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Abstract. Functional brain networks produce connected low frequency patterns 
of activity when the brain is at rest which can be analyzed with resting state 
functional MRI (rs-fMRI) by fitting general linear models for signals acquired 
at a pre-defined seed region and other regions of interest (ROIs). However, typ-
ical rs-fMRI analysis tends to ignore spatial correlations in rs-fMRI data, hence 
biases the standard errors of estimated parameters and leads to incorrect  
inference. Spatio-temporal or spatio-spectral models can incorporate the spatial 
correlations in fMRI data. To date, these models have not targeted rs-fMRI 
connectivity analysis. Herein, we expand a spatio-spectral model from fMRI 
analysis based on several ROIs to whole brain rs-fMRI connectivity analysis. 
Our model captures distance-dependent local correlation (within an ROI), dis-
tance-independent global correlation (between ROIs), and temporal correlations 
for whole brain rs-fMRI connectivity analysis with or without confounders. Si-
mulated and empirical experiments demonstrate that this spatio-spectral model 
yields valid inference for whole brain rs-fMRI connectivity analysis. 

Keywords: fMRI connectivity analysis, seed analysis, spatial correlations, 
spectral analysis. 

1 Introduction 

Neuroscience and patient care have been transformed by quantitative inference of 
spatial-temporal brain correlations in normal and patient populations with millimeter 
resolution and second precision using functional MRI (fMRI) [1]. Classical statistical 
approaches allow mapping of brain regions associated with planning/execution, re-
sponse, and default mode behaviors through task, event, and resting state paradigms, 
respectively [2]. When the brain is at rest (i.e., not task driven), functional networks 
produce correlated low frequency patterns of activity that can be observed with rest-
ing state fMRI (rs-fMRI). These correlations define one measure of functional con-
nectivity which may be estimated by regression of activity in a region of interest 
(ROI) against that of the remainder of the brain [3].  

Absolute voxel-wise MRI intensities (arbitrary values) are rarely used in isolation 
for inference – rather, the temporal and spatial patterns/correlations of changes over 
time are of primary interest. Statistical analyses enable inference of the probability 
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that observed signals are not observed by chance (i.e., that there exist significant as-
sociations between the observed signals and model of brain activity). The techniques 
in wide-spread use (e.g., Gaussian noise models, auto-regressive temporal correlation) 
ignore spatial correlations in estimating model parameters [4]. Ignoring intrinsic spa-
tial correlation will distort the variance of estimated parameters, leading to Type I 
errors in the presence of positive spatial correlation or Type II errors in the presence 
of negative spatial correlation [5]. Traditionally, pre-processing and post-processing 
steps in the statistical parametric mapping pipeline partially account for the spatial 
correlations. For example, data are spatially smoothed with a Gaussian kernel before 
estimation [6] and the correlation is taken account in the inference procedures through 
random field theory [7].  

Recently, Kang et al. [8] proposed a spatio-spectral mixed-effects model to over-
come the main barrier of incorporating spatial correlations in fMRI data analysis. This 
model consists of fixed and random effects that capture within-ROI and between-ROI 
correlations. The authors demonstrated capturing the spatial and temporal correlation 
through simulation and empirical experiments, but the framework was limited to con-
sideration of up to five ROIs.  

Herein, we proposed a new functional connectivity analysis method incorporating 
the voxel-wise general linear model and ROI connectivity results (Fig. 1). By alleviat-
ing a key estimation limitation, we can expand the Kang et al spatio-spectral mixed-
effects model for an arbitrary number of ROIs to a generalized model for the whole 
brain rs-fMRI connectivity analysis. Briefly, (1) the whole brain is shattered into 
small ROIs, (2) estimation is performed on each voxel accounting for within-ROI and 
between-ROI correlations, and (3) statistical significance is inferred on the ROI level. 
We evaluate our model through simulation and empirical experiments on the whole 
gray matter.  

 

Fig. 1. The spatial and temporal model. Our goal is to discover the connectivity between a seed 
region and every other region in the brain. Spatial correlations model within-ROI correlations and 
inter-ROI correlations – these are not typically addressed in rs-fMRI. Temporal correlations are 
voxel-wise correlations across time – these are typically addressed in rs-fMRI analysis. 
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2 Theory 

2.1 Model 

We consider the following general spatio-temporal mixed-effects model for rs-fMRI:  

ሻݐ௖௩ሺݕ ൌ ௖௩଴ߚ ൅ ሺߚ௖௦ ൅ ܾ௖௩ሻ࢞௦௘௘ௗሺݐሻ ൅ ෍ ௖௩௣ߚ ሺ࢚ሻ௉࢖࢞
௣ୀଵ ൅ ݀௖ሺݐሻ ൅ ߳௖௩ሺݐሻ, (1)

where ݕ௖௩ሺݐሻ is the rs-fMRI intensity at voxel ݒ in ROI ܿ at time ࢖࢞ ,ݐ can be any 
confounders, e.g., motion parameters, t = 1, ..., T, c = 1, ..., C, and v = 1, ..., ௖ܸ in ROI c. 
Additionally, ࢞௦௘௘ௗ is the mean time course within the seed region, ߚ௖௩଴  is the constant 
value at voxel ݒ in ROI ܿ across time, ߚ௖௦ is the connectivity between the seed ROI and 
ROI c, ߚ௖௩௣  ሺ݌ ൌ 1, … , ܲሻ is the coefficient associated with the p-th confounder at voxel 
v in ROI c, ܾ௖௩ is a zero-mean voxel-specific random deviation of the seed connectivity 
within an ROI c and this random deviation is assumed to be independent across ROIs, ݀௖ሺݐሻ is a zero-mean ROI-specific random effect which models the remaining connec-
tivity of all other ROIs after regression of the seed ROI connectivity, and ߳௖௩ሺݐሻ is noise 
that takes into account intra-voxel temporal correlation. 

Under the assumption of the stationary error series ሼ߳௖௩ሺݐሻሽ , the spectrum, ana-
logous to temporal covariance matrix in the time domain, is a diagonal matrix in the 
Fourier domain. Therefore, we transform the model in the time domain to the fre-
quency domain. Let the Fourier coefficients of the series ሼݔ௦௘௘ௗሺݐሻሽ,൛ݔ௣ሺݐሻൟ, ሼ݀௖ሺݐሻሽ, 
and ሼ߳௖௩ሺݐሻሽ  be ݔ௦௘௘ௗሺ߱ሻ, ,௣ሺ߱ሻݔ ݀௖ሺ߱ሻ and ߳௖௩ሺ߱ሻ, ሺ߱ ൌ ߱ଵ, ߱ଶ, … , ்߱ሻ, respec-
tively. Then, using matrix notation in the frequency domain,  ࢟ሺ࣓ሻ ൌ ܺሺ߱ሻሺࢼ ൅ ሻ࢈ ൅ ሺ࣓ሻࢊܭ ൅ ࣕሺ࣓ሻ, (2)

where ࢟ሺ࣓ሻ ൌ ,ଵଵሺ߱ሻݕൣ … , ,ଵ௏భሺ߱ሻݕ ,ଶଵሺ߱ሻݕ … , ஼௏಴ሺ߱ሻ൧்ݕ
 is a ௧ܸ௢௧ ൈ 1  response 

vector at a frequency ߱ , ( ௧ܸ௢௧ ൌ ∑ ௖ܸ஼௖ୀଵ , ௖ܸ  is the number of voxels in ROI c), ܺሺ߱ሻ ൌ ሾॴ௏೟೚೟ ٔ ,௦௘௘ௗሺ߱ሻݔ ॴ௏೟೚೟ ٔ ,଴ሺ߱ሻݔ ॴ௏೟೚೟ ٔ ,ଵሺ߱ሻݔ … , ॴ௏೟೚೟ ٔ ௉ሺ߱ሻሿݔ , ॴ௡ 
denotes an ݊ ൈ ݊  identity matrix, ࢼ ൌ ሾ࢙ࢼ, ,૙ࢼ ,૚ࢼ … , ሿ்ࡼࢼ  is a ௧ܸ௢௧ሺܲ ൅ 2ሻ ൈ 1 
vector, ࢙ࢼ ൌ ሾߚଵ௦, … , ,ଵ௦ߚ ,ଶ௦ߚ … , ,ଶ௦ߚ … , ࢖ࢼ ,஼௦ሿ்ߚ ൌ ଵଵ௣ߚൣ , ଵଶ௣ߚ , … , ଵ௏భ௣ߚ , ଶଵ௣ߚ , … , ଶ௏మ௣ߚ , … , ஼௏೎௣ߚ ൧்

 for ݌ א ሼ0,1, … , ܲሽ ࢈ , ൌൣܾଵଵ, ܾଵଶ, … , ܾଵ௏భ, ܾଶଵ, … , ܾ஼௏಴, 0, … , … , … ,0൧்
 is a ௧ܸ௢௧ሺܲ ൅ 2ሻ ൈ 1  vector,  ࢈௖כ ൌൣܾ௖ଵ, ܾ௖ଶ, … , ܾ௖௏೎൧்~ܰሺ0, Σ௕௖ሻ ሺ߱ሻࢊ , ൌ ሾ݀ଵሺ߱ሻ, … , ݀஼ሺ߱ሻሿ் , ௝݀ሺ߱ሻ ൌ ௝݀ோሺ߱ሻ ൅݅ ௝݀ூሺ߱ሻ. Note that Nሺߤ, ߬ሻ denotes a Gaussian distribution with mean ߤ and variance ߬, and ࢐ࢊሺ߱ሻ~ܰ ቀ0, Σௗ௝ ሺ߱ሻቁ , ݆ א ሼܴ,  ሺ࣓ሻ are independent where Rࡵࢊ ሺ࣓ሻ andࡾࢊ ,ሽܫ

and I denote the real and imaginary part of a complex number, respectively. ܭ ൌܭଵ ⊕ ଶܭ ⊕ … ⊕ ௝ܭ ஼, where ⊕ denotes direct sum andܭ ൌ ሾ1, … ,1ሿ் is a vector of 
length ௝ܸ  whose elements are all one, j = 1,…,C. ࣕሺ࣓ሻ ൌ ൣ߳ଵଵሺ߱ሻ, … , ߳ଵ௏భሺ߱ሻ, ߳ଶଵሺ߱ሻ, … , ߳஼௏಴ሺ߱ሻ൧   and ࣕሺ࣓ሻ ൌ ሺ࣓ሻࡾࣕ ൅   .ሺ࣓ሻࡵࣕ݅
N.b. ሾࣕࡾሺ߱ሻ, ܰ~ሺ߱ሻሿ்ࡵࣕ ቀ0, ଵଶ ݂ሺ߱ሻॴଶ௏೟೚೟ቁ, where ݂ሺ߱ሻ is the spectrum at frequency ߱. 
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2.2 Estimation 

We define ࢜ࢉࢽ ൌ ሾߛ௖௩௦ , ௖௩଴ߚ , ௖௩ଵߚ , … , ௖௩௉ߚ ሿ், ௖௩௦ߛ ൌ ௖௦ߚ ൅ ܾ௖௩௦ . The ordinary least square 
(OLS) estimator of ࢽ is 

ෝࢽ ൌ ൥෍ ்ܺሺ߱௞ሻܺሺ߱௞ሻ்
௞ୀଵ ൩ିଵ ൥෍ ்ܺሺ߱௞ሻ࢟ሺ࣓࢑ሻ்

௞ୀଵ ൩ . (3)

Now we need to estimate ࢙ࢼ  and ࢈ . To simplify, rewrite כ࢙ࢼ ൌ ሾߚଵ௦, ,ଶ௦ߚ … , ,஼௦ሿ்ߚ כ࢈ ൌ ൣܾଵଵ, ܾଵଶ, … , ܾଵ௏భ, ܾଶଵ, … , ܾ஼௏಴൧்
, Σ௕ ൌ Σ௕ଵ ⊕ Σ௕ଶ ⊕… ⊕ Σ௕஼ , and ࢽෝ௦ ൌ כ࢙ࢼܭ ൅  .כ࢈

To estimate ࢼ, we do not need to estimate the exact value of ࢈ but the cova-
riance. The covariance of ࢈ can be estimated using spatial variogram [9]. If we use 
empirical variogram estimation, the estimation of Σ௕  will only depend on the va-
riance of ࢽෝ௦ across voxels within each ROI, which can be noisy. We model the spa-
tial dependence using an exponential variogram and estimate the parameters using 
restricted maximum likelihood [10]. ࢼ෡ ௦כ ൌ ቂ்ܭΣ௕෢ିଵܭቃିଵ ሾ்ܭΣ௕෢ିଵࢽ෢࢙ሿ. (4)

 
Estimation of ۱ܞܗ൫ࢊሺ࣓ሻ൯ ࢌ ࢊ࢔ࢇሺ࣓ሻ 
Define ݖ௖௩ሺ߱ሻ ൌ ௖௩ሺ߱ሻݕ െ ܺሺ߱ሻݖ  .࢜ࢉࢽ௖௩ሺ߱ሻ can be expressed as ݀௖ሺ߱ሻ ൅ ߳௖௩ሺ߱ሻ. Var෢ ൫݀௖ሺ߱ሻ൯ ൌ Var෢ ቀݖ௖ଵሺ߱ሻ, ڮ , ௖௏೎ሺ߱ሻቁݖ , (5)

where given locally stationary spatial process within an ROI, we compute the va-
riance of ࢠ௖ሺ߱ሻ at each frequency, which guarantees that the estimated variance is 
always greater than or equals to zero. 
When ܿ ് ܿԢ,  Cov෢ ൫݀௖ሺ߱ሻ, ݀௖ᇱሺ߱ሻ൯ ൌ Cov෢ ሺݕത௖ሺܰሺ߱ሻሻ,  ത௖ᇱሺܰሺ߱ሻሻሻ, (6)ݕ

where ݕത௖ሺ·ሻ denotes the average of ݕ across all the voxels in ROI c and ܰሺ߱ሻ de-
notes the frequencies around a frequency ߱. The size of neighbors of a frequency ߱, 
i.e., ܰሺ߱ሻ, can be arbitrarily chosen between 1 and ܶ 2⁄  and we choose ܶ 8⁄ . 
The resulting covariance matrix of ܌ሺωሻ is guaranteed to be semi-positive definite. 
The spectrum for the real part or imaginary part is 

መ݂௝ሺ߱ሻ ൌ ሾ1/ ௧ܸ௢௧ሿ ෍ ෍൛Var෢ ൫ݖ௖௩ሺ߱ሻ൯ െ ොௗ೎ଶߪ ൟ,௏೎
௩ୀଵ

஼
௖ୀଵ  (7)

where መ݂௝ሺ߱ሻ ൌ ଵଶ ݂ሺ߱ሻ, ݆ א ሼܴ,  ሽ, using either the real parts or the imaginary partsܫ

of ݖ௖௩ሺ߱ሻ and Var෢ ൫݀௖ሺ߱ሻ൯ ؠ ොௗ೎ଶߪ , respectively. Then, a more robust estimator of the 

spectrum will be መ݂ሺ߱ሻ ൌ ሾ1 2⁄ ሿ ቀ መ݂ோሺ߱ሻ ൅ መ݂ூሺ߱ሻቁ. 
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Estimation of ۱ܞܗ൫ࢼ෡൯ 

One of the limitations of the spatio-spectral mixed-effects model in [8] is the procedure 
for estimating Cov൫ࢼ෡൯ scales quadratically with the number of ROIs. Since we are inter-
ested in the coefficients for the seed time course כ࢙ࢼ, we can simplify the covariance 
equations to perform the analysis on the whole brain. From OLS estimation, Covሺࢽෝሻ is: Covሺࢽෝሻൌ ൥෍ ்ܺሺ߱௞ሻܺሺ߱௞ሻ்

௞ୀଵ ൩ିଵ ൥෍ ்ܺሺ߱௞ሻCov൫࢟ሺ߱௞ሻ൯ܺሺ߱௞ሻ்
௞ୀଵ ൩ ൥෍ ்ܺሺ߱௞ሻܺሺ߱௞ሻ்

௞ୀଵ ൩ିଵ . (8) 

The Covሺࢽෝሻ  can be arranged so that each regressor is separated: Covሺࢽෝሻ ൌ൤ Covሺࢽෝ௦ሻ Covሺࢽෝ௦, ,ෝ௦ࢽෝ଴~௉ሻCovሺࢽ ෝ଴~௉ሻࢽ Covሺࢽෝ଴~௉ሻ ൨ , from which we can write the covariance of the 

estimated seed coefficients as Cov൫ࢼ෡࢙כ൯ ൌ ቂ்ܭΣ௕෢ିଵܭቃିଵ ܭෝ௦ሻΣ௕෢ିଵࢽΣ௕෢ିଵCovሺ்ܭ ቂ்ܭΣ௕෢ିଵܭቃିଵ . (9) 

Let’s define terms to further simplify (9) to achieve computational efficiency: 
(1.) ࢞ሺ࣓ሻ ൌ ሾݔ௦௘௘ௗሺ߱ሻ, ,଴ሺ߱ሻݔ ,ଵሺ߱ሻݔ … ,  ,௉ሺ߱ሻሿݔ
כܺ (.2) ൌ ሾ࢞ሺ߱ଵሻ ࢞ሺ߱ଶሻ ڮ ࢞ሺ்߱ሻሿ், 

(3.) ൫ܺכ்ܺכ൯ିଵ ቀ∑ ቀݔ௦௘௘ௗሺ߱ሻଶ൫࢞ሺ߱௞ሻ்࢞ሺ߱௞ሻ൯ቁ௞்ୀଵ ቁ ൫ܺכ்ܺכ൯ିଵ ؠ     ,ܣ

(4.) ቀ൫ܺכ்ܺכ൯ିଵ࢞ሺ߱௞ሻ்࢞ሺ߱௞ሻ൫ܺכ்ܺכ൯ିଵቁ ؠ  ,ሺ߱௞ሻܪ

(5.) ൫ܺכ்ܺכ൯ିଵ ∑ ൫݂ሺ߱௞ሻ࢞ሺ߱௞ሻ்࢞ሺ߱௞ሻ൯௞்ୀଵ ൫ܺכ்ܺכ൯ିଵ ؠ ܳ, 
ܣ (.6) ൌ ൛ܽ௜,௝ൟ, ሺ߱௞ሻܪ ൌ ൛݄ሺ߱௞ሻ௜,௝ൟ, ܳ ൌ ൛ݍ௜,௝ൟ.  

  
Define an operator sum(M) that adds up all the elements in a matrix M. Then after 
simplification and using the notations (1.) – (6.) above, we arrive at 

Cov൫ࢼ෡࢙כ൯ ൌ ܽଵଵ ൦݉ݑݏ ቀΣ௕ଵ෢ ିଵቁ 0 00 ڰ 00 0 ݉ݑݏ ቀΣ௕஼෢ ିଵቁ൪ିଵ ൅ ෍ ቀ݄ሺ߱௞ሻଵଵΣௗ෢ሺ߱௞ሻቁ்
௞ୀଵ

൅ ොଵଵݍ ൦݉ݑݏ ቀΣ௕ଵ෢ ିଶቁ 0 00 ڰ 00 0 ݉ݑݏ ቀΣ௕஼෢ ିଶቁ൪ . (10) 

2.3 Inference 

The t-test can be performed based on the estimated coefficient parameters and the 
covariance. Since we considered both the multi-scale spatial correlations, i.e., dis-
tance-independent between-ROI and distance-dependent within-ROI correlations, and 
the temporal correlations, the standard errors of parameter estimates are less likely 
biased. Since there are more than one ROI, it is necessary to do correction for mul-
tiple comparisons. Two widely used multiple correction methods are random field 
theory (RFT) and false discovery rate (FDR). RFT requires spatial smoothing of the 
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data and is not appropriate here because we do not employ spatial smoothing but do 
model the underlying spatial dependence. Therefore, we employed the FDR method 
for the inference on the whole brain ROIs. 

3 Methods  

3.1 Simulation 

We simulated rs-fMRI images from Gray Matter (GM) labels with one seed ROI and 95 
other ROIs. The mean connectivity coefficient for each ROI was randomly chosen from {-
0.8, 0, 0.8} and no confounder was included. The connectivity coefficient for each voxel 
was simulated as the mean coefficient plus a zero-mean voxel-specific random effect with 
standard deviation 0.1. The number of voxels and the coordinates varied from ROI to ROI 
but the within-ROI Euclidian distance-dependent correlation structures were the same (i.e., 
the variogram function was the same). The between-ROI covariance was defined by a 
positive definite matrix in which the mean correlation was 0.2859, and minimum and 
maximum were -0.3652 and 0.8821, respectively. The temporal correlation was modeled 
by an autoregressive model (AR(1)) with the model coefficient of 0.3. The temporal signal 
to noise ratio (SNR) was simulated from 10 to 100 with the step size 10. The temporal 
SNR was defined as the ratio between mean intensity of the images to the standard devia-
tion of the noise across time.  It is noteworthy that the SNR mentioned in this paper is the 
temporal SNR that is typically high in rs-fMRI experiments. For each SNR level, 100 
Monte Carlo simulations were performed. We calculated the false positive rate (FPR) and 
false negative rate (FNR) while controlling FDR at 0.05. The accuracies of estimated ROI 
connectivity coefficient ࢼ෢࢙, within-ROI covariance Σ௕෢, and between-ROI correlations are 
evaluated with root mean squared error (RMSE). See Fig. 2.  

 

Fig. 2. Simulation setting and results. The left part displays the setting of the simulation expe-
riment. The red region is selected as the seed region, and our interest is the connectivity be-
tween the seed region and every other 95 regions. The within-ROI correlation is plotted as a 
function of Euclidean distance, the between-ROI correlation is a 95 by 95 matrix, and the tem-
poral error follows an AR(1) model with the model coefficient of 0.3. The RMSE of ࢼ෢࢙, Σ௕෢ 
and Σௗ෢, the FP and FN with FDR correction are plotted in the right part as a function of SNR. 
The RMSE plots of Σ௕෢  and Σௗ෢  are enlarged for SNR from 50 to 100. 
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The RMSE of ࢼ෢࢙  decreases exponentially as the SNR increases. The FPR of 
connectivity coefficients is under control for all SNR settings at FDR = 0.05. 
However, the FNR is 1 when SNR is very low (SNR = 10), then it decreases 
exponentially toward lower level as SNR increases. The RMSEs of Σ௕෢ and Σௗ෢  de-
crease exponentially as SNR increases.  

The widely accepted seed-based method in which the time series in each ROI are 
averaged across voxels and functional connectivity is defined as correlation between a 
seed time series and the average time series in an ROI, was also applied to the simu-
lated data at SNR = 80. Because of high SNR, the conventional method results in 
FNR = 0 as our method does. However, in terms of FPR, the spatio-spectral random 
effects model outperforms the conventional approach, i.e., FPR of 0.0327 from the 
conventional approach and 0.0287 from our method. This 12 percent gain in FPR 
confirms that ignoring the underlying positive correlation in an ROI tends to inflate 
false positive findings.  

To further improve estimation accuracy, we considered incorporating a connectivi-
ty prior for the ROIs. In the above simulations the between-ROI correlations Σௗ 
could be decomposed in three components as shown in Fig. 3. We used these three 
components (but not their magnitudes) as a basis for Σௗ෢ in the estimation for 100 
Monte Carlo simulations when SNR is 80 and compared the results with the previous 
results. In Fig. 3, the box plots labeled as ‘no components’ are our previous results 
and the box plots labeled as ‘components’ using the prior information to estimate the 
between ROI-correlations. As expected, the estimation of Σௗ෢ becomes more accurate 
while the estimation of ࢼ෢࢙ and Σ௕෢ stay the same. Employing the component priors 
reduces FPR but increases FNR compared to ‘no component’. However, the gain and 
loss in terms of FPR and FNR seem to be negligible. This simulation results 
demonstrate that utilizing additional information enhances estimation accuracy in 
terms of RMSE, given that the prior information of between-ROI functional 
connectivity is accessible and reliable.  

3.2 Empirical Data Analysis 

To illustrate that our spatio-spectral model can be used in empirical studies, we 
applied the model on a public 3T dataset with 25 healthy subjects. The rs-fMRI im-
ages acquired at 3T were downloaded from http://www.nitrc.org/projects/nyu_trt/ 
(197 volumes, FOV = 192 mm, flip θ = 90°, TR/TE = 2000/25 ms, 3x3x3 mm, 
64x64x39  voxels) [11]. Prior to analysis, all images were corrected for slice timing 
artifacts and motion artifacts using SPM8 (University College London, UK). All time 
courses were low pass filtered at 0.1 Hz using a Chebychev Type II filter, spatially 
normalized to Talairach space, and linearly detrended, and de-meaned. The corres-
ponding high resolution T1-weighted anatomical images (FOV = 256mm, flip θ = 8°, 
TR/TE = 2500/4.3 ms, TI = 900 ms, 176 slices) were used to acquire label images 
following the method described in [12,13]. The right hippocampus was selected as the 
seed region for each subject. The six estimated motion parameters were used as con-
founders. The mean estimated seed connectivity coefficient ࢼ෢࢙  and the mean be-
tween-ROI correlations Σௗ෢ across 25 subjects are shown in Fig. 4. Although neither  
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Fig. 3. Estimation with component priors. The first line shows the predefined between-ROI 
correlations can be decomposed by three components. The second line displays the results 
comparing the previous estimation without priors and the estimation with priors. 

our multi-scale spatio-spectral random effects model nor the conventional approach 
(not presented here) can claim statistically significant functional connection to the 
seed region at FDR = 0.05, we demonstrate the capacity for performing the whole-
brain analysis while properly considering both spatial and temporal correlations in rs-
fMRI data. 

4 Discussion 

The proposed ROI-level analysis enables inference of brain activity associations tak-
ing into account voxel- and ROI-level dependence structure in rs-fMRI data, while 
typical ROI analyses narrow the problem to focus on the average time series, which 
ignores within- and between-ROI correlations. ROI analyses are easier to interpret 
since the significant regions can be mapped to and explained by the known neuroa-
natomy but averaging the voxel intensities reduces some voxel-wise specificity and 
results in incorrect inference. The proposed multi-scale spatio-spectral random effects 
model overlaps voxel-based and ROI-based analyses so that inference is tested on the 
ROI-level while the voxel-wise effects are incorporated through the random effects.  

 

Fig. 4. Empirical Results. The red region is the seed region. The left brain shows the mean 
connectivity coefficient across 25 subjects. The right brain shows the mean between ROI corre-
lations across 25 subjects. 
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The proposed spatio-spectral model is a sophisticated linear regression model that 
accounts for both spatial and temporal correlations. Spatial correlations are considered 
as the distance-dependent correlation structure of voxel-specific random effects with-
in an ROI and distance-independent between-ROI correlations, i.e., multi-scale spatial 
correlations. The primary theoretical contributions of this work are that (1) the cova-
riance of the estimated regression coefficients can be simplified to enable whole-brain 
analysis, (2) estimation of the temporal covariance can be simplified in the frequency 
domain, and (3) structural information on Σௗ  can be used to improve estimation. 
Together, these contributions enable efficient and practical whole-brain spatio-
spectral inference, which outperforms the widely accepted seed-based ROI analysis 
with averaged time series across voxels. Although the proposed framework is based 
on different theoretical underpinnings, the random effects general linear models of 
scientific interest may be used interchangeably with traditional massively univariate 
statistical parametric mapping (SPM).  

Our model to incorporate component prior information regarding between-ROI 
functional dependence deserves further research in order to utilize structural informa-
tion in multi-modal MRI, e.g., Diffusion Tensor Images and rs-fMRI. However, it 
requires caveat to use this component-based approach because non-reliable or incor-
rect prior information can severely distort the results, even though this can be consi-
dered as one of a few non-Bayesian approaches to directly combine functional and 
structural connectivity information. 
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