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Abstract. We present a method for studying brain connectivity by sim-
ulating a dynamical evolution of the nodes of the network. The nodes
are treated as particles, and evolved under a simulated force analogous
to gravitational acceleration in the well-known N -body problem. The
particle nodes correspond to regions of the cortex. The locations of par-
ticles are defined as the centers of the respective regions on the cortex
and their masses are proportional to each region’s volume. The force
of attraction is modeled on the gravitational force, and explicitly made
proportional to the elements of a connectivity matrix derived from diffu-
sion imaging data. We present experimental results of the simulation on
a population of 110 subjects from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), consisting of healthy elderly controls, early mild
cognitively impaired (eMCI), late MCI (LMCI), and Alzheimer’s disease
(AD) patients. Results show significant differences in the dynamic prop-
erties of connectivity networks in healthy controls, compared to eMCI as
well as AD patients.
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1 Introduction

Modeling human brain connectivity is essential for understanding the higher level
network organization of the brain [1]. Because the underlying neuronal intercon-
nections cannot be directly observed, constructing the brain connectivity map
is an inference problem. Further, there are different approaches for constructing
brain networks based upon the imaging modality and the type of connectivity.
For example, the neuronal fiber tracts manifest in structural anatomical con-
nectivity [2] that is observed using diffusion-weighted imaging. Sporns et al.
[1] referred to the comprehensive map of these connections as the connectome.
However, to understand the functional organization of the brain, we can model
the correlations of task activations [3] and the BOLD response from functional
magnetic resonance image (fMRI). A different approach by He and Evans et al.
[4] observes statistical inter-dependencies of pertinent signals in the brain. This
approach is general and can also be applied to cortical thickness measures from
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the brain. These types of networks also known as inference networks are useful
in highlighting the compensatory processes that modulate structural measures
(morphology, volume, thickness) in the brain.

At an abstract level, brain connectivity is often characterized using a connec-
tivity matrix [5]. This connectivity matrix is an adjacency matrix that quantifies
and organizes information on the connectivity between different regions of the
brain. In white matter connectivity, tractography methods can assist in comput-
ing either the number or the density of extracted fibers that intersect any pair
of brain regions, and provide a measure of their anatomical connectivity. The
matrix of these connectivity values can also be understood as a network, which
can be described using a variety of graph measures. By statistically analyzing
connectivity measures from multiple subjects - of different ages or with differ-
ent clinical diagnoses - it is possible to discover factors that affect the brain’s
connectivity network with aging and disease, and even how it is affected by our
genes. Despite this, the final network representation is a topological structure,
and usually does not include information on the location or size of the regions
being analyzed. The size of the regions may even be regressed out using normal-
ization to study connection density, and the relative locations of the regions are
usually ignored if only the network topology is examined.

Most methods study brain connectivity as a static problem and use several
sophisticated models for estimating the underlying structure. We take a differ-
ent approach here and aim to model the nodal interconnectivity as a dynamical
problem. This approach adapts a well known physics-based problem, the N -body
simulation for dynamic modeling of particles under physical forces, imposing a
dynamic structure on the nodes of the brain network. This conveniently allows
one to model the nature of the interconnections by using forces proportional to
the edge strengths. Traditionally, N -body simulations are used to understand
dynamic systems of particles/objects under the influence of gravity. These simu-
lations have been used by astrophysicists to understand the nonlinear formation
of galaxies and related structures.

In our work, we design an N -body simulation that embodies the connectivity
information of the brain to create a dynamic system of particles representing
regions in the brain that interact depending on their volume and connectivity
with other regions. The use of a gravitational force was motivated by the fact
that, often, subnetworks with local connectivity integrate information first, and
their hubs then communicate this information to other more distant centers
of communication. This transfer strongly resembles the way in which N -body
systems have submodules that interact and coalesce locally before interacting
with other parts of the system. As such, the dynamics of the system incorporates
constraints on information flow that depend on the physical proximity of the
regions as well as the strength of their interaction.

Our goal is to create new measures of brain connectivity that may be useful for
distinguishing disease. Our solution is a dynamic system of the locations,
volumes, and fiber connectivity of a cortical segmentation, and contrasts the tradi-
tional fiber connectivity matrix with only pairwise connectivity information. An-
other source for our motivation is evidence of hierarchical brain organization [6].
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To this end, we encoded brain measures into a gravitational N -body simulation.
We used the simulation as a dynamical clustering algorithm able to produce 3D
configurations of cortical segments based on connectivity rather than true physi-
cal location. We exploited similarities between information flow in brain networks
and hierarchical structures formed by gravitationally interacting systems.

We present a detailed description of our connectivity based N -body sim-
ulation, outline a method for incorporating empirical connectivity data into
the simulation, and describe time-dependent statistics. Additionally, we present
methods for using the simulation statistics to discriminate between Alzheimer’s
disease and healthy control subjects in a large elderly cohort. Overall, we aim
to define and simulate new models of network interaction, and observe if their
properties can reveal biological differences between diagnostic groups.

2 Methods

Before designing the simulation, we assume that each subject has precomputed
connectivity information that includes a parcellation of the cortex (and some-
times subcortical regions) into a set of regions with an accompanying N × N
matrix characterizing their connectivity. Additionally, we also expect to know
the location, size, and relationship of each region to every other region. There
are several well-known approaches for partitioning the brain into a set of nodes,
and for the purpose of representing the initial connectivity, our method allows
any such connectivity matrix to be incorporated into our analysis.

In the following simulation design the various terms and forces are designed to
restrict particle movement and bring them to a steady state reasonably quickly.
We designed the particles so that their initial locations are the centroids of
cortical regions and their masses are the corresponding volumes, but those initial
locations are not enforced in the simulation and are quickly washed away in the
early timesteps.

2.1 Gravitational N -Body Simulation

We now describe how we adapt the gravitational N -body simulation problem
to brain networks. Each connectivity node corresponding to one of N regions
in the cortex, is treated as a particle whose mass is proportional to the region’s
volume. The equations of motions for each particle i, in the traditional N -body
problem are

r̈i = −G

N∑

j=1;j �=i

mj(ri − rj)

|ri − rj |3 . (1)

where r̈i, mi, and ri are the acceleration, mass, and position of particle i, with
G as a gravitational constant; in astrophysics, this is simply a fixed universal
constant. To allow for stronger interactions between some pairs of network nodes
(particles), we set the gravitational term to be the value of the connectivity
matrix indexed by i and j and modified the expression so that G is replaced by
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Gij , which is the connectivity value for regions i and j. Intuitively, this induces
a force on each particle that depends on its connectivity strength with each of
the others.

In addition to the gravitational force, we include an additional attraction term,
a repulsion force, and a damping force. We also include an additional attraction
term to deal with “evaporation”, when particles acquire too much energy and
become unbound. This prevents drifting of the centroid of the N -body system.
We choose the attraction term to increase as the particle separation becomes
greater, as

−Gijmj r̂ij
(|rij |/R)b

r20
, (2)

where r̂ij is the unit direction of the vector from i to j and |rij | is its norm. R is
the overall size of the space and (in our neuroimaging application) is set to the
largest dimension of the T1-weighted brain image and r0 = RN−1/3 is the inter-
particle spacing. If volume of the image space is R3, the per-particle volume is
R3/N , making ((R3)/N)(1/3) = RN (−1/3) the initial interparticle distance. The
repulsion force keeps the particles from getting too close together and prevents
Equation 1 from blowing up and decreasing the timestep of the numerical solver.
It is also critical for bonding of the particles in an equilibrium state. Formally,
the force is

Gijmjr̂ij
d2a−2

|rij |2a , (3)

where d = r0/10 and a = 3. Parameter d specifies the typical distance be-
tween particles in the equilibrium state. We chose d = r0/10 to give particles
sufficient initial energy to allow randomization prior to the equilibrium state’s
development; however, this choice is somewhat arbitrary so long as d << r0.
The damping force moves the system into equilibrium over time and is

−vi

td
, (4)

where td = 10 and controls the strength of the damping and time till equilibrium.
The virial theorem [7] of gravitational dynamics is

2〈T 〉+ 〈V 〉 = 0, (5)

where T is the kinetic energy of the system and V is the potential energy. It
ensures that the system reaches equilibrium over time. Given this we set the
typical collision time to be t0 = 1 so that r0/v0 = 1 and scaled the gravity,
masses, and velocity accordingly.

When combined, our modified gravity force, the attraction term, repulsion
force, and damping force, specify the equations of motion for a particle as

r̈i =

N∑

j=1;j �=i

Gij r̂ijmj

( −1

|ri − rj |2 +
d2a−2

|ri − rj |2a − (|ri − rj |/R)b

r20

)
− vi

td
, (6)
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Fig. 1. We show a summary of states in our dynamical simulation of connectivity in
the brain for a single subject. Each particle represents a region of the cortex and our
initial conditions place a particle at the centroid of the corresponding region and assign
it a mass proportional to the volume of the region. At time zero (T=0.0), we show the
initial positions of all the particles coloring those in the right hemisphere green and
those in the left hemisphere orange. The particles interact with each other depending
on Gij , which is proportional to their connectivity value and at T=6.4 and T=15.4 we
can see two distinct clusters of particles in their respective hemispheres. At T=39.9
the kinetic energy of the system reduces as the system begins to reach equilibrium
shown at T=105. We presented the cortical segmentation as a reminder of the initial
configuration of the particles, but those locations are not enforced in the simulation
and are quickly washed away in the early timesteps.

where the parameters could still be adjusted if we wanted to change how the
simulation evolves. This set of equations are solved through numerical integration
using the explicit Runge-Kutta (4,5) formula [8] with adaptive time steps. The
simulation proceeds with the particles in each hemisphere forming clusters and
ends by reaching an equilibrium configuration of the particles.

2.2 Simulation Features

We computed an N -body connectivity matrix derived from the equilibrium state.
Each connectivity value represents the Euclidean distance between two particles
in the final configuration with a comparison to the standard fiber connectivity
matrix shown in Figure 2.
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Fig. 2. We show the standard fiber connectivity matrix and our N -body connectivity
matrix. The standard fiber connectivity matrix is an adjacency matrix where each
element represents the connectivity strength between two region that is quantified by
the number of fibers intersecting both regions. Our N -body connectivity matrix can
be thought of as a nonlinear transformation of the original fiber connectivity matrix
by incorporating the size and locations of the cortical regions into a dynamic system
of particles.

The connectivity features we used from our method are the network measures
derived from the N -body connectivity matrix, the time for the system to first
reach equilibrium, the average speed for the centroid of the particles in addition
to each particle, the total displacement of the centroid and the individual par-
ticles, and the change of distance from the initial and equilibrium states of the
centroid and individual particles.

We tested the features from the simulation using two-sample t -tests to under-
stand their ability to discriminate disease states in our data.

3 Experimental Results

We used a collection of 110 subjects scanned as part of the ADNI-2 [9], an exten-
sion of the ADNI project where diffusion imaging was added to the standard MRI
protocol. The dataset was composed of 28 cognitively normal elderly controls (C),
56 early- and 11 late-stage MCI subjects (eMCI, LMCI), and 15 with Alzheimer’s
disease (AD). These subjects were scanned with a 3-Tesla GE Medical Systems
scanner, which acquired both T1-weighted 3D anatomical spoiled gradient echo
(SPGR) sequences (256× 256 matrix; voxel size = 1.2× 1.0× 1.0 mm3; TI=400
ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11◦), and diffusion weighted images
(DWI; 256× 256 matrix; voxel size: 2.7× 2.7× 2.7 mm3; scan time = 9 min). The
DWIs consisted of 41 diffusion images with b = 1000 s/mm2 and 5 T2-weighted
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b0 images. To process the T1-weighted images, we automatically removed extra-
cerebral tissues from the images, corrected for intensity inhomogeneities using the
MNI N3 tool [10], and aligned to the Colin27 template [11] with FSL FLIRT [12].
We segmented the resulting images into 34 cortical regions (in each hemisphere)
using FreeSurfer [13]. These labels were then dilated with an isotropic box kernel
of 5 × 5 × 5 voxels to ensure they overlapped the white matter for connectivity
analysis. These images were corrected for headmotion and eddy current distortion
in each subject by aligning the DWI images to the average b0 image with FSL’s
eddy correct tool. We skull-stripped the brain using FSL and EPI-corrected with
an elastic mutual information registration algorithm that aligned the DWI images
to the T1-weighted scans.We generated close to 5,000 tractography fibers for each
subject using a probabilistic tractography algorithm [14] and used them to com-
pute a corresponding connectivity matrix where the connectivity value was the
number of fibers that intersected a pair of regions from our dilated cortical labels.

We ran the N -body simulation for 200 timesteps (T=0-200), which provided
enough time for the system to reach equilibrium, usually after 100 timesteps. In
Figure 1, we step through a simulation for one subject from our experimental
dataset, and visually describe the positions of the particles and their relationship
to the cortical regions of our connectivity analysis. Additionally, we compared
this N -body connectivity matrix to the fiber connectivity matrix that we used
to define Gij by computing ten different network measures [15]. These measures
included mean eccentricity (ECC), global efficiency (GE), mean local efficiency
(LE), mean degree (MD), transitivity, small world (SW), path length (PL), den-
sity, modularity, and the mean connectivity matrix (CM) value. We normalized
the fiber connectivity matrix by the total number of fibers computed. We tested
the features we computed during the simulation in two-sample t -tests compar-
ing disease states in controls vs. AD, controls vs. LMCI, controls vs. e-MCI,
and e-MCI vs. LMCI. We found the total displacement of the centroid over the
simulation to be significant in discriminating controls vs. AD with a p-value of
.012. We found the total displacement for one of the particles in the simula-
tion was also significantly different comparing controls vs. AD with a p-value of

Table 1. We show the p-values from two-sample t-tests comparing features derived
from the standard connectivity matrix versus our N -body connectivity matrix across
a set of disease states that include 20 normal elderly controls, 56 early mild cognitively
impaired (e-MCI) patients, 11 late MCI (LMCI) patients, and 15 Alzheimer’s disease
patients. We list the features with the lowest p-values. The features in the table are
mean eccentricity (ECC), global efficiency (GE), mean connectivity matrix (CM) value,
mean local efficiency (LE), and mean degree.

Fiber Connectivity N -Body Connectivity

Test Measure p-value Measure p-value

Control vs. AD Mean ECC 8.73× 10−4 Mean Degree 1.29× 10−6

Control vs. eMCI GE 3.10× 10−2 Mean Degree 8.40× 10−14

Control vs. late-MCI Mean CM 1.44× 10−2 Mean Degree 1.55× 10−5

eMCI vs. late-MCI Mean LE 1.69× 10−1 Mean CM 1.34× 10−4
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3.54 × 10−4 which passes the multiple comparison correction threshold at .05.
In addition, one of the mean particles speeds was significant in the controls vs.
AD comparison with a p-value of 1.43× 10−5.

4 Discussion

We presented a novel approach that simulates the inter-nodal interactions using
a N -body problem. Diffusion imaging has been used before to study degenerative
brain diseases, and group differences have consistently been reported for diffu-
sion indices such as mean diffusivity and fractional anisotropy, as well as more
complex network measures of anatomical connectivity. As the AD progresses,
some axonal fibers are lost, and prior work has mapped the effects of this loss
on brain networks, using concepts such as the k -core (a network thresholded
by nodal degree) and the rich club (a property whereby the highest degree net-
work nodes are more mutually interconnected than would be expected based on
their degree). As connectivity breakdown is typical of AD and other degener-
ative disorders [16], new connectivity models and metrics are of interest. The
N -body matrices are effective in detecting AD effects as they combine informa-
tion on connectivity and volumetric atrophy, as the gravitational force depends
on the size of the regions. Information transfer in the brain is impaired by each
of these factors, so their use as model properties is likely to lead to metrics that
differentiate AD.

A popular model of brain development was advanced by Van Essen [17] who
argued that the fissures in the cortex may be formed, in part, due to the physical
force of tension along long axonal fibers during embryonic development. In our
formulation, the dynamics do not attempt to encode actual forces but instead
resemble the flow of information to local hubs and then on to other parts of the
network. Currently, the N -body problem for brain allows a free-form movement
of the particles or nodes of the connectivity matrix. An interesting idea would be
to constrain their displacements so that the particles are only restricted to within
the brain. In the future, we plan to investigate the particle3-mesh method [18]
that will allow us to incorporate morphological constraints along with network
topology to simulate the dynamical underpinnings of human brain connectivity.
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