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Abstract. Recent neuroscience research suggested that cognitive processes can 
be viewed as functional information flows on a complex neural network. 
However, computational modeling of cognitive processes based on fMRI data 
has been rarely explored so far due to two key challenges. First, there has been 
a lack of universal and individualized brain reference system, on which 
computational modeling of cognitive processes can be performed, integrated, 
and compared. Second, there has been a lack of ground-truth of cognitive 
processes. This paper presents a novel framework for computational modeling 
of working memory processes via a multi-stage consistent functional response 
detection. We deal with the above two challenges by using a publicly released 
large-scale cortical landmark system as a universal and individualized brain 
reference system and as a statistical data integration platform. Specifically, in 
the first-stage analysis, for each corresponding landmark we measure the 
consistency of its fMRI BOLD signals from a group of subjects, and the 
landmarks with high group-wise consistency are found to be highly task-related. 
In the second stage, the consistency of dynamic functional connection (DFC) 
time series of each landmark pair from the same group of subjects are 
measured, and those connections with high consistent patterns are declared as 
the active interactions during the cognitive task. Here, the group-wise consistent 
responses inferred from statistical pooling of data from multiple subjects via the 
universal brain reference system are considered as the benchmark to evaluate 
the multi-stage framework. Experimental results on working memory task fMRI 
data revealed that our methods can detect meaningful cognitive processes.   
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1 Introduction 

Recent neuroscience research has suggested that cognitive processes can be 
considered as functional information flows on complex neural networks [1-3]. A 
critical characteristic of cognitive processes is that they are dynamic and hierarchical 
[7]. With modern advancements of fMRI techniques, researchers are now able to map 
brain regions involved in the brain’s cognitive processes such as working memory 
with decent spatial and temporal resolutions [4, 5]. However, computational modeling 
of cognitive processes based on fMRI data has been rarely explored in the literature 
so far due to at least two key challenges. First, there has been a critical lack of 
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universal and individualized brain reference system on which computational modeling 
of cognitive processes can be performed, integrated, pooled and compared across 
individuals. The Brodmann brain map and associated atlases have been used for over 
100 years in neuroscience, however, the brain regions in Brodmann map at the gyral 
or sulcal scale are relatively coarse to map and represent fMRI BOLD signals. 
Second, there is no ground-truth for both cognitive processes and fMRI data. 
Actually, it has been a longstanding challenge to evaluate results in fMRI-based 
mapping of brain function and computational modeling of cognitive processes.  

In this paper, we present a novel framework for computational modeling of cognitive 
processes (using working memory as a test-bed) via multi-stage consistent functional 
response detection. Specifically, we deal with the abovementioned two challenges by 
using a publicly released large-scale cortical landmark system [6] with 358 common and 
individualized cortical landmarks, named DICCCOL (Dense Individualized and Common 
Connectivity-based Cortical Landmarks), as a universal and individualized brain reference 
system. Experimental results have shown that this DICCCOL brain reference system 
offers much finer granularity, much better functional homogeneity, and intrinsically-
established correspondences across individuals and populations, in comparison with the 
Brodmann map and atlases [6]. Therefore, the DICCCOL system not only can be used for 
the computational modeling of dynamic and hierarchical cognitive processes, but also can 
be used as a statistical data integration platform. As a result, the group-wise consistent 
functional responses inferred from statistical pooling of data from multiple subjects can be 
considered as the benchmark to evaluate the multi-stage framework. Given the lack of 
ground-truth of cognitive processes, group-wise consistency and reproducibility across 
individuals are probably the desired choice at the current stage.   

Specifically, in the first-stage modeling, for each corresponding DICCCOL 
landmark from a group of subjects, we measure the consistency of its fMRI BOLD 
signals, and the landmarks with high group-wise consistency are determined as highly 
task-related ones. These landmarks are thus considered as the first-stage information 
processing centers. In the second-stage modeling, the consistency of dynamic 
functional connectivity (DFC) time series of each landmark pair from the same group 
of subjects are quantitatively measured, and those connections with highly consistent 
patterns are regarded as the active functional interactions during the cognitive task. 
The proposed multi-stage consistent response detection framework has been applied 
on a working memory task-based fMRI dataset [8] to computationally model the 
dynamic and hierarchical working memory process, and experimental results revealed 
that our methods can detect meaningful cognitive processes. 

2 Materials and Methods 

2.1 Overview 

The computational framework of our multi-stage fMRI data analysis and modeling 
based on large-scale cortical landmarks are summarized in Fig.1. First, the 
structurally and functionally corresponding 358 DICCCOL landmarks are localized 
and optimized via the methods in [6] for each subject in a group based on DTI data. 
The DTI images are co-registered with the working memory task-based fMRI data [8] 
for each subject in order to extract fMRI signals for the cortical landmarks [6]. 
Second, we calculate the dynamic functional connections (DFC) between each pair of 
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2.5 Multi-stage Consistent Functional Response Detection 

To measure a set of time series signals’ consistency, e.g., a group of fMRI BOLD 
signals for the same cortical landmark in 19 subjects’ brains, we calculated the 
Cronbach’s α [11] of them. Specifically, for a set of signals X，which consists of K 
signals, ௜ܵ represents each signal column with n time points in Eq.(2).  ܺ ൌ ሾ ଵܵ, ܵଶ, … … ܵ௄ሿ , ௜ܵ ൌ ሾݏ௜ଵ, ,௜ଶݏ … …  ௜௡ሿ் (2)ݏ

The Cronbach’s α is calculated as below, where ߪௌ೔ଶ  is the variance of each signal, 
and ߪ௑ଶ is the variance of the signal set of X in Eq.(3). ߙ ൌ ܭܭ െ 1 ቆ1 െ ∑ ௑ଶߪௌ೔ଶ௄௜ୀଵߪ ቇ  (3) 

In the following paragraphs, the Cronbach’s α will be calculated as a measurement of 
the consistency of fMRI signals for each corresponding landmark, and it is also used 
as the measurement of the consistency of DFCs for each landmark-pair. 

Specifically, in the first-stage, we extracted 358 cortical landmarks’ fMRI signals 
for each subject in a group of n subjects. As each landmark possesses structural and 
functional correspondence across different subjects, for n fMRI signals of the same 
cortical landmark, we calculated their Cronbach’s α to measure their consistency 
across subjects. With an experimentally determined threshold, we selected those 
landmarks with high fMRI signal consistency, and compared the averaged multi-
subjects’ signals of each selected landmark with the external stimuli curve. From this 
stage of analysis, we can determine the first-stage information processing centers. 

In the second stage, we calculated the DFC time series with the sliding window length 
of 15 TRs (which is shorter than the length of any block type) via the methods in Section 
2.4 for each landmark pair, in order to obtain their dynamic functional interaction patterns. 
Since the correspondences of cortical landmarks also apply to their corresponding 
connections, the group-wise consistent functional response analysis to corresponding 
connections is meaningful. Then for each landmark-pair connection i-j, we calculated the 
Cronbach’s α of DFC time series from a group of n subjects to measure the functional 
interaction consistency. All of the connections are arranged into a 358×358 matrix. After 
we calculated the Cronbach’s α for each connection, we obtained a matrix of α. Similarly, 
with an experimentally determined threshold, we selected the highly consistent dynamic 
interaction patterns between landmarks, and further compared them with the external 
stimulus curve. Strikingly, we found that these connections are either linked with the first-
stage consistent information processing centers, or the ones starting from the first-stage 
information centers to other landmarks, which were thus determined as the second-stage 
consistent information processing centers.  

3 Experimental Results 

3.1 First-Stage Consistent Information Processing Centers 

As described in Section 2.5, we calculated the Cronbach’s α of fMRI signals for each 
corresponding landmark, and plotted them in Fig.3(a). Then, we used an empirical 
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4 Conclusion 

We presented a novel multi-stage consistent functional response detection framework to 
computationally model the dynamic and hierarchical cognitive processes. We used the 
publicly available DICCCOL brain localization and reference system to characterize the 
dynamic information flows on brain networks and determine the consistent functional 
responses. The working memory task-based fMRI data was used as an example, and 
experimental results demonstrated meaningful information flows during working 
memory task. In particular, qualitative and quantitative comparisons with traditional 
voxel-based activation detection via GLM demonstrated the superiority of computational 
modeling of dynamic and hierarchical cognitive processes, which is the major novelty 
and contribution of this work.    
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