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Abstract. Images of different contrasts in MRI can contain complemen-
tary information and can highlight different tissue types. Such datasets
often need to be co-registered for any further processing. A novel and
effective non-rigid registration method based on the restoration of the
joint statistics of pairs of such images is proposed. The registration is
performed with the deconvolution of the joint statistics and then with
the enforcement of the deconvolved statistics back to the spatial domain
to form a preliminary registration. The spatial transformation is also reg-
ularized with Gaussian spatial smoothing. The registration method has
been compared to B-Splines and validated with a simulated Shepp-Logan
phantom, with the BrainWeb phantom, and with real datasets. Improved
results have been obtained for both accuracy as well as efficiency.

Keywords: Non-rigid registration, joint statistics restoration, brain reg-
istration, multi-contrast registration.

1 Introduction

In brain imaging different MRI contrasts can provide complementary information
for tissue properties. The resulting images often need to be co-registered for any
further analysis. The registration can be intra-subject or inter-subject and can
also be achieved effectively with a non-rigid representation.

To address this problem B-Splines methods have been widely used [8]. They
represent misregistration with splines centered on grid node pixels. To make
this method robust even in the case of contrast change, it has been combined
with a distance measure such as the mutual information [9]. An alternative
and commonly used registration method has been the Demons method [11]. It
is based on a variational formulation and assumes constancy in image contrast.
The Demons method has been combined with the normalized mutual information
and has been applied to the registration of multi-modal brain MRI [6].

Mutual information is an extensively used distance measure for multi-modal
registration [7, 12]. However the mutual information is a scalar quantity that
under-constrains the registration. This contributes to making the methods us-
ing it computationally intensive particularly for volumetric datasets. In practice
such methods must be combined with considerable spatial subsampling and/or
multiresolution [4–6, 8, 9].
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The approach presented in this work is shown to be able to register brain
images of different as well as similar MRI contrasts. The spatial misregistration
is represented in terms of its effect on the joint statistics. It is assumed that the
misregistration smooths the joint statistics. We propose a novel systematic non-
rigid registration method that is based on the restoration of the joint statistics.
The problem is approached as a statistical restoration, where the effect of the
misregistration is represented as a convolution of the statistics with a Gaussian
filter. The statistics are restored with a Wiener filter [13] that is used adaptively.
The deconvolved statistics are enforced to the registration between the images to
obtain an initial spatial transformation. Then, the transformation is regularized
for smoothness.

The implementation of the proposed method is iterative and interleaves be-
tween the two constraints. The method has been compared with the Slicer3D
implementation of the B-Splines registration. They have been compared over
a variable contrast extension of the 3D Shepp-Logan simulated phantom [10],
a modified BrainWeb phantom [1], and on several real datasets. It has been
performed in full image resolution with significantly reduced computational re-
quirements. The proposed method improves performance in terms of spatial
resolution, computational efficiency, as well as accuracy.

2 Method

The misregistration between images distorts their joint statistics. In this work
the distortion is considered as Gaussian smoothing of the joint statistics, which
is deconvolved with adaptive Wiener filtering. This assumes a smoothness of
anatomy in space and a larger size for anatomic structures compared to that of
the extent of the misregistration. Misregistration is also assumed to be spatially
smooth. As a pre-processing step, the two images are normalized in terms of
resolution if necessary as well as in terms of their dynamic range. The method
then performs an additional pre-processing step concatenating a rigid and an
affine registration. The result is then used to initialize the subsequent non-rigid
registration.

The problem of the non-rigid registration of pairs of images is formulated
with two priors. The first results from the deconvolution of the joint intensity
statistics with the adaptive Wiener filter. The second results from the spatial
regularization of the registration with a Gaussian filter. The method interleaves
between the two priors iteratively, k = 0, ...,K − 1 for a total of K iterations.
An overview of the registration is given with the diagram shown in Fig. 1. A
pairwise registration is between a reference image Iref and a moving image
Imov. A spatial transformation T = (ux, uy, uz) from Iref to Imov is estimated
to obtain the registered image Ireg = Imov(T

−1(x)) where x = (x, y, z) are the
spatial coordinates. The registration can accommodate a variable contrast. The
method allows the registration over a limited Region Of Interest (ROI) over the
image for which the contrast is intended for and is meaningful.



42 D. Pilutti, M. Strumia, and S. Hadjidemetriou

Fig. 1. Diagram describing the registration of two images with the proposed registra-
tion method. A preliminary rigid and affine registration is performed and the result is
used to initialize the iterative non-rigid registration step until the stop criterion is met.

2.1 Computation of the Joint Intensity Statistics and Their Wiener
Restoration

Two images Iref and Imov under assumed perfect alignment give rise to the
joint histogram Hideal. The joint statistics H0 of the misregistered images are
considered to result from the convolution of Hideal with a 2D Gaussian filter
GHi,j(σH):

H0 = Hideal ∗GHi,j(σH) + nH , (1)

where σH is the standard deviation of the Gaussian convolution, ∗ is the convo-
lution, nH is the noise and i, j are the indices for the dynamic ranges of Iref and
Imov, respectively. The statistics H0 are deconvolved with a 2D adaptive Wiener
filter

fi,j =
GHi,j

||GHi,j ||22 + ε
, (2)

where ε assumes a small value. The filter fi,j is convolved with H0 to obtain an
estimate of the restored deconvolved statistics with:

Hrest = fi,j ∗H0. (3)

Fig. 2 shows two images and their joint statistics at different iterations before the
Wiener deconvolution. The deconvolved statistics are used as a prior to constrain
the estimation of the registration.

2.2 Adaptive Wiener Filter

The distortion in the joint statistics is assumed to be non-stationary through-
out the dynamic ranges, depending on properties of different tissues. This has
been modeled with an adaptive Wiener filter to preserve the distributions cor-
responding to different tissue types. The focus has been given to the estimation
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(a) Reference (b) Moving (c) Iteration 0 (d) Iteration 30

Fig. 2. Joint statistics for initial images (a) and (b) before Wiener deconvolution at
the initial iteration (c) and after 30 iterations (d). The joint statistics in (d) become
sharper.

of the local mean μH0(i, j) and variance σ2
H0

(i, j) over a moving window of size
(2r + 1) × (2s + 1). The local mean μH0(i, j) = 〈H0〉r,s and the local variance

σH0
2(i, j) =

〈
H2

0

〉
r,s

− 〈μH0〉2r,s are estimated over the observed joint statistics

H0 of the misregistered images. The standard deviation σW (i, j) ∝
√

1
σ2
H0

(i,j)
,

where σW is the standard deviation of the Wiener filter, used to represent the
local variance of the Gaussian distortion and in turn to appropriately adjust the
Wiener filter. Thus, the Wiener filter width becomes smaller as the distributions
become steeper and is able to preserve their sharpness.

2.3 Enforcement of Priors to the Pairwise Registration

The two considered images Iref and Imov are used to construct a graph R =
(V,E). Each voxel of the image corresponds to a vertex in V . The edges in E
are connecting each node in Iref to nodes in a 6-connected spatial neighborhood
N in Imov, N (x) = x+Δx, where Δx = (±Δx,±Δy,±Δz) and Δx,Δy,Δz
are the sizes of a voxel along the axes. The voxel anisotropy is accounted for by
using an edge weight wd = 1/(d+ 1) for a distance d.

The intensities of the edge between Iref (x) and Imov(x + Δx) form an in-
dex for the restored joint histogram Hrest to retrieve the second edge weight
wH = Hrest(Iref (x), Imov(x + Δx)). The product wtot(x, Δx), wtot = wd · wH

gives the total weight of an edge. The linear expectation of the direction of the
edges connecting x over their weights gives an initial displacement T′′(x) for
voxel at x. At iteration k the displacements over the entire image give an initial
transformation

T′′
k(x) = x+ Ewtot(x, Δx) = x+

ΣNwtot(x, Δx)(Δx)

ΣNwtot(x, Δx)
. (4)

This is accumulated to obtain T′
k = T′

k−1 +T′′
k. The second prior is the spatial

regularization. To regularize the estimation of the transformation T′
k, the gra-

dient magnitude ||∇T′
k||2 over the image is penalized, that is equivalent to the

application of a 3D Gaussian filter G(x;σS) with standard deviation σS to the
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spatial transformation T′
k at iteration k that gives the final estimate of the total

transformation Tk = T′
k ∗G(x;σS).

2.4 Order of Computational Complexity

The complexity of the method developed in this work is significantly lower com-
pared to that of the multicontrast extension of the B-Splines method with the
mutual information for the same spatial resolution. In fact, the proposed method
even when operating in full spatial resolution significantly expedites the non-rigid
registration task compared to the B-Splines. The computational cost of the regis-
tration is expressed as a function of: K-number of iterations, m-effective size for
each of the image dimensions, n-size of a neighborhood window n = |N | around
a pixel, p-spatial subsampling factor between nodes, and σS of the regularizer.
In the proposed method the pairwise registration requires the computation and
deconvolution of the joint statistics as well as the spatial smoothing only once
per iteration. This is in contrast to the B-Splines method extended with the MI
that requires the joint statistics estimation and the spatial smoothing |N | times
for each of the (m/p)3 nodes in every iteration to cover the entire image. The
complexity of our method is O([m3n +m33σS ]K), while that of the B-Splines
method with the MI is O((m/p)3n[m3n+m33σS ]K).

The cost of the Demons method extended with the MI can be even higher than
that of the B-Splines depending on the levels l of the multiresolution pyramids
it is often combined with. Assuming that the image widths are halved at every

level, the cost is O

((
∑l′=l−1

l′=0

(
m
2l′

)3
)
n[m3n+m33σS ]K

)
.

3 Experiments and Results

3.1 Implementation of Method and End Condition of Iterations

The method has been implemented in C++. To improve performance the adap-
tive Wiener filter for the statistics has been implemented separably and is ap-
proximated as fi,j = GHi

||GHi||22+ε
∗ GHj

||GHj||22+ε
assuming that GHi,j = GHi ∗ GHj ,

where GHi and GHj are 1D Gaussian filters. The value of the inverse signal to
noise ratio ε for the adaptive Wiener filter has been set to 0.1. The spatial regu-
larization G(x;σS) of the transformation has been performed using the ITK [2]
implementation of the 3D recursive separable Gaussian filter along each of the
components of the displacements ux, uy and uz along the three axes. The pair-
wise non-rigid registration method developed is preceded by the rigid and affine
registration methods provided by ITK [2]. The method processes 3D images.

The optimization iteratively alternates between the constraints arising from
the statistical restoration and from the spatial regularization. The convergence
of the registration is evaluated at every iteration. It uses the average L2 norm
of the spatial transformation ||Tk||. The stop condition s of the iterations is

s = ||Tk||
||T0|| − 1 < −1%. A maximum number of smax = 50 iterations is also

enforced.
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3.2 Validation Methodology

To evaluate the quality of the registration obtained from phantom datasets with
the method presented, the voxelwise Sum of Absolute Differences
SAD = ||Itrue(x) − Ireg(x)||2, where Itrue is the true reference image in case
of phantoms, has been calculated within a ROI between the true and the regis-
tered image. The percent improvement (Imp) of SAD is defined as ImpSAD% =
SADbef−SADaft

SADbef
100%, where SADbef and SADaft represent the SAD calculated

before and after the registration, respectively. The registration of the bi-contrast
real datasets has been evaluated by observation and by calculating the percent
improvement in MI ImpMI% =

MIaft−MIbef
MIaft

100% before and after registration.

The method has been compared with the pairwise B-Splines based non-rigid
registration method provided by Slicer3D [3]. The configuration of Slicer3D in-
cludes also a rigid and affine pre-registration steps as does the proposed method.
MI has been used as a metric for all the registration steps. The tests were per-
formed on a workstation with an Intel Core2 Duo 3.0 GHz CPU and 16GB of
RAM. Our non-optimized implementation of the proposed method for a typical
image can be further improved to achieve a high upper bound of speedup and had
a 260% lower working memory requirement compared to the B-Splines method
as shown in Table 1. It also operates in full image resolution as opposed to the
B-Spline method that in practice requires subsampling. The B-Splines method
tested operates in a grid of size 20× 20× 20, which in the case of the BrainWeb
phantom dataset gives a resolution of 9×10.8×9mm3 = 875mm3 as subsampling.
The presented method operates in full spatial resolution of 1×1×1mm3 = 1mm3,
which provides a resolution 875 times higher. The quantitative results and com-
parisons of the proposed method to those of the B-Splines method are shown in
Table 1.

3.3 Shepp-Logan Phantom Data

A dataset for the validation of the proposed method has been a multicon-
trast simulation from the 3D Shepp-Logan phantom with a full resolution of
128×128×128 pixels as displayed in Fig. 3 which shows an obvious improvement
in alignment. The phantom has been modified to simulate the contrast change
and a 3D sinusoidal function over the spatial image coordinates in all dimensions
has been applied to simulate a non-rigid transformation. The value of σS for the
spatial smoothing has been set to 6 voxels. The registration has been performed
within a manually specified ROI shown in Fig. 3d. After 8 iterations it can be
seen in Fig. 3 that the phantom is properly registered. The registration between
Iref and Imov gives an ImpSAD% of about 68%. A performance comparison with
the B-Splines method is shown in row 1 of Table 1, where it is shown that the
proposed method improves the accuracy.

3.4 BrainWeb Phantom Data

Another validation phantom data has been obtained from the BrainWeb database
as shown in Fig. 4. The phantom data consists of two images with a full resolution
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(a) Reference (b) Moving (c) Registered

(d) ROI mask (e) Before (f) After

Fig. 3. A 2D axial slice from the 3D Shepp-Logan phantom. (a) is the reference image,
(b) is the misregistered image, (c) is the registered image obtained with the proposed
method, and (d) is the ROI used. In (e) and (f) are the checkerboard compositions
interleaving Iref and Imov before and after the registration.

of 180×216×180pixels taken using a T1 and a T2 sequences. The T1 image has been
used as reference. A non-linear misregistration has been simulated with a 3D sinu-
soid andhas been applied to theT2 image.The imageswere subsequently registered
and the results are shown in the images in Fig. 4 and in row 2 of
Table 1.

3.5 Real Brain Data

The real brain data in this study is composed of 5 young healthy volunteers.
The study was approved by the local internal review board and the volunteers
provided informed consent. The images were acquired with a 3T Siemens Trio
MRI system equipped with head coils. The acquisition protocol consisted of a
3D T1 and FLAIR sequences. The T1 and FLAIR sequences give a matrix of size
512× 512× 160 with a voxel of resolution 0.5× 0.5× 1mm3.

All real datasets were placed in the same anatomic space and the BrainWeb
T1 dataset has been chosen as the reference image. Fig. 5 shows an example
of the registration between the T1 BrainWeb phantom and a T1 image from a
volunteer. In Fig. 6 is an example of the registration between the T1 BrainWeb
phantom and a FLAIR image from a volunteer. The misregistered images shown
in Fig. 5b and 6b are the results of the rigid and affine registration steps and are
used as input for the non-rigid registration method proposed. The red arrows
highlight the effect of the registration on significant brain structures.
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(a) Reference (b) Moving (c) Registered

(d) ROI mask (e) Before (f) After

Fig. 4. A 2D axial slice from the 3D BrainWeb phantom. (a) is the reference image, (b)
is the misregistered image, and (c) is the registered image obtained with the proposed
method. (d) is showing the ROI used, and (e) and (f) are the checkerboard compositions
interleaving Iref and Imov before and after the registration.

Table 1. Performance and comparison of the proposed method with that of the
Slicer3D optimized implementation of B-Splines

Datasets Method Imp (SAD%) Imp (MI%)
Resol.
(voxels)

Exec.
time

Memory
Space

Shepp-Logan Phantom
B-Splines 65.13% 1/262 ∼1min 730MB
Proposed 68.54% 1 ∼18min 450MB

BrainWeb Phantom
B-Splines 47.39% 1/875 ∼2min 4GB
Proposed 64.11% 1 ∼ 90min 2GB

Volunteer 1
B-Splines 52.06% 1/875 ∼2min 4GB
Proposed 57.35% 1 ∼90min 2GB

Volunteer 2
B-Splines 29.30% 1/875 ∼2min 4GB
Proposed 32.31% 1 ∼90min 2GB

Volunteer 3
B-Splines 44.65% 1/875 ∼2min 4GB
Proposed 58.39% 1 ∼90min 2GB

Volunteer 4
B-Splines 38.54% 1/875 ∼2min 4GB
Proposed 56.13% 1 ∼90min 2GB

Volunteer 5
B-Splines 19.28% 1/875 ∼2min 4GB
Proposed 31.93% 1 ∼90min 2GB
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(a) Reference (b) Moving (c) Registered

(d) ROI mask (e) Before (f) After

Fig. 5. A 2D axial slice of a 3D real patient T1 dataset registered to the T1 BrainWeb
phantom. (a) is the reference image, (b) is the misregistered image, (c) is the registered
image obtained with the proposed method, and (d) is the ROI used. In (e) and (f)
are the checkerboard compositions interleaving Iref and Imov before and after the
registration. The red arrows highlight the effect of the registration on significant brain
structures.

4 Summary and Discussion

Almost all the parameters of the method are held fixed for all the datasets. The
only variable parameter is the σS of the spatial regularizer, which should be at
most equal to the spatial variation of the displacement field. The parameter σW

of the adaptive Wiener filter has been set with a proportionality constant so
that its value is less than than of the width of the distributions of the tissues to
preserve them. As shown analytically the order of computational complexity is
lower than that of both the B-Splines and of the Demons method. The overall
speedup is a power of the dimensionality of the considered datasets. The total
time performance of the methods is shown in Table 1 and includes the com-
mon cost of the rigid and affine pre-processing steps. The relatively high time
performance obtained by B-Splines in Slicer3D is due to the optimized software
implementation and use of hardware such as multicore CPUs. However, it was
not possible to test Slicer3D B-Splines with full resolution because of its excessive
memory requirements.

The method developed significantly improves efficiency and accuracy of non-
rigid registration of multi-modal brain datasets while operating at full spatial
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resolution. The method shows an improvement qualitatively in terms of visual
comparison as well as quantitatively in terms of ImpSAD%, and ImpMI%. The
method is based on a systematic model of the misregistration and its removal. It
has accurately compensated the misregistration in phantoms as well as in several
multi-modal real brain datasets. The non-rigid registration can accommodate
both same as well as different image contrasts. It is iterative and results in an
effective deconvolution of the joint statistics that only requires a single estimation
of the joint statistics and the spatial smoothing per iteration that covers the
entire image. The registration method proposed does not involve the MI distance
measure. The MI allows more degrees of freedom than necessary and can lead
to a significantly higher computational cost. The performance of this method
as well as of all methods based on image statistics is improved if an ROI of
meaningful contrast is considered.

An advantage of the method proposed is that it is robust to the anisotropic
resolution present in the clinical imaging data of this study. The method devel-
oped in this work performs a dense spatial registration robust against contrast
changes and anisotropy. The presented method can be extended to 4D data for
an even higher expected comparative upper bound in speedup.

(a) Reference (b) Moving (c) Registered

(d) ROI mask (e) Before (f) After

Fig. 6. A 2D axial slice of a 3D real patient FLAIR dataset registered to the T1

BrainWeb phantom. (a) is the reference image, (b) is the misregistered image, (c) is
the registered image obtained with the proposed method, (d) is the ROI used. In (e)
and (f) are the checkerboard compositions interleaving Iref and Imov before and after
the registration. The red arrows highlight the effect of the registration on significant
brain structures.
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