipsoid of revolution. Building upon previous results [4, 5],
both the oblate and prolate cases are addressed. Preliminary numerical estimates are
given in the prolate situation.

Introduction

It is known after the work of Brenier [7] and McCann [12] that, under suitable as-
sumptions, the optimal transport map between two probability measures on a com-
pact Riemannian manifold X exists and is unique when the cost is the square of the
geodesic distance, d. The issue of the continuity of this map is addressed in a series
of papers of Figalli et al. (cf. [9, 10] and references therein). A crucial object in this
respect is the Ma-Trudinger-Wang tensor,
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defined at x € X, v € I(x) and (§,7n) € Tx X x T X, where I(x) C TxX denotes
the injectivity domain of x (see §1). On surfaces, positivity of this tensor, namely

E1ln=0 = ouunEn =0 (x,v)eTX, vel(x), (& n) e TrxXxTiX,

together with convexity of the injectivity domain /(x) for all points x are proved
to be necessary and sufficient for the continuity of the optimal transport map. (A
gap exists in dimension greater than two [10].) Using the fact that the exponential
mapping is a local diffeomorphism prior to the first conjugate time, the tensor can
be extended to the nonfocal domain of x, NF(x) D I(x) (see §1), and similar re-
sults involving the convexity of the nonfocal domain can also be formulated: On
surfaces, positivity of the extended tensor on nonfocal domains together with con-
vexity of all these domains are sufficient for the continuity of the optimal transport
map. The ellipsoid of revolution provides a one-parameter example whose geometry
is rich enough to illustrate the change in convexity of the two types of domains, in-
jectivity and nonfocal. It has been considered in the oblate case (ellipsoid squeezed
along its axis of revolution) in [4,5]. As a deformation of the round sphere, it paves
the way for a systematic study of surfaces of revolution whose integrable geodesic
flow has a prescribed transcendency. On the ellipsoid of revolution, the quadratures
are parameterized by a complex curve of genus one, and only elliptic functions (and
primitives) are required (see also [6] for the general ellipsoid).

The paper is organized as follows: In Sect. 1, the main definitions are recalled; a
unified framework using a parameterization by an elliptic curve is provided, which
lays the emphasis on the role of singularities of this curve to understand convexity
properties of the domains. It is moreover important to use a Hamiltonian point of
view that allows to interpretate the limit case of the oblate ellipsoid flattened onto a
two-sided disk in connection with almost-Riemannian metrics [1, 3]. Sects. 2 and 3
are devoted to the oblate and prolate cases, respectively. It is proven that the non-
focal domain of a point on the equator is not convex for an oblate enough ellipsoid.
In the prolate case, numerical estimates of the curvature are given using a suitable
compactification suggesting that, for a sufficiently large semi-major axis, convexity
holds for injectivity domain, not for nonfocal ones.

1 Preliminaries

For u > 0, consider the ellipsoid of revolution with z-axis embedded in R3, x2 +
y2+2z2/u? = 1.For i < 1 (resp. 1 > 1), one has an oblate (resp. prolate) ellipsoid,
while for = 1 the round sphere is retrieved. For (6, ¢) € R x (0, ),

x =singcosf, y =singsinfh, z = pcose,
is the universal covering of the ellipsoid minus its poles. In the associated coordinates

(0, ¢), the metric reads Xd9%+(1—X/A)dg? with X := sin> pand A := 1/(1—u?).
We set A = oo when u = 1 (round sphere), and use indifferently u or A to specify
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the geometry of the surface in the sequel. From the Hamiltonian point of view, one
sets "
1(r; p
H 9’ ’ ’ = ¢ :
(0.9.po. py) 2<X+1_X/A

Because of the symmetry of revolution, 6 is a cyclic variable so pg is a linear first
integral (Clairaut constant); the geodesic flow is integrable and arc length geodesics
are Hamiltonian integral curves on {H = 1/2}.

Proposition 1. The quadrature on ¢ is parameterized by the complex curve

X(A—X
Y2=4(X-p))(X —1)(X —L), X =sin¢p, Y= ( ),
VA
which is elliptic outside singularities.

Proof. On{H =1/2}, p;/(1 = X/A) = 1— p;/X and one has

. _OH _ p,
=, T 1-X/2
Since X2 = 4X(1 — X)¢2, the result follows. ]

When p < 1 (oblate ellipsoid), A is positive and the real cubic (Y € R) has to
be used; on the converse, when > 1 (prolate ellipsoid), A is negative and the
parameterization is obtained considering the imaginary cubic (¥ € iR). In both
cases, as pg < X =sin? ¢ < 1, the bounded component of the cubic is used. The
complex curve is homeomorphic to some torus C/A where A = wZ + w'Z is the
real-rectangular lattice of periods. In the oblate (resp. prolate) case, X is w-periodic
(resp. @’-periodic) as a function on the torus. (The period of ¢ is twice the period of
X = sin” ¢, and the period as a function of time is given by some time law).

The singularities are the following. When i = 0, A = 1 and the elliptic curve
degenerates to a rational one; geometrically, the ellipsoid is flat and the resulting sin-
gular metric is simply the flat metric on a two-sided disk (see Proposition 3). When
i = 1, A = oo and the curve also degenerates for all pg; one has the round sphere
whose geodesics are indeed rational curves. For any pu, pg = =£1 (allowed only
when X = 1) corresponds to the equator and is also a degeneracy of the elliptic
curve. Finally, when = 0o, A = 0 and the curve degenerates for pg = 0 (merid-
ians); one may expect to use this, together with some compactification, to establish
convexity properties in the prolate case, p big enough (see the preliminary discus-
sion §3). The bifurcations occuring in the cut and conjugate loci when going from
u = 0tou = 1, then to 4 = oo are portrayed Fig. 1. (See Sects. 2 and 3 on the
structure of these sets in the oblate and prolate settings).

Given an initial point xo on the ellipsoid, consider the geodesic y defined by
Ppo € H™1(x0.-)({1/2}); as the manifold is compact,

teuw(X0, Po, ) := sup{t > 0| y is minimizing on [0, ]}
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Fig. 1 Bifurcation of the cut and conjugate loci of o = 7/2 when  goes from 0 to 1, then to
00. See §2 for the interpretation when @ = 0. When o = oo, the cut locus is the vertical line
antipodal on the cylinder to the initial point (not a pole), and the conjugate locus is empty (see §3)

is finite, and is called the cut time along y. As a subspace of the cotangent space at
X0, the injectivity domain of x¢ is defined according to

I(x0) := {tcut(x0, po., ) po | H(xo, po) = 1/2}.

As convexity is invariant by linear transformations, whether the injectivity domain
is defined as a subspace of the tangent or cotangent fibre does not matter. The expo-
nential mapping is

exXpy, (1, po) := x(1, X0, po), (1, po) € Rx H™'(x0,-)({1/2}),

where (x(., X9, po), p(., X0, po)) is the integral curve of H for initial condition
(x0, po) (globally defined on the compact manifold). Along y, the time ¢ is said
to be conjugate if (z, po) is a critical point of exp, ; the first of such times, if any,
is called the (first) conjugate time along y and is denoted #.(x¢, po, ). The corre-
sponding critical value is the (first) conjugate point. One defines the nonfocal domain
of x¢ as

NF(x9) := {tc(x0, po. ) po | H(xo, po) = 1/2}.

Up to the dilation (x, y) — (x/+/Xo,y/ \/1 — Xo/A) which does not change con-
vexity, the boundary of I(xg) is parameterized by

. Po . Pog
S' 5 o = tou(xo0, o, ) explicr), o = ar +1i . 1
(X0, po. ) expia) g(\/xo \/l—Xo//\) (1)

One can also parameterize by pg = cosa+/Xo, allowing a ramification above
Dy = 0 since

Poo = /1= Xo/A \/1 — pg/ Xo.

(Two distinct geodesics are generated depending on the sign.) For the sake of sim-
plicity, we denote 7(pg) := feu(X0, po, ) and ' := d/dpg. Convexity of the in-



On the injectivity and nonfocal domains of the ellipsoid of revolution 77

jectivity domain holds if and only if the curvature of its boundary (provided the
boundary is regular enough) is nonnegative.

Proposition 2. The curvature of the injectivity domain of x¢ is

t(t + pot’) + (Xo — pp) (2% —11")
[(Xo — p3)(t + pot’)? + (pot — (Xo — pP)T/)?13/2’

whose sign is given by

K = X§/2 P; < Xo,

Kk = 1(t + pet’) + (Xo — pg)(2t"* — 7).

Proof. In cartesian coordinates, K = (x”y" — x’y")/(x'*> + y'*)*/% whenever de-
fined, hence the result. O

2 Oblate case

Let xo = (6o, ¢o); thanks to the symmetry of revolution, one can set 6y = 0. The
initial condition is thus reduced to g, that is to Xo = sin® @q.

Lemma 1. The cut time along a geodesic (not a meridian) is equal to the half-period
of the p-coordinate. As such, T = t(pg, () is independent of X, and of the sign of
Dyg (no ramification'). The injectivity domain has two axial symmetries, and con-
vexity can be checked on a quarter of the domain.

Proof. When p < 1, cut points are generated by the discrete symmetry py, +—
— Py, the associated geodesics intersect at t = 7/2 where T is the period of ¢.
The period does not depend on the initial condition since, up to a translation on 6,
any geodesic can be seen as a geodesic with initial condition g9 = 7/2. The limit
case py, = 0 (where the cut point is a conjugate point) is obtained letting pg tend
to +£+/Xp. Because of the symmetry involved, T(pg. —poq. £) = T(Pg. Peg: V)
and one has an x-axis symmetry on the injectivity domain. Obviously, pg +— —pg
induces another symmetry (wrt. y-axis) on the domain. O

When & = 0 (A = 1), the metric is singular at X = 1 (that is ¢ = 7/2). Setting
p = sing, one gets

Xdo? + (1 — X/A)dg?* = sin® pd6? + dp? = dx? + dy?

which is the flat metric on the Poincaré disk D. Geometrically, the ellipsoid is col-
lapsed on the unit disk and the equatorial singularity corresponds to the boundary.
Crossing 9D is interpretated as going from one side of the disk to the other, that is
crossing the equator to go from one hemisphere to the other on the flat ellipsoid. As

! This is not true anymore for conjugate times outside polar or equatorial points; only one axial
symmetry is preserved, see Fig. 4.
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Fig. 2 Injectivity and nonfocal domains (left and right, respectively) of ¢o = 7/2 in the oblate
case when ;& — 0. For = 1, both domains are disks, while for ;& = 0 both are union of tangent
disks (of radii 1 and 4/3, respectively)

the metric is flat, geodesics are straight lines, in accordance with the degeneracy of
the parameterization by the elliptic curve in Proposition 1 (double root X = 1 when
A = 1), which trivializes the computation of the cut locus.

Proposition 3. For i = 0 and ¢9 = 7/2, the cut locus is the equator minus the
initial point. The injectivity domain is the union of two unit disks both tangent to the
Xx-axis at the origin, and is not convex (Fig. 2).

Proof. The geodesic from any point on the boundary is a straight line segment which
meets again the boundary; the resulting pointis a cut point as is intersects the geodesic
from the other side of the disk, and the cut time is just given by the common length of
these segments. The whole boundary but the initial the point is so made of cut points.
In parameterization (1), (o) = 2sina and o +— £7t() exp(ia), a € (0, ), is the
union of two circles tangent at the origin and of radii one. O

Remark 1. When . = 0 and Xy = 1,

Pwo=i\/1—X0\/1—P§/xo=0,

so the dilation used in (1) desingularizes the parameterization of the boundary of
the injectivity domain (which would otherwise collapse on a segment), revealing its
non-convexity.

By continuity, I(p9 = 7/2) cannot be convex for u small enough; conversely,
when u = 1, the injectivity domain of any point (including equatorial ones) are
circles of radius 7 (the cut locus of any point on the round sphere is the antipodal
point, at distance ), therefore convex. There is so some threshold between p© = 1
and u = 0 regarding convexity. Besides, for any fixed u € [0, 1], the injectivity
domains of poles are circles (as on the round sphere), and the same must hold for
initial conditions ¢ € (0, 7/2) close enough to 0 (by symmetry, one can restrict to
¢ < 1/2). See Fig. 4. The following is proved in [4,5].
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Theorem 1. There is a nondecreasing function gy + (o) from [0, /2] to R such
that the injectivity domain 1(pg) on an oblate ellipsoid of semi-minor axis p < 1 is
convex if and only if i > (o). One has j1(0) = 0 (pole) and ju(/2) = 1//3
(equator).

The proof makes an essential use of the two following facts: (i) the degeneracy at
po = %1 of the elliptic curve to obtain (;r/2) = 1/+/3; (ii) the fact that the cut
time is given by the period of ¢ (this is not true anymore in the prolate case, see
§3), which allows to derive analytic expressions of T/ and " using derivatives of
the periods of Weierstral} functions with respect to their invariants. As the thresh-
old 1t(¢o) is monotonic, injectivity domains of any point on an oblate ellipsoid with
1/4/3 < u < 1 are convex. The determination of p(gg) for go € (0, 7/2) is an
open problem. (Numerical estimates are available, though.)

When p = 0, since crossing the boundary is changing hemisphere, one can also
interpretate the geodesic continuing on the other side as a reflection on 0D (with the
usual rule on the angles). As a result, the conjugate locus is obtained as a catacaustic
of the circle (see Fig. 3).

Proposition 4. For @ = 0 and g9 = 7/2, the conjugate locus is a cardioid de-
prived of the initial point. The nonfocal domain is the union of two disks of radii 4 /3
both tangent to the x-axis at the origin, and is not convex (Fig. 2).

Proof. The catacaustic of the unit circle with a source on the boundary is known to
be the cardioid z(8) := (2/3)(1 + cos B) exp(i) — 1/3 (see [2]). To prove that
the associated nonfocal domain is the union of two circles, consider the ray gen-
erated by some « € (0, ) in the parameterization (1) (considering @ € (—x,0),
that is py, negative, gives the other disk); it is enough to check that w(a) := 1 +
2cosaexp(i(m —a)) + (2/3) cos w exp(—3ia) (see construction on Fig. 3) belongs
to the cardioid, which is clear. |

Remark 2. When p = 0, the metric is conformal to an almost-Riemannian metric
with a singularity at the equator since

Xd6? + (1 — X)d¢? = (1 — X)(XR(X)d6? + d¢?)

with R(X) = 1/(1 — X) having a pole of order one at X = 1 (¢ = 7/2). Such
metrics are particular cases of sub-Riemannian metrics and are considered in [1,3].
Here, the conformal coefficient itself is singular, but the analysis is obvious because
of the flatness of the metric. Note that the cut locus of an equatorial point is the equa-
tor minus a point, and that the contact of the conjugate locus with the initial point is
of order one (compare Theorem 1 and 2 in [3]).

As for the injectivity domain, there exists some threshold phenomenon for the loss
of convexity of the nonfocal domain of ¢y = /2 when u goes to zero (see Fig. 2).
Conversely, for a fixed u < 1, convexity of nonfocal domains is retrieved when
@o tends to zero (see Fig. 4). Although numerical investigation suggests that some
result similar to Theorem 1 may hold for nonfocal domains, the problem is open.
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Fig. 3 Conjugate locus and nonfocal domain for & = 0 and @9 = 7/2. On the disk, geodesics
are straight lines starting from a point on the boundary and crossing dD when changing hemisphere
can be seen as reflecting on dD. The envelope of reflected rays forms the conjugate locus obtained
as a catacaustic of the circle with source point on its boundary (leftmost graph). The geometric
construction of the nonfocal domain from the cardioid is illustrated on the righmost picture

3 Prolate case

When p > 1, some loss of symmetry occurs, except when Xy = 1.

Lemma 2. The cut time along a geodesic (not a meridian) is obtained solving 6 =
w. As such, T = t(py. ju) is independent of Xo but depends on the sign of py,,.
The injectivity domain has just one axial symmetry wrt. y-axis, and convexity can
be checked on a half of the domain.

Proof. The situation in the prolate case is reversed compared to the oblate one: The
symmetry pg — —pp now generates intersections between geodesics emanating
from the same point at length shorter than those generating by py, = —py,. Along
every geodesic not a meridian, the cut is thus obtained at & = 7 (while the meridian
case is obtained as an envelope, letting py tend to 0, providing a point both in the
cut and conjugate loci). Clearly, & pg provide the same cut time, so the symmetry
wrt. the y-axis of the injectivity domain is preserved. On the contrary, for Xy # 1,
geodesics with same pg but opposite py, do not cross 8 = 7 at the same time, so
that 7 actually depends on the sign of py,; it has to be thought of as a function ram-
ified above py, when parameterizing by pg alone. To prove that T = 7(pg, Xo, i)
actually does not depend on the initial condition, define A6 the quasi-period of 6,
that is the increment from 6 = 0 on a period of ¢. (According to Proposition 1, the
period of X, and so of ¢, is given in the complex parameterization by the imaginary
period of the lattice). As in the oblate case, the period of ¢ only depends on py, and
so does Af. Given pg > 0,as dt/df) = 1/0 = X/pg > 0, one can reparametrize
using 6 instead of ¢; since 6 and ¢ have the same period, X remains periodic as a
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Fig. 4 Injectivity and nonfocal domains (left and right, respectively) for . < 1/+/3 when go —
0. For ¢9 = 0, both domains are disks, though for ¢ = 7/2 none are convex. Observe the loss
of the axial symmetry wrt. the x-axis for the nonfocal domain

function of 8 (with period A6(pg)), and

T
X
f=[ ©) 6.
o Do

Let #; > 0 be the first intersection of the geodesic with ¢ = /2, assuming for the
sake of simplicity 9 < m/2 and py,, > O (the same kind of argument works for
Poo < 0). The geodesic of initial condition (6(¢1), 7r/2) with same pg (and positive
Dyg) has cut time

6(t1)+m X Ty
?:[ © 46 =[ © 46
0(t1) Po o Po

by periodicity of X(0), so Tt = T, cut time associated with initial condition /2,
whatever @g. O

Up to translation, X is given by some Weierstraf} function, g, whose invariants de-
pend only on pg and A (thatis on pg and u — see Proposition 1). In the parameteriza-
tionby z € C/A, one checks that the resulting quadrature on 6 involves integrating
rational fractions in g such as

[ ¢ (a)dz — 2%(@)z +1n o(z—a)
©(2) — p(a) o(z+a)
where {’ = —p and 0’'/o = ¢. Studying the roots of an equation with such tran-

scendence is a complicated task. We provide a preliminary analysis trying to take
advantage of the degeneracy for 4 = oo when pg = 0, and using numerical esti-
mates.

Proposition 5. The metric of the prolate ellipsoid converges pointwisely outside
poles to the metric of the flat cylinder of revolution when p — oo. All injectivity
and nonfocal domains of the cylinder are convex.
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Proof. Recalling that z = p cos ¢, the metric on the ellipsoid writes

1 2 de?+ 1+ 2 dz?
— zZ
n? p?>(u? — z2)

and convergence is clear. The geodesics on the cylinder of revolution are either ver-
tical lines (pg = 0) without cut points, or helices (dz/df = p./pg = cst); in the
second case, the cut time is 7 /| pg| (cut point on the antipodal vertical line). Injec-
tivity domains are therefore all equal to a vertical strip [—7, 7] X R, and convex. The
metric is flat and there are no conjugate points, so nonfocal domains are the whole
fiber (~ R?) at any point, also convex. O

In contrast with the oblate case, another complication is so that there is no obvious
obstruction to convexity arising from the asymptotic behavior when u — co. With
implicit function use on § = 7 in mind, we recall the computation of the sensitivi-
ties wrt. initial condition of first (Jacobi fields) and second order for a Hamiltonian
system.

Remark 3. The fact that the metric converges towards a flat metric (previous Propo-
sition) does not even entail that the limit, after some compactification, of the nonfocal
domains must be convex (see Fig. 5).
—

Let 2 = H(z) be a smooth Hamiltonian system, with z = (x, p) € R?* and
—
H = (0, H,—0dxH). The solution z (-, z9) with initial condition z(0) = zo depends
smoothly on zg, and for any §zg € R?" one has

2

0 (200820 = 62(0), 2 (t,20)(60,870) = 822 (1),
820 82%

where 8z and 8,z are solutions of, respectively (by H [t] we mean H (z (¢, zp)), etc.),

§z = H'[1]6z, §2(0) = id,

Fig. 5 Injectivity and nonfocal domains (left and right, respectively) of 99 = 7/2 in the prolate
case when ;& — oo. While convexity seems to hold at 4 = oo (and before) for the injectiv-
ity domain, nonfocal domains are clearly not convex for p large enough, suggesting a threshold
phenomenon as in the oblate case when u — 0
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Fig. 6 Conjecture on the bifurcation of convexity of injectivity and nonfocal domains on the ellip-
soid of revolution for a given point (¢p) nota pole when i goes from 0 to co. Leftmost graph: For
the injectivity domain, there might be only be one threshold £ (¢o) < 1. Rightmost graph: For the
nonfocal domain, there might be two thresholds 1 (¢o) < 1 and fi(@p) > 1, as convexity might
be retrieved for 1 close to 1, and lost again for p large enough

§y2 = H'[t]822 + H"[1]($2(1), 82(1)), 822(0) = 0.

The numerical computation of these sensitivities, up to order two, is performed by the
cotcot software’ combining automatic differentiation and numerical integration
of ordinary differential equations. In our case, z = (0, ¢, pg, py) and, for py # 0,
7 is implicitely defined by 0(z, pg) = 7. As previously mentioned, there is a de-
pendence of the geodesic not only on py but also on the sign of py,. The initial
condition on { H = 1/2} writes

20(p0) 1= (o1 = Xo/i 1= 931 %0).

Proposition 6. For 0 < pg < Xy, the derivatives of first and second order are

1 1 . . ~
= _9,59, " = 4 (O 42807 + 8,0 + 86),

where 86 (resp. §,0) is the first (resp. second) variation associated with §z9 =
2o(pe), 80 the first variation associated with §z9 = zj(pg), and where all func-
tions are evaluated at T(pg).

Proof. Apply implicit function theorem to 6(t, pg) = 7 noting that 6 = po/X #
0 whenever pg # 0. O

Whereas the worst case for curvature on an oblate ellipsoid, whatever the point, is
given by the equator ( pg = Xp), numerical simulations below indicate that the worst
case in the prolate situation is given by meridians, pg = 0, at the apparent singular-
ity of the expressions before. Worst cases for curvature of injectivity domains (and,
seemingly, of nonfocal domains — see Fig. 5) actually occur along geodesics where
cut points are conjugate ones (equator in the oblate case, meridian in the prolate one).

To achieve numerical convergence of the domains, and of the curvature, we use
a second dilation: (x, y) + (x, y/u). The curvature is thus renormalized according

2 apo.enseeiht.fr/cotcot
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to

©(t + pet’) + (Xo — pg) (27" —zt”)
[(Xo— pp)(x + pot)? + (1/1)2(pet — (Xo — pg)t')?]3/?
This provides a heuristical compactification of domains and curvature, but has the

effect that the parameterization by pg = cos a+/Xo becomes singular when . — oo
as

R =/wx;"

Po . Pog
o = arg +i -0
(m VI+ @2 - 1)x0)

whenever pg # 0. One parameterizes instead K using 8 := arg(cos a—+(i /) sinc).
On the basis of numerical estimates computed as in Proposition 6, the following ob-
servations can be made: (i) For ¢9 = 7/2, numerical convergence of the (renormal-
ized) injectivity domain is obtained (see Fig. 5); the limit domain seems to be con-
vex, which suggests that convexity holds for equatorial points and p large enough.
A stronger conjecture would be convexity for all £ > 1, or even for all © > 1
whatever ¢ (see also Fig. 8 in this respect). (ii) For ¢g = /2, an estimation of the
curvature K of the (renormalized) injectivity domain is obtained (see Fig. 7), not
contradicting (i). (iii) For ¢g = /2, numerical convergence of the (renormalized)
nonfocal domain is also obtained (see Fig. 5), which suggests that convexity does
not hold for large enough p; one can conjecturate a threshold phenomenon as in the
oblate situation. (iv) The dependence of the convexity on the initial condition for
M > 1 seems to be more complicate than in the oblate case, both for injectivity and
nonfocal domains, as no monotonic behaviour seems to hold (see Fig. 8). For a fixed
@0, Fig. 6 summarizes the previous conjectures on the bifurcation of the domains in
terms of convexity.

25

05

_05 L L L L L L L
-4 -3 -2 -1 0 1 2 3 4

Fig. 7 Renormalized curvature K of the injectivity domain for 4 = oo and @9 = 7/2. The
parameter in abscissa is 8 = arg(cosa + (i/u) sina) with pg = cosa+/Xo so meridians
are retrieved for B = =£m/2. They actually correspond to the minimum estimated value of the
curvature, in accordance with Fig. 5
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Fig. 8 Injectivity and nonfocal domains (left and right, respectively) for ;& > 1 when @9 — 0.
For ¢o = 0, both domains are disks; for ¢9 = 7/2, the injectivity domain remains convex but
not the nonfocal domain. For ¢ € (0, 7t/2), domains only have one axial symmetry. Monotonic
dependence of the curvature on @o does not seem to hold, either for the injectivity domain, or for
the nonfocal one

References

. Agrachev, A., Boscain, U., Sigalotti, M.: A Gauf3-Bonnet like formula on two-dimensional

almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20(4), 801-822 (2008)

. Arnold, V.I., Varchenko, A.N., Gusein-Zade, S.M.: The classification of critical points, caus-

tics and wave fronts: Singularities of Differentiable Maps 1, Birkhduser, Boston (1985)

. Bonnard, B., Caillau, J.-B.: Metrics with equatorial singularities on the sphere. Ann. Mat. Pura

Appl. (to appear)

. Bonnard, B., Caillau, J.-B., Janin, G.: Riemannian metrics on twospheres and extensions with

applications to optimal control. ESAIM Control Optim. and Calc. 19(2), 533-554 (2013)

. Bonnard, B., Caillau, J.-B., Rifford, L.: Convexity of injectivity domains on the ellipsoid of

revolution: The oblate case. C. R. Acad. Sci. Paris, Ser. 1348, 1315-1318 (2010)

. Bonnard, B., Cots, O., Jassionnesse, L.: Geometric and numerical techniques to compute

conjugate and cut loci on Riemannian surfaces. In: Stefani, G., Boscain, U., Gauthier, J.-P.,
Sarychev, A., Sigalotti, M. (eds) Geometric Control Theory and Sub-Riemannian Geometry.
Springer INAAM Series, Vol. 5. Springer International Publishing Switzerland (2014)
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions.
Comm. Pure Appl. Math. 44, 375-417 (1991)

Figalli, A., Rifford, L.: Continuity of optimal transport maps and convexity of injectivity do-
mains on small deformations of the two-sphere. Comm. Pure Appl. Math. 62-(12), 1670-1706
(2009)

Figalli, A., Rifford, L., Villani, C.: Nearly round spheres look convex. Amer. J. Math. 134(1),
109-139 (2012)

Figalli, A., Rifford, L., Villani, C.: Necessary and sufficient conditions for continuity of opti-
mal transport maps on Riemannian manifolds. Tohoku. Math. J. 63(4), 855-876 (2011)

. Itoh, J., Kiyohara, K.: The cut loci and the conjugate loci on ellipsoids. Manuscripta math.

114(2), 247-264 (2004)
McCann, R.J.: Polar factorization of maps in Riemannian manifolds. Geom. Funct. Anal. 11,
589-608 (2001)



Null controllability in large time
for the parabolic Grushin operator
with singular potential

Piermarco Cannarsa and Roberto Guglielmi

Abstract We investigate the null controllability property for the parabolic Grushin
equation with an inverse square singular potential. Thanks to a Fourier decomposi-
tion for the solution of the equation, we can reduce the problem to the validity of
a uniform observability inequality with respect to the Fourier frequency. Such an
inequality is obtained by means of a suitable Carleman estimate, with an adapted
spatial weight function. We thus show that null controllability holds in large time,
as in the case of the Grushin operator without potential.

1 Introduction

The work [2] provides a complete analysis of the null controllability properties (with
respect to the values of y > 0 and T > 0) of the generalized Grushin operator

deu — Fu — x| 0u = f(x,y,0)lu(x,y) (x,y,1) € Dx(0,T),
ux,y,t)=0 (x,y,t) €0D x(0,T), (1)
u(x,y,0) = uo(x,y) € L*(D),

where D := (—1,1) x (0,1) and @ C (0,1) x (0, 1). We can summarize the con-
trollability result in [2] as follows:

1) ify € (0,1), then system (1) is null controllable in any time 7" > 0;
2) ify =1land w = (a,bh) x (0,1) where 0 < a < b < 1, then there exists
T* > a?/2 such that
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— forevery T > T* system (1) is null controllable in time T';
— forevery T < T* system (1) is not null controllable in time 7T’;

3) if y > 1, then (1) is not null controllable.

On the other hand, the controllability property for the operator in system (1) is in
general sensitive to lower order perturbations. Indeed, a result in [3] shows that, for
all y > 1, the dynamics ruled by the operator

_ a2 2ya2. V(Y 1
Lu = u+ x0u—"7 (1 +1) Lu @)
separates the two connected component of D \ {0} x [0, 1], where {0} x [0, 1] is the
singular set for the y-Grushin metric generated by the vector fields

1 0
X, = , X = , >1.
1 (O) 2 <|x|1’) Yy =

Thus, there is no trasmission of information across the singular set. In turn, this
implies that in the case of ¥ > 1 no controllability result can be expected for the
equation

{8tu—Lu = f(x,y,t)u(x,y) in D x(0,00), 3)

ux,y,t)=0 on dD x (0,00),

when o lies in only one connected component of D \ {0} x [0, 1], that is the case
accounted for in [2].

Thus, we are naturally led to face the following question: which controllability
properties do hold for the operator L?

In this paper we establish a partial (positive) answer to the above question. In-
deed, we show a null controllability result for all sufficiently large times, in the case
y = 1, restricting the domain to one side only of the singular set. More precisely,
setting 2 := (0, 1) x (0, 1), we will address the null controllability problem for the
equation

A
du — O2u — |x|28§u — x2u = f(x,y,t)1lp(x,y) in Qx(0,7),
u(x,y, 1) =0 on IR x (0,T), @
M(X, y’O) = uo(x, y) € LZ(Q) ’

where T > 0, A € R and w is an open subset of 2. The following result holds.

Theorem 1. Let v = (a,b) x (0, 1) for some 0 < a < b <1 and A < 1/4. Then
there exists T* > 0 such that for every T > T* system (4) is null controllable in
time T.

Thus, also for the Grushin operator with singular potential, the case y = 1 seems to
be a transition regime, needing a minimum time for the null controllability, as in the
problem addressed in [2]. Indeed, the same methods developed in [2] should apply,
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in order to prove also the necessity of such a minimum time. By a standard duality
argument, Theorem 1 is equivalent to the observability in large time in w x (0, T")
for the adjoint system

A
;g —02g—|xPP03g— g =0 1inQx(0.7),

X
glx,y,1) =0 on 9Q x (0,7T), (5)
g(x,y,0) = go(x,y) € L*(Q).

Thanks to a suitable Carleman estimate (see Proposition 5), we will prove the fol-
lowing result.

Theorem 2. Let v = (a,b) x (0,1) for some 0 < a < b < land A < 1/4.
Then there exists T* > 0 such that for every T > T* system (5) is observable in
wx (0, 7).

As a consequence, we deduce null controllability in large times also for Eq. (3), with
a control region located on both sides of the degeneracy, of the type w = (a1, b1) U
(az,b2) x (0,1), with—1 <a; <b; <0<ap <by <1.

For the time being, the Carleman estimate that we prove in this paper allows to
obtain the observability only in the case y = 1, though we expect a similar result
(without minimum time) also in the case 0 < y < 1, just like in [2].

For future reference, in Sects. 2 and 3 we will treat the general case of an operator
Lu = d%u + [x|*05u + xkz u, with y > 0. From Sect. 4 on we will focus on the
case y = 1.

2 Well-posedness and Fourier decomposition

2.1 Well-posedness of the Cauchy-problem

Let H := L?(R2), and denote by (-, -) and | - |, respectively, the scalar product and
norm in H. We recall the well-known Hardy’s inequality [5]

1 22 1
/0 xzdx < 4/0 z2dx Yz e Hy(0,1). (6)

Thanks to (6), the scalar product
2y A [e]
(u,v) := ; Uxvx + x|V uyvy, — xzuv dxdy Yu,veCi®(Q) ()

is positive for every A < 1/4 (as we will assume from now on). Set
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W= C(‘)X’(Q)I'IW, where [u|w = (u,u)'/2, and observe that H} () C W C H,

thus W is dense in H. Introduce the space V := C(‘)X’(Q)I'IV (see [2]), where
luly := ((u,u))"/? and

((u,v)) ::[ (uxvx + x| uyvy) dxdy Vu, v e Cge(Q).
Q

Hardy’s inequality (6) ensures that (z,z) > Cj((z,z)) for all z € C§°(2), with
C, :=1—44 > 0, thus W C V. Let introduce the space le,(Q) of all square-
integrable functions with respect to the measure dj = |x|?”dxdy. Then (see [2,
Lemma 1]), for all elements g of W there exist dxg € L*(Q), dyg € L3 () such
that for every ¢ € C5°(Q2)

L (0. 1)x (e ) + [x[7 g x. 1)y (x. ) dxdy
_ [Q (0x8(x. ) + [x[7Byg(x. 7)) $(x. y)dxdy . (®)

Define now
D(A) = {u € W : 3¢ > Osuch that |(u, h)| < clh|lg Yh e W} , )

(Au,h) == —(u,h) VYheWw. (10)

Then (see [12, Theorem 1.18]), the operator (A, D(A)) generates an analytic semi-
group S(¢) of contractions on H. Note that A4 is selfadjoint on H, and (10) implies
that

A
Au = Fu + |7 u + ol ae inQ.

So, system (4) can be recast in the form

{u/(r) = Au(r) + f(t) 1€[0,T], an

u(0) = ug,
where T > 0, f € L?(0,T; H) and uy € H.

Definition 1 (Weak solution). A function u € C([0,T]; H) N L?>(0,T; W) is a
weak solution of system (11) if for every i € D(A) the function (u(¢), i) is abso-
lutely continuous on [0, 7] and for a.e. t € [0, T

). h) = (o), 4R + (£, ). (1)
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In [8], it is shown that the equivalence between condition (12) and the definition of
solution by transposition, that is,

[ 3. 9pe 1) = . gt . Oldndy
t
= [ [ {u (8§¢ + X703 + Azgo) + fgo} dxdydt
0 Q X

forevery ¢ € C2([0,T] x Q) and t* € (0, T).
Moreover, the unique weak solution of (11) in the sense of Definition 1 is given
by the variations-of-constants formula (see [1])

u(t) =S(t)u0+[t St —s)f(s)ds, te€][0,T]. (13)
0

The following existence and uniqueness result follows.

Proposition 1. For every ug € H, T > O and f € L?(0,T; H), there exists a
unique weak solution of the Cauchy problem (11). This solution satisfies

u@la < luolg + VTl fllL20r.m) Yt €0.T]. (14)

Moreover, u(t) € D(A) and u'(t) € H fora.e.t € (0,T).

2.2 Fourier decomposition of the solution

Let g € C([0,T); H) N L%(0, T; W) be the solution of Eq. (5) in the sense of Def-
inition 1. Thus, the function y +— g(x, y,?) belongs to L?(0, 1) for ae. (x,t) €
(0,1) x (0, T), and we can develop g in Fourier series with respect to y

g, y.)= Y gn(x.0en(y). (15)

neN*

where for all n € N* we set ¢, (y) := +/2sin(nzy) and

1
gn(x,1) = [ g(x. ¥, gn(y)dy . (16)
0
Proposition 2. For every n > 1, g, is the unique weak solution of
Dign — 0280 + [ )2 xP7 = B ] g =0 (6,1) € (0,1)x (0.7),
gn(0.1) = g(1,1) = 0 1€(0.7), an
gn(X,O) :go,l’l('x) X € (0»1)»

where g0, € L?(0, 1) is given by go (x) := fol go(x, V), (¥)dy.
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Proof. First, observe that, for any n > 1, system (17) is a first order Cauchy prob-
lem, that admits the unique weak solution

g, € C°([0, T]; L?(0, 1)) N L?(0, T; Hy (0, 1))

which satisfies

d 1
: ( [0 gn(x,r)w(x)dx)

[ [t 0ws@ + (2 = ) acovwlax =0 as)

X2
forevery ¥ € Hy (0, 1).

In order to verify that the nth Fourier coefficient of g, defined by (16), satisfies
system (17), observe that

1
gn(-,0)=[0 2000 )y = gno() . a(0.0) = gu(1.) =0 Vi € (0.T)

and
gn € C°([0, T]; L*(0, 1)) N L?(0, T; Hy (0, 1)) .

Thus, itis sufficient to prove that g, fulfills condition (18). Indeed, using the identity
(16), for all € H; (0, 1) we obtain, fora.e. ¢ € [0, T,

d ! ! A
dt (/(; gn‘/fdx) +/(; (gn,xl/fx + |:(n77)2|x|2y - xz]gnl/f) dx

1 1 /\
= [0 [0 {gtw/f + &xnVx + |:(n7r)2|x|2y _ x2] g%x/f} dydx. (19)

Observe that Proposition 1 ensures g;(-, 1) € L?(R2) and g(-, 1) € D(A) forae. t €
(0, 7). So, we multiply g; = Ag by h(x,y) = ¥ (x)@,(y) € W and integrate over
€2, in order to obtain, for a.e. t € (0, T),

1 1 1 1
/[gﬂ/fwndxdy=[ [ Agvopdxdy
0 0 0 0

1 1 A
= _/ [ (gxl/foDn + |x|2ygy1/f¢n,y T2 gl/fﬁon) dxdy
0 0

1 1 A
= —/(; /(; (gxl/foDn + (nyr)2|x|21’g1/,¢n _ ngl/fﬁon) dxdy. (20)

where (in the last identity) we have used relation (8). Combining identities (19) and
(20) completes the proof. O

The unique continuation result for the adjoint system (5) can be readily derived.
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Proposition 3. Let T > 0, y > 0, A < 1/4, w an open subset of (0, 1) x (0, 1), and
let g € C([0,T]; H) N L%(0, T; W) be a weak solution of system (5). If g = 0 on
wx(0,T), theng=00nQ x (0,7).

Proof. Let € > 0 be such that w C (e, 1) x (0, 1). In the rectangle (e, 1) x (0, 1),
Eq. (5) has neither degenerate coefficients nor singular potential, so we are in the po-
sition to apply the unique continuation for uniformly parabolic 2—D equation. Thus,
the hypothesis g = 0 on w x (0, T) implies that g = O on (e, 1) x (0,1) x (0, T).
Then, relation (16) ensures that g, = 0 on (¢, 1) x (0, T') for every n € N*. More-
over, since g, € C°([0, T]; L*(0, 1)) N L?(0, T; H, (0, 1)), in particular, for a.e.
t € (0,T), we have g,(-,2) € H}(0,1) C C([0, 1]). Thus, by continuity, we con-
clude that g, = 0 on (0,1) x (0,T) for every n € N* (compare also with the
observability inequality in [10, Lemma 3.2(ii)]). Therefore, back to Eq. (15), we
conclude that g = 0 on Q x (0, 7). O

Remark 1. Thanks to Proposition 3, we derive that the Grushin operator with singu-
lar potential (4) is approximately controllable by a locally distributed control in an
arbitrary open subset w of €2, forevery T > 0, y > 0 and A < 1/4. In particular,
the condition A < 1/4 embraces the case of the operator (2) accounted in [3], whose
potential coefficient —y/2(y/2 + 1) is smaller than 1/4 for every y # —1.

3 Spectral analysis for the 1—D problem

Aiming at proving the null controllability for Eq. (4), we now focus on the asymptotic
behaviour (with respect to ) of the one dimensional eigenvalue problem associated
with system (17). For this reason, let us introduce, for every n € N*, y > 0 and
A < 1/4, the operator Ay, on L?(0, 1) by

D(Apy5) = {(p € Hy(0,1) : ¢’ € AC;,c((0, 1]) and.

~ [ - Loezonf. e

A
Anyarp = —¢" + [(nfr)ZIXIZ" - x2]¢ € L?(0,1).

The least eigenvalue of A ,, 3 is given by

fnya = min Jo v/ + [ 16 = & o2} ax

1
veH 0.1 v(x)%dx
110;&0 fO ( )

(22)

For simplicity, from now on we will refer to A, , 1 and ji, ;2 justas A, and .
We mention that the case n = 0 has been investigated in [11], where well-posedness
and observability are proven for the operator Ag. Here we would achieve a similar
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observability result for the general operator A,,, uniformly in » (and in y and A as
well). We start by characterizing the behaviour of u, as n — 400, that quantifies
the dissipation speed of the solution of (17).

Lemma 1. Problem

A
—v;{,y,k(x) + |:(n7[)2|x|2y - X2] Un,y,)\(x) = /J«nvn,y,)l(x) x e (0,1)
Un,y,A 0) = Un,y,A (1)=0,
admits a unique positive solution with L?(0, 1)-norm one.

Proof. Observe that the domain D(A,) of A, is compactly embedded in L2(0, 1),
thus the resolvent operator of A, is a compact operator. Then, there exists an or-
thonormal basis of L2 (0, 1) consisting of eigenvectors of A, and the first eigenvalue
Un is simple. Moreover, the associated eigenfunction v is positive. Indeed, if not so,
let us consider the function w(x) = |v(x)|. Then, w still belongs to Hj (0, 1), itis a
weak solution of (23) and it does not increase the functional in (22). O

(23)

We next provide a precise growth condition for the eigenvalue p,, with respect
ton € N*

Proposition 4. For every y > 0 and A < 1/4, there exist two constants Cx =
Cx(y,A), C* = C*(y) > 0 such that

2 2
Cin'ty < u, <C*n'tr Vne N,

Proof. We prove first the lower bound. Let 7, := n 14y With the change of variable
d(x) = /tup(tax), we get

! A
o=, ot [ (0002 oo = 7 o2 )ax 1otz =1}

¢eC°(0,1)

. n A
=2 inf {[0 (qf(y)z+[n2|y|2y—y2]¢(y)2)dy:||¢||Lz<o,m>=1}

9eCe(0,mn)

. +oo ’ 2 21,12 A 2
Cy = inf {[ (go(y) +[7r Iy[*r — 2]so(y) )dyi
@eC°(0,+00) | Jo y

1002200 100y = 1}

is positive since, owing to Hardy’s inequality, it is greater than (1 — 4A)cx, where
¢« 1s the positive constant (see [9] for the case y = 1)

+o00
Cx 1= inf "(0)? + 72|y Vdy : =1.
. ¢€Cé’°(0,+oo){[0 (' () Y17 0(1)?) dy : 9llL2(0.+00)

Moreover, observe that C goesto 0 as A — 1/4.
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Now we prove the upper bound for p,. For every k > 1 we define the function
¢k € Hy(0,1) by
kx forx €[0,1/k),
or(x) =32—kx forx e[l/k,2/k), 24)
0 forx € [2/k, 1].

Straightforward computations show that

1 2 1
/ oo (0)dx = . [ Y g () dx = e )k
0 3k 0

1 1
1

[ ¢ (0)2dx =2k | [ L9k ()2dx = 4(1 = In2)k ,
0 0o X

where
22y+3 22y+1 -1 22y+2 -1

c(y) = +4 -2
) 2y +3 2y +1 y+1
Thus, fty < fuya(k) = 3k?>+3/2(wn)*c(y)k =2 —6A(1 —In2)k> forall k > 1.

- - 1
Since f; ;. attains its minimum at k = ¢(y, A)n»+!, we have that

—~ 2
Pn < foyalk) = Cly, Anr+t.

Moreover, since

2 1/(y+1)
1
d VC(V)) Y- — oy

2
the constant C* can be chosen independent from A; indeed, 1 —2A(1 —1n2) > 0 for

every A < 1/4, and the exponent y/(y + 1) of the rightmost term is smaller than
one. |

C(y.A) = 3(

4 A global Carleman inequality

We want to prove that, if y = 1 and w = (a,b) x (0,1) with0 < a < b < 1,
then there exists a positive time 7* > 0 such that system (4) is null controllable
in any time T > T*, or, equivalently, system (5) is observable in any time 7 >
T*. For this purpose, we will implement a global Carleman inequality for solutions
of (17).

For every n € N*, we introduce the operator

A
Png:gt_gxx+|:(n7r)2 2 - 2]g
X

and the functions 6(¢) = [t(T — )] 7%, t € (0, T), for some k > 2, and

)
B(x) := 2 4x , x€l0,1]. (25)
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We then consider the weight function
plx.1) =MOD)B(x). (x.1)€ Q:=(0,1)x(0,7T) (26)
for a sufficiently large constant M .
Proposition 5. There exist positive constant Cy, Co and n € (0,2) such that for
everyn € N*, T > 0and g € C°([0,T]; L?(0,1)) N L>(0, T; H} (0. 1)) we have
A 2
C [ |:M9(g)2c - 2g2) + M363x%g% + Mmo® ] e 2PdQ
0 X x7

T
< [ |PaglPe2Pd0 + [ MO(g2e ™) mydi . (27)
9 0

where M := C, max(T*/? 4 T2k T2kp),

Remark 2. In the following proof, in order to ensure the regularity of the function g
needed for all integrations by parts, namely, that g € H?(0,1) N H(} (0, 1), we will

regularize the operator P, with the relaxed operator P, s with potential . st)z g,

and then pass to the limit as § — 0. For simplicity, we will perform computations
directly on P,.
Proof. Let g € C°([0,T]; L?(0,1)) N L?(0, T'; H{ (0, 1)), and define

z(x, 1) = g(x,1)e P& (28)
with weight function p(x, t) defined as in (26). First, note that

{Z(O,l) =z(1,1) = z,0,1) = z;(1,¢) =0 forallt € (0, T), 29

0%z, 0;zandzy -0 ast—0Tort - T .
Moreover, one verifies that
e ?Pg=Plz+ Pz,

where Ptz = (pr — p2)z — Zxx + [(nn)2x2 - xkz] zand Pz = z; —2pyzy —
PxxZ. Thus, we have

1
Pz pi) < [ e oripstao (30

and (P, z, Pn+z) = D + B, where (after several integration by parts we have that)
the distributed part D is given by

1
D = _2[ pxxz;%dQ _[ DPxxxZZxdQ _[ 2(ptt _szpxt)ZZdQ
o 9] o

+ /Q (pe — p2)xpxz°dQ + [Q [(mr)2 2—32] pxz2dQ (€29)
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and the boundary terms are
T

B A
B = |:[0 ) (pt —pi + (nm)*x? — x2) szx]o
1

T
A
+ [ [ (pxzi + paxzzx — [p1 — pi + (@m)*x% — xz]pr) dr} . (32)
0
0

Observe that, thanks to hypotheses (29), the boundary contribution reduces to

T
B = [ pxzidt
0

In order to cope with the singular potential, we will adapt the choice of the spatial
weight B. As proposed in [4] and later in [10], we choose B(x) := (2 — x2)/4, as
in (25). Recalling that p(x,t) = M6(t)B(x), the distributed part becomes

1

0

M3
D :[ M622dQ +[ x26322dQ
0 0o 4
M? M A
+[ [ ) X200, — o (2—x2)9tt—(nn)zMsz—MHXZ]zde, (33)
9

and -
1
B =[0 —2Mez§(1)dx. (34)

We now estimate from below the distributed component D, taking advantage of the
two coercive terms in the first line of Eq. (33). To this aim, we need an improved
version of Hardy’s inequality, namely, the so-called Hardy-Poincaré inequality: for
allm > 0 and n < 2 there exists a positive constant Co = Cq(n, m) such that

1 " 22 1,2 12
[()(zx—4x2)dx2m[() xndx—C()[O z%dx . (35)

Since A < 1/4, applying the Hardy-Poincaré inequality with m = 2, we deduce that

M bt M3 2
D= [ e(zg— 222)dQ+ [x29322dQ+[ Mo~ dQ
0 x 4 Jo o X

C M M
_ 0[ M922dQ+[ [— @2 — x>0y +
2 Jo ol 8

2
) X200, — (nn)2x2M9] z2dQ,

where the three terms on the first line are positive, whereas the integrals in the second
line need to be evaluated. Observe that

16:()] < ) (T)'VE and [0, ()] < e2(T)O' % Vi e (0,T), (36)
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where ¢1(T) = kT and ¢»(T) = k(k + 1)T + k/2T?. Moreover,
|6°H1K] < ¢3(T)6?

with ¢3(T) = ¢T?®=1D where here and in the following ¢ stands for a generic
constant independent of n and T . Thus,

M2
x206,z2dQ
2
(9]
So, for M > C{(T) = ¢T*~', we deduce that
M A M3 2
D> [ e(zg— 222)dQ+ [x29322dQ+[ Mo~ do
2 0 X 8 0 0 xn

C M
- 20[QM922dQ+[Q [— q (2—x2)9tt—(n7r)2x2M9] 22dQ .

< 01‘33[ M2x20322dQ .
2 Jo

On the other hand, fix k = 1 4+ 2/#n and consider the conjugate exponents ¢ = k
and ¢’ = k/(k — 1). Then, taking c4(T) = ¢(T + T*), for every & > 0,

V [—C"Me - M(z —x2)9tt] z2dQ
ol 2 8

=C4M[ (191+2/k‘1/q’x"/q'z2/q) (€04 x /4 2140
o\ ¢

5(:4M[ 91+2/k22dQ
(9]

2
< CC4M[ 9q<1+2/k—1/q’)an/q’22dQ+€q'c4M[ 6% do
- x7
0 0
2

= cc“M[ 9‘1<1+2/k—1/q’>xw/q’22dQ+eq’c4M[ 6° do.
FUd 0 0 xN

Note that
g1 +2/k—1/¢y=3 and nq/q =2.
Thus,

‘[ [—C"Me - M(z —x2)9n] z2dQ
ol 2 8

M
< 4 [ 93x222dQ
ed 0

’ 22
+eleaM | 6 dQ.
o X"

Now, choose & > 0 such that 1 — &%’ ¢4 = 1/2. So, forall M > ¢(T*/2 + T%*), we
have that

M A M3 1 22
D> o(2- " 22)a [ 203,24 [Me d
—2[Q (Zx x22) O 16 ), 0540+, |, M0 40

—/ (nm)>x>M6z%dQ .
o
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Finally, we estimate the last integral, which depends on 7. Since 6 < ¢s563, with
C‘5(T) = CT4k,

‘[ (nm)*x>M0z%dQ fcsnzM[ x203%22dQ ,
o o

so, for every M > ¢ max(T*/2 + T2k T2kp), we conclude that

M > A, M3 2432 1[ z?
— M .
D > 2[Q9(2x x22)dQ+32 [Qx92dQ+2 0 QXndQ (37)

Thanks to relation (28) and estimates (30)—(34)—(37), we can easily complete the
proof of (27). O

5 Uniform observability
Thanks to the Carleman estimate of Proposition 5, we can prove a uniform observ-
ability result for the adjoint system (17).

Proposition 6. Let a,b € R such that0 < a < b < 1. Then there exist C > 0,
k > 2 and T* > 0 such that for every T > T*, n € N* and go,, € L*(0, 1) the
solution of (17) for y = 1 satisfies

1 T /b
/ gn(x, T)2dx < T2k=1C04T734/2) [ [ gn(x.t)?dxdt.  (38)
0 0 a

Let us recall that explicit bounds on the observability constant of the heat equation
with a potential are already known (see [6] and [7]). However, such results are of no
use in the present context where the main point is uniform (in n) observability.

Proof (of Proposition 6). Let (a’,b’) CC (a,b), 0 < y < 1such that y(x) = 1on
(0,a’) and y(x) = 0on (b, 1), and define

w(x, 1) = x(x)g(x,1) € C°([0,T]; L*(0,1)) N L*(0, T; Hy (0, 1)) .

Observe that supp(xxx) C supp(yx) C (a’,b"), and P,w = yxxg + 2)x8x. By
definition of w we deduce that

T ra
[ [ 0g?e 2P dxdt 5[ Ow?e 2PdQ . (39)
o Jo o

Moreover, since wx (1) = 0, the Carleman estimate in Proposition 5 ensures that for
every n € N*, T > 0 and for some 1 € (0, 2) we have

2
M[ dwle 2P dQ < M[ 0" e2rdqQ
0 o X'

T pb
< c/ | Paw|?e™?PdQ < c[ [ (g% + g2)e *Pdxdt
(9] o Ja’
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where M:= C, max(T*/24T2k T2kp). Thanks to Caccioppoli’sinequality (see [4])

T b T b
/ [ gie‘zl’dxdt < c[ [ g?dxdt,
0 a’ 0 a

SO
T pb
M/ Bw?e 2PdQ < c[ [ g2dxdt . (40)
9] 0 Ja
Combining Egs. (39)-(40), we have that
T pra T pb
M[ [ 0g?e 2Pdxdt 5(:[ [ g?dxdt . 41)
o Jo 0 Ja

By the same argument, choosing a cut-off function that vanishes in a neighbourhood
of 0 and equals 1 near the point x = 1, we deduce a similar inequality and conclude

that
T ,1 T b
M[ [ 0g?e 2Pdxdt < c[ [ g2dxdt . (42)
o Jo 0 Ja

Note that, for every ¢ € (T'/3,2T/3),
<0@) <
(72) =00 (or2)

1 1
[ g2 (x, T)dx < e_§“”T[ g2 (x,t)dx .
0 0

Integrating over (7/3,27/3), we deduce that

and

27/3

T 1 1
[ g2 (x,T)dx < e_g“”T[ [ g2 (x,t)dxdt
3 Jo /3 Jo

2\ k X 2T/3 1
Se_g“”T(T ) e(g) Tﬂg"[ [ 0g?(x,t)e ?Pdxdt .
4 /3 Jo
Thanks to relation (42) and Proposition 4, we conclude that
1 T2 k _ ok M T b
[ ¢2(x, T)dx < Cl( ) e T+(3) rzk[ [ 2dxdt,  (43)
0 T\ 4 0o Ja

for some constants ¢, ¢, > 0 (independent of n, T and g). Recalling that M :=
C, max(T*/2 T2k T2kp), we consider two different cases.

First case: n < 1 + T3}(/2 .Then M = C,(T*/2 + T?k), thus

1 . T b
/ g2 (x,T)dx < cTZk_lecl( +T3k/2)[ [ g% (x,t)dxdt .
0 0 a
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Second case: n > 1 + T3}(/2. Then M = CznTZk, and

1 X T b
[ g2 (x,T)dx < cT%=1,(3) ”_§C”T[ [ g% (x.t)dxdt .
0 0 a

_ 2

2enT < Oassoonas T > T* := (9)k 3 complet-

Finally, observe that (g)k n ) se

ing the proof of (38).

Finally, Proposition 6 ensures that Theorem 2 holds, so system (5) is observable in
wx (0, T)withw = (a,b) x(0,1)and T > T* > 0, thus, equivalently, system (4)
is null controllable in large time with a control located in w.

6 Open problems and perspectives

In this paper we have shown a first positive controllability result for the Grushin
operator with a singular potential in the square 2 = (0, 1) x (0, 1): approximate
controllability holds for every y > 0 and every A < 1/4; moreover, exploiting the
spectral analysis provided in Sect. 3, we have proven null controllability in large
time in the case y = 1 and A < 1/4. By analogy with the theory in [2], it should be
possible to obtain a negative controllability result for (4) if T is too small, as well
as positive and negative results depending on the value of the parameter y. Indeed,
for subcritical values of the coefficient of the inverse square potential (A < 1/4),
we expect a behaviour similar to the case of the generalized Grushin operator with-
out singular potential studied in [2]: null controllability should hold in every time
for y € (0, 1), whereas it should fail for y > 1. Widely open is the case of a po-
tential term with the critical coefficient A = 1/4. In this case, one has to adapt the
functional setting in order to compensate for the lack of coercivity of the associated
bilinear form (see [11]). Furthermore, completely open is the controllability problem
for the Grushin operator with singular potential in the domain D = (—1, 1) x (0, 1),
that is, with degeneracy of the diffusion coefficient and singularity of the potential
occurring at the interior of the domain.
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The rolling problem: overview and challenges

Yacine Chitour, Mauricio Godoy Molina, and Petri Kokkonen

Abstract In the present paper we give a historical account —ranging from classical
to modern results— of the problem of rolling two Riemannian manifolds one on the
other, with the restrictions that they cannot instantaneously slip or spin one with
respect to the other. On the way we show how this problem has profited from the
development of intrinsic Riemannian geometry, from geometric control theory and
sub-Riemannian geometry. We also mention how other areas —such as robotics and
interpolation theory— have employed the rolling problem.

1 Introduction

Differential geometry has been inextricably related to classical mechanics, since its
very conception in the 18th century. As a matter of fact, back in the days, this area of
research was referred to as rational mechanics. The basic idea of this point of view
is reasonably simple: to a given mechanical system M, one can associate a differen-
tiable manifold M in such a way that each possible state of the system corresponds
to a unique point in M. In this way, each possible velocity vector of M at a given
configuration is represented as a tangent vector to M at the corresponding point. The
classical dictionary goes as follows:
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1) physical data (such as masses, lengths, etc.) of elements in M induce a Rie-
mannian metric in M representing the kinetic energy;

2) linear restrictions imposed on the positions of M (or that can be integrated to
such) translate to submanifolds of M.

In the late 19th century, physicists noted there were plenty of mechanical systems
not considered by the above dictionary. These systems were named non-holonomic,
opposed to holonomic systems which are defined in the second point of the dictio-
nary above. A mechanical system M is non-holonomic if its dynamics has linear
restrictions that cannot be integrated to constraints of the position. For various ex-
amples and a brief historical bibliography, we refer the interested reader to the sur-
vey [8]. A well-known early example of these systems is the sphere rolling on the
plane without sliding or spinning, studied (with some variants) by Chaplygin in the
seminal works [16, 17]. Our aim in this paper is to give a general look at some of
the most important breakthroughs in mathematics that gave us some understanding
of the generalized version of this system consisting on two Riemannian manifolds
M and M of the same dimension rolling one on the other, not allowing spins or
slips. Nowadays these systems are often studied in connection to sub-Riemannian
and Riemannian geometry [43,48] and geometric control theory [3].

The structure of the paper is the following. In Sect. 2 we recall two major players
in the study of the mechanical system described above and early differential geom-
etry: Chaplygin and Cartan. Chaplygin studies for the first time the problem from a
mechanical point of view and finds first integrals of motion in different situations.
Cartan’s development and his celebrated “five variables” paper were not evidently
connected to the rolling problem at the time of their publication, see [10], never-
theless we present them from our point of view. In Sect. 3, we briefly present No-
mizu’s breakthrough introduction of the dynamics of rolling in higher dimensions,
through embedded submanifolds of Euclidean space and its relation to Cartan’s de-
velopment. In Sect. 4 we present how the problem was brought back to life when
control theory sees in differential geometry a useful tool to treat the controllability
issue of the rolling problem in two dimensions and some geometric consequences of
optimality conditions. Sect. 5 surveys how the higher dimensional rolling problem
was re-discovered and how it appears naturally in geometric interpolation. Finally
in Sect. 6 we present the latest results that have been obtained concerning the con-
trollability of the system and its symmetries. We conclude with a brief discussion
on some generalizations and open problems.

2 The early years: Mechanics and the new differential geometry

The first time the problem of a ball rolling on the plane was considered as worthy
of study was in the seminal papers of Chaplygin [16, 17], one of the fathers of non-
holonomic mechanics. The results were considered surprisingly difficult at the time,
and for [16] Chaplygin won the Gold Medal of Russian Academy of Sciences. The
main results he obtained were first integrals of motion for the system in several ge-
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ometric situations. Even these seemingly elementary problems contains unexpected
difficulties and bottlenecks when trying to obtain closed formulae for the dynamics.
Essentially at the same time, Cartan was developing his coordinate-free differential
geometry. With this new language he was able to propose and study many problems,
most often related to the search of invariants of geometric systems. In this survey,
we will only focus in two of his many ideas: the search for invariants and symmetries
for control systems with two controls and five degrees of freedom, and the definition
of affine Riemannian holonomy through the development of a curve. Both of this
ideas will appear several other times in this survey.

2.1 Chaplygin’s ball

In the year 1897 the work [16] written by Chaplygin was published. This papers is
one of a series of research articles in which Chaplygin analyzed non-holonomic sys-
tems. Also of particular relevance to this survey is another paper [17]. In particular
he was interested in studying first integrals and equations of motion for different
systems of rolling balls.

To illustrate his results, Chaplygin was able to find an integral of motion for the
system of a homogeneous small ball of mass 711 and a homogeneous sphere of mass
my, in which the ball rolls without slipping inside the sphere. We will think of the dy-
namics occurring in Euclidean 3-space. Let O be the center of the sphere, let G be the
center of the moving ball and A the point of contact between the two. Introducing the
quantitiesa = dist(O, G) and b = dist(O, A), then one has the integrals of motion:

2 dx; dy; b da  dp
;m, (y, It Xi It ) + M (a 1) (/3 dr o dt) = const.
Where A = (a, B, y) with respect to a fixed frame OX'Y’Z’, and the points G =
(x1,y1,21) and O = (x2, y2, z2) withrespect to a moving frame A XY Z, with axes
at all times parallel to those in OX'Y’Z’. The total mass is M = m1 + m,.

The equations of motion are complicated and it serves little purpose to write them
down here. Nevertheless, there is an interesting historical remark at this point. After
arriving at a very complicated differential equation to describe the dynamics of the
system, Chaplygin observes it can be written in the form

dv
+v®() +¥(¢) =0,
dg
for some functions ® and W after changing variables. The integration of differential
equations connected to the problem of rolling balls is still an area of active research,
see for example [13].
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2.2 Cartan’s “five variables” paper

A rank /[ vector distribution D on an n-dimensional manifold M or (/, n)-distribution
(where [ < n) is, by definition, an /-dimensional subbundle of the tangent bun-
dle TM, i.e., a smooth assignment ¢ +— D/, defined on M where D], is an [-
dimensional subspace of the tangent space T |, M . Two vector distributions D and
D, are said to be equivalent, if there exists a diffeomorphism F : M — M such
that Fx D1 |4 = D2|F(q) forevery g € M. Local equivalence of two distributions is
defined analogously.

Cartan’s equivalence problem consists in constructing invariants of distributions
with respect to the equivalence relation defined above. A seminal contribution by
Cartan in [14] was the introduction of the “reduction-prolongation” procedure for
building invariants and the characterization for (2, 5)-distributions via a functional
invariant (Cartan’s tensor) which vanishes precisely when the distribution is flat,
that is, when it is locally equivalent to the (unique) graded nilpotent Lie algebra [
of step 3 with growth vector (2, 3, 5).

In the same paper, Cartan also proved that in this system there is hidden a real-
ization of the 14-dimensional exceptional Lie algebra g,. To explain where does it
appear, let us recall that an infinitesimal symmetry of an (/, n)—distribution D is a
vector field X € VF(M) such that [X, D] € D. Now consider the (unique) con-
nected and simply connected nilpotent Lie group H with Lie algebra §). The two
dimensional subspace of ) that Lie generates it, can be seen as a (2, 5)—distribution
on H.In general, a (2, 5)—distribution that is bracket generating is nowadays known
as a Cartan distribution. In this setting, the following theorem takes place.

Theorem 1 (Cartan 1910). The Lie algebra of symmetries of the flat Cartan dis-
tribution is precisely g», and this situation is maximal, that is, for general Cartan
distributions the dimension of the Lie algebra of symmetries is < 14.

Moreover, Cartan gave a geometric description of the flat G,-structure as the
differential system that describes space curves of constant torsion 2 or 1/2 in the
standard unit 3-sphere (see Sect. 53 in Paragraph XI in [14].)

The connection between this studies by Cartan and the rolling problem comes
from the fact that the flat situation described above occurs in the problem of two 2-
dimensional spheres rolling one on the other without slipping or spinning, assuming
that the ratio of their radii is 1: 3, see [12] for some historical notes and a thor-
ough attempt of an explanation for this ratio. In fact, whenever the ratio of their radii
is different from 1: 3, the Lie algebra of symmetries becomes $0(3) x s0(3), thus
dropping its dimension to 6. A complete answer to this strange phenomenon as well
as a geometric reason for Cartan’s tensor was finally given in two remarkable pa-
pers [52,53] (cf. also [4]), where a geometric method for construction of functional
invariants of generic germs of (2, n)-distribution for arbitrary n > 5 is developed.
It has been recently observed in [5] that the Lie algebra of symmetries of a system
of rolling surfaces can be g, in the case of non-constant Gaussian curvature.
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2.3 Cartan’s development

Cartan in [15] defined a geometric operation, that he called development of a mani-
fold on a tangent space, in order to define holonomy in terms of “Euclidean displace-
ments”, i. e., elements of E(n). In his own words:

Quand on développe I’espace de Riemann sur I’espace euclidien tangent en A le long d’un
cycle partant de A et y revenant, cet espace euclidien subit un déplacement et tous les dé-
placements correspondant aux différents cycles possibles forment un groupe, appelé groupe
d’holonomie.

An interpretation of this quote in terms of manifolds rolling follows naturally.
For a givenloop y : [0, t] — M on an n dimensional Riemannian manifold M, one
can roll M on the Euclidean space R” obtaining a new curve 7 : [0, 1] — R”, called
the development of y. By parallel transporting along y any orthonormal frame of
T|y )M, we obtain a rotation R,, € O(n). The fact that y is not necessarily a loop
induces a translation T, corresponding to the vector y(t) — 7(0). We conclude that
we can associate to y an element (R, T;) of the Euclidean group of motions E(n).
The subgroup Hol*// (M) of E(n) consisting of all such (R, , T},) obtained by rolling
along all absolutely continuous loops y is known as the affine holonomy group of
M and the orthogonal part Hol(M') € O(n) of it is the holonomy group of M.

It is known that if M is complete and with irreducible Riemannian holonomy
group, the affine holonomy group contains all translations of T'|, M, see [37, Corol-
lary 7.4, Chap. IV]. In other words, under the irreducibility hypothesis, the rotational
part of the affine holonomy permits to recover the translational part, and this consists
of all the possible translations in 7'|x M .

Perhaps something that might have been not expected by Cartan is that this con-
cept of development would play a fundamental role in the definition of Brownian
motion on a manifold, and the subsequent explosion of interest that stochastic anal-
ysis in Riemannian manifolds has had in later decades, see [29]. For a long time,
mathematicians have had the intuition that by rolling an 7-dimensional manifold M
along a given curve y(¢) in R” with the Euclidean structure, one would obtain a
curve in M which resembles the original curve y(t), see [27]. The main outstanding
idea (as far as we know due to Malliavin) was to use Cartan’s development through
the orthonormal frame bundle and Wiener’s measure, see [50].

The idea of how to define Brownian trajectories on manifolds is similar to the
interpretation given above. Intuitively, one can consider a Brownian path B(¢) in
R”, and then roll M on R” following the path B(¢). The precise definition uses a
less regular version of Cartan’s development and parallel transport.

This naive notion allows one to recover the Laplace-Beltrami operator Ays of
the manifold. It is often interpreted as if Brownian paths are the “integral curves”
for Aps. Of course this assertion lacks of mathematical precision, but it introduces
the idea that second order differential operators induce “diffusions” on the mani-
fold. This point of view has been exploited significantly in the study of stochastic
differential equations on manifolds, see [7].
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3 A “forgotten” breakthrough

An important contribution to the understanding of the problem of rolling without
slips or spins came to light in the paper [45] by Nomizu. His aim was to give a me-
chanical interpretation of certain differential geometric invariants using this system.
He mainly focuses in submanifolds of RY with the usual Euclidean structure, and
so will we along this section.

He begins with a simple general consideration: as a motion occurring in a Eu-
clidean space RY without deforming objects, a rolling can be seen as a curve in the
Euclidean group E(N), that is a function [0, 7] 3  — f; € E(N) given by

Cic
ft = (Ot lt)) (1)

where fy = Idis the identity matrix of (N +1)x(N +1), C; € O(N) and c; € RV
He calls such types of curves 1-parametric motions.

For a given 1-parametric motion { f;}, he observed that there is a natural time-
dependent vector field X, associated to it. For an arbitrary point y € RY we define

(X1)y = dfg;x) , where x = f;71(), with the inversion taking place in E(N).
u=t
Using Eq. (1), one can see that (X;), = S:y + v;, where S; = ddc;, C;/ ' € o(N)

and v, = =S¢ + ”ift’ € R¥ are both completely determined by { f;}. The corre-
sponding element of the Lie algebra e(/N)

dft —1 St V¢

o= 2)

is called the instantaneous motion. Slips and spins can now be encoded in terms of
the vector field X; and the instantaneous motion.

Definition 1. The instantaneous motion (2) is called an instantaneous:

e standstill if S; = 0 and v; = 0;
e translationif S; = 0 and v; # 0;
* rotation if there exists a point yo € R¥ such that (X )yo = 0and S; # 0.

With this at hand, it is possible to define rolling without slipping (skidding in No-
mizu’s terminology) nor spinning between M” and M", Riemannian submanifolds
of RV, We denote by (-, -) the standard Riemannian structure in R%

Definition 2. Let { ;) be a 1-parametric motion such that f; (M) is tangent to M at
a point y; € M . Assume that (X:)y, = 0and S; # 0. The motion f; is a rolling
if for any pair of tangent vectors X, Y € T|,, M and for any pair of normal vectors
UVeTlEM

(S/(X),Y)=0,  (S:(U),V)=0. 3)

An equivalent way of stating conditions (3) is that S; maps T'|,, M to T| jt M and

also maps T|jl M to T|y,]\;[.
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This definition allowed Nomizu to find a very concrete realization of Cartan’s
development. For the case of surfaces rolling on the plane, his result reads

Theorem 2 (Nomizu 1978). Let x; be a smooth curve on a surface M which does
not go through a flat point of M. There exists a unique rolling { f;} of M on the
tangent plane X at xo such that y; = f;(x;) is the locus of points of contact. The
curve y; is the development of the curve x; into X.

As a consequence of this result, Nomizu noticed that there is a natural kinematic in-
terpretation of the Levi-Civita connection for a surface M, coming from the rolling
formulation: a vector field U(¢) along the curve x; is parallel with respect to the
Levi-Civita connection of M if and only if C,(U(¢)) is a constant vector for all ¢.

As amatter of fact, he was able to extend this result to higher dimensions and gave
conditions under which rollings exist in terms of the shapes of the submanifolds, that
is, in terms of both intrinsic and extrinsic data.

For reasons unknown to us, this paper seems to have been forgotten over the years.
Nomizu’s definition of higher dimensional rolling is equivalent to Sharpe’s one in
Sect. 5.1 and many of his observations have been rediscovered in [48, Appendix B].
Nevertheless, there is no reference to the paper [45] in Sharpe’s book.

4 Revival: The two dimensional case and robotics

The aim of this section is to put in context the study of the rolling problem for the
case of two dimensional manifolds, and how they appeared naturally in problems of
sub-Riemannian geometry, robotics and geometric control theory.

4.1 Rigidity of integral curves in Cartan’s distribution

In the celebrated paper [11], Bryant and Hsu studied curves on a manifold Q of di-
mensionn > 3 tangent to a (2, n)—distribution D. The idea was to analyze the space
Qp(p, q) of differentiable curves in Q connecting two points p,q € Q and being
tangent to D (called D-curves by them). The space Q2p(p, q) is endowed with its
natural C'! topology. The idea that D-curves can be “rigid” plays a fundamental role
in their paper.

Definition 3. A D-curve y: [0, 7] — Q is rigid if there is a C!-neighborhood %
of y in Qp(y(0), y(r)) so that every y; € % is a reparametrization of y. We say
that y is locally rigid if every point of I = [0, t] lies in a subinterval J C [ so that
y restricted to J is rigid.

Their main result goes as follows.

Theorem 3 (Bryant & Hsu 1993). Let D be a non-integrable rank 2 distribution
on a manifold Q of dimension (2 4+ s) > 3. Suppose further that the distribution
D, = [D, D] (which has rank 3) is nowhere integrable. Then there always exist
D-curves that are locally rigid.
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They give a more precise description of such curves in terms of projections of char-
acteristic curves in a dense subset of the annihilator of Dy, but stating it precisely
would not serve the purposes of this exposition.

For us, the most relevant part of their work is their section on examples, in par-
ticular their study of systems of Cartan type and of rolling surfaces.

Recall that a bracket generating (2, 5)—distributionis said to be of Cartan type. In
other words D is a Cartan distribution if D has rank 3 and D, = [D, D] has rank
5. As a consequence of Theorem 3, they observe that there is exactly a 5-parameter
family of locally rigid D-curves. In fact they briefly discuss a remarkable geometric
behavior occurring in this situation: if M is connected, then any two points of M
can be joined by a piecewise smooth D-curve, whose smooth segments are rigid.

After all these observations, they devote themselves to the analysis of two ori-
ented surfaces M and M endowed with Riemannian metrics rolling one over an-
other without slipping or twisting. Let F' and F be the oriented orthonormal frame
bundles of M and M. Bryant and Hsu considered the ‘“state space” manifold
0 =0WM, M) = (F x I:“)/SO(Z), where SO(2) acts diagonally on the Carte-
sian product. An element in Q is a triple (x, X; A), where x € M, X € M and
A:T|xM — T|3M is an oriented isometry. Their formulation is as follows. Con-
sideracurve y: [0, 7] — Q givenby y(¢) = (x(z), X(¢); A(?)), then the no-slip con-
ditionreads A(z)(X (¢)) = X (¢). The no-twist condition requires some more care. Let
e1, f1: [0, t] = TM be a parallel orthonormal frame along the curve x (¢) and let

ex(t) = A()(e1 (1), f2(1) = A@) (11 (1)),

be the orthonormal frame along x(¢) obtained via A. The rolling has no-twist
whenever the moving frame e,, f> is also parallel (along X).

An important insight for the problem was expressing the no-twist and no-slip
conditions in terms of a (2, 5)—distribution D on Q. Let o1, a2, @21 be the canoni-
cal 1-forms of M on F and similarly 81, B>, B2 for M, see [49]. Recall that these
forms satisfy the so-called structure equations

doy = 21 A g, dBi1 = Pa1 A Ba,
doy = —ao1 Ay, dBfa = —P21 AP,
dori =kay Aaa,  dBfar =k B1 A Ba,

where « and k are the Gaussian curvatures of M and M respectively. With all of
this, one can consider the distribution D on F' x F defined by the Pfaffian equations

a1 —f1=a2—Po =021 — Pr1 = 0.

The distribution they were looking for corresponds to the “push-down’ image of D
under the submersion F x F — Q. A smooth curve y: [0,7] — Q describes a
rolling without slipping or twisting if and only if y is a D-curve.

A remarkable fact is that the distribution D is of Cartan type whenever k —k # 0,
which is an open set in Q. On this set, the corresponding 5-parameter family of rigid
curves describes the rolling of M on M following geodesics.
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4.2 Non-holonomy in robotics

The traditional modeling of a mechanical system considers configurations (or states)
of this mechanical system as points ¢ of a smooth n-dimensional manifold M, and
the corresponding velocities ¢ € T'|, M are subject to locally independent constraints
in the Pfaffian form

A(g)g =0, “4)

where A(-) is an m x n matrix of real-valued analytic functions, where m < n. Con-
straints are said to be holonomic if their differential form given by (4) is integrable.
In this case, there exist integral submanifolds of dimension n — m that are invari-
ant. If the constraints are not holonomic at some go € M , then there will exist an
integral submanifold containing go of dimension n —m + k with 0 < k < m. The
integer k is referred to as degree of non-holonomy. If k = m, the constraints, and
by extension the system, are said to be maximally non-holonomic (see [44]).

There is a more convenient way for control theory to describe the constrained
system. If G(g) denotes a matrix whose columns form a basis for the annihilating
distribution of A(g), then all admissible velocities § € A(g)* C T|4M can be
written as linear combinations of the columns of G(g),

n—m

i=G@w=">_ gi@wi:. (5)

i=1

where w is a vector of quasivelocities taking values in R”~™. When quasivelocities
can be assigned values at will in time, functions can be regarded as control inputs
of the driftless, linear-in-the-control, nonlinear system defined by (5). A physical
actuatoris associated to each control input, e. g. a motor for electromechanical sys-
tems. The issue of non-holonomy of the original system, i.e. non-integrability of
(4), can be addressed by studying the distribution A spanned by the the vector fields
g1, ..., 8gn—m and, more precisely, the corresponding Lie algebra generated by them.
If the system is maximally non-holonomic (or completely controllable), any two con-
figurations g and ¢’ of its n-dimensional manifold can be connected along the flows
of n — m vector fields. From an utilitarian engineer’s viewpoint, the latter definition
may be rephrased as an n-dimensional non-holonomic system that can be steered at
will using less than n actuators. This formulation underscores the appealing fact that
devices with reduced hardware complexity can be used to perform nontrivial tasks, if
non-holonomy is introduced on purpose, and cleverly exploited, in the device design
(see [44]).

Non-holonomy of rolling is particularly relevant to robotic manipulation, one of
the main goals of which is to manipulate an object grasped by a robot end-effector
so as to relocate and re-orient it arbitrarily, the so-called dexterity property. Dex-
terous robotic hands developed so far according to an anthropomorphic paradigm
employ far too many joints and actuators (a minimum of nine) to be a viable indus-
trial solution. Non-holonomy of rolling can be used to alleviate this limitation. In
fact, while rolling between the surfaces of the manipulated object and that of fingers
has been previously regarded as a complication to be neglected, or compensated for,
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some works (see, in particular, [1,6, 18,24,39,40] and the references therein) tried
to exploit rolling for achieving dexterity with simpler mechanical hardware.

Introducing non-holonomy on purpose in the design of robotic mechanisms can
be regarded as a means of lifting complexity from hardware to the software and
control level of design. In fact, planning and controlling non-holonomic systems
is in general a considerably more difficult task than for holonomic systems. The
very fact that there are fewer degrees-of-freedom available than there are configura-
tions implies that standard motion planning techniques can not be directly adapted
to non-holonomic systems. From the control viewpoint, non-holonomic systems are
intrinsically nonlinear systems, in the sense that they are not exactly feedback lin-
earizable, nor does their linear approximation retain the fundamental characteristics
of the system, such as controllability (see [44]).

The system of rolling bodies considered here differs substantially from the class
of chained form systems or differentially flat systems (see Rouchon [46]). Consider,
for example, the case of the plate-ball system (i.e. a ball rolling on a plane without
slipping or spinning, studied by Chaplygin in [17]), which is a classical problem in
rational mechanics, brought to the attention of the control community by Brockett
and Dai [9]. Montana [42] derived a differential-geometric model of the rolling con-
straint between general bodies, and discussed applications to robotic manipulation.
Li and Canny [38] showed that the plate-ball system is controllable, and that the
same holds for two rolling spheres, provided that their radii are different.

We close this subsection by mentioning the beautiful works of Jurdjevic [34,35]
who studied the problem of finding the path that minimizes the length of the curve
traced out by the sphere on the fixed plane. It turns out that optimal paths also min-
imize the integral of their geodesic curvature, so that solutions are those of Euler’s
elastica problem. For the higher dimensional cases of this problem, see [36,54].

4.3 Orbits and complete answer for controllability

The point of view adopted by Bryant and Hsu was improved significantly by Agra-
chev and Sachkov in [2] employing tools in geometric control theory.

Two innocent, yet powerful, changes in perspective made the problem more ac-
cessible for the application of the orbit theorem of Sussmann [51]. These modifi-
cations consist of rewriting the state space of the rolling and, most importantly, to
prefer the use of vector fields (written in local coordinates) instead of differential
forms (written without using coordinates).

Let M and M be smooth two-dimensional connected oriented Riemannian sur-
faces. The new version of the state space is given by

Q = Q(M. M)
={A:T|xM — T|3M |x € M,% € M, Ais an oriented isometry}.

Itis an easy exercise to see that Q is indeed diffeomorphic to the manifold Q intro-
duced in Sect. 4.1. The natural projection Q — M x M is a principal SO(2)-bundle.
As before, a curve y: [0, t] — Q describes a rolling motion if there is no slipping,
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that is, if A(¢)(x(2)) = )é(t) and there is no twisting (see [2])
A(1)(vector field parallel along x()) = (vector field parallel along %(1)).

Let us now give expressions of the rolling distribution in local coordinates about
a point (x, x; A) € Q. Let us consider local orthonormal frames eq, e, for M and
&1, 6, for M. They define their structure constants ¢y, ¢, € C®°(M) and ¢1,¢, €
C°°(M) by the equations [e1, e2] = c1e1 + c2ex on M and [éy, €3] = ¢1€1 + C262
on M.

Since Q is a principal SO(2) bundle over M x M, in the natural trivialization,
there is a well defined angular direction a% and we can identify the isometry 4 with
an angle 6. With these notations, the rolling distribution Dy is spanned by the vector
fields

0
X1 =e1+cosféy +sinhéy+ (—cy+ ¢ cosd —{—ézsinQ)aQ,

X, =ey—sinfé; +cosféy + (—ca—¢psinf —i—ézcose)ag.
The main controllability theorem for the system of two Riemannian surfaces
rolling, as presented in [3, Chap. 24], is the following.

Theorem 4 (Agrachev & Sachkov 1999). Let O = Op,(q) be the orbit of the
rolling distribution starting at q € Q and let k and K be the Gaussian curvatures of
M and M respectively. Then:

1) the orbit O is a immersed connected submanifold of Q of dimension 2 or 5.
More precisely, one has that if (k — k)| is identically zero, then dim 9@ = 2;
and if (k — k)| is not identically zero, then dim 9 = 5;

2) there is an injective correspondence between isometries 1. M — M and two
dimensional orbits of the rolling problem. In particular, if the manifolds M and
M are isometric, then the rolling problem is not completely controllable;

3) if M and M are complete and simply connected, then the correspondence be-
tween isometries.: M — M and two dimensional orbits of the rolling problem
is bijective. In particular, the rolling problem is completely controllable if and
only if the manifolds M and M are not isometric.

5 Re-discovery of the higher dimensional case and interpolation

Here we briefly review the way the higher dimensional problem of rolling manifolds
presented to the control theory community and we explain how this was employed
in geometric interpolation theory.

5.1 Sharpe’s definition

Here we present the definition of rolling maps found in the Appendix B of Sharpe’s
book [48] with some minor modifications.
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Definition 4. Let M, M be n-dimensional Riemannian submanifolds of R?+V. Then,
a differentiable map g : [0, 7] — Isom(R"™") = O(n + v) x R**V satisfying the
following conditions:

* there is a piecewise smooth curve x : [0, 7] — M, such that

- g()x(t) € M; A
= Tlgyxe) (€OOM) = T|g@)xyM;

* turthermore, the curve x(¢) := g(f)x(¢) satisfies the following conditions

— No-slip: g(1)g(t)"1%(t) = 0; R R
— No-twist, tangential part: d(g(1)g(1) )T |zyM < Tlo(g(t)g(t) ' M)*L;
— No-twist, normal part: (¢ (1)g(t) ") T |s(yM* € Tlo(¢()g(t)™" M).

for any ¢ € [0, 7] is called a rolling map of M on M without slipping or twisting.
We say that M rolls on M along the curve x (¢).

We do not know whether Sharpe was aware of the existence of the paper [45]
at the time of the publication of his book, but his deduction of the “correct” defi-
nition rolling maps follows the same structure as Nomizu’s. Nevertheless, Sharpe
does obtain plenty of extra information. For example he shows that in the imbed-
ded rolling problem there is a deep relation with the Levi-Civita connections of the
manifolds and the normal connections to the imbeddings. Besides this, he is able to
prove precisely that rolling is transitive, that is

Theorem 5 (Sharpe 1997). Let My, My, My C R™*™ be three n-dimensional Rie-
mannian submanifolds, such that they are tangent to each other at a common point
pEMyNMyN M, Let y: [0, 7] — M be given such that y(0) = p. Assume that
M rolls on My along the curve y, with rolling map g1, and similarly let M, roll on
M along the curve p = g1y, with rolling map g». Then M, rolls on My along the
curve y, with rolling map g>g1 and with image curve y = gag1y = g27.

5.2 Applications to geometric interpolation

An interesting application of the rolling problem has been in interpolation. The ar-
ticle where this idea appeared for the first time is [33] for the case of the two di-
mensional sphere. Afterward it was extended successfully to arbitrary dimensional
spheres, Grassmanians and to the special orthogonal groups in [31]. This last ap-
plication was employed in [32] to study the motion planning of a rotating satellite.
Later on in [30] the idea was also shown to work on Stiefel manifolds.

The setting of the interpolation problem seems quite innocent. Let Xy,
X1,...,XN € M be measurements at times 0 = typ < 1 < --- < ty = 1, and
consider given initial and final velocities v € T |x,M and w € T |, M. The inter-
polation problem consists in finding a C? curve x: [0, 7] — M satisfying

x(t) =xi, x0)=v, x(r) =w, (INTERP)
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and y minimizes the functional

1 /D . D
J(x) = 2[0 <dt X, Jr x> dt, (ENERGY)

where ft is the covariant derivative. Let Q = {x € C? | x satisfies (INTERP)}. Then

Theorem 6 (Crouch & Silva Leite 1991). If x € Q2 minimizes (ENERGY), then

D3'+R D . \. 0
X X, X | X =0,
de3 dt

on each [t;, tj+1], where R is the curvature tensor of M.

The curves satisfying the differential equation in Theorem 6 are called geomet-
ric cubic splines, and they are in general quite hard to find. Nevertheless, in the
cases described above, the authors were able to find a surprising relation between
the rolling dynamics and geometric interpolation. The idea is to transform the in-
terpolation problem in M to a classical cubic splines problem in R" =~ T'|, M for
some x € M, and then go back to M appropriately. For simplicity of exposition, we
only present the relevant results for the case of the n dimensional sphere S”. A first
observation that takes place is the following.

Theorem 7 (Jupp & Kent 1987, Hiiper & Silva Leite 2007). Consider S" rolling
on its tangent space R", both imbedded in R*1, along the curve x: [0, 7] — S"
with rolling map g(t) = (R"(t),s(t)) € O(n + 1) x R*"*' . Forallt € [0, t] and
all j € N,
DJ .
T sy — U+D
RO ;%O =i, ~(0).

ev

G+1)

where Xqey is the development of x, and xg.," " is its (j + 1)-st derivative in R".

A consequence of the above is the following application to interpolation in S™.

Corollary 1 (Jupp & Kent 1987, Hiiper & Silva Leite 2007). If the development
t > Xgey(t) is an Euclidean cubic spline, thent — x(t) is a geometric cubic spline
on S" if and only if it is a re-parameterized geodesic.

6 Nowadays: The coordinate-free approach

The intrinsic definition of the rolling problem in higher dimensions was presented for
the first time in [22,26]. It is clearly motivated by the definition given by Agrachev
and Sachkov in [2].

Let (M, g) and (M , &) be two oriented n-dimensional Riemannian manifolds.
The state space of the rolling problem is the manifold

Q = QM. M)
={A:T|xM - T|;M | x €M, & € M, Aisan oriented isometry}.
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An absolutely continuous curve ¢ (1) = (y(t), y(t); A(t)) in Q is a rolling curve if
A(t) X (t) is parallel along p(¢) for every vector field X(¢) that is parallel along y ()
(no twist condition) and if A(¢)y (t) = P(¢) (no slip condition). These rolling curves
are the intrinsic versions of the rolling maps introduced by Sharpe.

A counting argument shows that Q has dimension ;n (n 4+ 3). Over this manifold
there is an n-dimensional distribution Dy, called the rolling distribution, such that
the rolling curves in Q are exactly the integral curves of Dg. Let us describe this
distribution briefly as given in [22]. For a configuration ¢ = (x, x; A) € Q, and an
initial velocity X € T'|xM, we define the rolling lift Zr(X)|q € T4 0 as

d .
i loP() 0 Ao PAy)). ©)

where y, y are any smooth curves in M, M, respectively, such that y(0) = X and
7(0) = AX, and Pf (y) (resp. Pf (7)) denotes the parallel transport along y from

y(a) to y(b) (resp. along y from p(a) to y(b)).

ZR(X)g =

Definition 5. (cf. [22]). The rolling distribution Dgr on Q is the n-dimensional
smooth distribution defined, for ¢ = (x,X; A) € 0, by Dr|q = L&(T|xM)|q4.

An interpretation of the rolling lift Zr(X)|; of X € T|yM atqg = (x,X; A) is
as follows. Let y be a curve in M such that y(0) = x and y(0) = X then, by the
general theory of ordinary differential equations, for short times there is a rolling
curve ¢(t) of M on M satisfying ¢(0) = g. The rolling lift is precisely §(0).

6.1 The controllability problem

The orbit Op, (¢q) of the rolling problem described above passing through ¢ € Q
consists of all the states ¢ that can be connected to ¢ via a rolling curve. The (com-
plete) controllability problem asks for conditions on the geometries of M and M
such that Op,(¢g) = Q. One way of addressing this problem is via Sussmann’s
orbit theorem, that is, by showing that all the Lie brackets of the vector fields steer-
ing the dynamics have to span the tangent bundle of the state space. For the rolling
problem, this Lie brackets are expressed in terms of the curvature tensors R and R
associated to the Riemannian metrics g on M and ¢ on M respectively, together
with the covariant derivatives of R and R. It seems therefore impossible to solve for
general dimension n the controllability issue on the sole knowledge of the Lie al-
gebraic structure of Dy, except for low dimensions. Indeed, in the case for instance
where (M , &) is the n-dimensional Euclidean space, it would amount to determin-
ing Hol(M), see Sect. 2.3, with the only knowledge of its curvature tensor and its
covariant derivatives. Instead, the latter issue can be successfully addressed by re-
sorting to group theoretic and algebraic arguments, see [22]. For specific examples,
using extra knowledge of the problem at hand, see [26,36,54].
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In general, one can define a notion of curvature especially adapted to the rolling
problem, see [23]. For ¢ = (x, X; A) € Q, the rolling curvature is the linear map

2
Rolg: \ T|xM — T*|cM®T|;M: Roly(XAY) := AR(X,Y)—R(AX, AY)A.

The normalized map Rol,(X AY) = R(X,Y) — A"'R(AX, AY)A is an endo-
morphism of /\2 T|xM . This map permits to give a first sufficient condition for the
rolling problem to be controllable, see [22,28].

Theorem 8 (Chitour & Kokkonen 2011, Grong 2012). If il\()]q is an isomorphism
forevery g € Q, then the rolling problem is completely controllable.

The above condition is very hard to deduce directly from conditions on the geom-
etry of M and M . It is therefore necessary to reduce the problem to a simpler one.
One possible way to do this is to give some extra structure to the manifold M . In this
vein, it was possible to give controllability conditions “without Lie brackets” for the
case in which (M .8) = (F7, g is the space form of constant sectional curvature
¢, see [37,47]. To state these, let us first introduce some terminology.

Definition 6. Consider the vector bundle 7ryygr : TM @& R — M. The rolling
connection V¢ is the vector bundle connection on w7y gr defined by

VE(Y.5) = (VXY +5(0)X, X(5) — cg(Y . X)), %

forevery x e M, X € T|xM, (Y,s) € VE(M) x C°>(M); where we have canoni-
cally identified the space of smooth sections I'(m7prgr ) of 7T er With VE(M) x
C®(M).

When ¢ # 0, the connection V€ is a vector bundle connection which is metric
with respect to the fiber inner product i, on TM & R defined by

he(X, 1), (Y,s)) =g(X,Y) + clrs,

where X,Y € T|xM, r,s € R. The holonomy group of the connection V¢ with
respect to /. is denoted by F€(M). In this language, we have the following result,
see [23].

Theorem 9 (Chitour & Kokkonen 2012). Let (M, g) be a complete, oriented and
simply connected Riemannian manifold. The rolling problem of M rolling on F}! is
completely controllable if and only if

SO(n +1), ¢ > 0;
HE(M) = { SE(n), c=0;
SOp(n, 1), ¢ <O.

Here the Lie group SO¢(n, 1) represents the identity component of the group O(n, 1)
of linear transformations that preserve the quadratic form Fy 1(x1,...,Xp+1) =
XT A XX
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Wanting to fully understand these cases, it is important to remark some struc-
ture theorems encoded in Theorem 9. Observe that up to rescaling, it is sufficient
to study when ¢ = 0, 1 and —1. In the Euclidean situation, i.e. ¢ = 0, the condi-
tion H°%(M) = SE(n) is equivalent to that M has full Riemannian holonomy. In
the case ¢ = 1, if the action of #!(M) on the unit sphere is not transitive, then
(M, g) is the unit sphere. As a consequence, it holds that, for n > 16 and even, the
rolling problem Q = Q(M, S"~!) is completely controllable if and only if (M, g)
is not isometric to the unit sphere. Both theses cases were analyzed in [23], and the
remaining cases are currently under investigation. The hyperbolic case presented a
more difficult challenge, see [19].

Theorem 10 (Chitour, Godoy & Kokkonen 2012). Let (M, g) be a complete,
oriented and simply connected Riemannian n-manifold rolling on the space form
(H™, g",) of curvature —1. Then the associated rolling problem is completely con-
trollable if and only if (M, g) is not isometric to a warped product of the form

(WP]) (]RX]\ll,dS2 Becs gl), or
(WP2) (HF x M,,g*, Dcosn(y/—c ) §1), where 1 < k < n and for each x € HF,
d(x) is the distance between x and an arbitrary fixed point xo € H¥.

In both situations, (M1, g1) is some complete simply connected Riemannian mani-
fold. As usual, the term ds? represents the usual Riemannian metric on R.

6.2 Symmetries of the rolling problem

The idea developed in Sect. 6.1 of setting M to be a space form has a beau-
tiful geometric consequence on the bundle structure of the natural projection
mom: QM,F}) — M. Let us explain what this is.

In general, it is not clear if there is a G-principal bundle structure on Q =
oM, M ) making Dy a G-principal bundle connection for some Lie group G. This
is indeed the case if the manifolds are of dimension 2, in which case the projection
Q — M x M is a principal SO(2) bundle with Dy as its connection, but an analo-
gous statement in higher dimensions does not hold, see [22, Proposition 3.4]. In order
to find a Lie group G acting on Q so that Dy is a G-principal bundle connection,
we need to consider space forms F” in the place of M.

For ¢ # 0, let G.(n) be the identity component of the Lie group of linear maps
that leave invariant the bilinear form (x, y)? := Y7, x;yi + ¢~ 'Xp41Yn+1, for
X =01, ..., X411,V = ¥1,..., yur1) € R"1 Observe that G1(n) = SO(n +
1) and G_;(n) = SOg(n, 1). For ¢ = 0, we set Go(n) = SE(n). Recall that, with
this notation, the identity component of the isometry group of (F/, g?) is equal to
G.(n) for all ¢ € R (cf. [37]).

The fundamental result concerning rolling on a space form lies in the fact that
there is a G.(n)-principal bundle structure for the state space compatible with the
distribution Dg, i.e., Dy is a G.(n)-principal bundle connection, see [23]. The pre-
cise result follows.
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Theorem 11 (Chitour & Kokkonen 2012). Ler Q = Q(M,F}) be the state space
of rolling M on the space form F}. Then we have:

(i)  The projectionmg pm : QO — M isa principal G (n)-bundle with a left action
u:Ge(n) x Q — Q defined for every q = (x, x; A) by

H‘((ﬁ»c)»q) = (X,C>A€+)7;COA),ifc =0,
w(B,q) = (x,BX; Bo A),ifc #0.

Moreover, the action | preserves the distribution Dy, i. e., forany q € Q and
B € GC(n)’ (MB)*DR|q = DR|[L(B,q)’ Where MB . Q - Q; q = /"L(B» 51)

(i) Forany given q = (x,%; A) € Q, there is a unique subgroup Hg of G¢(n),
called the holonomy group of Dr at g € Q, such that

1(Hg x{q}) = Opy(q) N 7o p (%)

Also, if ¢' = (x,X"; A’) € Q is in the same wo m-fiber as q, then H; and
J(;, are conjugate in G.(n) and all conjugacy classes of #g in G¢(n) are of
the form Jf;,.

The holonomy group #; of Dr at g € Q is in fact isomorphic to the holonomy
group H#€(M) of the rolling connection V¢, see [23].

A natural question to ask is whether a converse of the theorem above holds, in
other words, does the existence of a G -principal bundle structure on Q such that Dy
is a connection imply that M must have constant sectional curvature? The answer is
generically yes, but we need to introduce some more terminology.

Recall that in Sect. 2.2 we defined the Lie algebra of symmetries Sym(D) of a
distribution D on a manifold M as the set of vector fields X € VF(M ) that satisfy
[X, D] € D. For the case of the rolling distribution, we will focus our attention
to the symmetries of the rolling distribution that are annihilated by the projection
wo,m: Q — M, thatis, in the Lie algebra

Symg(Dr) :={S € Sym(Dg) | (ro,m)+S = 0}.
With this at hand, the mentioned converse takes the following form, see [20].

Theorem 12 (Chitour, Godoy & Kokkonen 2012). If there is an open dense set
O C Q such that R : /\2 TixM — /\2 T|xM is invertible on wg p(O) and

izqu is invertible for all g € O, then, up to an isomorphism of Lie-algebras,
Symy(Dr) = Isom(M , §)

and therefore all the elements of Symy(Dr) are induced by Killing fields of (M, 2).

In particular, under the above assumptions, if there is a principal bundle struc-
ture on mg pm : Q — M that renders Dy to a principal bundle connection, then
(M , &) is a space of constant curvature.
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6.3 Generalizations and perspectives

Two natural questions to ask concern the extension of the rolling problem to the sit-
uation in which the manifolds involved have different dimension and to to extend
the classification result in Sect. 4.3 to other cases. For the first question, one needs to
consider curves of isometric injections instead of isometries. This change introduces
many difficulties in understanding the controllability problem, and in fact many tools
that work well in the classical situation can not be generalized. The second question
has a satisfactory answer for the three dimensional case, see [22]. There it is shown
that the orbits can have dimensions 3, 6,7, 8 and 9.

A question that has been in our minds for a while is to actually compare the mani-
folds via the rolling problem. This idea of comparison is naively evident in the rolling
curvature tensor: one is actually subtracting the Riemannian curvatures of the mani-
folds. In fact, rolling should provide a framework for the isometric characterization
of manifolds by using curvature tensor spectrum information (as in Osserman-type
conditions for instance, cf. [25]).

Finally, we have noticed that the problem of rolling manifolds can be generalized
far beyond than allowing arbitrary connections, as in [28, Sect. 7], or to pseudo-
Riemannian manifolds, as in [41]. This extension consists of rolling so-called Cartan
geometries, see [48], and it includes as particular cases both of the situations men-
tioned above, together with the problem of rolling manifolds of different dimensions,
see [21]. The main idea behind this is that Cartan geometries are the most general
framework for a notion of development to exists, which underlies the very definition
of the rolling dynamics. So far this generalized model has resisted a thorough study
of controllability.
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Optimal stationary exploitation of
size-structured population with intra-specific
competition

Alexey A. Davydov and Anton S. Platov

Abstract We analyze an exploitation of size-structured population in stationary
mode and prove the existence of stationary state of population for a given station-
ary control. The existence of an optimal control is proved and the necessary optimal
condition is found.

1 Introduction

Modeling of exploitation of size-structured populations and search for an optimal
exploitation mode lead to interesting mathematical problems, reasonable results in
which are in demand in economic and environmental applications. Even for a one-
specy population these problems are essentially nonlinear since the effect of intra-
specific competition in the growth and mortality of individuals usually differs sig-
nificantly for individuals of different sizes. This makes the task to develop methods
for optimizing heterogeneous distributed systems (see, for example, [1]).

In this paper we study steady-state modes of operation of common types, and
analyze the corresponding stationary states of the population. In the model under
consideration the dynamics of population is described by the equation

ax(t,1) N g, E@)x(.1)]

y " = —[u(l, E@0)) + u()]x (1., 1), (1
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where x (¢, /) is the resource density, namely, the average density of size / individ-
uals at the moment 7, g and pu are respectively the growth and mortality rates, and
a control function u accounts for the exploitation intensity, namely, it measures the
proportion of the population withdrawn per unit time. The function E characterizes
the intra-specific competition and has the form

L
E@t) = [0 x(Dx(t.1)dl, )

where y is a continuous increasing positive function on the interval [0, L], L > 0.
This is the interval of the sizes we manage and exploit in the population. Similar
functions of growth and mortality rates were used in [2].

We assume that the functions g and p are continuous and positive on the interval
[0, L] for all non-negative values of the second arguments.

The inflow of new individuals is defined by the boundary condition which is the
sum of the natural reproduction and the density p of the industrial renewal popula-
tion

L
x(t,0) =/0 r(l, E(t)x(t.dl + p(t). 3)

Here r is the birth rate. It is natural to assume that the rate r is a non-negative con-
tinuous function which is positive for sufficiently big sizes /. Note that this inflow
of individuals is different from the one in [3], where in the integrand instead x (¢, /)
we had (x(7,1))? with0 < 8 < 1.

We assume that for £y < E, the growth, birth and mortality rates satisfy the
following conditions:

g('7El) Eg(-,Ez), r("El) Er(-»Ez), /J“(’El) S/"L("EZ)’ (4)

80, Ev) _ g(0, E2)

g(l’ El) N g(l’ E2) .
These conditions are coming from natural constraints. Namely, inequalities (4) mean
that, with increase of the intra-specific competition, the growth and birth rates can-
not go up while the mortality rate cannot go down. The sense of condition (5) is that
the influence of smaller size individuals does not go down when the exponent E
increases.

We prove that, under these conditions on a selected measurable intensity of ex-
ploitation and for a given control u and a constant positive planting p(¢) = po > 0,
there exists a nontrivial stationary solution x = x (I, E) to the model (1)-(3). We
also show that a control providing the maximum profit exists, and find a correspond-
ing necessary optimality condition. The formulation of the results and their proofs
are respectively in Sects. 2 and 3.

(5)
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2 Main results

2.1 Existence of a stationary solution

A measurable control u is called admissible if
ur(l) <u(l) <uax(l), 1€][0,L], (6)

where ©; and u, are some positive continuous functions on / € [0, L]. These func-
tions characterize technological or ecological constraints.

Theorem 1. Let p(t) = po > 0 be constant, and g, i and r be continuous func-
tions satisfying conditions (4) and (5). Then, for any given admissible control u,
there exists a unique positive stationary solution to the problem (1)—(3) provided

the inequality .

[ P05 0 O s g < )
0 g(,0)

takes place.

Theorem 1 is proved in the Sect. 3.1, where the stationary solution is also found. It
has the form

%080, E) il (s.E)d : p(s, E) 4+ u(s)
x(l,E) = e JomEAS with  m(s, E) = . (8)
g, E) g(s. E)
and with the value x( defined by the formula
L 0. E) _ il B
Xo = po/ 1—[ r(l, E) e~ JomG.E)ds g ) 9)
0 g, E)

Remark 1. For the growth and mortality rates satisfying the Lipschitz condition and
u = 0, the existence of a stationary solution was proved in [4].

2.2 Optimal stationary solution

Objective functionals to define optimal stationary controls may be different in dif-
ferent settings. In our case the objective functional has the form

L
[ c(Du()x(, E)dl + cLx(L, E) — poco, (10)
0

and it accounts for the economic and environmental costs and benefits in terms of
the aggregated prices c, cr,, co. The last term in (10) is control-independent, and we
remove it because it has no influence on the selection of an optimal control. Now
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substitution of solution (8) into (10) brings the objective functional to the form

L H(L,E)—¢(L.E)
x0g(0, E) [ c(D)eHUEI0UE) g Ey4 L° . an
0 g(L’E)
where , ,
u(s, E) [ u(s)
H(.E) = — dl. ¢(.E)= ds. 12
o= [ p e oo = [ (a0

Thus our task is to find an admissible control which maximizes the functional (11).

Theorem 2. Assume the price ¢ is a continuous function, the continuous growth,
birth and mortality rates g, r, | satisfy conditions (4), (5) and (7), and the functions
g and | are positive. Then there exists an admissible control providing a maximum
of the functional (11).

Theorem 2 is proved in Sect. 3.2.

2.3 Necessary optimality condition

An appropriate necessary optimality condition is one of the best tools for construc-
tive search for an optimal control. To describe our optimality condition we introduce
the following functions:

2 0,E) _;
My o, E) = [ OO E) o fimepras g (13)
w0
153 E
Hly. 1o, E) = [ r1, E)S O E) e fimepras g (14)
zl ¢(. E)
F(XO’E) =F _XOM(O’LyE)’ (15)
G(XO’E):xo_pO_XOH(O)L»E)» (16)

b E E
(.1 E) = [ ety OB e tim.risgy 1oy 8O oo msras,

I g(l,E) g(L,E)
(17)
o F/ (XO’E) F)é (XO’E)
M(xo. E) := (Gi(XO’E) G;Z(xo,E))' (18)

Here m(s, E) is defined by (8), [[1, /2] C [0, L], and the values xo and E are inde-
pendent.

Theorem 3. Suppose that, under the assumptions of Theorem 2 and of differentia-
bility of functions r, L, g, an admissible control u maximizes the functional (10).
Then for any point ly € [0, L], at which uy(ly) # u2(lo) and the control u is the
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derivative of its integral, the value

10,L.E) , )
2 FLH(lo,L,E)— G- M(ly, L, E
detf]'ﬁ ( E (10’ s ) GE (10’ s ))
xol% (0, L, E)
27 b;letsm (GLyM(lo. L. E) — F H(lo, L, E))
-l
+¢(l0)g(0, E)e™lo" m:E)s _j(y L E) (19)

is non-positive, non-negative or equal to zero, if u(ly) is respectively equal to w1 (Iy)
orux(ly), or belongs to the interval (uq(lp), u2(lp)).

Theorem 3 is proved in Sect. 3.3.

Remark 2. The function (19) plays the role of a switching function. It is not conve-
nient to calculate an optimal control because its value at /o depends on the integrals
over the segment [/, L]. However, after simple transformation it may be rewritten
in the form

|
A+ B-H(0,ly, E)+ C - M(0, 1y, E) + 1(0. lo, E) + c(lo)g(0, E)e™Jo’ ms-E)ds

where 0
A= o (1(0, L, E)(FpH(,L,E)— GpM(, L, E))
+x0l (0, L, E)(G, M(0. L. E) — F} H(0, L, E))) —1(0, L. E), 5
B:de_tim (FEI1(0, L. E) — xoF} 11:(0. L. E)) @b
C= detn (GEI(0. L, E) — x0G' 1 (0. L. E)).

This form of a switching function is suitable for creating numerical algorithm to
search for an optimal control.

3 Proof of the theorems

Here we prove Theorems 1-3 in turns.

3.1 Proof of Theorem 1
The stationary solution x, x = x (I, E), satisfies Eq. (1) in the form

d[g(l. E)x(l, E)]
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where E is the corresponding constant value of the exponent calculated according to
(2). Though E depends on the solution x, let us first consider E as an independent
parameter. In such case the solution of the last equation is easy to find. It has the

form
x(0, E)g(0, E) o= Jo mis. EYds
g(l. E) ’

where m is defined by (8). Substitution of the expression (23) into (3) leads to an
equation for the value xo := x(0, E) :

x(I,E)= (23)

L 0,E) _;
xo = x()[ rd, E)g( ) o=y mG.Exds g + po. (24)
0 g, E)

From the expression (24) we immediately get (9). The value X is positive, and so
it makes sense as an initial population density, once the denominator in the expres-
sion (9) is positive. This is always true under conditions (4) and (5) provided the
inequality (7) holds. In such a case the solution has the form (8) where x is defined
by (9).

The following two statements are useful.

Lemma 1. Assume conditions (4)—(5) and (7) hold. Then for any [ € [0, L] solution
(8) is a non-increasing function of E € [0, 00).

Corollary 1. Assume conditions (4)-(5) and (7) hold. Then the function

L
f(E) :=/0 x(DHx(, E)dl

is a continuous non-increasing positive function of E € [0, 00).

We shall now finish the proof of the theorem and then prove the lemma and its
corollary. The function f is non-increasing on the interval [0, f(0)], and its value
varies between f(0) and f(f(0)). Hence the difference £ — f(E) increases on this
interval, and is negative at £ = 0 and non-negative at E = f(0). Hence there is
only one value £y > 0 at which the difference vanishes. It is clear that £y belongs
to the interval [0, f(0)].

As itis easy to see, for the solution x (., Eg) we have E = Ej. Therefore x (., Ey)
is a stationary solution required. It is clear that this solution is uniquely defined.

Theorem 1 is proved modulo Lemma 1 and Corollary 1. The statement of this
corollary follows immediately from the lemma. Let us prove the lemma.

Due to the conditions, the integrand in Eq. (9) is a non-increasing function of E.
Hence the value xg is also a non-increasing function of £ on the interval [0, c0).
This immediately implies that the solution is also a non-increasing function on E on
this interval. Thus, Lemma 1 is valid.
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3.2 Proof of Theorem 2

Firstly, we prove the following useful statement

Lemma 2. Under the conditions of Theorem 2, profit (11) is a bounded functional
on the space of admissible controls.

Proof. Indeed, we have

g(L,E)

L H(l,E)—¢(L.E)
%0g(0. E) [ [ (et D=0 gy E)4 ¢ ”
0

L
< x0£(0,0) (‘ [0 c(e™?Eag(l, E)

cL
e, f(O)))

CL
< x05(0.0) (C T, f(O))) <00

It is clear that the value x¢ here is bounded, and the values g(0,0), g(L, f(0))~!
and C = max{c(l) : [ € [0, L]} are finite due to the constraints imposed. Hence
the statement of the lemma follows.

Consider now the exact upper bound of possible values of the objective functional
and take a sequence u = vy of admissible controls, for which the values of the func-
tional converge to this bound when k — oo. Denote the corresponding values of the
competition parameter by Ey.

All possible values of the competition parameter are also bounded and hence
there exists a subsequence Ey; — Eoo with k; — oco. Without loss of generality
we assume that £, — E as k — oo.

Thus we have pairs {vg, Ex} whose second component has a limitas k — oo.

For the controls vy and any I1,1, € [0, L], l; < l», the corresponding sequence
¢ satisfies the inequalities

L) [12 us(l)
dl lr, Ex) — 11, Ep) < dl . 25
[11 o(l. Ey) < ¢ (l2, Ex) — ¢ (l1, Ex) < gl Ex) (25)

This is easy to see. In particular, all the ¢ satisfy the Lipschitz condition with the
constant equal to the maximum of the functionu, (-)/g(-, f(0)) ontheinterval [0, L].
Consequently, the set of the functions ¢y is bounded and equicontinuous on this in-
terval. Hence, due to the Arzela-Ascoli theorem [5], there exists a subsequence {¢x,, }
that converges uniformly to some function ¢, When k,, — 0.

The profit functional (11) depends continuously on ¢ and E. Hence this func-
tional attains its maximum value at ¢ = ¢ and F = E.

To complete the proof we have to find an admissible control #, which provides
the limit function ¢ by the formula (12). This function satisfies the inequalities
(25) and is absolutely continuous. Hence its derivative exists almost everywhere on
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the interval [0, L]. The derivative satisfies the inequality

wy _ w0
gl Eo) = P E) = o gy

wherever it exists. Consequently, we can define the control s, by the formula

Uoo(!) = 8(l, Eco)pio (1. Eco)

at any such point, and assign u, any value between the values of u; and u, at any
other point of this interval.
Theorem 2 is proved.

3.3 Proof of Theorem 3

The proof is based on the direct calculation of the first variation for the functional
(10).

Consider an exploitation intensity providing the maximum of the functional (10),
and a point [y € (0, L) at which the intensity is the derivative of its integral and
u1(lg) # uz(lp). Choose a sufficiently small § > 0 so that the interval [y, lo + §] C
[0, L], and take a perturbed exploitation intensity & so that the difference &t — u is
zero outside the interval [lg, [o + 6] and has a small value 4 inside it.

The corresponding variations AE and Axo may be found from the equations
FpAE + Fy Axo + Fg8 + Fyh + 0(hd)=0, 26)
GEAE + Gy Axo + Gy + Gy h + o(hé)=0.

Here and below the o (h4) stay for functions infinitesimal compared with 1§ as hé —
0. The third and fourth terms in these equations are

F{§ = Flh=— XohS 0 LUEY + o(hd),

glo, E)

xoh8 @7
Gi§=Gh=— """ H(y L,E)+ o(h).
O = gy, py M0 B B 00D

The following statement is useful.

Lemma 3. For differentiable functionsr, |, g, the matrix (18) is non-degenerate for
all positive values E and xy, if conditions (4), (5) and (7) hold.

Proof. As itis easy to see,

1 —xoMg(0,L,E) —M(0,L.E) ) (28)

Em(xO,E)=( —xoH(0,L,E) 1—H(0,L,E)

Due to the conditions (4), (5) and (7), the entries on the main diagonal are positive
and the product of the other two is non-negative. Hence det 9t > 0. Therefore, the
matrix is non-degenerate.

Lemma 3 is proved. O
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Hence the system (26) may be solved for AE and Axg. The solution is

2x0h8[G), M(ly, L, E)— F. H(lp, L, E)]
E = 0 0 2
2(lo, E) det M +o(hd), (29)
_ 2x0h8[FpH(lp. L. E) — GxM(lo. L. E)]
B g(ly, E) det M

We are now ready to calculate the first variation of our objective functional. The
variation has the form

Ax + o(hé). (30)

Axo-I1(0,L,E)+ xoAE -Ig(0,L, E)+
]’Z(SX()
g(lo, E)

Substitution into (31) of the expressions (29) and (30) gives

(c(lo)g(O, E)e—(/5°m<S’E)dS —I(ly. L, E)) +o(h8). (1)

xoh$ [21;5 (0, L, E)xo[Gl,M(lo, L., E) — Fj H(lo, L, E)] .\
g, E) g(lo, E) detIN
| 21O, L EYFHo, L. E) = G M, L, E)] |
g(ly, E)detIN

+ ¢(lo)g(0, E)e—fo“m(s’E)dS — Iy, L, E)] + o(h8). (32)

Since < ()ICS:SE) > 0, the sign of the first variation is determined by the sign of /& once
the quantity in the square brackets in (32) is not zero. For a control u providing
the maximum of the objective functional and its admissible perturbation done, this
difference must be non-positive. Hence the quantity in the square brackets must be
non-positive when u(ly) = u;(lp), non-negative when u(ly) = u»(ly), and zero
if ur(lo) < u(lo) < ua(lp). Indeed, in these three cases an admissible value of
h can respectively be any sufficiently small positive, negative or both positive and
negative.
Theorem 3 is proved.
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On geometry of affine control systems with one
input

Boris Doubrov and Igor Zelenko

Abstract We demonstrate how the novel approach to the local geometry of struc-
tures of nonholonomic nature, originated by Andrei Agrachev, works for rank 2 dis-
tributions of maximal class in R” with additional structures such as affine control
systems with one input spanning these distributions, sub-(pseudo)Riemannian struc-
tures etc. In contrast to the case of an arbitrary rank 2 distribution without additional
structures, in the considered cases each abnormal extremal (of the underlying rank 2
distribution) possesses a distinguished parametrization. This fact allows one to con-
struct the canonical frame on a (2n —3)-dimensional for arbitrary n > 5. The moduli
spaces of the most symmetric models are described as well.

1 Introduction

About seventeen years ago Andrei Agrachev proposed the idea to study the local
geometry of control systems and geometric structures on manifolds by studying the
flow of extremals of optimal control problems naturally associated with these ob-
jects [1-3]. Originally he considered situations when one can assign a curve of La-
grangian subspaces of a linear symplectic space or, in other words, a curve in a
Lagrangian Grassmannian to an extremal of these optimal control problems. This
curve was called the Jacobi curve of this extremal, because it contains all informa-
tion about the solutions of the Jacobi equations along it. Agrachev’s constructions of
Jacobi curves worked in particular for normal extremals of sub-Riemannian struc-
tures and abnormal extremals of rank 2 distributions. Similar idea can be used for
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abnormal extremals of distribution of any rank, resulting in more general curves of
coisotropic subspaces in a linear symplectic space [11,15].

The key point is that the differential geometry of the original structure can be
studied via differential geometry of such curves with respect to the action of the
linear symplectic group. The latter problem is simpler in many respects than the
original one. In particular, any symplectic invariants of the Jacobi curves produces
the invariant of the original structure.

This idea proved to be very prolific. For the geometry of distributions, first it led
to a new geometric-control interpretation of the classical Cartan invariant of rank 2
distributions on a five dimensional manifold, relating it to the classical Wilczyn-
ski invariants of curves in projective spaces [4,23,24]. It also gave a new effective
method of the calculation of the Cartan tensor and the generalization of the latter
invariant to rank 2 distributions on manifolds of arbitrary dimensions. These new in-
variants are obtained from the Wilczynski invariants of curves in projective spaces,
induced from the Jacobi curves by a series of osculations together with the operation
of taking skew symmetric complements. They are called the generalized Wilczynski
invariants of rank 2 distributions (see Sect. 5 for details).

Later on, we used this approach for the construction of the canonical frames for
rank 2 distributions on manifolds of arbitrary dimension [9, 10], and, in combination
with algebraic prolongation techniques in a spirit of N. Tanaka, for the construc-
tion of the canonical frames for distributions of rank 3 [11] and recently of arbitrary
rank [15,16] under very mild genericity assumptions called maximality of class. Re-
markably, these constructions are independent of the nilpotent approximation (the
Tanaka symbol) of a distribution at a point and even independent of its small growth
vector. This extends significantly the scope of distributions for which the canonical
frames can be constructed explicitly and in an unified way compared to the Tanaka
approach ([6, 18,20,26]).

Perhaps the case of rank 2 distributions of so-called maximal class in R” with
n > 5 provides the most illustrative example of the effectiveness of this approach,
because the construction of the canonical frame in this case needs nothing more than
some simple facts from the classical theory of curves in projective spaces such as
the existence of the canonical projective structure on such curves, i.e. a special set
of parametrizations defined up to a Mobius transformation (see Sect. 5 below). The
canonical frame for such distributions is constructed in a unified way on a bundle
of dimension 27 — 1 and this dimension cannot be reduced, because there exists the
unique, up to a local equivalence, rank 2 distribution of maximal class in R” with the
pseudo-group of local symmetries of dimension equal to 2n — 1. For this most sym-
metric rank 2 distribution of maximal class all generalized Wilczynski invariants are
identically zero.

However, under some additional assumptions, the canonical parametrization, up
to a shift, on abnormal extremals can be distinguished instead of the canonical pro-
jective structure and one would expect that the canonical frame can be constructed
on a bundle of smaller dimension.

What are these additional assumptions? One possibility is to consider rank 2 dis-
tributions of maximal class such that at least one of its generalized Wilczynski in-
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variant does not vanish. Due to the size limits for the paper we postpone the treatment
of this case to another paper (see also preprint [13]).

Another possibilityis to consider a rank 2 distribution D with the additional struc-
tures defining a control system with one input satisfying certain regularity assump-
tions. A control system with one input on a distribution D in the manifold M is
given by choosing a one-dimensional submanifold 'V, on each fiber D(q) of the dis-
tribution D for any point g € M (smoothly depending on g). The set V, C D(q) is
called the set of admissible velocities of the control system at q.

Let us introduce several natural notions of equivalence of control systems. We
say that two control systems given by one-dimensional submanifolds 'V, and 'V, on
each fiber D(q) are (state-feedback) equivalent if there exists a diffeomorphism F
of M such that

Fu(Vy) = Vg (1)

for any ¢ € M. These control systems are called locally equivalent at the points
qo and go of M, respectively, if there exists neighborhoods U and U of gy and
go in M, respectively, and a diffeomorphism F: : U — U such that (1) holds
for any ¢ € U. Finally, these control systems are called micro-locally equivalent
at (qo, vo) and (go, Vo), where the points go and go belong to M, v € V,, and
U € Vg, if there exist neighborhoods U and U of (¢o, vo) and (go, Vo) in the set
L = {(g,v) : ¢ € M,v € Vg} and a diffeomorphism F: : pr(l) — pr(ll),
where pr: 8 — M is the canonical projection, such that Fyv € Vg4 N U for any
(¢,v) € U. From these notions of equivalence one can define the group of sym-
metries and pseudo-groups of local and micro-local symmetries of a control system
accordingly. In the paper we mainly work with the micro-local equivalence but if one
restricts himself to affine control systems only, then in all formulations the micro-
local equivalence can be replaces by the local one.

Definition 1. Consider a control system with one input on a distribution D with the
set of admissible velocities 'V, at a point g. A line in D(g) (through the origin) in-
tersecting the set V,\{the origin of D(g)} in a finite number of points is called a
regular line of the control system at the point g.

Definition 2. We say that a control system with one input on a rank 2 distribution
D is regular if for any point g the sets of regular lines is a nonempty open subset of
the projectivization P D(q) .

An important particular class of examples of such control systems is when V, is
an affine line. In this case we get an affine control system with one input and with a
non-zero drift. Another examples are sub-(pseudo)Riemannian structures, when the
curves are £ 1-level sets of non-degenerate quadrics. For affine control systems with
a non-zero drift and sub-Riemannian structures all lines in D(g) are regular, while
for sub-pseudo-Riemannian case all lines except the asymptotic lines of the quadrics
are regular.

The goal of this paper is to demonstrate the approach, originated by Andrei Ag-
racheyv, in this simplified but still important situation of regular control system with
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one input on rank 2 distributions of maximal class. We show that in this situations
the canonical frame can be constructed in a unified way on a bundle of dimension
2n — 3 for alln > 5 (Theorem 3, Sect. 7 ). We also describe all models with the
pseudo-group of micro-local symmetries of dimension 2n — 3. i.e. the most sym-
metric ones, among the considered class of objects (Theorem 1 below and its refor-
mulation in Theorem, Sect. 9).

The most symmetric models depend on continuous parameters. Let us describe

these models. Given a tuple of n — 3 constants (ry, ..., 7,-3) let A, ,,_5) bethe
following affine control system in R” taken with coordinates (x, yo, ..., Yn—3,Z):
g = X1(q) +uX2(q). 2
where
0 ad
Xi1=, + SRR o
1 9 N o Yn—3 I Vns
0
+ (Vs + 1 Yna T 2Yn_s + - Ta=3)) 9z 3)
0
X, = . “4)
0yn—3

and denote by D, ... r,_5) the corresponding rank 2 distribution generated by the
vector fields X; and X, as in (3)-(4). Note that, as shown in [9, 10], the most sym-
metric rank 2 distribution in R” of maximal class with n > 5 is locally equivalent
to Dqo,...,0)- In the case of regular control systems we prove the following

.....

Theorem 1. A regular control systems with one input on a rank 2 distribution of
maximal class in R™ withn > 5 has the pseudo-group of micro-local symmetries of
dimension not greater than 2n — 3. If this dimension is equal to 2n — 3, then the con-
trol system is micro-locally equivalent to the system A, ,....r,_) for some constants
ri € R, 1 <i <n—3.The affine control systems A, ,....r,_3) corresponding to the

.....

different tuples (r1, ..., rn—3) are not equivalent.
Rephrasing the last sentence of the Theorem 1, the map (rq,...,7r,—3) +—
A(ry,....,ra_3) identifies the space -, of the most symmetric, up to a micro-local

equivalence, regular control systems on rank 2 distributions of maximal class in R”
with R" 3.

Remark 1 (see [13] for more detail). Note that the underlying distributions
ra_3) Might be equivalent for different tuples (rq, ..., r,-3). Among all dis-
tributions of the type D, ,....r,_5) there is a one-parametric family of distributions
which are locally equivalent to D g, ... o). To describe this family we say that a tuple
of m numbers (rq, ..., ry) is called exceptional if the roots of the polynomial

.....

m
/12m + Z(_])iri AZ(m—i) 5)

i=1
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constitute an arithmetic progression (with the zero sum in this case). Equivalently,

r1
Um,1
m,i, 1| <i < m, satisfy the following identity

1
(r1,...,rm) is exceptional if r; = o ; ( ) , 1 < i < m, where the constants

m

X2 Y (D o x2D = TT(x2 = 20 = 1)?). (6)

i=1 i=1

The distribution D, ... ,_5) is locally equivalent to the distribution Do,... ¢y (or,
equivalently, has the algebra of infinitesimal symmetries of the maximal possible
dimension among all rank 2 distributions of maximal class in R”) if and only if the
tuple (r1,...,r,—3) is exceptional. The distribution D, . 7, 5 is locally equiv-

.....

alent to the distribution D, . ,,_5), where the tuple (r1,...,7,-3) is not excep-
tional, if and only if
there exists ¢ # 0 such that 7; = c2iri, 1<i<n-3. O

Finally note that affine control systems with one input were considered also in [5],
but the genericity assumptions imposed there are much stronger than our genericity
assumptions here.

The paper is organized as follows. The main results are given in Sects. 7 and 9
(Theorem 3 and Theorem 4, which are reformulations of Theorem 1 above). Sects. 2—
6 are preparatory for Sect. 7, Sect. 8 is preparatory for Sect. 9. In Sects. 2-5 we list all
necessary facts about abnormal extremals of rank 2 distributions, their Jacobi curves
and describe the canpnical projective structure on a unparametrized curve in projec-
tive spaces. The details can be found in [9,22,23]. In Sect. 6 we summarize the main
results of [9, 10] about canonical frames for rank 2 distributions of maximal class in
order to compare them with the analogous results of Sects. 7 and 9. In Sect. 8 we list
all necessary facts about the invariants of parametrized self-dual curves in projective
spaces.

2 Abnormal extremals of rank 2 distributions

Let D be arank 2 distribution on a manifold M. A smooth section of a vector bun-
dle D is called a horizontal vector field of D. Taking iterative brackets of horizontal
vector fields of D, we obtain the natural filtration {dim D/ (¢)};en on each tangent
space T, M. Here D/ is the j-th power of the distribution D, i.e., D/ = D/~! +
[D,D’~!, D' = D, or, equivalently, D’ (g) is a linear span of all Lie brackets of
the length not greater than j of horizontal vector fields of D evaluated at g.

Assume that dim D?(¢) = 3 and dim D3(¢) > 3 for any ¢ € M. Denote by
(D7)t C T*M the annihilator of the jth power D/, namely

(D))Y- ={(p.q) e T*M : p-v =0 Vv e D/(g)}.
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Recall that abnormal extremals of D are by definition the Pontryagin extremals
with the vanishing Lagrange multiplier near the functional for any extremal problem
with constrains, given by the distribution D. They depend only on the distribution
D and not on a functional.

It is easy to show (see, for example, [10, 22]) that for rank 2 distributions all
abnormal extremals lie in (D2)* and that through any point of the codimension 3
submanifold (D2)1\(D3)* of T*M passes exactly one abnormal extremal or, in
other words, (D?)1\(D?3)" is foliated by the characteristic 1-foliation of abnormal
extremals. To describe this foliation let 7 : T*M +— M be the canonical projec-
tion. Forany A € T*M, A = (p,q),q € M, p € T/ M, let s(A)(-) = p(7x’)
be the canonical Liouville form and 0 = d's be the standard symplectic structure
on T*M. Since the submanifold (D?)* has odd codimension in T*M, the ker-
nels of the restriction o|(p2y. of o on (D?)* are not trivial. At the the points of
(D?)1\(D3)* these kernels are one-dimensional. They form the characteristic line
distributionin (D?)1\(D?3)L, which will be denoted by €. The line distribution €
defines the desired characteristic 1-foliation on (D?)=\(D?)* and the leaf of this
foliation through a point is exactly the abnormal extremal passing through this point.
From now on we shall work with abnormal extremals which are integral curves of
the characteristic distribution €.

The characteristic line distribution € can be easily described in terms of a local
basis of the distribution D, i.e. two horizontal vector fields X; and X, such that
D(g) = span{X1(q), X2(q)} for all ¢ from some open set of M. Denote by

X3 =[X1. Xo], Xa = [X1.[X1, X2]], X5 = [Xa, [X1. X2]]. (7)

Let us introduce the “quasi-impulses” u; : T*M +— R, 1 <i <5,

ui(d) =p-Xi(q), A=(p.q). geM, peT/M. (8)
Then by the definition
(D?)F ={A e T*M :ur1(A) = u2(A) = us(2) = 0}. )

—
As usual, for a given function 2 : T*M + R denote by /& the corresponding
Hamiltonian vector field defined by the relation iﬁo = —d h. Then by the direct
computations (see, for example, [10]) the characteristic line distribution € satisfies

€ = span{u472 — u571}. (10)

3 Jacobi curves of abnormal extremals

Now we are ready to define the Jacobi curve of an abnormal extremal of D. For this
first lift the distribution D to (D?)*, namely considered the distribution & on (D?)+
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such that
FA) ={v e T;k(Dz)l dn(v) € D(JT(/\))}. (1)

Note thatdimg = n — 1 and € C ¢ by (10) . The distribution  is called the lift of
the distribution D to (D?)*+\(D3)1.

Given a segment y of an abnormal extremal (i. e. of a leaf of the 1-characteristic
foliation) of D, take a sufficiently small neighborhood O, of y in (D?)* such that
the quotient N = O, /(the characteristic one-foliation) is a well defined smooth
manifold. The quotient manifold N is a symplectic manifold endowed with the sym-
plectic structure 6 induced by o'|(p2)L. Let

$:0, >N (12)

be the canonical projection on the factor. Define the following curves of subspaces
inT,N:
A ¢u(3(), Yiey, (13)

Informally speaking, these curves describe the dynamics of the distribution § w.r.t.
the characteristic 1-foliation along the abnormal extremal y.

Note that there exists a straight line, which is common to all subspaces appearing
in (13) for any A € y. So, it is more convenient to get rid of it by a factorization.
Indeed, let e be the Euler field on T* M, i. e., the infinitesimal generator of homoth-
eties on the fibers of 7* M . Since a transformation of 7* M, which is a homothety
on each fiber with the same homothety coefficient, sends abnormal extremals to ab-
normal extremals, we see that the vector ¢ = ¢«e(A) is the same for any A € y and
lies in any subspace appearing in (13). Let

Jy(X) = ¢« (3 (V) /{RE}, VA ey (14)

The (unparametrized) curve A — J, (A1), A € y is called the Jacobi curve of the
abnormal extremal y. It is clear that all subspaces appearing in (14) belong to the
space

W, ={veT,N :06(v,e) =0}/{Re}. (15)

and that
dimJ, (1) =n —3. (16)

The space W), is endowed with the natural symplectic structure &, induced by o.
Alsodim W, = 2(n — 3).

Given a subspace L of W, denote by L# the skew-orthogonal complement of L
with respect to the symplectic form &, L4 ={v e Wy,op(v,0) =0 Ve L}
Recall that the subspace L is called isotropicif L C L%, coisotropicif L* C L, and
Lagrangian, if L = L#. Directly from the definition, the dimension of an isotropic
subspace does not exceed ; dim W,,, and a Lagrangian subspace is an isotropic sub-
space of the maximal possible dimension ; dim W,,. The set of all Lagrangian sub-
spaces of W, is called the Lagrangian Grassmannian of W,,.
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It is easy to see ([10,23]) that the Jacobi curve of an abnormal extremal consists
of Lagrangian subspaces, i. €. it is a curve in the Lagrangian Grassmannian of W,,. In
the case n > 5 (equivalently, dim W, > 4) curves in the Lagrangian Grassmannian
of W, have a nontrivial geometry with respect to the action of the linear symplectic
group and any symplectic invariant of Jacobi curves of abnormal extremals produces
an invariant of the original distribution D.

4 Reduction to geometry of curves in projective spaces

In the earlier works [3, 23] invariants of Jacobi curves were constructed using the
notion of the cross-ratio of four points in Lagrangian Grassmannians analogous to
the classical cross-ratio of four point in a projective line. Later, we developed a dif-
ferent method, leading to the construction of canonical bundles of moving frames
and invariants for quite general curves in Grassmannians and flag varieties [12, 14].
The geometry of Jacobi curves J,, in the case of rank 2 distributions can be reduced
to the geometry of the so-called self-dual curves in the projective space P W,,.

For this first one can produce a curve of flags of isotropic/coisotropic subspaces of
W, by a series of osculations together with the operation of taking skew symmetric
complements. For this, denote by C(J,) the tautological bundle over J,: the fiber
of C(Jy) over the point J,, (A) is the linear space J, (). Let I'(J, ) be the space of
all smooth sections of C(J,,). If ¥ : (—¢, €) — y is a parametrization of y such that
¥ (0) = A, then for any i > 0 define

d
IED0) = (19 0)~. (18)

. d’
J}f’)(/\) = span{ Tjﬁ(l//(l))|t:0 Lel'(J)),0<j < i} a7

For i > 0 we say that the space Jlfi)(/\) is the i-th osculating space of the curve J,
atA.
Note that J, = Jlfo). Directly from the definitions the subspaces J,f’)(/\) are

coisotropic for i > 0 and isotropic for i < 0 and the tuple {Jlfi)(/\)},-ez defines a

filtration of W,,. In other words, the curve A — {Jlfi)(/\)},-ez is a curve of flags of
W, . Besides, it can be shown [23] that

dim JP ) —dim JQ ) = dim J@ (1) —dim STV ) =1,

which in turn implies that dim J® (1) —dim JY~D (1) < 1,1i.e. the jump of dimen-
sions between the consecutive subspaces of the filtration {Jlfi)(/\)},-ez is at most 1.
This together with (16) implies that dim J\"(X) < n —3 +i fori > 0.

We say that A is a regular point of (D2)-\(D3)* if dim JP(A) = n —3 +i
for0 < i < n — 3 or, equivalently, if /"~ (1) = W,. A rank 2 distribution D is
called of maximal class at a point ¢ € M if at least one point in 7' (g) N (D?)+



On geometry of affine control systems with one input 141

is regular. Since by (10) the characteristic distribution € generated by a vector field
depending algebraically on the fibers (D2)L, if D is of maximal class at a point
g € M, then the set of all regular points of 77 '(g) N (D?)* is non-empty open
set in Zariski topology. The same argument is used to show that the set of germs of
rank 2 distributions of maximal class is generic.

If D is of maximal class at ¢ and n > 5, then by necessity dim D3(g) = 5. The
following question is still open: Does there exist a rank 2 distribution with dim D3 =
5 such that it is not of maximal class on some open set of M ? We proved that the an-
swer is negative for n < 8 and we have strong evidences that the answer is negative
in general.

Remark 2. Note that from (10) it follow that if a rank 2 distribution D is of maximal
class at a point ¢ € M then the set of all lines {d 7 (€(1)) : A € Rp N7~ (g)} is
an open and dense subset of the projectivization P D(gq) of the plane D(g), where,
as before, 7 : T*M — M is the canonical projection. |

From now on we will work with rank 2 distributions of maximal class. In this case
dim 7™ (1) = 1, 1i.e. the curve JS*™™ is a curve in the projective space PW,.
Moreover, the curve of flags A +— {Jlfi)(/\)}:?;g_n, A € y is the curve of complete
flags and the space Jlfi) (A) is the (i + n — 4)th-osculating space of the curve J154_").

n—3

In other words, the whole curve of complete flags A {Jlfi)(/\)}i=3_n,

A €y can

be recovered from the curve J§4_") and the differential geometry of Jacobi curves
of abnormal extremals of rank 2 distributions is reduced to the differential geometry
of curves in projective spaces.

5 Canonical projective structure on curves in projective spaces

The differential geometry of curves in projective spaces is the classical subject, es-
sentially completed already in 1905 by E.J. Wilczynski (21]). In particular, it is well
known that these curves are endowed with the canonical projective structure, i.e.,
there is a distinguished set of parameterizations (called projective) such that the tran-
sition function from one such parametrization to another is a Mobius transformation.

Let us demonstrate how to construct it for the curve A +— J§4_") V), A evy.

As before, let C (J154_")) be the tautological bundle C (J154_")) over J154_"). Set
m = n — 3. Here we use a “naive approach”, based on reparametrization rules for
certain coefficient in the expansion of the derivative of order 2m of certain sec-

tions of C (J154_")) w.r.t. to the lower order derivatives of this sections. For the more
algebraic point of view, based on a Tanaka-like theory of curves of flags and sl,-
representations see [8, 12].

Take some parametrization ¢ : I +— y of y, where [ is an interval in R. By
above, for any section £ of C (J154_")) one has that
J

span{d Ly@)|0<j<2m—1} =W,. (19)

dt)
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A curves in the projective space P W), satisfying the last property is called regular
(or convex). It is well known that there exists the unique, up to the multiplication by
anonzero constant, section E of C (J154_")), called a canonical section of C (J154_"))
with respect to the parametrization v, such that

dzm 2m—2

gom EW @) = Z Bi (r) E(v(®). 20)
i.e. the coefficient of the term 522m | ( (t)) in the linear decomposition of
5:2’7" (¥(t)) w.r.t. the basis {dtl (v (t)) :0 <i < 2m— 1} vanishes.

Further, let ¥, be another parameter, E be a canonical section of C (J154_")) with
respect to the parametrization vy, and v = ¥~ ! o ;. Then directly from the defi-
nition it easy to see that

E(@i1(0) = c(v'(0) > " EW () 1)

for some non-zero constant c.
Now let B; (1) be the coefficient in the linear decomposition of ¢ dr2m (1//1 (r))

w.1.t. the basis { (1//1 (1)) : 0 <i <2m—1} asin (20). Then, using the relation

(21) it is not hard to show that the coefficients By,,—»> and §2m_2 in the decompo-
sition (20), corresponding to parameterizations i and /1, are related as follows:

m(4m? — 1)

Bom—2(t) = V' (1)? Bam—2(v(7)) — 3

S()(v), (22)

,U// ,U// 2
2v ) T \2v
From the last formula and the fact that Su = 0 if and only if the function v is

Mobius it follows that the set of all parameterizations ¢ of vy such that

where S(v) is the Schwarzian derivative of v, S(v) = jr (

Bom—2 =0 (23)

defines the canonical projective structure on y. Such parameterizations are called
the projective parameterizations of the abnormal extremal y. If Y and v, are two
projective parametrizations, then there exists a Mobius transformation v such that
Vi =vyouv.

Note that the curve J§4_") is not an arbitrary regular curve in the projective space
PW. It satisfies the following additional property:

(S1) The (n — 4)th-osculating space of J154_n) at any point A is Lagrangian.

As shown already by Wilczynski [21] such curves are self-dual in the following
sense:
(S2) The curve (Jlfn_4))* in the projectivization P W, of the dual space W, which

is dual to the curve of hyperplanes Jlfn_4) obtained from the original curve
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J154_n) by the osculation of order 2(n — 4), is equivalent to the original curve

J§4_"), i.e. there is a linear transformation A ©: W +— W?* sending Jlfn_4)

onto (J,Sn_4))*.

Note that in contrast to property (S1) the formulation of property (S2) does not in-
volve a symplectic structure on W,. However, it can be shown [17,21] that if the
property (S2) holds then there exists a unique, up to a multiplication by a nonzero
constant, symplectic structure on W), such that the property (S1) holds (here it is
important that dim W, is even; similar statement for the case of odd dimensional
linear space involves nondegenerate symmetric forms instead of skew-symmetric
ones). Since in our case the symplectic structure on W), is a priori given, in the sequel
we will consider projective spaces of linear symplectic spaces only and by self-dual
curves we will mean curves satisfying property (S1).

Using the coefficients of the decomposition (20) w.r.t. a projective parameter ¢
one can construct the (relative) invariants of the unparametrized curve J§4_") , called
the Wilczynski invariants. Since we shall not use these invariants in the sequel, we
will not give here their construction referring the interested reader to [8, 12]. Note
only that in the case of a self-dual curve in such decomposition also Ba,,,—3(f) = 0
and the first nontrivial Wilczynski invariant is B, _4(¢)dt*, i.e. this is the homo-
geneous function of degree 4 on each tangent line to our curve. As shown in [24],
for rank 2 distributions in R> with maximal possible small growth vector (2, 3, 5),
this invariant, calculated along each abnormal extremal, gives the classical Cartan
invariant of [7].

6 Canonical frames for rank 2 distributions of maximal class

Now let Rp be the set if all regular points of (D?)1\(D?3)*. Denote by P, the set
of all projective parameterizations ¥ on the characteristic curve y , passing through
A, such that ¢ (0) = A. Let

Sp={(A¥): e Rp, ¥ Py}

Actually, Xp is a principal bundle over R p with the structural group of all Mobius
transformations, preserving 0 and dim ¥p = 2n — 1. The main results of [9,10] can
be summarized in the following:

Theorem 2. For any rank 2 distribution in R" with n > 5 of maximal class there
exists the canonical, up to the action of Z», frame on the corresponding 2n — 1)-
dimensional manifold ¥p so that two distributions from the considered class are
equivalent if and only if their canonical frames are equivalent. The group of sym-
metries of such distributions is at most (2n — 1)-dimensional and this upper bound
is sharp. All distributions from the considered class with (2n — 1)-dimensional Lie
algebra of infinitesimal symmetries is locally equivalent to the distribution D (o, ...0)
generated by the vector fields X1 and X, from (3)-(4) with all r; equal to 0 or,
equivalently, associated with the underdetermined ODE z'(x) = (y(”_3) (x))z. The
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symmetry algebra of this distribution is isomorphic to a semidirect sum of gl (2, R)
and (2n — 5)-dimensional Heisenberg algebra n,—5 such that gl(2, R) acts irre-
ducibly on a complement of the center of ia,—5 t0 Nipy—s5 itself.

7 Canonical frames for rank 2 distributions of maximal class
with distinguish parametrization on abnormal extremals

Let us show that for regular control systems on rank 2 distributions in the sense
Definition 2 a special parametrization, up to a shift, can be distinguished on each
abnormal extremal lying in Rp. Let 'V, be the set of the admissible velocities of the
control system under consideration at the pointg € M. Let R be a subset of Rp
consisting of all points A such that the image under d 7 of the tangent line at A to
the abnormal extremal passing through A is a regular line in D (JT (/\)) in the sense of
Definition 1 (here , as before 7 : T*M — M is the canonical projection). Then by
Definition 2 and Remark 2 the set R is a non-empty open subset of (D?)1. Given
a regular line L in D(g) let w(L) be the admissible velocity in L of the smallest
norm. Clearly w (L) does not depend on the choice of a normin D(g), butin general
it may be defined up to a sign (for example, in the sub-(pseudo) Riemannian case).

A parametrization ¥ : I + y of an abnormal extremal y living in R is called
weakly canonical (with respect to the regular control system given by the set of ad-
missible velocities {Vy}qem ) if

d d
a0 ) = w(spandn (3, v ) ) 4

This parametrization is defined up to a shift and maybe up to the change of orienta-
tion. In the case when the orientation is not fixed by (24) we can fix the orientation as

follows: Since the curve J§4_") is self-dual, given a parametrization i on y, among

all canonical sections of the tautological bundle C (J154_")) (defined up to the mul-
tiplication by a nonzero constant) there exists the unique, up to a sign, section £ of
such that (20) holds and

- ar—3 dn—4
Oy (dl‘”_3 E(‘/’(l‘)), drn—4 E(I//(l)))‘ =1. (25)

This section E will be called the strongly canonical section of C (J154_")) with
respect to the parametrization . The parametrization ¥ is called the canonical
parametrization of the abnormal extremal y if (24) holds and

_ [ d"3 a4
Oy (dl‘”_3 E(‘/’(l‘)), din—4 E(I//(l))) =1. (26)

We finally obtain the parametrization of y defined up to a shift only.
Finally let R be a subset of R where the vector field consisting of the tangent vec-
tors to the abnormal extremals parameterized by the canonical parameter is smooth.
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Note that R is an open and dense subset of R. For affine control systems with one
input and a non-zero drift and for sub-Riemannian structures R coincides with the
set Rp of the regular points in (D2)+\(D3)*.

Note that the canonical parametrization is preserved by the homotheties of the
fibers of (D?). Namely, if § is the flow of homotheties on the fibers of 7* M
8s(p.q) = (€°p,q), q € M, p € T/ M or, equivalently, the flow generated by
the Euler field e generates this flow, then v : I +— y is the canonical parametriza-
tion on an abnormal extremal y if and only if §5 o ¥ is the canonical parametrization
on the abnormal extremal g o ).

The main goal of this section is to prove the following

Theorem 3. Given a regular control system on a rank 2 distribution D of maximal
class one can assign to it a canonical, up to the action of Z,, frame on the set R
defined above so that two objects from the considered class are micro-locally equiv-
alent if and only if their canonical frames are equivalent.

Proof. First, let h be the vector field consisting of the tangent vectors to the abnormal
extremals parameterized by the canonical parameter.

Second, given A € (D?)* denote by V(1) the tangent space to the fiber of the
bundle 77 : (D?)+ — M (the vertical subspace of Ty (D?)1),

V(A) = {v € TW(D?)*, mev = 0. (27)
Itis easy to show ([10,23]) that
dp(V) @€) = ISP modRe, (28)

where ¢ is as in (12), e = ¢«e with e being the Euler field, and y is the abnormal

extremal passing through A. Define also the following subspaces of Ty (D?)~:
FON) = {w e Ty(DH* : dp(w) € JP (1) mod R&}. (29)
Directly from the definition, if A € Rp, then
[€. 41 = V@), (30)
Also, if VD) = V(1) N gD (1), then
490 =vO) @e@r) Vi<o. (31)

Moreover, it can be shown ([10, Lemma 2]) that
[V(i), V(i)] C V(i), [V(i),&’(i)] C g(i)’ Vi <0. (32)

Let E be the strongly canonical section of C (J154_")) with respect to the canon-
ical parametrization v of the abnormal extremal y (as defined by (25)). Then (28)
implies that a vector field €; such that

(A1)  d¢(e1(A)) = E mode;
(A2) & is the section of the vertical distribution V'
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is defined modulo the Euler field e. Note that conditions (A1) and (A2) also imply
that ¢ is the section of 1V *#=).

Lemma 1. Among all vector fields €1 satisfying conditions (Al) and (A2), there ex-
ists the unique, up to a multiplication by —1, vector field such that

[81, [h,el]](/\) € span{e(A), h(X), g1 (A)}. (33)

Proof. Let &; be a vector field satisfying the conditions (A1) and (A2). Then &; is
the section of V=), Using (31) and (32) for n > 5 and also the definition of ¢
given by (11) in the case n = 5, we get

[£1.[h.&1]] = k[h,&1] modspan{e, h, &} (34)

for some function k. Now let &; be another vector field satisfying conditions (A1)
and (A2). Then by above there exists a function p such that

g1 = £8; + ue. (35)

From the fact that the canonical parametrization is preserved by the homotheties
of the fibers of (D?)* it follows that [e, h] = 0 . Also from the normalization con-
dition (25) it is easy to get that

1
le,e1] = —281 mod span(e). (36)

Then .
[e.[h.e1]] = —2[h,81] mod(e, h). 37)

From this and (35) it follows that

[e1,[h.a1]] = (kK F l;)[h,el] span{e, h, &1}, (38)

which implies the statement of the lemma: the required vector &; is obtained by
taking u = +2k. O

Now we are ready to construct the canonical frame on the set R. One option is
to take as a canonical frame the following one:

le.h. e {(adh) e1}7277 [e1. (ad h)*" 1]}, (39)

where ¢; is as in Lemma 1. Let us explain why it is indeed a frame. First the vector
fields {e. h, ey, {(adh) &1}?"]7} are linearly independent on R due to the relation
(30). Besides [e1, (ad )2 7&1](A) ¢ g3 (1). Otherwise, £1(X) belongs to the
kernel of the form o'(4)[(p2). and therefore it must be collinear to 1. We get a con-
tradiction. Therefore the tuple of vectors in (39) constitute a frame on R.

The construction of the frame (39) is intrinsic. However, in order to guaranty that
two objects from the considered class are equivalent if and only if their canonical
frames are equivalent, we have to modify this frame such that it will contain the ba-
sis of the vertical distribution V' (defined by 27). For this, replace the vector fields
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of the form (adh)’e; for 1 <i < n — 4 by their projections to V@ with respect to
the splitting (31), i.e. their vertical components with respect to this splitting. This
completes the construction of the required canonical frame (defined up to the action
of the required finite groups). The proof of Theorem 3 is completed.

As a direct consequence of Theorem 3 we have

Corollary 1. For a regular control system on a rank 2 distribution D of maximal
class the dimension of pseudo-group of micro-local symmetries does not exceed
2n —3.

8 Symplectic curvatures for the structures under consideration

Before proving Theorem 1 about the most symmetric models for geometric struc-
tures under consideration, we want to reformulate this theorem in more geometric
terms. For this we distinguish special invariants for this structures called the sym-
plectic curvatures. They are functions on the open subset R of Rp, defined in the
beginning of the previous section.

From the construction of the previous section all curves J§4_") are parameterized
by the canonical (up to a shift) parametrization ¥ given by (24) (and maybe also by
(26)). The geometry of parameterized regular self-dual curves in projective spaces
is simpler than of unparametrized ones: instead of forms (relative invariants) on the
curve we obtain invariant, which are scalar-valued function on the curve ([25]). The
main result of [25] (Theorem 2 there) can be reformulated as follows (see also [17]):
if E is a (strongly) canonical section of C (J154_")) with respect to the (canonical)
parametrization ¥, then there exist m functions p1(t), ..., pm(?) such that

m ) dm—i dm—i
EC™(y(1)) = (=)' Jymei (Pi (t) dlm_iE(l//(t))). (40)
i=1
Note that formula (40) resembles the classical normal form for the formally self-
adjoint linear differential operators [19][§1].

By constructions, the functions p;(¢), ..., pm(t) are invariants of the parame-
terized curve ¢ J§4_") (¥ (1)) with respect to the action of the linear symplec-
tic group on W,,. We call the function p;(¢) the ith symplectic curvature of the
parametrized curve t J§4_") (¥ (1)). Besides, the functions py (1), . .. , pm(t) con-
stitute the fundamental system of symplectic invariant of the parametrized curve
t— J§4_") (1//(!)), i.e. they determine this curve uniquely up to a symplectic trans-
formation. Moreover, these invariants are independent: for any tuple of m functions
p1(t), ..., pm(t) ontheinterval I C R there exists a parameterized regular self-dual
curve t — A(t), t € I, in the projective space of dimension 2m — 1 with the ith
symplectic curvature equal to p; (¢) forany 1 <i <m.
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Also in the sequel we will need the following
Remark 3. Assume that E is the strongly canonical section of C (J154_")) with re-

d’ m
spect to the parametrization 1. Using the fact that the spaces span{ dti E (1// (t)) } o
] =

are Lagrangian and the condition (25), it is easy to show that

d’ d
& ([ ). EW©))

are either identically equal to 0, ifi + j <2m —lorto£1,ifi +j =2m—1,0r
they are polynomial expressions (with universal constant coefficients) with respect
to the symplectic curvatures p1(?), ..., pm (¢) and their derivatives, ifi + j > 2m. 0O

Taking the ith symplectic curvature for Jacobi curves (parameterized by the
canonical parameter) of all abnormal extremals living in R, we obtain the invari-
ants of the regular control systems, called the i th symplectic curvature and denoted
also by p;. The symplectic curvatures are scalar valued functions on the set R.

9 The maximally symmetric models

Now we will find all structures from the considered classes having the pseudo-group
of micro-local symmetries of dimension equal to 2n — 3. As a consequence of Corol-
lary 1 if an object from the considered class has the pseudo-group of micro-local
symmetries of dimension equal to 2n — 3 then all structure functions of the canoni-
cal frame (39) must be constant. Note that formula (40) can be rewritten in terms of
the canonical frame (39) as follows

[h, eam] = Z(—l)i+l(ad hym (p,- (adhm_iel> mod span{e, h}, 41)

i=1

where p; are the ith symplectic curvatures of a structures under consideration. This
implies that the symplectic curvatures of all order must be constant for any structure
from the considered classes having 2n — 3-dimensional pseudo-group of micro-local
symmetries . This implies that the following theorem is equivalent to Theorems 1

Theorem 4. Given any tuples of n—3 numbers (r1, . . ., r,—3) there exists the unique,
up to micro-local equivalence, regular control system on a rank 2 distribution of
maximal class in R™ with n > 5 having the group of micro-local symmetries of
dimension 2n — 3 and the ith symplectic curvature identically equal to r; for any
1 <i < n—3. Suchregular control system is micro-locally equivalent to the system
rn_s) defined by (2)-(4).

.....

Proof. First, let us prove the uniqueness. Take a structure from the considered class
having the pseudo-group of micro-local symmetries of dimension 27 —3 and the i th
symplectic curvature identically equal to r; for any 1 < i < m, where, as before,
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m = n — 3. Then, as was already mentioned, all structure functions of the canon-
ical frame (39) must be constant. The uniqueness will be proved if we will show
that all nontrivial structure function (i. e. those that are not prescribed by the nor-
malization conditions for the canonical frame) are uniquely determined by the tuple

(}’1, e ,l’n_3).
Let g1 be as in the Lemma 1. Denote
gir1:= (adh)er, v=[e1,em] (42)
In this notations the canonical frame (39) is {e, &, €1, ..., €2m, }-
1) Let us prove that
1
le,e1] = —,¢1 (43)
where, as before e is the Euler field. Indeed, from (36)
1
le,e1] = —,E1tae (44)
where a is constant by our assumptions. Then, using the Jacobi identity and the
fact that
le.h] =0 (45)
we get that

le, &2] =[e, [h,sl]]z [h, [e,el]] = [h,—;sl —i—ae] = —;ez. (46)

Further, from the normalization condition (33) and formula (44) it follows that

[e.[e1.€2]] € span{e(X), h(X), e1(A)}. 47)

On the other hand, using the Jacobi identity and formulas (44),(45),(46), we get
that

[e.[e1.82]] = [[e. e1]. 2] + [e1.[e. e2] | = [— ;51 +ae,ez] — ;[81,52]

—‘2182 mod spanfe(A), h(R), 1 (L)},

which together with (47) implies that a = 0.
2) By analogy with the chain of the equalities (47) we can prove that

1
[e7Si] :_28i’ Vl El Szm’ (48)
which in turn implies by the Jacobi identity that
[e.lei-ej]] = —lei )] V1 <i.j <2m. (49)

In particular, [e, n] = —.
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3) Let us show that

m—1

[, eam] = Y (=1 rigagmoi). (50)

i=1
From (41) and our assumptions it follows that

m—1
[h.eam]) = Y (=1 rigaomiy + ve + Sh (51)
i=1
for some constants y and §. Applying ad e to both sides of (51) and using the
Jacobi identity and formulas (45) and (48), we will get that y = § = 0, which
implies (50).
4) Let us prove that

[ei. €] = dijn (52)
for some constants d;; Indeed, in general
2m
[ei.&j] = bije + cijh + dijn + Y _ akex (53)
k=1

where al’-‘j, bij, c¢;j and d;; are constant by our assumptions. Applying ad e to
both sides of (53) and using the Jacobi identity and the formulas (45), (48), and
(49), we get

1 2m
—lei &) = —dijn— ) 3 afjex. (54)
k=1

Comparing (53) and (54) we get that al’-‘j = b;j = c¢ij = 0, which implies (52).

5) Moreover, by Remark 3 and the definition of the vector field n (see (42)) the
constants d;; from (52) are either identically equal to 0, if i + j < 2m or equal
to (—1)'71,ifi + j = 2m + 1, or they are polynomial expressions (with uni-
versal constant coefficients) with respect to the constant symplectic curvatures
F1.eoostm,ifi +j > 2m.

6) The remaining brackets of the canonical frame are obtained iteratively from the
brackets considered in the previous items.

Therefore all nontrivial structure functions of the canonical frame are determined
by the tuple (rq, ..., rn,—3), which completes the proof of uniqueness.

To prove the existence one checks by the direct computations that the models
A(ry,....rm) have the prescribed symplectic curvatures and that all structure functions
of their canonical frame are constant similarly to the proof of the existence part of
Theorem 3 in [10], devoted to the computation of the canonical frame for Dg,... o). O

.....

Remark 4. As a matter of fact it can be shown that Theorem 3 (with a modified set
R), Corollary 1, and Theorem 4 are true if we replace the regularity condition for
control systems given in Definition 2 by the following weaker one: for any point g
the curve of admissible velocities V; does not belong entirely to a line through the
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origin. One only needs more technicalities in the description of the set R in Theo-
rem 3. O.
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Remarks on Lipschitz domains in Carnot groups

Bruno Franchi, Valentina Penso, and Raul Serapioni

Abstract In this Note we present the basic features of the theory of Lipschitz maps
within Carnot groups as it is developed in [8], and we prove that intrinsic Lipschitz
domains in Carnot groups are uniform domains.

1 Introduction

The aim of this note is to provide a gist of few very basic points of the theory of
Lipschitz maps within Carnot groups as it is developed in [8], and to present some
applications to the study of the geometry of subsets of the groups.

Let us first establish a few notations concerning Carnot groups. For a general
account, we refer, e. g. to [3,7,15].

A graded group of step k is a connected, simply connected Lie group G whose
finite dimensional Lie algebra g is the direct sum

g=g1D D«
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of k subspaces g;, i = 1,..., « such that
[gi,gj] C@i+j,

for1 <i,j <k andg; = 0fori > k. We denote by n the dimension of g and by
mj the dimension of g;, for1 < j <«.

A Carnot group G of step « is a graded group of step x, where g; generates all
of g. That is [q1, gi] = gi+1, fori = 1,..., k. We denote by Q the homogeneous
dimension of G, i.e. we set

0= Zi dim(g;).
i=1

If e is the unit element of (G, -), we remind that the map X — X(e), that asso-
ciates with a left-invariant vector field X its value at e, is an isomorphism from g
to T Ge, in turn identified with R”. From now on, we shall use systematically these
identifications. Thus, the horizontal layer defines, by left translation, a fiber bundle
HG over G (the horizontal bundle). Its sections are the horizontal vector fields.

A Carnot group G can be always identified, through exponential coordinates, with
the Euclidean space (R”, -), where n is the dimension of g, endowed with a suitable
group operation. The explicit expression of the group operation - is determined by
the Campbell-Hausdorff formula. From now on, G will be always a Carnot group
written in exponential coordinates.

We choose a basis ey, ..., e, of R” adapted to the stratification of g, i.e. such
that
€hj_y 412 €h; is a basis of g;
where hg = 0and h; = my +---+mj,foreach j = 1,..., k. Then, we denote by
(-, ) the scalar product in g making the adapted basis {ey, ..., e,} orthonormal. Fi-
nally { Xy, ..., X, } is the family of left invariant vector fields such that X; (e) = e;,
fori =1,...,n.

For any x € G, the (left) translation ty : G — G is defined as
I TxZ =X - Z.
For any A > 0, the dilation §) : G — G, is defined as
SA(X1s e Xn) = (A9 x1, 0 A9 xy),

where d; € N is called homogeneity of the variable x; in G (see [7] Chap. 1) and is
defined as
dj =i whenever hj_1+1=<j <h;,

hencel =dy = ... =dw, <dm+1 =2=<..=<d, =«.

Through this note, homogeneity will be always meant with respect to group dila-
tions &, (see again [7], Chap. 1).

The Haar measure of G = (R”, -) is the Lebesgue measure £” in R”.
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Definition 1. An absolutely continuous curve y : [0,7] — G is a sub-
unit curve with respect to Xy, ..., X;, if there exist measurable real functions
c1(s), .- ¢m(s), s € [0, T] such that -, ¢ < I and

mi
y(s) = Z cj($)Xj(y(s)), forae.sel0,T].
j=1
Definition 2. If p, g € G, we define their Carnot-Carathéodory distance as

de(p.q) ==
inf{T > 0 : there exists a sub-unit curve y with y(0) = p, y(T) = q}.

By Chow’s Theorem, the set of sub-unit curves joining p and ¢ is not empty for all
P, q € G, furthermore d. is a distance on G that induces the Euclidean topology (see
Chap. 19 in [3] or Theorem 1.6.2 in [26]). It is also important to stress that (G, d.)
is a metric space with geodesics.

More generally, given any homogeneous norm ||-||, it is possible to define a dis-
tance in G as

dx,y) =d(y™" -x,00= |y x

|, forallx,y €G. (1)

The distance d in (1) is comparable with the Carnot-Carathéodory distance of G and

d(z-x,z-y) =d(x,y), d((x),8,(y)) =Ad(x,y)
forall x,y,z € G and all A > 0.

A possible convenient homogeneous norm (described in [lQ, Theorem 5.1]) is
the following one, if p = (p!,..., p¥) € R* = G, with p/ € R"™ -1, for
j=1,...,k, then

doo(p.0) i= Nl = max (e |7 gt

where ¢; = 1, and &3, ...& € (0, 1] are suitable positive constants depending on

G.Forr > 0and p € G, we denote by B.(p, r) the open balls associated with the

Carnot-Carathéodory distance d., and by B(p, r) the ones associated with d or d.
The following results will be used throughout this note.

Proposition 1 ([10], Proposition 2.4). Let d be a distance in G such that
d(z-x,z-y)=d(x,y), d(6(x).8:(y)) = Ad(x,y)
forx,y,z € G and A > 0, and denote by B the closed d-balls. Then

diamg (Bg(x,r)) = 2r, forr > 0.
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Lemma 1 ([8], Lemma 2.2.12). Let G be a step k group. There is C = C(G) > 0
such that

_ 1 Kk—1 1 Kk—1
ly™x -y < lxl+ CAI< IS + I 0xl ™). forallx.y € G.
Definition 3. A homogeneous subgroup of a Carnot group G (see [30, 5.2.4]) is a

Lie subgroup M of G such that §, g € M, for all g € M and for all A > 0.

Remark 1. Homogeneous subgroups are linear subspaces of G, when G is identified
with R” with exponential coordinates. Moreover, an homogeneous subgroup M is
stratified, that is Ml = M' @ --- @ M¥, where M! C G’ := exp(g;) and M is a
linear subspace of G'.

Definition 4. Let M, N be homogeneous subgroups of G. We say that M, N are
complementary homogeneous subgroups or, briefly, complementary subgroups in
G,ifMNN = {e} and

G =M-N,

that is for each g € G, there are m € M and n € N such that g = m - n.

If M and N are complementary subgroups of G, the elements m € M andn € N
such that g = m - n are unique because Ml N N = {e} and are denoted as compo-
nents of g along M and N or as projections of g on M and N. We writem := Py g,
n:=Png.

If M, N are complementary subgroups of G and one of them is a normal subgroup
then G is said to be the semi-direct product of M and N.

Example 1. Let G be the Heisenberg group H”. Then all the possible couples of
complementary subgroups of H” contain a horizontal subgroup V of dimension k <
n, isomorphic and isometric to R¥ and a normal subgroup W of homogeneous di-
mension 2n + 1 — k, containing the centre T. Moreover W! @ V = G,

Very similar splittings exist in a general Carnot group G. Indeed, choose any ho-
mogeneous horizontal subgroup N, i.e. an homogeneous subgroup N contained in
the horizontal layer G, and a subgroup M such that

NeM! =G, ()
G/ cM forall2<j <k, (ii)

then M and N are complementary subgroups in G and M is a normal subgroup.

Example 2. Decomposition of a Carnot group G as in Definition4 are canonically as-
sociated with left invariant covectors of Rumin’s complex (EJ, d.). Necessarily, we
must be very sketchy here. For further details we refer the reader to [2,8,13,28,29].
Following the notations of [17], p.90, if X is a vector field, we denote by i (X) the
interior product with X. Then we have:

Theorem 1. If 1 < h <n, £ € Eé’ and w € E(’}_h are simple covectors such that

Enw #0,
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we set
m:={Xeg:i(X)§E=0}, h:={Xeg:i(X)w =0}

Then both wi and Yy are Lie subalgebras of . Moreover dimm = n — h, dim) = h
andg =m @ b.

If, in addition, & = &y N--- A&, @ = w1 A+ Awy—p, where all the &;’s and the
w; have pure weights p; and q;, respectively, then both wi and Yy are homogeneous
Lie subalgebras of . Thus, if we set

M :=exp(m) and N :=exp(h),

then M and N is a couple of complementary subgroups as in Definition 4.

In particular, since *Eé’ = E(’}_h, if¢ e Eé’, we can choose w := *£. In this case,
wm and b are orthogonal.

Reciprocally, suppose v and Y are two homogeneous Lie subalgebras of g such that
dimm =n—h,dimf) =h, andg =m P §.

Then there exist a scalar product (-,-)o in g, £ € Eé’ and w € E(’}_h such that
EAw # 0and

m:={Xeqg:i(X)§E=0}, h:={Xeg:i(X)w =0}
Proposition 2. [f M, N are complementary subgroups in G there is co =
co(M, N) > 0 such that forallg = m -n
co (Imll + llnlD) = gl = llm]l + lInl.

The sizes of the components Pyrg and Py g control the distance of g € G from
the complementary subspaces M and N. The control is different when considering
the distance of g from the first component M or from the second component N.

Proposition 3. Let G be a step k group with M and N complementary subgroups.
Then,
co|[Pngll < dist(g. M) < |Pngl, forallgeG,

where cq is the constant in Proposition 2. Moreover, there is c; = ¢1(M,N) > 0
such that

1 . .
o IPag ] < dist(g.N) < c1 [|[Pug|'/*. if gl = 1.
Proposition 4. Let G = M - N then the projection maps Py : G — M and Py :
G — N are polynomial maps.

2 Graphs and Lipschitz graphs

If a Carnot group G admits a decomposition G = M - N as a product of comple-
mentary homogeneous subgroups, then we give a natural notion of graph within G.
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Definition 5. Suppose G admits a decomposition G = M - N as a product of com-
plementary homogeneous subgroups. We say that S C G is a (left) N-graph (or a
left graph in direction N) if there is ¢ : & C M — N such that

S =19 :Ectl

We write S = graph (¢) :={£-¢() : & € &}.
By uniqueness of the components along M and N, if § = graph (p) then ¢ is
uniquely determined among all functions from M to N.

This notion of graph is intrinsic, in the sense that is invariant under group trans-
lations and dilations (we refer again to [8] for an exhaustive presentation). Indeed

Proposition 5. If M, N are complementary subgroups in G, if S = graph (p) with
¢:8& CM — N, then

forallA > 0, 6, S = graph (¢;), withgy :6,6 CM — N  and
@a(m) :=839(81/2m), form € 8, 6;

forallg € G, q-S = graph (¢q), where ¢g : &4 := {m : Ppm(q™' -m) € 6} - N,
and
9q(m) = (Pn(g~" -m))_1 ~o(Pm(g™" -m)), forallm € &,.

Remark 2. In this paper we consider only graphs of functions acting between com-
plementary subgroups. Nevertheless, it is relevant to mention that it is possible to
give a more general notion of N-graph also when N fails to admit a complementary
subgroup. For instance, T -graphs, where T is the centre of the Heisenberg group
H¥, have been studied recently. We refer to [8] for details.

Given a decomposition G = M - N there are natural notions of intrinsic cones in
G. We refer also to [8] and to [5] for different but related definitions.

Definition 6. If M, N are complementary subgroups in G, ¢ € G and § > 0 the
cones Cy,w (¢, B), with base M, axis N, vertex ¢, opening B are defined as

Cvn(e. B) ={p:|Pmpl < BIPNpIl}.
CmN(q.B) =q-Cumnle, B).

We say that f : & C M — N is intrinsic L-Lipschitzin & if there is L > 0 such
that

CvN(p,1/L) Ngraph (f) = {p}, forall p € graph(f). 2

The Lipschitz constant of f in & is the infimum of the L > 0 such that (2) holds.
The notion of intrinsic Lipschitz graph is invariant under group translations and
group dilations. Indeed we have:
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Theorem 2. Let M, N be complementary subgroups in a Carnot group G:

1) if S C G is an intrinsic Lipschitz N-graph then q - S is an intrinsic Lipschitz
N-graph, forall g € G;

2) if f:8& C M — N isintrinsic L-Lipschitz in &, then f; : § C M — N is
intrinsic L-Lipschitz in &y, for all g € G.

The geometric definition of intrinsic Lipschitz graphs has equivalent algebraic
forms (see [8] and also [1,11,12]).

Proposition 6. Let G = M- N, f: & C M — N and L > 0. Then are equivalent

f is intrinsic L-Lipschitz in &. @)
IPnG™" )| < L|Pm(@ " -q)|. forallgq.q € graph(f). (ii)

Moreover, the distance of two points q,q € graph (f), is bounded by the norm of
their projection on the domain M. Precisely

17" q] <co+L)|[Pm@ " 9| = [Pn@ " @) <L|Pm@G " 9q)

E

where ¢y < 1 is the constant in Proposition 2, and conversely

[Pu@" )] <L[Pu@ 9] = |77 g = (1 +L)[Pru@ -q)

forall q,q € graph (f).

Remark 3. Intrinsic Lipschitz functions between complementary homogeneous sub-
groups are extensively studied in [8] (see also [12]). In particular, in [8] the authors
show that:

» the boundary of a positive intrinsic cone is an intrinsic Lipschitz graph;

* an extension theorem for 1-codimensional intrinsic Lipschitz graphs;

* a Rademacher’s type Theorem for 1-codimensional intrinsic Lipschitz graphs in
a large class of Carnot groups.

3 Intrinsic Lipschitz domains

From now on, we assume that G = M- N, where as usual M and N are complemen-
tary homogeneous subgroups and N is one dimensional and horizontal. Precisely we
assume the existence of V' € g; such that N = {exp(¢V') : t € R}. We notice that
under these assumptions, M is always a normal subgroup.

When dealing with N-valued functions, using that N is one dimensional, we can
characterize an intrinsic Lipschitz function by the fact that its subgraph and its su-
pergraph contain half cones.
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More precisely for f: U C M — N, with f(m) = exp(e(m)V)and ¢ : U —
R, we define the supergraph E;r and the subgraph EJT of f as

E; = {m-exp(tV): me U, t <p(m)},

E;r ={m-expV): me U, t > q@(m)}.
Notice that, if f : M — N is continuous,

EJT ={mexp(tV): me M, t < op(m)},

E;r ={mexp(tV): me M, t > p(m)}.

We also define the half cones CRJ[JLN (p. B) as CRJ[JLN (p.B) :=p- CRJ[JLN (e, B), where
C&N(e,ﬂ) ={peG :Pyp =exp(tV),witht > 0}.

The definition of Cyy; i (p, B) is analogous.

Lemma 2. f : Ml — N is intrinsic L-Lipschitz if and only if,

Cypn (mf (m), 1/L) cEf+ and  Cyyn(mf(m).1/L) C E7,

forallm € M.

Intrinsic Lipschitz domains are domains whose boundaries are locally graphs of in-
trinsic Lipschitz functions acting between homogeneous subgroups of G and such
that the domain lies on one side of the graph.

Definition 7. Let Q2 be a domain of G. We say that 2 is an intrinsic Lipschitz do-
main if, for each z € 92, there are ry > 0, a decomposition G = M- N, with N one
dimensional and horizontal, an intrinsic Lipschitzmap f : § C M — N, with &
relatively open in M, such that

QN B(z,rg) = EJT N B(z, ro).

In the sequel, we prove that bounded intrinsic Lipschitz domains are uniform do-
mains according to the following definition.

Definition 8. Let 2 C G be a bounded connected open set. We say that 2 is a uni-
form domain if there exists € > 0 such that for every x, y € 2 there is a continuous
rectifiable curve y : [0, 1] — € joining x to y with

1
length(y) = de(x.y). (©)
and for every ¢ € [0, 1]

dist (y (), 9Q2) = emin {length(yy, ). length(y, )} . 4)
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Uniform domains (also known as (g, §)-domains) are a sub-class of John domains
and have been introduced by Martio and Sarvas [23] and Jones [19]. But we refer
also the reader to the thoughtful review contained in Monti’s PhD thesis ([27]), that,
at many points, was a precious help for the authors of this paper.

It is well known that, up to a reparametrization, rectifiable curves are 1-Lipschitz
continuous and therefore are sub-unit curves by [16], Proposition 11.4. Thus, Def-
inition 8 can be rephrased in terms of horizontal curves. In other words, our notion
of uniform domain is intrinsic, in the sense that depends only on the structure of the
Lie algebra g. For a careful discussion of the relationships between the notion of
intrinsic uniform domain and that of Euclidean uniform domain we refer the reader
to [5].

Our main result reads as follows:

Theorem 3. Let Q C G be a bounded intrinsic Lipschitz domain. Then 2 is a uni-
form domain.

First of all, following [31], the problem can be localized thanks to the following
result:

Lemma 3. Let Q C G be a bounded open set and let 0 < r < diam(R2). If there is
e > 0 such that for every z € 02 and for every x,y € Q N B(z,r), there exists a
continuous rectifiable curve y : [0, 1] —> €, joining x and y, such that (3) and (4)
hold, then 2 is a uniform domain.

The proof is based upon ideas found in [33], where the author gives a character-
ization of intrinsic Lipschitz domains.

Theorem 4 (see [33]). A bounded open set 2 C G is an intrinsic Lipschitz domain

if and only if for each z € 0K there exists a neighbourhood of z, say U, a metric

Lipschitz function F : U — R and an X € gy such that:

D) QNU={xeU: Fx) <0},

2) thereexists | > 0 suchthat XF > 1, £"-a.e. on U, where XF has to be meant
in the distributional sense. Notice that XF € L*°(U) by [14], Theorem 1.3.

Proof (Proof of Theorem 3). Let z € 02 be fixed. From Theorem 4, there exist an
open neighbourhood U of z, an X € g; (identified with a first order differential op-
erators), a metric Lipschitz function F : U C G —> R such that XF > [ £"-ae.
on U and

I”NU={xeU: Fx)=0}, QNU={xeU: F(x) <0}

Let x, y € Q N U. We shall construct a rectifiable curve I' : [0, 1] —> © N U such
that properties (3) and (4) are satisfied. We divide the proof in a number of small
steps.

Step 1. Let R > 0 be such that the ball B(z, 2R) is entirely contained in the open
set U. Take p € B(z, R/2) N Q. Ift € (0, R/2), then

p-exp(tX) € B(z, R).
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Indeed, since the exponential map is an isometry along horizontal directions,

de(p-exp(tX),z) < dc(p-exp(tX), p) + dc(p,2)

t+R R
< < R.
2

Step 2. Take again p € B(z, R/2) N Q and consider a point ¢ € 92 which re-
alizes the distance of p from 0Q2. We take o : [0, 1] —> G to be a geodesic joining
ptoq.If & € 6([0, 1]), then

de(§,2) = de(§.p) + de(p.2)
de(p.q) + de(p, z)

2d.(p,z) < R.

IATA A

This chain of inequalities implies that the support of ¢ is entirely contained in
B(z, R).

Step 3. The idea now is to use the function F' to measure how much points inside
2 are far from the boundary. First, since F' is metric L-Lipschitz continuous, we
can write

|[F(p)l = [F(p) = F(q)| = Ldc(p.q) = Ldist(p, d). ®)

On the other hand, let us assume that p € B(z,eR) N Q for some ¢ € (0, 1/2). We
aim to prove that there is / > 0 such that

|F(p)| = ldist(p, Q). (6)

Using the classical technique of convolution in homogeneous groups we set € := eR
and, since B(p, &) is entirely contained in B(z,2R) C U, we can estimate, for
x € B(z, R):

X0+ F)) = [ g @)
D€

1 / ne-qdg
B(p,©)

L

v

A%

Then, fort € (0, 1/2),

F(p-exp(tX)) — F(p) = 8113(1) ((nz* F) (p-exp(tX)) — (nz * F)(p))

= lim fot Xz * F)(p -exp(sX))ds

e—0

> It.
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Therefore

F(p-exp(tX)) = It + F(p) > It + min F,
QNB(z,6R)

and, since F(z) = 0, we can choose ¢ > 0 such that

R
/' + min F > 0.
3 QNB(z,eR)

So there exists £, € (0, R/3) such that p - exp(f, X) € d2. Now,
dist(p, 0Q2) < dc(p. p - exp(tp X)) =< 1p:
hence, if p € B(z,eR) N 2, using the same technique as above, we conclude
—F(p) = F(p-exp(tpX)) — F(p) = l1p, = ldist(p, 92).

Step 4. To prove the Theorem we use Lemma 3 and we construct a rectifiable
curve with the required properties. Let us assume that x, y € B(z, §), where § < eR.
Wedenoted :=d.(x,y), x' = x-exp(—dMX), y = y-exp(—dMX), for some
constant 0 < M < R/4 to be determined. We consider the curve

x -exp(—tX), t €1[0,dM],
r@) = 1 v@), t€[dM.dM + dc.(x', y")].
yeexp ((t = M)X), t€[dM +de(x',y'), M].

where y is a geodesic joining x’ to y’ and M := 2dM + d.(x’, y'). Let us prove
that this curve is the one we are looking for.

Step 5. Using Lemma 1, one has:

length(T) < 2dM + d.(x',y")
< 2dM + C | exp(dMX) -y~ ' x-exp(—dMX)|
< 24M + Cly™ x4+ o (I xl* exp@M X))
+ 7t exp@m )| %)
=

de(x, y) (2M + G (1 M4 Mi)),

and this provides inequality (3).
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Step 6. Let us prove inequality (4). We need to distinguish points in the three
pieces of I". Let ¢ € [0, d M] be fixed. First, we notice that

—F(T@)) —F(x -exp(—tX)) + F(x)

lt.

>
>
We combine this inequality with (5) and (6) of step 3 in order to obtain

. I I
dist(I(1).0Q) = 1 > length(T,).

In the same way, one can prove the inequality for ¢ € [dM + d.(x’, y’), M].

Step 7. Let us consider ¢ € [dM,dM + d.(x’, y')] and denote § :=T'(¢). If n €
0$2, we have, mimicking computations that we already did,

de(€, 1) = de(x',n) —dc(§,x")
> dist(x’, 9Q) — d.(x', y") )
> de(x, y) (iM—Cz (1 T yars +Mi)).
On the other hand,
length (T, ;) < de(x',y") +dM
< de(ey) (G (14 M+ ME) + M) ()
= Csdc(x,y).

Therefore, if we choose M > 0 such that éM —Cy (1 + M + M)«) > 1, we
can combine (7) and (8) and the assertion follows. O

Remark 4. In fact, the proof of Theorem 3 yields a slightly stronger result, namely
that 2 isa NTA-domain in the sense of [4,18]. We refer to [4] and [5] for the notion of
NTA-domains in Carnot groups, as well as for several examples and contrexamples.
The crucial point is that, by Proposition 1, uniform domains in Carnot groups satisfy
the so-called Harnack chain condition: see for instance [27], Proposition 3.1.18.
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Differential-geometric and invariance properties
of the equations of Maximum Principle (MP)

Revaz V. GamKkrelidze

Abstract An invariant formulation of the Pontryagin Maximum Principle (PMP)
is given. It is proved that the Pontryagin derivative $x coincides on vector fields
X € Vect M, (M — the configuration space of the problem), with the Lie bracket
ady, and the flow generated on the cotangent bundle 7*M by the vector field Py
is bundle-preserving.

1 Introduction

I think, I should start my contribution by asking the audience not to consider it as
a report on some latest news in optimal control, but rather as a lecture on its foun-
dations, on differential-geometric and invariance properties of the equations of MP,
and general consequences, which these properties imply.

And certainly, as a modest offering to Andrey’s 60th anniversary jubilee.

It is a common mathematical evidence that tells us to expect every system of
differential equations, which proved its general mathematical validity, to have inter-
esting differential-geometric and invariance properties, and equations of MP should
not be, presumably, an exception. Certainly, we should not expect that already in the
first order we will be led to new geometric invariants, though in the second order we
really come to a new curvature type invariant of a Hamiltonian system.

I shall only discuss the first order invariants generated by the equations of MP, in
fact, objects of common and “everyday” mathematical usage, and still manifesting
some unexpected relations to our subject, at least for me.

I shall be concerned with the case of time-optimal problem only, which is no re-
striction in generality, since an arbitrary optimal problem with a minimized integral
type functional is canonically reduced to the time optimal problem by considering
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the minimized integral with free upper limit as a new time variable. The time-optimal
problem has not only the advantage of being simpler exposed than the general prob-
lem. Its conceptual advantages are much deeper and explained by the fact that the
formulation of the time-optimal problem is itself invariant-geometric from the be-
ginning, therefore the problem of invariant representation of MP in the time-optimal
case has an exact meaning without further reductions.

The general optimal problem obtains its “intrinsic” invariant form after it is canon-
ically transformed to the associated time-optimal problem, which makes possible to
investigate the invariance properties of necessary conditions of the initial problem.

2 MP for the time-optimal problem

Let me start now with formulating MP in a form suitable for further exposition.
Consider a controlled equation on the configuration space M, an n-dimensional
smooth manifold,
dx
dt

where U is the space of admissible values of the control parameter u. Admissible
controls are arbitrary measurable (essentially) bounded functions u(¢) on a time in-
terval J, with values in U, and the corresponding (admissible) trajectories x (t),
t € J, are absolutely continuous solutions of the nonautonomous differential equa-
tion,

=Xx,u), xeM, uel,

dzgt) = X(x(1),u@), u@elU, tel.

An admissible trajectory x(¢), t € J, is an (optimal) solution of the time-optimal
problem, if for arbitrary t; < ¢, in the interval J, the transition time #,?¢; from x (1)
to x(t2) along the trajectory x (¢) is minimal with respect to every other choice of
the admissible trajectory containing the points x (1), x (£2).

Thus the problem is uniquely defined by the family of vector fields X on M, and
the manifold M itself.

To formulate MP, we have to perform the following preliminary procedures:
e inan arbitrary coordinate neighborhood (U, x) of M we represent the vector field

d
XasX =3, X ;

* introduce n auxiliary variables ¥ = (Y1, ..., ¥n);
e take the “Hamiltonian of the problem” (linear in V),

Hp, x,u) =) YaX®(x,u); (1)

* consider the corresponding Hamiltonian system (containing a parameter u),

dx _9H dy _ OH .
dt oy’ dt  x’
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e supplement the system with the maximum condition

Hr, x,u) =m51xH(1//,x,v), 3)

which serves for eliminating the parameter u from the system;

e then, MP asserts:
For every optimal solution x(t),t € J, of the time-optimal problem correspon-
ding to an admissible control u(t),t € J, there exists a (nonzero) function V¥ (t),
t € J, such that for (almost) Vt € J the functions ¥ (t), x(t),u(t), satisfy the
Hamiltonian system and the maximum condition.

A certain clumsiness of the formulation is the price we have to pay for its mathe-
matical rigor, whereas the intuitive meaning of the principle is very simple.

It is a method of generating trajectories (extremals) ¥ (t), x(t),t € J, with given
initial conditions,

V(o) # 0, x(to) = Xo,

of the Hamiltonian system (2) with parameter u, as a result of “dynamical elimina-
tion” of the parameter from the system by the maximum condition (3), as we advance
along the trajectory. Every solution x (t) of the time-optimal problem is obtained as
a projection of an extremal onto the x-space.

It is important to emphasize that the parameter elimination by the maximum con-
dition is performed “dynamically”, simultaneously with our motion along the tra-
jectory under consideration, and not in the “classical sense”, as a representation of
the control parameter u as a function of the “coordinate variables” (x, ¥), which
would be a generalization of the Legendre transformation in classical theory and
would represent the family of extremals as a flow of the Hamiltonian system with
eliminated parameter. This is impossible unless we impose on the initial equations
some strong regularity conditions. Without such conditions, the classical differential
equations for extremals may appear with heavy singularities, making impossible to
reduce them to the Hamiltonian form, whereas the Hamiltonian form of the equa-
tions, though with a parameter, is an inherent part of MP, and all singularities of the
problem are in fact relegated to the maximum condtion, which nevertheless success-
fully eliminates (“dynamically”) the parameter in many nontrivial strongly degene-
rate cases, such as linear systems, completely unamenable for classical methods.

3 The Pontryagin derivative Px

According to MP, the vector field defined by the Hamiltonian system (2) should be
considered as the basic “variational derivative” of the problem that contains, together
with the maximum condition (3), complete first order information about the time-
optimal problem. We call the vector field the “Pontryagin derivative” and denote it
Px . It was introduced by L. S. Pontryagin before MP was formulated, and in fact,
was the basic guideline in the discovery of the principle.



170 R.V. Gamkrelidze
The procedure leading us to the Egs. (1)—(3) provides a simple, almost “tautolo-

gical”, transfer from an arbitrary vector field X on M to the Hamiltonian vector field
Py, defined by the sequence of correspondences

0
XHZX“axa — H :Zl/faX“(x,u)H?X,
o o

9H 9 9H 9
€. j— —
Px =), Iy Ix 2 9xe Jyrg

o o

“)

Though the transfer X + Py provides an explicit expression for Py, it is for-
mulated not invariantly, depending on the choice of a coordinate neighborhood on
M to introduce the Hamiltonian function H.

Our intention is to present the transfer X — H as a canonically invariant tran-
sition from X to a scalar valued fiberwise linear smooth function Hy on the cotan-
gent bundle 7* M . Then the whole sequence (4) will be easily turned into a canon-
ically invariant construction, expressing the Pontryagin derivative $x as a canoni-
cally invariant R-linear functorial correspondence X +— Py —the “Hamiltonian lift
to T*M over the vector field X € Vect M ”,

X — Px € Vect (T*M),
Pox+uy = APx + uPy, YA, u € R, X, Y € Vect M.

This provids an invariant representation of MP, from which the basic properties
of Px automatically follow.

We carry out this construction in next two sections. In last Sects. 67, we “iden-
tify” the vector field #x and formulate the final result. I shall show that Px is not
some new exotic invariant on 7* M generated by X, but rather one of the most basic
objects of “everyday mathematical usage” in differential geometry.

4 The Hamiltonian lift Vect M — S(T*M) C Vect T*M

We devote this section to some preliminary comments to introduce the correspon-
dence X — Py invariantly.
To take full advantage of the fibered structures of the bundles

™M M ™MD M,
we shall consider the corresponding R-algebras of smooth scalar-valued functions

C®(T*M), C*®(TM) simultaneously as C *° (M )-modules, the action of the “ring
of scalars” C*° (M) given, say on C>®°(T* M), by the equation

aH' +bH" S +7*b-H"
Va,b e C®*(M), H', H" € C®(T*M),
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where C®°(M) —™ C°(T*M) is the pullback homomorphism of the corres-
ponding algebras generated by the projection .

Each of the modules C*°(T*M) and C*°(T' M) contains two submodules, 2, T8
and @, @, respectively,

QB C C(T*M), Q,QC C®(TM),

which are of special importance for the geometry of the fibrations 7*M and TM.
Submodules 2, @ consist of fiberwise constant functions denoted g and repre-
sented as

Q= {q = rr*a‘a € C°°(M)},

Q= {q = pr¥ala € C°°(M)} .

Submodules P, 9 consist of fiberwise linear functions, denoted respectively p, ¢
(the havy influence of Hamiltonian Mechanics on Optimal Control!) and reprsented
as fiber sections,

B={pec=Tm)|p

Q= {q' c C°°(TM)‘

rem € LIEMR) Vx e M},

Qo € LM R) ¥x e M.

A straightforward reasoning shows that the submodule %3 is canonically identi-
fied with Vect M, and the submodule 2 is canonically identified with A' M, the
C°°(M)-module of differential 1-forms on M.

For example, we obtain the canonical embedding,

VectM C P C C®(T*M),

if we represent an arbitrary vector field Z on M as a smooth cross-section Z : x
Zy € TxM,x € M,i.e. as a fiberwise linear function Hz = p € %, defined by the
relation

=7y

Hz= {p TEM

x € M} <= Hz(0)=(0,Zrs) Yo €T M,x € M,

(5)
where (-, -) is the duality bracket between the fibers 7 M and Tx M, x € M.
Conversely, every function p € P is uniquely represented as p = Hz, if Z is

defined as the family of linear functionals {Z x ‘x eM } on C*° (M) by the equation

Zea=p (da‘x) Va e C®(M), xeM.

Since the kernel of every Z, contains functions, which are stationary at x, all Z
are tangent vectors, hence Z is a (smooth) vector field on M.
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We thus obtain a canonically invariant sequence of correspondences — the Hamil-
tonian lift to T*M over Z,

Zw— Hzvw— Dz, ip,w=—-dHgz,
Z eVect M, Hz €%, Dy € &, (6)
Vect M — © C VectT*M,

where w is the canonical symplectic 2-form on the cotangent bundle 7* M, and the
mapping, Vect M — £, is a canonical isomorphism from the R-vector space of
vector fields on M to the R-vector space $ of Hamiltonian vector fields on 7*M
generated by (fiberwise-linear) Hamiltonians in 3.

General considerations easily imply that the Hamiltonian lift D z preserves the
submodule 8 C C°(T*M), and its restriction on B is a derivation over Z of the

C®(M)-module B, i.e. Dz

" is R-linear and satisfies the Leibnitz identity,

Dz-ap=Za-p+a(Dz-p) YaecC®M), pe.

z

Hence the corresponding flow e/?Z on T*M is a lift over the flow e’Z, i.e. its

restriction on an arbitrary fiber /2% ‘T*M is a linear isomorphism

X

e'P? (TiM — T, M.

T:M

5 Invariant representation of the sequence (4)

We return now to our basic sequence (4), which led us (for every fixed value of the
parameter u) from an arbitrary vector field Xe€ Vect M to the Pontryagin derivative
Px,

d
— o — o
X = ZX oy = H = Zl/fax (x,u) —» Px.
o o

According to (6), it will yield a canonically invariant form,

X+— Hy — Px, ipy0 = —dHy,

X e VectM, Hx € B, Px € 9, (7)

Vect M — $ C Vect T*M,

if we show that, at least in one (hence in all) canonical coordinate system (¢, p) on
T* M, the canonically introduced Hamiltonian Hy € % has the expression Hy =
Y o Pa X%, coinciding with the expression of the Hamiltonian of MP in (4).
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The Hamiltonian Hy is easily expressed in canonical coordinates ¢, p (over an
arbitrary coordinate neighborhood (U, x) in M),

0

(x7'U.@.p), g=7"x.p=, .

and indeed coincides with H = Za Pa X%, since, for arbitrary

eT*M

o

0
X = Z X 9y and o = Zpa(o)dx“
o o

we have,

Hyx (o) = <O, X‘no> = 0%3:<I7ot((7)dxa|7w’ X7 aiﬂ

=Y pa(@)X*(10) =) paX®

.

Yo e T*M.

g

Thus we obtain a canonically invariant representation (7) of MP.
The vector field Px obtains a familiar expression in canonical coordinates ¢, p,
if we write the Hamiltonian system in the canonical form,

_0Hy 9 OHy 0
X7 0p g dq op

6 Identification of the Pontryagin derivatrive £y

To identify the vector field #yx, let me proceed in a straightforward way, as an un-
sophisticated mind in differential geometry should do in such situations.

Consider the standard object of “everyday usage” — the differential (e’X), of the
flow e’X on M generated by X € Vect M, which is a natural lift to TM over e'X —
a fiber-preserving flow on 7'M represented by the family of fiberwise-linear isomor-

phisms,
oy N

Denote by £x the Lie derivative over X — the vector field on TM generated by the
flow (e%).,

TyM — Tyux M, x € M.

et;ﬁx — (etX)

The Lie derivative £x is a natural lift to TM over X — it preserves the submodule
of differential 1-forms Q and its restriction on £ is a module-derivation over X; it
is also R-linear in X.

%
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The flow e?£X canonically defines two flows on the cotangent bundle: the adjoint
flow (et.:ex )# —def (1LY o ot 2x

(et$#x Ox, Ye-1x ) = (bx, e!tx Yo—i1xy) (8)
V@x € T;M, Ye_’Xx € Te—szM,

which is a lift to 7* M over e X, and the dual flow to e*£x |
4\ —1 # #
(S e ©)

which is a lift to 7* M over '

Respectively, £* x is a (natural) lift to 7*M over X and we come to our basic
conjecture: is Pontryagin derivative identical with the dual to the Lie derivative, that
is,

The answer is affirmative. To prove it we must compute explicitly the dual field
£* x» whichrequires the relation (8) between the adjoint flows to be rewritten as are-
lation between the corresponding pullback flows of algebra automorphisms exp(t X),
exp(tLx) and exp(t L% ), respectively. This could be easily done and we obtain,

(exp(t£x)0,Y) = exp(tX)(0, exp(tL%)Y).

Differentiating the obtained expression with respect to ¢ and then putting t = 0
yields, forevery 8 € AD(M) and X, Y € Vect M,

X(0,Y)=(£x0,Y) + (0, £* 4 ¥).
Since
X(0,Y) = (£x0,Y) + (0,adxY),

we conclude that
Li ¥ = ady.

Hence our conjecture is reduced to the equation
Px| =ady.
B

This was an unexpected though easily verifiable conjecture since computations with
ady are much easier to perform than with £* x - A short straightforward calculation
gives,

PxHy = Hyqoy = Hixy) VY € Vect M,

which proves that
Px| =ady.
By
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7 Formulation of the final result

The Pontryagin derivative Px is a Hamiltonian lift to T* M over the vector field
X € Vect M, invariantly derived from X by the canonical sequence,

X— Hy e BC C®(T*M) — Px,

ip,w = —dHy,

and the natural correspondence X + Py is R-linear. The corresponding flow e!Px
is a Hamiltonian lift to T* M over e'X.

Furthermore, the Hamiltonian vector field Px is dual to the Lie derivative £x €
Vect TM and is an extension of the Lie bracket ady, where ady is considered as a
derivation over X on the C*°(M)-submodule B C C°(T* M) of fiberwise linear
functions (vector fields on M ).

Thus the whole computational power of MP is based, via the “dynamical elimina-
tion procedure”, on two rudimentary differential-geometric notions— the Lie deriva-
tive (the infinitesimal variations of the optimal system), and its dual — the Pontryagin
derivative, which, in fact, coincides with the Lie bracket.

I would like to finish my contribution with a final remark concerning the time-
optimal problem with restricted phase coordinates.

The problem was already considered in our book in 1962 and the result was for-
mulated in the form of a MP with some modifications, which took into account the
motion on the boundary of the region. Since then, the problem was reconsidered
several times, the latest publications appearing quite recently, and the search was
always directed towards most simple and perfect analogs of MP.

I think, if the “ultimate” form of MP exists for the problem, it could be found
by considerations quite similar to those given above. The only essential difference
should consist in the assumption that the configuration space of the problem M is
not a closed manifold, but rather a manifold with boundary.



Curvature-dimension inequalities and Li-Yau
inequalities in sub-Riemannian spaces

Nicola Garofalo

Abstract In this paper we present a survey of the joint program with Fabrice Bau-
doin originated with the paper [6], and continued with the works [7-9] and [10],
joint with Baudoin, Michel Bonnefont and Isidro Munive.

1 Introduction

One of the most exciting aspects of Riemannian geometry consists in the beautiful
interplay between global topological and geometric properties of the ambient mani-
fold and properties of solutions of those natural pde’s such as the Laplace-Beltrami
operator A, with its associated heat semigroup P; f(x) = e’ f(x). In their 1986
Acta Mathematica paper [22] Li and Yau established their celebrated inequalities.
Let us just focus on the one concerned with Ric > 0.

Theorem 1 (The Li-Yau parabolic gradient estimate). Suppose that M is a com-
plete, connected n-dimensional Riemannian manifold such that Ric > 0. Then, for
any f > 0which solves the heat equation A f — f; = 0on M one has foru = In f,

n
Vul> —u, < _ . 1
|Vl tS ()

The motivation for (1) comes from considering the case when M is flat R” and

flx,t) = (4711)_g exp(— Iiltz) is the fundamental solution of the heat equation. In
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such case u = In f is easily seen to satisfy

n
|Vu | 2_ Uy = .
2t

Understanding the “<” in (1) requires a deeper analysis of the role played by curva-
ture. Integration of the the Li-Yau inequality (1) along a geodesic path joining (v, )
to (x,s), where x,y € M and 0 < s < t, gives the following fundamental result.

Theorem 2 (The Li-Yau Harnack inequality). Let M be a complete connected n-
dimensional Riemannian manifold having Ric > 0. Let f > 0 be a solution of the
heat equation on M. Forany x,y € M,0 < s <t < 00, one has

0\ (dGey)?
ras = s (1) e (500,
Theorem 2 extends to Riemannian manifolds with Ric > 0 the Harnack inequality
for the heat equation independently discovered by B. Pini in [23] and J. Hadamard
in [17]. Theorems 1 and 2 provide remarkable evidence of how the geometry of the
manifold is intimately connected to the properties of its Laplacian and the associated
heat flow. In fact, once Theorem 2 is available one can obtain many fundamental re-
sults, such as Liouville type theorems, on and off-diagonal Gaussian upper bounds
for the heat kernel, Sobolev and isoperimetric inequalities, etc.

Another beautiful global result which connects the geometry to the topology of M
is the Bonnet-Myers theorem which states that if for some p; > 0, Ric> (n — 1)pq,
then M with its Riemannian metric is compact, with a finite fundamental group, and
diam(M) < ﬁn .

The identity of Bochner and the role of Jacobi fields

The original proof of Li and Yau of Theorem 1 hinges on two basic tools from Rie-
mannian geometry:

(i)  the Bochner identity
AV =2V fIP+2< V[ V(Af)>+2Ric(VLVS), ()

which holds for any f € C3(M);

(i) the Laplacian comparison theorem. When Ric > 0 the latter states that the
geodesic distance on M satisfies the following differential inequality outside
the cut-locus of a fixed base point (and in the sense of distributions on M)

n—1
Apm (x) = : 3)
pm (X)
As it is well-known, the Laplacian comparison theorem (like other comparison the-
orems in Riemannian geometry, or like the Bonnet-Myers theorem) uses in an es-
sential way the existence of a rich supply of Jacobi fields.
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This paper is devoted to surveying a joint program with Fabrice Baudoin origi-
nated with the paper [6], and continued with the works [7-9] and [10]. It is worth
emphasizing that our approach allows for the first time to extend the Li-Yau program,
and many of its fundamental consequences, to situations which are genuinely non-
Riemannian. The original motivation in [6] was generalizing global results such as
Theorems 1 and 2 above, or the topological Bonnet-Myers theorem, to smooth mani-
folds in which the governing operator is no longer the Laplace-Beltrami operator, but
rather a smooth locally subelliptic operator L. These operators are typically never
elliptic and their natural geometric framework is that of sub-Riemannian manifolds.
Such manifolds are a generalization of Riemannian ones and they constitute the ap-
propriate setting for describing phenomena with a constrained dynamic, in which
only certain directions in the tangent space are allowed.

We close this introduction by mentioning that, in their interesting preprint [2],
Agrachev and Lee have used a notion of Ricci tensor, denoted by Ric, which was
introduced by the first author in [1]. They study three-dimensional contact mani-
folds and, under the assumption that the manifold be Sasakian, they prove that a
lower bound on fic implies the so-called measure-contraction property. In partic-
ular, when ftic > 0, then the manifold M satisfies a global volume growth similar
to the Riemannian Bishop-Gromov theorem. An analysis shows that, interestingly,
our notion of Ricci tensor coincides, up to a scaling factor, with theirs.

We also mention that the sub-Riemannian geometric invariants for contact man-
ifolds of dimension three were computed by Hughen in his unpublished Ph.D. dis-
sertation, see [19]. In particular, with his notations, the CR Sasakian structure cor-
responds to the case a? + a3 = 0 and, up to a scaling factor, his K is the Tanaka-
Webster Ricci curvature. In such respect, the Bonnet-Myers type theorem obtained
by Hughen (Proposition 3.5 in [19]) is the exact analogue (with a better constant)
of our Theorem 6, applied to the case of three-dimensional Sasakian manifolds. Fi-
nally, it must be mentioned that a Bonnet-Myers type theorem on general three-
dimensional CR manifolds was first obtained by Rumin in [24]. The methods of Ru-
min and Hughen are close as they both rely on the analysis of the second-variation
formula for sub-Riemannian geodesics.

2 From Riemannian to sub-Riemannian geometry

A fundamental property of the Laplace-Beltrami operator is ellipticity. As we have
just said, in sub-Riemannian geometry the relevant partial differential operators, the
sub-Laplacians, fail to be elliptic. The moment one gives up coercivity (i.e., con-
trol of all directions in the tangent space), new interesting phenomena arise. For
instance, the exponential mapping fails to be a local diffeomorphism, and geodesics
are no longer locally unique. A rich theory of Jacobi fields is (at least presently) not
available and, consequently, results such as the Laplacian comparison theorem, the
Bonnet-Myers theorem, or Theorems 1 and 2 seemed to be completely out of reach.
Furthermore, it was not clear what one means by “Ricci curvature”.
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The paper [6] took a different approach to these questions, based on a new cur-
vature-dimension inequality and a systematic use of the heat semigroup. Besides
the Riemannian case, the program in [6] presently covers sub-Riemannian spaces of
rank two, such as, for instance, Carnot groups of step two, CR manifolds, etc. This is
the first genuinely non-Riemannian setting in which a good notion of Ricci curvature
has been introduced, and we feel it is important to emphasize that the Riemannian
approach has been so far mostly unsuccessful to cover the large classes of examples
encompassed by [6].

In this connection we stress that, even in the Riemannian framework, the ideas
in [6] provide a new and simplified account of the Li-Yau program based on tools
which are purely analytical and avoid the use of results which are preeminently based
on the theory of Jacobi fields, such as, e. g., the Laplacian or the volume comparison
theorem, see [7].

3 The curvature-dimension inequality CD(p, n) and the Ricci
tensor

Recall that a Riemannian manifold M with Laplacian A is said to satisfy the Bakry-
Emery curvature-dimension inequality CD(p, n) if

D)= @ e eri), i e e, @

Here,

1
R = (AP —27As = 197, 5
Da(f) = ) 1A =20 (L Af)

Using Bochner’s identity (2) and Newton’s inequality, itis easy to see thatif Ric > p,
then CD(p, ) holds. It is remarkable that the curvature dimension inequality (4) per-
fectly captures the notion of Ricci lower bound. It was in fact proved by Bakry in
Proposition 6.2 in [4] that: on a n-dimensional Riemannian manifold M the inequal-
ity CD(p, n) implies Ric > p. In conclusion,

Ric > p <= CD(p, n). (6)

This equivalence (6) was the motivation behind the work [6], whose setup we
now describe.

We consider a smooth, connected manifold M endowed with a smooth measure
w1 and a smooth second-order diffusion operator L with real coefficients, satisfying
L1 = 0, and which is symmetric with respect to ;& and non-positive. By this we
mean that

/ fLedu = [ gLfdp, [ FLfdu <0, ™
M M M
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forevery f, g € Cg°(M). We make the technical assumption that L be locally subel-
liptic in the sense of [13], and associate with L the following symmetric, first-order,
differential bilinear form:

() = ) (LU0 ~ fLg—gLf}, figeC¥MD.  ®

The expression I'(f) = ['(f, f) is known as le carré du champ, see (5) above.
There is a canonical distance associated with the operator L:

d(x.y) =sup{|f(x) = fOWI | f € CZMD. [T(lloo = 1}, x.y €M, (9)

where for a function g on Ml we have let ||g||coc = ess suppg|g|- A tangent vector
v € TxM is called subunit for L at x if v = Y7~ a; X; (x), with Y7L a? <1,
see [13]. A Lipschitz path y : [0, T] — M is called subunit for L if y’(¢) is subunit
for L at y(¢) fora.e. t € [0, T]. We then define the subunitlength of y as €5 (y) = T.
Given x, y € M, we indicate with

S(x,y) ={y :[0,T] - M | y is subunit for L, y(0) = x, y(T) = y}.
In this paper we make the assumption that
S(x,y) # @, foreveryx,y e M. (10)
Under such hypothesis one verifies that

ds(x,y) = inf{ls(y) | y € S(x, y)}, (11)
defines a true distance on M, and that furthermore,
d(x,Y)zds(X,Y), X,YGM.

It follows that one can work indifferently with either one of the distances d in (9),
ordg in (11).

Throughout this paper we assume that the metric space (M, d) be complete.

We also suppose that M is equipped with a symmetric, first-order differential bi-
linear form I'? : C®(M) x C®(M) — R, satisfying % (fg,h) = fT%(g.h) +
gT%(f h). We assume that T4(f) = TZ(f. f) > 0 (one should notice that
r'4(1) = 0).

Given the sub-Laplacian L and the first-order bilinear form I'4 on M, we now
introduce the following second-order differential forms:

Da(fi) = ) {LT(f2) ~ T(f: L)~ Tz L)), (12
(0 = LT (e -T2/ Lo TP L)) (13)

Observe that if 4 = 0, then I'¥ = 0 as well. As for " and I'?, we will use the

notations [>(f) = Ta(f, £), TZ(f) = TZ(f, f).
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We are ready to introduce the central character of our program, a generalization
of the above mentioned curvature-dimension inequality (6).

Definition 1. We say that M satisfies the generalized curvature-dimension inequal-
ity CD(py, p2. k, d) withrespect to L and I'Z if there exist constants p; € R, p > 0,
k > 0,and 0 < d < oo such that the inequality

1
D)+ () = L+ (o= )T + 2T 2(f) (14
hold for every f € C°°(M) and every v > 0.

It is worth observing explicitly that if in Definition 1 we choose L = A, T'? =0,
d = n =dim(M), p; = p and x = 0, we obtain the Riemannian curvature-
dimension inequality CD(p, n) in (6) above. Thus, the case of Riemannian manifolds
is trivially encompassed by Definition 1. We also remark that, changing I'? into
al'? wherea > 0, changes the inequality CD(p1, p2. k. d) into CD(py, apz, ak, d).
We express this fact by saying that the quantity :2 is intrinsic. Hereafter, when we
say that M satisfies the curvature dimension inequality CD(p1, p2, k, d) (with re-
spect to L and I'?), we will routinely avoid repeating at each occurrence the sen-
tence “for some p, > 0, x > 0 and d > 0”. Instead, we will explicitly mention
whether p; = 0, or > 0, or simply p; € R. The reason for this is that the parame-
ter p; in the inequality (14) has a special relevance since, in the geometric examples
in [6], it represents the lower bound on a sub-Riemannian generalization of the Ricci
tensor. Thus, p; = 0 is, in our framework, the counterpart of the Riemannian Ric
> 0, whereas when p; > 0 (< 0), we are dealing with the counterpart of the case
Ric > 0 (Ric bounded from below by a negative constant).

In addition to (14) we will work with three general assumptions: they will be
listed as Hypothesis 1, 2 and 3.

Hypothesis 1. There exists an increasing sequence hy € C§°(M) such thathy /' 1
on M, and
IFGOlloo + 177 (hi)lloo = 0. as k — oo.

We will also assume that the following commutation relation be satisfied.
Hypothesis 2. For any f € C®(M) one has T(f.T4(f)) = TZ(£.T(f)).

When M is a Riemannian manifold, i is the Riemannian volume on M, and
L = A, then d(x, y) in (9) above is equal to the Riemannian distance on M. In this
situation if we take I'4 = 0, then Hypothesis 1, 2 are fulfilled. In fact, Hypothesis
2 is trivially satisfied, whereas Hypothesis 1 is equivalent to assuming that (M, d)
be a complete metric space, which we are assuming.

Before proceeding with the discussion, we pause to stress that, in the generality in
which we work the bilinear differential form ['Z, unlike T, is not a priori canonical.
Whereas I is determined once L is assigned, the form I'? in general is not intrin-
sically associated with L. However, in the geometric examples described in Sect. 2
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of the paper [6] the choice of I'Z is canonical, as is the case, for instance, for CR
Sasakian manifolds. The reader should think of I'# as an orthogonal complement
of I': the bilinear form I' represents the square of the length of the gradient in the
horizontal directions, whereas I'Z represents the square of the length of the gradient
along the vertical directions.

We will also need the following assumption which is necessary to rigorously jus-
tify the computations in [6] on functionals of the heat semigroup. Hereafter, we will
denote by P; = el the semigroup generated by the diffusion operator L.

Hypothesis 3. The semigroup P; is stochastically complete that is, fort > 0, P;1 =
1 and for every f € Cg°(M) and T > 0, one has

sup [IT(P; f)loo + ITZ (Pt f)lloo < +o0.
t€[0,T]

In the Riemannian setting (L = A and r< =), Hypothesis 3, is satisfied if
one assumes the lower bound Ricci > p, for some p € R. This can be derived from
the paper by Yau [30] and Bakry’s note [3]. It thus follows that, in the Riemannian
case, the Hypothesis 3 is not needed since it can be derived as a consequence of the
curvature-dimension inequality CD(p, ) in (6) above. More generally, it is proved
in [6] that a similar situation occurs in every sub-Riemannian manifold with trans-
verse symmetries of Yang-Mills type, for the relevant definitions see [6]. In that
paper it is shown that, in such framework, the Hypothesis 3 is not needed since it
follows (in a non-trivial way) from the generalized curvature-dimension inequality
CD(p1, p2, k, d) in Definition 1 above.

The above discussion prompts us to underline the distinctive aspect of the theory
developed in the papers [6,8,9] and [10]: for the class of complete sub-Riemannian
manifolds with transverse symmetries of Yang-Mills type studied in [6], all the re-
sults are solely deduced from the curvature-dimension inequality CD(py, p2,k,d)
in (14).

4 Li-Yau type estimates

In this section, we discuss a generalization of the celebrated Li-Yau inequality in [22]
to the heat semigroup associated with the subelliptic operator L. We mention that,
in this setting, related inequalities were obtained by Cao-Yau [11]. However, these
authors work locally and the geometry of the manifold does not enter in their study.
Instead, the analysis in [6] in based on some entropic inequalities which are de-
rived from the curvature-dimension inequality (14) above. We have mentioned in
the introduction that, even when specialized to the Riemannian case, the ideas in
this section provide a new, more elementary approach to the Li-Yau inequalities.
For this aspect we refer the reader to the paper [8].

Theorem 3 (sub-Riemannian Li-Yau gradient estimate). Assume that the cur-
vature-dimension inequality (14) be satisfied for p1 € R, and that the Hypothesis 1,
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2,3 hold. Let f € Cg°(M), f >0, f # 0, then the following inequality holds for
t>0:

2 3 2 \ LPf  dp?
T(n P, f) + gthZ(lnPtf)f(l—i— - 'Olt) oS dpi

2 3') P T os

2
3
p1d - 3k +d<1+2:2>
2 202 2t '
Remark 1. We notice that when p; > p/l, then one trivially has that:

CD(p1, p2,k,d) = CD(p}, p2,k,d).

As a consequence of this observation, when (14) holds with p; > 0, then also

CD(0, p2, k, d) is true. Therefore, when p; > 0, Theorem 3 gives in particular for
feCgeM), f =0,

3K) LPf 4 (1+ 2352)2.

202 7
I'(ln P tI'“(In P <|1
(npf)+ 7 (ntﬁ_(-+M2 i 5

(15)
However, this inequality is not optimal when p; > 0. It leads to a optimal Harnack
inequality only when p; = 0.

Remark 2. Throughout the remainder of the paper the symbol D will only be used

with the following meaning:
3
D=d0+ K) (16)
2p2
With this notation, observing that the left-hand side of (15) is always nonnegative,
and that LP; f = d;P; f, when p; > 0 we obtain
9,(In(t”"> P f(x)) = 0. (17

By integrating (17) from ¢ < 1 to 1 leads to the following on-diagonal bound for the
heat kernel,

1
p@.x. ) = g, PO X ). (18)

The constant ? in (18)is not optimal, in general, as the example of the heat semi-
group on a Carnot group shows. In such case, in fact, one can show that the heat
kernel p(x, y, t) is homogeneous of degree —Q /2 with respect to the non-isotropic
group dilations, where Q indicates the corresponding homogeneous dimension of
the group. From such homogeneity of p(x, y, ), one obtains the estimate

1
plx,x,1) < IQ/Zp(x,x, 1),
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which, unlike (18), is best possible. In the sub-Riemannian setting it does not seem
easy to obtain sharp geometric constants by using only the curvature-dimension in-
equality (14). This aspect is quite different from the Riemannian case.

5 The parabolic Harnack inequality for Ricci > 0

In this section we discuss a generalization of the celebrated Harnack inequality in
[22] to solutions of the heat equation Lu — u; = 0 on M. One should also see the
paper [11], where the authors deal with subelliptic operators on a compact mani-
fold. As we have mentioned, these authors do not obtain bounds which depend on
the sub-Riemannian geometry of the underlying manifold. Henceforth, we indicate
with Cp° (M) the space C*°(M) N L (M).

Theorem 4. Assume that the curvature-dimension inequality (14) be satisfied for

p1 > 0 and that the Hypothesis 1, 2, 3 hold. Given (x, s), (y,t) € M x (0, 00), with
s <, one has forany f € C°(M), f >0,

H D d(x.y)?
Pf(x) < Ptf(y)(;) exp(d 4Ef_yz)). (19)

Proof. Let f € C§°(M) be as in the statement of the theorem, and for every (x, t) €
M x (0, co) consider u(x,t) = P; f(x).Since Lu = %’t‘ ,in terms of u the inequality
(15) can be reformulated as

3k 2
3k \ dlogu d<1+2p2>
+ .
at 2t

2
T(nu) + 2% (Inu) < (1 n
3 02
Recalling (16), this implies in particular,

dlnu
ot

We now fix two points (x, s), (y,¢) € M x (0, 00), with s < . Let (1), 0 <
T < T be a subunit path such that y(0) = y, y(T) = x, and consider the path in
M x (0, co) defined by

d D
—-Ta : 20
=- T+ (20)

—1
Ot(T):()/(T),Z—I—ST 1:), 0<t<T.

so that «(0) = (y,1), «(T) = (x, s). We have

u(x,s)
u(y, 1)

T
5[ [ranu(a(t)))‘z —’_Sagj“(a(r))]dr.
0

T
[0 jT Inu(a(r))dt

T
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Applying (20) for any € > 0 we find

u(x,s)< 1 r : t—s (T dlnu
lOgu(y,t)_T ([0 F(lnu)(a(t))dr) 7 [0 5 (a(r))drt

1 r dt—s [T
< 2ET+;[0 Flnu)(a()dt — D’TS[O F(nu)(a(1))dz

D(s—1) (T dr
2T 0 t+ S;t T '
If we now choose € > 0 such that
e dit-—s
2 D T’
we obtain from the latter inequality
u(x,s) D Ly(y)> D t
og < In ,
u(y,t) — d4@t-s) 2 s

where we have denoted by £4(y) the subunitary length of y. If we now minimize
over all subunitary paths joining y to x, and we exponentiate, we obtain

2 D d(x. y)?
u(x,s) <u(y,t) (;) exp ( J 48_)};)) .

This proves (19) when [ € C§°(M). We can then extend the resultto f € C° (M)
by considering the approximations i, P; f € C5° (M) , where h,, € C§°(M), hy, >
0,hy, >n—so0o l,andletn — ocoand 7 — 0.

The following result represents an important consequence of Theorem 4.

Corollary 1. Suppose that the curvature-dimension inequality (14) be satisfied for
p1 > 0, and that the Hypothesis 1, 2, 3 be valid. Let p(x, y,t) be the heat kernel on
M. For every x,y,z € M and every 0 < s <t < 0o one has

5 D d(y.z)?
p(x,y,s)fp(xvz,f)(;) exP(d 43—1))’

6 Off-diagonal Gaussian upper bounds for Ricci > 0

Suppose that the assumption of Theorem 4 are in force. Fix x € M and t > 0.
Applying Corollary 1 to (y,2) — p(x,y.t) forevery y € B(x, +/t) we find

p(x.x.1) <27 edd p(x.y.2t) = Clpa.k.d)p(x. y.20).
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Integration over B(x, «/1) gives
(. 3, (B, V1)) < Clpa. i d) [B Pl 20 0) = )
X,/

where we have used P;1 < 1. This gives the on-diagonal upper bound
C(IO2 , K, d)
1(B(x, V1))

Obtaining an off-diagonal upper bound for the heat kernel requires a more deli-
cate analysis. The relevant result is contained in the following theorem, for whose
proof we refer the reader to [6].

plx,x,1) < 21)

Theorem 5. Assume that the curvature-dimension inequality (14) be satisfied for
p1 = 0 and that the Hypothesis 1, 2, 3 be fulfilled. For any 0 < € < 1 there exists
a constant C(pa, k., d,€) > 0, which tends to oo as € — 0%, such that for every
x,y € Mandt > 0 one has

p(x,y,l)f C(d7K7102’6) ex ( d(x»y)z).

w(BGe VO u(B(y. Vi)t \ @+ e

7 A sub-Riemannian Bonnet-Myers theorem

Let (M, g) be a complete, connected Riemannian manifold of dimension n > 2. It
is well-known that if for some p > 0 the Ricci tensor of M satisfies the bound

Ric > (n — 1)p, (22)

then M is compact, with a finite fundamental group, and diam(M) < 7/ ,/p. This
is the celebrated Myer’s theorem, which strengthens Bonnet’s theorem.

In what follows we state a sub-Riemannian counterpart of the Bonnet-Myer’s
compactness theorem, see [6].

Theorem 6. Assume that the curvature-dimension inequality (14) be satisfied for
p1 > 0, and that the Hypothesis 1, 2, 3 be valid. Then, the metric space (M, d) is
compact and we have

3
diam M < 2/37 p2+K(1+ K)d.
P1P2 2p2

8 Global volume doubling when Ricci > 0

Another fundamental tool in Riemannian geometry is the Bishop-Gromov volume
comparison theorem. In what follows, given k € R, we will indicate with M, the
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space of constant sectional curvature x, and with Vi (r) the volume of the geodesic
ball B, (r) in M. Given a Riemannian manifold with measure tensor u, for x € M
andr > Owelet V(x,r) = u(B(x,r)).

Theorem 7 (Bishop-Gromov comparison theorem). Let M be a complete n-di-
mensional Riemannian manifold such that Ric > p, p € R. Then, for every x € M

and every r > 0 the function
Y 4 Vi r)

% V
o (r
2, )
is non-increasing.

Corollary 2. Let M be a complete n-dimensional Riemannian manifold with Ric >
0. Then, for every x € M and every r > 0 the function

Vix,r)
r —

ri’l

is non-increasing. As a consequence, one has
V(x,2r)<2"V(x,r), xeM, r >0, (23)
and since lim, _, o+ V"l(f)fg’f;r)) = 1, we also have the following maximum volume

growth estimate

Vix,r) <wpr", xeM, r>0. 24)

Theorem 7 and Corollary 2 play a pervasive role in the development of analysis
on a Riemannian manifold with Ricci > 0. They are important, among other things,
in the study of the spectrum of the Laplacian on a manifold, for establishing Gaussian
bounds on the heat kernel, isoperimetric theorems, etc.

In this section we intend to discuss a sub-Riemannian generalization of the dou-
bling estimate (23) in Corollary 2 which has been established in [9], but see also [7]
for the Riemannian case. Remarkably, our approach shows that an inequality such
as (23) above can be exclusively derived from the Bochner identity without a direct
use of the theory of Jacobi fields. As a consequence, it provides a very flexible tool
for situations in which the tools of Riemannian geometry are not readily available.

We illustrate the main essential point. From the semigroup property and the sym-
metry of the heat kernel we have forany y € M and ¢ > 0

p(r.y.20) = /M PO 2.0 du().

Consider now afunction € C§°(M) suchthat0 < h < 1,h = L on B(x, v/ /2)
and h = 0 outside B(x, /t). We thus have

Pih(y) = [M p(y. 2. DhE)dp(z)

5([ p(y,z,r)zdu(z))z([ h(z)zdu(z))z
B(x,4/t) M

< p(y, 3,202 W(B(x, V1))?.
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By taking y = x, and ¢ = r? in the latter inequality, we obtain
P2 (1g(x,r) ()* < Pr2h(x)* < p(x, x,2r%) u(B(x,1)). (25)
Applying Corollary 1 to (y,) — p(x,y.t), forevery y € B(x, 4/t) we find
p(x,x,t) < Cp(x,y,2t).
Integrationin y € B(x, +/t) gives
plex B V) € [ pley20du() = C.
B(x,4/1)

where we have used P;1 < 1. Letting ¢t = 4r2, we obtain from this the on-diagonal
upper bound

B(x,2r)) < . 26
pEBO2)S 26)
At this point we combine (25) with (26) to obtain
2r? B
L(B(x.2r)) < Cp(x,x, r7)  w(B(x,r)) 27

p(x’ X, 41’2) Pr2 (1B(x,r)) (X)2
«  H(B(x,r))
N Pr2 (1B(x,r)) (X)2 ’

for every x € M and every r > 0.

It is clear that we would obtain a sub-Riemannian counterpart of (23) if we could
show that there exists 4 € (0, 1), K > 0, independent of x € M and r > 0, such
that

Py, (1B(x,r)) (x) = K.

Note: The Harnack inequality in Theorem 4 gives

P2 (1px,r)) (¥) = CPyp2 (1) (X). (28)

Theorem 8. Assume that the curvature-dimension inequality (14) be satisfied for
p1 > 0and that the Hypothesis 1, 2, 3 be fulfilled. There exists a universal constant
0 < A < 1 such that for every x € M, and r > 0,

1
PAr2(1B(x,r))(x) > 2-

The proof of Theorem 8 is fairly complicated and it occupies large part of the
work [9]. For a much simpler account in the Riemannian setting we refer the reader
to [7]. For future reference we record the following consequence of (25), (28), and
Theorem 8,

p(x,x,2r%) > xeM,r>0. (29)

C
W(B(x,r))’
With Theorem 8 in hands, following the arguments developed above, we obtain
the following basic result.
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Theorem 9 (Global doubling property). Assume that the curvature-dimension in-
equality (14) be satisfied for p1 > 0, and that the Hypothesis 1, 2, 3 be valid. Then,
the metric measure space (M, d, ) satisfies the global volume doubling property.
More precisely, there exists a constant C; = Cy(p1, p2,k,d) > 0 such that for
every x € M and every r > 0, u(B(x,2r)) < Ciu(B(x,r)).

9 Sharp Gaussian bounds, Poincaré inequality and parabolic
Harnack inequality

The purpose of this section is to establish some optimal two-sided bounds for the
heat kernel p(x, y, t) associated with the subelliptic operator L. Such estimates are
reminiscent of those obtained by Li and Yau for complete Riemannian manifolds
having Ric > 0. As a consequence of the two-sided Gaussian bound for the heat
kernel, we will derive a global Poincaré inequality and a localized parabolic Har-
nack inequality. Here is our main result.

Theorem 10. Suppose that the curvature-dimension inequality (14) be satisfied for
p1 = 0, and that the Hypothesis 1, 2, 3 be valid. For any 0 < ¢ < 1 there exists a
constant C(¢) = C(d, k, p2,€) > 0, which tends to oo as ¢ — 0T, such that for
every x,y € M and t > 0 one has

ceO™ (_Dd@ayﬁ e (_du;yf)
J(B(x. /1)) d(4 — et wBe V) TP\ @)

Proof. We begin by establishing the lower bound. First, from Corollary 1 we obtain
forall y € M,z > 0,andevery 0 < ¢ < 1,

)Sp(x,y,r)s

Dd(x,y)z)

p(x.y.0) = p(x.x.e1)e? exp (_ d (4—e)

We thus need to estimate p(x, x, e¢) from below. But this has already been done in
(29). Choosing r > 0 such that 2r2 = et, we obtain from that estimate

C *
W(B(x. v/e/2/1))

On the other hand, since \/5/2 < 1, by the trivial inequality u(B(x, \/5/2\/t)) <
p(B(x, 4/1)), we conclude

Gz O e (_Dd(’“’”Z)
PRy = ey TP\ d @—en )

This proves the Gaussian lower bound.

px,x,et) > xeM,t>0.
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For the Gaussian upper bound, we first observe recall that Theorem 5 gives for
any 0 < ¢’ < 1

/ 2
p(x,y,1) < Cld k. pa. &) ex ( dx.y) ) (30)

W(BGe, V) (B, Vi))b \ (Gt e

At this point, by the triangle inequality and Theorem 9 we find with O = log, C1,

W(B(x, V1)) < w(B(y. d(x,y) + V1))

d(x,y) + \/I)Q

< ClM(B(y,\/l))< i

This gives
G (d(x,y) H)Q
1By, V1) ~ u(B(x. V) \ i '

Combining this with (30) we obtain

ClPCWd k. pae) (dx.y) \° d(x. y)?
p(x»y’t)f ! o ’ ( ’ +1) eXp( ’ )

[L(B(x, /1)) Ji @+

If now 0 < ¢ < 1, itis clear that we can choose 0 < &' < ¢ such that

C1*Cd.k.p2.€) (2 l)gex (- d(x,y)Z) 3
w(B(x, V1)) Ji P U @ren )
C*(d K, p2,e) d(x, y)?
w(B(x. V) P (_ 4+ eyt ) ’

where C*(d, k, p3, €) is a constant which tends to oo as ¢ — 0. The desired con-
clusion follows by suitably adjusting the values of both ¢” and of the constant in the
right-hand side of the estimate.

With Theorems 9 and 10 in hands, we can now appeal to the results in [12, 14,
21,25,27-29], see also the books [15, 16]. More precisely, from the developments
in these papers it is by now well-known that in the context of strictly regular local
Dirichlet spaces we have the equivalence between:

(1) atwo sided Gaussian bounds for the heat kernel (like in Theorem 10);

(2) the conjunction of the volume doubling property and the Poincaré inequality
(see Theorem 11 below);

(3) the parabolic Harnack inequality (see Theorem 12 below).

Thus, thanks to Theorems 9 and 10, we obtain the following form of Poincaré
inequality.



192 N. Garofalo

Theorem 11. Suppose that the curvature-dimension inequality (14) be satisfied for
p1 > 0, and that the Hypothesis 1, 2, 3 be valid. Then, there exists a constant C =
C(d,k, p2) > 0 such that for every x € M, r > 0, and f € C°°(M) one has

[ |ﬂw—m%mwscﬂ[
B(x,r)

B(x,2

| LHDdp(y).

where we have let f, = M(B(lx,r)) fB(x,r) fdpu.

Since thanks to Theorem 9 the space (M, u, d), where d = d(x, y) indicates the
sub-Riemannian distance (11), is a space of homogeneous type, and furthermore (10)
above guarantees that it is a length-space, then, arguing as in [20], from Theorem 11
we obtain the following result.

Corollary 3. Under the hypothesis of Theorem 11 there exists a constant C* =
C*(d, x, p2) > 0 such that for every x € M, r > 0, and f € C°° (M) one has

[ |ﬂw—mwmwswﬂ[
B(x,r)

B(x,

) LA (y).

Furthermore, the following scale invariant Harnack inequality for local solutions
holds.

Theorem 12. Assume that the curvature-dimension inequality (14) be satisfied for
p1 > 0, and that the Hypothesis 1, 2, 3 be valid. If u is a positive solution of the heat
equation in a cylinder of the form Q = (s, s + ar?) x B(x,r) then

supu < C infu, (31)
o— o+

where for some fixed ) < B <y <8 <a <oocandn € (0, 1),
O— = (s+ Bre. s+ yr?) x B(x.nr), Q0+ = (s + 8r%, s + ar?®) x B(x, nr).

Here, the constant C is independent of x,r and u, but depends on the parameters
d, Kk, pa,aswellasona, B,y,6andn.

10 Negatively curved manifolds

In the previous sections we have exclusively discussed the case of sub-Riemannian
manifolds with nonnegative Ricci curvature. In this section we present some of the
main results in [10] relative to the case in which Ricci is bounded from below by a
number which is allowed to be negative.

Theorem 13. Suppose that the generalized curvature-dimension inequality (14) hold
forsome p1 € R, and that the Hypothesis 1, 2, 3 be valid. Then, there exist constants
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C1, Cy > 0, depending only on p1, p2, k, d, for which one has for every x,y € M
and every r > 0:

j(B(x,2r)) < Crexp (Car?) u(B(x,r)). (32)

The constant C, tends to zero as py — 0, and thus (32) contains in particular the
estimate in Theorem 9.

In order to state the next result, we introduce a family of control distances d; for
T > 0. Given x, y € M, let us consider

S:(x,y) ={y :[0,T] = M | y is subunit for ' + t2T'%, y(0) = x, p(T) = y}.
A curve which is subunit for I" is obviously subunit for " 4 72T 2, therefore thanks
to the assumption (10) above we have S;(x, y) # &. We can then define

de(x,y) =inf{ls(y) | y € Sc(x,y)}. (33)

Note that d(x, y) = do(x, y) and that, clearly: d;(x, y) < d(x, y).

Theorem 14. Suppose that the generalized curvature-dimension inequality hold for
some p1 € R, and that the Hypothesis 1, 2, 3 be satisfied. Let t > 0. Then, there
exists a constant C(t) > 0, depending only on p1, p2, k, d and t, for which one has
forevery x,y € Mi:

d (x,y) < C(v)max{y/d; (x,y),dy (x,9)}. (34)

11 Geometric examples

In this section we present several classes of sub-Riemannian spaces satisfying the
generalized curvature-dimension inequality in Definition 1 above. These examples
constitute the central motivation of the present work.

11.1 Riemannian manifolds

As we have mentioned in the introduction, when M is a n-dimensional complete
Riemannian manifold with Riemannian distance dg, Levi-Civita connection V and
Laplace-Beltrami operator A, our main assumptions hold trivially. It suffices to
choose I'? = 0 to satisfy Hypothesis 2 in a trivial fashion. Hypothesis 1 is also
satisfied since it is equivalent to assuming that (M, dg) be complete (observe in
passing that the distance (9) coincides with dg). Finally, with the choice k = 0
and p; = p the curvature-dimension inequality (14) reduces to (6), which, as we
have already observed, is implied by (and it is in fact equivalent to) the assumption
Ric > p.
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11.2 The three-dimensional Sasakian models

The purpose of this section is providing a first basic sub-Riemannian example which
fits the framework of the present paper. This example was first studied in [5]. Given
a number p; € R, suppose that G(p;) be a three-dimensional Lie group whose Lie
algebra g has a basis {X, Y, Z} satisfying:

O [XY]=2;
(i) [X.Z]=—p1Y;
(i) [Y.Z] = p1 X.

A sub-Laplacian on G (p;) is the left-invariant, second-order differential operator
L=X*+Y2 (33)

In view of (i)-(iii) Hormander’s theorem, see [18], implies that L be hypoelliptic, al-
though it fails to be elliptic at every point of G (7). From (8) we find in the present
situation

1
L(f) = 2(L(fz) —2fLf) = (X/)? + (Yf)*.
If we define
r%(f.e)=2fZg.
then from (i)-(iii) we easily verify that

L(£T?(f) = T?(£.T ().

We conclude that the Hypothesis 2 is satisfied. It is not difficult to show that the
Hypothesis 1 is also fulfilled.
Using (i)-(iii) we leave it to the reader to verify that

[L,Z] =0. (36)
By means of (36) we easily find
1
T (f) = ,LOZ(f) =TA(f Lf) = ZfIL, Z]f + (XZf)* + (YZf )?
= (XZf)+(YZf)~
Finally, from definition (12) and from (i)-(iii) we obtain

D) = L) = T L)

=i D(f)+ (X2 ) + (YXf)> + (XYf)> + (Y f)?
+2YF(XZf) = 2XF(YZF).

We now notice that

1
(X2 f)? + (YXf)? + (XY + (Y2 ) = IV fII> + ZFZ(f),
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where we have denoted by

Vi S = (I(XYj’(z—i{fYXf) ;(XY;;;}YXf))
2

the symmetrized Hessian of f* with respect to the horizontal distribution generated
by X, Y. Substituting this information in the above formula we find

() = IVE FIP + D (f) + ;FZ(f) +2(Yf(XZf) = Xf(YZ])).

By the above expression for FZZ (f), using Cauchy-Schwarz inequality, we obtain
forevery v > 0

RYXZS) = 2XFOZP) < vTE () + | TP,

Similarly, one easily recognizes that

V3 1P = ) (L2

Combining these inequalities, we conclude that we have proved the following result.

Proposition 1. For every p1 € R the Lie group G(py), with the sub-Laplacian L in
(35), satisfies the generalized curvature dimension inequality CD(p1, ;, 1,2). Pre-
cisely, for every f € C*(G(py1)) and any v > 0 one has:
1 1 1
Ea) T2 = L+ (=) ) T+ T2
Proposition 1 provides a basic motivation for Definition 1. It is also important
to observe at this point that the Lie group G (p1) can be endowed with a natural CR

structure. Denoting in fact with J¢ the subbundle of TG (p;) generated by the vector
fields X and Y, the endomorphism J of # defined by

JY)=X, J(X)=-Y,

satisfies J2 = —1, and thus defines a complex structure on G(p;). By choosing
as the form such that

Ker6 = #, and dO(X,Y) =1,

we obtain a CR structure on G (p1) whose Reeb vector field is —Z. Thus, the above
choice of T'Z is canonical.

The pseudo-hermitian Tanaka-Webster torsion of G(p;) vanishes, thus
(G(p1), 0) is a Sasakian manifold. It is also easy to verify that for the CR mani-
fold (G(p1), ) the Tanaka-Webster horizontal sectional curvature is constant and
equals p;. The following three model spaces correspond respectively to the cases
p1=1,pp =0and p; = —1:
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1. the Lie group SU(2) is the group of 2 x 2, complex, unitary matrices of deter-

minant 1;
2. the Heisenberg group H is the group of 3 x 3 matrices:

1
0
0

S = =

z
y |, x,y,z€eR;

1

3. the Lie group SIL(2) is the group of 2 x 2, real matrices of determinant 1.

11.3 Sub-Riemannian manifolds with transverse symmetries

We now turn our attention to a large class of sub-Riemannian manifolds, encom-
passing the three-dimensional model spaces discussed in the previous subsection.
Theorem 15 below states that for these sub-Riemannian manifolds the generalized
curvature-dimension inequality (14) does hold under some natural geometric as-
sumptions which, in the Riemannian case, reduce to requiring a lower bound for
the Ricci tensor. To achieve this result, some new Bochner type identities were es-
tablished in [6].

Let M be a smooth, connected manifold equipped with a bracket generating dis-
tribution # of dimension d and a fiberwise inner product g on that distribution. The
distribution J will be referred to as the set of horizontal directions.

We indicate with iso the finite-dimensional Lie algebra of all sub-Riemannian
Killing vector fields on M (see [26]). A vector field Z € iso if the one-parameter
flow generated by it locally preserves the sub-Riemannian geometry defined by
(¥, g). This amounts to saying that:

(1) forevery x € M, and any u,v € #(x), £zgu,v) =0;
(2) ifX € #H, then[Z, X] € J.

In (1) we have denoted by £ z g the Lie derivative of g with respect to Z. Our main
geometric assumption is the following:

Hypothesis 4. There exists a Lie sub-algebraV C iso, such that for every x € M,
TxM = #H(x) ® V(x).

The distribution V will be referred to as the set of vertical directions. The dimen-
sion of 'V will be denoted by §.

The choice of an inner product on the Lie algebra V naturally endows M with
a Riemannian extension gg of g that makes the decomposition #(x) & V(x) or-
thogonal. Although gg is useful for computational purposes, the geometric objects
that introduced in [6], like the sub-Laplacian L, the canonical connection V and the
“Ricci” tensor R, do not depend on the choice of an inner product on V. We refer
to [6] for a detailed geometric discussion.
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Theorem 15. Suppose that there exist constants p1 € R, po > 0 and k > 0 such
that for every f € C(M):

(37)
T(f) =«(f).

Then, the sub-Riemannian manifold M satisfies the generalized curvature-dimension
inequality CD(p1, p2, k, d) in (14) with respect to the sub-Laplacian L and the dif-
ferential form T'Z.

{:R(f) > piT(f) + p2T2(f),

In [6] it was shown that, remarkably, the generalized curvature-dimension in-
equality (14) in Definition 1 is equivalent to the geometric bounds (37) above. Here
is the relevant result.

Theorem 16. Suppose that there exist constants p1 € R, p» > 0and k > 0 such that
M satisfy the generalized curvature-dimension inequality CD(p1, p2, &, d). Then,
M satisfies the geometric bounds (37). As a consequence of this fact and of Theo-
rem 15 we conclude that

R(f) =z piT(f) + p2TZ (),

CD(p1. pa. k. d) <= {’J‘(f) < «T(f).

11.4 Carnot groups of step two

Carnot groups of step two provide a natural reservoir of sub-Riemannian manifolds
with transverse symmetries. Let g be a graded nilpotent Lie algebra of step two. This
means that g admits a splitting g = V; @ V5, where [V1, V1] = V,, and [V1, V2] =
{0}. We endow g with an inner product (-, -) with respect to which the decomposi-
tion V; @ V5 is orthogonal. We denote by ey, ..., ¢4 an orthonormal basis of V; and
by €1, ..., &5 an orthonormal basis of V5. Let G be the connected and simply con-
nected graded nilpotent Lie group associated with g. Left-invariant vector fields in
V, are seen to be transverse sub-Riemannian Killing vector fields of the horizontal
distribution given by V. The geometric assumptions of the previous section are thus
satisfied.

Proposition 2. Let G be a Carnot group of step two, with d being the dimension of
the horizontal layer of its Lie algebra. Then, G satisfies the generalized curvature-
dimension inequality CD(0, p2, k, d) (with respect to any sub-Laplacian L on G),
with p; > 0 and k > 0 which solely depend on G.

In particular, in our framework, every Carnot group of step two is a sub-
Riemannian manifold with nonnegative Ricci tensor.
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11.5 CR Sasakian manifolds

Another interesting class of sub-Riemannian manifolds with transverse symmetries
is given by the class of CR Sasakian manifolds. For these manifolds one has the
following result, established in [6].

Theorem 17. Let M be a Sasakian manifold, having real dimension 2n + 1. Assume
that the Tanaka-Webster Ricci tensor is bounded from below by p1 € R on smooth
functions, that is for every f € C°(M)

Ric(Vy £, V35 f) = pillVae £ 1%

Then, M satisfies the generalized curvature-dimension inequality CD(py, 7, 1,2n).
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Hausdorff measures and dimensions in non
equiregular sub-Riemannian manifolds

Roberta Ghezzi and Frédéric Jean

Abstract This paper is a starting point towards computing the Hausdorff dimen-
sion of submanifolds and the Hausdorff volume of small balls in a sub-Riemannian
manifold with singular points. We first consider the case of a strongly equiregular
submanifold, i. e., a smooth submanifold N for which the growth vector of the distri-
bution D and the growth vector of the intersection of D with TN are constant on N.
In this case, we generalize the result in [12], which relates the Hausdorff dimension
to the growth vector of the distribution. We then consider analytic sub-Riemannian
manifolds and, under the assumption that the singular point p is typical, we state a
theorem which characterizes the Hausdorff dimension of the manifold and the finite-
ness of the Hausdorff volume of small balls B(p, p) in terms of the growth vector of
both the distribution and the intersection of the distribution with the singular locus,
and of the nonholonomic order at p of the volume form on M evaluated along some
families of vector fields.

1 Introduction

The main motivation of this paper arises from the study of sub-Riemannian mani-
folds as particular metric spaces. Recall that a sub-Riemannian manifold is a triplet
(M, D, g), where M is a smooth manifold, D a Lie-bracket generating subbundle
of TM and g a Riemannian metric on D. The absolutely continuous paths which
are almost everywhere tangent to D are called horizontal and their length is ob-
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tained as in Riemannian geometry integrating the norm of their tangent vectors. The
sub-Riemannian distance d is defined as the infimum of length of horizontal paths
between two given points.

Hausdorff measures and spherical Hausdorff measures can be defined on sub-
Riemannian manifolds using the sub-Riemannian distance. It is well-known that for
these metric spaces the Hausdorff dimension is strictly greater than the topologi-
cal one. Although the presence of an extra structure, i. e., the differential one, con-
stitute a considerable help, computing Hausdorff measures and dimensions of sets
is a difficult problem. In [5] we study Hausdorff measures of continuous curves,
whereas in [1] the authors analyze the regularity of the top-dimensional Hausdorff
measure in the equiregular case (see the definition below). In the case of Carnot
groups, Hausdorff measures of regular hypersurfaces have been studied in [4] and
in a more general context, a representation formula for the perimeter measure in
terms of Hausdorff measure has been proved in [2].

In this paper we consider three questions: given a sub-Riemannian manifold
(M,D,g), pe M and a small p > 0,

1) What is the Hausdorff dimension dimg (M )?

2) Under which condition is the Hausdorff volume F4m# (M) (B(p, p)) finite?

3) The two preceding questions when M is replaced by a submanifold N, i. e., what
is dimg (N) and when is #4mz V) (N 0 B(p, p)) finite?

A key feature to be taken into account is whether p is regular or singular for the
sub-Riemannian manifold. Given i > 1, define recursively the submodule D' of
Vec(M)by D' = D, D'*' = D' + [D, D']. Denote by D}, = {X(p) | X € D'}.
Since D is Lie-bracket generating, there exists r(p) € N such that

{0y=DycD,C---CDP=T,M.

A point p is regular if, for every i, the dimensions dim D; are constant as g varies
in a neighborhood of p. Otherwise, p is said to be singular. A set S C M is equireg-
ular if, for every i, dim D; is constant as ¢ varies in S. For equiregular manifolds,
questions 1 and 2 have been answered in [12] (but with an incorrect proof, see [13]
for a correct one). In that paper, the author shows that the Hausdorff dimension of
an equiregular manifold M is

r(p)
dimgy (M) = Q. where Q = Y i(dim D}, —dim D}™")., (1)
i=1
and that the Hausdorff Q-dimensional measure near a regular point is absolutely
continuous with respect to any Lebesgue measure on M. As a consequence, when p
is regular, the Hausdorff dimension of a small ball B(p, p) is Q, and the Hausdorff
Q-dimensional measure of B(p, p) is finite.

When there are singular points, these problems have been mentioned in [8, Sect.
1.3.A]. In this case, the idea is to compute the Hausdorff dimension using suitable
stratifications of M where the discontinuities of the dimensions ¢ — dim D; are
somehow controlled. Namely, as suggested in [8], we consider stratifications made
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by submanifolds N which are strongly equiregular, i. e., for which both the dimen-
sions dim DZ and dim(DiI N Ty N) are constant as g varies in N.

The first part of the paper provides an answer to question 3 when N is strongly
equiregular. The first result of the paper (Theorem 1) computes the Hausdorff di-
mension of a strongly equiregular submanifold N in terms of the dimensions of
dim(DiI N Ty N), generalizing formula (1) which corresponds to the case N = M.
More precisely, dimg (N) = Oy where

r(p)
Oy = Y _i(dim(D} N T,N) - dim(D5™' N T,N)).

i=1

This actually follows from a stronger property: indeed, we show that the Q y-di-
mensional spherical Hausdorff measure in N is absolutely continuous with respect
to any smooth measure (i. e. any measure induced locally by a volume form) on N.
The Radon—Nikodym derivative computed in Theorem 1 generalizes [1, Lemma 32],
which corresponds to the case N = M. The main ingredient behind the proofs of
such results is the fact that for a strongly equiregular submanifold N the metric
tangent cone to (N, d|y) exists at every p € N and can be identified to 7, N via
suitable systems of privileged coordinates (see Lemma 1).

The results for strongly equiregular submanifolds provide a first step towards the
answer of questions 1 and 2 in the general case, at least for analytic sub-Riemannian
manifolds. This is the topic in the second part of the paper. Indeed, when (M, D, g)
is analytic, M can be stratified as M = U;>¢oM; where each M; is an analytic
equiregular submanifold. Then, the Hausdorff dimension of a small ball B is the
maximum of the Hausdorff dimensions of the intersections B N M;. To compute the
latter ones, we use that each strata M; can further be decomposed as the disjointed
union of strongly equiregular analytic submanifolds. In Lemma 3, using Theorem 1
we compute the Hausdorff dimension of an equiregular (but possibly not strongly
equiregular) analytic submanifold and we estimate the density of the corresponding
Hausdorff measure. Characterizing the finiteness of the corresponding Hausdorff
measure of the intersection of a small ball with an equiregular analytic submanifold
is rather involved. Yet this is the main issue in question 2, as whenever the Haus-
dorff measure of B(p, p) N {regular points} is infinite at a singular point p then so
is #dima (M) (B(p, p)). To estimate H4imz M) (B(p, p) N {regular points}), we as-
sume that the singular point p is “typical”, that is, it belongs to a strongly equiregular
submanifold N of the singular set. In Theorem 2 we characterize the finiteness of
the aforementioned measure at typical singular points through an algebraic relation
involving the Hausdorff dimension Q... near a regular point, the Hausdorff dimen-
sion Q y of N, and the nonholonomic order at p of the volume form on M evaluated
along some families of vector fields, given by Lie brackets between generators of the
distribution.

The proof of Theorem 2 (and of Proposition 1) will appear in a forthcoming paper.

The structure of the paper is the following. In Sect. 2 we recall shortly the defini-
tions of Hausdorff measures and dimension and some basic notions in sub-Rieman-
nian geometry. Section 3 is devoted to the the definition and the study of strongly
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equiregular submanifolds and contains the proof of Theorem 1 and the statement
of Proposition 1. In Sect. 4 we treat analytic sub-Riemannian manifolds. First, we
estimate the Hausdorff dimension Q of an analytic equiregular submanifold N
in Sect 4.1. Then, in Sect. 4.2, we prove that the Q ~ -dimensional Hausdorff mea-
sure of the intersection of a small ball B(p, p) with N is finite if p € N and we
state Theorem 2. Finally, we end by applying our results to some examples of sub-
Riemannian manifolds in Sect. 4.3. In particular, the examples show that when the
Hausdorff dimension of a ball centered at a singular point is equal to the Hausdorff
dimension of the whole manifold, the corresponding Hausdorff measure can be both
finite or infinite.

2 Basic notations

2.1 Hausdorff measures

Let (M, d) be a metric space. We denote by diam S the diameter of a set S C M,
by B(p, p) the open ball {g € M | d(q, p) < p}, and by B(p, p) the closure of
B(p,p). Let « > 0 be a real number. For every set A C M, the a-dimensional
Hausdorff measure H* of A is defined as #*(A) = lim._, o+ H (A), where

o0 o0
HE(A) = inf{z (diam $;)* : A C U S;, S; closed set, diam S; < E} ,
i=1 i=1
and the «a-dimensional spherical Hausdorff measure is defined as §%(4) =
lim,_, o+ 8% (A), where
o0 o0
8X(A) = inf{Z(diam SH*: AC U Si, S;isaball, diam S; < E} .

i=1 i=1
For every set A C M, the non-negative number
D =sup{a > 0| HY(A) = oo} = inf{a > 0| H*(A) = 0}

is called the Hausdorff dimension of A. The D-dimensional Hausdorff measure
HP(A) is called the Hausdorff volume of A. Notice that this volume may be 0,
> 0, or c0.

Given a subset N C M, we can consider the metric space (N, d|x). Denoting
by 3 and &%, the Hausdorff and spherical Hausdorff measures in this space, by
definition we have

HEN(A) == HUANN) = HE(ANN),
8%y (A) := 8*(ANN) < 8%L(ANN). )

These are a simple consequences of the fact that a set C is closed in N if and only
if C = C’' N N, with C’ closed in M. Notice that the inequality (2) is strict in
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general, as coverings in the definition of 8%, are made with sets B which satisfy
B = B(p,p) N N with p € N, whereas coverings in the definition of §%_y in-
clude sets of the type B(p,p) N N with p ¢ N. Moreover, by construction of
Hausdorff measures, for every subset S C N, H*(S) < §%(S) < 2*H*(S) and
HF(S) < 8% (S) < 2%HF(S). Hence

H(S) < $Y(S) < 29H%(S),

and &% is absolutely continuous with respect to H*L .

2.2 Sub-Riemannian manifolds

A sub-Riemannian manifold of class € (k = oo or k = w in the analytic case) is
a triplet (M, D, g), where M is a €¥-manifold, D is a Lie-bracket generating € -
subbundle of TM of rank m < dim M and g is a Riemannian metric of class €¥
on D. Using the Riemannian metric, the length of horizontal curves, i. e., absolutely
continuous curves which are almost everywhere tangent to D, is well-defined. The
Lie-bracket generating assumption implies that the distance d defined as the infi-
mum of length of horizontal curves between two given points is finite and contin-
uous (Rashewski—Chow Theorem). We refer to d as the sub-Riemannian distance.
The set M endowed with the sub-Riemannian distance d is a metric space (M, d)
(often called Carnot-Carathéodory space) which has the same topology than the
manifold M.

We denote by D, C T, M the fiber of D over g. The subbundle D can be iden-
tified with the module of sections

{X eVec(M) | X(q) € Dy, Vq € M}.
Giveni > 1, define recursively the submodule D’ of Vec(M) by
D'=Dp, D' =D’ 4+[D,D.

Set D; = {X(q) | X € D'}. Notice that the identification between the submodule

D' and the distribution g Dfl is no more meaningful when the dimension of Dfl
varies as a function of ¢ (see the discussion in [3, page 48]). The Lie-bracket gen-
erating assumption implies that for every ¢ € M there exists an integer r(q), the
non-holonomy degree at q, such that

{0ycD)c---C D =T,M. 3)
The sequence of subspaces (3) is called the flag of D at q. Set n;(¢) = dim D; and

r(q)
0@q) = ini(g) — ni—1(q)). (4)

i=1

where ng(q) = 0.
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We say that a point p is regular if, for every i, n;(q) is constant as ¢ varies in a
neighborhood of p. Otherwise, the point is said to be singular. A subset A C M is
called equiregular if, for every i, n;(q) is constant as ¢ varies in A. When the whole
manifold is equiregular, the integer Q(¢q) defined in (4) does not depend on g and it
is the Hausdorff dimension of (M, d) (see [12]).

Given p € M, let X1,..., X be alocal orthonormal frame of D. A multiin-
dex I of length |[I| = j > 1is an element of {1, ..., m}/. With any multiindex
I = (i1, ...,ij)is associated an iterated Lie bracket X; = [X;,.[Xi,, ..., X,-j] ..
(weset X; = Xj, if j = 1). The set of vector fields X7 such that |/| < j is a family
of generators of the module D”. As a consequence, if the values of Xy, , ..., X7, at
g € M are linearly independent, then ) ; |1;| > Q(q).

Let Y be a vector field. We define the length of Y by

(Y)=min{i e N |Y € D'}.

In particular, £(X;) < |I|. Note that, in general, if a vector field Y satisfies Y(¢) €
D; for every ¢ € M, Y need not be in the submodule D*. By an adapted basis to
the flag (3) at ¢, we mean n vector fields Y7, ..., ¥ such that their values at g satisfy

Dfl =span{Y;(q) | £(Y;) <i}, Vi=1,...,r(q).

In particular, > ;_, £(Y;) = Q(q). As a consequence, a family of brackets X7, , ...,
X1, such that X7, (q), ..., X1, (q) are linearly independent is an adapted basis to the

flag (3) at ¢ ifand only if ), |1;| = Q(q).

3 Hausdorff dimensions and volumes of strongly equiregular
submanifolds

In this section, we answer question 3 when N is a particular kind of submanifold,
namely a strongly equiregular one. These results include the case where M itself is
equiregular.

3.1 Strongly equiregular submanifolds

Let N C M be a smooth connected submanifold of dimension b. The flag atqg € N
of D restricted to N 1is the sequence of subspaces

{0} C (DyNTyN) C -+ C(D[@ NTyN)=T,N. (5)
Set

r(q)
n (q) = dim(D}, N T,N) and On(q) =Y i} (q) —n,(9)).

i=1

with nll (¢) = 0.
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Definition 1. We say that N is strongly equiregular if

(i) N is equiregular, that is, for every i, the dimension 7;(q) is constant as g
varies in N;
(ii) for every i, the dimension nlN (¢) is constant as ¢ varies in N.

In this case, we denote by Q n the constant value of Qn(¢), ¢ € N.
By an adapted basis to the flag (5) at ¢ € N, we mean b vector fields Z1, ..., Z,
such taht
DiNTyN =span{Z;(q) | (Z;) <i}. Vi=1.....r(q.
In particular, when Z1, ..., Z} is adapted to the flag (5), we have
TyN = span{Z(q)..... Zp(q)}

and Oy = Y 0_, U(Z)).

Recall that the metric tangent cone' to (M, d) at any point p exists and it is iso-
metricto (T, M, d p), Where Zz'\p denotes the sub-Riemannian distance associated with
a nilpotent approximation at p (see [3]). The following lemma shows the relevance
of strongly equiregular submanifolds as particular subsets of M for which a metric
tangent cone exists. Such metric space is isometrically embedded in a metric tangent
cone to the whole M at the point.

Lemma 1. Let N C M be a b-dimensional submanifold of M . Assume N is strongly
equiregular. Then, for every p € N:

(1)  there exists a metric tangent cone to (N,d|n) at p and it is isometric to
(TpN’ dp|TpN);
(i1)  the graded vector space

ar (D) := @[ P (D N T,N)/(Di' N T,N)
is a nilpotent Lie algebra whose associated Lie group Gr;v (D) is diffeomor-
phicto Ty,N;

(iii)) every b-form w € /\b N on N induces canonically a left-invariant b-form
®? on Gr;v (D). Moreover,

[ W= EQN[ o of + 0(e2V), (6)
NNB(p,e) TpNNBp

where 0(¢2N) is uniformas p varies in N and Ep is the ball centered at 0 of
radius 1 in the nilpotent approximation at p of the sub-Riemannian manifold.

Remark 1. When N is an open submanifold of M, assuming N strongly equiregular
is equivalent to saying that N contains only regular points. In that case, Lemma 1 is
well-known (point (i) follows by the fact that the nilpotent approximation is a metric

! in Gromov’s sense, see [7]
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tangent cone, point (ii) says that the tangent cone shares a group structure - which
in this case satisfies the additional property gr,(D) = spanp{Dl} - and (iii) has
been remarked in [1] using the canonical isomorphism between /" (gr,(D)*) and
N (T M).

Proof. Note first that since the result is of local nature, it is sufficient that we prove
it on a small neighbourhood B(pg, p) NN of apoint pg € N.Forevery p inasucha
neighbourhood, there exists a coordinate system ¢, : U, — R” on a neighborhood
U, C M of p, such that ¢, are privileged coordinates at p, p — ¢, is continuous,
and N is rectified in coordinates ¢p, thatis ¢, (N NU,) C{x e R" | xp4; =+ =
X, = 0}. The construction is as follows.

Given p > 0 small enough, we can find b vector fields Y7, ..., Y} defined on
B(po, p) which form a basis adapted to the flag (5) restricted to N at every p €
B(po,p) N N. Moreover, up to reducing p, we can find Yp41,..., Y, such that
Y1,..., Y, isadapted to the flag (3) of the distribution at every point p € B(po, p)N
N. Using these bases, we define for p € N N B(py, p), a local diffeomorphism
®, : R" — M by

n

b
®p(x) = exp( > XiYi) o exp (ZXiYi)(P)~ (M
i=1

i=b+1
The inverse ¢, = @;1 of ®, provides a system of coordinates centered at p which
are privileged (see [9]). Moreover, thanks to property (i) in Definition 1, the map
from B(pg, p) N N to M which associates with p the point ®,(x) is smooth for
every x € R”. Finally, in coordinates ¢,, the submanifold N N U coincides with
the set

b
fexp (w0 ) ) 1 G1vvvvoe) € 2 € (05000 L3pir =+ = 0 = 0},
i=1

where € is an open subset of R?.

Using ¢, we identify M with T, M ~ R”.Since Yi(p), ..., Ys(p)spanT, N, ¢,
maps N in T, N, where T, N is identified with R? x {0} C R" ~ T, M. Therefore,
whenever ¢1,¢> € U N N we have

dp(611,612) = dp|T,,N(611,612),

and obviously d(q1,q2) = d|n(¢1,¢2). Hence estimate (70) in [3, Theorem 7.32]
holds when we restrict d to N and d to Ty N . This allows to conclude that a metric
tangent cone to (N, d | ) at p exists and it is isometric to (T, N, Zz'\p |7, N), where the
inclusion of T, N into T, M is to be intended via .

The algebraic structure of gr},v (D) and the fact that Grlﬁv (D) is diffeomorphic
to R? are straightforward. As a consequence, there also exists a canonical isomor-
phism between A\” (gr;,v (D)*) and A\° (TyN). Let @, be the image of w, under
such isomorphism (see the construction in [13, Sect. 10.5]). Then &7 is defined as
the left-invariant b-form on 7, N which coincides with @, at the origin.
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Finally, as a consequence of point (i), by definition of metric tangent cone
¢p(B(p,€) N N) converges to B(0,€) N T, N in the Gromov—Hausdorff sense as €
goes to 0. By homogeneity of Zz'\p we have E(O, e)NT,N = €N (Ep N T, N) and
we get (6). Since p > ¢, and p — Ep are continuous [1, Sect. 4.1], the remainder
0(¢2V) in (6) is uniform with respect to p. O

For the sake of completeness, let us give an explicit formula for ®?. Recall that
the construction of the coordinates ¢, involves an adapted basis Y7, ..., Y} to the
flag (5) restricted to N at every p € B(po, p) N N. In particular the vector fields
Y1,..., Yy restricted to N form a local frame for the tangent bundle to N and

o=ol,....Yp)dY1IN)A---Ad(Yp|N).

Let X1, ..., X,, be alocal orthonormal frame for the sub-Riemannian structure in a
neighborhood of p, and Xy, , ..., Xj, be an adapted basis to the flag (3) at p, where
le is the Lie bracket corresponding to the multi-index /;. Since Xj,,..., Xy, isa
local frame for the tangent bundle to M, forevery i = 1,...,b we can write ¥; in
this basis as
> vix.
[1]<L(Y;)

where YI are smooth function (the fact that only multiindices with length smaller
than Z(Y ) appear in this sum is due to the definition of length of a vector field).

Denote by X X?...X ,’;l the nilpotent approximation of X1, ..., X, at p obtained in
coordinates g, and by X Z the Lie bracket between the X7, ..., X/, corresponding
to the multiindex /;. Forevery i = 1,..., b we define the vector field
Y) = Z Y/ (p)X1.
[71=£(¥;)

This enables us to compute @7 as

&7 = wp(Y1(p), .- Yo (pA(Y {|1,n) A=+ A d(Y ] |7, N), ®)

The fact that the right-hand side of (8) does not depend on the X7 noronthe ¥; isa
consequence of the intrinsic definition of ®?.

3.2 Hausdorff volume

Assume now that N is an orientable submanifold. By a smooth volume on N we
mean a measure i associated with a never vanishing smooth form w € /\b N,i.e,
forevery Borelset A C N, u(A4) = [, [, 0. We will denote by f1” the smooth volume
on T, N associated with &”.

We are now in a position to prove the main result.
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Theorem 1. Let N C M be a smooth orientable submanifold. Assume N is strongly
equiregular. Then, for every smooth volume L on N,

i B O
L SYV(B(g.ey) _ dlamg (TgN 0 By . o
>0 u(N N B(q.€)) f4(T,N N B,) ’

where diamfd\ denotes the diameter with respect to the distance d 4. In particular,
q

8 Ig’v is absolutely continuous with respect to u with Radon—Nikodym derivative

equal to the right hand side of (9). As a consequence,

dimg N = QOn., (10)

and, for a small ball B(p, p) centered at a point p € N, the Hausdorff volume
HEN(N N B(p, p)) is finite.

Remark 2. When N is an open submanifoldof M,e.g.,, N = {p € M | p is regular},
the computation of Hausdorff dimension is well-known, see [12]. In particular, when
p is a regular point the top-dimensional Hausdorff measure #< (B(p,r)) is posi-
tive and finite. When N = M, Eq. (9) gives a new proof to [1, Theorem 1]. This is
interesting since the latter was obtained as a consequence of [1, Lemma 32], whose
proof is incorrect.

To prove Theorem 1 a fundamental step is the following lemma.

Lemma 2. Let N and p be as in Theorem 1. Let p € N. Assume there exists pos-
itive constants €y and L+ > [— such that, for every € < € and every point q €
B(p,€0) N N, there holds

ju— diam(B(g.€) N N)PN < u(B(g.€) N N) < puy diam(B(g,€) N N)@N . (11)
Then, for every € < €y,
B N B N
m( (p;;) N) < 82¥(B(p. ) < m( (p:_) N)

Proof. Let | J; B(gi.ri) be a covering of B(p,€) N N with balls of radius smaller
than § < €¢. If § is small enough, every g; belongs to B(p, €g) N N and, using (11),
there holds

n(B(p.o)NN) <3 w(Bgi. ) NN) < py Y diam(B(gi. ri) N N)OV.

Hence, we have 83” (B(p.e€)) > “(B(ﬁ’e)nN).

For the other inequality, let 7 > 0,0 < § < €p and let | J; B(g;, ;) be a covering
of B(p,e) N N such thatg; € B(p.e) N N r; < §and ) ; u(B(gi.r;) N N) <
w(B(p,€)) + n. Such a covering exists due to the Vitali covering lemma. Using as
above (11), we obtain

u(B(p.e)NN)+n= > u(Bgi.ri) N N) = pu_y_ diam(B(gi.r;) N N)V.

1 1



Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds 211

We then have 83@’ (B(p,e)) < ’L(B(Z’E)HN) + “n_ . Letting 1 and § tend to 0, we
get the conclusion. O

Proof of Theorem 1. Fix ¢ € N. By point (ii) in Lemma 1 (T, N, Zz'\q |1,~) is a met-
ric tangent cone to (N, d | §) at ¢, whence, from the definition of Gromov—Hausdorff
convergence we get
. diam(N N B(g,€))
lim

e—>0 €

= diam 5 (TyN N By). (12)

By (6) in Lemma 1, for every g € N there holds
(N N B(q.€)) = €2V 49(T,N N By) + 0(2V). (13)

Since N is strongly equiregular, the limitsin (12) and (13) hold uniformly as g varies
inN.

Moreover, adapting the argument in [1, Sect. 4.1], we deduce that the map g —
A4(B4 N TyN) is continuous on N. As a consequence, for any n > 0 there exists
€1 > 0 such that for every g € B(p, €1) and every € < €; we have

w(N N B(q,¢€))

H== diam(V N B(q, €))2n

= M+
with N
_ Hq(TqgN N By)
Pt = =0
dlam;iq (TyN N By)en

Therefore, applying Lemma 2 and letting 7 tend to 0 we deduce (9).

To show (10), notice that the right-hand side of (9) is continuous and positive as a
function of ¢. Hence, for § Ig N _almost every ¢ € N there exists p > 0 small enough
such that

0 < 82N (N N B(p,p)) < oo. (14)

This is equivalent to (10). O

We end this section by stating a result which gives a weak equivalent of the func-
tion A4(Ty; N N §q) appearing in Theorem 1. This will be useful in the following to
determine whether the Hausdorff volume of a small ball is finite or not. This result
stems from the uniform Ball-Box Theorem, [10] and [11, Th. 4.7].

Proposition 1. Let M be orientable and w be a volume form on M. Let N be an
orientable submanifold of M of dimension b, and let w be a volume form on N, with
associated smooth volume ji. Assume N is strongly equiregular and set Q[ N] equal
to the constant value of Q(q), for ¢ € N. Then there exists a constant C > 0 such
that, for every g € N,

1 ~ ~
oV <pi(TyN N By) <Cvy (i.e. A9(TyN N By) < vq uniformly w.r.t. q),
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where vy = max{(w AdXg,, A A dXI,,)q (X1,(q), ..., X1,(q))}, the maxi-
mum being taken among all n-tuples (Xy,, ..., X1,) in argmax{w, (XI{ @,...,
Xpp @) | X 11| = O[N]}

In particular, if N is an open equiregular subset of M, i.e., b = n, and if | is
the smooth measure on M associated with w, we have

ﬁ,q(ﬁq) =< max{wy(Xy/,.... Xp) | Z |I/| = Q[M]}, uniformlyw.r.t.q € M.

This proposition, together with Theorem 1, allows to give an estimate of the Haus-
dorff volume of a subset of N.If S C N, then

1 1 1
[ du < JEON (S) SC/[ du. (15)
C' Js vq S Vg

where the constant C’ > 0 does not depend on S..

4 Hausdorff dimensions and volumes of analytic
sub-Riemannian manifolds

Let (M, D, g) be an analytic (C®) sub-Riemannian manifold. The set ¥ of singu-
lar points is an analytic subset of M which admits a locally finite stratification ¥ =
U; ~1 M; by analytic and equiregular submanifolds M; (see for instance [6]). Denot-
ing My = M \ X the set of regular points, we obtain a stratification M = Ul>0

of M by analytic and equiregular submanifolds. Note that M is an open and dense
subset of M, butit may be disconnected. As a consequence, the Hausdorff dimension
of M is

dimg (M) = m:l())( dimg (M;),
14

and the o-dimensional Hausdorff measure of a ball B(p, p), p € M and p > 0, is
HEB(p.p) = Y H*(B(p.p) O My).

i

4.1 Hausdorff dimension

The first problem is then to determine the Hausdorff dimension of an equiregular -
possibly not strongly equiregular - submanifold.

Lemma 3. Let N be an analytic and equiregular submanifold of M. Set Q 5 =
maxgeny On(q). Then

and Qn(q) = Q y on an open and dense subset of N.
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If moreover N is orientable, then for every smooth measure (L on N, § Ig N is
absolutely continuous with respect to i with Radon—Nikodym derivative

d82N (diam~ (T, N N By))2w
Nogp= Y N . forpaeqeN.  (16)
dp fqg(T;N N By)

Proof. Since N is analytic and equiregular, it admits a stratification N = |_J; N; by
strongly equiregular submanifolds N; of N. By Theorem 1, dimg (N;) = Oy, and
thus dimg (V) = max; Q ;. In particular, dimg (N) < maxgeny On(q).

Now, recall that Qn(q) = Y.~ i(nM () — nlY ,(q)), where ry := r(q) is
constant since N is equiregular, and nffv (¢) = dim N. This may be rewritten as

ry—1
On(q) = Y codim(D} N T,N), a7
i=0
where codim(DiI NT,;N) = nffv (q) — nlN(q) is the codimension of D; n1T,N
in Ty N. The submanifold N being equiregular, Q  (¢) is a lower semi-continuous
function on N with integer values. Hence Q n (g) takes its maximal value Q » on
the strata N; which are open in N, and smaller values on non open strata. Since
On;(g) = On(g) when N; is an open subset of N and Qy;(q) < On(g) when
N; is a non open subset of N, the first part of the lemma follows.

As for the second part, notice that every non open stratum N; is of p-measure
zero, since N; is a subset of N of positive codimension, and of & Ig N _measure zero,
since dimg (N;) = On; < O y. Afirst consequence is that N is strongly equiregu-
lar near p-a.e. point ¢. Therefore the measure [y on Ty N is defined ji-a.e. — and so
is the right-hand side of (16). Applying then Theorem 1 to every open stratum N;,

we get the conclusion. O
Corollary 1. dimg (M) = max{Qpm;(q) : i =0, g € Mi} =max{Qy, : 1>
0}.

4.2 Finiteness of the Hausdorff volume of balls

Let p € M and p > 0 (p is assumed to be arbitrarily small). The aim of this section
is to determine under which conditions the small ball B(p, p) has a finite Hausdorff
volume F4im# (B(2.2)) (B(p, p)). We make first two preliminary remarks:

* if p is a regular point, then there exists a neighbourhood of p in M which is
strongly equiregular, and Theorem 1 implies that F9m# (B(2-0)(B(p, p)) is fi-
nite. We then assume in the following that p is a singular point;

* the results of this section are local. Up to reducing to a neighbourhood of p, we
can assume that M is an oriented manifold with volume form w .

Recall that, by definition, the stratification M = Uizo M, is locally finite. That
is, there exists a finite set 4 of indices such that p € M; if and only if i € J, where
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M, denotes the closure of the stratum M;. Therefore, for p small enough, the ball
B(p, p) admits a finite stratification B(p, p) = U;eg(B(p,p) N M;). Applying
Corollary 1, the Hausdorff dimension D, of B(p, p) is

D, =max{Qpm;(q) : i €d, g € M;}.
Let ¢ C J be the subset of indices i such that dimg (M;) = D,. We have

HPr (B(p.p)) =Y HP7(B(p.p) N M).
iegd
Proposition 2. Let N be an analytic and equiregular submanifold of M,
dimg(N) = Quy. If p € N and if p > 0 is small enough, then the Hausdorff
volume 2N (B(p, p) N N) is finite.

Proof. Up toreplacing N with a small neighbourhood of p in N, we assume that N
is orientable. We then choose a smooth measure 1 on N and we have, for p small
enough, u(B(p, p) N N) < 4o00. From Lemma 3,

(diam (TyN 0 B,))2w

53BN = [ .

B(p.,p)NN ﬁq (TyN N §q)

The submanifold N is strongly equiregular near p-a.e. ¢ € N. We can then apply
Proposition 1 near pu-a.e. ¢ € N and we get

(diamg (T;N N B,))2w

s BN =C [ .
B(p,p)NN Vg

The function ¢ > v is positive and continuous on N, so the integrand function in
the previous formula is finite and continuous on N, and we have § ](\;N (B(p,p) N
N) < Cst u(B(p,p) N N) < +oo. Since H 2N is absolutely continuous with

respect to § Ig N the conclusion follows. |

As a consequence, the Hausdorff volume # 27 (B(p, p)) is finite if and only if
HPr(B(p, p) N M;) is finite for every stratum M; such that dimg (M;) = Dj and
p € dM;. To go further, we will assume that p is a rypical singular point, that is,
that p satisfies the following assumptions for p small enough:

(A1) p belongs to a strongly equiregular submanifold N of M, N C X, and
B(p,p))NE CN;

(A2) forevery g € N N B(p,p), there exists a family X;,,..., Xy, such that
> i llil = Oreg and ordgw (X7, ..., X1,) = 0, where Oy, is the constant
value of Q(g) forqg € M \ X, and

o=max{s e N : g € NN B(p,p)

and
> i = Queg imply ordyw (X1, ... X1,) = s}

12
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Let us recall the definition of ord, (see [3] for details). Given f € ek (M), we
say that f has non-holonomic order at p greater than or equal to s, and we write
ord, f > sifforevery j <s—1

Xiy ... Xi, )(p) =0 ¥ (ir.....i5) €{l,....m}/,

where X; f denotes the Lie derivative of f along X;. Equivalently, f(gq) =
O(d(p,q)*). If moreover we do not have ord, f > s + 1, then we say that f has
non-holonomic order at p equal to s, and we write ord, f = s.

Theorem 2. Assume p satisfies (Al) and (A2). Let Qn be the constant value of
OnN(q) forq € N, and ry be the maximal integer i such that n;(p) —n;—1(p) >
nlN(p) — niN_l(p). Then

Ho==(B(p.p)\T) <00 & 0=0(p)—0On—ry.
As a consequence,
* if Owg < ON, then Dp = Qn and HPr (B(p, p)) is finite;

* if Owg = ON, then Dy = Qy, and HPr(B(p, p)) is finite if and only if
0=0(p)—0On—ry.

The proof of this theorem is postponed to a forthcoming paper. It relies on the
use of Proposition 1.

Remark 3. Assumption (A2) is actually not necessary for the computations. If p sat-
isfies only (A1), we introduce two integers o— < o4:

or =min{s € N : Vg € NN B(p,p), 3X1,,..., X1, st. Z|I,-|
= Qg and ordgw (X, ..., Xp,) <5}, :
o_ = max{s € N : Janopen subset 2 of N N B(p, p) s.t. ¢ € Q2 and
Y i il = Qreg imply ordgw (X7, . ..., X1,) = s}.

Assumption (A2) is equivalent to o— = o4+ = 0. The generalization of the criterion
of Theorem 2 to the case where p satisfies only (A1) is then:

* ifoy < Q(p)— On —ry, then H2=(B(p, p) \ T) < oc;
« ifo_ > Q(p) — On — ry, then H2=(B(p,p) \ T) = oo.

Notice that the order o (and o_ if p does not satisfies (A2)) always satisfies o >
O(p) — Oreg- We thus obtain a simpler criterion for the non finiteness of the Haus-
dorff volume of a ball.

Corollary 2. Assume p satisfies (Al). If 0 < Qung — ONn < Ty, then
HPr (B(p. p)) = 0.
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4.3 Examples

Example 1 (the Martinet space). Consider the sub-Riemannian manifold given by
M =R3, D = span{X, X,},
¥2
X1=01, X2=02+ 2183,

and the metric dx12 + dx%. We choose w = dx; Adx, A dxz, thatis, the canonical
volume form on R3.

The growth vector is equal to (2,2, 3) on the plane N = {x; = 0}, and it is
(2, 3) elsewhere. As a consequence, N is the set of singular points. At a regular
point, Qs = 4. Every singular point p = (0, x2, x3) satisfies (A1) and we have
O(p) =5,0n =4,and ry = 1. Applying Corollaries 1 and 2, we obtain:

dimy (M) = 4,

and
H*(B(p, p)) < oo if pregular, H*(B(p.p)) = oo otherwise.

Thus small balls centered at singular points have infinite Hausdorff volume. This
result can also be obtained by a direct computation based on the uniform Ball-Box
Theorem, see [11].

Note that the only family (X7, , X7,. X1;) such that ), |I;| = Qpeg is (X1, X2,
[X1, X2]). The volume form of this family equals x; and it is of order 1 at every point
of N. Thus every singular point satisfies assumptions (Al) and (A2) with o = 1

(0 = Q(p) — Qreg here).

Example 2. Consider the sub-Riemannian manifold given by M = R* D =
span{ X1, X2, X3}, where

x? x2
X1 =01, X2=02+ 2134, X3 =03+ 2234,

and g = dx? + dx2 + dx2. We choose @ as the canonical volume form on R*.

At aregular point, Qe = 5. The set of singular pointsis N = {x; = x2 = 0}.
Every singular point satisfies (A1) and we have Q(p) = 6, Oy = 4,andry = 1.
Thus, by Corollary 1, dimg (M) = 5. However Corollary 2 does not allow to con-
clude on the finiteness of the Hausdorff volume.

The only families such that Zi [I;| = O are (X1, X2, X3, [X1, X3]) and
(X1, X2, X3,[X2, X3]). The volume form applied to these families is equal to x;
and x; respectively, and both of them are of order 1 at every point of N. Thus every
singular point satisfies assumptions (A1) and (A2) witho = 1 (0 = Q(p) — Oreg
here). Applying Theorem 2, we obtain:

dimg (M) =5, and H>(B(p,p)) <oo forany p e M.
Example 3. Let M = R>, D = span{ X1, X5, X3},
X1 =31, Xo=0r+x1935+x705, X3 =04+ x50s,

withk > 2, and g = dx} + dx3 + dx3. We choose w as the canonical volume
form on R>.
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The singular set is N = {x; = 0}. A simple computation shows that every sin-
gular point p satisfies (A1) and (A2),and Qi = 7, O(p) =8, 0N =T, 1y =1,
and 0 = k — 1. Thus in this example 0 > Q(p) — Qyeg. Now Corollaries 1 and 2
apply and we obtain

dimg (M) =7,

and
H7(B(p, p)) < oo if pregular, H’(B(p,p)) = oo otherwise.

Example 4. Let M = R>, D = span{ X1, X5, X3},
X1 =01, Xo=0r+x103+x705, X3=20s+ (X{( +x’2()85,

withk > 2, and g = dx] + dx3 + dx3. We choose w as the canonical volume
form on R>.

The singular set is N = {x; = x, = 0}. Every singular point p satisfies (A1)
and (A2) and we have Qr, =7, 0(0) =8, 0y = 6,7y = 1,ando = k — 1. By
Corollary 1 and Theorem 2, we obtain

dimg (M) =17,

and
H7(B(p, p)) < oo if pregular, H’(B(p,p)) = oo otherwise.

Note that in this case we do not have Q,es — O n < ry. This shows that the criterion
in Corollary 2 does not provide a necessary condition for the Hausdorff volume to
be infinite.

Acknowledgements This work was supported by the Europeanproject AdG ERC “GeMeThNES”,
grant agreement number 246923 (see also gemethnes. sns. it); by Digiteo grant Congeo; by
the ANR project GCM, program “Blanche”, project number NT09_504490;and by the Commission
of the European Communities under the 7th Framework Programme Marie Curie Initial Training
Network (FP7-PEOPLE-2010-ITN), project SADCO, contract number 264735.

References

1. Agrachev, A., Barilari, D., Boscain, U.: On the Hausdorff volume in sub-Riemannian geom-
etry. Calc. Var. Partial Differential Equations, 43, 355-388 (2012)

2. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces.
Set-Valued Anal. 10(2-3), 111-128 (2002) Calculus of variations, nonsmooth analysis and
related topics.

3. Bellaiche, A.: The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry.
Progr. Math. 144, 1-78. Birkhduser, Basel (1996)

4. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2
Carnot groups. J. Geom. Anal. 13(3), 421-466 (2003)

5. Ghezzi, R., Jean, F.: A new class of (#¢X, 1)-rectifiable subsets of metric spaces. Communi-
cations on Pure and Applied Analysis 12(2) 881-898 (2013)

6. Goresky, M., MacPherson, R.: Stratified Morse theory, Vol. 14 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag,
Berlin Heidelberg New York (1988)



218

12.
13.

R. Ghezzi and F. Jean

. Gromov, M.: Structures métriques pour les variétés riemanniennes, Vol. 1 of Textes Mathé-

matiques [Mathematical Texts]. CEDIC, Paris (1981) Edited by J. Lafontaine and P. Pansu.

. Gromov, M.: Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry.

Progr. Math. 144, 79-323. Birkhduser, Basel (1996)

. Hermes, H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev.

33(2),238-264 (1991)

. Jean, F.: Uniform estimation of sub-Riemannian balls. J. Dynam. Control Systems 7(4), 473—

500 (2001)

. Jean, F.: Control of Nonholonomic Systems and Sub-Riemannian Geometry. ArXiv e-prints,

1209.4387, Sept. 2012. Lectures given at the CIMPA School “Géométrie sous-riemannienne”,
Beirut, Lebanon.

Mitchell, J.: On Carnot-Carathéodory metrics. J. Differential Geom. 21(1), 35-45 (1985)
Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Math-
ematical Surveys and Monographs 91, American Mathematical Society, Providence, RI (2002)



The Delauney-Dubins Problem

Velimir Jurdjevic

Abstract The problem of Delauney, posed in the middle of the nineteenth century
asked for curves of shortest and longest length among all space curves with a given
constant curvature that connect two given tangential directions. About a hundred
years later, L. Dubins, apparently unaware of the former problem, asked for a curve
of minimal length that joins two fixed directions in the space of curves whose curva-
ture is less or equal than a given constant. Dubins showed that the minimizers exist
in the class of continuously differentiable curves having Lebesgue integrable second
derivative and he characterized optimal solutions in the plane as the concatenations
of circles of curvature £c and straight lines with at most two switchings from one
arc to another ( [7]). Remarkably, the key equation in the problem of Delauney, ob-
tained by Josepha Von Schwartz in mid 1930s also appears in the spacial version of
the problem of Dubins.

In this paper we will show that the n-dimensional problem of Dubins (called
Delauney-Dubins, for historical reasons) is essentially three dimensional on any
space form (simply connected space of constant curvature). We also show that the
extremal equations are completely integrable and consist of two kinds, switching
and non-switching.The non-switching extremals are expressed in terms of elliptic
functions obtained by solving the fundamental equation of Josepha Von Schwarz,
while the projections of the switching extremals are shown to be the concatenations
of arcs of circles (hyperbolas, in the hyperbolic case) and geodesics, exactly as in
the two dimensional Dubins’ problem ([16]).

1 Introduction

This work was originally motivated by the problem of Delauney, firstly because of
its relation to the problem of Dubins and secondly, because of certain ambiguities
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in its presentation in the classical literature. Delauney’s problem, dating back to the
middle of the nineteenth century, consists of determining the shortest and the longest
curves among all space curves with a given constant curvature which join two line
elements of the space ([4]). Dubins’ problem, posed about a hundred years later,
consists of determining the curves of shortest length which join two line elements
among all curves whose curvature is less or equal to a given constant ([7]). Rather
than following the chronological order, we will begin with the problem of Dubins.

In his remarkable paper of 1958 Dubins proved that minimizers exist in the class
of continuously differentiable functions having Lebesgue integrable second deriva-
tives and he characterized optimal solutions in the plane as the concatenations of
circles of curvature =1 and straight lines with at most two switchings from one arc
to another ([7]). Apart from proving the existence of optimizers, Dubins did not go
further into the the nature of optimal solutions in dimensions greater than two. It is
relevant to point out that, at the time of Dubins’ paper, the calculus of variations had
no adequate means to deal with variational problems with inequality constraints and
Dubins, unaware of control theory and its quest for the Maximum Principle, tackled
the problem directly with “bare hands”.

Much later, in his Ph.D thesis on three dimensional Dubins’ problem, F. Monroy-
Pérez showed that this problem was integrable, and he noticed that the key equation
for the problem fo Dubins bore a striking resemblance to the key equation for the
problem of Delauney ([17]), but did not go further into this phenomenon since his
methodology (optimal control on Lie groups) did not readily translate into the clas-
sical literature on the problem of Delauney ([4,5,21]). To make a segue to this liter-
ature, we will go back to Carathéodory’s treatise on the calculus of variations ([4]).

Carathéodory ends this book with the problem of Delauney in which he states
that the general solution to this problem was not fully known until Weierstrass, who
apparently was the first to successfully integrate the associated Euler equation. How-
ever, Caratéodory, himself, felt that the Hamiltonian approach was more insightful
and he proposed a solution based on Hamiltonian methods. Ultimately, he claimed
that the associated Hamiltonian equations are integrable by quadratures in terms of
elliptic functions obtained by solving the key equation of the form

u? = A2[(w—u?)u —1)% —k?, (1)

where w and k are constants, and A = £1 depending on the sign of u.

However, Carathéodory’s key equation is different from the one obtained earlier
by Josepha Von Schwarz in 1934 (21]), and to make the matter even more confusing,
Carathéodory does not comment on this discrepancy, even though Schwarz’s work
is cited in his bibliography (Ref 157). Schwarz’s treatment of Delauney’s problem,
more detailed and more extensive, provides a solution by quadratures based on the
equation
du

2
ds) — (4 = o) (k2 — ) — I, @)

(u Mo)z(



The Delauney-Dubins Problem 221

with ;1o = —1 for the minimum length and po = 1 for the maximum length and /¢
a constant.

Much later, P. Griffiths using completely different methods based on Cartan’s
exterior calculus ([9]) obtained the Euler equation for the problem of Delauney in

the form 5 R
d*A ¢
+(r-Lt—-1)=0, 3
ds? ( A3 ) )
where ¢ is a constant. This equation can be written in integrated form
dr\? c?
A+ D=2 =, 4
(ds) TAT e @

by multiplying (3) by 2% and then integrating the resulting equation ( there is an
unfortunate misprint in Eq. (11.b.33) on page 156 of (([9]) that obscures easy com-
parisons with other sources). Equations (2) and (4) are of the same form as can be
easily verified under the identification A = u — po. Oddly enough, Griffiths, like
Carathéodory, does not comment on the discrepancy between his equation and that
obtained by Carathéodory, even though he quotes Carathéodory for the statement of
Delauney’s problem.

It is partly for these reasons, but mostly for their own intrinsic interest, that I
wanted to take up these problems in more detail. Rather than treating these problems
on principal bundles and Lie groups, as I have done in my previous publications, I
will take a more direct approach and consider them as variational problems on the
tangent bundle of the underlying manifold, analogous to the problems of mechanics.

The problem of Delauney can be rephrased as the problem of finding the mini-
mum (maximum ) length of an interval [0, 7] on which there exists a curve f () in
R? that satisfies the boundary conditions f(0) = xo, f'(0) = yo and f(T) =
x1, f(T) = y; and is a subject to to the constraints that || /'(z)|| = 1 and
[| /" @)|| = ¢ on [0, T] where ¢ is a constant. A curve f(¢) parametrized by arc
length on an interval [0, 7], has length 7" on that interval, and its geodesic curvature
isequal to || f”(¢)]]. In analogy with linear time optimal control theory, the problem
of Delauney can be formulated on the cylinder M = {(x,y) € R3xR3 : ||y|| = 1}
as a time optimal problem of transferring an initial state (x¢, yo) to a terminal state
(x1, y1) in minimal time along a trajectory of the control system

W=y D w0, el =

dr 7 d
where the control u(¢) is further constrained by u(¢) - y(t) = 0.

This formulation makes it transparent that the problem of Delauney is not well
posed, a fact that was not noticed before, because the sphere {u : ||u|| = ¢} is not
convex. For instance, points which are tangential to the same straight line can not be
be connected to each other in a minimum time by a trajectory of the above system.
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The reason is simple and rests on the following asymptotic formula:

t t t ! t !

lim gznVl og2nV2 og2nV1 og2nV2...og2nV1 oanV2 = et(V1+V2)

n—o00 = _ -
2n

where V; and V5 are vector fields and where {¢"" : ¢ € R} and {¢'"2 : t € R}
are their one-parameter groups of diffeomorphisms. In particular, if V; and V5, are
vector fields whose integral curves have curvature equal to £c then V; + V5 is a
vector field whose integral curves have zero curvature, hence, its integral curves are
straight lines. So points on straight lines are the limits of the concatenations of arcs
with curvature £c. The optimal time is reached only along the geodesic.

So it is natural to enlarge the set of controls to the convex closure {u € R” :
[lul| < c}. As is well known, the reachable sets by the controls in a set U and
the reachable sets by the controls in the convex hull of U have the same topolog-
ical closure. The above shows that the problem of Dubins can be regarded as the
convexified n-dimensional Delauney problem. For this reason, and also because of
the overlaps between these two problems, we will rename Dubins’ problem as the
Delauney-Dubins problem which we will treat as the time optimal control problem
on the submanifold N = {(x,y) € R” x R” : ||y|| = 1} defined by the control
system

dx  dy
dr ~ 7V ar
where the controls conform to an additional constraint Uy = u -y = 0.

Apart from the constraint Uy = 0, which normally does not appear in the lit-
erature on control theory, the above problem, at least in appearance, resembles a
linear-time optimal problem, and as such, it naturally draws attention to the corre-
sponding linear-quadratic problem. This “linear-quadratic problem” , known as the
Euler-Griffiths problem ([12]), or the elastic ptoblem, is defined as the problem of
minimizing the integral ; fOT [lu()||? dt over the solutions of

=u(), u@l <c. (5)

dx

_ dy _ NN
5 =Y g =0, Ui=u@)-y@) =0, (6)

that connect the given end-points in M in T units of time.

We will consider both of these problems side by side, and for the sake of com-
pleteness, we will also include their non-Euclidean versions on the sphere S” =
{x € R"! : ||x||*> = 1} and the hyperboloid H" = {x € R"*! : x2 | =
1+ Z:?:l xiz, Xn+1 > 0}. Both cases can be handled simultaneously in terms of the
parameter ¢ = %1 and the quadratic form

n
(v-w)e = Zviwi + €Vpp W, v € RMTL e R

i=1

It follows that ||x||? = € = (x-x), coincides with S” when € = 1 and the hyper-
boloidx2, | = 1+ Y77 x? when e = —1. We will let S denote the unit sphere S”
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for € = 1 and the one-sheeted hyperboloid H” = {x € R**! : Y7 x? —x7, | =
—1, X441 > 0} when € = —1. Then the unit tangent bundle N¢ of S? is given by

Ne = {(x,) € R" T x R"™ o [|x]|2 = €, xn41 > 0,][¥|[2 =1, (x - y)e = O}

If u(¢) denote the covariant derivative of fl’t‘ associated with any curve x(¢) on

S” such that IIZ,”; [le = 1, then ||u(2)||> = «2(t), where k(¢) denotes the geodesic

curvature of x (¢), and th) = u(t) — €x(t). Therefore,

W =0, 2 = w0 ex0). U = () x(@)e = 0, Us = @lt) y(O)e = 0

(N
is the corresponding control system. The elastic problem is defined by the energy
; fOT [lu(2)||? dt and the Delauney-Dubins problem by the bound ||u(?)||e < c.

There is a version of the Maximum Principle, called the Hybrid Maximum Princi-
ple, that leads to the correct Hamiltonians for the above problems. We will be able to
write the appropriate Hamiltonian equations in terms of the canonical coordinates of
the ambient space and express their integrability properties in terms of the relevant
symmetries of the system. This “down to earth” approach bridges the gap between
the results obtained by Carathéodory and von Schwarz mentioned earlier and the
contemporary publications on these topics ([3,9, 13, 15,17]).

As expected, the extremal equations for Delauney-Dubins problem may be of two
kinds: switching and non-switching. We will show that the non-switching extremals
are solvable in terms of elliptic functions and we will also show that the projections
of the switching extremals are the concatenations of arcs of circles (hyperbolas, in the
hyperbolic case) and geodesics, excactly as in the two dimensional Dubins’ problem

([16D.

2 The Hybrid Maximum Principle and the Extremal curves

The preceding problems are a prototype of the following situation:
a. a control system
dz
g = FE@O.u@), u@) el (®)

on a manifold M with U a subset of R” possibly equal to it;

b. a submanifold N of M such that its cotangent bundle is embedded in the cotan-
gent bundle of M and is given by G = G2 = ...Gypu—k) = 0 for some
functionally independent functions G1, ... G2(z—k) on T*M;

c¢. additional constraints Uy, ..., U;, with each U; a smooth functions on M x U,
such that the restriction of (8) to N with controls u(¢) in U and subject to
Ui(z,u) = --- = U;(z,u) = Oresults in a control system on N

dz _F _ 9
d = (z(2), u(1)); )
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d. an optimal problem of minimizing a cost functional fOT f(z(t),u(t)) dt over the
trajectories of system (9) in N that satisfy the given boundary conditions z (0) =
zo and z(T') = z;. The time interval [0, T'] could be either fixed or variable.

Rather than choosing a system of coordinates for N and proceeding indepen-
dently of the ambient space, we will find it more convenient to work in the con-
strained ambient space. Then the task of finding a Hamiltonian on the cotangent
bundle of the ambient space whose restriction to the cotangent bundle of the sub-
manifold coincides with the Hamiltonian for the above optimal problem requires
modifications in the use of the Maximum Principle because of the state dependent
constraints Uy, ..., U;.

The version of the Maximum Principle that is applicable to this situation will be
referred to as the Hybrid Maximum Principle. Its main features are sketched below.

Control system (8) together with the cost f lifts to the cost-extended Hamiltoni-
ans hy, , on T*M of the form

hu(§) = —pf (z,u) + §(F(z,u) + MG1(§) + -+ + Aok G2(u—k) (§), (10)

& e T)M, where p = 0,1, and Ay, ..., Ay(u—k) so chosen that for any u € U,
{huu, Giy = 0,i = 1,...,2(n — k) . It follows that the integral curves of fzu,u
which originate in 7* N, and conform to the constraints imposed by Uy, ..., Uj, re-
main there for all ¢. For that reason, the above Hamiltonian is called the Hamiltonian
lift of (9).

An integral curve £(¢) of fzu(t), . that originates on T*N at ¢ = 0 is called an
extremal curve if it satisfies the maximality condition

M), 1 (€ (1) = hy 1 (1)) (11
onGy =-++ = Gyu—k) = Oforall v € U subject to the constraints
Ur(w(§(1),v) =--- = Up(w(§()),v) = 0.

Extremal curves which are integral curves of fzu,u with £ = 0 and satisfy the
non-degeneracy condition £ (¢) # 0 are called abnormal. Extremal curves which are
integral curves of fzu,u with u = 1 are called normal. With this terminology at our
disposal we are now ready to state the Hybrid Maximum Principle.

The Hybrid Maximum Principle. Every optimal trajectory (z(¢), u(¢)) in N is the
projection of an extremal curve & (¢).

Because of the space limitations, we will not go into a more detailed discussion of
this principle ( it will be presented elsewhere). Instead, we will apply it to the opti-
mal problems defined earlier. As an intermediate step, however, let us first illustrate
its effectiveness for the geodesic problem on the spaces of constant curvature.
Example 1 (The geodesic problem on S, ¢ = £1). The cotangent bundle of the
sphere S” can be identified with its tangent bundle {(x, p) : G1(x, p) = ||x||2—€ =
0, Ga(x, p) = (x - p)e = 0} via the quadratic form (, )¢ of the ambient space
R"*T1 x R"*1. The geodesic problem on S” can then be phrased as the time op-
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timal problem of connecting a given pair of points on S? in the shortest time via
the trajectories of ¥ = u(r), subject tou € U = {u € R™' : |julle = 1}
and Uy (x,u) = (x - u)e = 0. Since Riemannian problems do not admit abnormal
extremals, the Hamiltonian lift is given by

hy = =14 (p-u)e + 11G1 + A2G».

An easy calculation yields {G1, G2} = 2[|x||2, {(p - u)e, G2} = —(u - p)e and
{(p-u)e, Gy} = =2(x - u).. Therefore,

1

Al =—
2||x|12

W-ple, A2= (U - X)e.

1
[1x]12
The maximality condition implies that the extremal control must be of the form u =
IIIflle . The corresponding Hamiltonianis givenby H = —1+||p|le+A1G1+12G>.
It follows that

dx O0H p dp  O0H

dit ~ op  |lplle di  dx

are the Hamiltonian equations on 7* N.. The extremals to our time optimal problem
reside on H = 0 which implies that ||p||e = 1 along the extremals. Therefore,
geodesic curves are the solutions of

= —2X1x = €||p||ex.

d?x
= €x,
dr?
which recovers the well known facts that the geodesics are arcs of the great circles
for e = 1 and arcs of the great hyperbolas for e = —1.

3 The Euclidean case

In the Euclidean case, M = R”xR” is the ambient space, N = {(x,y) : ||y||> = 1}
and fl’t‘ =y, i,}t’ = Z?Zl uje; = u is the control system subject to the constraint
Uy = y-u =0.Then T*N is identified with the tangent bundle of N as the set of
all points (x, y, p.q) € R" x R” x R" x R” subjectto G; = ||y||> =1 = 0 and
Gr,=y-q=0.

As in the case of linear control theory, where the time optimal problem is more
challenging than the linear-quadratic problem, so here too, the Delauney-Dubins
problem is more challenging than the Euler-Griffiths problem. For that reason we
will begin with the easier problem first.

3.1 Extremals for the Euler-Griffiths problem

The Hamiltonian lift is given by

1
huy = —M2||M||2 +p-y+q-u+riGi+21,G,, p=0,1. (12)
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Then, {hy,, G1} = 0 and {hy ., G2} = 0if and only if
{8u. G2} + A1{G2,G1} =0, {gu,G1} + A2{G1, G2} =0,

where g, = —;L;||u||2 + p-y + q-u.ltfollows that {Gy, G2} = 2, {h,,G1} =
—2u - y,and {gy,G2} = p-y —u - q. Hence,

1
A==, (p-y-u-q).ly=-"2u-y.

Suppose now that (x(¢), y(¢), p(t), q(t)) is an extremal curve generated by a control
u(t). Then u(¢) maximizes hy,, in (12) subject to Uy (y, v) = 0. According to the
Lagrange multiplier rule we can find the maximum by introducing a multiplier Ao
and then considering the maximum of /1, ,, + Ao(v - ¥).

In the case u = 0, the maximality condition yields ¢(¢) + Aoy(t) = 0. Then
q@) - y() + dol|y(®)||*> = 0 implies that Ay = 0, since y(¢) - g(t) = 0. Thus,
q(t) = 0. But then,

dq ohy dp ohy
0= 4 =79 =Pty and ==y =0
It follows that p is constant, and hence, (p - y)y is also constant. The latter is not
equal to zero since then p = 0 violates the non-degeneracy condition. Therefore,
y(t) must be constant, which implies that () = 0. The preceding argument shows
that the abnormal extremals project onto the straight lines in V.
Let us now investigate the normal case (i = 1). In this case (11) yields

—u(t) +q@) + Aoy(r) =0, (13)

But then —u(t) - y(t) + q(t) - y(t) + Ao||y(®)||> = 0 implies that Ay = 0 and
u(t) = q(t). It follows that the normal extremal curves are the solutions of the
restricted Hamiltonian system associated to

1 1 1
H= 2||q||2+p-y+/11G1+/\sz, A= z(p-y—llqllz), A2 =, (q-y) =0.

(14)
It follows that
dx dy dp dq 2
a=r o=t =%y, p+-y—Ilqlly (15)

The projections x () of normal extremal curves are called elastic ([12]).

It turns out that solutions of (15) share many features with the analogous system
associated with the Delauney-Dubins problem and for that reason we will defer our
discussion of solutions until we have both sets of equations at our disposal.
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3.2 Extremals for the Delauney-Dubins problem

For this problem, the Hamiltonian lift is given by
hup =—pm+p-y+q-u+riGr+i:Ga, |[ul| <c.
Letgy =—pu+ p-y+u-q. Then {hy ,, Gi1} = {hyu, G2} = 0 implies that

{gu. G2} {gu.G1} _ 1

M =06, Gy T T(Gy Gy~ 2D

1
—ypy-ug). A=

Suppose now that x (), y(¢), p(¢), ¢(¢) is an extremal curve. Then u(¢) - y(¢) =
0 and

—u+p@)-y@)+q@u@) = —p+p@)-y@)+v-q@)

for all v € R” such that ||v|| < cand v - y(z) = 0.
On any open interval where ¢(¢) is not equal to zero, u(t) = ¢ IIZE;;II and the

extremal curve is an integral curve of h |G,=G,=0 associated withh = —pu+p-y +
c|lg(®)|| + A1 G1 + A2G,. These extremal curves are the solutions of

d d d
v q@) p -0, 4 _ —p+(p-y@)—cllg®)|y@).

dx 0 .
¢ Y T g dr dt
(16)

d
Our next proposition deals with the case that ¢(#) = on an interval.
Proposition 1. If (x(¢), y(¢), p(t),q(t)) is an extremal curve generated by a con-

trol u(t) such that q(t) = 0 on an interval (to, t1) then u(t) = 0on (tg, t1) and x(t)
is a straight line on this interval.

Proof. The extremal (x(¢), y(¢), p(t), q(¢)) satisfies

dp . dq _ . _ )
It =0, P p+(p-y@) —u()- -q@)y@).

dy

dx
; = y(1), Jr =u(r),

d
On an open interval where ¢(t) = 0, p = (p - y(¢))y(¢). Since the Hamiltonian is
equal to zero along an extremal curve, p-y(t) = w. Thenu =1(u=0,p=¢q =0
violates the non-degeneracy condition). Therefore, p = y and hence, th’ =u(t) =
0. |

3.3 Integrals of motion and integrability

Both the Euler-Griffiths and the Delauney-Dubins problem are invariant under the
group of motions of R” and that fact accouns for their integrability. To be more ex-
plicit, let G denote the semi-direct product R” x SO, (R). Systems (6) and (7) and the
appropriate cost functionals are invariant under the diagonal action (v, R)(x, y) —
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(v + Rx, Ry) of G. That means that each infinitesimal generator
d A€ Ae n
V(x,y) = (Ax +a, Ay) = Je (e”x +€a,e®y)e=o, A€ son(R), acR

is a symmetry for the elastic problem. Then according to Noether’s theorem, the
Hamiltonian 2 = p - (Ax 4+ a) + y - Ay is constant along the extremal curves. The
above implies that p is constant (which we already knew) and that p - Ax + g - Ay
is constant for each skew-symmetric matrix A. It follows from ([12], pp. 43) that
p-Ax+q-Ay = (A, pAx+qAy), where (, ) is the scalar product on the space
of skew-symmetric matrices given by (A4, B) = —;Trace(A B) and where a A b
is the skew-symmetric matrix defined by (¢ A b)x = (b - x)a — (a - x)b for each
x € R”. Therefore,

A=pAx+qgny 7

is constant for each system (15) and (16).

It follows that the spectral invariants of A are constants of motion for any Hamil-
tonian system whose projection is invariant under G. Since A is skew-symmetric
with a four dimensional range, its non-zero spectrum is given by a polynomial of
degree 4 of the form

A +ar*+b=0.

It turns out (after a somewhat lengthy calculation) that a and b are functionally de-
pendent on two much simpler integrals

I =|lpll and L =|lplPllgl> — (- p)*>— (- p)>llgll>.  (18)

The second integral is the square of the volume spanned by y, p, ¢. In fact,
q
L=|p—(p-y)y—(p -q)||q2||2||2||61||2

so it can be written as I, = h2. With these integrals at our disposal we can easily
recover the essential properties of the elastic curves reported in ([9, 13, 15]).

Proposition 2. Let k(t) and ©(t) denote the curvature and the torsion of an elastic
curve. Then:

9L E AHER — 412 — HY)E + 41, = 0, where k2(1) = £(1);

2) (1) =1, =h?%
3) ifT(t), N(t), B(t) denote the Serret-Frenet triad defined by

dT dN
= kN, = —«T + B,

dx
=T(@),
@) dt dt

dt

then ”éllf (t) is contained in the linear span of T (t), N(t), B(t). Hence, the Serret-
Frenet frame generated by an elastic curve is at most three dimensional.
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di?

Proof. Since k* = ||q||?, % = 2(?1? -q) = —2p - q. Therefore,

1(dE\? B
4(dt) =(p-9)* = llalPllpll? = (- p)llgl* = I

2

1 2 1
= plP = (# = JlalP) ol =12 = 12 = (1 = 3¢ ) £ 1
1
== EHHE + (7 - HDE— b,

Therefore (1) holds.
Since ”[Il’t‘ = yand ||y|| = 1, T(t) = y(¢). Hence, ”Z = i,}t’ = ¢(¢) and

_ 1
N = ||qu.Then,

dN dg\ 1 1
= —(q- q) a4 T gy PPy - llg11®))

dt di gl
pP-q 1
= ad+ @y =l4l)y)
lqll lqll
. 1
=-r qu+ (—p+(p-y)T)—«T = —«T + tB.
lqll lqll
The above yields

P-4
llqll

This implies that “;f is contained in the linear span of 7, N, B and moreover, it
implies that

ktB=—-p+(p-»T + N.

w2 =ll—p+@-yy— L 9q2
llq]1?

o
llq|I?

The proof is now complete. O

I
(lpIPllgl? = (- @)* = (p - »)*Mlql?) = Ki.

Let us now return to the extremal equations for the Delauney-Dubins problem.

Proposition 3. Let «(t) and t(t) denote the curvature and the torsion associated
with an extremal curve (x(t), y(t), p(t),q(t)). On any interval (to,t1) such that
q(t) # 0, k(t) = ¢ and ||q|| is a solution of

d 2
(el g ) = =<2Mhal+ 201l + 02 = gl = 2. 19
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Moreover, (||q||?1)? = I, = h? and “;,13 (t) in the Serret-Frenet triad defined by

dT dN
= kN, = —«T + 1B,

dx
=T(@),
@) dt dt

dt

is contained in the linear span of T (t), N(t), B(t). Hence, the Serret-Frenet frame
generated by an extremal curve is at most three dimensional.

Proof. We have already remarked that I; = ||p|| and I, = ||p|?llq||*> = (p -

9)?> — (p - ¥)?||q]|? are constants of motion for (19). Then jt llg]l = ||;H(q- fl?) =
— II;II (p - q) and therefore,
d 2
(el g lall) = - ? = 1pIPllall = - Plhal = 12

= I71lgI” = (e = cllglD?llg]* = I

= —?|lg|* + 2ucllgll® + UT = p)lg|* - L.
Now ”g = ?t’ =c H%%H and so N(t) = i,‘f.The rest of the proof is the same as in
the proof of Proposition 2. O

In the case I, = 0, Eq. (19) reduces to

dllq||?
g = —Cllall® +2ucllgll + 17 = w?. (20)
Recall that I, = 0 whenever p, g(¢), y(¢) are linearly dependent for some time ¢.
Apart from the stationary solutions c||¢|| = u = || p||, the solutions of (20) are of
the form
cllgOll = —llpllsine((t —t0)). llg@®)|l # 0 20

The stationary solutions result in helices since both the curvature and the torsion are
constant (the case 4 = 0, p = 0 is ruled out by the Maximum Principle). Other
cases are classified according to the size of || p||. For || p|| > 1 there are instances
such that ||¢|| = 0. This phenomenon leads to

Definition 1. The hypersurface S = {(x, y, p,q) : ¢ = 0} is called the switching
surface.

All extremal curves which cross the switching surface are confined to I, = 0.
An extremal curve that does not originate on S may cross S either rangentially
or transversally. If T is the time of crossing then the crossing is tangential if
—lg(D)|1* + 2ullg(T)|| + ||p||*> = u? = 0, otherwise it is transversal. That is,
the crossing depends on whether lim;_,1 dllzgt)ll is zero or not. The critical case
[|p|l = 1 isthe only case in which the crossing is tangential. All other crossings are
transversal and reside on || p|| > 1.
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In the normal and non-geodesic case the time interval between two consecutive
crossings is larger than 7 while in the abnormal case this time interval is equal to 7.
Both of these observations follow from (21).

Proposition 4. Let (x(t), y(t), p, q(t)) be an extremal curve that crosses the switch-
ing surface transversally, i.e., ||p|| > 1. Then x(t) consists of concatenations of
arcs of circles of radius JC all contained in the plane defined by x(0), y(0) and p.
Proof. Let k and t be the curvature and torsion of x(¢). Then () = cand t = 0
on every interval on which ||¢|| > 0. On these intervals x (#) moves along an arc of a
circle of radius JC centered at some point a, and therefore, x (¢) can be represented
as

1

x(t)—a= Y (Acos /ct + Bsiny/ct), ||A|l>=||B|*=1, (A-B)=0.
c

Then, ”[Il’t‘ = y(1) andift' = —/c(x(t) —a) = kNIt follows that the normal vector

N(t) is equal to JC (a — x)).
Suppose now that 7' denotes the time when two adjacent circles meet, that
is, suppose that g(7') = 0. Let N_(T) = limj<7s—7 N() and No(T) =

lim;>7,—7 N(¢). On any open interval / such that ¢(¢) # 0, N(t) = H%%H and

P = ey Cr ey A0 NI ey,
Therefore,

o+ -y = N 14O
It follows from Proposition 2 that lim;—, 7 d”‘égt)” = :I:\/||p||2 — 1 depending

whether this limit is from the right or from the left. Since the Hamiltonian is equal
to zero along the extremal curves, p - y(T) = u Hence,

__—p+uy(T) N = P 1y (T)
VIlpI2 -1 VIlpl2 =1

Since these normals are colinear, the concatenated arcs of the circles are in the same
plane. O

Proposition 5. Suppose now that an extremal curve (x(t), y(t), p,q(t)) crosses the
switching surface tangentially (||p|| = 1). Then either there is no switching at the
time of the crossing and x (t) is a circle of radius JC, or x(t) is the concatenation

of an arc of a circle of radius JC with a straight line, possibly followed by another
arc of a circle of radius JC.

The proof is simple and will be omitted.
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Let us now consider the extremals that reside on 7, # 0. It will be convenient to
rescale the time variable by s = ct. The rescaled variable ||¢(s)|| in Eq. (19) then
satisfies

2 2 2
2 (If—pn) I
(et g i) ==ttt + 2% g + U 2 g - .
The preceding equation can be written in von Schwarz’s form as
du?
(= po' " = (=) (6 =)~ hj
withu = |[lg|| = %, o = =4, k = ICI, ho = */CIZ. The latter equation can be
further rescaled to
2 (ALY 201 _ 2y 2
C=12(%) =@=02a=)—h 22)
with the rescaled variables
u w o,  hi
= s l = , ]’l = .
¢ k k k4

Then ¢; and &5, the roots of the equation (¢ — 1)?(1 — ¢£2) — h? = 0, are the sta-
tionary solutions of (27). Along them ||¢(¢)|| is constant and hence the torsion of the
corresponding extremal curve x (¢) is constant. Therefore, x(¢) is a helix.

Any other solution ¢ (¢) satisfies

1 <¢() <&

and can be expressed in terms of the elliptic functions by integrating

[J@—Wa—&rwzgzﬂ' @y

Then (||¢||?>7)? = I, gives 7(t) in terms of ¢(¢) and the solutions are reduced to
solving the Serret-Frenet system

dT

N dB
Jr =—cT(t)+t()B{), g —1(t)N(1).

d
=cN(1), dt

To relate to Dubins’ remarkable paper of 1958, consider the two dimensional
case. Then p, g and y must be linearly dependent, since they lie in the same plane,
hence I, = 0. Therefore, every solution is either an arc of a circle or a line segment,
or a concatenation of arcs of circles and line segments.

An optimal solution that involves a line segment cannot have two consecutive
circle switchings since such extremals reside on || p|| = 1 and the switching inter-
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val is 2. Therefore, optimal solutions that involve a line segment must of the form
CLC or any sub-path of these.

In the remaining case, optimal solutions are the concatenations of circles. We
showed that such solutions reside on || p|| > 1 and the time interval between any
two consecutive switchings are all equal and are greater than &. But then any path
C:CyCy witht > 0 and @ > 7 cannot be optimal (Monroy’s Lemma, [16], pp. 141).
Hence, optimal paths along arcs of circles must be of the form C, CgC), with 8 > 7
or any sub-path of these arcs.

So, apart from the Four Circle Lemma of Monroy, the main contents of Dubins’
paper can be read directly from our Hamiltonian setup. It would be of interest to
investigate which of these optimal planar solutions remain optimal in higher dimen-
sional spaces.

4 Non-Euclidean cases

We will continue with the notations introduced earlier, with M, equal to R"*1 x
R™*! together with the inner product (v, w)e = D j,; Viw; + €Vowg and the in-
duced “norm” [[v||> = (v - v).. This quadratic form identifies 7* M, with TM, via
the formula /((X, y)) = (p - X)e + €(q - y)e. Hence, (x,y,x,y) € TM, corre-
spondsto (x, y, p,€q) € T*M,. In these notations (x, y, p, ¢) denote the canonical
coordinates of a point in 7* M, with the Poisson bracket given by

af oh af oh af odh af odh
= (L) (00 () + (),
dx dp /. dy g/ dp ox /. dg 0y /.
Then the cotangent bundle T* N, is defined by the six constraints G; = ||x||e—€ =

0.Ga=|lyllf=1=0,G3=(xy)e =0, Ga=(x-p)e =0. G5 = (y - q)e =
0, Go = (y-p)e+€(x-q)e = 0which conform to the following Poisson bracket table

{.} G, G, G3

G 0 0 0

G- 0 0 0

G 0 0 0

Ga —2||x]|2 0 —(x-y)e

Gs 0 —2||y]I2 —(x-y)e

Ge —2(x-y)e —2€(x - y)e —ellx|12— 112
{.} Gy Gs Ge

G 2[|x||2 0 2(x-¥)e

G 0 2[|yl12 2e(x - y)e

G3 (x-¥)e (x-¥)e ellx]1Z2 + [1yl12
Gy 0 0 (V-pe—(x-q)e
Gs 0 0 e(x-q)e—€(y-p)e
Gs (¥ ple+(x-q)e e(y-ple—e(x-q)e 0
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For the Euler-Griffiths problem the cost-extended Hamiltonian is given by

6
1
I = = 2 + (- Pe + (g - (u = €x)e + YA Gi. (24)
i=1
We leave it to the reader to show that the multipliers A; are given by

1 1
Ar=0, A= 2(61 ‘U)e, A3 = 2((y Qe + (x-pe + (p-ue),
da=As =g = 0.

The extremal controls maximize the restriction of A, ,, to T*N subject to the addi-
tional constraints Uy = (x -u)e = 0, Uy = (y-u)e = 0. According to the Lagrange
multiplierrule, the maximum must be a critical pointof F' = hy, +A_1 Ui +A_»U>.
An easy calculation shows that A_; = €(q - xX)¢, A—2 = (¢ - y)e. This implies that
the extremal control, in the normal case, is of the form

Uu=q—€(q-x)ex—1(q-yey. (25)

The abnormal extremals will be ignored since they project onto the geodesics and
the geodesics are also the projections of normal extremals.
The substitution of u in (25) into the Hamiltonian lift (24) gives

1
h= (g1 =@ 0Z = (g0 + (7 Ple = €(q - N)e + A2Ga + 3G (26)

The Hamiltonian equations of I restricted to T*N yield the Hamiltonian system for
the Euler-Griffiths problem. They are as follows:

d d
=y =dq—e@nex—ex, (27a)
d

U —cqgreq-0eqg—ray. 1 =—p—22y—hax, (27b)

dt dt
On T*N, h reduces to

1 2 2 LS

H = (gl = (x-q)) +2(y - ple = (k7 +2(y - Ple. (28)

where k = ||u|| denotes the geodesic curvature of x(¢).

The Hamiltonian for the Delauney-Dubins problem is obtained in a similar man-
ner. The reader may readily verify that in the case that ¢(¢) is neither equal to zero
nor colinear with x(#) on an open interval /, the extremal control must be of the

form (1) — (g - X)ex (1)
_ q —€lg - X)eX 29
O =00 = elq - Dex @) @9
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and
dx _ dy _  q(t)—€(g-x)ex(t)
at =Y dr = g0 - eq - Dexl] (300
dp €(q-x)eq dq

— A3y, =—p—21y—2Aszx  (30b)

dr ~ “lgt) — e(q - x)ex (®)]] dt

are the extremal equations for Dubins-Delauney problem corresponding to the
Hamiltonian
H=—p+2(y-ple+cllg —elqg-x)ex||. @31

The reader may also verify that an extremal curve with ¢(¢) colinear with x(¢)
projects onto a geodesic in the base space S”.

4.1 Integrability

We will use v ®¢ w to denote the matrix such that (v ® w)x = (w - x)cv for all
x € R and use v A we to denote the matrix v Ac w = v @ we — w @ ve. Then
SO, will denote the connected group that leaves the quadratic form (, ) invariant.
This group is equal to SO, when € = 1 and SO(1,n) whene = —1.

Both the elastic and the Delauney-Dubins problems are invariant under the di-
agonal action of SO, and hence, the Hamiltonians generated by the infinitesimal
generators are the symmetries for their Hamiltonian systems. The reader may read-
ily verify that this means that the matrix

S=XAep+yAeq

is constant along the solutions of either Hamiltonian system (27) or (30).

We will now show that the spectral invariants of M provide the appropriate in-
tegrals of motion in terms of which the extremal equations can be integrated. The
vector space spanned by x, y, p, ¢ is invariant under M. Then the restriction of M
to this vector space is given by the matrix

0 (-pe P2 (-9
v |@xe 0 (o lallZ
—€ 0 0 —(q - X)e

0 -1 =(-pe 0
The characteristic polynomial of this matrix is of the form —A* +aA? + b = 0 with
a=lqllZ =2(y - ple(x - @)e +ellplIZ,
b =e(llpliZllgl — @ - p)Z = 1lallZ - P)) + (v - p)Za - %) = lIplIZ(g - x)Z.

But (y - p)e = —€(q - x)c on T* N, and so

a=e(lpllZ+2(y-p)2+ellgll?).
b=e(llpll? = (- p)?) (lgl2 —ex-9)2) — (p-9)?).
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It follows that

I = (IpllZ +2(y - p) + €llql?).
L=(lpllZ=0-p2lqllZ —e(x-9)2) — (p - q)?

are integrals of motion for each Hamiltonian system (27) and (30).
Our next propositions explain the relevance of these integrals of motion.

Proposition 6. Let (x(¢), y(t), p(t),q(t)) denote any solution of the Hamiltonian
system associated with the Euer-Griffiths problem (Egs. (27)). Let x(t) and t(t) de-
note the curvature and the torsion of the projected curve x(t) and let £(t) = «2(¢).
Then:

2
1 flf = 63+ 4(H — )§? + 4(I; — HY)E — 41, = 0; (32)

2) «*1)? = I
3) ifT(t),N(t), B(t) denote the Serret-Frenet triad defined by

i’t‘ =T(), ‘?;‘ T(t) = kN(1), f;‘ N(t) = —«T(t) + tB(1),

then "(2? B(t) is contained in the linear span of T(t), N(t), B(t). Hence, the
Serret-Frenet frame generated by an elastic curve is at most three dimensional.

Proof. Since £ = k? = ||¢q||* — €(q - x)2,

d§
dt

Therefore,

=2((g-9)e —€((q - X)e((q - X&) +(q - X)e) = =2(P - )e-

L(dEY* _ 2 (v Ve = I 4 (I — 3y - DY — ellal?
N ) = 2+ (lplli = (- p)oE =—L+ (I =3y - p)Z —€llqll?)é

2
=L+ (L =40y - pZ-ed=—D+ (11 —(H - ;E) — €6k
= _3153 + (H —e)§” + (I — H>)E — 13,

.. M _ d —
and (1) holds. To prove the rema;r)nng parts, note ;l)lat ‘?t T@) = th' —ex(t) =
u(t) = q(t)—e(x-q)x(t) andthat ;x N = “;1];’ and ;¥ B = “a',f.Hence,N = ||114||u'
It follows from Egs. (32) that

du

P 242y = (X - q)e)s
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where 242 = (- g)e = ||q][2 — €(x - )2 = |[ul2. Then
dN (u du) 1 "t 1 du
dt dt ) [[ull? llqll dt
_Pa
(]|

The above yields

1

K2TB = (p-q)eN —kp —€(x - q)ey.
This implies that 7'(¢), N(¢), B(¢) are linearly dependent and hence %’ B is con-
tained in the linear span of 7', N, B and moreover, it implies that
1> =l(p-q)eN —kp —e(x - @)eyl)?
= 2(lpllZ = (p-»2) —(p-9)? = L.

The proof is now complete. O

Proposition 7. Let «(t) and t(t) denote the curvature and the torsion associated
with an extremal curve (x(t), y(t), p(t),q(t)) for the Delauney-Dubins problem
(Egs. (30)). On any open interval that £(t) = ||q(t) — €(x(t) - q(t))ex ()] is not
equal to zero, k(t) = ¢, and £(t) is a solution of

dE2
(65) =—@+o8 +2eng 4 - -1 (Y
Moreover, (§21)?> = I, and ”éllf (t) in the Serret-Frenet triad is contained in the

linear span of T(t), N(t), B(t). Hence, the Serret-Frenet frame generated by an
extremal curve is at most three dimensional.

Proof. Since £2 = ||g||Z — e(x - )2, I = (|[p|IZ = (v - P)2)E> — (p - ¢)* and
(v-p)? = j(u—cé)? because 0 = H = —p + 2(p - y)e + c&. Moreover,

2895 = 4 (lg]1> — e(x - 9)2p) = =2(p - @)e.

Then,

d 2
(s 5) — - =(plP - (-~ I

dt
=L =2(y-p)i—ellqlli— (- p2E* — I
= (I =3(y-p)? —ellglPE — I
=L =4y -pl—e)E — L= —(n—c§)’ —e&)E* — I
= —(?+ " +2cuE + (I — P*)§ — L.

The rest of the proof consists of minor adaptations of the proof used in Proposition 6
and will be omitted. O
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The content of this proposition is essentially the same as that found in ((18]) with
the exception that in the hyperbolic case one should take ¢ > 1. Otherwise, the
control system is not controllable (([16])).

The hypersurface S = {(x, y, p,q) : § = ||qg — €(x - g¢)x|| = 0} is the switch-
ing surface. If an extremal curve crosses the switching surface at some time 7" then
either ¢(7) equal to zero or it colinear with x (7). In either case p(T) - ¢(T)c is
equal to zero and hence, I, = 0. So each extremal curve that crosses the switching
surface resides on the hypersurface I, = 0.

It follows that the extremals on /5 = 0 are the solutions of

dE\2
( df) =—(c* + & +2uct + I — p2. (34)
Analogous to the Euclidean case, the stationary solutions of this equation project
onto non-Euclidean helices ( curves having both the curvature and the torsion con-
stant). Otherwise, the solutions are of the form

(2 +e)E() =a—bsin\/c2+e(t—to), a=pe, b=+ +e)— ple.

The associated extremal curve does not cross the switching surface when a > b. It
crosses the switching surface tangentially when a = b, that is, when I; = u?. The
crossing is transversal for all other values of a and b. In the normal and non-geodesic
case, the time interval between two consecutive crossings is larger than 7 . while

Ve2+
/2

.

A curve x(¢) in S? which has constant curvatu;/eca;fi zero torsion will be called
acircle. By this convention, a circle is a hyperbola in the ambient space R**! when
€ = —1. It follows that the projection x(¢) of an extremal curve that crosses the
switching surface transversally, moves along a circle in S? on a two dimensional
“sphere” S2 = {(1a + a2b + a3d : (a1,00,03) € R? a? 4+ af + ca? = €}
where the vectors a, b, d are determined by x(#), y(fp) and the normal N(zy) =

Dy
e ar TOli=.

in the abnormal case this time interval is equal to

Proposition 8. Let (x(2), y(¢), p, q(t)) be an extremal curve that crosses the switch-
ing surface transversally. Then x(t) consists of concatenations of arcs of circles
all contained in the two dimensional sphere defined by x(0), y(0) and N(0) =

Dy
¢ ‘ar TOle=o.

Corollary 1. A concatenation of four or more extremal circles can not be optimal.

On any energy level /5 > 0, the solutions of Eq. (33) can be expressed in terms
of elliptic functions, much in the same manner as in the Euclidean case. They are
generic and non-switching. It would be nice to know their optimality status. Some
switching extremals also project onto optimal solutions. For instance, the concate-
nation of three circles is optimal in any dimensional Delauney-Dubins problem, but
some extremals, which are optimal in two dimensional case, may loose their opti-
mality in higher dimensions. It would be interesting to investigate this situation in
more detail.
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On Local Approximation Theorem on
Equiregular Carnot-Carathéodory Spaces

Maria Karmanova and Sergey Vodopyanov

Abstract We prove the Local Approximation Theorem on equiregular Carnot—
Carathéodory spaces with C !-smooth basis vector fields.

1 Introduction

In this paper we study a local geometry of equiregular Carnot—Carathéodory spaces
(or simply Carnot manifolds) in the case of C!-smooth vector fields. Our purpose
in this paper is to compare the Carnot—Carathéodory metric d.. on the initial space
with the Carnot—Carathéodory metric d, on the local Carnot group at u and the
metrics d,, and d?, on two local Carnot groups in close points.

For vector fields smooth enough, the Local Approximation Theorem was stated
by Gromov in the form |d¢c(x, y) — d2.(x, y)| = o(e) as ¢ — 0 for points x and
y in a sub-Riemannian ball of radius ¢ centered at u [20]. Later, Bellaiche [4] and
Jean [24] refined this result in the case of C°°-smooth vector fields by obtaining the
estimate O(g!T1/M) for the same difference, where M is the depth of the distribu-
tion.

The Local Approximation Theorem is a good alternative to the well-known in
Riemannian geometry property that metrics in a manifold and in its tangent space are
locally bi-Lipschitz equivalent (it is known that the last property does not hold in the
Sub-Riemannian geometry). The Local Approximation Theorem plays crucial role
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in proofs of differentiability theorems for mappings of Carnot—Carathéodory spaces
(see, e. g., [3,31,52-56,59]).

Carnot—Carathéodory geometry is applied for studying hypoelliptic operators
(see, e. g., [13,23,45]). Being an adequate means for describing properties of so-
lutions to subelliptic equations, it is also extensively used in the theory of partial
differential equations (see, e. g., [3,8,9,16,58]).

2 Basic Definitions and Results

Recall basic definitions.

Definition 1 ([3]; cf. [7,31,40]). Fix a connected Riemannian C °°-manifold M of
topological dimension N . The manifold M is called the Carnot—Carathéodory space
if the tangent bundle 7'M has a filtration

HM=HMGS...S HMG...S HyM = TM

by subbundles such that every point p € M has a neighborhood U C M equipped
with a collection of C ! -smooth vector fields X1, ..., Xy enjoying the following two
properties:

(1) atevery pointv € U we have a subspace
H;M(v) = H;(v) = span{X1(v), ..., Xdim#; (v)} C T,M

of the dimension dim H; independentof v,i =1,..., M,
(2) theinclusion[H;, H;] C Hi+j,i + j < M, holds.

Moreover, if the third condition holds then the Carnot—Carathéodory space is called
the Carnot manifold:

(3) Hj41 = span{H;,[Hy, Hj], [Ha, Hj1l, ... [Hg, Hj41-]}, where k =
V3 Ho= {0} j =1,....M — 1.

The subbundle HM is called horizontal.
The number M is called the depth of the manifold M.

For specifying the situation, we emphasize that the tangent cone to a Carnot man-
ifold is a Carnot group, and the tangent cone to a Carnot—Carathéodory space is a
graded nilpotent group (i. e., a horizontal subbundle of its Lie algebra of vector fields
may not generate the whole Lie algebra). Thus, the notions of a Carnot manifold and
a Carnot—Carathéodory space are essentially different.

Remark 1. To this end, we assume that Carnot-Carathéodory spaces under consid-
eration have the same collection of basis vector fields for all points.

Properties of Carnot-Carathéodory spaces and Carnot manifolds under assump-
tions of regularity mentioned in Definition 1 can be found in [3,19,26,28,30,31,60].
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Many classical and modern results, development trends of the theory of Carnot-
Carathéodory spaces and their applications can be found in [1,2,4-7,10, 10,12, 14,
15,15,17,18,21,23,25,33-42,45,48-50,57,59].

Example 1. A Carnot group is an example of a Carnot manifold.

Example 2 (A Carnot—Carathéodory space with C ' -smooth basis vector fields [28];
cf. [27]). Consider arbitrary C'-smooth functions ¥, ¢, £, 7, @ : R — R with ¥, @,
&, 1, w # 0, their derivatives are only continuous, and Zf # 0 on a closed interval
W C R. Construct the vector fields X, Y, Z, Ton W x W x W x W € R* as
follows:

Y
X =y (0 + Y (e, + n(— [ E(x.s)ds + z)az (@),

o[ e
Z ==Y (x)dy + w(q)dy,
T =0,.

Hereg(x, s) = g<_ f; w“g) + x), and ¢ is a number depending on W and the choice

of all these functions. It is easy to see that X € C'(x,y,2,¢),Y € Cl(x,y), Z €
C!(x,q), and T is smooth. Moreover, [X, Y] = Zf -Zand Y, Z] = —“X -T.We
put H = Hy = span{X,Y}, H, = span{X, Y, Z}, and H3 = span{X, Y, Z, T}.
The resulting system of vector fields is non-degenerate. Moreover, it cannot be re-
duced to a system with two smooth horizontal vector fields.

Thus, we obtain a Carnot—Carathéodory space with M = 3 and horizontal vector
fields of class C! (but not of C?) in the same collection of variables (thus, both X
and Y are C'-smooth with respect to x and y). Moreover, the vector fields Z <
span{X,Y,[X,Y]}and T € span{X.Y,[X.Y],[X, Z].[Y, Z]} are C'-smooth and
smooth respectively.

Definition 2. Consider the initial value problem

N
p(6) =Y yiXi(y). t €[0.1], y(0) =x,

i=1
where the vector fields X1, ..., Xy are C!-smooth. Then, for the point y = y(1),
we write y = exp(ZlN=1 Vi X,-)(x).
Mappings (y1,...,YN) exp(ZlNzl Vi X,-)(x) are called exponential map-
pings.
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Definition 3. Consider u € M and (vy,...,vy) € Bg(0,r), where BE(0,r) is a
Euclidean ball in RY . Define a mapping 6, : Bg(0,r) — M as follows:

N
Oy (v1,...,vN) = exp(z v,-X,-)(u).
i=1

It is known that 6y, is a C!-diffeomorphism if 0 < r < r, for some r, > 0. The

collection {v; }1N= | is called the normal coordinates or the coordinates of the 1*' kind

(with respect tou € M) of the point v = 0,,(vy, ..., VN).

Proposition 1. Given a point p € M, there exists a compactly embedded neighbor-
hood U € M of p such that 0,,(Bg (0, ry)) D U forallu € U.

Proof. This neighborhood exists due to theorems describing a size of a domain of
existence of solution to ODE [22].

Definition 4. The degree deg X equals min{m | Xy € Hy,},k =1,...,N.

Remark 2. The condition (2) of Definition 1 implies

[Xi. X;)(v) = > Ciji(0) Xi (v), (1)

k:deg X <deg X; +deg X ;
i,j=1,...,N,forall v € U, where U is a neighborhood from Definition 1.

Theorem 1 ([31]). Fix u € M. The collection

G = cije(u) of (1) if deg X; + deg X; = deg X,
ik 0 otherwise

constitutes a structure of a graded nilpotent Lie algebra.

We construct the Lie algebra g* of Theorem 1 as a graded nilpotent Lie algebra of
vector fields {(X¥)’ }1N= L on R” such that the exponential mapping (x1, ..., xy) —

exp(Z,N:1 Xi ()?;-‘)/) (0) is the identity [5,43]. As soon as this mapping is the iden-
tity, we have x; = exp(x; ()? ;‘)/) (0). It follows that derivative at 0 of the left-hand
side, equal to the vector e; of the canonical basis in R¥, coincides with the deriva-

tive of the right-hand side, equal to ()? ¥)(0). Thus the condition for the exponential
mapping to be identical one implies the initial value

(X" (0) = e @)

for the vector fields ()?;-‘)/, i=1,...,N.
By definition 3, we have (0,)«{e;) = D6,(0){e;) = X;(u). From here and (2) it
follows

(0)+ (X)) = X; (). 3)
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By the construction, the vector fields {()? vy }1N= | satisfy

(XY, (X1 = > cijk)(X ) “

deg Xy =deg X; +deg X;
everywhere on RV .

Notation 1. We use the following standard notation: for each N -dimensional multi-
index u = (i1, ..., LN), its homogeneous norm equals ||, = ZIN=1 ui deg X;.

Definition 5. The graded nilpotent group G, M corresponding to the Lie algebra g*
is said to be the nilpotent tangent cone of M at u € M. We construct G, M in RV
as a group algebra [43], that is, the exponential map from the Lie algebra g* to the
graded nilpotent group G, M is identical:

N
exp(zx,-()?;f)/)(()) = (X1,..0 XN

i=1

The group operation is defined by the Baker—Campbell-Hausdorff formula [43]: if

N N N -
X = exp(z X (X;-‘)/)» y= eXP(Z Yi (X:'l)/)

i=1 i=1
then
N
x.y=z= eXP(ZZi(Xi-‘)/),
i=1

where

zi =xi +yi, degX; =1,
Zi=xi+yi+ Y Fl e, )xry; — yixj),  deg X; =2,

le;+e;ln=2,
I<j
=xityi+ Y Flguxt.yP (5)
lu+Bly=k,
u>0, >0
=x;i +yi+ Z G[it,ﬂ,l,j w)x"yP (x;y; — yixj),  deg X; = k.

lut+e;+B+e; =k,
I<j

With respect to this group operation, the basis vector fields ()A( Boe gt i =
1,..., N, are left-invariant.
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Theorem 2 ([15]). If { ail }?’: | is a standard basis in RY then the jth coordinate of
a vector field ()?:-‘)/(x) = ZN_ Zij (u, x) a)‘zj equals

j=1
; 8ij if j <dimHuy,yx;,
Z; (u’x) = Z Fj " . i > dim H
luteilp=deg X;, e (u)x if J 1M fHdeg X; »
w>0
i=1,...,N.

Using the exponential mapping 6,,, we can push forward the vector fields ()? vy
onto U C M as follows

[0)«(X1))](Bu(x)) = D)X} (X)),
and obtain the vector fields )?:‘ = (0,)« ()?;-‘)/. Recall that ?:-‘(u) = X;(u) by (3).

Definition 6. Associated to the Lie algebra {X “}N L atu € M, is a local homoge-
neous group §*M. Define it so that the mapping 6, is a local group isomorphism
between some neighborhoods of the identity elements of the groups G,, M and §* M.

The canonical Riemannian structure on M is determined by the inner product
at the identity element of §*M coinciding with that on 7;, M. The canonical Rie-
mannian structure on the nilpotent tangent cone G, M is defined so that the local
group isomorphism 6, is an isometry.

Remark 3. If M is a Carnot manifold then its local tangent cone G, M is a stratified
nilpotent graded Lie group.

Definition 7. If M is a Carnot manifold then its local homogeneous group §*M is
called a local Carnot group.

Remark 4. Since {X “}N , are continuous [31] on U (not necessarily smooth) then
formally the symbol exp(zl L Xi X¥)(v) is not well-defined. We define it to mean

the point
N
6 (exp (Z xi ()?;.‘)/) 6 ).
i=1

Proposition 2. Given a point p € M, there exists a compactly embedded neighbor-
hood U € M of p such that U C §"M for allu € U.

Proof. By [31,Lemma 2.1.26] we haveexp(zl xi X )(u) —exp(zl L X X ) ().
The proposition follows.

Notation 2. Put /9\’;()61, L L XN) = exp(Zl 1x,X“)(v) For fixed u, v € M, it is
a C!-diffeomorphism of the ball Bg (0, ry,), ruw > 0, onto a neighborhood of v
in M.
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Definition 8. Let M be a Carnot—Carathéodory space of a topological dimension N
andadepth M, andu € M. Forx,v € UC*M such that x = exp(31, x; X¥)(v),
we define the quasimetric d’{ (x, v) as follows:

1
di(x.v) = max {lx;|#eX ).
i=1,.,N

Denote the ball {v € §*M : d¥ (x,v) < r} of radius r centered at x by Box*(x, r).

Proposition 3. Given a point p € M, there exists a compactly embedded neighbor-
hood U € M of p satisfying

0“(BE(0.r4) DU forall u,veU.
Thus, d% (v, w) is well-defined for all u, v, w € U.

Property 1. The quasimetric d has the following properties:

1) d¥(x,v) >0,and d¥ (x,v) = 0ifand only if x = v;

2) d¥(x,v) =d¥% (. x);

3) the value d¥ (x, v) is continuous with respect to each of its variables;
4) there exists a constant Q = Q(U) such that the inequality

di(x.v) = Q(dg, (x, w) + di,(w, v))

holds for every triple of points x, w, v € U. Here U is the same neighborhood
as described in Propositions 1, 2 and 3.

Proof. The arguments explaining existence of this neighborhood are similar to those
in the proof of Proposition 1. O

Definition 9. Given u € U and v € U such that v = exp(Y_1, v; X;)(u), define
the mapping A¥ as

N
AL () = exp( ) vie® X X, ) )
i=1
for & > 0 such that the right-hand side of this relation is well-defined.

Definition 10. Let M be a Carnot—Carathéodory space of topological dimension N
and depth M, and putx = exp(ZlN=1 Xx; X ) (u). Define the metric function deo (x, 1):

1
doo(x,u) = max {|x;|%eXi}.
i=1,..,N

Denote the ball {x : doo(x,u) < r} of radius r centered at u by Box(x, r).

Theorem 3 (29]). Let M be a Carnot—Carathéodory space with C V% -smooth basis
vector fields, @ € [0,1] (if & = 0 then the vector fields are just C'-smooth). For
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each w € M, there exists a neighborhood O > w, @ € M, such that for u, x € O
the representations X, (A¥x) = ZN a, (Ayx) X5 (AL x), where

p=1%pyq
O(e), deg X, < deg Xy,
5 O(e), deg X, = deg X,
ay(Afx) = . d (i() —deg X, T (6)
: O(e¥tdeeXp—degXa) - deg X, > deg X4 and o > 0,
o(gdeeXp—deg Xg) deg X, > deg Xy anda =0
hold, g =1, ..., N, and the above estimates are uniform on 0.

Theorem 3 implies immediately Gromov type Convergence Theorem [20] in the
coordinates of the 1% kind.

Theorem 4 (see proof for C '-case in[19]). Let M be a Carnot—Carathéodory space
with C'-smooth basis vector fields. Given a point p € M, there exist a neighbor-
hood O C M of p and a positive number r > 0 such that the uniform convergence

XE(x) = (A" ))s(%5%1 X; (A x)) — X¥(x)

ase —> 0,1 = 1,...,N, holds on Box(u,r), u € O, and this convergence is
uniforminu € 0.

To make the understanding of the paper easier, we formulate all the assumptions
on a neighborhood U € M.

Assumption 1. To this end, we consider a compactly embedded neighborhood U &
M such that

1) 6,(Bg(0,ry)) D Uforallu € U;

2) UCE"M forallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3.

Remark 5. The existence of a neighborhood U € M is proved in Propositions 1, 2
and 3 and Theorem 3.

Theorem 3 has following corollaries.

Theorem 5 ([31]). Let Ml be a Carnot—Carathéodory space with C L_smooth basis
vector fields. Assume that U € M is a compactly embedded neighborhood small
enough such that

1) 0,(Bg(0,ry)) D U forallu € U;

2) UCE"M forallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3.

The value do is a quasimetric; i. e., for u,v,w € U, the generalized triangle in-
equality
doo(V, W) < ¢(doo(v,u) + doo(u, w))

holds, where the constant 0 < ¢ < oo depends only on U.
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Proof. Note that by the choice of U its diameter diam U = sup{deo (i, v) | u,v €
U} is finite.

Our statement is equivalent to the following estimate of a diameter of a ball in
do: in an arbitrary compact neighborhood W C M, W C U, for each pointu € ‘W
and ¢ < diam W, if Box(u, &) C ‘W then we have diam(Box(u, €)) < Le, where L
depends only on U.

Assume the contrary: there exist a compact neighborhood W C M, W C U, se-
quences {ex € (0,00)} ke, {ux € Wiken, {vk € Wiken and {wgx € W}gen such
that doo (U, Vk) = ex and doo(Ug, W) < & butdiam W > doo(vg, wr) > key.
From the last inequality it follows immediately that ez — 0 as k — oo.

Since W C U C M is compact, we may assume without loss of generality that
ur —> ug € Wask — oo. Then vy — ug and wy — ug as k — oo.

By our assumptions on U, [gdeeXi DAZf1 X;i](x) — ?;‘k (x) > 0Oas e — O for
x € Box(ug, Krp) uniformly in uy,i = 1,..., N, where K = max{5, 5¢*}, c is
such that dek (v, w) < c(dgk (u,v) + dik (u, w)) forall u, v, w € Box(ug, Krp)
and k € N (see Theorem 4), ro < 1 is such that Box(ug, Kr9) C U. Note that,
¢ < oo since ¢ = c¢(uy) depends continuously on values of {F;i,ﬂ (uk)}j,u,ﬂ’ con-
sequently, it depends continuously on uj. Moreover, the choice of K implies the
following:

1) For k big enough, we have that an integral curve of a vector field with con-
stant coefficients connecting AZ;‘S;] (wg) and AZ;‘&;] (v ) in the local homogeneous

group %k M lies in Box(ug, Kro).

2) We may choose k as follows: doo (g, Ur) < r¢ and the Riemannian distance

N

e i=1

{(ro ™ ey)dee Xi DAZ"S_1 (Xi)},—, (with constant coefficients) that connect points
0&y -

between the integral curves corresponding to the collections {X !} and

A" (wy) and A"* _ (vg), is less than rg.
roéy roéy
Fix k € N. Then

N N
o = exp(z gk glee X x,-)m), wi = exp(z edoE i x,-)m),

i=1 i=1

and wg = exp (ZlNzl i (Sk)giegXi X,-)(Uk)- Applying the mapping AZ;‘&;] to vk

and wi we get
N
Uj _ . deg X; Uk . Uk
A () = exp(g Gen)el DA (X)) (8 ()
1=

N 1,
- exp(Z £iex) e X0 ")(A“';;l ). @

ro
i=1
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Note that, doo (k. AZ;‘S;] (vk)) = ro and doo (uy, Af(g‘e;l (wi)) < ro. In view of

Theorem 3, we have

—1 ~
[0 e X DAY (X)) ](x) = X© ™ = X{¥ () o), i=1....N,
k

where o(1) is uniform in x and in ux. Consequently, since dim span{ X }'* (x)}fv:1
—1
N at each x € Box(uo, ro) and dimspan{X;° (x)}fv:1 = N for sufficiently
small e at each x € Box(ug, r¢), the Riemannian distance between Af(fe_l (wg)
k

and Af(i‘e_l (vg) is bounded from above for all k € N big enough (see (7)). There-
k

fore, the coefficients ¢;(ex), i = 1,..., N, are bounded from above for all k € N
big enough. The assumption deo (Vg , wg) > keg contradicts this conclusion. Thus
there exists a constant L = L(U) such that diam(Box(u, €)) < Le foru € U. The
statement follows. O

Theorem 6. Let M be a Carnot—Carathéodory space with C ' -smooth basis vector
fields. Assume that U € M is a compactly embedded neighborhood small enough
such that

1) 6,(Bg(0,ry)) D U forallu € U;

2) UCE"M forallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3.

Suppose that Box(u, &) C U. Then for any points v, w € Box(u, €) the following
relation is valid:
oo (v, w) — 2% (v, w)] = o(1) - &, ®)

where o(1) — 0 as ¢ — 0, and if u' € Box(u, ¢) then
|2 (v, w) = d &, w)] = o(1) - &,

where 0(1) - 0 as e — 0.
Moreover, o(1) is uniforminu € ‘W, where W € U, andin v, w € Box(u, ¢) €
U.

Proof. Assume the opposite: (8) is not true. It means that there exist a neighborhood
W € U, anumber > 0, a sequence of positive numbers ¢ — 0 as k — oo and
sequences of points uy € W and v, wy € Box(ug, &) € U such that

|doo (Vi Wi) — dop (Vi W) | = 1 - €, )

By Theorem 5, doo (Vg, wg) < Seg, where S is the same for all ug, vy, wg € U. By
the choice, we consider points

N N
o = exp(Z pi(ketee i X,-)(uk) and wy = exp(Z i ()52 X,-)(uk)

i=1 i=1
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in Box(ug, ex). Then we have

Wi = exp(z Xi (k)sdegX’X )(vk) and wy = exp(Zx (k)edegX’X"k)(vk).

i=1

Similar to the proof of Theorem 5, we apply dilatations Afke_l for some fixed suit-
08x
able ro > 0 to v and wk Note that, by the triangle inequality, the coefficients

{x; (k)} ~, and {X; (k)} —, at scaled vector fields (in the expression similar to (7))
are totally bounded in k. Passing to subsequences, if necessary, we can assume that
up — ug € U, A _1(vk) — v €U, A k_l(wk) — wp € U and x; (k) — yi,

x,(k)—>y,ask—>ooz=1 ,N.

—1

By Theorem 3, the convergence Xir(’ ek—)?;.‘k (x) > 0ask - o00,i =1,..., N,
isuniforminx € U. By the continuous dependence of solutions to ODE on the right-
hand side and initial data (see for instance [22]), there is a corresponding sequence
of “scaled” integral lines converging as k — oo to a curve which can be written
as an integral line of the field YV y;re X7 ¥ ¥ in M with endpoints vg, wo.
The last conclusion is justified by the property that in €M the solution to ODE is
unique since §*M is isomorphic to a neighborhood of the unity in G,, M where the
vector fields are smooth.

By the same reason, integral lines connecting points v, and wg in §¥M converge
to the integral line of the field Z, 1 it deg X ’X ¥ in §*M with endpomts Vg, Wo.
Since this integral line is unique we have the equahtles vi=Jyi,i =1,...,N.

It follows

|doo (Vi wi) — A2 (vie, wi)|

1
= i | maxc{x; (k)| %% ) — max{|; (k)] 4% )| = o(1) - .
14 14

where 0(1) — 0 as g — 0. It contradicts (9).
The latter relation implies the second one: |d¥ (v, w) — d¥ (v, w)| = o(1) - &,
where 0(1) — 0 as ¢ — 0, and o(1) is uniform in U. O

Definition 11. A curve y : [0, 1] — M which is absolutely continuous in the Rie-
mannian sense is called horizontal if y(t) € H, )M for almost all ¢ € [0, 1] with
respect to the Lebesgue measure on [0, 1].

Definition 12. Given x, y € M, the Carnot—Carathéodory distance d..(x, y) is de-
fined as
dec(x,y) =inf{l(y) 1y : [0, 1] = M, p(1) € Hy)M},

where the length £ of each (horizontal) curve y is calculated with respect to the Rie-
mannian tensor on M.
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Definition 13. A horizontal curve in § M is defined similarly: here we require that
y(1) € span{ X{(y(2)), ..., X§ H (@)} = HZ(t)M for almost all ¢ € [0, 1] with
respect to the Lebesgue measure on [0, 1].

Definition 14. For x, y € §“M the Carnot—Carathéodory distance d}.(x, y) is de-
fined as

d¥,(x.y) = inf{£“(y) 1y : [0.1] —> §“M. (1) € HY, M},

where the length €% of each (horizontal) curve y is calculated with respect to the
Riemannian tensor on §% M.

Theorem 7 ([3]). Let M be a Carnot manifold with C ' -smooth basis vector fields.
Fix the point ug € M. Let X1, ..., Xdaim H, De a basis in Hy. Then there is a neigh-
borhood U(ug) such that for every point u € U(ugy) an element v € U(ug) can be
represented as follows

v =-explarL Xj,)o---oexp(azXj,) oexpl(ai Xj,)(u), (10)

wherel < j; <dimHy, i =1,...,L, L € N, |a;| < ¢2doo(u,v), constants L
and ¢, are independent of u and v.

Theorem 8 ([3]; see [11,44] for smooth case). 1) Given a Carnot manifold M and
x € M, there exists a neighborhood ‘W of a point x such that every pair of points
u,v € W can be joined by a rectifiable absolutely continuous horizontal curve y
constituted of at most L segments of integral lines of given horizontal fields where
L is independent of the choice of pointsu,v € W.

2) Every two points of M can be joined by a horizontal curve. Thus, Carnot—
Carathéodory metric is well-defined on Carnot manifolds with C '-smooth basis vec-
tor fields.

Denote the ball of radius r in d¢. (d¥,) centered at x by Be(x,r) (B¥,(x,71)).

3 Main Results

The goal of this section is to prove the following Local Approximation Theorem for
Carnot—Carathéodory metrics.

Theorem 9. Let M be a Carnot manifold with C'-smooth basis vector fields. As-
sume that U € M is a compactly embedded neighborhood small enough such that
1) 0,(Bg(0,ry)) D U forallu € U;

2) UCE"M forallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3;

5) U C U, where U is a neighborhood from Theorem 7.

Then points u,u’,v € U possess following properties.
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For any points v, w € B.(u, €) the inequality holds:
|dec(v, w) —dg (v, w)| < o0(1) - &;
for any pointsu’, v, w € Bec(u, £) the inequality holds:

|d(v.w) — di (v, w)| < o(1) - &

c

Both estimates are uniform in all pointsu € U andu’,v, w € B (u, ¢).

Remark 6. Theorem 9 (6) implies Mitchell-Gromov type theorem [7,35] ([47]) con-
cerning the tangent cones of Carnot manifolds (Carnot—Carathéodory spaces).

First, we prove an auxiliary assertion of independent interest.

Theorem 10. Let M be a Carnot—Carathéodory space with C'-smooth basis vec-
tor fields. Then for each point of M, there exists a sufficiently small neighborhood
U € M such that

1) 6,(Bg(0,ry)) D U forallu € U;

2) UCE"Mforallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3.

Moreover, this neighborhood U possesses the following property: foru,v € U and
w = y(1) and w = Y(1), where v,y : [0, 1] — M are absolutely continuous (in
the classical sense) curves contained in Box(u, ) such that

N N
y() = Y biO)Xi(y(), y(0) =v, and Y1) = Y b;(O)X(y(1)), 7(0) =,

i=1 i=1

and each measurable function b (t) meets the property

1
[ |bi (1) dt < SedeeXi, (11)
0
S<ooi=1,...,N, wehave
max{deo(w, W), di% (w, W)} <o(1) -,

with o(1) to be uniforminu,v € U and all collections of functions {b; (t)}lN=1 with
the property (11).

Proof. The existence of U is provided by Propositions 1, 2 and 3 and Theorem 3.
Consider the normal coordinates 6, with respect to the point u. To simplify no-
tation, we set the field D6, (X;) to be equal ¥; and denote D6, ' (X*) by Y,
i = 1,...,N. We also set y,(t) = 6;'(y(t)) and y,(t) = 6,;'(7(1)). Let us
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rewrite the tangent vector to the curve y,, at a point y,,(¢) as

N
> b)Y (1))
i=1
N N N N -
=3 bOTE ) + Ol 0 0) = 517 0 1))
i=1 i=1 j=1

The tangent vector to the curve 8, (¢) = Y5, (1) + y,(¢) — Y4 (¢), which joines y, (1)
and ¥, (1), can be written as

N
8ul0) = D B[V ¥ (ru(@) = Y Fu(0))]

i=1

N
+ Z i) (Y lal 0 (1) = 817§ (1 1)
i=1 ] 1

N
Zb O (ru(0) = V¥ Gu(0))]

N
- Z(Z biOlat; (u(1)) = 811) T4 (1)),
j=1 i=1
where the coefficients {a}’ ; }lN ;=1 coincide with those in (6). Taking into account the
coordinate representations of the vector fields {Y“}N | (see Theorem 2) we obtain
the following ODE system for 1 < k < dim Hj:
dimH; N
Bulk@ = D D biOlaf'; (u(®) = 818k
j=1 i=1
Applying said above and the estimate |a:-fj (Yu(t)) —6ij| = o(1) for j < dim H,
(see Theorem 3), we get
1dimH; N
Bulk (1) = 81k (O] < [ Y D bi@lllal; (u(@) = 8ijlldT < o(1) - Pre
[ .
j=1 i=1
€ [0, 1], for some constant P; < oo. Next, for dim H; < k < dim H, we have

dim H
Bl = Y Y biOFF, lyu®)* = u)"]
i=1 |ulp=1
dim H
- Z (Zb(r) aty () = 8j1) Y. Ffe, @y
[lp=1
dim H>

+ ) Zb(r) [ (v (1)) — 83718

j=dimH;+1i=1
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As in the preceding case, taking into account the estimate obtained above and fact
that, by Theorem 3, in the last sum |a}’; (yu(t))] = o(e) for degX; = 1 and
|a:-fj (Yu(t)) — 8ij| = o(1) for deg X; > 2, we obtain

|[8ulk (@) = Bulk (0)] < 0(1) - P2g?,  Pr <00, 1€][0,1].
Arguing by induction, we suppose that we have proved the inequality
|8k (1) — [Bulk )] < 0(1) - Pré,

P < oo, fordeg Xx =1,1 =3,...,0 —1,t € [0, 1]. Then, using this assumption
and the preceding estimates, we obtain the following relation for dim Hg_1 < k <
dim Hop:

dim Hp—1

Bule@)= > > biOFg,, )y ()F = Fu®)*]

i=1  |ulp=0—deg X;

dimHop—1 N
+ 2 (Xhola o) =81) Y Fe aon@)”
Jj=1 i=1 [ilp=0—deg X
dim Ho N
+ > DY bhilal; () =85, (12)

j=dimHo_1+1i=1
By our assumption, we deduce in the first sum for deg X; > 2 that
Pu (@ = Fu(@)"] < o(1) - Puelln,
Furthermore, we have for u = e,, where deg X, = Q — 1, that
@ = Fu®*] < o(1) - Py = o(1) - Pue® ",

We represent an arbitrary multi-index p with ||, = Q — 1 as u = 1 + 2, where
u1 > 0and puy > 0. We infer

|Vu(t)“ - ?u(t)” = |)/u(l‘)u1 Vu(l‘)u2 - 5/\14(1‘)141 Au(t)“2|
= [Pu @ yu " = Gu )™+ 0(1) - puy ™M) ()2 + 0(1) - ppuyel2n)]
= 0(1) - [ pyus | lyu (@) [0 4 0(1) - | pyuy |y (0)*2 111
+o(l)- |pm ||pu2|5|“|h <o(l)- P;l,glmh =o(l)- P[LSQ_I'
Next, in the last sum in (12) we have |a; ; (v, (¢)) — 8i;| < o(1) - ;279X for

deg X; < Q.Ifdeg X; > O then |a;,;j(yu(t)) — 8;j| < o(1). Finally, in the middle
sum in (12) for deg X; > deg X; we obtain

lai,; () v ()| < 0(1) - Kyj, @708 %1
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For deg X; < deg X; we have |[a;,j (yu(t)) — 8i;]yu()*] < o(1) - Kjj,e2 792X/
This implies the following estimate for |[8,]x (¢) — [0u]x (0)]:
1 dimHop—1
18]k (t) — [8u16(0)] < 0(1) - $127" > bio)ldr
0

i=1

dimHop—1

1
IR S NCICTTE
0

i=dim H{+1
dimHop—1

+o(1)-S; Z gQdeeX; [01 Z |bi(t)| dt

j=1 irdeg X;>deg X;

dimHop—1

to-si Y Y sQ—deng[Iwi(mdr
0

j=1 irdeg X; <degX;

1
+o(1)-Ss > SQ_deng[|b,-(t)|dt
0

irdegX;<Q

1
+Ss-0(1)-/(; > bi@lde <o(l)- Pge?.

irdegX; >0

Let us estimate d% (y, (1), V»(1)). Recall that §,,() = V(1) + yu(t) — Vu(?),

(6 (D] = [BuO)]k = [yu(Dlk — [Pu(Dlk, kK = 1,..., N, and the coordinates of
{[yu(l)]k},](\’=1 and {[57,,(1)]1}?’:1 with respect to zero in the system {Y ¥} coincide

with Cartesian ones. To obtain our estimate, we apply the group operation in G, M:
if yu(1) = exp( L/ wi ) (Fu(1)) then

w; = [§,(D];
+ D Glger e @y (D Pu (P ([ (Dl [P (Dl =y (DL Fu (D).

|[u+Bter +er|p=deg X;

We have [[8,(D];| = 0(1) - Pacg x; %41 and

[y DIk [Vu (W] = [u (D] [7u (D]
< yu Ikl - 17D = Ol + [ D] - yu(Wle = Pu (D]l

Therefore,

deg X; deg X +deg X,
[w;| < 0(1)'PdegXif3 et Z 0(1)'Si,u,ﬂ,ek,elgllH_ﬂlhg eg Xy Hdeg X,
|u+B+er +eilp=deg X;
= o(1) - W;eteXi,
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This implies d2% (yu (1), 7« (1)) < o(1) - Le. Hence, the same estimate holds for
w = y(1) and W = Y(1). Thus, deo(y(1),7(1)) < L - 0(¢). Since all the coeffi-
cients at o(1) and at o(e) are uniform on U then we can write

deo(y(1),7(1)) < o(1) - e.
The theorem follows.

Corollary 1. Let M be a Carnot—Carathéodory space with C ' -smooth basis vector
fields. For each point of M, there exists a sufficiently small neighborhood U € M
such that

1) 0,(Bg(0,ry)) D U forallu € U;

2) UCE"M forallu € U;

3) 0%(BE(0,rup)) D Uforallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3.

Moreover, for u,u’,v € U such that doo(u,u’) < Ce for some 0 < C < oo, and
pointsw = y(1) andw = Y (1), where y,y : [0, 1] — M are absolutely continuous
(in the classical sense) curves lying in Box(u, €) such that

N N
p() =Y biOXY (y(1). y(0) =v. and Y1) =Y bi(O)X¥(y(1)). P(0) = v.

i=1 i=1

and (11) holds, we have max{d (w, D), d¥ (w,®)} < o(1) - & with o(1) to be
uniform in u,u’,v € U and all collections of functions {b; (t)}fv=1 with the prop-
erty (11).

Theorem 11 (Ball-Box Theorem; see [6,7,36,40,49] for comparison). Let M be
a Carnot manifold with C'-smooth basis vector fields. Assume that U € M is a
compactly embedded neighborhood small enough such that

1) 6,(Bg(0,ry)) D U forallu € U;

2) UCE"M forallu € U

3) 0%(BEg(0,ru,y)) D U forallu,v e U;

4) U € O, where O is a neighborhood from Theorem 3;

5) U € U, where U is a neighborhood from Theorem 7.

Then the shape of a sufficiently small ball B.. is comparable with a parallelepiped
in the sense that, for a compact neighborhood U € M, there exist constants 0 <
C1 < Cy < o0 andry > 0 independent of x € U and such that

Box(x, C1r) C Bee(x,r) C Box(x, Car)
forany r € (0, rg).

Proof. Anestimate d..(x, y) < Ci1dso(x, y) for points x, y from a compact neigh-
borhood U € M follows from Theorem 7.

Our next goal is to prove the converse estimate. Assuming the contrary we
have a compact neighborhood U & M and sequences of points x;,y; € U
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such that deo(x7, y7) > ldcc(x7, y7). In this case we have doo(x7, y;) — 0 as

I — oo since otherwise, for some subsequences x;, and y;,, we have simultane-

ously dee(x1,.¥1,) = 0asn — oo, and deo(x7,,y1,) = o > Oforalln € N

what is impossible. We can assume also that x; — x € U as! — oo and

X7 # ;. Setting doo(x7, ¥7) = & we have doo(xl,Afi_lyl) = 7 wherer > 0
!

is a normalizing factor. Let y : [0,1] — M be a Lipschitz horizontal path con-

necting x; and y; such that its length equals d..(x;, ¥7) [7]. Then the length £(I';)

of the curve I';: [0,1] > t — Afi_l(y(t)) equals sr, cc(x7, 1) where the length
1

£(T;) is measured with respect to the frame {X; !/ "} with push-forward Rieman-
nian tensor. Indeed, if y(z) = Z?izmlHl vi®)Xj(y(t)) a. e.int € [0, 1], then
) =7 ?Z“IHI Yi()X?/"(T; (1)) a. e. in ¢ € [0, 1]. This implies the equal-

&
er/r

; are close to the

ity £(I';) = sr, cc(X1, y7). Theorem 3 impies that the vectors X

corresponding nilpotentized vector fields X f’, i = 1,...,dim H;, consequently,
the Riemannian distance p(x, Afi_lyl) —0asl — oo
!

r doo(x7, _
o A% ) = 60 = | dectroyn) = Cr17t RO gy
ré‘l Sl Sl
where the constant C is independent of /.
It is in a contradiction with deo (X7, Afi_lyl) = rforall/ € N. i
!

Remark 7. Theorem 11 implies Mitchell type theorem [35] on Hausdorff dimension
of a Carnot manifold M.

Now we start to prove the main result of the paper.

Proof (Proof of Theorem 9). We prove the first statement. The proof of the second
one is similar.

Consider a neighborhood U C M described in Theorem 11. By Theorems 11
and 5, the relation d (v, w) < N ¢ is valid for some N < co. Consider a horizon-
tal (with respect to Ml) curve y with the natural parameterization joining v and w
(i.e., y(0) = v and y(1) = w) such that £(y) = d..(v, w) (see [7] for the proof of
existence). In view of local equivalence of d.. and doo (see Theorem 11), triangle
inequality for d.. and generalized triangle inequality for do (see Theorem 5), all
points of y belong to Box(u, Q¢), Q < oo. Indeed it is easy to show that, for every
point y(¢), we have

dec(v, y(t)) = L(yr) < dec(v,w) < Pe,

where y; is the part of the curve y joining v and y(¢). We write the tangent vector
toy at y(t) as
dim H

Y biOXi (r(1)
i=1
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and consider a curve ¥ such that

dim Hy

Yoy =Y bOX'G®). 70) =v.

i=1

Note that this ODE has a solution on the entire interval [0, 1] for sufficiently small
& > 0 since a horizontal path on a Carnot group is well defined by its horizontal
components by (t), ..., baim 1, (see for instance [51]). Note that

1 dim H

[ = ce,
0

i=1

where C < oo depends only on U & M. Therefore the lengths of the curves y
and y differ by a quantity comparable with o(1) - ¢ (since Theorem 3 implies that
Riemann tensors on M and ¥*M differ by a quantity comparable with o(1)). Next,
the curve ¥ lies in the sub-Riemannian ball Box(u, Qe) Q < o0. Indeed, it suf-
fices to note that since the distance d.(v, Y (¢)) does not exceed a value comparable
with ¢, the distance d% (v, ¥ (7)) also does not exceed a value comparable with &
for all t € [0, 1]. Furthermore, d’% (.Y (t)) = deo(u,¥(t)), t € [0, 1]. Thus, all
assumptions of Theorem 10 hold.
Consequently, Theorem 10 implies

dl.(v,w) <€(y) + L-o(1)-& <dec(v,w) +0(1) - Le.

Similarly, if we have a horizontal (with respect to §“M) curve ¥, joining v and

w such that
dim H

Y0 = > bi)Xi 7).

i=1
t € [0, 1], and Z(y) = d}.(v, w), then there exists a curve y meeting the equation
dim H,
70 =Y BiOXi (),
i=1
€ [0, 1] [46]. Since both curves enjoy conditions of Theorem 10 it follows that
dec(v,w) < dl.(v,w) +o(1) - Le.

The applied arguments imply that &£ has the same properties as L in Theorem 10.
Thus, |dee (v, w) — d¥, (v, w)| = o(1) - € and the theorem follows. |
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On curvature-type invariants for natural
mechanical systems on sub-Riemannian
structures associated with a principle G-bundle

Chengbo Li

Abstract The Jacobi curve of an extremal of an optimal control problem is a curve
in a Lagrangian Grassmannian defined up to a symplectic transformation and con-
taining all information about the solutions of the Jacobi equations along this ex-
tremal. For parametrized curves in Lagrange Grassmannians satisfying very gen-
eral assumptions, the canonical bundle of moving frames and the complete system
of symplectic invariants, called curvature maps, were constructed. The structural
equation for a canonical moving frame of the Jacobi curve of an extremal can be
interpreted as the normal form for the Jacobi equation along this extremal and the
curvature maps can be seen as the “coefficients”of this normal form. In the present
paper, we focus on the curvature maps for an optimal control problem of a natural
mechanical system on a sub-Riemannian structure on a principle connection of a
principle G-bundles with one dimensional fibers over a Riemannian manifold. We
express the curvature maps in terms of the curvature tensor of the base Riemannian
manifold and the curvature form and the potential.

1 Introduction

Let D be a vector distribution on a manifold M, i.e., a subbundle of the tangent
bundle 7M. Assume that an Euclidean structure (-, -) 4 1s given on each space Dy
smoothly w.r.t. g. The triple (M, D, (-,-)) defines a sub-Riemannian structure on
M . Assume that M is connected and that O is completely nonholonomic. A Lips-
chitzian curve y : [0, T] — M is called admissible if y(t) € Dy (), for ae. t. It
follows from the Rashevskii-Chow theorem that any two points in M can be con-
nected by an admissible curve. One can define the length of an admissible curve

y 0.7 — M by [ [@)]lde. where [[§(0)]| = (7). y(0)) .
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Having an additional potential U, we consider the NMSR optimal control prob-
lems (optimal control problems on natural mechanical systems on a sub-Riemannian
manifold):

T
AGO) = [ GIFIR = Ut > min n
y () is admissible, y(0) =qo, y(T) =q1. 2)

1.1 The extremals of the NMSR optimal control problems

The extremals of the NMSR optimal control problem can be described by the Pont-
ryagin Maximum Principle of Optimal Control Theory ([7]). There are two different
types of extremals: abnormal and normal, according to vanishing or nonvanishing of
Lagrange multiplier near the functional, respectively. The extremals of the NMSR
problem are the projections of either normal extremals or abnormal extremals.

In the present paper we will focus on normal extremals only. To describe them let
us introduce some notations. Let 7* M be the cotangent bundle of M and o be the
canonical symplectic formon T*M ,i.e.,0 = —d ¢, where ¢ is the tautological (Li-
ouville) 1-form on T*M . For each function : T*M — R, the Hamiltonian vector

—
field £ is defined by 20 = dh. Givena vectoru € T, M anda covector p € T M

we denote by p - u the value of p atu. ForA = (p,q) e T*M, g e M, p € T/ M,
let

1 1
hG) £ max(p-u— ul* +U@) = lplo, I” +U@. @)

where p|g, is the restriction of the linear functional p to £, and the norm || p| g, |l
is defined w.r.t. the Euclidean structure on £, . The normal extremals are exactly the

. —
trajectories of A(¢) = h (A).

1.2 Jacobi curves along normal extremals
Let us fix the level set of the Hamiltonian function /:
e 2 e T*Mh(L) = cle > 0.
Let IT), be the vertical subspace of T #,, i.e.,
) ={§ € THiH, : me(§) = 0},

where 7 : T*M —> M is the canonical projection. With any normal extremal
A(-) on H,, one can associate a curve in a Lagrange Grassmannian which describe

—
the dynamics of the vertical subspaces IT; along this extremal w.r.t. the flow e’
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—
generated by £ . For this let
o A —1‘7 -
> 330 2 e (W5 )R ()} )

The curve ) (¢) is the curve in the Lagrange Grassmannian of the linear symplec-

—
tic space W = Ty J. /R h (1) (endowed with the symplectic form induced in the
obvious way by the canonical symplectic form o of T*M). It is called the Jacobi

—

curve of the extremal e’ ) (attached at the point A).

Using the method of Jacobi curves, one can construct feedback invariants of
NMSR optimal control problems, namely, any symplectic invariant of Jacobi curve,
i.e., invariant of the action of the linear symplectic group Sp(W)) on the Lagrange
Grassmannian L (W),), produces a feedback invariant of the original NMSR optimal
control problems.

1.3 Statement of the problem

In ([8,9]), I. Zelenko and the author constructed the canonical bundle of moving
frames and the complete system of symplectic invariants for parametrized curves in
Lagrange Grassmannians satisfying very general assumptions. As a consequence,
for any sub-Riemannian structure defined on any nonholonomic distribution on a
manifold M one has the canonical (in general, non-linear) connection on an open
subset of the cotangent bundle, the canonical splitting of the tangent spaces to the
fibers of the cotangent bundle and the tuple of maps, called curvature maps, between
the subspaces of the splitting intrinsically related to the sub-Riemannian structure.
These constructions can be done in a similar way except that the potential appears
as a “parameter . We give a brief description of these constructions in Sect. 2. The
structural equation for a canonical moving frame of the Jacobi curve of an extremal
can be interpreted as the normal form for the Jacobi equation along this extremal and
the curvature maps can be seen as the “coefficients”of this normal form. In the case of
a Riemannian metric the canonical connection above coincides with the Levi-Civita
connection and the splitting of the tangent spaces to the fibers is trivial. Moreover,
there is only one curvature map and it is naturally related to the Riemannian sec-
tional curvature tensor. If there is a potential on the Riemannian manifold, then in
the formulation of the curvature map there appears one more term of the Hessian
of the potential. Further, for the case of a sub-Riemannian structure associated on
a principle connection of a principle G-bundle with one dimensional fibers over a
Riemannian manifold, the curvature maps are expressed in terms of the Riemannian
sectional curvature of the base manifold and the curvature form of the principle con-
nection. In the present paper, we assume that there is an additional potential on the
aforementioned sub-Riemannian structures and study the role of the potential in the
expression of the curvature maps.
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2 Differential geometry of curves in Lagrange Grassmannian

Denote by L (W) the Lagrangian Grassmannian of an even dimensional linear sym-
plectic space W endowed with a symplectic form w. Given A € L(W), the tan-
gent space Tp L(W) of L(W) at point A can be naturally identified with the space
Quad(A) of all quadratic forms on linear space A C W. A curve A(-) is called
monotonically nondecreasing (monotonically nonincreasing) if the velocity is non-
negative definite (nonpositve definite) at any point.

2.1 Young diagrams

Denote by C(A) the canonical bundle over A: the fiber of C(A) over the point A ()
is the linear space A(z). Let I'(A) be the space of sections of C(A). Define the ith
extension of A(-) (or the i-th osculating space) by

AD(@) = span{;;]jﬁ(r) (1) € €(A),0<j <i).

The flag A(r) € AW (r) € AP (1) C ... is called the associated flag of the curve
A(-) at point t. Assume that the following two conditions hold:

o dim A®(r) — dim AC=D(¢) is independent of ¢ for any i;
o A@(t) = W for some p € N.

It follows from the first assumption above that
dim ACTV (1) —dim AP (1) < dim AD () — dim ATV (r).

Therefore, using the flag, to any A(-) we can assign the Young diagram in the
following way: the number of boxes of the ith column is equal to dim A@ () —
dim A@=D(r). Assume that the length of the rows of D be p; repeated r; times,
P2 repeated r; times, ..., pg repeated rg times with p; > p, > ... > pg. In
this case, the Young diagram D is the union of d rectangular diagrams of size
ri X pi,1 < i < d. Denote them by D;,1 < i < d. The Young diagram A,
consisting of d rows such that the ith row has p; boxes, is called the reduced di-
agram or the reduction of the diagram D. The rows of A will be called levels. To
the jth box a of the ith level of A one can assign the j th column of the rectangular
subdiagram D; of D and the integer number r; (equal to the number of boxes of D
in this subcolumn), called the size of the box a.

2.2 Normal moving frames

As usual, by A x A we will mean the set of pairs of boxes of A. Also denote by
Mat the set of matrices of all sizes. The mapping R : A x A — Mat is called
compatible with the Young diagram D, if to any pair (a, b) of boxes of sizes 51 and
s respectively the matrix R(a, b) is of the size s, x s1. The compatible mapping R
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is called symmetric if for any pair (a, b) of boxes the following identity holds
R(b,a) = R(a,b)T. (5)

Denote by T; the ith level of A. Also denote by a; and o; the first and the last boxes
of the ith level Y; respectively and by r : A\{a,-}i“'=1 —> A the right shift on the
diagram A. The last box of any level will be called special. For any pair of integers
(i, j)suchthat 1 < j < i < d consider the following tuple of pairs of boxes

(aj.ai). (aj,r(@). (r(a;),r(@)). (ra;), r*(@)), ..., (r?Yaj), r?i~ (a;)),
(rPiGaj), P~ @), o (P ag) rP T @) (6)

Definition 1. A symmetric compatible mapping R : AxA — Matis called normal
if the following three conditions hold:

e forany 1 < j < i < d, the matrices, corresponding to the first (p; — p; — 1)
pairs of the tuple (6), are equal to zero;

* among all matrices R(a, b), where the box b is not higher than the box a in the
diagram A the only possible nonzero matrices are the following: the matrices
R(a,a) foralla € A, the matrices R(a,r(a)), R(r(a),a) for all nonspecial
boxes, and the matrices, corresponding to the pairs, which appear in the tuples
6),foralll < j <i <d;

e the matrix R (a, r (a)) is antisymmetric for any nonspecial box a.

Note that this notion depends only on the mutual locations of the boxes @ and b in
the diagram A. Now let us fix some terminology about the frames in W, indexed
by the boxes of the Young diagram D. A frame ({ea}aeD, {fa}aeD) of W is called
Darboux or symplectic, if for any «, B € D the following relations hold

w(eﬂl’ eﬂ) = O’ a)(fol’ fﬂ) = O’ w(ea’ fﬂ) = 50(,;9’ (7)

where 8y g is the analogue of the Kronecker index defined on D x D. In the sequel
it will be convenient to divide a moving frame ({ea ") }aeD  { fo (t)}aeD) of W in-
dexed by the boxes of the Young diagram D into the tuples of vectors indexed by the
boxes of the reduction A of D, according to the correspondence between the boxes
of A and the subcolumns of D. More precisely, given a box a in A of size s, take
all boxes a1, . .., ag of the corresponding subcolumn in D in the order from the top
to the bottom and denote

Eq(t) = (ea) (1), ... eag (1)),  Falt) = (fay (), ..., fu, (1)). ®)

Definition 2. The moving Darboux frame ({E;(?)}qen, {Fa(t)}aca) is called the
normal moving frame of a monotonically nondecreasing curve A (¢) with the Young
diagram D, if

A(t) = span{E4(1)}aen

for any ¢ and there exists an one-parametric family of normal mappings R;
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A x A —> Mat such that the moving frame ({E,(t)}aen, {Fa(t)}aen) satisfies
the following structural equation:

E}(t) = Ej@a)(?) caelA\F

E/(t) = F,(1) D aed ©)
Fi(t) = = Ypen EsORi(@.D) = Fr(t) © acA\S

Fa(t) = =2 pen En(t)Rs(a, b), D aed

F1 is the first column of the diagram A, & is the set of all its special boxes, and
[ A\F1 — A, r : A\ 8 —> A are the left and right shifts on the diagram A.
The mapping R;, appearing in (9), is called the normal mapping, associated with the
normal moving frame ({ E4 () }aen, {Fa(t)}acn)-

Theorem 1. For any monotonically nondecreasing curve A(t) with the Young di-
agram D in the Lagrange Grassmannian there exists a normal moving frame

(Ea()}aen, {Fa(t)}aen). A moving frame
({Ea(t)}aea. {Fat)}aca)

is a normal moving frame of the curve A(-) if and only if for any 1 < i < d there
exists a constant orthogonal matrix U; of size ri X r; such that for all t

Eq(t) = E«()Ui, Fa(t) = Fa()Ui, Vae i (10)

As a matter of fact, normal moving frames define a principal O(ry) x O(r3) X ... X
O(ry)-bundle of symplectic frame in W endowed with a canonical connection. The
normal moving frames are horizontal curves of this connection.
Relations (10) imply that for any box a € A of size s the following s-dimensional
subspaces
Va(t) = span{E4 (1)}, V,"(t) = span{F,(1)} (11)

of A(t) does not depend on the choice of the normal moving frame. In particular,
there exists the canonical splitting of the subspace A(t) defined by

At) = @D Va(t). dim Vy () = size(a) (12)

acA

and the canonical complement A" (t) to A(t) defined by

AtranS(t) — @ V:ans(l). (13)

acA

Moreover, each subspace V,(f)(and V™"(¢)) is endowed with the canonical Eu-
clidean structure such that the tuple of vectors E,(and F,(¢)) constitute an orthonor-
mal frame w.r.t. to it. Taking the canonical Euclidean structures on all V,(¢) and
assuming that subspaces V, (¢) and V}(¢) with different @ and b are orthogonal, we
get the canonical Euclidean structure on the whole A (¢).
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The linear map from V, (¢) to V} (t) with the matrix R;(a, b) from (9) in the basis
{E4(t)} and {Ep(t)} of V,(¢) and V3 (t) respectively, is independent of the choice
of normal moving frames. It will be denoted by N, (a, b) and it is called the (a, b)-
curvature map of the curve A(-) at time t.

2.3 Consequences for NMSR optimal control problems

Let (M, D, (-,)) be a sub-Riemannian structure. Note that the Jacobi curve associ-
ated with an extremal of NMSR optimal control problems in M is monotonically
nondecreasing. A point A € T*M is called a D-regular point if the germ of the Ja-
cobi curve ) (¢) at ¢ = 0 has the Young diagram D. Assume that for some diagram
D the set of D-regular point is open in ¢ 1 and let A be the reduced diagram of D.
The structural Eq. (9) for the J_a)cobi curve 5 (¢) can be seen as the intrinsic Jacobi
equation along the extremal e’ # A and the (a, b)—curvature maps are the coefficients
of this Jacobi equation.

Since there is a canonical splitting of 3 (¢) and taking into account that ) (0)
and IT, can be naturally identified, we have the canonical splitting of I1:

;= @ Va(d). dim (V,(R)) = size(a).

acA

where V, (1) = V,(0).

Moreover, let i) (a,b) : V4(A) — Vp(A) and the R, : T1, — I1, be the (a, b)-
curvature map and the big curvature of the Jacobi curve §) () at ¢ = 0. These maps
are intrinsically related to the sub-Riemannian structure. They are called the (a,b)-
curvature and the big curvature of NMSR optimal control problems at the point A.
Also, the canonical complement § f‘”‘“s(t) att = 0 give rise a canonical complement

—
of ITy in W, where W, = T} J(; /R h , as before. For any a € A, denote
-VltlranS(A) — VatranS(()). (14)

—

Let A € T*M and let A(r) = e’” A. Assume that (Eé (1), F,f(l))aeA is a normal
moving frame of the Jacobi curve ;) (¢) attached at point A.

Let € be the Euler field on T* M, i.e. the infinitesimal generator of the homo-

—
theties on its fibers. Clearly T)(T*M) = Ty H—1(;) & RE(). The flow e’ on

—
T*M induces the push-forward maps (e’ h )* between the corresponding tangent
spaces T)T*M and Tet7x T* M, which in turn induce naturally the maps between

e — —
the spaces Ty (T*M)/R h (1) and Tel—,;kT*M/R h (' X). The map K between
— —
To(T*M)/R K (1) and TelmT*M/R%’(ef 7)), sending E*(0) to (e' 7 ), EX (),
—
F}0) to (e "), F}(t) forany a € A, and the equivalence class of (1) to the

—
equivalence class of © (e’ 1), isindependent of the choice of normal moving frames.
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—
The map K is called the parallel transport along the extremal e’ ” A at time . For
—
anyv € Ty (T*M)/R h (L), itsimage v(r) = K’ (v) is called the parallel transport
of v at time t. Note that from the definition of the Jacobi curves and the construction
of normal moving frame it follows that the restriction of the parallel transport J;
to the vertical subspace T (T;( A)M ) of T; (T *M) can be considered as a map onto
. 4 * .
the vertical subspace Tel 7 K(Tn(et7A)M ) of Tet 7 A(T M). A vertical vector field
—

V is called parallel if V(e' * 1) = X' (V(})).

In the Riemannian case, i.e., when & = TM, the Young diagram of the Ja-
cobi curve A(-) consists of only one column and the corresponding reduced diagram
consists of only one box. Denote this box by a. The structure equation for a normal
moving frame is of the form:

Ez/z(t) = Fy(t)
{F(;(t) =—FE,()R:(a,a). (15)

In [2] and [1] it was shown that the canonical connection coincides with the Levi-
Civita connection and the unique curvature map Ry (a,a) : V,(A) — V,(1)
(where V,(1) = I1,) was expressed by the Riemannian curvature tensor. In or-
der to give this expression let RV be the Riemannian curvature tensor. Below we
will use the identification between the tangent vectors and the cotangent vectors of
the Riemannian manifold M given by the Riemannian metric. More precisely, given
peT/M let ph e TyM suchthat p-v = (p",v) forany v € T, M. Since tangent
spaces to a linear space at any point are naturally identified with the linear space
itself we can also identify in the same way the space T} (T;(A)M ) with T3y M.

Rala,ap = RY (p", v")p", 16
VA=(6],p)E%h—l(k),CIEM,pETq*M, UEHA.
Further, for the optimal control problems of natural mechanical systems on Rieman-
nian manifolds, the curvature maps satisfies

Ra(a.a)v = RV (p", v")p" + (V,u (VU))(g), v e, (17)

where VU is the gradient of U .

For the nontrivial case of sub-Riemannian structures, i. €., when O g TM,letus
consider the simplest case: the sub-Riemannian structure on a nonholonomic prin-
ciple connection of a principle G-bundle with one dimensional fibers over a Rie-
mannian manifold. Let pr : M — M bea principle G-bundle over a Riemannian
manifold (7\7, g). A principle connection P is a G-equivariant horizontal distribu-
tion (complement to the vertical distribution tangent to the fibers). For any principle
connection D one can introduce an inner product (-, -) = pr*g and hence we have a
sub-Riemannian structure (M, D, (-, -)). We assume that O is nonholonomic. In the
paper we consider the simplest case that G = R or S, i. e. the fibers of the principle
bundlepr: M — M is one dimensional. For short, hereafter we call M, D,{,")a
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sub-Riemannian structure of 1-dim bundle type. Let w be the connection form of O
and Xy be the fundamental vector field. We actually have a sub-Riemannian struc-
ture on the contact distribution £ with the contact form w and the Reeb field X
which is a transversal symmetry. ~

The curvature form dw gives a (1,1) tensor J on M by g(JX,Y) = dw(X,Y).
Define ug : T*M — R by ug(p,q) =2 p-Xo(q). Since X, is a symmetry of the
sub-Riemannian structure, the function u is the first integral of the extremal flow,
i.e, {h,ug} = 0, where {-, -} is the Poisson bracket. Actually, dw can be seen as a
magnetic field and J can be seen as a Lorenzian force on Riemannian manifold M .
The projection by pr of all sub-Riemannian geodesics describes all possible motion
of a charged particle (with any possible charge u¢) given by the magnetic field dw
on the Riemannian manifold M (see e. g. [6, Chap. 12] and the references therein).

The curvature maps for such sub-Riemannian structures were expressed in terms
of the Riemannian sectional curvature of the base manifold and tensor J of the prin-
ciple bundle ([4]). See also [5] for an example. In the present paper, we consider
the NMSR optimal control problems by imposing a potential U as an external force.
We assume that the potential U is constant on the fibers of the principle bundle
pr: M — M. We show how the potential U effects the curvature maps for the
NMSR optimal control problems (see Theorems 2-4 below).

3 Algorithm for calculation of canonical splitting and
(a, b)-curvature maps

Let
Dr={(p.q)eT*M:p-v=0 YveD,}, Dy =D"NT M.

It holds the following series of natural identifications:
* 1 x ()
TrM/DF ~ 07 W D, (18)

where D € T M is the dual space of D,. Accordingly, J; = J|4 can be taken as
the linear map from the fiber 7'M of T*M to T, M/ JOql (in this case, J, |£(% =0).

Fix dim M = n. Let D be the Young diagram consisting of two columns, with
(n — 2) boxes in the first column and 1 box in the second column. Then the set of
D-regular points coincides with {(p, q) € J(’; : Jgp # 0} (see step 1 of Sect. 3.3
Proposition 1 below for the proof in the particular case with symmetries) . In the
case of n > 3, the reduced Young diagram consists of three boxes: two in the first
column and one in the second. The box in the second column will be denoted by a,
the upper box in the first column will be denoted by b and the lower box in the first
column will be denoted by c. Note that size(a) = size(b) = 1 and size(c) = n — 3.
When n = 3, the reduced Young diagram consists of two boxes, a and b as above
and the box ¢ does not appear. All formulae for n > 3 will be true for n = 3 if
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one avoids the formulae containing the box c. In this case, the symmetric (Darboux)
compatible mapping (with Young diagram D) is normal if and only if R;(a,b) = 0
and the canonical splitting of IT has the form: T, = V,(A) & Vp(1) & V.(1),
where V,;(1), V,(A) are of dimension 1 and V. (A) is of dimension n — 3. These
subspaces can be described as follows. As the tangent space of the fibers of T*M
can be naturally identified with the fibers themselves (the fibers are linear spaces),
one can show that
V() = Dy s

Using the fact that V5 (1) @ V. (1) @ Rp is transversal to D, one can get the fol-
lowing identification

Vo(h) & Ve(D) ®Rp ~ T, "M/ Dy, (19)
Finally, combining (18) and (19), we have that
Ve(L) @ Ve(d) @ Rp ~ Dy ~ Dy, (20)

Under the identifications, one can show that (see step 1 in Sect. 3.2 below):

Vb(X) =RJgp,  Ve(d) = (span{p, Jp})*. 21)

3.1 Algorithm of normalization

First let us describe the construction of the normal moving frames and the curvature
maps for a monotonically nondecreasing curve A(¢) with the Young diagram D as
in Sect. 2.3. The details can be found in [9]. In this case, the structural equation for
the normal moving frame is of the form:

E,(t) = Ep(1)

E,(t) = Fp(1)

E/(t) = Fe(t)

Fj(t) = —E:(t)R:(a,c) — E4(t)R;(a.a)

FJ(t) = —Ec(t)R;(b.c) — Ep(t)R (b, b) — Fu(t)

Fl(t) = —Ec(t)R;(c.c) — Ep(t)R;(c.b) — Eq(t)R;(c. a).

(22)

Assume that each element of the set {&,(A), &5 (1), E.(A), Fa(R), Fp(A), Fe (L)} is
either a vector field or a tuple of vector fields, depending on the size of the corre-
sponding box in the Young diagram such that

(Ea(e T 2). 85T 1), €T 1), e 1), Fye 1), Fole' T 1)
= (€ald). E5(A). & (). Fu(R). Fy(A). Fe(A),

where K is the parallel transport, defined in Sect. 2.3. Recall that for any vector

fields X, Y one has the following formula: a‘,lt |t:0 e;’XY = adyY. So, the deriva-
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tive w.r.t. ¢ on the level of curves can be substituted by taking the Lie bracket with

N

h on the level of sub-Riemannian structure. The normalization procedure of [9] can

be described in the following steps:

Step 1. The vector field &,(A) can be characterized , uniquely up to a sign, by the
—

following conditions: &, (1) € I1y,ad h &,(X) € I1,, and

o(ad 7l €4(), (ad F )2Ea(N)) = 1.

—
Then by the first two lines of (22) §5(A) = ad h &,(A) and Fp(A) = (ad7)28a (A).
Step 2. The subspace 'V, is uniquely characterized by the following two conditions:

e V.(A) is the complement of 'V, (1) @ V5 (A) in I1y;
¢ V.(A) lies in the skew symmetric complement of

Vo) @ Vo (X) & R(ad /i )2E,(A) @ R(ad 7 )>E4(1).

Itis endowed with the canonical Euclidean structure, which is the restriction of 3 2. (0)
on it.

Step 3. The restriction of the parallel transport K to V. (1) is characterized by the
following two properties:

—
e X! is an orthogonal transformation of spaces V(1) and 'V, (e’ h /\);

N
* the space span{ jt ((e™ ") (K'0))|,_o : v € Ve(A)} is isotropic.

Step 4. To complete the construction of normal moving frame it remains to fix £, (1).
The field ¥, (1) is uniquely characterized by the following two conditions (see line

4 of (22))):
e the tuple {&,(1), Ep(L), E(A), Fu(A), Fp(L), F(A)} constitutes a Darboux
frame;
—
e o(ad h F,(A), Fp(1)) = 0.

In order to find #,(4), one can choose any ¥ a(A) such that {&, (1), &, (A), E. (L),
FaA), Fp(A), Fc (L)} constitutes a Darboux frame. Then

Fah) = FaQ) —0(ad ki Fa(2). F(1)Ea (). (23)

3.2 Preliminary implementation of the algorithm

Now let us analyze the relation between T* M and T*M in more detail. Let E be the
1-foliation such that its leaves are integral curves of 17 g and PR : T*P — T*P /&
be the canonical projection to the quotient manifold.

Fix a constant c¢. The quotient manifold {9 = c}/E can be naturally identi-
fied with 7*M. Indeed, a point A in {uy = ¢}/ & can be identified with a leaf
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PR™'(X) of E which has a form (e’X0g, (¢7'X0)* p), where A = (p.q) € PR™'(}),
¢ € M and p € T/M. On the other hand, any element in 7*M can be identi-

fied with a one-parametric family of pairs (¢’X0¢, (e 7'X0)*(p|p)). The mapping
I': {up = c}/E — T*M sending (¢'X0g, (e7X0)* p) t0 (¢'¥0g, (e7X0)* (p| p))
is one-to-one (because p(Xg) = uy is already prescribed and equal to ¢) and it de-
fines the required identification. Therefore, for any vector field X on T*ﬁ, we can
assign the vector field X on T*M s.t. PR, X = (/7). X and 1. X € D.

Before going further, let us introduce some notations. Given v € T) Tq*M (~

T; M), where A = (p. q), we can assign a unique vector vt e Tpr(q)ﬁ to its equiv-
alence class in T*M/V, (1) by using the identifications (19) and (20). Conversely,
toany X € Tn(q)ﬁ one can assign an equivalence class of T3 (T, M)/ V4 (R). De-
note by XV € T, (T, M) the unique representative of this equivalence class such
that duo(X?) = 0.

For later use, we present the following facts (see [4] and [3] for details).

Lemma 1. For any vectors X,V € T)T*M with n,.V = 0 we have o(X,v) =
g X, V) and?]) = —(VU)?, where VU is the gradient of U.

Lemma 2. The following formula holds on {uy = c}.

0= oPR)*G —uon*dwy. (24)

—
Lemma 3. Let h be the Hamiltonian vector field on T*M, as before, then

T ) = Vo —uo(ph) — (VU)Y, (25)

where A = (p,q) € T*M and V,u is the lift of p" to T*M w.r.t. the Levi-Civita
connection.

Now we give more precise descriptions of normal moving frames following the steps
as in Sect. 3.1. Assume that V;*"(1), V;** (1), V;** (1) are defined by (14).

Step 1. First define the vector field é’: on T*M by
€a() € My, E4(V) € D*, dug(€4 (1) = 1. (26)

For further calculations it is convenient to denote é’: by 9, because to take the
Lie brackets of @5: with 71) is the same as to make “the partial derivatives w.r.t. up”
in the left handside of (25). Indeed, by (25) adz) Ouy = (Jph)” € IT, and then
m((adz))2 duo) = —Jp". Then from Lemma 1 it follows immediately that

g -2 h 2
o(ad h 0y, (ad h)? 3y,) = || Jp" |12

Since D is a contact distribution, J, is nonsingular for each ¢ € P, hence as a direct
consequence of the last identity we have
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Proposition 1. All points of T* M out of the zero section are D-regular.

Further from step 1 of Sect. 3.1, we have that

B

Ea(A) = , @7)
“ 17p%]
— (Jph)“ — 1
€ (A) = adhi E,(A) = iy e (28)
“ 17ph] 17ph) ) 7
— 1 — — 1
Foh) = adls &) = - [F.(Ip"]+ 20 ( )(Jph)“
17ph] 17ph]
+(7)2( : )a (29)
17ph) ) 7
By direct computations,
w1 (Jp"y] = —Jph. (30)

Step 2. Let us characterize the space 'V, (1). For this let ul 2 =1{velly :dup(v) =
0} or, equivalently, IT; = {(v")? : v € II,}. Since V.(A) € TI; and V.(X)

lies in the skew symmetric complement of (ad & )28, (A), we have, using (30) and
Lemma 1, that

Ve(X) = (span{p”, Jp"}H)? modRE,(N). (31)

Further, let :DIC(/\) =V.(A) N M, = {XV : X e span{p”, Jp"}1}. Using the
condition that V(1) is in the skew symmetric complement of (ad /)38, (1), we

have _
Ve(A) ={v+ AR, 0)E,X) : v eV (L)} (32)

where (A, v) is the linear functional on the Whitney sum T*M & T*M over M,

given by
ad)* (Jp")"
AA,v) =0 <v, 1ok ) . (33)

Step 3. Since the normal moving frame is a Darboux frame, the space VI"(1) lies
in the skew symmetric complement of Vp(1). Besides, its image under 7, belongs
to D(m(A)). Then, using Lemma 1 we obtain that

pr, o (V" (1)) = span{p”, Jp"}* mod Rp", (34)

where, as before, pr : M — M is the canonical projection. Recall that VI™(1) €

—
T)(T*M)/R h (X). As a canonical representative of V(1) in 7 (T* M) one can
take the representative, which projects exactly to span{p”, Jp"}+ by m,. In the se-
quel, this canonical representative will be denoted by VI*"S(1) as well.
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Further, given any X € span{p”, Jp"}* denote by V§ the lift of X to V2" (1)
i.e. the unique vector Vi € V™" (1) such that pr, o 7. Vy = X. Then there exist

the unique B € End(:gc (A)) and &, B,y € Ve(A)* such that

p"” ) MY vy e Ve(h
1|2 + B(W)du, + y()(p")". Vv € Ve(d)

(35)
where, as before, V stands for the lifts to the Levi-Civita connection on T*M. Let
us describe the operator B and the functionals «, 8, y more precisely. For this, we
introduce the following notation. Givenamap S : T*M @& T*M —> R, define a

map SO : T*M @ T*M — R by

Ve = Vyn + B(mo(v)) + a(v)

d —
SO v)y= " S A, XK'v)| . AveT*M, (36)
dt t=0
where in the second argument we use again the natural identification of T;( 2 M with
T ( H(A)M ). Now we can state the following lemma.
Lemma 4. Forany v € V.(1),
o BOMY = (~(0h) + g aph) (00 )
- a(v) = —o(Vyadh (Jp")");

M
ﬂ(U) = —(llJ;h I A) (/\, (vh)v)_)
i AC G @) = (ay) AR 1),

Because of appearance of the potential U, the vector field V,,» is not necessarily
tangent to 4. More precisely,

Lemma5. y(v) = ”p; 28 (v, vU).

Step 4. According to the algorithm, described in Sect. 3.1, first find some vector
field ? such that the tuple {&,, &p, &, 7 a» Fp, F¢} constitutes a Darboux frame.
Let By be a vector in V(1) such that

0(LBo. V) = Bv), Yv e Ve(d). (37
Also, let %, be a vector in 'V™"5(1) such that
o(v,BWy) = AA,v), VYveV:.(h). (38)

Note that by constructions the map v > V', is an isomorphism between V(1) and
Virans(1). Let By be a vector in V. such that Wy = V%h. Then from (37) and (38)
1

it follows that
AL, Bo) = B(B1). (39)
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The canonical ¥, is obtained from ¥ a and the following lemma by formula (23).
Lemma 6. A vector field ¥ a can be taken in the following form

~ —
Falh) = —10p"[To + 179" |0 — o + | Jp" | (7 2 ( ) € (1)

17p"]

—||Jph||7( : )%(A) (40)
17p" |

Now as a direct consequence of structure Eq. (22), we get the following prelimi-
nary descriptions of (a, b)-curvature maps (under identification (21)).

Proposition 2. Let V be a parallel vector field such that V(L) = v. Then the cur-
vature maps satisfy the following identities:

2((a(c, oy wh) = —a(adh V5, V), YweV(h) @)

yhe

N ¢/ L (MY
Bty = olad Vi Hp00) |7 = otadh (). VoE L @)
Ri(c,a) = o(adh VS, Fall))duo 43)

(Jphyv — (Jp"y?

Ry(b.b = —o(adh Fy(L). Fy( 44
A(b,D)( ||Jph||) o(a p(4), Fp(1))( ||Jph||) (44)
R, @)y = —0(ad h Fa(h). Fua (X))o 45)

4 Calculus and the canonical splitting

4.1 Some useful formulas

We need special calculus which will be given in Proposition 3 below. Let 4 be a
tensor of type (1, K) and B be a tensor of type (1, N) on M, K, N > 0. Define a
new tensor A @ B of type (1, K + N — 1) by

Ae B(X], ceny XK+N_1)

K—1
= Z AX1, o Xy, B(Xig1, . XiaN)s Xig N+t oo XK4N—1).
i=0

Also define by induction A'+! = Ae A’ For simplicity, in this section, we denote
Aph = A(p" p". e ") Ap = (Ap")". (46)
K

Besides, we denote by V A the covariant derivative (w.r.t. the Levi-Civita connec-
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tion) of the tensor A, i.e. VA is a tensor of type (1, K + 1) defined by
VAX1, ... Xk, Xk+1) = (Vxg A (X1, oo, XK. 47)

In particular, if K = 0, then VA(X) = Vy A. Also define by induction Vi1 4 =
V(ViA).
Proposition 3. The following identities hold ([4]):
* [Ap.Bp]=(BeA)p—(AeB)p; ,
° [VAph’ Bp] = _V(AQB)ph + ((VAph B)p )U,.
* [Vapr Vpprl = VY4 BYD" (50 A)
+(RY(Ap", Bp")p")¥ — dw(Ap", Bp") o:

« Vu(g(Ap", Bp™) = g((VA)p". Bp") + g(Ap", (VB)p").
Proposition 4. Let Vi, V, be vector fields on T* M with .V = 7.V = 0. Then
o« ~(T7 _ hoyhy.

o([U, VVlh], VVzh] = —Hess U(V|", V),

o T (s Vi) — g (T Vi) V) =g (Ve (T a)*) = 0,

4.2 Calculations of the canonical splitting

Using formulas given by Proposition 3, we are ready to express the canonical split-
—
tingof W) (= T, H# 1 /R h) in terms of the Riemannian structure and the tensor J on

M . Note that by (27) the subspace V, is already expressed in this way. To express
the subspace V;, and "Vg‘”‘“s we combine Propositions 3 and 4 and Lemma 4.1 in [4]
to get

Lemma 7. The following identities hold:
- h2
o 0 (VBT = gUph VIt p) - g(IVU. Iph;

e (“J”zh ”2) = [IVI(p". p"II? + g(Ip". V2T (ph. p", p"))
— g(V,u JVU, Jph) = 2g(JVU, VI (p", p"))
—g(JIp". (VI(VU, p") + VI(p" . VU))
+ VU2 =uog(J2 p". VI(p". p")) —uog(Jp". VI (p". Ip")

+ VJ(Ip", p")) + uog(JVU, J2ph).

Now substituting item (1) of Lemma 7 into (28) we get the expression for the
subspace Vp. Now let us find the expression for "Vg‘”‘“s. First by (25) and item (2) of
Proposition 3 we have

(7, (IpM] = [V —uo(Jp")" = (YUY, (Jp")"]

(48)
=~V + (VI(P", pM)Y — (IVU)
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Substituting the last formula and the items (1) and (2) of Lemma 7 into (29) we will
get the required expression for "Vg‘”‘“s.

Further, according to (32) in order to find the expression for 'V, we have to express
AL, v).

Lemma 8. Let v € T1,. Then

Uo

1% g, J?ph. (49

AL, v) = g VI(p", py—JIvU) -

2
1Pl

In order to express VI*™(4) it is sufficient to express the operator B and func-
tionals @ and 8, defined by (35), as the operator B and the functional y are already ex-
pressed in Lemmas 4 and 5, respectively. Firstly, from decomposition (24), Lemma 1,
and the fact that the Levi-Civita connection is a Lagrangian distribution it follows
that

@) = =0 (V. =V + (VI(P", p")" = (JVU)?) (50)

= —updwo (v, Jp") — g", VI(p", p") + g", JVU)
= —uog(Jv", Jp") — g", VI(p", p")) + gv", JVU)

Similar to Corollary 1 in [4], we have the following characterization of AW For
later use we will work in more general setting. Let & be a tensor of type (1, K) on
M . This tensor induces amap S : T*M & T*M —> R by

S(v) =g@p" ") A= (p.g) e T*M.q e M. p e Ty M. (51)
where @ph is as in (46).
Proposition 5. Let v € V. (1).
1
SW.v) = g0". (VE)p" —ug(@ e J)p" + uo(J ¢ @)p")
1
+ a8 (V1 VU ) 80" 8PN — g0 @ 0 VU)p)

Lo, Uty
— S{A, AN,
2 ( ||Jph||) v
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Corollary 1.

h\v
ADGL ) = —AG v (2. P
()= =AY ( 17p"]

T h||g(vh,2v2J(ph, P p") = 3ueVI(Ipt. ph)
p
1
—2uoVJ(p". Ip") + jug] 3ph)

1

- ||ph”2”Jph”g(vh,VU)g(ph,ZVJ(ph,ph) —2JVU —uoJ?p")

1
= & (2T 2V (HVU) + 2V, 05U ).
p

The function 8 can be expressed by substituting the last formula of A4 and
item (1) of Lemma 7 into item (3) of Lemma 4. In this way one gets the required
expression for the subspace VI"$(1). To summarize, we have

(Jp")" uo
I7p"l 2

1
B0 = a8 (1 VU) 6 62

1
Vor = Vi = AR, v) (Joy?

To finish the representation of the canonical splitting, we find more detailed ex-
pression for V(1) = R¥, (1) on the base of Egs. (23) and (40). For this we will
describe the properties of vectors By, B, and Wy from step 4 of Sect. 3.2 which
will be used in the calculations of the curvature maps (Sect. 5). The proof is almost
the same as that of Lemma 4.3 in [4].

Lemma9. Letv € V(L) and V be a parallel vector field such that V(L) = v. Then
the following identities hold:

L _ 2 h L hy _ uo 2 h
(D) BY = (prom)To = — 2y (V" ") = IVU) + 7y 2P

2 _ h ™11\ & 2 h h
+ (||ph||2||Jph||g( JVU.p )+“°||ph||2)p + 8V (PR PY)
—JVU, Jph)Jp";
— h
@ (%o adf (v5,))= o O c.0n)" 1),

O'(%O, adﬁfb(k)) = _g((ERA(C,b)Q]l)h’ “:;§Z”)
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5 Curvature maps via the Riemannian curvature tensor and the
tensor J on M

LetA = (p.q), ¢ € M, p € T;/M be the given D-regular point. Fix v € V¢(2).
As before, denote by RV the Riemannian curvature tensor. Note that the proofs in
this section are modified based on that in [4] the appearance of the potential U'.

Theorem 2. The curvature map R ) (c, c¢) can be represented as follows
(Ot )" 07) = RV M ) + Hess U o)
h nomy o Yoy a2 L2
+uogW™ VI (P vh) + FITVTIT — AT )
3 o
+ g (", VU),
I p" 12

where A is as in (49)

Proof. Take v € V.(A) and parallel vector fields V' such that V(1) = v. As in the
proof of Lemma 3.4 in [4] we can take V' such that

[(VU)” +uo(Jp")". VIW) =0, AeONT;M, (53)

where O is a neighborhood of A. For simplicity denote & = (I o PR)*5.
Recall that by Proposition 2, (relation (41) there)

—
g(Rale, ) w) = —o(adh Vi, Viy).

Let us simplify the right-hand side of the last identity. First, from the last line of
the structural Egs. (22) it follows that

wa(ad /i (V5,)) € Rph. (54)

Then from (52) it follows that

—
o(adh (V). Vi)

= o(ad A (VS,), Vyn) — (vh, VU) o(ad h (V5,), (p")")  (55)

1
g
1112

For the second term in (55), we carry out the following calculations:

do (. V. (p)") (56)
Ve (0(h (™) =0 (7. Vil (01"

+6( R (p")'], V5) — o (VS (P H)

0
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= =V, (P17 — o[, V41 (b))
+0(=Vu —(VU)". VE,) + Vo, (2" 1)

= —o((H. V5,1 (P") + 0 (= = (VU)'. VE,)
= ([, V5], (PM") + 0 (= —2(VU)", V) (57)
= ([, V5], (PM") + 28(VU, "),

For the first term in (55), from the decomposition (24) it follows that the form
uon*dwy = o — o is semi-basic (i. e. its interior product with any vertical vector
field is zero). Besides, since v € V. (1), from (31) it follows that 7 *d wg (7, Vyn) =
g(Jp", v") = 0. Therefore,

— —
o(ad h (VS,), Vo) = G(ad ki VS, V). (58)

—
Also, from relation (41) it follows that it is enough to consider ad & Vf/ ,» modulo
Va(A) & Vp(X). We also need the following

Lemma 10. Let V, W be vector fields of T*M such that wV = m«W = 0. Let U
be the potential, as before. Then

D (A@p", (VD = T (VD
2) a(((Jp")". Vyn). Vign) = gWh VI(p" V!);
3) [VU.J(V")'] = J(VU, (V!))).

Proof. The first two terms were proved in Lemma 5.1 in [4]. And the third one can
be shown in a similar way. Indeed, if item (3) holds for vector field V' then also holds
for vector field aV'. Thus in order to prove item (3) it is sufficient to prove it when
V is constant on the fibers of T*M, i.e., when V" is a vector field on M. But in this
case from item 1 of Proposition 3 for K = 0, N = 0 it follows that both sides of
item (3) vanish.

Now we are ready to start our calculations:

ad 7 (V5,) = [V, Vil + [(VU)” = uo(Jp")", Vya] (59)
AL, V) B A4, v) v hyv
— Vo, (J, VU)*, (J,
st \ARCOEESMOINZER
Uo

=W V1= T VU) —uoUph) . (V]
1
= g2 (7 VO (¥ =0T = (V0" (1))

mod V,(1) @ Vo(A) & R(p")? (60)
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Now let us analyze each term in (59). First of all, as in the Riemannian case (see
(2.14) in [4)),

5([Vpn, Virn], Vo) = —g(RY (p", 0" p" 0" (61)
For the second term in (59), it follows from Proposition 4 and Lemma 10 that

o ([(VU)” + uo(Jp™M?, Vyn], Vvh> = Hess U(v", v") + uog(, VJI(p", v")).
(62)
For the third term, it follows from Proposition 3 that
_ AL, V) _ A, v)
’ (_2||Jph|| ~ 2)ph)

For the fourth term, again, from Proposition 3 we have
_ (AR, V) _ A, v)
’ (2||Jph|| " 2 aph)
For the fifth term, we use the following fact (see Lemma 5.1 in [4]):
(Jp")?
I 7p"||

[V, (Jp™)], Vuh) g VIt p").  (63)

(VU)". (Jp™y"]. vuh) c0h IVU).  (64)

Ta([Voi, Vyn)]) = “2" (JoMy? — ;A(k, v) mod Rp".  (65)

Then it follows that
_ Uo Uo _
6 (= Vs V'], Vi) = = G (V. V), ("))

66)
1, ny2 |, UoAA, V) h h (
= — J + Jv", Jp").
G+ et

Note that the sixth term vanishes due to item (3) in Lemma 10 and (53). For the last
term, using Proposition 3 we have

1
d (||ph||2g (v VU) [V = uo(Ip")" = (VU (o)1, Vuh)

L5
= ”ph”2g ", VU). (67)

Summering up the above calculations, we conclude

G(adﬁ Vi Vyn) = —g(RY (p", v")p", v") — Hess U™, v™)
_uog(vh’ VJ(ph’ vh))

A(A, ) h h _h A(A, ) h
+ g™, VJ(p", p")) — g",JVU)
2| Jph| 2| Jph|
1 2 h 2 u()eA)(A,U) h h
— upllJv* + g(Jv", Jp")
47° 4] Jph|

1
e OO

Put (56) and the last identity together, we complete the proof of the theorem. O
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For the other curvature maps R, (c, b), R, (b, b), we calculate them under the as-
sumption that J is compatible with the metric g, i.e. VJ = 0 in order to avoid long
formulas and calculations.

Theorem 3. Assume Ry (c,b)v = p;(c,b)(v)Ep (L), where py(c,b) € V.(A)* and
Ru(b.b)Ep(A) = pa(b,b)Ep(R), then
g(RY (p", Jp")p" v")

D)) =
prle ) =

1
+ — 3Hess U(Jv", p) + Hess U(Jp", v")
17" ( )

Uo h h
— ”Jph”g(Jv ,—2JVU —uoJ?p")

and

pa(b.b) = &RV (p" JpM)p" . Ip")

1Pl

+ Hess U(Jp". Jp") + Hess U(J?p". p")

1 3
1P 19771
10
- g
1P

6 1722
JVU|? 2
T apre YU g o

2(JvU, Jp") + (JVU, J?ph)

Ip h||2g

Theorem 4. The curvature maps R ) (c,a) and R (a, a) can be represented as fol-
lows

1) NRulc,a)v = py(c,a)(v) where py(c,a) € V.(A)* and it satisfies

iy
NG .
ptccarw =1 (| ) ! A) o= g(@eon) )

+ [l 7p" IIh(”J h”)m(c,b)v;
2) Ri(a,a)du, = pa(a,a)du,, where p)(c,a) € Vc(A)* and it satisfies

7 P 1 —
e, = (oate. D) + 1" () ) Gatb )

+ e @) =1 () ot BYCB)
1P

— 1 — 1
+||Jph||h2( )m(b,bmuphnh“( )
1P| 1P|

where py(c,b) and p) (b, b) are as in Theorem 3, A is expressed in (49) and ?213{’ is
expressed by item (1) of Lemma 9.
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On the Alexandrov Topology of sub-Lorentzian
Manifolds

Irina Markina and Stephan Wojtowytsch

Abstract In the present work, we show that in contrast to sub-Riemannian geome-
try, in sub-Lorentzian geometry the manifold topology, the topology generated by an
analogue of the Riemannian distance function and the Alexandrov topology based
on causal relations, are not equivalent in general and may possess a variety of re-
lations. We also show that ‘opened causal relations’ are more well-behaved in sub-
Lorentzian settings.

1 Introduction

Recall that a SemiRiemannian (or PseudoRiemannian) manifold is a C°°-smooth
manifold M equipped with a non-degenerate symmetric tensor g. The tensor de-
fines a scalar product on the tangent space at each point. The quadratic form cor-
responding to the scalar product can have different numbers of negative eigenval-
ues. If the quadratic form is positively definite everywhere, the manifold is usually
called Riemannian. The special case of one negative eigenvalue received the name
the Lorentzian manifold.

Let us assume that a smooth subbundle D of the tangent bundle 7'M is given, on
which we shall later impose certain non-integrability conditions. Suppose also that
a non-degenerate symmetric tensor g defines a scalar product gp on planes Dy, C
T, M . Then the triplet (M, D, gp) is called a sub-SemiRiemannian manifold. If gp
is positive definite everywhere, then (M, D, gp) is called a sub-Riemannian mani-
fold. Those manifolds are an active area of research, see, for instance [2,4,15,21,37].
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In the case of exactly one negative eigenvalue the manifold is called sub-Lorentzian.
This setting has been considered in [5,7-10, 12—14].

Sub-SemiRiemannian manifolds are an abstract setting for mechanical systems
with non-holonomic constraints, linear and affine control systems, the motion of par-
ticles in magnetic fields, Cauchy-Riemann geometry and other subjects from pure
and applied mathematics.

The main goal of the present work is to study the relations between the given
manifold topology and the Alexandrov and time-separation topologies defined by
causality properties in the presence of a sub-Lorentzian metric. The main aim is to
compare these topologies for Lorentzian and sub-Lorentzian manifolds.

Recall that on Riemannian manifolds the original topology of the manifold and
metric topology defined by the Riemannian distance function are equivalent. Due
to the Ball-Box theorem we observe that in sub-Riemannian geometry the metric
topology induced by the sub-Riemannian distance function and the original mani-
fold topology are equivalent, too.

Theorem 1 (Ball-Box Theorem). Let (M, D, gp) be a sub-Riemannian manifold.
Then for every point p € M there exist coordinates (U, x) around p and constants
¢, C > 0 such that the sub-Riemannian distance function dsg defined by

dsr(p.q) = inf{ length of absolutely continuous curves y: [0, 1] — M,
y(0) = p, v(1) =q, y(t) € Dy foralmost all t},

1 o
can be estimated by ¢ Y ;_, |x'|¥i < dsr(p.q) < C Y!_,|x*'|"i, x €U,
where the constants w; € N are determined by the non-integrability properties of
D at the point p.

In the Lorentzian and sub-Lorentzian cases we cannot obtain a metric distance
function from a given indefinite scalar product. The closest analogue is the time sep-
aration function, which behaves quite differently from metric distances in a number
of aspects.

The other specific feature of Lorentzian manifolds is a causal structure. In a sense,
causality theory is the natural replacement for the metric geometry of Riemannian
manifolds in the Lorentzian case. From causal relations one obtains a new topology,
called the Alexandrov topology. It is known that in Lorentzian manifolds the Alexan-
drov topology can be obtained also from the time separation function. We showed
that for sub-Lorentzian manifolds this is not generally true anymore and that the time
separation function defines a new time separation topology, that can be thought of
as a different extension of the Alexandrov topology. Our main interest is the study
these two topologies, their similarities and differences from Lorentzian Alexandrov
topologies. We proved that the Alexandrov and time separation topologies on a sub-
Lorentzian manifold do not generally coincide neither with each other nor with the
manifold topology.

We introduce a third extension of the Alexandrov topology to sub-Lorentzian
manifolds, in which we force the sets from the Alexandrov topology to be open
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with respect to the manifold topology. They will correspond to what we call opened
causal relations. The opened causal relations provide a useful tool both for our pur-
pose of comparison of topologies and for the generalization of the causal hierarchy
of space-times to the sub-Lorentzian case.

The work is organized in the following way. In Sect. 2 we review the main defi-
nitions of Lorentzian geometry and introduce them for sub-Lorentzian manifolds. In
Sect. 3 we study the reachable sets and the causal structure of sub-Lorentzian mani-
folds, which allows us to introduce the Alexandrov topology. Section 3 contains our
main result, where we compare the Alexandrov topology with the manifold topology.
We also present different ways of introducing the Alexandrov topology and study
some special class of sub-Lorentzian manifolds, that we call chronologically open,
in which the Alexandrov topology behaves similarly as in the classical Lorentzian
case. The last Sect. 4 is devoted to the study of the Alexandrov topology and the
time separation topology.

2 Basic Concepts

2.1 Lorentzian Geometry

Definition 1. Let M be a smooth manifold and g be a smoothly varying (0, 2)-tensor
with one negative eigenvalue on M.! Then the pair (M, g) is called a Lorentzian
manifold. Furthermore, we will assume that M is connected throughout the paper.

The symmetric torsion free Levi-Civita connection, normal neighbourhoods and
exponential maps are defined as in Riemannian geometry. We refer the reader to [18]
for notations and the main definitions and results.

Definition 2. Let (M, g) be a Lorentzian manifold. A vectorv € T,M, p € M is
called:

e spacelike, if g(v,v) > Oorv = 0;

e null or lightlike, if g(v,v) = 0 and v # 0;
* timelike, if g(v,v) < 0;

* nonspacelike, if v is null or timelike.

A vector field V is called timelike, if V), is timelike for all p € M, and similarly for
the other conditions.

Definition 3. Let (M, g) be a Lorentzian manifold. A globally defined timelike vec-
tor field T is called a time orientation of (M, g). The triplet (M, g, T') is known as
space-time or time oriented manifold.

Every Lorentzian manifold is either time orientable or admits a twofold time ori-
entable cover [3]. Curves on a space-time are distinguished according to their causal
nature and time orientation as stated in the following definition.

! Note that we cannot define the eigenvalues of a quadratic form, but their sign due to Sylvester’s
Theorem of Inertia. We call the number of negative eigenvalues the index of the form.
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Definition 4. Let (M, g, T') be a space-time. An absolutely continuouscurvey: I —
M is:

e future directed, if g(7, ) < 0 almost everywhere;
e past directed, if g(7, y) > 0 almost everywhere.

We call an absolutely continuous curve y: I — M null (timelike or nonspacelike)
and future or past directed, if g(y, y) = 0 (< 0 or < 0) almost everywhere and y is
future directed or past directed. We call y simply null (timelike or nonspacelike), if
it is null (timelike or nonspacelike) and either past or future directed.

We abbreviate timelike to t., nonspacelike to nspc., future directed to f.d., and past
directed to p.d. from now on. Nspc.f.d. curves are also called causal.

Definition 5. Let M be a space-time and p,q € M. We write:

* p < qif p = q or there exists an absolutely continuous nspc.f.d. curve from p
tog;
* p K q if there exists an absolutely continuous t.f.d. curve from p to gq.

Define the chronological past I, future / *, the causal past J~ and future J + of
p €M by

IY(p)={geM|p<q}l. I (p)={qgeM|q< p}.
JT(p)={qeM|p=<q}, J (p)={geM|q=<p}

Let U C M be an open set. Then we write <y for the causal relation < taken
in U, where U is considered as a manifold itself, and I (p, U) for the future set
obtained on it. Observe, that usually I+ (p, U) # I (p) N U since U might lack a
convexity.

In [18, Chap. 5, Proposition 34] it is shown that if U is a normal neighbourhood
of p,then I (p,U) = exp,(I7(0) N V,) where I *(0) C T,M is the Minkowski
light cone and V), is the neighbourhood of the origin of 7, M on which exp,, is a
diffeomorphismto U.

The definition of the order immediately gives that <, < are transitive and p <
q = p < q. We state the following result on stronger transitivity of these relations.

Proposition 1. [18, 19] The following is true for space-times:

1) ifeither p <r,r L qorp Lr,r <q,then p <L q;

2) lety: [0,1] = M be a nonspacelike curve, p = y(0), ¢ = y(1). If y is not a null
geodesic (up to reparametrization), then there is a timelike curve o : [0, 1] —> M
such that o (0) = pando(l) = q.

Lorentzian manifolds can be categorized in different levels of a causal hierarchy.

Definition 6. We call a space-time (M, g, T):
1) chronological, if there is no p € M such that p < p;
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2) causal, if there are no two points p,q € M, p # ¢, suchthat p < g < p;

3) strongly causal, if for every point p and every open neighbourhood U of p there
is a neighbourhood V' C U of p, such that no nspc. curve that leaves the neigh-
bourhood V' ever returns to it.

Neighbourhoods V' in the definition of strongly causal manifolds are called causally
convex. Each requirement in Definition 6 is stronger than the preceding one and no
two requirements are equivalent, see [3]. An example of a strongly causal manifold
is any convex neighbourhood U with compact closure of a point.

The time-separation function, or the Lorentzian distance function, is defined by

1
Ts(p,q)=sup{[0 \/—g(m?)dllyeﬂp,q}, (1

where the space €2, 4 consists of future directed nonspacelike curves defined on the
unit interval joining p with g. If Q, , = @ then we declare the supremum is equal
to 0. Because the arc length L(y) = fol \/—g()}, y) dt of the curve y is invariant
under monotone reparametrization, the normalization to the unit interval is admissi-
ble. It follows immediately from the definition that 75 satisfies the inverse triangle
inequality

T5(p.q) = TS(p.r)+ T5(r,q) forallpoints p<r <gqe M.

However, the distance function fails to be symmetric, possibly even to be finite, and
it vanishes outside the causal future set.

2.2 Sub-Lorentzian Manifolds

The setting we are going to explore now is a generalization of Lorentzian geome-
try. On a sub-Lorentzian manifold a metric, that is a non-degenerate scalar product
at each point, varying smoothly on the manifold, is defined only on a subspace of
the tangent space, but not necessarily on the whole tangent space. If the subspace is
proper, those manifolds may behave quite differently from Lorentzian ones.

Definition 7. A smooth distribution D on a manifold M is a smooth subbundle of
™.

If D is a smooth distribution, then for any point p € M there exists a neighbourhood
U and smooth vector fields X1, ..., Xj satistying Dy = span{X1(q), ..., Xx(¢q)} for
all ¢ € U. We write rank, (D) = dim(D,). We assume that 2 < k = rank, (D) <
dim(M) = n everywhere. An admissible or horizontal curve y: I — M is an ab-
solutely continuous curve such that y (t) € D, ;) almost everywhere and such that y
is locally square integrable with respect to an auxiliary Riemannian metric (see the
discussion after Proposition 2). We are interested in whether two arbitrary points can
be connected by an admissible curve. That need not be possible due to the Frobenius
theorem.
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Definition 8. Let N € N and I = (i1,...,iy) € N¥ be a multi-index. Let
X1,..., Xi be vector fields on M. We define X; = [X;,, [Xiy, ... [Xiy_;» Xin -
A distribution D satisfies the bracket-generating hypothesis, if for every point
p € M there are N(p) € N, a neighbourhood U of p such that D, =
span{X1(q), ..., Xx(q)} forall g € U and

TyM = span{X;(p) | I = (i1,....in), N < N(p)}.

A sufficient condition of the connectivity by admissible curves is given by the
Chow-Rashevskii theorem [6,20,37], stating that if M is a connected manifold with
a bracket-generating distribution D, then any two points p, g € M can be connected
by an admissible curve.

Definition 9. A sub-Lorentzian manifold is a triple (M, D, g) where M is a man-
ifold with a smooth bracket generating distribution D and a non-degenerate sym-
metric bilinear form g: D, x D, — R of constant index 1 smoothly varying on
M.

A sub-space-time is a quadruple (M, D, g,T), where (M, D, g) is a sub-
Lorentzian manifold and 7 is a globally defined horizontal timelike vector field.
Like in the Lorentzian case we call 7' a time orientation.

Similar to Lorentzian geometry, in a sub-Lorentzian manifold we have the order
relations <, <, satisfying the following properties:

e <, K are partial orders. Note that the first property in Proposition 1 does not hold
anymore for sub-space-times, see Example 7. However, it still holds for a smaller
class of sub-space-times, that we call chronologically open sub-space-times, see
Definition 12;

e causality conditions are defined analogously to the Lorentzian case;

o thesets J ¥, I T for sub-Lorentzian manifolds are defined as before for Lorentzian
ones.

The following statement can be proved by the same arguments as in the sub-Rie-
mannian case, see, for instance [16].

Proposition 2. A sub-Lorentzian metric g on a sub-space-time (M, D, g, T) can
always be extended to a Lorentzian metric g over the whole manifold M. A sub-
space-time (M, D, g, T) thus becomes a space-time (M, g, T') with the same time
orientation T .

Proposition 2 allows us to use results from Lorentzian geometry, because every
horizontal t.f.d. curve will be t.f.d. with respect to all extended metrics. Moreover,
using extended metrics g, = g o mp + A% h o w1 for some Riemannian metric
h, one can show by letting A — oo, that a curve, which is t.f.d. with respect to all
extended metrics g, is actually t.f.d. horizontal.

Let (M, D, g) be a sub-Lorentzian manifold. An open subset U C M is called
convex, if U has compact closure U and there is an extension g of g and an open set
V D U suchthatboth V and U are uniformly normal neighbourhoods of their points
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in (M, g) in the sense of Lorentzian geometry. Thus one can introduce coordinates
and a Lorentzian orthonormal frame {7, X1, ..., X;,} on V. Having a Lorentzian met-
ric one can construct an auxiliary Riemannian metric as in [3]. Then, using Proposi-
tion 2, we adapt the following statement for continuous causal curves, i. €. continuous
curves y satisfyings <t = y(s) < y(t), y(s) # y(1):

Proposition 3. [3] Let M be a sub-space-time and y: I — M a continuous causal
curve. Then y is locally Lipschitz with respect to an auxiliary Riemannian metric.

Using the Rademacher theorem we obtain the following corollary.

Corollary 1. Let M be a sub-space-time. A continuous causal curve is absolutely
continuous and its velocity vector almost everywhere is nspc.f.d. with respect to an
extension of the sub-Lorentzian metric and square integrable with respect to an aux-
iliary Riemannian metric. It follows that the curve y is horizontal.

Lorentzian and sub-Lorentzian manifolds do not carry a natural metric distance
function which would allow a natural topology on curves in the manifold. Since
monotone reparametrization does not influence causal character, we define the C°-
topology in the following way.

Definition 10. Let U, V, W be open sets in topology  of M such that V., W C U.
Then we define the set

BU,V,W,O,I = {)/ € C([O’ 1]’M)| )/(O) € V» 7/(1) € W» )/([O» 1]) - U}

and to eliminate the need to fix parametrization we take the union over all possi-
ble parametrizations By,y,w = |J Bu,v.w.0.1- The C°-topology on curves is the
topology generated by the basis

B:={Byyw |UV.Wer,V.WcCU}.

The CP-topology is constructed in such a way that curves y,: [0, 1] — M con-
vergeto y: [0, 1] = M if and only if

Yn(0) = y(0), ya(1) = y(1),

and for any U € t and y([0, 1]) C U there exists a positive integer N such that
yn([0,1]) C U for all n > N. For general space-times or sub-space-times this no-
tion of convergence might not be too powerful, some information on that may be
found in [3]. However, it becomes useful for strongly causal sub-space-times.

Theorem 2. [f nspc.f.d. horizontal curves yy,: [0,1] — M converge to y: [0, 1] —
M in the C°-topology on curves in a strongly causal sub-space-time then y is hor-
izontal nspc.f.d.

Proof. The result is standard in Lorentzian geometry. A proof, that y is locally
nspc.f.d. can be found in [11]. By the transitivity of <, itis also globaly nspc.f.d.. Us-
ing Proposition 2 and Corollary 1, we easily generalize the result to sub-Lorentzian
manifolds. O
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3 Reachable Sets, Causality and the Alexandrov Topology

3.1 Reachable Sets

As was mentioned above, the manifold topology and the metric topology of a Rie-
mannain or a sub-Riemannian manifold are equivalent as follows from the Ball-Box
theorem. The causal structure of Lorentzian manifolds allows us to introduce a new
topology, called the Alexandrov topology that is (often strictly) coarser than the
manifold topology. We are interested in comparing an analogue of the Alexandrov
topology in sub-Lorentzian manifolds with the initial manifold topology. Let us be-
gin by reviewing the background from Lorentzian manifolds.

It is well known that in a space-time (not a sub-space-time) (M, g, T) the sets
I*(p) and I~ (p) are open in the manifold topology for all points p € M, see [3].
In sub-space-times this is not true anymore. We give two examples showing that sets
17(0), 1~ (0) may or may not be open in sub-space-times.

Example I. [T)Let M = R3 = {(x,y,2)}, D = span {T = 9, + x?0;, X = 0x}
and g be the sub-Lorentzian metric determined by g(7,7T) = —1, g(T, X) = 0,
gX,X)=1 As0, = ; [X, [X, T1]], the distribution D is bracket generating. We
choose T as the time orientation and show that the set 1 (0, U) is not open for any
neighbourhood U of the origin. Precisely, we show that for small enough 6 > 0 the
point (0, 8, 0) will be contained in 7+ (0, U), while the point (0, 8, —a) will not be
in (0, U) forany a > 0.

The curve y(t) = (0,¢,0) is horizontal t.f.d. since y(t) = Ty, and for small
enough times it runs in U, so (0, 6,0) € I (p, U).

Assume that there is a horizontal nspc.f.d. curve o: [0,7] = M,0 = (x, ¥, 2),
from O to (0, 6, —a) for some a > 0. Then

6(t) = a(O)Tow) + B Xoy = (B(1), (1), x> (D) (1)).

Since o is future directed, we find that a(¢) > 0 almost everywhere. Then due to
absolute continuity

—a=z(1) = /:Z'(t)dt = fora(t)xZ(t)dt,

which is impossible since the integrand is non-negative almost everywhere. Hence,
we obtain (0, 8, —a) ¢ I17(0,U) for any a > 0, which implies that 7 7(0, U) is not
openin M.
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The curve y lies on the boundary of 7 (0, U). It is an example of a rigid curve, or
a curve that cannot be obtained by any variation with fixed endpoints, see [15,17,37].
The curve y is the unique (up to reparametrization) horizontal nspc.f.d. curve from
0to (0, 6,0).

The next example shows that there are sub-space-times for which 7% (p) are open.

Example 2. [7] Consider the sub-space-time with M = R3, D = span{X,Y},
where o 1 9 o 1 0
X = s Y = - s

ox T 27 9z oy 2% 9z
the metric g(X, X) = —g(¥,Y) = —1, g(X, Y) = 0, and the vector field X as time
orientation. This sub-space-time is called the Lorentzian Heisenberg group. In this
sub-space-time the sets /T (p), I~ (p) are open for all p € M. The details of the
proof can be found in [7], where the chronological future set of the origin

I170) = {(x.y.2)| = x>+ y*> +4|z| <0, x >0}

is calculated. The set I ™ (0) is obviously open. We apply the Heisenberg group mul-
tiplication in order to translate the chronological future set I T (pg) of an arbitrary
point po = (X0, ¥o.zo) € R? to the set 17 (0). The map

1
qD(X,y»Z): (X_XO,Y_YO,Z—ZO+ 2(yx0_x)’0))

maps po to 0, preserves the vector fields X and ¥ and hence maps I ™ (pg) to 1 7(0).
Since @ is also a diffeomorphism of R*, we conclude that 1 (pg) is open for all
po € R3. Similarly ®(x, y,z) = (—x,—y, z) exchanges X for —X and Y for —Y,
i.e. it preserves the distribution and the scalar product, but it reverses time orienta-
tion. Hence, it maps I~ (p1, p2, p3) to I T (—p1, —p2, p3) which proves, that also
all chronological past sets are open.

In the following definition we generalize the properties of the above mentioned
map P.

Definition 11. Let (M, D, g, T') be a sub-space-time. A diffeomorphism ®: M —
M iscalled a sub-Lorentzian isometry, if it preserves the sub-Lorentzian causal struc-
ture, i. e.

®.D =D, P*g=g, g(®.T.T)<DO.

Lemma 1. Let G be a group with a properly discontinuous action by sub-Lorentzian
isometries on a sub-space-time M. Then the quotient M/ G carries a canonical sub-
space-time structure, such that the projection to equivalent classes w: M — M/G
is a covering map and a local sub-Lorentzian isometry. Furthermore [ ][; /G (7r ( p)) =

7 (L (p)).
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Proof. The proof that M/ G is a smooth manifold and 7 is a covering map can be
found in any textbook on differential topology. Take ¢ € M/G and p € n~(q).
Then we define Dy = {v € T,(M/G) |3V € D, C T,M : w.V = v}. As the
action of G preserves the distribution, Dy is defined independently of the choice of
p € m~1(g). As the commutators of 7z -related vector-fields are -related and 7 is a
local diffeomorphism, the distribution on M/ G is bracket-generating.

Now take ¢ € M/G and v,w € D; C T,(M/G). We define g, (v, w) :=
gp(V.W), where p € n71(q), V,\W € D, C T,M and nr,V = v, mxW = w.
As 7 is an isomorphism, V' and W are uniquely defined, and as the action of G pre-
serves the scalar product, the value we get is independent of the choice of p. This
gives a well-defined sub-Lorentzian metric on M/G.

The construction of a time orientation on M/ G is a little subtler. If all isometries
® e G satisty . T = T (as is the case in our examples), we can set TMIG = 7, T.
If G is finite, we choose T/¢ = > pen—1(g) T Tp-

In the general case in order to define time orientation 7M/C it is preferable to
work with an alternative definition of a time-orientation. A future selection T is a
set-valued map 7: M — (T M) to the power set Z(TM) of TM such that:

1) f”(p) C Ty M is connected,;

2) the set of timelike vectors in T, M equals 7~”( p)uy —T( J2R

3) T is continuous in the sense that if U C M is open and connected and a vector
field X is timelike on U, then either X, € T(p) or X, € —T(p)forall p e U.

So a future selection is a continuous choice of a time cone in the tangent space as
the future time cone. Clearly, a time orientation 7' by a vector field defines a future
selection function by choosing 7'(p) = {v € T,M|g(v,v) <0, g(v,T) < 0}, but
also a time orientation map defines a time orienting vector field.

To see this, we cover the manifold M by a locally finite countable open cover
{U ™) such that on each U ™ we can define a timelike vector field 7. By the first
and the second properties, either Tp(") e T(p)or Tp(") e —T(p) forall p e UM,
We choose all 7 such that Tp(") e T(p) wherever it is defined. Now, if more than
one 7™ is defined at p € U™, then Tp('”), s Tp("N) e T(p). As future cones are

convex, also any convex combination »_ A" T,,("i) will lie in 7' (p). Consequently,
for a partition of unity { y,, } subordinate to {U ™}, the field T := S an T™ is time-
like everywhere and T, € T( p). Thus from a future selection we obtain a time ori-
entation and these two concepts hold equivalent information. For this reason, some
authors define time orientations as what we called by future selection functions.

A future selection function on the sub-Lorentzian manifold (M/ G, D, g) is de-
fined by

T(q) ={ve Dy C T;(M/G) | gz(v,v) <0, g,(V,Tp) <0}

forany p € 771(¢) and V € D, C T, M such that .V = v. This is well defined
by the property g(®« 7T, T) < 0 for all ® € G. Of course, the future selection 7 on
M /G can be used to obtain a time orientation of M/ G in the usual sense.



On the Alexandrov Topology of sub-Lorentzian Manifolds 297

So there is a canonical well-defined sub-space-time structure on M/G and the
quotient map 7 is a local isometry by construction. The properties of a curve of be-
ing timelike or future directed are entirely local, so under the map = t.f.d. curves
lift and project to t.f.d. curves. This implies the identity of the chronological future
sets. O

The Examples 1 and 2 lead to the consideration of a special type of sub-space-
times.

Definition 12. A sub-space-time in which 7% (p) are open for all p € M is called
chronologically open.

Except of some special cases, such as the Minkowski space, in general J*(p) and
J~(p) are not closed for Lorentzian manifolds. For example, if the point (1, 1) in
two dimensional Minkowski space is removed, then J*(0,0) and J (2, 2) are not
closed. The most what is known up to now is the following.

Proposition 4. [8] Let (M, D, g, T) be a sub-space-time, p € M and U a convex
neighbourhood of p. Then

1. int(/+(p, U))U = JV(p,U). Inparticular,int(I* (p,U)) # Gand J*(p, U)
is closed in U. It holds globally that J* (p) C int(I +(p));

2. int(I*(p,U)) =int(J " (p,U)) and int(I* (p)) = int(J + (p));

3. AT (p.U)=0J"(p.U)and dI+(p) = dJ T (p).

Here A v is the closure of A relative to U and A is the boundary of A relative
toU.

3.2 The Alexandrov Topology

Lemma 2. In a chronologically open sub-space-time (M, D, g, T) the set

B=UT(p)N1 (q)|p.qge M}

is the basis of a topology. This is the first analogue of the Lorentzian Alexandrov
topology that we wish to introduce and investigate in the sub-Lorentzian case.

Proof. We have to check the following two requirements:

1) foreach p € M thereisaset B € % suchthat p € B;
2) if p € By N B; then there is B3 such that p € B3 C B; N By, where By, B>,
B3 € A.

To show the first statement we take a t.f.d. horizontal curve y: (—1,1) - M
such that y(0) = p. Then p € IT(y(=1)) N I—(y(1)).

For the second statement we denote by By = (I T (¢) NI~ (r)), B, = (I (¢")N
I7(r")) and chose a point p € By N By. The set By N B, is an open neighbourhood
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of p in the manifold topology. Thus there is a t.f.d. curve y : (—2¢,2¢) — B1 N B,
with y(0) = p. Then we have

rr Ly(—e) L pLyle) €q.q,

or, in other words p € I T (y(—€)) NI~ (y(¢)) =: B3 C B; N B,.

Definition 13. Let (M, D, g, T) be a sub-space-time. The Alexandrov topology .o/
on M is the topology generated by the subbasis . = {I*(p), I (p) | p € M}.

Lemma 2 implies that for chronologically open sub-space-times the set

B={(p)NI7(q) | p.qe M)
is a basis of the Alexandrov topology 7.

Remark 1. Note that, while we need a time orientation 7" to define the Alexandrov
topology, 7 is independent of 7. A choice of a different time-orientation can at most
reverse future and past orientation of the manifold. Note also, that since 11 (p),
1~ (p) are open for space-times, the manifold topology is always finer than the
Alexandrov topology. This is only true for chronologically open sub-space-times
in the sub-Lorentzian case.

3.3 Links to Causality

The definition of the Alexandrov topology suggests a link between the Alexandrov
topology and causal structure of a sub-space-time. The following theorem general-
izes a well known fact from the Lorentzian geometry.

Theorem 3. Every sub-space-time compact in the Alexandrov topology (in particu-
lar every compact space-time) M fails to be chronological.

Proof. Cover the manifold M by % = {I*(p) | p € M}. Then we can extract a
final subcover I T (p1), ..., I T (p,) of M. Since these sets cover M, for any index k
with1 <k < nthereexistsi(k), 1 <i(k) < nsuchthat px € I (pix)). It givesan
infinite sequence p1, p;i(1). PiGi(1)) --- containing only finitely many elements. Thus
there exists k, 1 < k < n, such that p; appears more than once in the sequence. This
means that pp < pi by transitivity of the relation < and M is not chronological.

Proposition 5. /3, 19] For any space-time (M, g, T) the following are equivalent:

1) the Alexandrov topology on M is Hausdorff;
2) the space-time M is strongly causal;
3) the Alexandrov topology is finer than the manifold topology.

The proof of Proposition 5 employs quite a few Lorentzian notions, specifically
openness of the sets * and strong transitivity of the causal relations <, <, that do
not generally hold in the sub-Lorentzian case. We show that results of Proposition 5
still hold in chronologically open sub-space-times, see also Theorem 8.
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Lemma 3. Let (M, D, g, T) be a sub-space-time, p € M andq € dJ T (p)NJ T (p),
p # q. Then any nspc.f.d. horizontal curve y from p to q is totally contained in
aJ T (p). If y is a nspe.fd. curve with y(9) € int(J T (p)) then y(t) € int(J T (p))
forallt > 0.

Proof. Let y: I — M be an absolutely continuous nspc.f.d. curve and p = y(0),
g = y(0). Assume that ¢ € 3JF(p). Let us choose a normal neighbourhood U of
¢ and an orthonormal frame T, X1, ..., X7 on U. Then we can expand y = T +
Zid=0 u' X; in that frame, where we fixed the parametrization. The theory of ordi-
nary differential equations ensures that there is a neighbourhood V' C U of ¢ and
€ > 0 such that a unique solution of the Cauchy system

d
7 1) = =(Tr@) + w0 Xi(r @), 1€0.el. 7 0) =,
i=0

exists for continuous coefficients u’, for any r € V, and that y,(¢) depends contin-
uously on 7. The result can also be extended for u’ € L?([0, €]).

As g € dJ1(p), thereis r € V N (JT(p))¢. Since y, is nspc.p.d., y,(t) ¢
Jt(p)foranyt € [0, €] either, but as y,(¢) depends continuously on the initial data
r € J¥(p)¢, we can choose r such that y,(¢) is arbitrarily close to (6 — t). Thus,
if y(0) € 3JT(p) N JT(p) for & > 0, then also y(¢t) € dJF(p) N JT(p) for
t € [0 — €, 0] for some € > 0. This implies [0, 8] € J*(p) N dJ T (p). O

Theorem 4. Let (M, D, g, T) be a chronologically open sub-space-time. Then p <
q<Lrorp<Kq=<rimpliesp <Lr.

Proof. Assume p < q <r.Theng € I (p) = int(J ¥ (p)). Therefore, any causal
curve y connecting p to r and passing through ¢ is contained in int(J ¥ (p)) after
crossing ¢ due to Lemma 3. In particular r € int(J " (p)) = I (p).

Assume now that p < g < r. Reversing the time orientation does not change
the Alexandrov topology, so the sub-space-time remains chronologically open. In
(M, D, g,—T) wehave r < g < p, so by the first step r < p, and by reversing T’
again we have p < rin (M, D, g, T). O

Note that the proof of Theorem 4 uses Proposition 4 instead of the calculus of
variations as in the classical Lorentzian case. It shows that the strong transitivity of
causal relations holds not because one can vary curves, but because the system of
t.f.d. curves has nice properties. Combining the last two results, we state the follow-
ing summary.

Corollary 2. Let (M, D, g, T) be a sub-space-time. If M is strongly causal, its
Alexandrov topology is finer than the manifold topology. If M is chronologically
open, the equivalences formulated in Proposition 5 still hold.

Proof. Let M be strongly causal, but not necessarily chronologically open. Let U
be an open set in the manifold topology. Without loss of generality, we can also as-
sume, that U is causally convex. Let y;: (—2¢,2¢) — U be a t.f.d. curve such that
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¥4(0) = q. y4(—€).y4(€) € U.Then g € I (yg(—€)) N I (yq(€)) =: Ay C U.
Thus U = qeu Aq and any set that is open in the manifold topology, is also open
in the Alexandrov topology. The rest is just a special case of Theorem 8, which we
state later. O

Example 3. For non-chronologically open sub-space-times it is possible to get an
Alexandrov topology that is strictly finer than the manifold topology, but that are
not strongly chronological. Consider

N = {((x,y,z) €R3>\<(0,2n,z)| zeR,n eZ)}.

Let the horizontal distribution D be spanned by 7T = fy +x22 X = 3‘1 and

0z°
equipped with the scalar product g(7,7) = —g(X,X) = —1, g(T,X) = 0.
Now consider the action of the group G = {®,(x,y,z) = (x,y + 2n,z)} by
sub-Lorentzian isometries on N. Define M = N/G to be the quotient space

of the group action and let #: N — M denote the canonical projection. Then
(M, 7+ D, . g, w4 T) is a sub-space-time by Lemma 1. To simplify the notation we
write D = 7. D, g = mogand T = 7, T.

Let us first show that (M, D, g, T') is not strongly causal. Let po = [0, yo, zo] be
some point on M and U a neighbourhood of pg. Let 0 < § < 1 and consider the
curve

823
ys(t) =7r(8t,yo+t,20+ 3 )

By definition, the x-coordinate of y;s is strictly positive for positive times, and as
Ppo € M, the curve is well-defined on the quotient space. The curve satisfies y5(0) =
P0> Vs (t) = Tyst) +8 Xy and y5(2) = [po + (26,2, 8‘§2 ] So for small U, any
curve of the t.f.d. family {ys}se(,1) leaves U before ¢ = 2, but for small enough
§ they return to U later. Hence po does not have arbitrarily small neighbourhoods
U in M such that no t.f.d. curve that once leaves U will never return, and strong
causality fails at py.

Now we want to show that the Alexandrov topology on M is finer than the man-
ifold topology. Take po = [xo, Yo, Zo] € M and a neighbourhood U of py. We
want to show that there are points p; = [x1, y1, z1] and py = [x2, 2, z2] such that
poe It (p)NI~(p) CU.

First assume that xo = 0. Then the curve y(¢) = 7 (0, yo + ¢, zo) is well-defined
on some small parameter interval such that yo + ¢ ¢ 27Z. Furthermore, it is t.f.d.
as y = T, and clearly for some small € > 0: y(—¢€,€) C U. As in Example 1 we
find, that up to monotone reparametrization, y is the only t.f.d. curve from p; =
[0, yo — €, zo] to p2 := [0, yo + €, zo]. Then

po €It (p1) NI~ (p2) ={m(0,yo+1.20) | 1 € (—e.€)} C U.

This also shows that there are sets which are open in the Alexandrov topology, but

. . %ol
not in the manifold topology. Let us now suppose xo 7# 0 and choose € < 2"



On the Alexandrov Topology of sub-Lorentzian Manifolds 301

Consider the curve
yi(—2€,2¢) > M, y(t) =7 (xo.y0 + 1. 20 + x51)

with derivative y(t) = T, (;) and set p; = y(—¢€), p> = y(€). Due to non-vanishing
value of xq the curve is well-defined. Clearly po € I (p1) N I~ (p2). Now take
p = [X,7,2] € IT(p1) N I~ (p>). The components X, Z are independent of the
choice of a representative, and as z is non-decreasing along t.f.d. curves, we find

71 = 20 —xj€ < 7 < zo + xj€ = 15.

Leto = (0x,0y,0;)beat.f.d. curve connecting p; = o(0) with p. Fix parametriza-
tionof o such that6 = T+ BX. Then we find a fixed time # > 0 such that p = ¢(0)
and

|X21 | }

min{z,
o)%(s) ds >z1 + [ of(s) ds
0

t

o:(t) = 21 +[ 0z(s) ds = 21 +/0
0

min{z, lle l } X1\2 | 2

1 . xi| X3

221+[ ( ) ds=21+m1n{t, } .
0 2 2 4

As x1 = xo we combine the above obtained inequalities and see

|X0|} x5

Zo—i—xgezfzoz(é)zzo—xge—i—min{é, 5 4

or equivalently 8¢ > min{0, |xo|/2}, which in its turn implies 8¢ > 6 due to our
choice of €. This however leads to

[V = Yol < |y = y1l + [y1 — Yol =0 + € < e,

< 6 < 8e,

0
1 —xol = [T — x| = ‘[0 B(s) ds

0 0 2
3
|Z—zo| = ‘[ oZ(s)ds| < [ (|xo]+8¢€)%ds < 8¢ (|xo| + 8€)* < 8¢ ( |;0|) .
0 0

Hence, the set 1 T(py) N I~ (p2) becomes arbitrarily small as we let € tend to 0, but
contains pg for any € > 0. So inside every neighbourhood U of py, that is open in
the manifold topology, we can find py, p» € U such that pg € I (p1) N I~ (p2).
This means also that at xo # 0 the Alexandrov topology is finer than the manifold
topology: 1 C &/ = 1 & /.

Theorem 5. A sub-space-time (M, D, g, T) is chronological if and only if the pull-
back of the Alexandrov topology along all t.f.d. curves to their parameter inverval
I C R is finer than the standard topology on I as a subspace of R.
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Proof. Assume that M fails to be chronological. Then there is a closed t.f.d. curve
y: [0,1] — M, which means y(s) < y(t) forallz,s € [0, 1], hence the pullback
of the Alexandrov topology along this specific y is {@, [0, 1]} = y~ ().

If, on the other hand, M is chronological, and y is a t.f.d. curve on the open inter-
val I, then (s, 1) = y~' (I (y(s)) N I~ (y(t))) fors,t € I.If I = [a,b]is closed,
then (s, b] = y~1(I T (y(s)) N I~ (p)) for any p € I (y(b)) and similarly for the
other cases. O

3.4 The Alexandrov and Manifold Topology in sub-Lorentzian
Geometry

We now come to a result that is new in sub-Lorentzian geometry and at the core of
our investigation, namely the relation of the Alexandrov topology <7 to the mani-
fold topology t in proper sub-space-times. In contrast to space-times, we have the
following result.

Theorem 6. For sub-space-times all inclusions between the Alexandrov topology
o/ and the manifold topology Tt are possible, i. e. there are sub-space-times such
that

W=, Qr24, 3t J, ArgAd 1.

Proof. The proof is contained in the following examples. The first case T = &7 in
Theorem 6 is realized for strongly causal space-times and the second case v 2 &7 is
realised in space-times, which fail to be strongly causal. They are therefore in par-
ticular satisfied for certain sub-space-times. We show even more, namely that there
are sub-space-times, with a smooth distribution D & TM, which exhibit this type
of behaviour.

Example 4. In the Lorentzian Heisenberg group M = R3, D = span{T, Y}, where

ad 1 0 d 1 0
T=e T2V Y= 2%
and g(7,T) = —g(Y,Y) = —1 the manifold topology 7 and the Alexandrov topol-
ogy <7 agree: T = 7.

We know from Example 2 that &/ C 7 since a subbasis of .27 is open in t. To
obtain the inverse inclusion T C &/ we show that the Lorentzian Heisenberg group
is strongly causal. To that end we construct a family of neighbourhoods B(py, €) of
apoint po = (xo, Yo, Zo), that become arbitrarily small for e — 0 and such that any
nspc.f.d. horizontal curve leaving B(po, €) will never return back. Define

|x — xo| <,
B(po,€) = (x,y,z)eR3‘ |y —yol <x—x0 +e,
|z — zo| < |x0|+|%'o|+7e(x_xO+€)
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Obviously B(py, €) is open in M for any choice of pg, € > 0, and
B(po,€) C (xo—€,x0+ €) X (yo — 2€, x9 + 2¢€) X (zg — 2C€, z9 + 2C¢) ,

where C := C(x9, y0) = |x°|+|2y°|+7 fore < 1,50 B(po, €) can be made arbitrarily
small.

Lety: I — M,0 € I, be anspc.f.d. horizontal curve such that y(0) = p; =
(x1,¥1,21) € B(po,€). Thenwehave p(¢) = a(t) Ty )+ B(t) Yy ) witha > 0and
|B| < «. Without loss of generality we assume that @ = 1 by fixing the parametriza-
tion. Then

x(t) —x1 =[ta(s)ds=[t1ds=t,
0 0

|y(r>—y1|=‘[0 B(s)ds 5[0 Lds = x(0) — xy.

If we take > 0 such that y(t) € B(po, €), then
T =x(1)—x1 = x(1) — x0 + x0 — X1 < |x(7) — X0| + |x0 — x1| < 2¢,

and it follows for 0 < ¢ < t that

2021l =| [ ey -poxends] <) [ (ol +xo)d

1 t
[ (il 150 =l al 4 1) =i ds
il bl + e

1
= Unl+i+lal+nr < 5 (x(t) — Xo)
— Yol + + |x1 — xo| + |xo0| + 4€
< ly1 = yol + |ol |21 ol + [xol (x (1) — xo)
7
_ |xol +|yol + E(x(t)—xl)

- 2
since by the construction of B(py, €) we have |x; —xg| < €, |y1 —yo| < 2¢.Ouraim
is to show that y(¢) € B(po. €), and if y leaves B(py, €), then it can not return later.
As x(t) is increasing in 7, we have x(¢) € [x1, x(t)] so x(¢) = Ax; + (1 — A)x(7)
for some A € [0, 1] and

|x(1) = xo| = |Ax1 4 (1 = A)x (1) — xo| = Alx1 —Xo| + (1 = D)[x(7) — x0| <e.

Finally, we get

[y(#) = Yol = |y(®) —y1l+ |y1 — yol < x() —x1 +x1 — X0 + €
= x(f) — xo t ¢,
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[xo| + [yol + 7€

5 (x(@) —x0 +¢).

|z(t) = 2ol = [2(t) — z1] + |21 — 20| <
So y(t) € B(po, €) implies y(¢) € B(po,€) forall¢ € [0, ], and no nspc.f.d. curve
can leave B(py, €) and return there.

Assume now that there is a nspc.p.d. curve y leaving and returning to B(py, €).
By reversing the orientation of y, we find a nspc.f.d. curve leaving and returning to
B(po, €), which leads to a contradiction. Hence, we have shown that the Lorentzian
Heisenberg group is strongly causal, and by that T C &7 and t = 7.

For the proof of the second statement we give the following example.

Example 5. Let M be the Lorentzian Heisenberg group and G = G, the group of
isometries

x — n cosh(gp),
G=1®,(x,y,z) = | y—nsinh(p), ‘n e
z + % (y cosh(p) — x sinh(gp))

for some fixed ¢ € R. Then the manifold topology tas/6 in M/ G is strictly finer
than the Alexandrov topology “/y/G6: “mM/G T™™/G-

We write [p] for points from M/G. Take a point [¢] € I T ([p]). We can pick up
a pre-image ¢ € I (p) N w7 1([q]) by Lemma 1. Because I ™ (p) is open, a small
neighbourhood U C M of ¢ is contained in I+ (p). We choose U to be so small,
that 7| is a homeomorphism. Using Lemma 1, we find [¢] € n(U) C (I T (p)) =
I7([p]), where 7(U) is open, since we choose U to be small enough. Therefore,
MG C TM/G-

On the other hand M/ G contains the closed t.f.d. curve

y:R —>M/G, y(t)=mn(t-(cosh(p),sinh(p),0)),

where y(0) = y(1). This means, that forany V € o/ wefindy(s) e V & y(t) € V
for any s,¢ € R. Therefore, the Alexandrov topology cannot be Hausdorff, in par-
ticular, tpr/6 € @G- Together with the previous inclusion, we deduce <%y,
™/G-

For the third statement we refer the reader back to Example 3, see also Example 1.
We now turn to the last example to finish the proof of Theorem 6.

Example 6. Take the sub-space-time from Example 1 and the group
G ={Pn(x,y,2) = (x,y +2n,2) |n € Z}.

Then the Alexandrov topology and the manifold topology of M/G are not compa-
rable: t ¢ &/, 1 P .

The set 1 7([0]) is not open in M/ G because on the one hand [(0, 8, 0)] € I+([0])
for all & > 0 since (0, 8, 0) € I(0), but on the other hand [(0, 8, —a)] ¢ I ([0]).
Indeed, if [(0, 8, —a)] were in I T([0]) there would be a t.f.d. curve y in M/ G from
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[0] to [(0, 8, —a)]. Then we could lift this curve to a t.f.d. curve  in M from 0 to
some representative (0, 0 + n, —a) in the pre-image of [(0, 0, —a)], n € Z. This is
not possible as shown in Example 1. This proves &6 ¢ t™v/G-

On the other hand M/ G contains the closed t.f.d. curve

y:R—>M/G, y=m(0,10),

where y(0) = y(1). This means as in the preceding example that tyr/6 ¢ /G-

3.5 The Open Causal Relations

We have seen that pathological cases occur, when we extend the Alexandrov topol-
ogy 7 in the obvious way to sub-space-times. We now present a different extension
of &7 with better behaviour, that unfortunately may seem less sensible from a physi-
cal point of view, because it simply ignores the pathological cases that can occur. Let
us start by explaining what happens, if we just force our extension of the Alexandrov
topology to be open in the manifold topology.

Lemmad. Let (M, D, g, T) be a sub-space-time. Then q € int(IT(p)) & p €
int(1 ~(q)).

Proof. Assume g € int(I T(p)). We have shown that also ¢ € int(I~(g)), which
means

q € int(It(p)) Nint(I=(q)).

In particular, there is a point r € int( 7 (p)) Nint( ~(g)) and a t.p.d. curve y such
that

1
y(0) =g, y(2)=r, y(1) = p.

By reversing time and using Lemma 3, we see that y(¢) € int(~(q)) forallt > !,
so in particular p € int(/~(q)). The same holds with reversed roles.

We conclude, that for p € M there is some ¢ € M such that p € int(I*(g)), and
we can even choose ¢ as close to p as we want. In the same way as for chronologi-
cally open sub-space-times we find a way to obtain the basis of a topology, that we
call open Alexandrov topology.

Definition 14. Let (M, D, g, T') be a sub-space-time. We write p <, ¢ if g €
int(I T (p)). The open Alexandrov topology 7, is the topology generated by the
basis

Bo = {int(I *(p)) Nint(I~(¢)) | p.q € M}.
Theorem 7. The strong transitivity of order relations <, <, hold in the sense:

) p<Koqg = p<Lq = p=<gq;
2) p<Loq=r = p<KLor;
3) p<q<Kor = p<Zor.
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The Alexandrov topology is finer than the open Alexandrov topology and they are
the same if and only if M is chronologically open.

Proof. Statement (1) follows trivially from the definition. To show (2) we choose
p.q,r € M such that p <, g < r. Then there is a horizontal nspc.f.d. curve
from p to r passing through ¢g. Due to Lemma 3, the curve is totally contained in
int(J T (p)) = int(I T (p)) after passing ¢, in particular we find p <, r. By revers-
ing the time orientation and employing Lemma 4 we obtain (3).

To show that o7, C o let now p, ¢, r be such that p <, ¢ <, r. Then there are
points p’, " on horizontal t.f.d. curves, connecting p to ¢ and ¢ to r respectively,
such that p <, p’ K€ ¢ K r’ <, r, hence

geIT(P)nI= @) Cint(IT(p)) Nint(I~(r)),

or in other words, the Alexandrov topology <7 is finer than the open Alexandrov
topology o7,. Clearly, these two topologies agree if M is chronologically open, since
then I T (p) = int(/ T (p)) and bases agree. Nevertheless, they cannot coincide in
the case when M is not chronologically open. O

This helps us to generalize Theorem 3.

Proposition 6. Every compact sub-space-time fails to be chronological.

Theorem 8. Let (M, D, g, T) be a sub-space-time. Then the following are equiva-
lent:

(1) M is strongly causal, (2) <, = t, (3) o, is Hausdorff.

Proof. Corollary 2 implies that in strongly causal sub-space-times the Alexandrov
topology is finer than the manifold topology. A combination of the same proof with
Lemma 4 shows, that also the open Alexandrov topology is finer than the manifold
topology, which is, in particular, Hausdorff.

It remains to show that if in a general sub-space-time the open Alexandrov topol-
ogy is Hausdorff, the sub-space-time must be strongly causal. The proof essentially
follows [19], only one needs to use the convergence of curves in the C °-topology in
a convex neighbourhood instead of geodesics. O

Since &/ = 47, in chronologically open sub-space-times, we deduce Corollary 2
from Theorem 8. We actually find that the strongly causal sub-space-times are those,
in which even the coarser topology o7, is Hausdorff, and not only <7

3.6 Chronologically Open sub-Space-Times

We have seen in Theorem 8 how the open Alexandrov topology of a sub-space-time
and the property of being strongly causal are linked. It is natural to ask, what other
properties the topological space (M, <7,) possesses and whether they are also related
to causality. Unfortunately, if <7, is Hausdorff, it is already the same as the manifold
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topology and thus is metrizable, so it does not make any sense to ask for stronger
properties than Hausdorff. Neither is the condition that one-point sets be closed in-
teresting, because it only means that M is chronological. The following result holds
quite trivially, as 7, C t.

Proposition 7. Let (M, D, g, T) be a sub-space-time. Then the topological space
(M, <7,) is second countable, path-connected and locally path-connected, i. e. also
first countable, separable, connected and locally connected.

Note that the same need not hold for the topological space (M, <7). In the sub-space-
time from Example 1 we have I (0, yo, zo)N I~ (0, yo+0, zo) = {(0, yo+t. zo)|t €
(0, 8)}, so the lines on which z is constant and x = 0 are open in the Alexandrov
topology. As there are uncountably many such lines, the topology .27 is not second
countable. Still, it is metrizable by the metric

min{l, |x —a| 4+ |y —b|+ |z —c|} if x,a #0,

X a 1 if{x=0,a;«éOor

d yi.lb = x #0,a=0,
z c 1 if x=a=0,z#c,
min{l, |y — b|} if x=a=0,z=c,

and hence first countable. The topological space (M, <7) is not even connected as it
can be written as a disjoint union of open sets M = {x < 0} U {x = 0} U {x > 0}.
Since chronologically open sub-space-times are the most well-behaved, we are in-
terested in finding criteria to see that sub-space-times are chronologically open.

Definition 15. [2,15] Let M be a manifold with a smooth distribution D. A curve
y : I — M is called a Goh-curve, if there is acurve A : I — T*M, such that

rodl=y, AMX)=AX,Y]=0
for all horizontal vector fields X, Y and A # 0 anywhere.

Proposition 8. [8] Let (M, D, g, T') be a sub-space-time, p € M, and y : [0, 1] —
M a horizontal t.f.d. curve such that y([0,1]) C dIT(p) N I (p). Then y is a
Goh-curve.

Remember, that if ¢ € 317 (p) N I (p) then any horizontal t.f.d. curve y from p
to ¢ must run entirely in 31 ¥ (p). The proof of the following proposition is trivial.

Proposition 9. Two step generating sub-space-times have no Goh-curves and there-
fore they are chronologically open.

Analogously to Theorem 5, we can test whether a sub-space-time is chronologi-
cally open using horizontal t.f.d. curves.

Theorem 9. A sub-space-time (M, D, g, T) is chronologically open if and only if
for all horizontal t.f.d. curves y: I — M the pullback of the Alexandrov topology
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along y to I is coarser than the standard topology on I, considered as a subspace
of R.

Proof. Tt is clear that, if & C 17, then y~1(&7) C y~ (i) C 17, as y was as-
sumed to be continuous to (M, tpr). If on the other hand, &/ ¢ 154, then there is a
point p € M, such that I T (p) or I~ (p) is not open. Without loss of generality we
may assume, that /*(p) is not open. Then there is a pointg € I (p) NI T (p).

Now take r € int(I=(g)). If r € IT(p), then p K 1 K, ¢ = ¢ € int(I T (p)),
which possesses a contradiction, so r ¢ I+ (p). In this way we can construct a se-
quence of points r; < 1, K ... < ¢ converging to ¢, such that r; ¢ I (p). By
assumption there are horizontal t.f.d. curves

Vn - [0’2—11] - My Vn(O) =Tn, Vn (2—11) =TIn+1.

We can consider the continuous horizontal t.f.d. curve y: [0,1) — M that is ob-
tained by

n—1 n—1 n
y(t) = vn (t—Zz"‘), te |:22_k,22_ki|
k=0 k=0 k=0

By Corollary 1, the curve y is absolutely continuous with nspc.f.d. derivative almost
everywhere. Moreover, since all segments of y have t.f.d. derivatives almost every-
where, so does y. Clearly y can be continuously extended to y (1) = ¢, and then
y~Y(I*(p)) = {1}, which is not open in [0, 1]. O

4 The Time-Separation Topology

In Lorentzian geometry there is a relation between causality and the time separa-
tion function 75 defined in (1). To emphasise the analogy between the Lorentzian
distance function and the Riemannian distance function define the outer balls

Ot (p.)={g e M|T5(p.q) > ¢}, O (p.e)={q €M |T (q.p) > ¢}
The outer balls suggest a way to introduce a topology related to the function 75 .

Definition 16. The topology t7s created by the subbasis
S ={0%(p.e)|pe M, e >0}
is called time separation topology.
Proposition 10. /3] Let (M, g, T) be a space-time. Then trs = o = 4.

As a consequence of Proposition 1 in space-times we have 75 (p,q) > 0 & g €
I (p). Clearly, the implication from right to left still holds in sub-space-times, but
the following example shows that the converse direction fails for some sub-space-
times, and that Proposition 10 can not be extended.
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Example 7. Take the sub-space-time M = R? with the bracket generating distri-
bution generated by X = 0y + x20z, Y = 0dx. Define a metric g(X, X) = a,
g(X,Y)=0b,g(Y,Y) = 1, where functions a, b € C*°(R3) are such that

-1 0
CISO, a_b2<0, a(O,y,O)={O 2
3

IA TA

y<}
y<l

The metric g is sub-Lorentzian since the matrix g = ) has one positive and

a
b1
one negative eigenvalue due to det(g) = a —b? < 0. The vector field T = X —bY
will serve as time orientation. Indeed,

g(T,X)=g(X —bY,X)=g(X,X)—b-g(X,Y)=a—b*> <0,
g(T.Y)=g(X.Y)—bg(Y.Y)=b—b =0,

— g(T.T)=g(X.T)—bg(Y.T)=a—b* <0.
In this sub-space-time 75 (0, (0, 1,0)) > 0but (0, 1,0) ¢ 7*(0). Also0 < (0, 3,0)
and (0, ;,O) < (0,1,0) but 0 « (0, 1, 0). To prove it we consider y: [0, 1] — M,
y(t) = (0,£,0). We know that y(r) = X(y(r)), and it implies g(y.y) = a < 0
and g(y,T) = a — b? < 0. Thus, the curve y is nspc.f.d. and has positive length
L(y) = },and itis t.£.d. between (0, 5,0) and (0, 1,0).

Like in Example 1 one sees that the curve y is the only f.d. curve connecting 0 and
(0, 1, 0) up to monotone reparametrization. However, monotone reparametrization

does not influence causal character.
Theorem 10. There are sub-space-times where tps # <.

Proof. Consider the sub-space-time from Example 7. Here p = (0,1,0) €
O™ (0, ;). However, since a = 0 around p and since the distribution is two-step
bracket generating away from {x = 0} the only possible nspc. Goh-curves around p
are null. Therefore, if p € 17 (g), it cannot lie on the boundary, so p € int( T (q))
and the same for /~(g). Hence any neighbourhood U of p, that is open in the
Alexandrov topology, contains a whole neighbourhood V' C U of p in the man-
ifold topology. But p € 3/+(0) C 1+ (0) and therefore also p € d07(0, }) which
means V' ¢ O%(0, }). Therefore the set O (0, }) is not open in the Alexandrov
topology. 0

Note that in the sub-space-time of Example 7, neither &/ C t nor 775 C T,
as 07(0, ;) and 7*(0) are not open in the manifold topology 7. In this example,
the three generalizations .o, @% and tys of the Alexandrov topology are all dis-
tinct. In [8] the existence of chronologically open sub-space-times where 175 # t©
is stated. We do not know either examples, where &7 ¢ trs, or a proof excluding
this case.
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Theorem 11. Let (M, D, g, T) be a sub-space-time with manifold topology t. Then
always <4, C tps and tps C v implies &/ C t. If tps = 1, then also v = &/ If
s C Tt and of = t, then also tys = T.

Proof. Take a set A € <7, and a point p € A. Without loss of generality A =
int(/*(g)) N int(I~(r)) for some points g, € M. Take a horizontal t.f.d. curve
y: [0,1] — M such that y(0) = ¢, y(}) = p, y(1) = r and define p; = y(}),
P2 = y(i). By the transitivity of < and <, we obtain

peot (171,2_1TS(171,17))00_ (172,2_1TS(17,172)) c JH(p1)NJ~(p2) C A.

Concerning the second statement, we have O (p, €) C int(J T (p)) = int(I T (p))
because O (p,€) C JT(p) and OT(p, €) is open. Therefore

Jotw.ecitop.

€>0

But for any ¢ € I1(p), the value TS(p, q) is positive or infinite, so 1T (p) C
Ueso OT (p. €). This implies that I T(p) = J..o O (p,€) and I (p) is open in
the manifold topology.

Now assume that r7s = 7. Take p € M, € > 0, and any g € OT(p, €). Ev-
ery horizontal t.p.d. curve y starting at p will initially lie in O (p, €), as the set
is open. So there is a point 7 € I~ (g) N OF(p,¢). Forall s € I T (r) we find that
TS(p.s)=TS(p.r)+TS5(r,s) > TS(p.r) > €. Weseethats € OT (p, €), which
means ¢ € I (r) C OF(p, €). The same arguments hold for past outer balls, so we
find t = tps C /. Combining this with the first statement, we obtain &/ = 7.

Now assume that 77s C 7 and .7 = 7. Take any point p € M and ¢ € I (p).
Clearly T5(p.q) > 0, possibly infinite. Choose € = ;Ts(p, q), if the time sep-
aration is finite and choose any € > 0 otherwise. Then ¢ € O (p,€) C J¥(p)
clearly. Since O (p, €) is open, it even holds that Ot (p,e) = int(OF(p,€)) C
int(J T (p)) = int(I T (p)) = IT(p), hence g € O (p,€) C I (p), which means
that t = &/ C 775, and finally T = 7ps. |
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The regularity problem for sub-Riemannian
geodesics

Roberto Monti

Abstract We review some recent results on the regularity problem of sub-Rie-
mannian length minimizing curves. We also discuss a new nontrivial example of
singular extremal that is not length minimizing near a point where its derivative is
only Holder continuous. In the final section, we list some open problems.

1 Introduction

One of the main open problems in sub-Riemannian geometry is the regularity of
length minimizing curves, see [12, Problem 10.1]. All known examples of length
minimizing curves are smooth. On the other hand, there is no regularity theory of a
general character for sub-Riemannian geodesics.

It was originally claimed by Strichartz in [15] that length minimizing curves are
smooth, all of them being normal extremals. The wrong argument relied upon an
incorrect application of Pontryagin Maximum Principle, ingnoring the possibility
of abnormal (also called singular) extremals. In 1994 Montgomery discovered the
first example of a singular length minimizing curve [11]. In fact, manifolds with
distributions of rank 2 are rich of abnormal geodesics: in [9], Liu and Sussmann in-
troduced a class of abnormal extremals, called regular abnormal extremals, that are
always locally length minimizing. On the other hand, when the rank is at least 3 the
situation is different. In [4], Chitour, Jean, and Trélat showed that for a generic dis-
tribution of rank at least 3 every singular curve is of minimal order and of corank 1.
As acorollary, they show that a generic distribution of rank at least 3 does not admit
(nontrivial) minimizing singular curves.

The question about the regularity of length minimizing curves remains open. The
point, of course, is the regularity of abnormal minimizers. Some partial results in
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this direction are obtained in [8] and [13]. In this survey, we describe these and
other recent results. In Sect. 5.2, we present the classification of abnormal extremals
in Carnot groups [6], that was announced at the meeting Geometric control and sub-
Riemannian geometry held in Cortonain May 2012. The example of nonminimizing
singular curve of Sect. 7 is new.

We refer the reader to the monograph [2] for an excellent introduction to Geo-
metric Control Theory, see also the book in preparation [1].

2 Basic facts

Let M be an n-dimensional smooth manifold, n > 3, let £ be a completely non-
integrable (i.e., bracket generating) distribution of r-planes on M, r > 2, called
horizontal distribution, and let g = g, be a smooth quadratic form on D (x), vary-
ing smoothly with x € M. The triple (M, D, g) is called sub-Riemannian manifold.

A Lipschitz curve y : [0,1] — M is D-horizontal, or simply horizontal, if
y(t) € D(y(t)) forae. t € [0, 1]. We can then define the length of y

L) = ( [ snotanar)”

For any couple of points x, y € M, we define the function
d(x,y) = inf{L()/) : y is horizontal, y(0) = x and y(1) = y}. (1)

If the above set is nonempty for any x, y € M, then d is a distance on M, usually
called Carnot-Carathéodory distance.

By construction, the metric space (M, d) is a length space. If this metric space
is complete, then closed balls are compact, and by a standard application of Ascoli-
Arzela theorem, the infimum in (1) is attained. Namely, for any given pair of points
X,y € M there exists at least one Lipschitz curve y : [0,1] — M joining x to
y and such that L(y) = d(x, y). This curve, which in general is not unique, is
called a length minimizing curve. Its a priori regularity is the Lipschitz regularity. In
particular, length minimizing curves are differentiable a.e. on [0, 1].

For our porpouses, we can assume that M is an open subset of R” or the whole
R” itself, and that we have D(x) = span{X;(x),..., X, (x)}, x € R”", where

X1,..., X, are r > 2 linearly independent smooth vector fields in R”. With respect
to the standard basis of vector fields in R”, we have, forany j = 1,...,r,
- d
X = Xi: , 2
j ; o, )

where X;; : R” — R are smooth functions. A Lipschitz curve y : [0,1] —
M is then horizontal if there exists a vector of functions h = (hy,...,h,) €
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L*°(J0, 1]; R"), called controls of y, such that

r

y=> hiXj(y). ae onl0.1].
j=1

We fix on D(x) the quadratic form g, that makes X1, ..., X, orthonormal. Any
other choice of metric does not change the regularity problem. In this case, the length

of y is : s
L) = ([0 o)

Let h = (hy,...,h,) be the controls of a horizontal curve y. When y is length
minimizing we call the pair (y, h) an optimal pair. Pontryagin Maximum Principle
provides necessary conditions for a horizontal curve to be a minimizer.

Theorem 1. Let (y, h) be an optimal pair. Then there exist & € {0, 1} and a Lip-
schitz curve & : [0, 1] = R” such that:

) &0+ I[§[#00n[0.1];
i)  &h; + (£, Xj(y)) =00n[0,1]forallj =1,....r;

iii)  the coordinates&x, k = 1, ..., n, ofthe curve & solve the system of differential
equations
: d— 8X]l
Sk = _Z } : Ixy (y)h;&. ae onl0,1] 3)
j=li=1

Above, (£, X;) is the standard scalar product of £ and X; as vectors of R”. If we
identify the curve £ with the 1-form in R” along y

E = E]dxl + ...+ Endxn,

then (£, X;) is the covector-vector duality.
The proof of Theorem 1 relies upon the open mapping theorem, see [2, Chap. 12].
For any v € L2([0, 1]; R"), let " be the solution of the problem

.
PU=Y 0 X)), v (0) = xo.
j=1

The mapping & : L2([0,1];R") — R”", &(v) = y(1), is called the end-point
mapping with initial point xo. The extended end-point mapping is the mapping ¥ :
L%([0,1];R") — R"**!

Fv) = ([01 |v|2dt,8(v)).

If (y, h) is an optimal pair with y(0) = xo then ¥ is not open at v = h and then
its differential is not surjective. It follows that there exists a nonzero vector (A9, A) €
RxR"” = R™**! such that forallv € L2([0, 1]; R") there holds {d ¥ (h)v, (Lo, A)) =



316 R. Monti

0. The case A9 = 0 is the case of abnormal extremals, that are precisely the critical
points of the end-point mapping &, i.e., points & where the differential d & (h) is
not surjective. In particular, the notion of abnormal extremal is independent of the
metric fixed on the horizontal distribution.

The curve &, sometimes called dual curve of y, is obtained in the following way.
Let & be the controls of an optimal trajectory y starting from xo. For x € R”, let yy
be the solution to the problem

e = hiXj(yx) and y(0) = x.
j=1

The optimal flow is the family of mappings P; : R” — R”, P;(x) = yy(t) with
t € R. We are assuming that the flow is defined for any # € R. Let (A9, A) € RxR”
be a vector orthogonal to the image of d ¥ (k). At the point xo we have the 1-form
£0) = Aydx1 + ... + Aydx,, where (A1, ..., A,) are the coordinates of A. Then
the curve ¢ — £(¢) given by the pull-back of £(0) along the optimal flow at time ¢,
namely the curve

§(1) = PZ(x0)§(0). “4)

satisfies the adjoint Eq. (3).

We can use i)—iii) in Theorem 1 to define the notion of extremal. We say that
a horizontal curve y : [0, 1] — R” is an extremal if there exist & € {0, 1} and
& € Lip([0, 1]; R™) such that i), ii), and iii) in Theorem 1 hold. We say that y is a
normal extremal if there exists such a pair (§g, §) with &y # 0. We say that y is an
abnormal extremal if there exists such a pair with & = 0. We say that y is a strictly
abnormal extremal if y is an abnormal extremal but not a normal one.

If y is an abnormal extremal with dual curve &, then by ii) we have, for any j =
1,...,r,

(6. X;(y)) =0 on[0.1]. )
Further necessary conditions on abnormal extremals can be obtained differentiating
identity (5). In fact, one gets forany j = 1,...,r,
r
> hile, [X:, X;1(r)) =0 ae.on[0,1]. (6)
i=1

When the rank is r = 2, from (6) along with the free assumption |k| # 0 a.e. on
[0, 1] we deduce that

(5. [X1. X2](y)) =0 on [0, 1]. (M

In the case of strictly abnormal minimizers, necessary conditions analogous to (7)
can be obtained also for r > 3.
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Theorem 2. Let y : [0, 1] — R” be a strictly abnormal length minimizer. Then any
dual curve £ € Lip([0, 1], R™) of y atisfies

(6. [Xi. X;1(»)) =0 on [0, 1] ®)

foranyi,j=1,...,r.

Condition (8) is known as Goh condition. Theorem 2 can be deduced from second
order open mapping theorems. We refer to [2, Chap. 20] for a systematic treatment
of the subject. See also the work [3].

The Goh condition naturally leads to the notion of Goh extremal. A horizontal
curve y : [0, 1] = R™ is a Goh extremal if there exists a Lipschitz curve £ : [0, 1] —
R” such that £ # 0, £ solves the adjoint Eq. (3) and (£, X;(y)) = (&, [Xi. X;]1(y)) =
Oon [0,1]foralli,j =1,...,r.

3 Known regularity results

In this section, we collect some regularity results for extremal and length minimzing
curves. Other results are discussed in Sect. 4. The case of normal extremal is clear
and classical.

Theorem 3. Let (M, D, g) be any sub-Riemannian manifold. Normal extremals are
C > curves that are locally length minimzing.

In fact, with the notation of Sect. 2, if y is a normal extremal with controls & and
dual curve &, by condition ii) in Theorem 1 we have, forany j = 1,...,r,

hj = —{E.X;(7)) ae ono.1] ©)

This along with the adjoint Eq. (3) implies that the pair (y, §) solves a.e. the system
of Hamilton’s equations

.  O0H . oH
Y= 85 ()/, E), g = - ax ()/, E), (10)

where H is the Hamiltonian function

r

D (6 X ()

J=1

Hev )=

This implies that y and £ are Lipschitz continuous and thus y, § € C-!. By iteration,
one deduces that y, § € C°.

The fact that normal extremals are locally length minimizing follows by a cali-
bration argument, see [9, Appendix C]. Indeed, using the Hamilton’s Eq. (10), the
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1-form & along y can be locally extended to an exact 1-form & satisfying

r

D E X)) =1,

j=1
This 1-form provides the calibration.

The distribution D = span{Xy,..., X, } on M is said to be bracket-generating
of step 2 if for any x € M we have

dim(span{X; (x), [X;. X;](x) :i.j = 1,....r}) = n, (11)

where n = dim(M). For distributions of step 2, Goh condition (8) implies the
smoothness of any minimizer.

Theorem 4. Let (M, D, g) be a sub-Riemannian manifold where D is a distribution
that is bracket generating of step 2. Then any length minimizing curve in (M, D, g)
is of class C*°.

In fact, if y is a strictly abnormal length minimizing curve with dual curve £ then
by (5),(8),and (11) it follows that & = 0 and this is not possible. In other words, there
are no strictly abnormal minimizers and this implies the claim made in Theorem 4.

When the step of the distribution is at least 3, then there can exist strictly abnor-
mal extremals. When the step is precisely 3, the regularity question is clear within
the setting of Carnot groups. Let g be a stratified nilpotent n-dimensional real Lie
algebra with

g=g1®...®qas, s5>2,

where g;+1 = [g1,gi] fori <s—1and g; = {0} fori > s.

The Lie algebra g is the Lie algebra of a connected and simply-connected Lie
group G that is diffeomorphic to R”. Such a Lie group is called Carnot group. The
horizontal distribution & on G is induced by the first layer g; of the Lie algebra. In
fact, D is spanned by a system of r linearly independent left-invariant vector fields.
By nilpotency, the distribution is bracket-generating. So any quadratic form on g;
induces a left-invariant sub-Riemannian metric on G. The number r = dim(g) is
the rank of the group. The number s > 2 is the step of the group.

Theorem 5. Let G be a Carnot group of step s = 3 with a smooth left-invariant
quadratic form g on the horizontal distribution D. Any length minimizing curve in
(G, D, g) is of class C*°.

This theorem is proved in [16]. A short and alternative proof, given in [6, Theo-
rem 6.1], relies upon the fact that a strictly abnormal length minimizing curve must
be contained in (the lateral of) a proper Carnot subgroup. Then a reduction argument
on the rank of the group reduces the analysis to the case r = 2, where abnormal ex-
tremals are easily shown to be integral curves of some horizontal left-invariant vector
field.
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When the step is s = 4, there is a regularity result only for Carnot groups of rank
r = 2, see [8, Example 4.6].

Theorem 6. Let G be a Carnot group of step s = 4 and rank r = 2 with a smooth
left invariant quadratic form g on the horizontal distribution O. Then any length
minimizing curve in (G, D, g) is of class C°.

The proof of this result relies upon two facts. First, one proves that the horizontal
coordinates of any abnormal extremal are contained in the zero set of a quadratic
polynomial in two variables. This shows that the only singularity that abnormal ex-
tremals can have is of corner type. Then using a general theorem proved in [8] (see
Sect. 4) one concludes that extremal curves with corners are not length minimizing.

When the rank is ¥ = 2 and the step s is larger than 4, the best regularity known
for minimizers is the C ' regularity.

Theorem 7. Let G be a Carnot group of rankr = 2, step s > 4 and with Lie algebra
g=a1D...D qs satisfying

lai.gj] =0 foralli,j > 2suchthati + j > 4. (12)

Then any length minimizing curve in (G, D, g), where g is a smooth left-invariant
metric on the horizontal distribution D, is of class C'® for any

i 2 1
O§5<m1n{ , } (13)
s—4 4

This theorem is proved in [37, Theorem 10.1]. Itis a byproduct of a technique that
is used to analyse the length minimality properties of extremals of class C! whose
derivative is only §-Holder continuos for some 0 < § < 1. We give an example of
such techniques in Sect. 7. The restriction § < 2/(s — 4) is a technical one. The
estimates developed in [13], however, show that the restriction § < 1/4 is deeper.
We shall discuss (12) it in the next section.

4 Analysis of corner type singularities

Let M be a smooth manifold with dimensionn > 3, and let O be a completely non-
integrable distributionon M. Let Dy = D and D; = [Dy, Di—1] fori > 2,i.e., D;
is the linear span of all commutators [X, Y] with X € £; and Y € D;_1. We also
let £9 = {0} and £; = Dy + ... + D;, i > 1. By the nonintegrability condition,
for any x € M there exists s € N such that £5(x) = Ty M, the tangent space of M
at x. Assume that O is equiregular, i. e., assume that foreachi = 1,...,s

dim (£;(x)/£Li—1(x)) is constant for x € M. (14)

In [8], Leonardi and the author proved the following theorem.



320 R. Monti

Theorem 8. Let (M, D, g) be a sub-Riemannian manifold, where g is a metric on
the horizontal distribution D. Assume that D satisfies (14) and

(i L] CLivjr. 1,]=2,i+]>4 (15)
Then any curve in M with a corner is not length minimizing in (M, D, g).

A “curve with a corner” is a D-horizontal curve y : [0, 1] = M such that at some
point ¢ € (0, 1) the left and right derivatives yr(t) # yr(t) exist and are different.
The proof of Theorem 8 is divided into several steps.

1) First one blows up the manifold M, the distribution D, the metric g, and the
curve y at the corner point x = y(¢). The blow-up is in the sense of the nilpotent
approximation of Mitchell, Margulis and Mostow (see e. g. [10]). The limit structure
is a Carnot group and the limit curve is the union of two half-lines forming a corner.

2) The limit curve is actually contained in a subgroup of rank 2, and after a suit-
able choice of coordinates one can assume that the manifold is M = R” with a
2-dimensional distribution £ = span{X1, X, } spanned by the vector fields in R”

ad ad z ad
X = d X;= i , 16
1=y, d XYoo= +]§f,(x) o, (16)
where f; : R — R, j = 3,...,n, are polynomials with certain properties. The

curve obtained after the blow-upis y : [—1,1] - R”"

[ —tep, t €[-1,0],
re) —{ e, 1€ 0.1] (a7
where ey, ..., e, is the standard basis of R”. If the limit curve is not length mini-

mizing in the limit structure, then the original curve is not length minimizing in the
original structure.

3) At this stage, one uses (15). If the original distribution satisfies (15), then the
limit Lie algebra satisfies (12) and the polynomials f; only depends on the variables
x1 and x5. This makes possible an effective and computable way to prove that the
curve y in (17) is not length minimizing. One cuts the corner of y in the x;x» plane
gaining some length. The new planar curve must be lifted to get a horizontal curve,
changing in this way the end-point. One can use several different devices to bring
the end-point back to its original position. To do this, we can use a total amount
of length that is less than the length gained by the cut. This adjustment is in fact
possible, and the entire construction is the main achievement of [8].

The restriction (15) has a technical character. The problem of dropping this re-
striction is adressed in [14] (see also Sect. 6.2). The cut-and-adjust technique in-
troduced in [8] is extended in [13] to the analysis of curves having singularities of
higher order. In Sect. 7, we study a nontrivial example of such a situation.
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5 Classification of abnormal extremals

The notion of abnormal extremal is rather indirect or implicit. There is a differential
equation, the differential Eq. (3), involving the dual curve and the controls of the
extremal. Even though this equation can be translated into some better form (see
Theorem 2.6 in [6]), nevertheless the carried information is not transparent. In this
section, we present some attempts to describe abnormal extremals is a more geomet-
ric or algebraic way.

5.1 Rank 2 distributions

We consider first the case when M = R” and D is a rank 2 distribution in M
spanned by vector fields X; and X, as in (16), where f3,..., f, € C®(R?) are
functions depending on the variables x1, x. We fix on O the quadratic form g mak-
ing X; and X, orthonormal. Let K : R”72 x R? — R be the function

K(u,x) = ZA 8f’+2 (18)

where A = (A1,...,A,2) € R* 2 and x € R2.
In this special situation, Pontryagin Maximum Principle can be rephrased in the
following way (see Propositions 4.2 and 4.3 in [8]).

Theorem 9. Let y : [0, 1] — M be a D-horizontal curve that is length minimizing
in(M, D, g). Let k« = (y1,y2) and assume that |k| = 1 almost everywhere. Then
one (or both) of the following two statements holds:

1) there exists A € R"2, A # 0, such that
KA, k(@) =0, forallt €[0,1]; (19)

2)  the curve y is smooth and there exists A € R"~2 such that k solves the system
of differential equations
= K, k)it (20)

where k1t = (—k2,K1).

The geometric meaning of the curvature Eq. (20) was already noticed by Mont-
gomery in [11].

The interesting case in Theorem 9 is the case 1): the curve «, i.e., the horizontal
coordinates of y, is in the zero set of a nontrivial explicit function.

5.2 Stratified nilpotent Lie groups

In free stratified nilpotent Lie groups (free Carnot groups) there is an algebraic char-
acterization of extremal curves in terms of an algebraic condition analogous to (19).

Let G be a free nilpotent Lie group with Lie algebra g. Fix a Hall basis X1, ..., X,
of g and assume that the Lie algebra is generated by the first r elements X, ..., X,.
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We refer to [5] for a precise definition of the Hall basis. The basis determines a col-

lection of generalized structure constants c{‘a € R, where @ = (vq,...,a,) € N
is a multi-index and i, k € {1, ..., n}. These constants are defined via the identity
[Xi. Xo] = Zcmxk, 1)

where the iterated commutator X, is defined via the relation

[Xi, Xo] = [Xi’[i(l""’[Xl""’LX"""’Xﬁ]"']"']]' (22)
o] times o, times

Using the constants cl 2 forany i = 1,...,n and for any multi-index « € N”, we
define the linear mappings ¢;q : R" — ]R

1 :
ia(v) = ol Zciavk, v=(vi,...,v,) € R". (23)
k=1
Finally, for each i = 1,...,n and v € R”, we introduce the polynomials Pi“ :
R” - R
PP(x)= ) ¢ia(v)x®, xeR", (24)
aeN”

where we let x* = x{!---xp".
The group G can be identified with R” via exponential coordinates of the second
type induced by the basis X1, ..., X,. Forany v € R", v # 0, we call the set

Zy={xeR": P/(x) =...= P’(x) =0}

an abnormal variety of G of corank 1. For linearly independent vectors vy, ..., Uy, €
R", m > 2, we call the set Z,,, N ... N Z,,, an abnormal variety of G of corank
m. Recall that the property of having corank m for an abnormal extremal y means
that the range of the differential of the end-point map at the extremal curve isn —m
dimensional.

The main result of [6] is the following theorem.

Theorem 10. Ler G = R” be a free nilpotent Lie group and let y : [0,1] — G be a
horizontal curve with y(0) = 0. The following statements are equivalent:

A) the curve y is an abnormal extremal of corank m > 1;
B) there exist m linearly independent vectors vy, ..., v, € R" such that y(t) €
Zy, N...NZy, forallt € [0,1].

A stronger version of Theorem 10 holds for Goh extremals. If ¢ = g1 ® g» @
-+ @ g5, we let r; = dim(g;) and r, = dim(gz). Then, for v € R” with v # 0 we
define the zero set

Fu:{XER":PiU(x):Oforalli =”1+1,~~~,F1+r2}.
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Theorem 11. Ler G = R” be a free nilpotent Lie group and let y : [0,1] — G be a
horizontal curve such that y(0) = 0. The following statements are equivalent:

A) the curve y is a Goh extremal;
B) there exists v € R", v # 0, such that y(t) € Ty forallt € [0, 1].

The zero set Ty, is always nontrivial for v # 0 and, moreover, there holds v; = 0
foralli =0,...,r; + rp. See Remark 4.12 in [6].

These results are obtained via an explicit integration of the adjoint Eq. (3). Some
work in progress [7] shows that Theorems 10 and 11 also hold in nonfree stratified
nilpotent Lie groups.

6 Some examples

In this section, we present two examples. In the first one, we exhibit a Goh extremal
having no regularity beyond the Lipschitz regularity. In the second example, there
are extremals with corner in a sub-Riemannian manifold violating (15).

6.1 Purely Lipschitz Goh extremals

Let G be the free nilpotent Lie group of rank r = 3 and step s = 4. This group
is diffeomorphic to R32. By Theorem 11, Goh extremals of G starting from 0 are
precisely the horizontal curves y in G contained in the algebraic set

Iy = {x e R*: P/(x) = PY(x) = P{(x) = 0},

for some v € R32 such that v # 0and vy = ... = vg = 0. The structure constants
c{‘a are determined by the relations of the Lie algebra of G. Using (24), we can then
compute the polynomials defining ', (for details, see [6]). These are

PJ(x) = —X1V7 — XaUg — X3V9 + X5U30 + XeV31
X7 X3 X3
+ ) V15 + X1X2V16 + X1X3V17 + ) V18 + X2X3V19 + ) V20
v
Pg(x) = —X1V10 — X2V11 — X3V12 — X4V30 + X6V32
x7 x3 x3
+ ) V21 + X1X2V22 + X1X3V23 + ) V24 + X2X3V25 + > V26

P (x) = x1(vg — v11) — X2V13 — X3V14 — X431 — X5V32

5 1 1
+ X3 ( - 21)17 + 21)22 + v30)
%2
+ x1X2(—=v19 + V24 + v31) + X1x3(=v20 + V25) + 23 V29.
Theorem 12. For any Lipschitz function ¢ : [0, 1] — R with ¢$(0) = 0, the hori-
zontal curve y : [0,1] = G = R32 such that y(0) = 0, y1(t) = t2, y2(t) = t, and

y3(t) = ¢(t) is a Goh extremal.
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With the choice v7 = 1, v1g = 2, and v; = 0 otherwise, the relevant polyno-
mials are P} (x) = x3 — x1, PY(x) = P¥(x) = 0. Then, the curve y is contained
in the zero set I', and, by Theorem 11, it is a Goh extremal. The Lipschitz function
¢ is arbitrary. It would be interesting to understand the length minimality properties
of y depending on the regularity of ¢.

6.2 A family of abnormal curves

During the meeting Geometric control and sub-Riemannian geometry, A. Agrachev
and J. P. Gauthier suggested the following situation, in order to find a nonsmooth
length-minimizing curve.

In M = R*, consider the vector fields

0 a0 0 0
X = + 2x3 +x3 . Xy = —2x1
1 8X3 8)64

, 25
dx 0x2 0x3 =

and denote by D the distribution of 2-planes in R* spanned pointwise by X; and X5.
Fix a parameter o > 0 and consider the initial and final points L = (—1,«,0,0) €
R#*and R = (1,,0,0) € R* Let y : [-1, 1] — R* be the curve

)/1(1) =1, )/2(l) = Ol|l|, )/3(0 = O’ )/4(l) = O’ re [_1’ 1] (26)

The curve y is horizontal and joins L to R. Moreover, it can be easily checked that
y is an abonormal extremal.

This situation is interesting because the distribution O violates condition (15)
withi = 2 and j = 3. In fact, we have

[[X2, X1], [ X2, X1], X1]] = 48 88
X4

That condition (15) is violated is also apparent from the fact that the nonhorizontal
variable x3 do appear in the coefficients of the vector field X in (25). The fact that
the distribution O is not equiregular, is not relevant.

Agrachev and Gauthier asked whether the curve y is length minimizing or not,
especially for small & > 0. The results of [8] cannot be used, because of the failure
of (15). In [14], we answered in the negative to the question, at least when « # 1.

Theorem 13. Foranya > Qwitha # 1, the curve y in (26) is not length minimizing
in (R*, D, g), for any choice of metric g on D.

The proof is a lengthy adaptation of the cut-and-adjust technique of [8]. When
o = 1 the construction of [13] does not work and, in this case, the length minimality
property of y remains open.



The regularity problem for sub-Riemannian geodesics 325
7 An extremal curve with Holder continuous first derivative

On the manifold M = R?, let D be the distribution spanned by the vector fields

0 0
X = , X, = + X1
2

0 , 0
. 27
o , + x3 Bxa + x1x5 dxs (27)

ox

We look for abnormal curves passing through 0 € R>. In view of Theorem 9, case 1),
we consider the function K : R3 x R? — R, defined as in (18),

K(/\,X) =A + 5/\2)6? + /\3)63.

With the choice A; = 0, A, = 1/5, and A5 = —1, the equation K(A, x) = 0 reads
x# —x3 = 0. Thus the curve k : [0, 1] — R2?, k(¢) = (,¢*/3), is in the zero set of
K. Tt can be checked that the horizontal curve y : [0, 1] — M such that (y1, ) =
K is an abnormal extremal with dual curve £ : [0, 1] — R>,

— 4 5 1 _
E(t) = (O,St ,0,5, 1).

Notice that we have, for any ¢ € [0, 1],

(&.[X1. [X1. X2]l(y)) = 413,
(&, [X2, [X1, X2)l(y)) = —3¢%/3.

Then, when ¢ > 0 the curve y is a regular abnormal extremal, in the sense of Defi-
nition 14 on page 36 of [9]. By Theorem 5 on page 59 of [9], the curve y is therefore
locally (uniquely) length minimizing on the set where r > 0.

The curve y fails to be regular abnormal at ¢ = 0. Moreover, there holds y €
C1:1/3([0, 1]; R®) with no further regularity at # = 0. In this section, we show that
y is not length minimizing.

Theorem 14. Let g be any metric on the distribution D. The horizontal curve y :
[0, 1] = M defined above is not length minimizing in (M, D, g) att = 0.

Proof. Forany 0 < n < 1,let T;, C R? be the set
Ty = {(xl,xz) eR?: xf/3 <x2<n'3x1,0<x; < r]}.

The boundary 975, is oriented counterclockwise. Let k7 : [0, 1] — R? be the curve
k") = (t.n"3t) for0 < ¢t < pand k() = (t,t*/3) forn <t < 1, and let
y" : [0, 1] — R be the horizontal curve such that (y/, y,) = «”.

We assume without loss of generality that g is the quadratic form on £ that makes
X1 and X, orthonormal. The gain of length in passing from y to y” is

1 1
1
AL(@:/ |k|dt—[ K" dt = _ n°3 + o). (28)
0 0 30
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On the generic monomial x’“x2 with i, j € N, the cut T} produces the error
T77 given by the formula

T;;j — [ "H de =(@G0+1) X xzdxldm
AT,

T,
. ' (29)
_ l+1[ r 1 ] i+4G+D+1
JHilitj+2 i+ G+ +1

We are interested in this formula wheni = j = 0, wheni = 4 and j = 0, when
i = 0and j = 3. The initial error produced by the cut Ty, is the vector of R?

&o(n) = (0. 0. T7%)
_ ( 1 n7/3 5 7119/3 1 n19/3) (30)
14 114 " 95 '
Only the exponents 7/3 and 19/3 of 5 are relevant, not the coefficients.
Our first step is to correct the error of order 77/ on the third coordinate. For fixed
parameters b > 0, A > 0, and ¢ > 0, let us define the curvilinear rectangle

Rps(e) ={(x1,x2) e R*:b<x; <b+ le|, xf/3 <X < xf/3 +ef. (3D
When ¢ < 0, we let
Rps(e) ={(x1,x2) e R*:b<x; <b+ le|*, x! 43 Lo <xy < x1/3}. (32)

The boundary dRjp () is oriented counterclockwise if ¢ > 0, while it is oriented
clockwise when & < 0. The curve " is deviated along the boundary of this rectan-
gle and then it is lifted to a horizontal curve. The effect of R 1(¢) on the generic

monomial x ' xJ is

[ xitxdxy
R”A(e)

; ; j+1-k
_ l. +1 Z (] + 1) . & [(b + |S|A)i+§k+l bl+3k+l]
— l

R;{ (&)

4
j+1 = k + 3k +1
(33)
The cost of length of Rp 5 (e) is
A(Rpa(2)) = 2le]. 34)
When i = j = 0, formula (33) reads Rg’g(e) = ¢|e|*, whereas
Ry (e) = 5e[(b + |e|*)* — b°]
(35)

4
5
_s As—k) e
L)
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and
1 3 4\ gtk 4 4
Ry =, Y ( ) (b + |e|")3KH1 = p3k+1]
b,A 4
o 2 i) el

& 1 4\ gtk 4 4
b A5 b b Ay3k+1 —b3k+l
@+ 16l ]+424Q)%+1k-ﬂﬂ) ]

1 ~
55 R5E) + Ry (e),
(36)

where ﬁg’i (&) is defined via the last identity.
We choose b = 5. The parameter 0 < A < 1 will be fixed at the end of the
argument. To correct the error on the third coordinate, we solve the equation

Ry5(e) + 7,0 =0,

in the unknown . In fact, this equation is e|¢|* + |, 7”/3> = 0 and the solution is
e P
e =—con’, wereco—ml/(lﬂ)an ﬂ—3(1+/1).

The choice b = n is not relevant, here. By (28) and (34), the cost of length is admis-
sible if n > 0 is small enough and we have

7 5 2
r<”. 37
344 3 T 55 (37)

This is our first restriction on A.
The rectangle R, ; (¢) produces new errors on the fourth and fifth coordinates.
Namely, by (35) we have

4
5 _
RS (= conf) = =5con” Y <k)((fon‘9))“5 i (38)
k=0

When A < 3/4, condition implied by (37), the leading term in 7 in the sum above is
obtained for k = 0.
By (36), the error produced on the last coordinate is

0,3 gy_ | >, (4 gré—k 3 pA) KL g
Faa(—enf)=, 30| ) (-eon’) sy gl (1 (o)) i,
(39)
When A < 3/4, the bracket [. . .] in the sum over k above is
4 4 2k /4 _
(Coflﬂ)k(3k+l)[1+<3k + 1)(;51,,1—3(1?-»\) + <3k + 1>c62*n2 safn 4+ ]

The leading term in the sum in (39) is obtained for k = 3, and the second leading
term is obtained for k = 2.



328 R. Monti

We have the new vector of errors
E1(n) = (0, Ry (=con’) + T, RY (= con’) + T,;’ﬁ). (40)

When A < 3/4, the errors on the fourth and fifth coordinates produced by the rect-
angle R, ; dominate the errors produced by the cut, see (30). In fact, we have

3

19
1454 A .
Bu+sh < e A<,

Also the second leading term in Rg’i( —conP ) dominates T,;) 3 In fact, we have

11 19 3
2 /\) < & A< .
B ( + 3 3 4
Now we use a rectangle Ry ,,(¢) to correct the error on the fourth coordinate.
Here, ; < b < 3/4 is position parameter and u > 0 is small enough. Concep-
tually, we could take u = 0. The parameter & > 0 is only needed to confine the
construction in a bounded region. We solve the equation

Ry (@) + RyS(—con®) =0 @1

in the unknown ¢. By the formulas computed above, we deduce that the solution
e=2¢is e

e=ocn" s 4,

where ¢; > 0 is an explicit constant and the dots stand for lower order terms in 7.
The cost of length of the rectangle Ry, ,,(€) is admissible for any . > 0 close to 0,
because S(1 + 51) > 5/3.

By (36) and (41), we have the identity

Ry> (&) + R (—con’) = RS (&) + R)5 (= con®),
and, therefore, the new vector of errors is
() = (szﬁ(é), T Ry (@) + RS (— con?) + T,;’ﬁ), (42)

where we have

— _ A+50)(1+w)
RyD (@) ="t = conf i (43)

with the coefficient ¢, = c} thw

In the next step, we correct simultaneously the errors on the fourth and fifth co-
ordinates. We need curvilinear squares. Let 0 < b < 1 be a position parameter. For
any ¢ € (—1,1), we let

Os(e) = Rp1(Je]). (44)
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The parameter A of the rectangle is set to A = 1. Set-theoretically, the definition is
the same for positive and negative . However, when ¢ > 0 the boundary 00 (¢) of
the square is oriented clockwise; when ¢ < 0 the boundary is oriented counterclock-
wise. The cost of length A(Qp(¢)) of the square is the sum of the length of the four
sides. For some constant C > 0 independent of b and ¢ we have

A(Qsp(e)) = Clel. (45)

By (33), when ¢ > 0 the effect Q (e) of the square on the monomial x’“xé is

i1 J+1) ik 1 itdk1 it ik
0;/(0) = J+1k2=;)< k )8 i+‘3‘k+1[(b+8) ot i

When ¢ < 0, we have Q (e) QZj (le).
Let 3/4 < by < by < 1 be position parameters and let ;& > 0 be close to 0. We
solve the system of equations

0, (e1) + Ry (2) + T = 0

Qg 3(81) + sz M(SZ) + Rb M(S) =+ RO (— conﬂ) + Tr?s?’ =0

in the unknowns €1, &,. Subtracting the first equation from the second one and using
(36), we get the equivalent system

0y (e1) + Ry (e2) + T,° =0

~0,3 (46)
Oy (1) + Rb “(82) +&Mm =0

where

E(n) = RY> @) + RS (= con) + T2 = T}
= C3r]‘3(2+13u) + ...

for some c3 > 0. The dots stand for lower order terms in 7. In fact, the leading term
in Ro’i ( —con® ) dominates the remaining terms. Using a notation consistent with
(35), we also let

€ 4k
07 (e1) = sgn(en) Z e [+ lea) 345 =
! k) 4k +1
= C48? + ...

Above, ¢4 > 0 is a constant and the dots stand for negligible terms. Notice that we
have control on the sign of the leading term.
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The system (46) can thus be approximated in the following way

sgn(en)e? + csealea™ + cons +...=0 an
£ + c7leaPT B 4 egnfCHEN 4 =0,
where ¢s, ..., cg > 0 are constants and the dots stand for negligible terms. We can

compute ¢, as a function of e; from the first equation and replace this value into
the second equation. This operation produces lower order terms. Thus the second
equation reads

11
&3 +egnfCrsP 4 =,
and there is a solution &; < 0 satisfying

11
72+ 3 A)

POHENS L = —con 0D 4.,

&1 = —C9N
where c9 > 0 and the dots stand for lower order terms in 7. As a consequence, from
the first equation in (47) we deduce that

19
&y = —C1oN30+5w) + ...

The cost of length of the rectangle Ry, ;, (€2) is 2|e2|, and it is admissible because
for u > 0 close to 0 we have

19 5
> .
3(145u) 3

By (45), the cost of lenght of the square Qp, (£1) is at most C|e1|, and, for small 7,
it is admissible if and only if

72+ 5 3
PR 48
oU+r 3 T T (48)

Here, we have a nontrivial restriction for A. This restriction is compatible with (37).
Now the parameter A is fixed once for all in such a way that

<A< _. (49)

The device Qp, (¢1) produces an error on the third coordinate of the order |¢; 2,
that is of the order n'#@+34/% The device Ry, . .. (£2) produces an error on the third
coordinate of the order |e,|'#, that is of the order n'®(1+1#)/3 These errors are neg-
ligible with respect to the error Rg’z (¢) appearing in (42)—(43). Eventually, after our

last correction we have the vector of errors

(1 + 5A)(1 + 1)

.
& = (cn3°4+...,0,0), here o = ,
3(n) = (c2n ) WREEC = a0 + 5

(50)
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the dots stand for lower order terms and the number o satisfies the key condition
o > 1, provided that 0 < u < A. Now also u is fixed.

Comparing the initial error &y(7) in (30) and the error &3(7) in (50), we realize
that the initial error /3 on the third coordinate decreased by a geometric factor
o > 1. Now we can iterate the entire construction to set to zero all the three com-
ponents of the error. Here, we omit the details of this standard part of the argument.
This finishes the proof.

Remark 1. The curve y studied in Theorem 14 is of class C"''/3. The curves con-
sidered in Theorem 7 are at most C “1/4. There is a gap between the two cases. In
the proof of Theorem 14, the key step is the choice of A made in (49). In particular,
there is a very delicate bound from below for A. In the proof of Theorem 7, there is
no such a bound from below.

8 Final comments

Concerning the question about the regularity of length minimizing curves in sub-
Riemannian manifolds, there are two possibilities. Either, in any sub-Riemannian
manifold every length minimizing curve is C* smooth (answer in the positive);
or, there is some sub-Riemannian manifold with nonsmooth (non C!, non C?2, etc.)
length minimizing curves (answer in the negative). The author has no clear feeling
on which of the two answers to bet.

Theorem 5 on step 3 Carnot groups suggests that, in sub-Riemannian manifolds
of step 3, any length minimizing curve is C* smooth. This seems to be the first
question to investigate in view of an answer in the positive. In the same spirit, The-
orem 6 suggests that in sub-Riemannian manifolds of rank 2 and step 4 any length
minimizing curve is C*> smooth.

On the other hand, the first example to investigate in order to find a length min-
imizer with a corner type singularity is the one of Sect. 6.2 with the choice o = 1.
Moreover, Theorem 7 and the computations made in Sect. 7 suggest to look for
nonsmooth length minimizing curves in the class of C ¥ abnormal extremals with
0 < § < 1 sufficiently close to 1. One interesting example could be the manifold
M = R> with the distribution spanned by the vector fields

ad d d
Xl = s X2 = + X1
2 0x3

2m
X
ox +

d
m
0 + x1x5 oxs” 51)
form € N large.

Finally, the example of a purely Lipschitz Goh extremal of Sect. 6.1 proves that
the first and second order necessary conditions for strictly abnormal extremals do
not imply, in general, any further regularity beyond the given Lipschitz regularity.
New and deeper techniques are needed in order to develop the regularity theory.



332 R. Monti

References

1. Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and Sub-Riemannian geo-
metry, http://people.sissa.it/ agrachev/agrachev_files/notes.html
2. Agrachev, A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Encyclopaedia
of Mathematical Sciences 87. Control Theory and Optimization, II. Springer-Verlag, Berlin
Heidelberg New York (2004)
3. Agrachev, A., Sarychev, A.: Abnormal sub-Riemannian geodesics: Morse index and rigidity.
Ann. Inst. Henri Poincaré, 13(16), 635-690 (1996)
4. Chitour, Y., Jean, F., Trélat, E.: Genericity results for singular curves. J. Differential Geom.
73(1),45-73 (2006)
5. Grayson, M., Grossman, R.: Models for free nilpotent Lie algebras. J. Algebra 135(1), 177-
191 (1990)
6. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal curves in nilpotent Lie groups.
Geom. Funct. Anal. 23(4), 1371-1401 (2013)
7. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal polynomialsin stratified groups
(forthcoming 2013)
8. Leonardi, G.P., Monti, R.: End-point equations and regularity of sub-Riemannian geodesics.
Geom. Funct. Anal. 18(2), 552-582 (2008)
9. Liu, W., Sussmann, H.: Shortest paths for sub-Riemannian metrics on rank-two distributions,
Mem. Amer. Math. Soc. 118, x+104 (1995)
10. Margulis, G.A., Mostow, G.D.: Some remarks on the definition of tangent cones in a Carnot-
Carathéodory space, J. Anal. Math. 80, 299-317 (2000)
11. Montgomery, R.: Abnormal minimizers , SIAM J. Control Optim., 32, 1605-1620 (1994)
12. Montgomery, R.: A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications,
AMS (2002)
13. Monti, R.: Regularity results for sub-Riemannian geodesics, Calc. Var. 2013 (to appear). doi:
10.1007/s00526-012-0592-2s
14. Monti, R.: A family of nonminimizing abnormal curves, Ann. Mat. Pura Appl. 2013 (to ap-
pear). doi: 10.1007/s10231-013-0344-8
15. Strichartz, R.S.: Sub-Riemannian geometry, J. Differential Geom., 24, 221-263 (1986) [Cor-
rections to “Sub-Riemannian geometry”, J. Differential Geom., 30, 595-596 (1989)]
16. Tan, K., Yang, X.: Subriemannian geodesics of Carnot groups of step 3.
http://arxiv.org/pdf/1105.0844v1.pdf



A case study in strong optimality and structural
stability of bang—singular extremals

Laura Poggiolini and Gianna Stefani

Abstract Motivated by the well known dodgem car problem, we give sufficient con-
ditions for strong local optimality and structural stability of a bang—singular trajec-
tory in a minimum time problem where the dynamics is single input, affine with re-
spect to the control and depends on a finite—dimensional parameter, the initial point
is fixed and the final one is constrained to an integral line of the controlled vector
field.

On the nominal problem, we assume the coercivity of a suitable second varia-
tion along the singular arc and regularity both of the bang arc and of the junction
point, thus obtaining sufficient conditions for strict strong local optimality for the
given bang-singular extremal trajectory. Moreover, assuming the uniqueness of the
adjoint covector along the singular arc, we prove that, for any sufficiently small per-
turbation of the parameter, there is a bang-singular extremal trajectory which is a
strict strong local optimiser for the perturbed problem.

The results are proven via the Hamiltonian approach to optimal control and by taking
advantage of previous results of the authors.

1 Introduction

The dodgem car problem has been widely studied and well understood in the frame-
work of optimal control, see e. g. [4]. It consists in the minimum time problem for
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steering a car which moves with fixed speed and controlled-bounded angular velocity
from a given position in the plane and a given orientation to another given position
with free orientation. In the case when also the final orientation is prescribed, the
problem is quoted as Dubins car problem, see e. g. [1].

It is well known that if the initial and final positions are far enough, then the min-
imum time trajectory is given by the concatenation of a bang and of a singular arc
and such structure is stable under small perturbations of the boundary conditions.

The dodgem car problem is therefore a good test for the Hamiltonian approach to
strong local optimality and structural stability of optimisers.

Motivated by these arguments we consider the minimum time problem (P,) for
the following parameter dependent controlled dynamics:

§7() = fo G@) +u@) [ (1)) ()
u(t) € [-1.1] 2

with parameter dependent end-point constraints

£ =da". §(T)eN; 3)
where N ; is a given integral line of f",i.e.

N = {expsfi ()"): s € R}

and the parameter r is finite dimensional, say r € R¥. The state space is a finite
dimensional manifold M and all the data are assumed to be smooth with respect to
all the variables.

The special structure of the end-point constraints (i. e. an integral line of the con-
trolled vector field f) is inherited by the dodgem car problem and plays a crucial
role in the obtained results.

When studying strong local optimality we consider localisation only with respect
to trajectories without involving the associated controls. More precisely one con-
siders the two following kinds of strong local optimality for an admissible triplet
(TT,&",u”) for problem (P,).

Definition 1. The trajectory £": [0, T"] — M is a (time, state)-local minimiser of
(Py) if there exist a neighbourhood U of its graph in R x M and & > 0 such that §"
is a minimiser among the admissible trajectories whose graphs are in U and whose
final time is greater than 77 — ¢.

We point out that this kind of optimality is local both with respect to time and space.
A stronger version of strong local optimality is the so—called state—local optimality
which is defined as follows:

Definition 2. The trajectory £” is a state—local minimiser of (P;) if there is a neigh-
bourhood U of its range in M such that £ is a minimiser among the admissible
trajectories whose range is in U.
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The main point in the Hamiltonian approach to optimality sufficient conditions is
studying the difference of the costs of two admissible trajectories by lifting them to
the cotangent bundle according to the following paradigm:

» regularity conditions which allow to define a suitable over-maximised Hamilto-
nian flow;

e coercivity of a suitable second variation which allows to define a lift of trajec-
tories to such flow. We point out that such second variation involves only the
singular arc. For more details see Sect. 2.2.

Using this approach in [9] we considered the case of bang-singular-bang extremals
for the fixed end-points constraint and gave sufficient conditions for both kinds of
strong local optimality. State-local optimality of bang-singular trajectories is ob-
tained there as a by product.

Here we prove that the same assumptions which ensure state-local optimality for
the fixed end-points constraints are sufficient also if the final constraint is an inte-
gral line of the controlled vector field, see Theorem 1. The same result was obtained
in [8] for (time, state)-local optimality.

The Hamiltonian approach to structural stability consists in applying the Implicit
Function Theorem to the flow of a parameter dependent over-maximised Hamilto-
nian, thus it allows to obtain the smoothness with respect to the parameter of the
switching and final times and of the singular control which is obtained as a feedback
control on the cotangent bundle, i. e. it gives a hint on performing some sensitivity
analysis.

As usual in the classical approach to structural stability the assumptions are the
ones which ensure the strict state—local optimality of the given bang—singular ex-
tremal in the nominal problem, see [8] and [9], and add suitable controllability as-
sumptions to obtain the structural stability result.

With this approach, in [11], we proved structural stability for the bang-singular-
bang extremals studied in [9]. We point out explicitly that, differently from optimal-
ity, structural stability of bang-singular extremals for the fixed end-points constraint
does not hold true.

Here we prove structural stability of bang-singular extremals for problem (P,),
namely we prove that there exists € > 0 such that for any r, ||r| < ¢, there is a
bang—singular extremal, say &”, which is a strict state—local optimiser for (P;).

To the authors knowledge state-local optimality for extremals containing singular
arcs has not been studied but in [9]. For results on weaker kinds of optimality see [2]
and the wide bibliography therein. Structural stability results for bang-singular-bang
arcs in a Mayer problem with fixed—free end points constraint are in [5] where the
author proves structural stability of extremals in a completely different framework.
In [6] the author shows, with a counterexample, that if, under perturbations, the final
constraint is no longer an integral line of the controlled vector field, then structural
stability of bang-singular extremals is lost i.e. a new (small) final bang arc appears
in the optimal trajectory.
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1.1 Notation

In this paper we use some basic element of the theory of symplectic manifolds re-
ferred to the cotangent bundle 7* M .

Denote by w: T*M — M the canonical projection, for £ € T*M the space
T*,M is canonically embedded in T, T*M as the space of tangent vectors to the
fibers.

The canonical Liouville one—form ¢ on 7* M and the associated canonical sym-
plectic two—form ¢ = dg allow one to associate to any, possibly time-dependent,

smooth Hamiltonian H,: T*M — R, a Hamiltonian vector field ﬁ:, by
—
o(v, H;(£)) = (dH,(£), v), YveT,T*M.

Finally recall that any vector field f on the manifold M defines, by lifting to the
cotangent bundle, a Hamiltonian

F:leT"Mw— (£, f(n0)) € R.

We denote by F{, F[, the Hamiltonians associated to f;, f{, respectively, and
by F/ i1,...,ix € {0, 1} the Hamiltonian associated to the vector field
r

i1i...ig°
o— r r r 1
ipeix = VAR A fik] ...], where [+, -] denotes the Lie brackets between
vector fields.

Moreover we define H™**" to be the continuous maximised Hamiltonian asso-

ciated to the control system (1)—(2), i.e.

H™: £ max {Fj) +uF{{)}.
ue[—1,1]

For ease of reading, when r = 0 we omit the parameter, i. e. we write fy instead of
S, f1 instead of £, and so on.

We assume we are given a reference triple (?,E, u) which is a normal bang—
singular Pontryagin extremal for the nominal problem (Py). By bang—singular tra-
jectory (or triple or control) we mean that % has the following structure

ut)=u; € {—1,1} Vi e€l0,7),

~ PN (4)
u(t) e (—1,1) vVt e (7,T]

We shall refer to T as to the switching time of the reference control u and to the
time-dependent vector field f; := fo + u(z) f1 as to the reference vector field of
the nominal problem (Py).

In particular we denote by i1 = fo + u; f1 the restriction of the reference vector
field to the bang interval [0, 7] and by H; the associated Hamiltonian.

Since in this paper the switching time T plays a special role, we consider all the
flows as starting at time 7. The flow from time 7 of f; is a map defined in a neigh-
bourhood of the point

Ti=E@)
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which we denote as §t: M — M,t €0, ?] while

P H, if t €[0,7),
"T O\ Fo+ua@)F ifte T

denotes the time—dependent reference Hamiltonian obtained lifting f';.
. . — C o~
We denote the flow of any Hamiltonian field H; from time 7 to time ¢, as

J:(1,0) > H(t,0) = (L)

and we call it the flow of the Hamiltonian H;.

Notice that for 7 < 7, the flow goes backwards in time.

We keep these notation throughout the paper, namely the overhead arrow denotes
the vector field associated to a Hamiltonian and the script letter denotes its flow from
time 7T, unless otherwise stated. Also we use the following notation from differen-
tial geometry: f - « is the Lie derivative of a function o with respect to the vector
field . Moreover, if G is a C! map from a manifold X to a manifold ¥, we de-
note its tangent map at a point x € X, where the point x is clear from the context,
as Gy .

2 Assumptions on the nominal problem

In this section we state the assumptions on the nominal extremal which allow to get
the optimality and structural stability results.

2.1 Pontryagin Maximum Principle and Regularity Assumptions

In this section we recall the first order optimality condition which the reference triplet
(T, €, %) must satisfy.

We call extremal of (Py) any curve in the cotangent bundle which satisfies Pont-
ryagin Maximum Principle (PMP) and state—extremal of (Py) its projection on the
state space.

In the minimum time problem PMP requires that the reference trajectory is a state
extremal, here we ask for the reference trajectory to be a normal state extremal,
i.e. we assume that the triplet (?,E, u) satisfies the following

Assumption 2 (Normal PMP). There exists a solution Xt e [0, 7‘] — 1(1) €
T*M of the Hamiltonian system

. =

A(t) = F;oA(t)

such that R
oA=&, A(0)#0 (5)
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and R R R
Fiol(t)= H™oA(t) =1 ae.tel0,T] (6)

Remark 1. In this case the transversality condition at the final time T is a conse-
quence of (6).

X [0, 7‘] — T*M is called adjoint covector. We denote its end points and its
junction point between the bang and the singular arc as

lo:=20), € :=AT), €:=1@).

respectively. Because of the structure of the reference control i, as defined by Egs. (4),
PMP implies

u FioA(t) >0 1 €[0,7), FioA(t)=0te[t.T) (7)

As a consequence one gets

ForoA(t) =0 t ez T), (8)
(Foor + (1) Fio1) o A1) =0 1 € (7, 7), ©9)
u1 (Foor + uy Fio1) (€1) = 0, (10)

see [9]. Moreover it is known that a necessary condition for the local optimality of a
Pontryagin extremal is the generalised Legendre condition (GLC) along the singular
arc: R

Fio1oA(t) >0 te[7,T], (11)

see for example [1], Corollary 20.18 page. 318; for a classical result see [7]. We
assume that the inequality holds strictly.

Assumption 3 (Strong Generalised Legendre condition).
FioioA() >0 e[t T]. (SGLC)

When (SGLC) holds, a singular extremal is called of the first kind, see e. g. [13].
PMP yields the mild inequalities in (7), (10) and (11), we assume the strict in-
equalities to hold, whenever possible.

Assumption 4 (Regularity along the bang arcs).
uiFioA(t) >0 Vi €[0,7).
Assumption 5 (Regularity at the junction point).
(1 Foor + Fion) (€) > 0.

Remark 2. (SGLC) implies that # € C*((%, T]) and that Assumption 5 is equiva-
lent to the discontinuity of % at times 7, see [9].
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Assumption 6 (Uniqueness of the adjoint covector). 2 G is the only extremal
T,

associated to & CA for the minimum time problem between its end points X := £(7)
T,

and X5 := £§(T).

2.2 The extended second variation

System (1) is linear with respect to the control, therefore the standard second vari-
ation is completely degenerate. In order to obtain a second variation a typical pro-
cedure is to transform the minimum time problem into a Mayer one and, via a co-
ordinate—free version of Goh’s transformation, one obtains a suitable second order
approximation on the singular arc, which we call extended second variation.

Such second order approximation takes into account variations of the singular
control, variations of the lengths of the bang and of the singular intervals and of the
final point on the constraint Ny . In [10] we proved that the largest sub—space where
the extended second variation can be coercive is the one relative to the minimum
time problem with fixed end points §(7) = X, &(T) = Xz . In other words, there
is no need to take into account any variation of the switching time 7.

We point out that the same assumption, together with Assumptions 4-5 is suffi-
cient for /E\ to be a minimum time trajectory between Xo and X, see [9].

For the sake of completeness we write here the reduced Mayer problem.

Minimise £%(T) (12)

subject to
E°(s) = uo(s) s €[e.T] (13)
E(s) = uo(s) fo(E()) +uo(s)u(s) fi(E(s)) s €[2.T] (14)
@ =7 D=3, M eR &T)=% (15)
(uo(s),u(s)) € (0, +00) x (—1,1). (16)

For a complete computation of the extended second variation see [9]. Here we give
the final result. In particular we recall that in [9], fo and f; are proven to be linearly
independent at X, so that we may choose local coordinates around X which simplify
computations. Namely, we choose coordinates such that
. ad

1. f1is constant: f; = 5 :

5 xl (17)
2. fo = —x1 (fo1(X) + O(x)).
8X2

In such coordinates choose § as

B(x) == Aixi. (18)
i=2
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where (0, A2,...,4,,0,...,0) are the coordinates of €. We getl, =1, f1- =0,
and fy - fo - B(X) = 0. Finally, define the dragged vector fields at time T, along the
reference flow, by setting

gi,1(x) = S\t_*lfi o:S’\t(x), i=0,1, g;:= S\t_*l?t °§t(x) = go,s +U(t)g1,1-
(19)

and recall that
g1.0(0) = S5 for 081 (x).  o,0(x) = —TH(1)g1,: (). (20)

Then the extended second variation is thus actually given by the quadratic form

~

Lt : - : -
Jex (€0, 81, w) = ) [\ (w?@)[&1,6.81.4] - BE) +2w() §(0) - &1,¢ - B(R)) dt
‘ _ @1)
defined on the linear sub—space ‘W of R x L2([T, T], R) of the triplets (g, &1, w)
such that the linear system

() = wt)gr,R), (@) =eofo®) +e1 iR), CT)=0. (22)
admits a solution £, see [9].

Assumption 7 (Coercivity). The extended second variation for the minimum time
problem at fixed end points on the singular arc is coercive. Namely we require that
the quadratic form (21) is coercive on the subspace ‘W of R? x L2([z, ’f], R) given
by the variations e = (gg, €1, w) such that system (22) admits a solution.

Remark 3. The quadratic form (21) is defined on the whole space R2x L2([7, T], R),
but only its restriction to ‘W is coordinate free and independent of the choice of
such that d8(x) = —¢

Remark 4. Notice that

R(t) = [¢1,0,€1,1)- BR) = Fro1 (A (1)),

so that the coercivity of the extended second variation implies the strong generalised
Legendre condition (SGLC).

2.3 Consequences of coercivity and controllability

In[11]it was proven that Assumption 6 is strongly related to the controllability space
(see e. g. [3]) of system (22), i. e. the space

Vi=span{fo®). fi®). 41.®). 1 € [Fr.TI} 23)

Namely, the following was proven in [11]:

Lemma 1. Assumption 6 holds if and only if 'V = T-M.
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In order to exploit the coercivity assumption we follow [12] and introduce the La-
grangian subspace and the Hamiltonian associated to the second variation (21)—(22),
respectively given by

= {/o@®), AR} xspan{ fo®), /i®)} C TIM x T;M, (24)

—1 LA . o
HY': @80 € TIM X TM > o (@, 810@) 4854 BE) € R,
)

Lemma 2. Let #;: TXM x oM — T M x T>M be the flow of the Hamiltonian
H/ defined in (25). Under Assumpttons 6 and 7 the kernel of the linear mapping

T[*e%,\‘ is trivial.
TIL"”

For a proof, see Lemma 2.2. in [11].

3 Optimality in the nominal problem

Most of the results of this section are from [9]. Their proofs are quite technically
involved so that here we only collect the results in a few lemmas.

3.1 Geometry near the singular arc

In this section we describe some properties of the Hamiltonians linked to our sys-
tem near the singular arc of the reference extremal, for more details see [9]. Such
properties depend only on the regularity assumptions 3-5.
By (7), (8) and (SGLC), any singular extremal of the first kind of (Py) belongs to
the set
={eT*M: Fi({) = Fo1(t) = 0, Fi01(£) > 0},

a subset of the set
={leT*M: Fi({) =0},

where the maximised Hamiltonian of (Py), H™*, coincides with every Hamiltonian
Fo +ufFi,u € R.

Notice that § and X are independent of the control constraints but, by (4) and (9),
any singular extremal of problem (Py) is in

F
Sm{eeT*M: ‘ °°1(z)‘ <1}.
Fio1

Taking advantage of (SGLC) it is easy to prove the following result.

Lemma 3. There exists a neighbourhood 'V of 8 in T*M in which the following
statements hold true.
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1) XNYVisahyper—surface and 8 NV is a (2n —2)-dimensional symplectic man-
ifold. ¥ separates the regions defined by: H™ = Fy + F;, H™ = Fy— Fy;

2)  the Hamiltonian vector field F; is tangent to ¥ and transverse to 8, while F—OI
is transverse to X; - N N

3) themaps (s,£) — expsFi1(£) and(z,s,{) — expt For10expsFi(£) arelocal
diffeomorphisms from R x 8 to 3 and from R x R x 8 to T*M respectively.

Property (3) in Lemma 3 yields the possibility of defining a smooth functionv: V —

R as
. —Foor

on &
Fio1

and extending it constant first on the integral lines of F; and then on those of Fp;.
In this way we may define the Hamiltonian of singular extremals of the first kind

as
FS = Fy+v Fy.

—
Indeed the associated vector field F is tangent to § and any singular extremal of
—

the first kind of our problem is an integral curve of F> contained in §: consequently
the singular arc of 7 is C* and the same holds true for #. From now on we shall
denote X N Vand § NV as X and &, respectively.

The following lemma contains the main technical points which we need in order
to prove our main result. Their proofs are quite technical and we refer the interested
reader to [9].

Lemma 4. Let Assumptions 2—5 and (SGLC) hold. Then there exists a neighbour-
hood of the range of A ‘ oy in T*M where the followings hold.
T,

1) There exists a non-negative smooth Hamiltonian x such that the Hamiltonian
vector fields associated to KS := FS + y, H, == F, + y and H, + x are
tangent to ¥ and R

Kilg = Flg Vielt.T] (26)

H, KS

—
Hi+x

Fig.1 The over-maximised Hamiltonian along the flow
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2)  The following invariance properties hold:

Fow Foll) = X5, Fol) = Foo Aty Vi e[7.Tl.

R Fi(0) = K5, Fi(0) = FLo X$(0) V(.0 € [7.T] x =

In particular

XS oexpsFy(€) = expsFy o X3(0) R
Vi, t,0) e Rx [T, T]x . (27)

Ko expsﬁ(ﬂ) = expsﬁ o j\(’t(ﬁ)

3) There exist ¢ > 0 and a C'' Hamiltonian function K, satisfying the following
properties

1.
2.

Hy =Ky <Hi+y
the flow H of the Hamiltonian

Ki() if t €[-&7),

H,(0) := { . _ T (28)
KS(0) ifte[nT +eé

emanating from a neighbourhood U of Tin T is C with respect to £ for
any t and satisfies the following properties

J,(0) = A(t), HyoA(t)= H™oA(t), te[-eT+e], (29)
(Hi— H™) o J,(£) =0  (1.0) € [-&. T +¢] x U. (30)

Moreover Ky o #;(£) = Hy o H;() for any t € [—&,T — €] and, if
t € [T —&,7] then

Ky o Hi(€) = Hy o H,(£) if uyFopod:(€) <0,
Kiodti(6) = (Hy + x) o He(€) if urFor o He(€) <O.

3.2 State-local optimality

Under the given assumptions we now prove state-local optimality of /E\for the nom-
inal problem (Pg). Most of the proofs are in [9], here we adapt them to fit the final
constraint Ny . Namely, exploiting the Coercivity Assumption 7, we proved the re-
sults collected in the following lemma

Lemma 5. There exist C? functions a, a®: M — R such that locally around T and
locally around X the followings hold.:
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1) the Lagrangian sub—manifold A* := {{ € T*M : { = da(x{)} is transverse
1o the level set of K defined by K5 = 1;

2) 1 belongs to the isotropic sub—manifold A® obtained intersecting A* with the
level set KS = 1;

3)  the horizontal Lagrangian sub—manifold A% = { e T*M: £ = daP(nl)}
is contained in X and is transverse to the level set of Ky deﬁned by K1 =1;

4) 7 belongs to the isotropic manifold A® obtained intersecting A with the level
set K1 = 1;

5)  the projections wA® and wA® of the isotropic manifolds A® and A® on the state
space M agree and are a (n—1)-dimensional sub-manifold N of the state space
M. The intersection of N with the range ,E\([O, ?]) of the reference trajectory
is the singleton {X}, and the functions o® and o agree on N ;

6) there exists aneighborhood U of the range of the reference trajectory such that

N divides U in two parts, UP D E 2 and U* D E ,\,\],

7)  for any admissible trajectory & : [0, T] — M whose range is in U, there exists
t € (0,T) suchthat§([0, T NN = &), &l C UP and Elper) C U,
8) for small positive &, we can consider the C' flows associated to K| and K5:

H:(t,0) €[—e,T] x A® > H,(l) = K1,,(() € T*M,

J: @t 0) €[f.T + & x AS > K, (0) = K3() e T*M,
then w K ([—&, 7] x AP) is bijective onto U® and w H ([?, T +¢] x AS> is bi-
Jjective onto U°.

Using the previous lemma we now state and prove the optimality result

Theorem 1. If E is injective and Assumptions 2—5 and 7 hold then ,E\is a strict state—
local optimal trajectory of the nominal problem (Py).

Proof. Consider the one—forms
w® = H*c on [—&, 7] x A®
= H*¢c on [T.T + ] x A®
It is well known that @® and @* are exact and that there exist functions ¢® and ¢°,
o [~e T x AP > R, " [5.T +¢ x A* >R
such that
b — 3.,b b= gy — b —
® (l,g)—dgﬂ (l’g)) §0 (T)E)_a (ﬁﬁ)—a(ﬁg),
@, 0) = dp’(t, L), ¢*(T,0) = a(xl).

Let £: [0, T] — U be an admissible trajectory and let ¢ € (0, T') such that £(¢) €
N as stated in property 7 of Lemma 5. Thanks to Lemma 5 we can lift §|[o,t] to
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[—e.7] x A® and &|;, 71 to [Z.T + €] x A®. Let ¢ be a curve on N joining £(f) to
£(7) and observe that

(KD () = @ de (), (1K) () = @ da(x), VY eN,
(KD EG) = (.0, Vs e[0.7],
(n xS E6) = 6D, Vse[ Tl

We now obtain a closed path on U by concatenating E‘[ o run backwards in time,
0,7

€ljo,;; and a curve Y on N with initial and final points & (7) and ,E\(’f), respectively.
We then lift this path to [—&, 7] x A" by taking its preimage with respect to 7 K.
Integrating @ along this path we get

o=—[ A(s). Ty o)) dst
0

t . ~ (31)
4 [0 (Kive) 0 L5, £(65)) ds + "G, D) — " G £(1)) <

< —-T4+t4+a®X) —aE@).
In order to obtain a closed path on U* define a curve joining §(7') := exps f1(Xy)

toXy:
y:s e€[0,s] = exp(s —s) f1(Xy) € M.

AP A ’ AS %‘
- b1 .
e — i) —

T © N
A T(nﬂ) !
X0 p— & N
—
S T 4
I [
&(T)
Y(s) =exp(5 —s) f1(x1), s € [0,5] expsfi(x1)

Fig.2 Lifting trajectories
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Concatenate i run backwards, & |[t 77> ¥ and then E‘[,\,T\] run backwards. By taking
. o

the preimage of this path with respect to 7 JS we obtain a closed path in [T, T+
€] x A® and, by property 2 of Lemma 4,

(xx5) " oy(s) = (Texps —) D) Vs e[0,s]

so that

[ ., @ =0
(k) oy

Integrating @* along the closed path we thus obtain

T . ?/\ o~ o~
0 =a(s(r))—a(f)+[t <J<§(s)oz(s),5(s)>ds—ﬁ ((s). 75 0 E(s)) ds <

<a(E@) —a@®@) + (T —1) — (T - 7).
(32)

Summing inequalities (31)—(32) we get
0<T-T. (33)

ie.T>T andg is a state-optimal trajectory.

We omit the proof of strict state—local optimality since it is quite technically in-
volved and requires the introduction of many other tools and properties. The proofis
completely analougous to the one given in [9] for the bang—singular-bang case. 0O

Remark 5. Here we have considered only normal extremals, since normality is
needed for stability. Nevertheless the same optimality result holds also in the ab-
normal case, see [9].

4 Structural stability

We now show that under all the given assumptions and for sufficiently small ||r ||,

the perturbed problem (P;) has a bang—singular strict state—local optimal trajectory

&”. We start by extending the properties of (Pg) due to the regularity assumptions.
Since for the nominal problem (SGLC) holds true in the neighbourhood V of

2 o defined in Lemma 3, then possibly restricting 'V and for small enough |||,
T,

it holds also for the Hamiltonians F),.
Therefore we can define, in 'V, the Hamiltonians of singular extremals of (P})

Fr
001 pr (34)

FS,r — FI _
. 0 r
FlOl
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Moreover it is possible to define smooth Hamiltonians y" having analogous proper-
ties to those of y and hence also

KS,r = FS,r + Xr.

Under the controllability and coercivity assumptions 6 and 7 we now prove the fol-
lowing crucial property:

Lemma 6. Let
L:=RER0)®RRE®D) & {f&). L@} (39)

Under Assumption 6, the coercivity of J.., implies that the kernel of 4 JC/T\* L —
T~ M is trivial.

xr
Proof. In Corollary 4.3 of [11], Lemma 2 is proven to imply the following property:

The linear map n*fé’ B L — T}} M is one—to—one. (36)

To prove the claim consider §; := f(’t_l o K7: ¥ — X. ¥ is the Hamiltonian flow
associated to the Hamiltonian

~ ~ N — o~
G, = (KS, - Ht) oH, = (—T(t) F o Hy.

Since DG, (,E\) = 0, then ;. : % — T;X is the linear Hamiltonian flow associated
to the quadratic Hamiltonian

D?G,({) = (Dv ® DF; + DF; @ Do)}~ 0 H ;s ® K.

70
Namely, the restriction of §;4 to Tf[Z is the flow associated to
Gy = (DA, .) ® Fi(D.
By the invariance properties in Claim 2 of Lemma 4 we get
5Fo0) = Fo@.  9.F @) =F Q.
Let o € { fo(X), f1(®)} . then u(?) := Gy satisfies the differential equation
) = Dv(@), Fap@)VFL @), 1 e[ T]

so that

~

— ~ ~ r ~ ~
wT)=w+¢T,0)Fi0), ¢T, ) :=[0 (Do(A(1)) , H 1 pa(2)) dt.

This proves that ﬁfT\* (L) C L.
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Assume that 8¢ € L, §¢ = aof)o(/ﬁ\) + alﬁ(z) + w, a0,a1 € R, o € { /o(X),
fi (Y)}l, is such that 7, K> 8¢ = 0 i.e. rr*j\(’fT\ 9~ 80 = 0. By (36) this is
Tx x T %
equivalent to 9746¢ = 0, i.e.

a0 Fo@) + (a1 + (T, ) Fi (D + 0 =0

so thatag = 0, w = 0, a; = 0, which yields the claim, i.e. §£ = 0. |

We now show structural stability of extremals, i.e. we prove that if ||r|| is suf-
ficiently small, then (P, ) has a bang—singular regular extremal. Later we show that
such extremal is a local optimiser.

Lemma 7. There exist p > 0, ¢ > 0 and a neighbourhood O of ?0 in T*M such
that forany r, |r|| < p there exists a normal bang—singular extremal A" of (P;). A"
is the only bang—singular extremal of (P,) satisfying the following properties:

) A"(0) € O,

2)  the switching time t(r) is in [T — &, T + ¢];

3) the final time T(r) is in [? —e T+ el;

4 §1(T(r)) = exp(s(r) f{)(y") withs(r) € [—&, €].

Moreover
1) the bang arc of A" is regular:  u F{ oA"(t) >0 Vt €[0,7(r));
2) thesingulararc of A" is of thefirstkind:  F[, oA"(t) >0 Vit € [t(r), T(r)];
3)  the switching point of A" is regular: (Flr01 + ulF(;Ol) oA"(z(r)) > 0.
Proof. Let us locally define the following map
O: (rl,t.T,s) eRF xT*M xR> >

~ — —

S; oexp(—sfl)omexp(T —t)K>" oexptHI (£) € M (37)
and let

U l,t,T,s)= (38)

— — —

(nz, O, €. 7. T.s), Fl oexptH| (0). Fl oexptH(0). F} oexptH] (z))
We claim that the implicitequation W(r, €, ¢, T, s) = (a”, :S’\,;\l (»"),0,0, 1) has rank
2n + 3in (O,,Z\o,?, T, 0) and it implicitly defines smooth functions

L=Lr), r=1t(r), T=T), s=s@), |r|l <p

for some positive p.
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Define

e W, asthe tangent map to the map W in (0, /E\o,? T ,0);
s ¢ci=ur+ g F"‘” (E) (which is nonzero, see Remark 4);

e forany 6€¢ in TA T*M,let§€ := exp tHl*SEO.

Since exp ‘L’H 1% 18 a linear diffeomorphism of T T M onto TA *M, then
W, (0,8¢9,87,8T, 8s) is null if and only if the followmgs are satlsﬁed

780 =0 (39)
ey (5z tére E’(Z)) + 8T F=(Ry) =85 fiRp) = 0 (40)
o (6 F®) =0 (41)
o (5@, EI(Z)) 6t c Fioi(0) =0 42)
o (8¢ Fo®) =0 (43)

By Claim 2 of Lemma 4, Eq. (40) can be equivalently written as

oK <5€+5TF0(Z)+(8rc+5T 5s)F1(3)) 0. (44)

and, by Egs. (39), (41) and (43), 8¢ € { fo(X), fi(X)}". Thus,

80+ 8T Fo(0) + (Stc + 8T —65) Fi(0) € L
so that, by Lemma 6,
6 =0, 8T =0, 6trc+6T—6s=0. 45)

Equations (42) and (45) yield §T = 0 and §s = 0, i. e. the kernel of W, is trivial.
Defining

up t €10, z(r)],
V@)= IO oare)y e ). O]

r
FlOl

u' (1) = (46)

we get that the associated trajectory &7 starting at " is a state extremal with associ-
ated adjoint covector

—_—
exptHI (€,a") t €[0,7(r)]

N N
exp(t —t(r))KS" oexpt(r)HI (£,a") € (x(r), T(r)].
(47
The proof of the second part of the Lemma, i. e. of the regularity of A" is trivial and
can be found in the final part of the proof of Lemma 4.4. in [11]. O

At el0, T(r)]—~
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Theorem 2. Let,&:be injective and let Assumption 2—7 hold. Then there exist p > 0,
e > 0 and a neighbourhood O onO in T*M such that for any r € R¥, ||r| < p,
there exists a bang—singular strict state—local optimal trajectory € : [0, T (r)] > M
for problem (P;) such that:

1) the switching time ©(r) is in [T — &,T + ¢];
2) thefinaltime T(r)isin [T —e, T + ¢];
3) §7(T(r) =exp(s(r) f{)(Y") withs(r) € [, €].

Moreover t(r), T(r) and s(r) depend smoothly on r. The associated control u” (t)
is such that

sup {|ur(t) 90|t e BTN (), T(r)]} <. (48)

Proof. Let u”, £” and A" be defined as in Lemma 7. In order to prove the strict
state—local optimality of &7 it suffices prove its injectivity and that the coercivity
assumption is satisfied. We omit the proofs of these facts. The interested reader can
find them in Lemmata 4.5 and 4.6 of [11].

The smoothness of 7(r), T(r) and s(r) comes from the implicit function theo-
rem. The estimate (48) is due to the feedback expression of u”, (46). O
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Approximate controllability of the viscous
Burgers equation on the real line

Armen Shirikyan

Abstract The paper is devoted to studying the 1D viscous Burgers equation con-
trolled by an external force. It is assumed that the initial state is essentially bounded,
with no decay condition at infinity, and the control is a trigonometric polynomial
of low degree with respect to the space variable. We construct explicitly a control
space of dimension 11 that enables one to steer the system to any neighbourhood of a
given final state in local topologies. The proof of this result is based on an adaptation
of the Agrachev—Sarychev approach to the case of an unbounded domain.

1 Introduction

Let us consider the following viscous Burgers equation on the real line:
A — udiu +udyu = f(t,x), xeR. (1)

Here u = u(t, x) is an unknown function, ¢ > 0 is a viscosity coefficient,
and f(z, x) is an external force which is assumed to be essentially bounded in x
and integrable in 7. Equation (1) is supplemented with the initial condition

u(0, x) = up(x), (2)

where ug € L°°(R). Due to the maximum principle, one can easily prove the exis-
tence and uniqueness of a solution for (1), (2) in appropriate functional classes. Our
aim is to study controllability properties of (1). Namely, we assume that f has the
form

S x) = h(t.x) +n(. x), 3)
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where £ is a fixed regular function and 7 is a control, which is assumed to be a smooth
function in time with range in a finite-dimensional subspace £ C L°(R). We shall
say that (1) is approximately controllable at a time T > 0 if for any initial state
ug € L°(R), any target 7 € C(R), and any numbers &, r > 0 there is a smooth
function n : [0, T] — E such that the solution u(¢, x) of problem (1)—(3) satisfies
the inequalities

|u(T.) HLOO(]R) <K, Ju(T.)- ﬁ“L‘X’([—r,r]) <&, “)

where K > 0 does not depend on r and ¢. Given a finite subset A C R, we denote
by E A the vector space spanned by the functions cos(Ax) and sin(Ax) with A € A.
The following theorem is a weaker version of the main result of this paper.

Theorem 1. Let A = {0, A1, A2,241, 242, A1 + A2}, where Ay and A, are incom-
mensurable positive numbers, and let E = E 5. Then Eq. (1) is approximately con-
trollable at any time T > 0.

We refer the reader to Sect. 2 for a stronger result on approximate controllability
and for an outline of its proof, which is based on an adaptation of a general ap-
proach introduced by Agrachev and Sarychev in [2] and further developed in [3];
see also [14-16] for some other extensions. Let us note that the Agrachev—Sarychev
approach enables one to establish a much stronger property: given any initial and tar-
get states and any non-degenerate finite-dimensional functional, one can construct
a control that steers the system to the given neighbourhood of the target so that the
values of the functional on the solution and on the target coincide. However, to make
the presentation simpler and shorter, we confine ourselves to the approximate con-
trollability. The above-mentioned property of controllability will be analysed in [17]
in the more difficult case of the 2D Navier—Stokes system.

The main theorem stated above proves the approximate controllability of the
Burgers equation by a control whose Fourier transform is localised at 11 points.
This result is in sharp contrast with the case of a control localised in the physical
space, for which the approximate controllability does not hold even for the prob-
lem in a bounded interval. This fact was established by Fursikov and Imanuvilov;
see Sect. 1.6 of the book [9]. Other negative results on controllability of the Burgers
equation via boundary were obtained by Diaz [7] and Guerrero and Imanuvilov [11].
On the other hand, Coron showed in [6] that any initial state can be driven to zero
by a boundary control and Ferndndez-Cara and Guerrero [8] proved the exact con-
trollability (with an estimate for the minimal time of control) for the problem with
distributed control. Furthermore, Glass and Guerrero [10] established global con-
trollability to non-zero constant states via boundary for small values of the viscosity
and Chapouly [4] proved the global exact controllability to a given solution by two
boundary and one distributed controls. Imanuvilov and Puel [12] proved the global
boundary controllability of the 2D Burgers equation in a bounded domain under
some geometric conditions. We refer the reader to the book [5] for a discussion of
the methods used in the control theory for the Burgers equation on a bounded in-
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terval. To the best of our knowledge, the problem of controllability of the viscous
Burgers equation was not studied in the case of an unbounded domain.

The paper is organised as follows. In Sect. 2, we formulate the main result and
outline the scheme of its proof. Section 3 collects some facts about the Cauchy prob-
lem for Eq. (1) without decay condition at infinity. The proof of the main result of
the paper is given in Sect. 4.

Notation. Let / C R be a bounded closed interval, let D C R” be an open
subset, and let X be a Banach space. We denote by Bx (R) the closed ball in X of
radius R centred at zero. We shall use the following functional spaces.

For p € [1, o0], we denote by L7 (J, X) the space of measurable functions f : J —
X such that

1/p
Vflro = ( [J ||f(r)||§;) <o

In the case p = oo, this norm should be replaced by ess sup,c; || f(?)|lx-

For an integer k € [0, +00], we write CK(J, X) for the space of k times continu-
ously differentiable functions on J with range in X and endow it with natural norm.
In the case k = 0, we omit the corresponding superscript.

For an integer s > 0, we denote by H*(D) the Sobolev space on D of order s with
the standard norm || - ||5. In the case s = 0, we write L2(D) and || - ||.

L = L*°(R) is the space of bounded measurable functions f : R — R with the
natural norm || f'||oo. The space L*°(D) is defined in a similar way.
Wk.2(R) is the space of functions f € L such that 8{;]" € L®for0 <j <k.

Cp° = C;°(R) stands for the space of infinitely differentiable functions f/ : R — R
that are bounded together with all their derivatives.

H3 = HJ(R) is the space of functions f : R — R whose restriction to any
bounded interval / C R belongs H* (1) such that

I/ kg == sup || f(x + )llaso,an < o0
x€R

If J = [a.b] and X = HJ or H3 N L, then C«x(J, X) stands for the space of
functions f : J — X that are bounded and continuous on the interval (a, b] and
possess a limit in the space H}_ ast — at.

We denote by C; unessential positive constants.

2 Main result and scheme of its proof

We begin with the definition of the property of approximate controllability. As it
will be proved in Sect. 3, the Cauchy problem (1), (2) is well posed. In particu-
lar, for any 7 > 0, any integer s > 0, and any functions uyg € L*°(R) and f €
L'(Jr, H3 N L), there is a unique solutionu € Cx(Jr, H3 N L) for (1), (2).
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Definition 1. Let 7 > 0,let h € L'(Jr, HY) forany s > 0, and let E C Cg° be
a finite-dimensional subspace. We shall say that problem (1), (3) is approximately
controllable at time T by an E-valued control if for any integer s > 0, any numbers
e,r > 0, and any functions ug € L* and it € H} thereis n € C*®°(Jr, E) such
that the solution u(z, x) of (1)—(3) satisfies the inequalities'

(T, M usnre = Ko Nu(T, ) = dllgsqrry <& ®)

where K > 0 is a constant depending only on ||ug] Lo, ||fl||Hlﬁ, T, and s (but not
onr and ¢).

Recall that, given a finite subset A C R, we denote by Ex C Cb°° the vector
span of the functions cos(Ax) and sin(Ax) with A € A. The following theorem is
the main result of this paper.

Theorem 2. Let T > 0, h € L2(JT, H?Y) for any s > 0, let Ay and Ay be incom-
mensurable positive numbers, and let A = {0, A1, A2,2A1,242, A1 + Az}, Then
problem (1), (3) is approximately controllable at time T by an E p-valued control.

A proof of this theorem is given in Sect. 4. Here we outline its scheme. Let us
fix an integer s > 0 and functions ug € L* and & € HJ . In view of the regular-
ising property of the resolving operator for (1) (see Proposition 5), there is no loss
of generality in assuming that up € C°, and by a density argument, we can also
assume that 2 € C°. Furthermore, as it is proved in Sect. 4.5, if inequalities (5) are
established for s = 0, then simple interpolation and regularisation arguments show

that it remains true for any s > 1. Thus, it suffices to prove (5) for s = 0.

Given a finite-dimensional subspace G C C°, we consider the controlled equa-
tions

deu — udiu + Bu) = h(t, x) + n(t, x), (6)
Do — o2 (u + L1, x)) + Bu + £(t, x)) = h(t, x) + n(t, x), (7

where 1 and ¢ are G-valued controls, and we set B (1) = ud,u. We say that Eq. (6)
is (¢, r, G)-controllable at time T for the pair (ug, i) (or simply G-controllable if
the other parameters are fixed) if one can find n € C*(Jr, G) such that the so-
lution u of (6), (2) satisfies inequalities (5) with s = 0. The concept of (e, r, G)-
controllability for (7) is defined in a similar way.

We need to prove that (6) is E A -controllable. This fact will be proved in four
steps. From now on, we assume that functions ug, % € Cg°(R) and the positive
numbers 7T, ¢, and r are fixed and do not indicate explicitely the dependence of
other quantities on them.

Step 1. Extension. Let us fix a finite-dimensional subspace G C C;°. Even though
Eq. (7) contains more control functions than Eq. (6), the property of G -controllability
is equivalent for them. Namely, we have the following result.

! Recall that the norm on the intersection of two Banach spaces is defined as the sum of the norms.
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Proposition 1. Equation (6) is G-controllable if and only if so is Eq. (7).

Step 2. Convexification. Let us fix a subset N C C;° invariant under multiplication
by real numbers such that

NcG, B(N)cCG. (8)

We denote by ¥ (N, G) C C;* the vector span of functions of the form

N+ ExE + £, )

wheren, £ € G andé,g € N.Itiseasy tosee that ¥ (N, G) is a finite-dimensional sub-
space contained in the convex envelope of G and B(G); cf. Lemma 1 in Sect. 4.2.
The following proposition is an infinite-dimensional analogue of the well-known
convexification principle for controlled ODE’s (e. g., see [1, Theorem 8.7]).

Proposition 2. Under the above hypotheses, Eq. (7) is G-controllable if and only if
Eq. (6) is ¥ (N, G)-controllable.

Step 3. Saturation. Propositions 1 and 2 (and their proof) imply the following result,
which is a kind of “relaxation property” for the controlled Burgers equation.

Proposition 3. Let N, G C C;° be as in step 2. Then Eq. (6) is G-controllableif and
onlyifitis ¥ (N, G)-controllable. Moreover, the constant Ky of (5) corresponding

to Eq. (6) with G-valued control can be made arbitrarily close to that for Eq. (6)
with ¥ (N, G)-valued control.

We now set N = {c cos(A1x), csin(A;x),ccos(A2x),csin(Ax),c € R} and
define Ex = ¥ (N, Ex—1) for k > 1, where Ey = EA. Note that B(N) C Ex
(this inclusion will be important in the proof of Lemma 1). It follows from Propo-
sition 2 that Eq. (6) is E 5 -controllable if and only if it is Ex-controllable for some
integer k > 1. We shall show that the latter property is true for a sufficiently large k.
To this end, we first establish the following saturation property: there is a dense
countable subset Ao, C R such that

oo

U E} contains the functions sin(Ax) and cos(Ax) with A € A . (10)
k=1

Step 4. Large control space. Once (10) is proved, one can easily show that (6) is
E.-controllable for a sufficiently large k. To this end, it suffices to join uy and %
by a smooth curve, to use Eq. (6) to define the corresponding control 7, and to ap-
proximate it, in local topologies, by functions belonging to Ej. The fact that the
corresponding solutions are close follows from continuity of the resolving operator
for (6) in local norms (see Proposition 6). This will complete the proof of Theorem 2.
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3 Cauchy problem

In this section, we discuss the existence and uniqueness of a solution for the Cauchy
problem for the generalised Burgers equation

dou—pdi(u+gt.x)) + Bu+gt.x)) = f(t.x), x€R, (11)

where f and g are given functions. We also establish some a priori estimates for
higher Sobolev norms and Lipschitz continuity of the resolving operator in local
norms. The techniques of the maximum principle and of weighted energy estimates
enabling one to derive this type of results are well known, and sometimes we confine
ourselves to the formulation of a result and a sketch of its proof.

3.1 Existence, uniqueness, and regularity of a solution

Before studying the well-posedness of the Cauchy problem for Eq. (11), we recall
some results for the linear equation

8tv—u8§v +a(t,x)dxv+b(t,x)v =c(t,x), xeR, (12)
supplement with the initial condition
v(0, x) = vo(x), (13)

where vy € L°°(R). The following proposition establishes the existence, unique-
ness, and a priori estimates for a solution of problem (11), (12) in spaces with no
decay condition at infinity.

Proposition 4. Let T > 0 and let a, b, ¢, and f be some functions such that
aeL?(Jr,L®), b,ceL'(Jr,L*®),
Then for any vy € L problem (12), (13) has a unique solution v(t, x) such that
veL®Ur xR)NCu(J7, LY. [0xv(, )2y € L
Moreover, this solution satisfies the inequalities

[0llzooqixey = exp(Ibllzi s, zo0y) (Ivollzo + el o))
(14)
||v(t)||L5] + ||8xv||L5]L2(Jl) <C eC(&(t)+b(t))<||v0||L5] + ||C||L§]L2(J,)>’ (15)
where 0 <t < T, C > 0is an absolute constant, and

BO=101 55, 2y GO=1a1F2(s, 1oy Ieli20) =5 el 2ty s1p-
s Ly s ul ye
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If, in addition, we have a € L*®(Jp x R), thenu € L?(Jr, H)) forany p € [1, g
and

t
9l = € (Ioollz + [ le@lzar) (16)
where Cy > 0 depends only on p, ||a| Lo, and ||b||L2(JT,L2]).

Proof. Inequality (14)is nothing else but the maximum principle, while (15) can eas-
ily be obtained on multiplying (12) by e "*~>!v, integrating over x € R, and taking
the supremum over y € R. Once these a priori estimates are established (by a formal
computation), the existence and uniqueness of a solution in the required functional
classes can be proved by usual arguments (e. g., see [13] for the more complicated
case of the Navier—Stokes equations), and we omit them. The only non-standard
point is inequality (16), and we now briefly outline its proof.
Let K;(x) be the heat kernel on the real line:

2
K:(x) = exp(—jiu), xeR, t>0. (17)

1
NZE 0

The following estimates are easy to check:

_3
1Ko gl <llglpz 10x(Ke* @)ll2 < Cir i fglo. >0, (18)

Here and henceforth, the constants C; in various inequalities may depend on w and 7'.
We now use the Duhamel formula to write a solution of (12), (13) in the form

t
v(t, x) = (K; * vg)(x) + [ Ki—y % (c(r) —adxv(r) —bu(r))dr.
0
It follows from (18) that

3
||U(l)||Hu1] < Cyt 4||Uo||L§]
t 3
+ Cz[ (¢ —r)_4(||C||L2] + llallzeellvll g1 + ||b||L2]||U||L°°) dr
0 ul ul ul
_3 d _3
<G4 vollz + G | (1 —=7) 4(||C||L2] + (lallLe + 1) ||U||H1])dr
ul 0 ul ul

t
_3
+C [ = Hbi, ol g dr.
0 ul

where we used the interpolation inequality |[v||7 oo < C||v||Lz] ||v||H1]. Taking the

left- and right-hand sides of this inequality to the p™ power, integrating in time, and
using (15), after some simple transformations we obtain the following differential



358 A. Shirikyan

inequality for the increasing function ¢(¢) = fé [lv(r)]] 11:11 dr:
ul

t P t 3
o) = C0P+Ca( [ 1e3dr) +Callalf sy t1) [ 6= o)

where Q stands for the expression in the brackets on the right-hand side of (16),
and Cy4 depends on a(T'), b(T), T, and . A Gronwall-type argument enables one
to derive (16). O

Let us note that inequality (15) does not use the fact that b,c € L'(Jr, L™)
and remains valid for any coefficient b € L?(Jr, Lgl) and any right-hand side ¢
for which ||c]|| 1212y < 00 This observation will be important in the proof of
Theorem 3.

We now turn to the Burgers Eq. (11), supplemented with the initial condition (2).
The proof of the following result is carried out by standard arguments, and we only
sketch the main ideas.

Theorem 3. Let f € L'(J7,L*®) and g € L®(Jr x R) N L2(Jr, Wh>®) N
LY(Jr, W) for some T > 0 and let ug € L>®. Then problem (11), (2) has a
unique solution u(t, x) such that

u e L®Ur xR)NCulJr LY NLPUr, Hy).  10:2u(, D)l L2 sy € Ly (19)
where p € [1, %) is arbitrary. Moreover, the mapping (1o, f.g) — u is uniformly
Lipschitz continuous (in appropriate spaces) on every ball.

Proof. To prove the existence, we first derive some a priori estimates for a solu-
tion, assuming that it exists. Let us assume that the functions ug, f, and g belong
to the balls of radius R centred at zero in the corresponding spaces. If a function u
satisfies (11), then it is a solution of the linear Eq. (12) with

a=u+g. b=10xg c¢=f+pudig—gig.
It follows from (14) that
ullLoorpxr) < C1(R). (20)

Inequalities (15) and (16) now imply that
||u||Loo(JT,L§]) + ||u||Lp(JT,Hul]) + ||u||Hul]L2(JT) < G (R). (21)

We have thus established some bounds for the norm of a solution in the spaces en-
tering (19). The local existence of a solution can now be proved by a fixed point
argument, whereas the absence of finite-time blowup follows from the above a pri-
ori estimates.

Let us prove a Lipschitz property for the resolving operator, which will imply, in
particular, the uniqueness of a solution. Assume that u;, i = 1, 2, are two solutions
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corresponding to some data (ug;, f;, gi) that belong to balls of radius R centred at
zero in the corresponding spaces. Settingv = u; —uz, f = fi— f2, 8 = g1 — &2,
and vg = U1 — Ug2, We see that v satisfies (12), (13) with

a=ui+g1. b=0x(uz+g2). c¢= f+pdig—(ur+g1)9xg—g0oxuz+g2).

Multiplying Eq. (12) by e~*~?ly, integrating in x € R, and using (20) and (21),
after some transformations we obtain

delvlly + wlldxvlly < C3(RvI5 + 2lellylv]ly, (22)

where we set

fwl = [ w?toe*ax
R

Application of a Gronwall-type argument implies that

t t 2
IS + [0 lx013 ds < Ca(R)(Ilvolly + [0 le@lyds)”.  @3)

Taking the square root and the supremum in y € R, we derive
t
10loe, 22y + 1950021200 = CsR)(Ilvoll 2 + sup [ le@ly ds). 24
ul ul ul ye 0

Now note that

lelly < 1f Iy + a3 ly +lur+gillizeel0xglly + g Lo 0xuz+dxg2lly. (25)

whence it follows that

t
[ el ds <07 15z100
+ Co(R) (1928l 1 (s, Loy + 1028l L2(s, Loy + 1€llL2 (s, 100))-

Substituting this inequality in (24), we obtain

”v”LOOJ 12 +||8xv||L2L2J < Cg(R) ||U0||L2+||f||L2L2 Ji +liglls). (26)
Jr,Ly) al*r) ul ul?Un)

where we set
llglle = gL, w2o0y + 1182, w100y

Inequality (26) establishes the required Lipschitz property of the resolving opera-
tor. O

Remark 1. An argument similar to that used in the proof of Theorem 3 enables one to
estimate the Hul]—norm of the difference between two solutions. Namely, let u; (¢, x),
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i = 1,2, be two solutions of (11), (2) corresponding to some data
(uoi, fi, &) € HY x L*(Jr, L®) x L®(Jr, W>™), i=1,2,

whose norms do not exceed R. Then the difference v = u; — u, satisfies the in-
equality

Il < CRO(Ivollzy + £ 1z2sy.22) + I8 Lsrr sy @D
where we retained the notation used in the proof of (26).

Finally, the following proposition establishes a higher regularity of solutions
for (11) with g = 0, provided that the right-hand side is sufficiently regular.

Proposition 5. Under the hypotheses of Theorem 3, assume that f € L*(Jr, HY)
foraninteger s > 1 and g = 0. Then the solution u(t, x) constructed in Theorem 3
belongs to C([t, T], H}) for any T > 0 and satisfies the inequality

T
sup (1k||8§u(t)||i2]) + suﬂg[ tk||8§+1u(t)||i2(1y)dl
u S 0

teJr

= Qk(||u0||L°° + ”f”Lz(JT,HlﬁﬂL‘X‘))’ (28)

where 0 < k <s, I, = [y,y + 1], and Qy is an increasing function. Furthermore,
ifug € Cp°, then the solution belongs to C(Jr, H3), and inequality (28) is valid
without the factor of t*/% on the left-hand side and |ug || Lo replaced by ||ug | % on
the right-hand side. .

Proof. We confine ourselves to the derivation of the a priori estimate (28) for ugy €
L®°. Once it is proved, the regularity of a solution can be obtained by standard argu-
ments. Furthermore, the case when ug € Cp° can be treated by a similar, but simpler
technique, and we omit it.

The proof of (28) is by induction on k. For k = 0, inequality (28) is a conse-
quence of (21). We now assume that / € [1,s] and that (28) is established for all
k <1 —1.Letus set

@y (1) = tl[ e_(x_y)|8iu|2dx = tl||8iu||2, y € R,
R
where (z) = +/1 + z2. In view of (11), the derivative of @y can be written as

drgy(t) = 11! 0ku2 —{-21146_("_5’)8;748;(8)2‘74 —udyu+ f)dx. (29)
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Integrating by parts and using (20) and the Cauchy—Schwarz inequality, we derive

IA

—(x— 1 1
[Re WG 9w de < =10 ullg 195 ully 3%l

A

[Re—(x—y)aiu O f dx < 9% f Ny 9%ully,

1
2

IA

[ e 8 0 8l (udu) dx [ e gl §IF Y2 dx
R R

A

1
S (10 Mully + 0%l ) 5y

Substituting these inequalities into (29) and integrating in time, we obtain

t
oy (1) + [ (ol )2 di
0
t
< [ (511002 + 4y (s) + 5! 0L | + 5718 £112) ds.
0

Taking the supremum over y € R and using the induction hypothesis, we derive
t t T
V0 = 0+ [y dstsup [l B+ o [ 1112, ds. G0
0 yeR JO 0 ul
where Q;_ is the function entering (28) withk =/ — 1, and
t
Y(0) = 92, + sup [ A 2, dt.
U yeRJO Y
Now note that
t t
/ s 15 ds < Collullzoe Y e [ sl g, ds.
0 keZ 0

Substituting this into (30) and using again the induction hypothesis and inequal-
ity (20), we obtain

t
¥ = Co [ Vs + Q(luoll +11f izgry mgpeos)

where Q is an increasing function. Application of the Gronwall inequality completes
the proof. O
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3.2 Uniform continuity of the resolving operator in local norms

Theorem 3 established, in particular, the Lipschitz continuity of the resolving opera-
tor for (11). The following proposition, which plays a crucial role in the next section,
proves the uniform continuity of the resolving operator in local norms.

Proposition 6. Under the hypotheses of Theorem 3, for any positive numbers T, R,

r, and § there are p and C such that, if triples (wo;, fi, &), i = 1,2, satisfy the
inclusions

up €L®, fieL'(Jr,L®), gie L®(JrxR)NL>(Jr, WH)\NLY (Jp, W>),

and corresponding norms are bounded by R, then

sup [[ur(t) —ua (@)l 2 orr < 8

teJr

+C <||U01 —uoz2llz2,) + 1/1 = 2llevg,c2a,y 181 — g2||L2(JT,H2(Iﬂ))>’
(31)

where 1, = [—p, p], and u; (t) denotes the solution of (11) issued from ;.

Proof. We shall use the notation introduced in the proof of Theorem 3. It follows
from inequality (23) with y = 0 that

POz < R (e vl + [ e e ). 32
Now note that
lle™™1 20017, = [R lvol?e™dx < [lvolZ(y, +4e ™ lvol72.  (33)
By a similar argument, we check that (cf. (25))

le™2e (@, )2 <N f L2yl 92l L2yt Co(R) 10xgllp2¢r,y+Ca(R)e /2
+ (lIglzooqryy + e *lgliLee) le " *(@xuz + 0xg2) Ml 12R)-

Integrating in time and using (21), we obtain

T
[ le 12t )l di
0

T T 1/2
< R [ 1 e+ ([ el i)+ e 6o

Substituting (33) and (34) into (32) and taking p > 0 sufficiently large, we arrive at
the required inequality (31). O



Approximate controllability of the viscous Burgers equation on the real line 363

4 Proof of Theorem 2

4.1 Extension: proof of Proposition 1

We only need to prove that if Eq. (7) is G-controllable, then so is (6), since the con-
verse implication is obvious. Let 77, € C*°(J7, G) be such that the solution #% of
problem (7), (2) satisfies (5) with s = 0. In view of (26), replacing Ko by a slightly
larger constant, we can assume that £(0) = ¢(7T) = 0. Letus set u = % + C.
Then u is a solution of (6), (2) with the control n = 7 + BtE , which takes values
in G. Moreover, u(7T') = u(T) and, hence, u satisfies (5). This completes the proof
of Proposition 1, showing in addition that the constants K entering (5) and corre-
sponding to Egs. (6) and (7) can be chosen arbitrarily close to each other.

4.2 Convexification: proof of Proposition 2

We begin with a number of simple observations. Let us set G; = F (N, G). By
Proposition 1, if Eq. (7) is G-controllability, then so is Eq. (6), and since G C G, we
see that (6) is G1-controllable. Thus, it suffices to prove that if (6) is G -controllable,
then (7) is G-controllable. To establish this property, it suffices to prove that, for any
n € C®°(Jr,Gy) and any § > O there are 1, { € L°°(J7, G) such that the solution
u(t, x) of (7), (2) satisfies the inequality

lu(T) = ur (T 1 < 6, (35)

where u; stands for the solution of (6), (2) with = n;. Indeed, if this property is es-
tablished, then we take two sequences {n"}, {{"} C C*°(Jr, G) such that (cf. (27))

7" =nllL2r.6) + 18" = ElliLar6) = 0 asn— o0

and denote by u” (¢, x) the solution of (7), (2) with n = 1™ and { = {". It follows
from (27) that

Vo = |Ju"(T) — u(T)||H1] — 0 asn — oo. (36)
Combining (35) and (36) and using the continuous embedding Hul] C L°°, we derive

" (T)llLoe < lur(T) oo + [|u(T) = ur(T)l|Loe + " (T) — u(T)|| oo
< Ko+ C1(8 + yn),
u™(T) =l 2¢,y < 1" (T) = u(D)llL2qr,y + 1u(T) —ur (T 121,
+ 1w (T) — il 2,
< Ca(yn +0) + lur(T) =1l 121,

where I, = [—r, r]. Choosing § > 0 sufficiently small and n sufficiently large, we
conclude that u” satisfies inequalities (5), with a constant K arbitrarily close to that
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for u;. Finally, a similar approximation argument shows that, when proving (35), we
can assume 71 (¢) to be piecewise constant, with finitely many intervals of constancy.
The construction of controls 1, { € L*°(Jr, G) for which (35) holds is carried out
in several steps.

Step 1. An auxiliary lemma. We shall need the following lemma, which establishes
a relationship between G- and ¥ (N, G)-valued controls.

Lemma 1. Foranyn, € ¥ (N, G) and anyv > O there is an integerk > 1, numbers

a; > 0, and vectors 0, ¢/ € G, j = 1,...,k, such that
k
=1, (37)
j=1
k . .
“nl — Bu) — (r] — Zaj(i)’(u +¢7) —ua)%@]))HHl <v foranyu € H}.
j:] ul
(38)
Proof. It suffices to find functions r],fj € G,j =1,...,m,such that
k
[n—n+Y 8@, <. (39)
j=1 ul
Indeed, if such vectors are constructed, then we can set k = 2m,
1 . . ~.
O = em =, =gt = m) forj=1,....,m,
m

and relations (37) egl_d (38) are easily checked.

To construct n, {7 € G satisfying (39), note that if n; € ¥ (N, G), then there are
functions 7j;, §; € G and §; € N such that

k
m =Y (il — &0xE — §0:E)). (40)
j=1
Now note that, for any ¢ > 0,
§0xEj + §0x8 = Bk +e7'E)) — 2 B(E)) — e 2 B(E)).
Combining this with (40), we obtain
k k k
mo— Y (1 +e7BE)) + ) Bk +¢'E) =) B(E).
j=1 j=1 j=1

Choosing & > 0 sufficiently small and setting?

k
=Y (1 +e28E). T =ot+e'E, (41
j=1
we arrive at the required inequality (39). O

2 Recall that B(N) C G, so that the vector 17 defined in (41) belongs to G.
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Step 2. Comparison with an auxiliary equation. Let n; € L°°(J7, G1) be a piece-
wise constant function and let u; be the solution of problem (6), (2) withn = n;. To
simplify notation, we assume that there are only two intervals of constancy for 11 (¢)
and write

M. x) = 1, (On](x) + L, (017 (%),

where ], 73 € G are some vectors and J; = [0,a] and J, = [a,T] witha €
(0,7). We fix a small v > 0 and, for i = 1,2, choose numbers a]’- >0,j] =
1,....k;, and vectors 1, /" € G such that (37), (38) hold. Let us consider the
following equation on Jr:

ki
dou — pd2u + Y of (B + ¢ (x)) — pd2/ () = h(t.x) +n'(x). 1€

=1

] “2)
This is a Burgers-type equation, and using the same arguments as in the proof of
Theorem 3, it can be proved that problem (42), (2) has a unique solution % (z, x)
satisfying (19). Moreover, in view of the regularity of the data and an analogue of
Proposition 5 for Eq. (42), we have

ii e C(Jp, HX) foranyk > 0. (43)
On the other hand, we can rewrite (42) in the form
deu — po2u +udsu = h(t,x) + ni(x) —cit,x), teJ, (44)

where ¢! (¢, x) is defined for ¢ € J; by the function under sign of norm on the left-
hand side of (38) in which n; = r]"l, n=n, o = a]"-, ¢ = and u = i, x).
Since the resolving operator for (44) is Lipschitz continuous on bounded subsets,
there is a constant C > 0 depending only on the L* norms of r]"l such that (see
Remark 1)

ler(T) =@Ml g1 = C(llegllzz Loy + 6§ llL2m,Lo0) = CV2Tv. (45)

On the other hand, let us define n € L*®(Jr, G) by n(t) = n' fort € J;. We shall
show in the next steps that there is a sequence {{;,} C L°°(JT, G) such that

||um(T)—7Tt(T)||Hu1] —0 asm — oo, (46)

where u” (¢, x) denotes the solution of problem (7), (2) in which { = ¢,,. Com-
bining inequalities (45) and (46) with v < 1 and m > 1, we obtain the required
estimate (35) for u = u™.

Step 3. Fast oscillating controls. Following a classical idea in the control theory,
we define functions &,, € L°°(J7, G) by the relation

M (mt /a) fort € Ji,

Cm(1) = {g(z)(m(l —a)/(T —a)) fort e J,,
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where @ (r) is a 1-periodic G-valued function such that
(D)=t for0<t—(af +-+ai_)<al,j=1.._ k.
Let us rewrite (42) in the form
Dot — 2 (U + Ln(t, X)) + B + Ln(t, X)) = h(t, x) +n(t, x) + fu(t, x),

where we set f, = fu1 + fm2,

ki

St (€)= —pd2m + Y 027, 47
j=1

Fn2(t) = B + bm) — Y et Bt + ¢77) (48)
j=1

for t € J;. We now define an operator X : L?(Jr,L®) — L®(Jr x R) N
C«(Jr, L2) by the relation

(K f)(t.x) = [0 Koy % f(s)ds.

where the kernel K; was introduced in (17). Setting v,, = u — K f;,,, we see that
the function v,, (¢, x) satisfies the equation

v — 2 4 &m) + B + Cm + K fin) = h + 1. (49)
Suppose we have shown that
1K S (T g + 1K Sl w200y = 0 as m — oo. (50)
Then, by (27), we have
™ (T) = &(T)ll gy < W™ (T) = v (D) g1 + 1K fon (Dl gy 0 asm — os.
Thus, it remains to prove (50).

Step 4. Proof of (50). We first note that { f;,} is a bounded sequence in L*°(Jr, Hf] )
for any k > 0. Integrating by parts, it follows that

K fmn = F + 0 K (02 F), (51)
where we set

Ft) = [0 fin(s) ds.

In view of Proposition 4, the operator X is continuous from L!'(Jr, Hlﬁ) to
Cc(Jr, Hlﬁ) for any integer k > 0. Therefore (50) will follow if we show that

||Fm||C(JT,H£) — 0 asm — oo.
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This convergence is a straightforward consequence of relations (47) and (48); e. g.,
see [16, Sect. 3.3]. The proof of Proposition 2 is complete.

4.3 Saturation

We wish to prove (10). To this end, we shall need the following lemma describing
explicitly some subspaces that are certainly included in Ej. Without loss of gener-
ality, we assume that A; > A,.

Lemma 2. Let us set A = {n1Ay +nzA, >0 : ny,ny € Z,|ny| + |na2| < k}.
Then Ep, C E for any integer k > 1.

Proof. The proof is by induction on k. We confine ourselves to carrying out the
induction step, since the base of induction can be checked by a similar argument.

Let us fix any integer k > 2 and assume that E5, C Ej. We need to show that
that the functions sin(Ax) and cos(Ax) belong to Ex4; for A = njAy + naAy €
Ak+1. We shall only consider the case when the coefficients n; and n, are non-
negative, since the other situations can be treated by similar arguments. Assume
firstn; >2andny +n, <k +1.Then X = A — Ay and A = A — 21, belong
to Ag, and we have

"

2
sin(Ax) = /; sin(A”x) 4+ s (sin(A1x) 3 sin(A'x) + sin(1"x) dx sin(A;x)),
(52)

A 2
L cos(A"x) +

cos(Ax) = — /V/(

cos(A1x) dx sin(A'x) + sin(A'x) dx cos(A;x)),
(53)

whence we conclude that the functions on the left-hand side of these relations belong
to Ex41. IfA = Ay + kAy € Agyq, thensetting A’ = A — A and A = A — 21,
we see that relations (52) and (53) with A, replaced by A, remain valid, and we can
conclude again that sin(Ax), cos(Ax) € Ex4;. Finally, the same proof applies also
inthecase A = (k + 1)A2 € Agy1. O

Lemma 2 shows that the union of Ej (which is a vector space) contains the
trigonometric functions whose frequencies belong to the set A (= UrAg. It is
straightforward to check that A  is dense in R .

4.4 Large control space

Let us prove that (6) is E 5, -controllable (and, hence, Ey-controllable) for a suffi-
ciently large k. Indeed, let us set

u(t,x) =T~ (td(x) + (T — uo(x)), (t.x) € Jr xR. (54)

This is an infinity smooth function in (¢, x) all of whose derivatives are bounded.
We now define
n(t,x) = du — udu +udsu —h
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and note that n € L2(Jr, H?) forany s > 0 and that the solution of problem (6), (2)
is given by (54) and coincides with 11 for ¢ = T'. We have thus a control that steers a
solution starting from u¢ to %i. To prove the required property, we approximate 7, in
local topologies, by an E 4, -valued function and use the continuity of the resolving
operator to show that the corresponding solutions are close.

More precisely, let y € C*®°(R) be suchthat0 < y < 1,supg | x| <2, x(x) =0
for |x| > 2, and y(x) = 1for|x| < 1. Then the sequence 1, (¢, x) = x(x/n)n(t, x)
possesses the following properties:

Na(t,x) =0 for|x|>2nandanyn > 1, (55)
||nn||L2(JT,Hul]) = 3||n||L2(JT,Hul]) foralln > 1, (56)
||r]n—r]||Lz(JTX1ﬂ)—>O asn — oo forany p > 0, (57)

where I, = [—p, p]. Given a frequency w > 0 and an integer N > 1, we denote
by Py.v L2(I,T/w) — L°°(R) a linear projection that takes a function g to its
truncated Fourier series

.. ) o
Cone)) = X grei* g =2 [ goreenay.
lil<N m/ew

The function P, x g is 27/ w-periodic, and it follows from (55) and (56) that

”Pw,NTln”Ll(JT,LOO) = C1||Pw,NTIn||L2(_/T,Hul]) <C, forall N,n>1, (58)

IPo.N1n — nn||Lz(JTX1ﬂ) —0 asN — ooforanyn > 1. (59)

Note thatif € Ao, thenforany N > 1 thereis k > 1 such that the image of P, x
is contained in Ep .

Let us denote by u, v (¢, x) the solution of problem (6), (2) with n = Py, n 1y In
view of inequality (31) with § = ¢/2 and R = max{|uo||Le, [[7llL1(s; o0y, C2},
we have

lun N (T) =il 201,y = lttn,n (T) = u(T)ll 21,
&
=, + C[Po,N1n —0ll1r,22a1,))

&
= 2 + C\/T (”Pw,NT]n — nn”Ll(JT,Lz(Iﬂ)) + ||Tln - n”Ll(JT,Lz(In)))' (60)

We now choose n > 1 such that C /T Imn=nllL1r,221,)) < 4 see (57). We next

find w € As so that Z > max(2n, p) (this is possible since A is dense in R )

&

4- Substituting

and choose N > 1 such that C /T ||Py n7n — Ml r,n2a,)) <
these estimates into (60), we obtain

lun N (T) =l 20,y <&

which is the second inequality in (5) with s = 0. It remains to note that, in view
of (20), (56), and (58), the first inequality in (5) is also satisfied.
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4.5 Reduction to the case s = 0

We now prove that if inequalities (5) hold for s = 0 and arbitrary 7, r, and ¢, then
they remain valid for any s > 1. Indeed, we fix an integer s > 1, positive numbers r
and ¢, and functions ug, 4 € Cg°. Let us define 1 by zero on the half-line [T, +00)
and denote by () the solution of (1), (3) issued from # at t = T'. Using interpola-
tion, regularity of solutions (Proposition 5), and continuity of the resolving operator
in local norms (Proposition 6), we can write

[u(T +0) =i () s z,) < Crllu(T +0) =0 (@) 21, 14T +0) =0 (@)l 25 1,

<G 26+ Clu(T) = ill2a,) Qas (lu(T)llLs + K).  (61)

where C; are some constants depending on R and s, the quantities C and Q,; are

those entering (31) and (28), respectively, and K = ||it| Lo + ||h||L1(JT,H2]S). Fur-
thermore, in view of Proposition 5, we have

l7i(7) _ﬁ”Hlﬂ -0 ast—0T.

Let T > 0 be so small that the left-hand side of this relation is smaller than £2/6. We
next choose § > 0 such that

Coat™ Qa5(Ko + K)8 < £2/6,

where Ky is defined in (5) (and is independent of r and ¢). Finally, we construct
n € C*®(Jr, Ep) for which inequalities (5) hold with r = p and ¢ = §/C. Com-
paring the above estimates with (61), we obtain

[u(T + 7) —illgsa,) = ISUIP lu(T + ) —tllgsa) < e
Cly

where the supremum is taken oven all intervals I C [, of length < 1. Furthermore,
in view of (28), we have

[u(T + D)l < 1 0s(Ko + ”h”Ll(JT,Hlﬁ)):: K.

We have thus established inequalities (5) with 7 and || - || gs(z,) replaced by T + ¢
and || - || H3(1,)> respectively. Since T is arbitrary and the positive numbers 7 and &
can be chosen arbitrarily small, we conclude that inequalities (5) are true for any
integer s > 0 and any numbers 7T, r, ¢ > 0. This completes the proof of Theorem 2.
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Homogeneous affine line fields and affine lines in
Lie algebras

Michail Zhitomirskii

Abstract We prove that for n = 2, 3 any local homogeneous affine line field L C
TR” can be described by an affine line £ in an n-dimensional Lie algebra g, which
means that L is diffeomorphic to the affine line field in a neighborhood of the identity
of the Lie group of g obtained by pushing £ along the flows of left-invariant vector
fields. We show that this statement does not hold for n = 4, for one of several types
of homogeneous line fields.

1 Introduction

1.1 Local homogeneous subsets of the tangent bundle

Let M" be an analytic n-dimensional manifold. A subset X of the tangent bundle,
Y = {3y CTyM"} cpn,is called homogeneous if for any points p1, p» € M"
there exists a local analytic diffeomorphism ® : (M", p;) — (M", p,) such that
Dy x(Xx) = Xo(x) for x close to py.

A local homogeneous subset of TR” is the germ at 0 € R” of a homogeneous sub-
set of TU, where U is a neighborhood of 0. Here by germ we mean the germ with
respect to x € R” only so that a local homogeneous subset of TR” is local with
respect to a point of R” and global with respect to a tangent vector.
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1.2 Symmetry algebra sym(X)
In what follows X is a local homogeneous subset of TR”.

A vector field germ V' at 0 € R” is called an infinitesimal symmetry of X if for the
flow @ of V one has @, (Xx) = gt (y), forx close to0 € R” and 7 close to 0 € R.

The set of all infinitesimal symmetries of X is a Lie algebra whose dimension might
be finite or infinite. It is called the symmetry algebra of 3. We will denote it by
sym(X).

Definition 1. A Lie algebra A4 of vector fields germs at 0 € R” is called transitive if
{V(),V e A} = ToR".

It is well-known that a local subset ¥ C TR” is homogeneous if and only if its
symmetry algebra sy m(X) is transitive, see [1].

1.3 Construction of a local homogeneous subset of T R" from an
endowed n-dimensional Lie algebra

By an endowed n-dimensional Lie algebra we mean an n-dimensional Lie algebra
g endowed with a subset 0 C g. Let (G, id) be a neighborhood of the identity of
the Lie group G of g. We can push o to T (G, id) by the flows of left-invariant
vector fields. We obtain a homogeneous subset of 7" (G, id) for which we will use

the notation (g, 0).

Take any local diffeomorphism (G, id) — (R”,0). It brings @ to a local homo-
geneous subset of TR”, defined up to a local diffeomorphism (R”,0) — (R”, 0).

Definition 2. We will say that a local homogeneous subset ¥ C TR” is induced
by an endowed n-dimensional Lie algebra (g, o) if ¥ can be obtained from the

constructed homogeneous subset @ C T (G,id) by a local diffeomorphism
(G,id) — (R",0).

1.4 A general question on local homogeneous subsets of T R"

In the conference in Cortona in 2012, devoted to Andrei Agrachev’s 60th Birthday,
I formulated and discussed the following question.

Question. Are there local homogeneous subsets of TR” which are not induced by
any endowed n-dimensional Lie algebra, according to Definition 2? Is it possible to
describe all of them, at least for small n?

At first observe the following almost obvious statement.

Proposition 1. If X is a local homogeneous subset of TR" such thatdim sym(X) =
n then ¥ is induced by an endowed n-dimensional Lie algebra.
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In fact, in this case X can be obtained from Xy = X N ToR” by pushing X along
the flows of vector fields in sym(X). Take an isomorphism i : ToR" — sym(X)
sending a tangent vector v € ToR” to the unique V' € sym(X) such that V(0) = v.

Then X is diffeomorphic to (m) with o = i (Zo).

On the other hand, there is a number of examples of local homogeneous subsets
3 C TR”" with the symmetry algebra of dimension oo or a finite dimension bigger
than n which are also induced by an endowed n-dimensional Lie algebra.

Note that the symmetry algebra of @ contains all left-invariant vector fields and
therefore g C sym@. It follows that the symmetry algebra of any local homo-
geneous subset ¥ C TR” induced by an endowed n-dimensional Lie algebra (g, o)
contains a subalgebra isomorphic to g. But the whole symmetry algebra of ¥ might
be much bigger than g.

I have attacked the question above forn = 2 and n = 3. For n = 2 the only
case that a local homogeneous subset ¥ C TR? is not induced by an endowed
2-dimensional Lie algebra (g, o), with Abelian or non-Abelian g, is the case that
sym(X) = so03(R). The main example of such X is a field of ellipses in TR? defin-
ing a Riemannian metrics with a constant positive curvature.

I have also proved that any local homogeneous subset of TC? (the holomorphic part
of the tangent bundle) is induced by an endowed 2-dimensional complex Lie alge-
bra. In the definition of local homogeneous subset of the holomorphic part of 7TC”
and in the construction of Sect. 1.3 the analytic diffeomorphisms should be replaced
by biholomorphisms.

As one can expect, the case n = 3 is much more difficult than n = 2. I conjectured
that like for n = 2 any local homogeneous subset of the holomorphic part of TC3
is induced by some endowed 3-dimensional complex Lie algebras. Recently I found
few counterexamples, with infinite-dimensional symmetry algebras.

The results answering the question formulated in the beginning of this subsection for
n = 2, 3 will be published elsewhere. The present paper is only a small contribution
to this question. It is devoted to the case that ¥ C TR” is an affine line field.

1.5 Local homogeneous affine line fields. Main theorems

Consider the case that ¥ C TR” is an affine line field, i.e. ¥ N TxR" is a straight
line in TxyR"™ which does not contain 0 € T,R", for any x € R”.

Theorem 1. Let n = 2 or n = 3. Any local homogeneous affine line field in TR" is
induced by an n-dimensional Lie algebra g endowed with an affine line £ C g.

Theorem 2. There are homogeneous affine line fields in TR* which are not induced
by any endowed 4-dimensional Lie algebra (g, {) where £ C g is an affine line.

A local affine line field L C TR” can be described by two non-vanishing vector
field germs A and B, where B defines the direction of L and A is a “drift” vector
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field. In geometric control theory L is called a germ of a single input control affine
system, defined up to feedback transformation. We will write L = A + (B). The
words “feedback transformation” correspond to the fact that the vector field germs
A, B are defined by L up to transformations

B— 0B, A—> A+ 0.8,

01, Q- function germs, Q1(0) # 0 (1

Theorems 1 and 2 imply the following corollary.

Corollary 1. Let n = 2 orn = 3 and let L be a local homogeneous affine line field
in TR"™. There are vector field germs A and B which generate an n-dimensional Lie
algebra such that L = A + (B). This statement does not hold for n = 4.

1.6 Plan of the paper

In Sect. 2 we return to the general case, like in Sects. 1.1-1.4. We present general
conceptual results which are the tools used in the proofs of Theorems 1 and 2. Illus-
trating the tools we prove a simple part of Theorem 1, the case n = 2. In Sect. 3 we
prove Theorem 1 for n = 3. In Sect. 4 we use Theorem 1 to classify all local ho-
mogeneous affine line fields in 7R3, In Sect. 5 we prove Theorem 2 and announce
main results on the classification of local homogeneous affine line fields in TR*.

2 Tools

2.1 Splitting property of transitive Lie algebras

Any Lie algebra of vector fields germs at 0 € R” has an important subalgebra, called
the isotropy subalgebra.

Definition 3. The isotropy subalgebra of a Lie algebra A of vector fields germs at
0 € R" is the subalgebra of A consisting of V' € A such that V(0) = 0.

The question formulated in the beginning of Sect. 1.4 is tied with the following prop-
erty of a transitive Lie algebra of vector field germs.

Definition 4. Let A be a transitive Lie algebra A of vector fields germs at 0 € R”
with the isotropy subalgebra /. We will say that A has the splitting property if there
exists an n-dimensional Lie algebra ¢ C A4 such that A = g + I, meaning the direct
sum of vector spaces, not necessarily of Lie algebras.

Proposition 2. A local homogeneous subset & C TR" is induced by an endowed
n-dimensional Lie algebra if and only if the symmetry algebra of ¥ has the splitting

property.

Proof. Assume that ¥ is induced by an endowed n-dimensional Lie algebra (g, o).
To prove that the Lie algebra sy m (%) has the splitting property it is sufficed to prove
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that the Lie algebra sym@, consisting of vector field germs at the identity of the
Lie group of g, has the splitting property. The latter is clear because g, considered
as the Lie algebra of left-invariant vector fields, belongs to sym@,/;).

Assume now that sym(X) has the splitting property: sym(X) = g + I, where
g is an n-dimensional Lie algebra spanned by non-vanishing vector field germs and
I is the isotropy subalgebra of sy m(X). In this case we can construct ¥ by pushing
forward the set X9 = ¥ N TpR” by the flows of vector fields in ¢ C sym(%),
“forgetting” about the isotropy subalgebra /. Take, as in the proof of Proposition 1,
an isomorphism i : ToR” — g sending a tangent vector v € ToR” to the unique
V € g such that V(0) = v. Then X is diffeomorphic to @ witho =i(Zp). O

2.2 Proof of Theorem 1 for n = 2

Let us illustrate Proposition 2 by proving Theorem 1 for n = 2.

Notation 1. By a, we denote the Abelian 2-dimensional Lie algebra and by b, the
non-Abelian 2-dimensional Lie algebra.

A local affine line field L in TIR? can be described by equation @ = 1, where « is a
differential 1-form: L = {v € T,R? : a(v) = 1} where x is a point close to 0. For
local homogeneous affine line fields there are the following and only the following
possibilities:

(@) da(0) # 0;
(b) da = 0in aneighborhood of 0.

By the simplest part of Darboux theorem we have, in some local coordinates, o =
(1 + x2)dx in case (a) and o« = dx; in case (b).

In terms of the coordinates of these normal forms, in case (a) the symme-
try algebra consists of vector fields of the form f(x;) ail — (1 + x2)f"(x1) 3)‘22
and its isotropy subalgabra consists of vector fields of the same form with
f(x1) = x?h(x1). The isotropy subalgebra has a complement b, =
span {aﬁl , X1 ail — (14 x2) aiz } Therefore L is induced by b, endowed with
a certain affine line.

In case (b) the the symmetry algebra consists of vector fields of the form
r ail + g(x1,x2) 3)‘22, r € R. Its isotropy subalgebra consists of the vector fields

of the same form with r = 0 and g(0) = 0. It has the Abelian complement

ap = span ( ai o 3,'22). Therefore L is induced by a, endowed with a certain affine

line.
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2.3 Classification of local homogeneous subsets of T R" versus
classification of endowed Lie algebras

Definition 5. Two endowed n-dimensional Lie algebras (g1, 01) and (g2, 02) are
isomorphic if there exists an isomorphism from g; to g» which sends o onto 05.

Our constructions imply the following statement.

Proposition 3. Let X1 and X, be local homogeneous subsets of TR" induced by
endowed n-dimensional Lie algebras (g1, 01) and (g2, 02):

1) ifthese endowed Lie algebras are isomorphic then ¥, and ¥, are diffeomor-
phic, i. e. there exists a local diffeomorphism ® : (R",0) — (R”,0) such that
qD*Zl = 22,’

2) ifdimsym(X,) = dimsym(X,) = n and X1 and X, are diffeomorphic
then the endowed Lie algebras (g1, 01) and (g2, 02) are isomorphic.

The second statement does not hold if dimsym(X,) = dimsym(X,) > n. The
simplest example is the classification of homogeneous affine line fields in TR?,
see Sect. 2.2. It is discrete (we have exactly two normal forms without parameters)
whereas the classification of affine lines in b, is not discrete. In fact, an affine line
inby = span{x, y}, [x, y] = x can be brought by an automorphism of b, to one of
the normal forms £ = x + span{y} or£ = Ay + span{x} and in the second normal
form A is a modulus.

2.4 Nagano principle

Nagano gave the following definition of an abstract transitive Lie algebra.

Definition 6 (Nagano, [2]). An abstract transitive Lie algebra is a couple (4, I)
where A is a Lie algebra and / is a subalgebra of 4 which does not contain non-
trivial ideals of the whole A.

Proposition 4 (Nagano, [2]). Any transitive Lie algebra of analytic vector field
germs at 0 € R" is an abstract transitive Lie algebra according to Definition 6.

The following statement is a direct corollary of this proposition (it is not hard to
prove it independently).

Proposition 5. The isotropy subalgebra of a transitive Lie algebra of analytic vec-
tor field germs at 0 € K" is trivial (consists of zero vector field only) if and only if it
does not contain non-zero vector fields with zero linear approximation at 0.

In fact, the absence of vector fields with the zero linear approximation in a transitive
Lie algebra of vector field germs implies that the whole isotropy subalgebra is an
ideal and therefore by Proposition 4 it must be trivial.
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2.5 Finite dimensional transitive Lie algebras of vector fields

Proposition 6 below is a particular case of H. Sussmann’s theorem, continuing the
Nagano principle, on the relation between transitive Lie algebras of vector fields and
abstract transitive Lie algebras according to Nagano’s definition.

Proposition 6 (a particular case of H. Sussmann’s theorem in [3]). Two finite-
dimensional transitive Lie algebras Ay and A, of analytic vector field germs at 0 €
R™ with isotropy subalgebras 1y and I are diffeomorphic, i.e. can be sent one to
the other by a local diffeomorphism of (R",0), if and only if (A1, I1) and (A2, 1)
are isomorphic as abstract transitive Lie algebras, i. e. there exists an isomorphism
from Ay to A which sends I onto I5.

3 Proof of Theorem 1

We use the notations from Sect. 1.5. An affine line field L = A + (B) will be called
bracket generating if taking sufficiently many Lie brackets of A and B we obtain
the whole tangent bundle.

At first consider a very simple case that a homogeneous affine line field in TR 3 is not
bracket generating. It is so if and only if L belongs to one of the following classes:
1. [A, B](x) € span {B(x)};

2. [A, B](0) € span {B(0)}, [A, B](x) € span {A(x), B(x)}

for any x close to 0. These classes are well defined, i. e. do not depend on the choice
of vector fields describing an affine line field.

The cases 1 and 2 are very simple. By transformations (1) we can replace A and B
by new vector fields such that [4, B] = 0 in case 1 and [A, B] = —A in case 2.
By Proposition 6, we can take any vector fields satisfying these equations to get a
normal form for L, for example

0 0 0 0
1: ; 2: e*2 . 2
case oy + (8xz) case e oxy + (8xz) 2)

The vector fields in these normal forms span a 2-dimensional Lie algebra. Therefore
L is induced by an endowed Lie algebra (g, £) where ¢ = R3incase1,q = R@® b,
in case 2, and £ is an affine line in g.

Now consider the case that L is bracket generating. In this case L belongs to one of
the following classes:
A. [A, B](0) & span {A(0), B(0)},
[B.[A. B])(0) & span {B(0). [A, B](0)};
B. [A, B](0) & span {A(0), B(0)},
[B,[A, Bll(x) € span {B(x),[A, B](x)} for any x close to 0,
[A4,[A, B]](x) € span {B(x),[A, B]](x)} for any x close to 0;
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C. [A, B](0) & span {A(0), B(0)},
[B,[A, B]](x) € span {B(x),[A, B](x)} for any x close to 0,
[A4,[A, B]](0) & span {B(0), [A, B](0)}.

Again, these classes are well defined, i. e. the given conditions depend on L only. In
case A we need the following statement.

Lemma 1. If L belongs to class A then any infinitesimal symmetry of L which van-
ishes at 0 has zero linear approximation.

Lemma 1 and Proposition 5 imply that sym(L) is a 3-dimensional Lie algebra. By
Proposition 3 the classification of class A is the same problem as classification with
respect to isomorphisms of certain endowed 3-dimensional Lie algebras. In Sect. 4
we specify which ones.

In case B Theorem 1 follows from the following statement.

Lemma 2. Any homogeneous affine line field of class B is diffeomorphic to

0 d d
lass B : . 3
class . + X3 9 + (8X3) (3)

The vector fields A = ax + x3 aﬁ and B = 333 in this normal form generate the
3-dimensional Helsenberg Lie algebra b1. Therefore any homogeneous L of class B
is induced by an endowed Lie algebra ()1, £) where £ is an affine line in ;.

Class C is harder for analysis. Within homogeneous affine line fields it also consists
of one orbit, and we will use the following normal form.

Lemma 3. Any homogeneous affine line field of class C is diffeomorphic to

ad ad ad
class C: e™*2 +x + ) 4

8X1 3 8)62 8)63 ( )
In this case we cannot we cannot deduce Theorem 1 from normal form (4) in the
same way as from normal form (3) because the vector fields 4 = e*2 aﬁl + x3 3)‘22

and B = ax in (4) do not generate a 3-dimensional Lie algebra. One of the ways

to prove Theorem 1 for case C is to find another normal form A+ (B) with vector
fields A, b generating a 3-dimensional Lie algebra. Such normal form exists, but it
is rather involved. In fact, to prove the existence of such normal form is the same
task as to prove Theorem 1.

We will use another way: we will show that the symmetry algebra of normal form (4)
has the splitting property given in Sect. 2.1. It is easy to compute that the symmetry
algebra of (4) is

d d d
sym(L) = {f(xl) S, e ) 8x3} , )
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where f(x1) is an arbitrary function. The isotropy part of (5) consists of vector fields
with f(x7) suchthat £(0) = f/(0) = f”(0) = 0. Taking f(x1) = 1, f(x1) = x1,
and f(x1) = x? we obtain the complement

0 0

ay = ,a2=8x

+ X1
2 8X1’

+ x2 9
8X2 1 8)61.

8X1

(6)

0
as = 2e™? + X1
8X3

We have [a1, az] = ay, [a1,a3] = az, [az,a3] = az. We see that the vector fields
ai, as, as span the sl Lie algebra. Therefore any homogeneous affine line field L of
class Cis induced by an endowed Lie algebra (s],, £) with some affine line £ C sl5,.

Remark 1. In the next section we will show that the direction of £ is a special direc-
tion in sl, and we will explain what does it mean. We will also show that L is not
induced by an endowed Lie algebra (g, £) with g # sl,.

Remark 2. The fact that vector fields (6) span sl, looks a bit mysterious. It is
not so. The symmetry algebra (5) is isomorphic to the Lie algebra Vect(l) =

{ f(x) 3‘1 ,X € ]R}. The isomorphism is simply the map sending a vector field (5)
to the vector field f(x) 3‘1. This isomorphism sends the isotropy subalgebra of (5)
to the Lie algebra of vector fields { f(x) 3‘1 , f(0) = f'(0) = f"(0) = O}. Its com-

plement { 3‘1 , X 3‘1 ,x2 3‘1 } in Vect(1) is the classical realization of s[5,.

Now we will prove Lemmas 1 and 3. We will use techniques developed in [4]. As
for Lemma 2, it is substantially simpler than Lemma 3 and can be proved by the
same techniques; we omit its proof.

3.1 Proof of Lemma 1

The first condition describing class A implies that L can be described by vector fields

0 0
B=_ . A=(1+4rx3+rxix;+ f(x)) . + X3
1

d
. jif =0, (D
8X3

8)62
If Z € sym(L) and Z(0) = 0 then Z has the form

0 0 d
Z = ¢1(x1, x2) ox, + ¢2(x1, x2) 95 +&(x) oxs’ $1(0) = ¢2(0) =£(0) =0

and satisfies the equation [Z, A] = 0 mod <323 ) What we need from this equation
is its 2-jet:
d
j2[Z, Al = 0 mod ( ) (8)
8)63
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The second condition describing class A implies that r; # 0 in (7). It is easy to
check that (8) and the condition r; # 0 imply j'¢y = jl¢pp = j1€ =0.

3.2 Proof of Lemma 3

We have the same preliminary normal form (7) following from the first condition
describing class C. In fact, this condition implies a stronger normal form: we can
reduce f(x) to a function in the ideal (x%, x1x3). The second condition describing
2f _

2 = 0. Therefore we obtain the normal form
3

class C implies

0 a0 0
=, A=+ raxix3 +x38(x1)) +x3, . jlg=0. (9
8)63 8)61 8)62

B
Now we use the third condition describing class C. It implies r, # 0. We can scale r;
to 1. Using the homotopy method (techniques can be found in [4]) one can prove that
g(x1) can be reduced to 0 by a local diffeomorphism of the form x; — @1 (x1), x» —
®;,(x1), x3 = x3R1(x1)+ R2(x1). We obtain that all homogeneous affine line fields
of class C are diffeomorphic to the affine line field

d
, B= 9 . (10)
8)62

0
A+ (B), A=+ x1x3) + X3
8)61 8)63

The fact that all L of class C are diffeomorphic allows us to replace A and B in this
normal form by any other couple A, B satisfying the conditions describing class C.
The vector. ﬁelds A = e*2 331 + x3 332 and B = 3)‘23 in normal form (4) satisfy
these conditions.

Remark 3. Certainly we could work with normal form (10), but (4) is more conve-
nient for computing the symmetry algebra. Note that neither in (10) nor in (4) the
vector fields 4 and B generate a 3-dimensional Lie algebra. It is so for another nor-
mal form obtained by presentation of certain vectors in sl, as left-invariant vector
fields in local coordinates of SL,. It is not hard to display these vector fields, but
there no need to do so.

4 Complete classification of homogeneous affine line fields in
TR3

Now we can classify all local homogeneous affine line fields in 7R3 in terms of nor-
mal forms for an affine line £ C g in certain 3-dimensional Lie algebras g, with re-
spect to the group of automorphisms of g. We write an affine line in g in the form £ =
a + (b) where a, b € g. We will say that £ is generating if ¢ = span{a, b, [a, b]}.

The description of classes A,B,C in Sect. 3 and a simple work with 3-dimensional
Lie algebras imply the following statement.
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Table 1 Homogeneous affine lines in 7R3 and endowed 3-dimensional Lie algebras
Class All possible cases for (g, £) with generatingf = a + (b0

Al. g = 03, any generating £
A A2.g =sl, b¢[b,g]
A3.dimg? =2, b ¢g?
Bl.dimg? =1, [g,g?] = 0, any generating £
B B2.dimg? =1, [g,g%] # 0, any generating £
B3.dimg?> =2, b € g?

C g =sls, belb,g]

Theorem 3. Let (g, {) be a 3-dimensional Lie algebra endowed with a generating
affine line £ C g, so that the induced homogeneous affine line field L = @ is
bracket generating. Then L has type A, B or C given in Sect. 3 if and only if (g, £)
satisfies one of the conditions given in the corresponding row of Table 1.

We see that when g is fixed, the type of the endowed Lie algebra (g, £) is defined by
the direction (b) of £ only. If ¢ = sl, then the direction is “special” if b € [b, g].
There are no special directions in real soj (all directions are automorphic).

Remark 4. An equivalent definition of a special direction (b) C sl, is the condition
that the operator ad(b) is nilpotent.

The classification of real endowed Lie algebras of class A is given in Table 2.
Now we have a complete classification of all homogeneous affine line fields in 7R3,
The results of Sects. 1-3 imply the following classification.

Theorem 4.
1) Any local homogeneous affine line field in TR3 of class A is diffeomorphic to
the affine line field (g, £) where (g, {) is one and only one of the normal forms

Table 2 Classification, with respect to isomorphisms, of real 3-dimensional endowed Lie algebras
(g, ) of type A

Type of an endowed Lie algebra Normal form with respect to isomorphisms.
(g,4), £ =a+ (b) of class A A is a modulus
Al. g =503 g [x,y]=z [zl =x, [z,x] =y
any generating £ L=Ax+ ()

g [x,y]l=z [z,x] =x, [z,y] =—y
A2. g =sl>, b¢[b,g] L=Ax+(xxy)
and L = A(x +y) + (2)

g: [x,y]1=0, [z,x] =y, [z,y] = £x + Ay

A3. dimg?> =2, b¢qg> L=x+(2)
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for endowed 3-dimensional Lie algebras given in the second column of Table 2.

The parameter A in these normal forms is a modulus of L with respect to diffeo-
morphisms.

2) All local homogeneous affine line field in TR? of class B are diffeomorphic.
They can be described by the normal form @ where the endowed Lie alge-
bra (g, £) satisfies one of conditions Bl, B2, B3 in Table 1 (all such normal forms
are diffeomorphic). They also can be described by the normal form (3).

3) All local homogeneous affine line field in ﬂ_@\of class C are diffeomorphic.
They can be described by the normal form (sl,, ) where £ = a + (b) C sl is
an affine line whose direction (b) satisfies the condition that the operator ad(b)
is nilpotent. They also can be described by the normal form (4).

4) In the remaining case that a local homogeneous affine line field in TR3 is not
bracket generating o/neﬂs one of the normal forms (2). The first normal form

is diffeomorphic to (R3, L) where £ is any affine line. The second normal form
is diffeomorphic to (g, {) where g = R @ b, and the affine line L = a + (b)
satisfies the condition b & 2.

We see that the classification of the class B for endowed 3-dimensional Lie algebras
is much more involved than the classification of class B for homogeneous affine line
fields. On the other hand, it is not hard to prove that all endowed Lie algebras of
class C are isomorphic.

5 Classification of homogeneous bracket generating affine line
fields in TR* and proof of Theorem 2

Theorem 2 follows from the following claim.

Lemma 4. The affine line field

d d d ad
L =e* +x +x + . 11

8X1 38)62 48)63 8)64 ( )
is homogeneous. Its symmetry algebra sym(L) is oo-dimensional and does not have
the splitting property given in Sect. 2.1.

This lemma is proved below. Before that we announce some results on the classifi-
cation of local homogeneous affine line fields in TR*.

Lemma 5. Any local homogeneous bracket generating affine line field L = A+ (B)
in TR* satisfies one of the the following conditions (which are the properties of L
only, i. e. do not depend on the choice of vector fields A and B):
A. [B.[A, B]](0) & span {B(0), [A, B](0)};
B. [B,[A, B]](x) € span {B(x), [A, B](x)},

[A.[A,[A, B]]l(x) € span{B(x),[A. B](x).[4,[A, B]](x)}

for any x close to 0;
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C. [B,[A, B]](x) € span {B(x), [A, B](x)} for any x close to 0,
[A.[A.[A, B]]I(0) & span {B(0),[A, B](0). [4, [A, B]](0)},
[B.[A.[A.[4, B]]ll(x) € span {B(x), [A, B](x). [4,[A, B]](x)}
for any x close to 0.

The normal form (11) serves for the whole class C and it is the only case that L is
not induced by a 4-dimensional Lie algebra endowed with an affine line field.

The class B also consists of one orbit which can be described by the normal form

d n ad n d n ad
X X .
8X1 3 8X2 4 8X3 8)64
The symmetry algebras of this affine line field is co-dimensional.

The class A can be decomposed onto certain classes A1 and A2. Any L of class Al
has 4-dimensional symmetry algebra and consequently the classification of homoge-
neous bracket generating line fields of this class is the same problem as classification
of certain 4-dimensional Lie algebras endowed with an affine line. Any L of class
A2 is diffeomorphic to the normal form

L,y 0 d ( 9
0
8X1 + 2 (X4 + X3) 8X3 +X48X3 + 8)64

where the parameter 6 is a modulus. The symmetry algebra is the 5-dimensional
solvable Lie algebra span{ay, a, as, as, w} with the isotropy 1-dimensional sub-
algebra span{w} and the structure equations

lai,a2] =0, [ai.a3]=0, [a1,a4] =0,
[az,a3] = Oay, [az,a4] = as, [a3,a4] = das
[U.),al] :2‘11, [w’aZ] :O’ [w,a3] =das, [w,a4] = dy.

The parameter 6 can be reduced by an isomorphism to 1 unless 8 = 0, but 6 is a
modulus of the transitive Lie algebra, i.e. with respect to isomorphims preserving
the isotropy subalgebra span{w}.

PROOF OF LEMMA 4. Itis easy to compute that the symmetry algebra of the normal
form (11) is as follows:

d d ad ad
0, S e ),
X1 8)62 8)63 8)64 (12)

h = erzf///(xl) + exzf//(xl)}.

It is isomorphic to the Lie algebra Vect (1) = { f(x) 3‘1, x € R}, the isomorphism
is simply the map sending a vector field of form (12) to the vector field f(x) 3‘1.
This isomorphism sends the isotropy subalgebra of (12) to the Lie algebra U =
{x*g(x) 3‘1} C Vect(1) where g(x) is an arbitrary function (cf. Remark 2). Any
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vector-space-complement to U in Vect(1) is spanned by vector fields of the form
ai = (x' +hi(x)) 3‘1, j3h(x) =0, i = 0,1,2,3. The vector field [as, as] be-
longs to U. Therefore the vector space spaniag,ay,as,as} is not a Lie algebra. It
follows that the symmetry algebra (12) does not have the splitting property.

Remark 5. In fact it it easy to prove that Vect (1) does not contain any 4-dimensional
Lie subalgebra.
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