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Abstract. Due to complex imaging characteristics such as large diversity in 
shapes and appearances combining with deformation of surrounding tissues, it is a 
challenging task to segment glioblastoma multiforme (GBM) from multimodal 
MR images. In particular, it is important to capture the heterogeneous features of 
enhanced tumor, necrosis, and non-enhancing T2 hyperintense regions (T2HI) to 
determine the aggressiveness of the tumor from neuroimaging. In this paper, we 
propose a superpixel-based graph spectral clustering method to improve the 
robustness of GBM segmentation. A new graph spectral clustering algorithm is 
designed to group superpixels to different tissue types. First, a local k-means 
clustering with weighted distances is employed to segment the MR images into a 
number of homogeneous regions, called superpixels. Then, the spectral clustering 
algorithm is utilized to extract the enhanced tumor, necrosis, and T2HI by 
considering the superpixel map as a graph. Experiment results demonstrate better 
performance of the proposed method by comparing with pixel-based and the 
normalized cut segmentation methods. 
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1 Introduction 

Multimodal magnetic resonance (MR) images have been widely used in diagnosis, 
treatment planning, and follow-up studies of GBM [1] . In multimodal MR scans, GBM 
often shows a heterogeneous region including an enhanced tumor region, a necrotic 
region (necrosis), and a non-enhancing T2HI region that is a combination of active 
tumor cells and possible edema. Accurate segmentation of different tissues of GBM can 
help neuroradiologists determine tumor margin and assess its progression and 
aggressiveness. However, due to the complicated imaging characteristics of GBM, such 
as large diversity in shapes and appearance combining with deformed surrounding 
tissue, accurate segmentation of GBM from multimodal MR images is challenging. 

In the literature, pixel-based automatic segmentation methods [2-5] are widely 
used. The basic idea is to assign each voxel to a tissue type by considering its 
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intensities in multimodal images and the constraints derived from its neighboring 
pixels or voxels. For example, Clark et al. [4] developed a knowledge-based fuzzy 
clustering algorithm to segment GBM. Prastawa et al. [5] considered tumor as outliers 
of normal tissue, thus the tumor and edema could be isolated by a statistical 
classification based on learning of intensity distributions for normal brain tissues. 
Recently, graph cut-based methods [6, 7] have driven more attention. They treat the 
image as a graph, i.e., pixels as nodes and their similarity as network links or edges. 
After dividing the graph into sub-networks, the total dissimilarity among different 
sub-networks and the total similarity within each network are maximized. For 
example, Corso et al. [6] integrated the Bayesian model with graph-based affinities to 
segment brain tumor from multimodal MR images. However, graph cut-based 
methods often need to solve a generalized eigenvector problem and may suffer from 
large computational load when the data set is large. The idea of superpixel [8, 9] can 
dramatically reduce the number of nodes of the graph and speed up the graph partition 
while maintaining the image information.  

In this paper, we present a superpixel-based graph spectral clustering method for 
GBM segmentation based on multimodal MR images including T2 weighted (T2), T1 
pre-enhanced (T1PRE), T1 post-enhanced (T1POST) and FLAIR. First, a local k-
means clustering algorithm with weighted distance is performed to segment the 
multimodal images into a number of compact and homogeneous superpixels. Then, by 
considering the brain as a graph of superpixels (e.g., defining nodes as superpixels 
and links as similarity among superpixels), image segmentation is achieved using 
spectral clustering of the superpixel network. Compared to the traditional methods, 
the efficiency and robustness can be improved by using superpixels in the spectral 
clustering.  

In experiments, we first tested the influence of parameters on the segmentation 
results. Then, we demonstrated the superiority of our method by comparing voxel-
based method and standard normalized cut (Ncut) segmentation method.  

2 Methods 

2.1 Overview  

Fig.1. shows the workflow of the proposed method. The pre-processing step consists 
of skull stripping and co-registration of multimodal images. The FSL [10] skull 
stripping (BET) and rigid registration (FLIRT) tools are used. In the next step, 
 

 
Fig. 1. The workflow of the superpixel-based graph spectral clustering method 
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superpixels are generated using the local k-means clustering algorithm. Finally, the 
superpixel-based graph is constructed, and the spectral clustering algorithm is 
performed to classify the superpixels into different groups, including normal brain 
tissues, enhanced tumor, necrosis and T2HI. 

2.2 Segmenting Images into Superpixels 

We used the local k-means clustering algorithm to segment the image into 
superpixels. In [8], the algorithm was used to generate superpixels from color images. 
The CIELAB color ሾ݈ ܽ ܾሿ and the pixel coordinate [x y] were used as the image 
features. A new distance metric ݀ was introduced by simultaneously considering the 
image features and the size of superpixel: ݀ ൌ  ට ௙݀ଶ ൅ ቀௗೣ೤ௌ ቁଶ ݉ଶ, (1)

where 

௙݀ ൌ  ඥሺ݈௜ െ ݈௞ሻଶ ൅ ሺܽ௜ െ ܽ௞ሻଶ ൅ ሺܾ௜ െ ܾ௞ሻଶ, ݀௫௬ ൌ  ඥሺݔ௜ െ ௞ሻଶݔ ൅ ሺݕ௜ െ ܵ ,௞ሻଶݕ ൌ ඥܰ ⁄ܭ . 

(2)

ܰ is the number of pixels, and ܭ is the desired number of approximately equally-
sized superpixels. ൫݈௜, ܽ௜, ܾ௜, ௜൯்ݕ,௜ݔ

represents the 5-D feature of pixel ݅ , and ሺ݈௞, ܽ௞, ܾ௞, ,௞ݔ ݇ ,௞ሻ் is the centroid of the ݇th clusterݕ א ሾ1,  ሿ. ݀௙ measures the colorܭ
proximity, and ݀௫௬  measures spatial proximity. ݉ is a parameter that controls the 
compactness of superpixels, and larger ݉ will induce more compact superpixels. The 
searching region of the local k-means algorithm is limited to local neighboring region 
with the size 2ܵ ൈ 2ܵ. This results in a significant reduction of computational load 
over the standard k-means algorithm.  

In order to generate superpixels adhering more tightly to the tissue boundaries, we 
use different weights on T1 post-enhanced image that captures enhanced tumor and 
necrosis well. Let ሾ ଵ݂௜  ଶ݂௜ ଷ݂௜ ସ݂௜  , ݅ ௜ሿ represents the 6-D feature vector of pixelݕ  ௜ݔ  
where ଵ݂௜ , ଶ݂௜,  ଷ݂௜ , and ସ݂௜ represent the image intensities of pixel ݅ located at ሺݔ௜,  ௜ሻݕ
in T2, T1PRE, FLAIR, and T1POST images, the feature distance between pixel ݅ and 
the ݇th cluster center is defined as, ݀ ௙ ൌ ටଵିఠଷ ∑ ൫ ௝݂௜ െ ௝݂௞൯ଶ ൅ ߱ሺ ସ݂௜ െ ସ݂௞ሻଶଷ௝ୀଵ , (3)

߱  ( 0 ൏ ߱ ൏ 1ሻ  is the weight for T1POST image. Fig.2 shows an example of 
generating superpixels using equally weighted distance ( ߱ ൌ 0.25 ) and a higher 
T1POST weight (߱ ൌ 0.4). In this example, we set  ܭ ൌ 600, and ݉ ൌ 70. We can see 
that the superpixels generated by using our feature distance adhere better to the 
boundaries of the enhanced tumor and necrosis (pointed by the red arrows).  
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2.3 Graph Spectral Clustering of Superpixels 

After brain pixels are classified into superpixels, with each superpixel consisting of 
the adjacent pixels with similar multimodal image intensities, we need to further 
classify them into several major tissue groups. Fig. 3 shows an example of generating 
superpixels. In the last row, each superpixel is represented by the average intensities 
in four modalities, and we will use them as features for superpixel classification. 

Although the standard k-means clustering algorithm can be used to segment 
superpixels into enhanced tumor, necrosis and T2HI, it is based on the Euclidean 
distance to measure the similarity between the superpixels and cluster centroids, and 
the algorithm is only suitable when data manifold in the feature space is convex. If the 
data manifold is curved or not convex, the Euclidean distance is inadequate for 
distinguishing different tissue types. To better handle the similarity and classification 
of superpixels, the graph partition-based segmentation method is used for superpixel 
classification. Specifically, for a graph ܩ ൌ ሼܸ, ሽܧ  with vertexes ܸ ൌ ൛ݒଵ, ,ଶݒ ڮ ,  ௄ൟݒ
representing superpixels, and edge ܧ representing affinity among the superpixels, the 
affinity of superpixels ݅ and ݆, ݓ௜௝, is defined as a Gaussian kernel with width σ, ݓ௜௝ ൌ exp ቀെฮܞ௜ െ ௝ฮଶܞ 2σଶൗ ቁ. (4)ܞ௜ and ܞ௝ are the average intensity vectors in the four modalities of the vertexes ݒ௜ 
and ݒ௝. 

After the superpixel graph is constructed, the graph-based spectral clustering is 
applied to classify the superpixels into different tissue types. The spectral clustering 
algorithm  [11, 12] reflects the intrinsic data manifolds in the feature space and is 
suitable for classification of no-convex data. Herein, the normlized spectral clusering 
algorithm [11] is used. Given the affinity matrix ܹ ൌ ሾݓ௜௝ሿ and the number of the 
clusters ܥ (σ ൌ 20, C=6), the following six steps are performed: 

1) Define ܦ to be a diagonal matrix with ܦ௜௜ ൌ ∑ ௜௝௄௝ୀଵݓ . 
2) Compute the normalized Laplacian matrix ܮ ൌ ଵିܦ ଶ⁄ ሺܦ െ ܹሻିܦଵ ଶ⁄ . 
3) Compute top ܥ  eigenvectors ݖଵ, ,ଶݖ ڮ , ஼ݖ  of ܮ  and form the matrix ܼ ൌሾݖଵ ݖଶ ڮ  ஼ሿݖ  א ܴ௄ൈ஼   by stacking the eigenvectors in columns. 
4) Form matrix ܻ א ܴ௄ൈ஼ from ܼ by normalizing the rows to have unit length, i.e., ݕ௜௝ ൌ ௜௝ݖ ൫∑ ௜௖ଶ஼௖ୀଵݖ ൯ଵ ଶ⁄⁄ . 
5) Run the k-means clustering to group the row vector ܻ. 
6) Assign the original point ݒ௜ to cluster ݆ if and only if row ݅ of the matrix ܻ is 

assigned to cluster ݆. 

Finally, the GBM tissue segmentation can be obtained based on the intensity 
distribution of each group. Fig. 4 shows the sample segmentation results using the 
spectral clustering algorithm and k-means. For both methods, we set the number of 
clusters to Cൌ 6. We can see that spectral clustering succeeds to segment all parts of 
GBM and the results of k -means are not satisfied. Importantly, using the new 
algorithm, it is much easier to distinguish necrosis with grey matter, as well as T2HI 
with other white matters. 
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3 Experiments and Results 

Two sets of experiments were conducted to evaluate the performance of our method. 
The performance of our method relies on superpixels. So in the first experiment, we 
tested the influence of the parameters on superpixels generation. In the second 
experiment, we compared our algorithm with voxel-based method [4] and normalized 
cut (Ncut) [7]. The image data used in the experiments are from 15 patients who have 
been diagnosed with GBM. For each subject, T2, T1PRE, T1POST and FLAIR 
images were used with image size of 256 ൈ 256 ൈ 21 , and image resolution of 0.78 ൈ 0.78 ൈ 6.5 mmଷ . The low resolution in ݖ -direction is not suitable for 3D 
segmentation, so we adopted superpixels to process the images slice-by-slice. The 
algorithm is extendable for supervoxels for 3D MRI data. The manual marking of 
GBM tissue by an expert is used as ground truth. Dice similarity score is calculated to 
evaluate the performance. The Dice similarity score is defined as: ݁ܿ݅ܦሺܣ, ሻܤ ൌ ଶ|஺ת஻||஺|ା|஻|, (5)

 represents the pixel sets ܤ  ,represents the pixel sets of GBM tissue of ground truth ܣ
of GBM tissue using proposed method or other methods. 

3.1 Selection of Parameter 

The quality of superpixel segmentation is highly dependent on the choice of 
parameters: ܭ, ݉ and ߱. ݉ controls the compactness of the superpixels and is often 
set in the range [10,100]. ݉ ൌ 70 is adopted in all our experiments, and it offers a 
good balance between intensity similarity and spatial proximity. To achieve the best 
segmentation performance, we have tried a range of ܭ and ߱. Fig. 5 (a) shows the 
GBM tissue segmentation results using different ܭ (߱ ൌ 0.4). Fig. 5 (b) shows the 
GBM segmentation results using different ߱ (ܭ ൌ 600ሻ. Based on our experiments, 
we found ܭ ൌ 600, ߱ ൌ 0.4  can the yield best performance.  

3.2 Comparison with other Methods  

In the experiment, we applied our method as well as the other two classic 
segmentation methods, pixel-based method [4] and normalized cut (Ncut) [7] to our 
image data and compared the segmentation results, both qualitative and quantitative. 
We found that pixel-based method and Ncut are vulnerable when dealing with 
complicated cases (GBM with more irregular shape and more heterogeneous 
intensity). Fig. 6 shows an example of applying the three methods to one subject with 
complicated GBM characteristics. Fig. 6 (a) and Fig. 6 (b) are the FLAIR and 
T1POST images of this subject. Fig. 6 (c) is the manually labeled ground truth. Fig. 6 
(d) is the result of pixel-based method. Fig. 6 (e) is the result of Ncut. Fig. 6  (f) is the 
result of our algorithm. From Fig. 6, we can see our method outperform voxel-based 
method and Ncut on this complicated case. 
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4 Conclusion 

We developed a superpixel-based graph spectral clustering algorithm that combines 
superpixel and graph spectral clustering to segment GBM from multimodal MR 
images. The basic idea is that the superpixel method groups spatially relate pixels 
with similar intensities together, and the graph spectral clustering on superpixels 
reduces the computational load and improves the accuracy of the segmentation. 
Comparative study showed the proposed method can achieve more accurate results. 
Because the ݖ-direction resolution of our image data is very low, we used superpixel 
instead of supervoxel. It can be easily extended to use supervoxel for 3D scans. 
Quantitative segmentation of GBM from multimodal images provides detailed 
diagnostic information. For example, the shape and size of the enhanced tumor, 
necrosis, the region of T2 hyperintensity (T2HI), the intensity distribution within each 
region, as well as the transition from enhanced tumor to T2HI may provide important 
information about the aggressiveness of GBM. In the future, we plan to extract these 
features and correlate with the pathological finding aiming at providing more 
quantitative diagnostic measures for GBM subtyping and aggressiveness assessment. 
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