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Abstract. Alzheimer’s disease (AD) is characterized by gradual neu-
rodegeneration and loss of brain function, especially for memory dur-
ing early stages. Regression analysis has been widely applied to AD re-
search to relate clinical and biomarker data such as predicting cognitive
outcomes from MRI measures. In particular, sparse models have been
proposed to identify the optimal imaging markers with high prediction
power. However, the complex relationship among imaging markers are
often overlooked or simplified in the existing methods. To address this
issue, we present a new sparse learning method by introducing a novel
network term to more flexibly model the relationship among imaging
markers. The proposed algorithm is applied to the ADNI study for pre-
dicting cognitive outcomes using MRI scans. The effectiveness of our
method is demonstrated by its improved prediction performance over
several state-of-the-art competing methods and accurate identification
of cognition-relevant imaging markers that are biologically meaningful.

1 Introduction

Characterized by gradual loss of brain function, especially the memory and cog-
nitive capabilities, Alzheimer’s disease (AD) is a neurodegenerative disorder that
has attracted tremendous research attention due to its significant public health
impact and unknown disease mechanisms. Neuroimaging data, which character-
ize brain structure and function and its longitudinal changes, have been studied
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as potential biomarkers for early detection of AD. Regression models have been
studied to relate imaging markers to AD phenotypes such as cognitive outcomes.

Early applications focused on traditional regression models such as stepwise
regression [6], which predicted cognitive outcomes one at a time. To address
the relationships among multiple outcomes, multi-task learning strategies were
recently proposed for achieving improved prediction performance. For example,
�2,1-norm [8, 11] was employed to extract features that have impact on all or
most clinical scores; and a sparse Bayesian method [7] was proposed to explicitly
estimate the covariance structure among multiple outcome measures.

Despite of the above achievements, few regressionmodels take into account the
covariance structure among predictors. Since brain structures tend to work to-
gether to achieve a certain function, brain imaging measures are often correlated
with each other. A recent study proposed a prior knowledge guided regression
model, using the group information to enforce the intra-group similarity [10].
However, the relationships among brain structures are much more complicated
than a simple partitioning of all the structures into non-overlapping groups. To
overcome this limitation, we present a new sparse learning method by introduc-
ing a novel network term to more flexibly model the relationship among brain
imaging measures. This new model not only preserves the strength of �2,1-norm
to enforce similarity across multiple scores from a cognitive test, but also takes
into account the complex network relationship among imaging predictors. We
empirically demonstrate its effectiveness by applying it to the ADNI data.

2 Network-Guided Sparse Regression

Throughout this section, we write matrices as boldface uppercase letters and
vectors as boldface lowercase letters. Given a matrix M = (mij), its i-th row
and j-th column are denoted as mi and mj respectively. The Frobenius norm
and �2,1-norm (also called as �1,2-norm) of a matrix are defined as ||M||F =
√∑

i ||mi||22 and ||M||2,1 =
∑

i

√∑
j m

2
ij =

∑
i ||mi||2, respectively.

We focus on multi-task learning paradigm, where imaging measures are used
to predict one or more cognitive outcomes. Let {x1, · · · ,xn} ⊆ �d be imaging
measures and {y1, · · · ,yn} ⊆ �c cognitive outcomes, where n is the number
of samples, d is the number of predictors (feature dimensionality) and c is the
number of response variables (tasks). LetX = [x1, . . . ,xn] and Y = [y1, . . . ,yn].

Motivated by using the �1 norm (Lasso, [5]) to impose sparsity on relevant
features, the �2,1 norm [3] was first proposed to taking into account the relation-
ship among responses while still preserving the sparsity advantage of Lasso. The
object function is:

min
W

||WTX−Y||2F + γ||W||2,1 . (1)

This approach couples multiple tasks together, with �2 norm within tasks and
�1 norm within features. While the �2 norm enforces the selection of similar fea-
tures across tasks, the �1 norm helps achieve the final sparsity. It has been widely
applied to capture biomarkers having affects across most or all responses. Yet in
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Fig. 1. (a) Illustration of the proposed NG-L21 model: This model enforces �2,1-norm
regularization (||W||2,1) to jointly select prominent predictors for all response vari-
ables, and introduces a new regularization term (||αW||2F ) to flexibly model the rela-
tionship among predictors based on prior knowledge. (b) Correlation network among 99
FreeSurfer measures in an example cross-validation trial: Two measures are connected
if their Pearson correlation coefficient, calculated from the training data, is ≥ 0.5.

this model the rows of W are equally treated, which implies that the underlying
structures among predictors are ignored. To address this issue, Group-Sparse
Multi-task Regression and Feature Selection (G-SMuRFS) method [9] was pro-
posed to exploit the interrelated structures within and between the predictor
and response variables. It assumes 1) possible partition exists among predictors,
and 2) predictors within one partition should have similar weights.

However, in practice the relationship among predictors may not be as simple
as a straightforward partition. For example, imaging markers can be grouped
by different brain circuitries, which may overlap with each other. In addition,
instead of partitioning predictors into groups, the relationship among predictors
can be represented more generally by a network (e.g., Figure 1(a)). To model
these more complicated but more flexible structures among predictors, we pro-
pose a new Network-Guided �2,1 Sparse Learning (NG-L21) model as follows.

The key idea here is to introduce a new regularization term (||αW||2F ) to the
�2,1 model (Eq (1)) and formulate the objective function as:

min
W

||WTX−Y||2F + γ1||αW||2F + γ2||W||2,1 , (2)

where α is a sparse matrix in which each row indicates a neighborhood relation-
ship within a network of connected predictors.

Fig. 1(a) shows a schematic example of α as well as the entire NG-L21 model.
A network is given as prior knowledge, where nodes are predictors. In this study,
the network is constructed as follows: An edge (i, j) is inserted to the network if
and only if r(i, j) exceeds a given threshold (e.g., 0.5 used in our experiments),
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where r(i, j) is the Pearson correlation coefficient between predictors i and j
calculated based on the training data. Fig. 1(b) shows an example correlation
network. Based on the network, we can define the knowledge matrix α as follows:
for each edge i, j in the network, we create a row in α with i-th entry as −1,
j-th entry as 1 and all the other entries as zeros. The intuition is that the
weight difference between two correlated predictors should be minimized, which
is reflected by the new regularization term of ||αW||2F . We call this model NG-
L21. Instead of using −1 and 1 in α, we can fill in the actual −r(i, j) and r(i, j)
values for each edge (i, j). Thus, the more correlated a feature pair is, the more
constraint the pair is imposed by. We call this weighted model NG-L21w .

Eq. (2) can be solved by taking the derivative w.r.t W and setting it to 0:

XXTW −XYT + γ1D1W + γ2D2W = 0, (3)

where D1 = αTα, a matrix in which each row integrates all the neighboring
relationships. For i-th row, it is the sum of all the rows in α whose i-th element
is not zero. D2 is a diagonal matrix with the i-th diagonal element as 1

2‖wi‖2
.

Thus, we have

W = (XXT + γ1D1 + γ2D2)
−1XYT , (4)

where W can be efficiently obtained by solving the linear equation (XXT +
γ1D1 + γ2D2)W = XYT . Following [9], an efficient iterative algorithm based
on Eq. (4) can be easily developed as follows.

Input: X, Y
Initialize W1 ∈ R

d×c, t = 1 ;
while not converge do

1. Calculate the diagonal matrices D
(t)
2 , where the i-th diagonal

element of D
(t)
2 is 1

2‖wi
t‖2

;

2. W(t+1) = (XXT + γ1D1 + γ2D
(t)
2 )−1XYT ;

3. t = t+ 1 ;

end

Output: W(t) ∈ R
d×c.

Next, we prove that the above algorithm converges to the global optimum.
According to Step 2 in the algorithm, we have

Wt+1= min
W

Tr(XTW− Y )T (XTW − Y )+ γ1Tr(W
TD1W )+ γ2Tr(W

TD2(t)W )

Tr(XTWt+1 − Y )T (XTWt+1 − Y ) + γ1Tr(αWt+1)
TαWt+1 + γ2

d∑

i=1

∥
∥wi

t+1

∥
∥
2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) + γ1Tr(αWt)
TαWt + γ2

d∑

i=1

∥∥wi
t

∥∥
2
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Finally we have:

∥
∥XTWt+1 − Y

∥
∥2
F
+ γ1 ‖αWt+1‖2F + γ2 ‖Wt+1‖2,1

≤ ∥
∥XTWt − Y )

∥
∥2
F
+ γ1 ‖αWt‖2F + γ2 ‖Wt‖2,1

The last but one step holds, because [8] for any vector w and w0, we have

‖w‖2 − ‖w‖22
2‖w0‖2

≤ ‖w0‖2 − ‖w0‖2
2

2‖w0‖2
. Thus, the algorithm decreases the objective

value in each iteration. Since the problem is convex, satisfying the Eq. (2) in-
dicates that W is the global optimum solution. Therefore, this algorithm will
converge to the global optimum of the problem.

3 Experimental Results

3.1 Data and Experimental Setting

The magnetic resonance imaging (MRI) and cognitive data were downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. One
goal of ADNI has been to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI)
and early AD. For up-to-date information, see www.adni-info.org.

This study included 179 AD and 205 healthy control (HC) participants
(Table 1). For each baseline MRI scan, FreeSurfer V4 was employed for brain
segmentation and cortical parcellation, and extracted 73 thickness measures and
26 volume measures. These 99 imaging measures were used to predict three sets
of cognitive scores [1] separately: Mini-Mental State Exam (MMSE), Rey Audi-
tory Verbal Learning Test (RAVLT, including 5 scores shown in Table 2 as joint
response variables), and Wechsler Memory Scale III logical memory (LogMem).
Using the regression weights derived from the HC participants, all the imaging
measures were pre-adjusted for the baseline age, gender, education, handedness,
and intracranial volume, and all the cognitive measures were pre-adjusted for
the baseline age, gender, education and handedness.

Regression was performed separately on each cognitive task (MMSE, RAVLT,
or LogMem) using the MRI measures as predictors, where the proposed NG-L21
and NG-L21w methods and three competing regression methods (Linear, Ridge
and L21) were evaluated. Pearson correlation coefficients r between the actual

Table 1. Participant characteristics

Category HC AD

Number 205 179
Gender(M/F) 112/93 98/81
Handness(R/L) 191/14 167/12
Age(mean±std) 76.07±4.98 75.58±7.51
Education 16.17±2.74 14.85±2.10

Table 2. RAVLT scores

Score ID Description

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB List B total number of words recalled
T30 30 minute delay number of words recalled
RECOG 30 minute delay recognition score
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Table 3. Mean prediction performance over five cross-validation trials is reported for
each experiment, where the performance is measured by correlation coefficients between
the actual and predicted cognitive scores in each trial. The p values, calculated from
the paired sample t test between two sets of cross-validation correlation coefficients,
are shown for comparing two proposed methods with L21.

TOTAL T30 RECOG TOT6 TOTB MMSE LogMem

C
o
rr
el
a
ti
o
n

C
o
effi

ci
en

ts

NG-L21w 0.6511 0.5926 0.5636 0.6137 0.4630 0.7574 0.7076
NG-L21 0.6505 0.5925 0.5634 0.6130 0.4606 0.7575 0.7068
L21 0.6306 0.5792 0.5469 0.5967 0.4441 0.7488 0.6977
Ridge 0.6215 0.5415 0.5368 0.5814 0.4406 0.7478 0.6870
Linear 0.5396 0.4299 0.4533 0.4741 0.3525 0.6708 0.6071

p values
L21 vs NG-L21w 0.0029 0.0488 0.0476 0.0105 0.0021 0.0104 0.0119
L21 vs NG-L21 0.0037 0.0469 0.0577 0.0129 0.0024 0.0088 0.0098

and predicted cognitive scores were computed to measure the prediction perfor-
mance. Five-fold cross validation was employed to obtain an unbiased estimate of
regression performance. Paired t-test was applied to the cross-validation results
to evaluate whether performance significantly differ between two methods.

3.2 Network Construction

Each MRI measure was treated as a network node, and the connectivity net-
work among 99 MRI measures was constructed based on their pairwise Pear-
son correlation coefficients. Rather than including all pairwise links, threshold
0.5 was applied to connect only highly correlated nodes. For nodes that were
not very correlated, constraints should not be imposed to make their regression
weights similar to each other. A network was created using only the training
data. Thus, our 5 cross-validation trials yielded 5 networks that were almost
identical. One example was shown in Fig. 1(b), where totally 85 structures out
of 99 had qualified links with correlation coefficient higher than 0.5. To incorpo-
rate this connectivity information into the proposed models, we examined the
weighted network in NG-L21w and non-weighted one in NG-L21. While in the
weighted network each link between structures was assigned the value of their
correlation coefficient, non-weighted network treated all the links equally.

3.3 Prediction Performance and Biomarker Identification

Shown in Table. 3 is the performance comparison among all five methods. NG-
L21 and NG-L21w both demonstrated an improved performance over the other
three methods, while L21 performed the best among the three competing meth-
ods. The difference between NG-L21 and NG-L21w was minor, and the weighted
method only led to slight improvements than non-weighted one for TOTAL,
TOT6 and LogMem. This could be partially due to the small range of the edge
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Fig. 2. Heat maps of regression weights for predicting MMSE scores using MRI mea-
sures. Five-fold cross-validation regression weights are plotted for NG-L21, L21, Ridge
and Linear regression models respectively. Each panel corresponds to the measures from
the left (L) or right (R) hemisphere. The measures shown in the first seven column
(highlighted in blue) are unilateral, and the remaining ones are bilateral.

weights (0.5-1.0). To further make sure the improvements of the proposed meth-
ods were not by chance, we calculated p-values from the paired sample t test
between two sets of cross-validation correlation coefficients from two different
methods. According to the last two rows in Table 3, both NG-L21 and NG-L21w
outperformed L21 significantly for predicting all the tested cognitive outcomes.

Finally, we examined the biomarkers identified by different methods. Shown
in Fig. 2 was an example comparison of resulting regression coefficients among
four methods (NG-L21w was extremely similar to NG-L21 and thus not shown),
where 99 MRI measures were used to predict MMSE score. Each methods oc-
cupied two panels, representing the left and right hemispheres respectively. Ap-
parently NG-L21 and L21 both showed sparse patterns while Linear and Ridge
methods yielded non-sparse patterns that were hard to interpret. In addition,
NG-L21 tended to select slightly more features than L21 as correlated measures
were forced to be selected together in NG-L21, which yielded not only more sta-
ble patterns across cross-validation trials but also more biologically meaningful
and more interpretable results. The MRI markers identified by NG-L21 yielded
promising patterns that matched prior knowledge on neuroimaging and cogni-
tion. MMSE measured overall cognitive impairment; and thus its result (Fig. 2)
included important AD-relevant imaging markers such as hippocampus, amyg-
dala, inferior lateral ventricle, entorhinal cortex, and middle temporal gyri. Both
LogMem and RAVLT were memory tests; and thus their results (Fig. 2) included
regions relevant to memory, such as hippocampus, amygdala, entorhinal cortex,
middle temporal gyri and parahippocampal gyri.
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Fig. 3. NG-L21 weight maps on brain for (a) RAVLT-TOTAL and (b) LogMem scores

4 Conclusions

We presented a new network-guided sparse learning model NG-L21 and demon-
strated its effectiveness by applying it to the ADNI data for predicting cogni-
tive outcomes from MRI scans. While spatial correlation had been considered
in several voxel-based feature selection and learning models [2, 4], the existing
studies on predicting cognitive outcomes from ROI-based MRI measures often
ignored [7, 8] or simplified [10] the relationships among these ROI predictors.
The proposed NG-L21 model aimed to bridge this gap and introduced a novel
network term to flexibly model the relationship among imaging markers. An ef-
ficient algorithm was developed to implement this model and was shown to be
able to achieve global optimum. Its application to the ADNI data exhibited the
following strengths of the NG-L21 model: (1) It could flexibly take into account
the complex relationship among imaging markers in a network format rather
than a simple grouping scheme used in [10]. (2) As a multi-task sparse learn-
ing framework, it could identify a compact set of imaging markers related to
multiple cognitive outcomes. (3) By considering the correlation among predic-
tors, it yielded not only improved prediction performance but also more stable
cross-validation feature selection patterns. Different from traditional Lasso and
L21 methods that tended to select only one relevant feature from a group of
highly correlated ones, the NG-L21 model could jointly identify these correlated
features, making the results more stable and easier to interpret.
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