
Chapter 5

Finite Differences

As one quickly learns, the differential equations that can be solved by explicit analytic
formulas are few and far between. Consequently, the development of accurate numerical
approximation schemes is an essential tool for extracting quantitative information as well
as achieving a qualitative understanding of the possible behaviors of solutions to the vast
majority of partial differential equations. (On the other hand, the successful design of
numerical algorithms necessitates a fairly deep understanding of their basic analytic prop-
erties, and so exclusive reliance on numerics is not an option.) Even in cases, such as
the heat and wave equations, in which explicit solution formulas (either in closed form or
infinite series) exist, numerical methods can still be profitably employed. Indeed, one can
accurately test a proposed numerical algorithm by running it on a known solution. As we
will see, the lessons learned in the design and testing of numerical algorithms on simpler
“solved” examples are of inestimable value when confronting more challenging problems.

Many of the basic numerical solution schemes for partial differential equations can be
fit into two broad themes. The first, to be presented in the present chapter, is that of
finite difference methods , obtained by replacing the derivatives in the equation by appro-
priate numerical differentiation formulae. We thus start with a brief discussion of some
elementary finite difference formulas used to numerically approximate first- and second-
order derivatives of functions. We then establish and analyze some of the most basic finite
difference schemes for the heat equation, first-order transport equations, the second-order
wave equation, and the Laplace and Poisson equations. As we will learn, not all finite dif-
ference schemes produce accurate numerical approximations, and one must confront issues
of stability and convergence in order to distinguish reliable from worthless methods. In
fact, inspired by Fourier analysis, the key numerical stability criterion is a consequence of
the scheme’s handling of complex exponentials.

The second category of numerical solution techniques comprises the finite element
methods , which will be the topic of Chapter 10. These two chapters should be regarded as
but a preliminary excursion into this vast and active area of contemporary research. More
sophisticated variations and extensions, as well as other classes of numerical integration
schemes, e.g., spectral, pseudo-spectral, multigrid, multipole, probabilistic (Monte Carlo,
etc.), geometric, symplectic, and many more, can be found in specialized numerical analysis
texts, including [6, 51, 60, 80, 94], and research papers. Also, the journal Acta Numerica
is an excellent source of survey papers on state-of-the-art numerical methods for a broad
range of disciplines.
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182 5 Finite Differences

5.1 Finite Difference Approximations

In general, a finite difference approximation to the value of some derivative of a scalar
function u(x) at a point x0 in its domain, say u′(x0) or u′′(x0), relies on a suitable com-
bination of sampled function values at nearby points. The underlying formalism used to
construct these approximation formulas is known as the calculus of finite differences . Its
development has a long and influential history, dating back to Newton.

We begin with the first-order derivative. The simplest finite difference approximation
is the ordinary difference quotient

u(x+ h)− u(x)

h
≈ u′(x), (5.1)

which appears in the original calculus definition of the derivative. Indeed, if u is differen-
tiable at x, then u′(x) is, by definition, the limit, as h → 0 of the finite difference quotients.
Geometrically, the difference quotient measures the slope of the secant line through the
two points (x, u(x)) and (x+ h, u(x+ h)) on its graph. For small enough h, this should be
a reasonably good approximation to the slope of the tangent line, u′(x), as illustrated in
the first picture in Figure 5.1. Throughout our discussion, h, the step size, which may be
either positive or negative, is assumed to be small: |h | � 1. When h > 0, (5.1) is referred
to as a forward difference, while h < 0 yields a backward difference.

How close an approximation is the difference quotient? To answer this question, we
assume that u(x) is at least twice continuously differentiable, and examine its first-order
Taylor expansion

u(x+ h) = u(x) + u′(x) h+ 1
2 u

′′(ξ) h2 (5.2)

at the point x. We have used Lagrange’s formula for the remainder term, [8, 97], in which
ξ, which depends on both x and h, is a point lying between x and x + h. Rearranging
(5.2), we obtain

u(x+ h)− u(x)

h
− u′(x) = 1

2 u
′′(ξ) h.

Thus, the error in the finite difference approximation (5.1) can be bounded by a multiple
of the step size: ∣∣∣∣ u(x+ h)− u(x)

h
− u′(x)

∣∣∣∣ ≤ C |h |,

where C = max 1
2 |u′′(ξ) | depends on the magnitude of the second derivative of the function

over the interval in question. Since the error is proportional to the first power of h, we
say that the finite difference quotient (5.1) is a first-order approximation to the derivative
u′(x). When the precise formula for the error is not so important, we will write

u′(x) =
u(x+ h)− u(x)

h
+ O(h). (5.3)

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more precisely,
whose absolute value is bounded by a constant multiple of |h | as h → 0.

Example 5.1. Let u(x) = sinx. Let us try to approximate

u′(1) = cos 1 = .5403023 . . .
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Forward difference Central difference

Figure 5.1. Finite difference approximations.

by computing finite difference quotients

cos 1 ≈ sin(1 + h)− sin 1

h
.

The result for smaller and smaller (positive) values of h is listed in the following table.

h .1 .01 .001 .0001

approximation .497364 .536086 .539881 .540260

error −.042939 −.004216 −.000421 −.000042

We observe that reducing the step size by a factor of 1
10 reduces the size of the error by

approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about h = 10−11. The fact that the error is more or less proportional
to the step size confirms that we are dealing with a first-order numerical approximation.

To approximate higher-order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the nth order derivative u(n)(x) requires
at least n + 1 distinct sample points. For simplicity, we restrict our attention to equally
spaced sample points, although the methods introduced can be readily extended to more
general configurations.

For example, let us try to approximate u′′(x) by sampling u at the particular points
x, x + h, and x − h. Which combination of the function values u(x − h), u(x), u(x + h)
should be used? The answer is found by consideration of the relevant Taylor expansions†

u(x+ h) = u(x) + u′(x) h+ u′′(x)
h2

2
+ u′′′(x)

h3

6
+ O(h4),

u(x− h) = u(x)− u′(x) h+ u′′(x)
h2

2
− u′′′(x)

h3

6
+ O(h4),

(5.4)

where the error terms are proportional to h4. Adding the two formulas together yields

u(x+ h) + u(x− h) = 2u(x) + u′′(x) h2 +O(h4).

† Throughout, the function u(x) is assumed to be sufficiently smooth so that any derivatives
that appear are well defined and the expansion formula is valid.



184 5 Finite Differences

Dividing by h2 and rearranging terms, we arrive at the centered finite difference approxi-
mation to the second derivative of a function:

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2). (5.5)

Since the error is proportional to h2, this forms a second-order approximation.

Example 5.2. Let u(x) = ex
2

, with u′′(x) = (4x2 + 2)ex
2

. Let us approximate

u′′(1) = 6e = 16.30969097 . . .

using the finite difference quotient (5.5):

u′′(1) = 6e ≈ e(1+h)2 − 2e+ e(1−h)2

h2
.

The results are listed in the following table.

h .1 .01 .001 .0001

approximation 16.48289823 16.31141265 16.30970819 16.30969115

error .17320726 .00172168 .00001722 .00000018

Each reduction in step size by a factor of 1
10 reduces the size of the error by a factor of

about 1
100 , thereby gaining two new decimal digits of accuracy, which confirms that the

centered finite difference approximation is of second order.

However, this prediction is not completely borne out in practice. If we take h = .00001
then the formula produces the approximation 16.3097002570, with an error of .0000092863
— which is less accurate than the approximation with h = .0001. The problem is that
round-off errors due to the finite precision of numbers stored in the computer (in the pre-
ceding computation we used single-precision floating-point arithmetic) have now begun to
affect the computation. This highlights the inherent difficulty with numerical differentia-
tion: Finite difference formulae inevitably require dividing very small quantities, and so
round-off inaccuracies may produce noticeable numerical errors. Thus, while they typi-
cally produce reasonably good approximations to the derivatives for moderately small step
sizes, achieving high accuracy requires switching to higher-precision computer arithmetic.
Indeed, a similar comment applies to the previous computation in Example 5.1. Our ex-
pectations about the error were not, in fact, fully justified, as you may have discovered had
you tried an extremely small step size.

Another way to improve the order of accuracy of finite difference approximations is to
employ more sample points. For instance, if the first-order approximation (5.3) to u′(x)
based on the two points x and x+h is not sufficiently accurate, one can try combining the
function values at three points, say x, x+h, and x−h. To find the appropriate combination
of function values u(x − h), u(x), u(x + h), we return to the Taylor expansions (5.4). To
solve for u′(x), we subtract the two formulas, and so

u(x+ h)− u(x− h) = 2u′(x)h+O(h3).

Rearranging the terms, we are led to the well-known centered difference formula

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2), (5.6)
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which is a second-order approximation to the first derivative. Geometrically, the centered
difference quotient represents the slope of the secant line passing through the two points
(x− h, u(x− h)) and (x+ h, u(x+ h)) on the graph of u, which are centered symmetrically
about the point x. Figure 5.1 illustrates the two approximations, and the advantage of
the centered difference version is graphically evident. Higher-order approximations can be
found by evaluating the function at yet more sample points, say, x+ 2h, x− 2h, etc.

Example 5.3. Return to the function u(x) = sinx considered in Example 5.1. The
centered difference approximation to its derivative u′(1) = cos 1 = .5403023 . . . is

cos 1 ≈ sin(1 + h)− sin(1− h)

2h
.

The results are tabulated as follows:

h .1 .01 .001 .0001

approximation .53940225217 .54029330087 .54030221582 .54030230497

error −.00090005370 −.00000900499 −.00000009005 −.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 5.1 at the same step size. Since it is a second-order
approximation, each reduction in the step size by a factor of 1

10 results in two more decimal
places of accuracy — up until the point where the effects of round-off error kick in.

Many additional finite difference approximations can be constructed by similar ma-
nipulations of Taylor expansions, but these few very basic formulas, along with a couple
that are derived in the exercises, will suffice for our purposes. (For a thorough treatment
of the calculus of finite differences, the reader can consult [74].) In the following sections,
we will employ the finite difference formulas to devise numerical solution schemes for a va-
riety of partial differential equations. Applications to the numerical integration of ordinary
differential equations can be found, for example, in [24, 60, 63].

Exercises

♣ 5.1.1. Use the finite difference formula (5.3) with step sizes h = .1, .01, and .001 to approximate
the derivative u′(1) of the following functions u(x). Discuss the accuracy of your

approximation. (a) x4, (b)
1

1 + x2
, (c) log x, (d) cosx, (e) tan−1 x.

♣ 5.1.2. Repeat Exercise 5.1.1 using the centered difference formula (5.6). Compare your
approximations with those in the previous exercise — are the values in accordance with the
claimed orders of accuracy?

♣ 5.1.3. Approximate the second derivative u′′(1) of the functions in Exercise 5.1.1 using the
finite difference formula (5.5) with h = .1, .01, and .001. Discuss the accuracy of your
approximations.

5.1.4. Construct finite difference approximations to the first and second derivatives of a func-
tion u(x) using its values at the points x−k, x, x+h, where h, k � 1 are of comparable size,
but not necessarily equal. What can you say about the error in the approximation?
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♠ 5.1.5. In this exercise, you are asked to derive some basic one-sided finite difference formulas,
which are used for approximating derivatives of functions at or near the boundary of their
domain. (a) Construct a finite difference formula that approximates the derivative u′(x)
using the values of u(x) at the points x, x+ h, and x+ 2h. What is the order of your
formula? (b) Find a finite difference formula for u′′(x) that involves the same three func-
tion values. What is its order? (c) Test your formulas by computing approximations to the

first and second derivatives of u(x) = ex
2

at x = 1 using step sizes h = .1, .01, and .001.
What is the error in your numerical approximations? Are the errors compatible with the
theoretical orders of the finite difference formulas? Discuss why or why not.
(d) Answer part (c) at the point x = 0.

♣ 5.1.6.(a) Using the function values u(x), u(x + h), u(x + 3h), construct a numerical approxi-
mation to the derivative u′(x). (b) What is the order of accuracy of your approximation?
(c) Test your approximation on the function u(x) = cosx at x = 1 using the step sizes
h = .1, .01, and .001. Are the errors consistent with your answer in part (b)?

♣ 5.1.7. Answer Exercise 5.1.6 for the second derivative u′′(x).
5.1.8.(a) Find the order of the five-point centered finite difference approximation

u′(x) ≈ −u(x+ 2h) + 8u(x + h)− 8u(x − h) + u(x− 2h)

12h
.

(b) Test your result on the function (1 + x2)−1 at x = 1 using the values h = .1, .01, .001.

5.1.9.(a) Using the formula in Exercise 5.1.8 as a guide, find five-point finite difference formu-

las to approximate (i) u′′(x), (ii) u′′′(x), (iii) u(iv)(x). What is the order of accuracy?

(b) Test your formulas on the function (1+x2)−1 at x = 1 using the values h = .1, .01, .001.

5.2 Numerical Algorithms for the Heat Equation

Consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
, 0 < x < �, t > 0, (5.7)

on an interval of length �, with constant thermal diffusivity γ > 0. We impose time-
dependent Dirichlet boundary conditions

u(t, 0) = α(t), u(t, �) = β(t), t > 0, (5.8)

fixing the temperature at the ends of the interval, along with the initial conditions

u(0, x) = f(x), 0 ≤ x ≤ �, (5.9)

specifying the initial temperature distribution. In order to effect a numerical approximation
to the solution to this initial-boundary value problem, we begin by introducing a rectangular
mesh consisting of nodes (tj , xm) ∈ R2 with

0 = t0 < t1 < t2 < · · · and 0 = x0 < x1 < · · · < xn = �.

For simplicity, we maintain a uniform mesh spacing in both directions, with

Δt = tj+1 − tj , Δx = xm+1 − xm =
�

n
,



5.2 Numerical Algorithms for the Heat Equation 187

representing, respectively, the time step size and the spatial mesh size. It will be essential
that we do not a priori require that the two be the same. We shall use the notation

uj,m ≈ u(tj , xm), where tj = jΔt, xm = mΔx, (5.10)

to denote the numerical approximation to the solution value at the indicated node.

As a first attempt at designing a numerical solution scheme, we shall employ the
simplest finite difference approximations to the derivatives appearing in the equation. The
second-order space derivative is approximated by the centered difference formula (5.5), and
hence

∂2u

∂x2
(tj , xm) ≈

u(tj , xm+1)− 2 u(tj, xm) + u(tj , xm−1)

(Δx)2
+O

(
(Δx)2

)
≈

uj,m+1 − 2 uj,m + uj,m−1

(Δx)2
+O

(
(Δx)2

)
,

(5.11)

where the error in the approximation is proportional to (Δx)2. Similarly, the one-sided
finite difference approximation (5.3) is used to approximate the time derivative, and so

∂u

∂t
(tj , xm) ≈

u(tj+1, xm)− u(tj , xm)

Δt
+O(Δt) ≈

uj+1,m − uj,m

Δt
+O(Δt), (5.12)

where the error is proportional to Δt. In general, one should try to ensure that the
approximations have similar orders of accuracy, which leads us to require

Δt ≈ (Δx)2. (5.13)

Assuming Δx < 1, this implies that the time steps must be much smaller than the space
mesh size.

Remark : At this stage, the reader might be tempted to replace (5.12) by the second-
order central difference approximation (5.6). However, this introduces significant compli-
cations, and the resulting numerical scheme is not practical; see Exercise 5.2.10.

Replacing the derivatives in the heat equation (5.14) by their finite difference approx-
imations (5.11, 12) and rearranging terms, we end up with the linear system

uj+1,m = μuj,m+1 + (1− 2μ)uj,m + μuj,m−1,
j = 0, 1, 2, . . . ,

m = 1, . . . , n− 1,
(5.14)

in which

μ =
γΔt

(Δx)2
. (5.15)

The resulting scheme is of iterative form, whereby the solution values uj+1,m ≈ u(tj+1, xm)
at time tj+1 are successively calculated, via (5.14), from those at the preceding time tj .

The initial condition (5.9) indicates that we should initialize our numerical data by
sampling the initial temperature at the nodes:

u0,m = fm = f(xm), m = 1, . . . , n− 1. (5.16)

Similarly, the boundary conditions (5.8) require that

uj,0 = αj = α(tj), uj,n = βj = β(tj), j = 0, 1, 2, . . . . (5.17)
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For consistency, we should assume that the initial and boundary conditions agree at the
corners of the domain:

f0 = f(0) = u(0, 0) = α(0) = α0, fn = f(�) = u(0, �) = β(0) = β0.

The three equations (5.14, 16, 17) completely prescribe the numerical approximation scheme
for the solution to the initial-boundary value problem (5.7–9).

Let us rewrite the preceding equations in a more transparent vectorial form. First, let

u(j) =
(
uj,1, uj,2, . . . , uj,n−1

)T
≈

(
u(tj , x1), u(tj, x2), . . . , u(tj , xn−1)

)T
(5.18)

be the vector whose entries are the numerical approximations to the solution values at time
tj at the interior nodes. We omit the boundary nodes (tj , x0), (tj , xn), since those values
are fixed by the boundary conditions (5.17). Then (5.14) takes the form

u(j+1) = Au(j) + b(j), (5.19)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− 2μ μ
μ 1− 2μ μ

μ 1− 2μ μ

μ
. . .

. . .
. . .

. . . μ
μ 1− 2μ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, b(j) =

⎛⎜⎜⎜⎜⎜⎜⎝

μαj

0
0
...
0

μ βj

⎞⎟⎟⎟⎟⎟⎟⎠. (5.20)

The (n−1)×(n−1) coefficient matrix A is symmetric and tridiagonal, and only its nonzero
entries are displayed. The contributions (5.17) of the boundary nodes appear in the vector
b(j) ∈ R

n−1. This numerical method is known as an explicit scheme, since each iterate is
computed directly from its predecessor without having to solve any auxiliary equations —
unlike the implicit schemes to be discussed next.

Example 5.4. Let us fix the diffusivity γ = 1 and the interval length � = 1. For
illustrative purposes, we take a spatial step size of Δx = .1. We work with the initial data

u(0, x) = f(x) =

⎧⎪⎨⎪⎩
−x, 0 ≤ x ≤ 1

5 ,

x− 2
5 ,

1
5 ≤ x ≤ 7

10 ,

1− x, 7
10 ≤ x ≤ 1,

used earlier in Example 4.1, along with homogeneous Dirichlet boundary conditions, so
u(t, 0) = u(t, 1) = 0. In Figure 5.2 we compare the numerical solutions resulting from
two (slightly) different time step sizes. The first row uses Δt = (Δx)2 = .01 and plots
the solution at the indicated times. The numerical solution is already showing signs of
instability (the final plot does not even fit in the window), and indeed, soon thereafter, it
becomes completely wild. The second row takes Δt = .005. Even though we are employing
a rather coarse mesh, the numerical solution is not too far away from the true solution to
the initial value problem, which can be seen in Figure 4.1.

Stability Analysis

In light of the preceding calculation, we need to understand why our numerical scheme
sometimes gives reasonable answers but sometimes utterly fails. To this end, we investigate
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t = 0 t = .02 t = .04

Figure 5.2. Numerical solutions for the heat equation
⊎

based on the explicit scheme.

the effect of the numerical scheme on simple functions. As we know, the general solution
to the heat equation can be decomposed into a sum over the various Fourier modes. Thus,
we can concentrate on understanding what the numerical scheme does to an individual
complex exponential,† bearing in mind that we can then reconstruct its effect on more
general initial data by taking suitable linear combinations of exponentials.

To this end, suppose that, at time t = tj , the solution is a sampled exponential

u(tj , x) = e i kx, and so uj,m = u(tj , xm) = e i kxm , (5.21)

where k is a real parameter. Substituting the latter values into our numerical equations
(5.14), we find that the updated value at time tj+1 is also a sampled exponential:

uj+1,m = μuj,m+1 + (1− 2μ)uj,m + μuj,m−1

= μe ikxm+1 + (1− 2μ)e ikxm + μe ikxm−1

= μe ik(xm+Δx) + (1− 2μ)e ikxm + μe i k(xm−Δx)

= λe ikxm ,

(5.22)

where
λ = λ(k) = μe ikΔx + (1− 2μ) + μe− i kΔx

= 1− 2μ
[
1− cos(kΔx)

]
= 1− 4μ sin2

(
1
2 kΔx

)
.

(5.23)

Thus, the effect of a single step is to multiply the complex exponential (5.21) by the
magnification factor λ :

u(tj+1, x) = λe i kx. (5.24)

† As usual, complex exponentials are easier to work with than real trigonometric functions.
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In other words, e i kx plays the role of an eigenfunction, with the magnification factor λ(k)
the corresponding eigenvalue, of the linear operator governing each step of the numerical
scheme. Continuing in this fashion, we find that the effect of p further iterations of the
scheme is to multiply the exponential by the pth power of the magnification factor:

u(tj+p, x) = λp e i kx. (5.25)

As a result, the stability is governed by the size of the magnification factor: If |λ | > 1,
then λp grows exponentially, and so the numerical solutions (5.25) become unbounded as
p → ∞, which is clearly incompatible with the analytical behavior of solutions to the
heat equation. Therefore, an evident necessary condition for the stability of our numerical
scheme is that its magnification factor satisfy

|λ | ≤ 1. (5.26)

This method of stability analysis was developed by the mid-twentieth-century Hun-
garian/American mathematician — and father of the electronic computer — John von
Neumann. The stability criterion (5.26) effectively distinguishes the stable, and hence
valid, numerical algorithms from the unstable, and hence ineffectual, schemes. For the
particular case (5.23), the von Neumann stability criterion (5.26) requires

−1 ≤ 1− 4μ sin2
(
1
2 kΔx

)
≤ 1, or, equivalently, 0 ≤ μ sin2

(
1
2 kΔx

)
≤ 1

2 .

Since this is required to hold for all possible k, we must have

0 ≤ μ =
γΔt

(Δx)2
≤

1

2
, and hence Δt ≤

(Δx)2

2γ
, (5.27)

since γ > 0. Thus, once the space mesh size is fixed, stability of the numerical scheme
places a restriction on the allowable time step size. For instance, if γ = 1, and the space
mesh size Δx = .01, then we must adopt a minuscule time step size Δt ≤ .00005. It
would take an exorbitant number of time steps to compute the value of the solution at
even moderate times, e.g., t = 1. Moreover, the accumulation of round-off errors might
then cause a significant reduction in the overall accuracy of the final solution values. Since
not all choices of space and time steps lead to a convergent scheme, the explicit scheme
(5.14) is called conditionally stable.

Implicit and Crank–Nicolson Methods

An unconditionally stable method — one that does not restrict the time step — can be
constructed by replacing the forward difference formula (5.12) used to approximate the
time derivative by the backwards difference formula

∂u

∂t
(tj , xm) ≈

u(tj , xm)− u(tj−1, xm)

Δt
+ O(Δt). (5.28)

Substituting (5.28) and the same centered difference approximation (5.11) for uxx into the
heat equation, and then replacing j by j + 1, leads to the iterative system

−μuj+1,m+1 + (1 + 2μ)uj+1,m − μuj+1,m−1 = uj,m,
j = 0, 1, 2, . . . ,

m = 1, . . . , n− 1,
(5.29)
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t = .02 t = .04 t = .06

Figure 5.3. Numerical solutions for the heat equation
⊎

based on the implicit scheme.

where the parameter μ = γΔt/(Δx)2 is as before. The initial and boundary conditions
have the same form (5.16, 17). The latter system can be written in the matrix form

Âu(j+1) = u(j) + b(j+1), (5.30)

where Â is obtained from the matrix A in (5.20) by replacing μ by −μ. This serves to
define an implicit scheme, since we have to solve a linear system of algebraic equations
at each step in order to compute the next iterate u(j+1). However, since the coefficient
matrix Â is tridiagonal, the solution can be computed extremely rapidly, [89], and so its
calculation is not an impediment to the practical implementation of this implicit scheme.

Example 5.5. Consider the same initial-boundary value problem considered in
Example 5.4. In Figure 5.3, we plot the numerical solutions obtained using the implicit
scheme. The initial data is not displayed, but we graph the numerical solutions at times
t = .02, .04, .06 with a mesh size of Δx = .1. In the top row, we use a time step of Δt = .01,
while in the bottom row Δt = .005. In contrast to the explicit scheme, there is very little
difference between the two — indeed, both come much closer to the actual solution than
the explicit scheme. In fact, even significantly larger time steps yield reasonable numerical
approximations to the solution.

Let us apply the von Neumann analysis to investigate the stability of the implicit
scheme. Again, we need only look at the effect of the scheme on a complex exponential.
Substituting (5.21, 24) into (5.29) and canceling the common exponential factor leads to
the equation

λ (−μe ikΔx + 1 + 2μ− μe− i kΔx) = 1.
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t = .02 t = .04 t = .06

Figure 5.4. Numerical Solutions for the heat equation
⊎

based on the Crank–Nicolson scheme.

We solve for the magnification factor

λ =
1

1 + 2μ
(
1− cos(kΔx)

) =
1

1 + 4μ sin2
(
1
2 kΔx

) . (5.31)

Since μ > 0, the magnification factor is always less than 1 in absolute value, and so the
stability criterion (5.26) is satisfied for any choice of step sizes . We conclude that the
implicit scheme (5.14) is unconditionally stable .

Another popular numerical scheme for solving the heat equation is the Crank–Nicolson
method , due to the British numerical analysts John Crank and Phyllis Nicolson:

uj+1,m − uj,m = 1
2 μ (uj+1,m+1 − 2 uj+1,m + uj+1,m−1 + uj,m+1 − 2 uj,m + uj,m−1), (5.32)

which can be obtained by averaging the explicit and implicit schemes (5.14) and (5.29).
We can write (5.32) in vectorial form

B̂ u(j+1) = B u(j) + 1
2

(
b(j) + b(j+1)

)
,

where

B̂ =

⎛⎜⎜⎜⎝
1 + μ − 1

2 μ
− 1

2 μ 1 + μ − 1
2 μ

− 1
2
μ . . .

. . .
. . .

. . .

⎞⎟⎟⎟⎠, B =

⎛⎜⎜⎜⎝
1− μ 1

2 μ
1
2 μ 1− μ 1

2 μ
1
2
μ . . .

. . .
. . .

. . .

⎞⎟⎟⎟⎠, (5.33)

are both tridiagonal.

Applying the von Neumann analysis as before, we deduce that the magnification factor
has the form

λ =
1− 2μ sin2

(
1
2 kΔx

)
1 + 2μ sin2

(
1
2 kΔx

) . (5.34)
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Since μ > 0, we see that |λ | ≤ 1 for all choices of step size, and so the Crank–Nicolson
scheme is also unconditionally stable. A detailed analysis based on a Taylor expansion of
the solution reveals that the errors are of order (Δt)2 and (Δx)2, and so it is reasonable to
choose the time step to have the same order of magnitude as the space step: Δt ≈ Δx. This
gives the Crank–Nicolson scheme a significant advantage over the previous two methods,
in that one can get away with far fewer time steps. However, applying it to the initial
value problem considered above reveals a subtle weakness. The top row in Figure 5.4 has
space and time step sizes Δt = Δx = .01, and does a reasonable job of approximating
the solution except near the corners, where an annoying and incorrect local oscillation
persists as the solution decays. The bottom row uses Δt = Δx = .001, and performs much
better, although a similar oscillatory error can be observed at much smaller times. Indeed,
unlike the implicit scheme, the Crank–Nicolson method fails to rapidly damp out the high-
frequency Fourier modes associated with small-scale features such as discontinuities and
corners in the initial data, although it performs quite well in smooth regimes. Thus, when
dealing with irregular initial data, a good strategy is to first run the implicit scheme until
the small-scale noise is dissipated away, and then switch to Crank–Nicolson with a much
larger time step to determine the later large scale dynamics.

Finally, we remark that the finite difference schemes developed above for the heat
equation can all be readily adapted to more general parabolic partial differential equations.
The stability criteria and observed behaviors are fairly similar, and a couple of illustrative
examples can be found in the exercises.

Exercises

5.2.1. Suppose we seek to approximate the solution to the initial-boundary value problem

ut = 5uxx, u(t, 0) = u(t, 3) = 0, u(0, x) = x(x− 1)(x − 3), 0 ≤ x ≤ 3,

by employing the explicit scheme (5.14). (a) Given the spatial mesh size Δx = .1, what
range of time steps Δt can be used to produce an accurate numerical approximation?
(b) Test your prediction by implementing the scheme using one value of Δt in the allowed
range and one value outside.

5.2.2. Solve the following initial-boundary value problem

ut = uxx, u(t, 0) = u(t, 1) = 0, u(0, x) = f(x), 0 ≤ x ≤ 1,

with initial data f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

∣∣∣x− 1
6

∣∣∣ − 1
3 , 0 ≤ x ≤ 1

3 ,

0, 1
3 ≤ x ≤ 2

3 ,
1
2 − 3

∣∣∣x− 5
6

∣∣∣ , 2
3 ≤ x ≤ 1,

using

(i) the explicit scheme (5.14); (ii) the implicit scheme (5.29); and (iii) the Crank–Nicolson
scheme (5.32). Use space step sizes Δx = .1 and .05, and suitably chosen time steps Δt.
Discuss which features of the solution can be observed in your numerical approximations.

5.2.3. Repeat Exercise 5.2.2 for the initial-boundary value problem ut = 3uxx, u(0, x) = 0,
u(t,−1) = 1, u(t, 1) = −1, using space step sizes Δx = .2 and .1.

5.2.4.(a) Solve the initial-boundary value problem

ut = uxx, u(t,−1) = u(t, 1) = 0, u(0, x) = |x |1/2 − x2, −1 ≤ x ≤ 1,

using (i) the explicit scheme (5.14); (ii) the implicit scheme (5.29); (iii) the Crank–Nicolson
scheme (5.32). Use Δx = .1 and an appropriate time step Δt. Compare your numerical
solutions at times t = 0, .01, , .02, .05, .1, .3, .5, 1.0, and discuss your findings. (b) Repeat
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part (a) for the implicit and Crank-Nicolson schemes with Δx = .01. Why aren’t you being
asked to implement the explicit scheme?

5.2.5. Use the implicit scheme with spatial mesh sizes Δx = .1 and .05 and appropriately cho-
sen values of the time step Δt to investigate the solution to the periodically forced bound-
ary value problem ut = uxx, u(0, x) = 0, u(t, 0) = sin 5π t, u(t, 1) = cos 5π t. Is your
solution periodic in time?

♥ 5.2.6.(a) How would you modify (i) the explicit scheme; (ii) the implicit scheme; to deal with
Neumann boundary conditions? Hint : Use the one-sided finite difference formulae found in
Exercise 5.1.5 to approximate the derivatives at the boundary.
(b) Test your proposals on the boundary value problem

ut = uxx, u(0, x) = 1
2 + cos 2πx− 1

2 cos 3πx, ux(t, 0) = 0 = ux(t, 1),

using space step sizes Δx = .1 and .01 and appropriate time steps. Compare your nu-
merical solution with the exact solution at times t = .01, .03, .05, and explain any dis-
crepancies.

5.2.7.(a) Design an explicit numerical scheme for approximating the solution to the initial-
boundary value problem

ut = γ uxx + s(x), u(t, 0) = u(t, 1) = 0, u(0, x) = f(x), 0 ≤ x ≤ 1,

for the heat equation with a source term s(x). (b) Test your scheme when

γ = 1
6 , s(x) = x(1− x)(10− 22x), f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

∣∣∣x− 1
6

∣∣∣ − 1
3 , 0 ≤ x ≤ 1

3 ,

0, 1
3 ≤ x ≤ 2

3 ,
1
2 − 3

∣∣∣x− 5
6

∣∣∣ , 2
3 ≤ x ≤ 1,

using space step sizes Δx = .1 and .05, and a suitably chosen time step Δt. Are your two
numerical solutions close? (c) What is the long-term behavior of the solution? Can you
find a formula for its eventual profile? (d) Design an implicit scheme for the same problem.
Does this affect the behavior of your numerical solution? What are the advantages of the
implicit scheme?

5.2.8. Consider the initial-boundary value problem for the lossy diffusion equation

∂u

∂t
=

∂2u

∂x2
− αu, u(t, 0) = u(t, 1) = 0, u(0, x) = f(x),

t ≥ 0,

0 ≤ x ≤ 1,

where α > 0 is a positive constant. (a) Devise an explicit finite difference method for
computing a numerical approximation to the solution. (b) For what mesh sizes would
you expect your method to provide a good approximation to the solution?
(c) Discuss the case when α < 0.

5.2.9. Consider the initial-boundary value problem for the diffusive transport equation

∂u

∂t
=

∂2u

∂x2
+ 2

∂u

∂x
, u(t, 0) = u(t, 1) = 0, u(0, x) = x(1− x),

t ≥ 0,

0 ≤ x ≤ 1.

(a) Devise an explicit finite difference scheme for computing numerical approximations to
the solution. Hint : Make sure your approximations are of comparable order. (b) For what
range of time step sizes would you expect your method to provide a decent approximation
to the solution? (c) Test your answer in part (b) for the spatial step size Δx = .1.

♦ 5.2.10.(a) Show that using the centered difference approximation (5.6) to approximate the
time derivative leads to Richardson’s method for numerically solving the heat equation:

uj+1,m = uj−1,m + 2μ (uj,m+1 − 2uj,m + uj,m−1),
j = 1, 2, . . . ,

m = 1, . . . , n− 1,

where μ = γΔt/(Δx)2 is as in (5.15). (b) Discuss how to start Richardson’s method.
(c) Discuss the stability of Richardson’s method. (d) Test Richardson’s method on the
initial-boundary value problem in Exercise 5.2.2. Does your numerical solution conform
with your expectations from part (b)?
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5.3 Numerical Algorithms for

First–Order Partial Differential Equations

Let us next apply the method of finite differences to construct some basic numerical meth-
ods for first-order partial differential equations. As noted in Section 4.4, first-order partial
differential equations are prototypes for hyperbolic equations, and so many of the lessons
learned here carry over to the general hyperbolic regime, including the second-order wave
equation, which we analyze in detail in the following section.

Consider the initial value problem for the elementary transport equation

∂u

∂t
+ c

∂u

∂x
= 0, u(0, x) = f(x), −∞ < x < ∞, (5.35)

with constant wave speed c. Of course, as we learned in Section 2.2, the solution is a simple
traveling wave

u(t, x) = f(x− ct) (5.36)

that is constant along the characteristic lines of slope c in the (t, x)–plane. Although the
analytical solution is completely elementary, there will be valuable lessons to be learned
from our attempt to reproduce it by numerical approximation. Indeed, each of the nu-
merical schemes developed below has an evident adaptation to transport equations with
variable wave speeds c(t, x), and even to nonlinear transport equations whose wave speed
depends on the solution u, and so admit shock-wave solutions.

As before, we restrict our attention to a rectangular mesh (tj , xm) with uniform time
step size Δt = tj+1 − tj and space mesh size Δx = xm+1 − xm. We use uj,m ≈ u(tj , xm)
to denote our numerical approximation to the solution u(t, x) at the indicated node. The
simplest numerical scheme is obtained by replacing the time and space derivatives by their
first-order finite difference approximations (5.1):

∂u

∂t
(tj , xm) ≈

uj+1,m − uj,m

Δt
+O(Δt),

∂u

∂x
(tj , xm) ≈

uj,m+1 − uj,m

Δx
+O(Δx).

(5.37)
Substituting these expressions into the transport equation (5.35) leads to the explicit nu-
merical scheme

uj+1,m = −σuj,m+1 + (σ + 1)uj,m, (5.38)

in which the parameter

σ =
cΔt

Δx
(5.39)

depends on the wave speed and the ratio of time to space step sizes. Since we are employ-
ing first-order approximations to both derivatives, we should choose the step sizes to be
comparable: Δt ≈ Δx. When working on a bounded interval, say 0 ≤ x ≤ �, we will need
to specify a value for the numerical solution at the right end, e.g., setting uj,n = 0, which
corresponds to imposing the boundary condition u(t, �) = 0.

In Figure 5.5, we plot the numerical solutions, at times t = .1, .2, .3, arising from the
following initial condition:

u(0, x) = f(x) = .4 e−300(x−.5)2 + .1 e−300(x−.65)2 . (5.40)

We work on the interval 0 ≤ x ≤ 1, and use step sizes Δt = Δx = .005. Let us try four
different values of the wave speed. The cases c = .5 and c = −1.5 clearly exhibit some form
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c = .5

c = −.5

c = −1

c = −1.5

Figure 5.5. Numerical solutions to the transport equation.
⊎

of numerical instability. The numerical solution when c = −.5 is a bit more reasonable,
although one can already observe some degradation due to the relatively low accuracy of
the scheme. This can be alleviated by employing a smaller step size. The case c = −1
looks exceptionally good, and you are asked to provide an explanation in Exercise 5.3.6.

The CFL Condition

There are two ways to understand the observed numerical instability. First, we recall
that the exact solution (5.36) is constant along the characteristic lines x = ct + ξ, and
hence the value of u(t, x) depends only on the initial value f(ξ) at the point ξ = x − ct.
On the other hand, at time t = tj , the numerical solution uj,m ≈ u(tj , xm) computed

using (5.38) depends on the values of uj−1,m and uj−1,m+1. The latter two values have
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Figure 5.6. The CFL condition.

been computed from the previous approximations uj−2,m, uj−2,m+1, uj−2,m+2. And so
on. Going all the way back to the initial time t0 = 0, we find that uj,m depends on the
initial values u0,m = f(xm), . . . , u0,m+j = f(xm+ jΔx) at the nodes lying in the interval
xm ≤ x ≤ xm + jΔx. On the other hand, the actual solution u(tj , xm) depends only on
the value of f(ξ), where

ξ = xm − ctj = xm − cjΔt.

Thus, if ξ lies outside the interval [xm, xm + jΔx ], then varying the initial condition
near the point x = ξ will change the actual solution value u(tj , xm) without altering its
numerical approximation uj,m at all! So the numerical scheme cannot possibly provide an
accurate approximation to the solution value. As a result, we must require

xm ≤ ξ = xm − cjΔt ≤ xm + jΔx, and hence 0 ≤ −cΔt ≤ Δx,

which we rewrite as

0 ≥ σ =
cΔt

Δx
≥ −1, or, equivalently, − Δx

Δt
≤ c ≤ 0. (5.41)

This is the simplest manifestation of what is known as the Courant–Friedrichs–Lewy con-
dition, or CFL condition for short, which was established in the groundbreaking 1928
paper [33] by three of the pioneers in the development of numerical methods for partial
differential equations: the German (soon to be American) applied mathematicians Richard
Courant, Kurt Friedrichs, and Hans Lewy. Note that the CFL condition requires that the
wave speed be negative, and the time step size not too large. Thus, for allowable wave
speeds, the finite difference scheme (5.38) is conditionally stable.

The CFL condition can be recast in a more geometrically transparent manner as
follows. For the finite difference scheme (5.38), the numerical domain of dependence of a
point (tj , xm) is the triangle

T(tj ,xm) =
{
(t, x)

∣∣ 0 ≤ t ≤ tj , xm ≤ x ≤ xm + tj − t
}
. (5.42)

The reason for this nomenclature is that, as we have just seen, the numerical approximation
to the solution at the node (tj , xm) depends on the computed values at the nodes lying
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within its numerical domain of dependence; see Figure 5.6. The CFL condition (5.41)
requires that, for all 0 ≤ t ≤ tj , the characteristic passing through the point (tj , xm) lie
entirely within the numerical domain of dependence (5.42). If the characteristic ventures
outside the domain, then the scheme will be numerically unstable. With this geometric
reformulation, the CFL criterion can be applied to both linear and nonlinear transport
equations that have nonuniform wave speeds.

The CFL criterion (5.41) is reconfirmed by a von Neumann stability analysis. As
before, we test the numerical scheme on an exponential function. Substituting

uj,m = e i kxm , uj+1,m = λe ikxm , (5.43)

into (5.38) leads to

λe i kxm = −σe ikxm+1 + (σ + 1)e i kxm =
(
−σe i kΔx + σ + 1

)
e i kxm .

The resulting (complex) magnification factor

λ = 1 + σ
(
1− e i kΔx

)
=

(
1 + σ − σ cos(kΔx)

)
− iσ sin(kΔx)

satisfies the stability criterion |λ | ≤ 1 if and only if

|λ |2 =
(
1 + σ − σ cos(kΔx)

)2
+
(
σ sin(kΔx)

)2
= 1 + 2σ(σ + 1)

(
1− cos(kΔx)

)
= 1 + 4σ(σ + 1) sin2

(
1
2 kΔx

)
≤ 1

for all k. Thus, stability requires that σ(σ + 1) ≤ 0, and thus −1 ≤ σ ≤ 0, in complete
accord with the CFL condition (5.41).

Upwind and Lax–Wendroff Schemes

To obtain a finite difference scheme that can be used for positive wave speeds, we replace the
forward finite difference approximation to ∂u/∂x by the corresponding backwards difference
quotient, namely, (5.1) with h = −Δx, leading to the alternative first-order numerical
scheme

uj+1,m = − (σ − 1)uj,m + σuj,m−1, (5.44)

where σ = cΔt/Δx is as before. A similar analysis, left to the reader, produces the
corresponding CFL stability criterion

0 ≤ σ =
cΔt

Δx
≤ 1,

and so this scheme can be applied for suitable positive wave speeds.

In this manner, we have produced one numerical scheme that works for negative wave
speeds, and an alternative scheme for positive speeds. The question arises — particularly
when one is dealing with equations with variable wave speeds — whether one can devise
a scheme that is (conditionally) stable for both positive and negative wave speeds. One
might be tempted to use the centered difference approximation (5.6):

∂u

∂x
(tj , xm) ≈

uj,m+1 − uj,m−1

2Δx
+O

(
(Δx)2

)
. (5.45)
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t

x

Figure 5.7. The CFL condition for the centered difference scheme.

Substituting (5.45) and the previous approximation to the time derivative (5.37) into (5.35)
leads to the numerical scheme

uj+1,m = − 1
2 σuj,m+1 + uj,m + 1

2 σuj,m−1, (5.46)

where, as usual, σ = cΔt/Δx. In this case, the numerical domain of dependence of the
node (tj , xm) consists of the nodes in the triangle

T̃ (tj ,xm) =
{
(t, x)

∣∣ 0 ≤ t ≤ tj , xm − tj + t ≤ x ≤ xm + tj − t
}
. (5.47)

The CFL condition requires that, for 0 ≤ t ≤ tj , the characteristic going through (tj , xm)
lie within this triangle, as in Figure 5.7, which imposes the condition

|σ | =
∣∣∣∣ cΔt

Δx

∣∣∣∣ ≤ 1, or, equivalently, | c | ≤ Δx

Δt
. (5.48)

Unfortunately, although it satisfies the CFL condition over this range of wave speeds, the
centered difference scheme is, in fact, always unstable! For instance, the instability of the
numerical solution to the preceding initial value problem (5.40) for c = 1 can be observed
in Figure 5.8. This is confirmed by applying a von Neumann analysis: substitute (5.43)
into (5.46), and cancel the common exponential factors. Provided σ 	= 0, which means that
c 	= 0, the resulting magnification factor

λ = 1− iσ sin(kΔx)

satisfies |λ | > 1 for all k with sin(kΔx) 	= 0. Thus, for c 	= 0, the centered difference
scheme (5.46) is unstable for all (nonzero) wave speeds!
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t = .15 t = .3 t = .45

Figure 5.8. Centered difference numerical solution to the transport equation.
⊎

One possible means of overcoming the sign restriction on the wave speed is to use
the forward difference scheme (5.38) when the wave speed is negative and the backwards
scheme (5.44) when it is positive. The resulting scheme, valid for varying wave speeds
c(t, x), takes the form

uj+1,m =

{
−σj,muj,m+1 + (σj,m + 1)uj,m, cj,m ≤ 0,

− (σj,m − 1)uj,m + σj,muj,m−1, cj,m > 0,
(5.49)

where

σj,m = cj,m
Δt

Δx
, cj,m = c(tj , xm). (5.50)

This is referred to as an upwind scheme, since the second node always lies “upwind” —
that is, away from the direction of motion — from the reference point (tj , xm). The
upwind scheme works reasonably well over short time intervals, assuming that the space
step size is sufficiently small and the time step satisfies the CFL condition Δx/Δt ≤ | cj,m |
at each node, cf. (5.41). However, over longer time intervals, as we already observed in
Figure 5.5, the simple upwind scheme tends to produce a noticeable damping of waves or,
alternatively, require an unacceptably small step size. One way of overcoming this defect is
to use the popular Lax–Wendroff scheme, which is based on second-order approximations
to the derivatives. In the case of constant wave speed, the iterative step takes the form

uj+1,m = 1
2 σ(σ − 1)uj,m+1 − (σ2 − 1)uj,m + 1

2 σ(σ + 1)uj,m−1. (5.51)

The stability analysis of the Lax–Wendroff scheme is relegated to the exercises. Extensions
to variable wave speeds are more subtle, and we refer the reader to [80] for a detailed
derivation.

Exercises

5.3.1. Solve the initial value problem ut = 3ux, u(0, x) = 1/(1 + x2), on the interval [−10, 10]
using an upwind scheme with space step size Δx = .1. Decide on an appropriate time step
size, and graph your solution at times t = .5, 1, 1.5. Discuss what you observe.
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5.3.2. Solve Exercise 5.3.1 for the nonuniform transport equations

(a) ut + 4(1 + x2)−1 ux = 0, (b) ut =
(
3− 2e−x2/4

)
ux,

(c) ut + 7x(1 + x2)−1 ux = 0, (d) ut +
(
2 tan−1 1

2 x
)
ux = 0.

5.3.3. Consider the initial value problem

ut +
3x

x2 + 1
ux = 0, u(0, x) =

(
1− 1

2 x
2
)
e−x2/3.

On the interval [−5, 5], using space step size Δx = .1 and time step size Δt = .025, apply
(a) the forward scheme (5.38) (suitably modified for variable wave speed), (b) the back-
ward scheme (5.44) (suitably modified for variable wave speed), and (c) the upwind scheme
(5.49). Graph the resulting numerical solutions at times t = .5, 1, 1.5, and discuss what you
observe in each case. Which of the schemes are stable?

5.3.4. Use the centered difference scheme (5.46) to solve the initial value problem in Exercise
5.3.1. Do you observe any instabilities in your numerical solution?

5.3.5. Use the Lax–Wendroff scheme (5.51) to solve the initial value problem in Exercise 5.3.1.
Discuss the accuracy of your solution in comparison with the upwind scheme.

♦ 5.3.6. Can you explain why, in Figure 5.5, the numerical solution in the case c = −1 is signifi-
cantly better than for c = −.5, or, indeed, for any other c in the stable range.

5.3.7. Nonlinear transport equations are often solved numerically by writing them in the form
of a conservation law, and then applying the finite difference formulas directly to the con-
served density and flux. (a) Devise an upwind scheme for numerically solving our favorite

nonlinear transport equation, ut +
1
2 (u

2)x = 0.

(b) Test your scheme on the initial value problem u(0, x) = e−x2

.

5.3.8.(a) Design a stable numerical solution scheme for the damped transport equation

ut +
3
4 ux + u = 0. (b) Test your scheme on the initial value problem with u(0, x) = e−x2

.

♦ 5.3.9. Analyze the stability of the numerical scheme (5.44) by applying (a) the CFL condition;
(b) a von Neumann analysis. Are your conclusions the same?

♦ 5.3.10. For what choices of step size Δt,Δx is the Lax–Wendroff scheme (5.51) stable?

5.4 Numerical Algorithms for the Wave Equation

Let us now develop some basic numerical solution techniques for the second-order wave
equation. As above, although we are in possession of the explicit d’Alembert solution
formula (2.82), the lessons learned in designing viable schemes here will carry over to more
complicated situations, including inhomogeneous media and higher-dimensional problems,
for which analytic solution formulas may no longer be readily available.

Consider the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < �, t ≥ 0, (5.52)

on a bounded interval of length � with constant wave speed c > 0. For specificity, we
impose (possibly time-dependent) Dirichlet boundary conditions

u(t, 0) = α(t), u(t, �) = β(t), t ≥ 0, (5.53)
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along with the usual initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ �. (5.54)

As usual, we adopt a uniformly spaced mesh

tj = jΔt, xm = mΔx, where Δx =
�

n
.

Discretization is implemented by replacing the second-order derivatives in the wave equa-
tion by their standard finite difference approximations (5.5):

∂2u

∂t2
(tj , xm) ≈

u(tj+1, xm)− 2u(tj , xm) + u(tj−1, xm)

(Δt)2
+ O

(
(Δt)2

)
,

∂2u

∂x2
(tj , xm) ≈

u(tj , xm+1)− 2u(tj , xm) + u(tj , xm−1)

(Δx)2
+ O

(
(Δx)2

)
.

(5.55)

Since the error terms are both of second order, we anticipate being able to choose the
space and time step sizes to have comparable magnitudes: Δt ≈ Δx. Substituting the
finite difference formulas (5.55) into the partial differential equation (5.52) and rearranging
terms, we are led to the iterative system

uj+1,m = σ2 uj,m+1 + 2 (1− σ2) uj,m + σ2 uj,m−1 − uj−1,m,
j = 1, 2, . . . ,

m = 1, . . . , n− 1,
(5.56)

for the numerical approximations uj,m ≈ u(tj , xm) to the solution values at the nodes. The
parameter

σ =
cΔt

Δx
> 0 (5.57)

depends on the wave speed and the ratio of space and time step sizes. The boundary
conditions (5.53) require that

uj,0 = αj = α(tj), uj,n = βj = β(tj), j = 0, 1, 2, . . . . (5.58)

This allows us to rewrite the iterative system in vectorial form

u(j+1) = Bu(j) − u(j−1) + b(j), (5.59)

where

B =

⎛⎜⎜⎜⎜⎜⎝
2 (1− σ2) σ2

σ2 2 (1− σ2) σ2

σ2 . . .
. . .

. . .
. . . σ2

σ2 2 (1− σ2)

⎞⎟⎟⎟⎟⎟⎠, u(j) =

⎛⎜⎜⎜⎜⎜⎝
uj,1

uj,2

...
uj,n−2

uj,n−1

⎞⎟⎟⎟⎟⎟⎠, b(j) =

⎛⎜⎜⎜⎜⎝
σ2αj

0
...
0

σ2βj

⎞⎟⎟⎟⎟⎠.

(5.60)
The entries of u(j) ∈ Rn−1 are, as in (5.18), the numerical approximations to the solution
values at the interior nodes. Note that (5.59) describes a second-order iterative scheme,
since computing the subsequent iterate u(j+1) requires knowing the values of the preceding
two: u(j) and u(j−1).

The one subtlety is how to get the method started. We know u(0), since its entries
u0,m = fm = f(xm) are determined by the initial position. However, we also need u(1)
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in order to launch the iteration and compute u(2),u(3), . . . . Its entries u1,m ≈ u(Δt, xm)
approximate the solution at time t1 = Δt, whereas the initial velocity ut(0, x) = g(x)
prescribes the derivatives ut(0, xm) = gm = g(xm) at the initial time t0 = 0. To resolve
this difficulty, a first thought might be to use the finite difference approximation

gm =
∂u

∂t
(0, xm) ≈ u(Δt, xm)− u(0, xm)

Δt
≈

u1,m − fm
Δt

(5.61)

to compute the required values u1,m = fm + gmΔt. However, the approximation (5.61) is

accurate only to order Δt, whereas the rest of the scheme has errors proportional to (Δt)2.
The effect would be to introduce an unacceptably large error at the initial step, and the
resulting solution would fail to conform to the desired order of accuracy.

To construct an initial approximation to u(1) with error on the order of (Δt)2, we need
to analyze the error in the approximation (5.61) in more depth. Note that, by Taylor’s
Theorem,

u(Δt, xm)− u(0, xm)

Δt
=

∂u

∂t
(0, xm) +

1

2

∂2u

∂t2
(0, xm)Δt+O

(
(Δt)2

)
=

∂u

∂t
(0, xm) +

c2

2

∂2u

∂x2
(0, xm)Δt+O

(
(Δt)2

)
,

since u(t, x) solves the wave equation. Therefore,

u1,m = u(Δt, xm) ≈ u(0, xm) +
∂u

∂t
(0, xm)Δt+

c2

2

∂2u

∂x2
(0, xm)(Δt)2

= f(xm) + g(xm)Δt+
c2

2
f ′′(xm)(Δt)2

≈ fm + gmΔt+
c2(fm+1 − 2fm + fm−1)(Δt)2

2(Δx)2
,

where the last line, which employs the finite difference approximation (5.5) to the sec-
ond derivative, can be used if the explicit formula for f ′′(x) is either not known or too
complicated to evaluate directly. Therefore, we initiate the scheme by setting

u1,m = 1
2
σ2fm+1 + (1− σ2)fm + 1

2
σ2fm−1 + gmΔt, (5.62)

or, in vectorial form,

u(0) = f , u(1) = 1
2 Bu(0) + gΔt+ 1

2 b
(0), (5.63)

where f =
(
f1, f2, . . . , fn−1

)T
, g =

(
g1, g2, . . . , gn−1

)T
, are the sampled values of the

initial data. This serves to maintain the desired second-order accuracy of the scheme.

Example 5.6. Consider the particular initial value problem

utt = uxx,
u(0, x) = e−400 (x−.3)2 , ut(0, x) = 0,

u(t, 0) = u(t, 1) = 0,

0 ≤ x ≤ 1,

t ≥ 0,

subject to homogeneous Dirichlet boundary conditions on the interval [0, 1 ]. The initial
data is a fairly concentrated hump centered at x = .3. As time progresses, we expect the
initial hump to split into two half-sized humps, which then collide with the ends of the
interval, reversing direction and orientation.
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t = 0 t = .1 t = .2

t = .3 t = .4 t = .5

Figure 5.9. Numerically stable waves.
⊎

t = 0 t = .04 t = .08

t = .12 t = .16 t = .2

Figure 5.10. Numerically unstable waves.
⊎

For our numerical approximation, let us use a space discretization consisting of 90
equally spaced points, and so Δx = 1

90 = .0111 . . . . If we choose a time step of Δt = .01,
whereby σ = .9, then we obtain a reasonably accurate solution over a fairly long time
range, as plotted in Figure 5.9. On the other hand, if we double the time step, setting
Δt = .02, so σ = 1.8, then, as shown in Figure 5.10, we induce an instability that eventually



5.4 Numerical Algorithms for the Wave Equation 205

t

x

Stable

t

x

Unstable

Figure 5.11. The CFL condition for the wave equation.

overwhelms the numerical solution. Thus, the preceding numerical scheme appears to be
only conditionally stable.

Stability analysis proceeds along the same lines as in the first-order case. The CFL
condition requires that the characteristics emanating from a node (tj , xm) remain, for times
0 ≤ t ≤ tj , in its numerical domain of dependence, which, for our particular numerical
scheme, is the same triangle

T̃ (tj ,xm) =
{
(t, x)

∣∣ 0 ≤ t ≤ tj , xm − tj + t ≤ x ≤ xm + tj − t
}
,

now plotted in Figure 5.11. Since the characteristics are the lines of slope ±c, the CFL
condition is the same as in (5.48):

σ =
cΔt

Δx
≤ 1, or, equivalently, 0 < c ≤ Δx

Δt
. (5.64)

The resulting stability criterion explains the observed difference between the numerically
stable and unstable cases.

However, as we noted above, the CFL condition is, in general, only necessary for stabil-
ity of the numerical scheme; sufficiency requires that we perform a von Neumann stability
analysis. To this end, we specialize the calculation to a single complex exponential e i kx.
After one time step, the scheme will have the effect of multiplying it by the magnification
factor λ = λ(k), after another time step by λ2, and so on. To determine λ, we substitute
the relevant sampled exponential values

uj−1,m = e i kxm , uj,m = λ e ikxm , uj+1,m = λ2 e i kxm , (5.65)

into the scheme (5.56). After canceling the common exponential, we find that the magni-
fication factor satisfies the following quadratic equation:

λ2 =
(
2− 4σ2 sin2

(
1
2 kΔx

) )
λ− 1,
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whence
λ = α±

√
α2 − 1 , where α = 1− 2σ2 sin2

(
1
2 kΔx

)
. (5.66)

Thus, there are two different magnification factors associated with each complex expo-
nential — which is, in fact, a consequence of the scheme being of second order. Stability
requires that both be ≤ 1 in modulus. Now, if the CFL condition (5.64) holds, then
|α | ≤ 1, which implies that both magnification factors (5.66) are complex numbers of
modulus |λ | = 1, and thus the numerical scheme satisfies the stability criterion (5.26).
On the other hand, if σ > 1, then α < −1 over a range of values of k, which implies that
the two magnification factors (5.66) are both real and one of them is < −1, thus violating
the stability criterion. Consequently, the CFL condition (5.64) does indeed distinguish
between the stable and unstable finite difference schemes for the wave equation.

Exercises

5.4.1. Suppose you are asked to numerically approximate the solution to the initial-boundary
value problem

utt = 64uxx, u(t, 0) = u(t, 3) = 0, u(0, x) =

{
1− 2|x− 1 |, 1

2 ≤ x ≤ 3
2 ,

0, otherwise,
ut(0, x) = 0,

on the interval 0 ≤ x ≤ 3, using (5.56) with space step size Δx = .1. (a) What range of
time steps Δt are allowed? (b) Test your answer by implementing the numerical solution
for one value of Δt in the allowable range and one value outside. Discuss what you observe
in your numerical solutions. (c) In the stable range, compare your numerical solution with
that obtained using the smaller step size Δx = .01 and a suitable time step Δt.

5.4.2. Solve Exercise 5.4.1 for the boundary value problem

utt = 64uxx, u(t, 0) = 0 = u(t, 3), u(0, x) = 0, ut(0, x) =

{
1− 2|x− 1 |, 1

2 ≤ x ≤ 3
2 ,

0, otherwise.

5.4.3. Solve the following initial-boundary value problem

utt = 9uxx, u(t, 0) = u(t, 1) = 0, u(0, x) = 1
2 +

∣∣∣x− 1
4

∣∣∣ − ∣∣∣ 2x− 3
4

∣∣∣ , ut(0, x) = 0,

on the interval 0 ≤ x ≤ 1, using the numerical scheme (5.56) with space step sizes Δx =
.1, .01 and .001 and suitably chosen time steps. Discuss which features of the solution can
be observed in your numerical approximations.

5.4.4.(a) Use a numerical integrator with space step size Δx = .05 to solve the periodically
forced boundary value problem

utt = uxx, u(0, x) = ut(0, x) = 0, u(t, 0) = sin t, u(t, 1) = 0.

Is your solution periodic? (b) Repeat the computation using the alternative boundary
condition u(t, 0) = sinπ t. Discuss any observed differences between the two problems.

5.4.5.(a) Design an explicit numerical scheme for solving the initial-boundary value problem

utt = c2uxx + F (t, x), u(t, 0) = u(t, 1) = 0, u(0, x) = f(x), ut(0, x) = g(x), 0 ≤ x ≤ 1,

for the wave equation with an external forcing term F (t, x). Clearly state any stability
conditions that need to be imposed on the time and space step sizes.

(b) Test your scheme on the particular case c = 1
4 , F (t, x) = 3 sign

(
x− 1

2

)
sin π t, f(x) ≡

g(x) ≡ 0, using space step sizes Δx = .05 and .01, and suitably chosen time steps.

5.4.6. Let β > 0. (a) Design a finite difference scheme for approximating the solution to the
initial-boundary value problem

utt + βut = c2uxx, u(t, 0) = u(t, 1) = 0, u(0, x) = f(x), ut(0, x) = g(x),
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for the damped wave equation on the interval 0 ≤ x ≤ 1. (b) Discuss the stability of your
scheme. What choice of step sizes will ensure stability? (c) Test your scheme with c = 1,

β = 1, using the initial data f(x) = e−(x−.7)2 , g(x) = 0.

5.5 Finite Difference Algorithms for

the Laplace and Poisson Equations

Finally, let us discuss the implementation of finite diffference numerical schemes for elliptic
boundary value problems. We concentrate on the simplest cases: the two-dimensional
Laplace and Poisson equations. The basic issues are already apparent in this particular
context, and extensions to more general equations, higher dimensions, and higher-order
schemes are all reasonably straightforward. In Chapter 10, we will present a competitor
— the renowned finite element method — which, while relying on more sophisticated
mathematical machinery, enjoys several advantages, including more immediate adaptability
to variable mesh sizes and more sophisticated geometries.

For specificity, we concentrate on the Dirichlet boundary value problem

−Δu = −uxx − uyy = f(x, y),

u(x, y) = g(x, y),
for

(x, y) ∈ Ω,

(x, y) ∈ ∂Ω,
(5.67)

on a bounded planar domain Ω ⊂ R2. The first step is to discretize the domain Ω by
constructing a rectangular mesh. Thus, the finite difference method is particularly suited
to domains whose boundary lines up with the coordinate axes; otherwise, the mesh nodes
do not, generally, lie exactly on ∂Ω, making the approximation of the boundary data more
challenging — although not insurmountable.

For simplicity, let us study the case in which

Ω = {a < x < b, c < y < d}

is a rectangle. We introduce a regular rectanglar mesh, with x and y spacings given,
respectively, by

Δx =
b− a
m

, Δy =
c− d
n

,

for positive integersm,n. Thus, the interior of the rectangle contains (m−1)(n−1) interior
nodes

(xi, yj) = (a+ iΔx, c+ jΔy) for 0 < i < m, 0 < j < n.

In addition, the 2m + 2n boundary nodes (x0, yj) = (a, yj), (xm, yj) = (b, yj), (xi, y0) =
(xi, c), (xi, yn) = (xi, d), lie on the boundary of the rectangle.

At each interior node, we employ the centered difference formula (5.5) to approximate
the relevant second-order derivatives:

∂2u

∂x2
(xi, yj) =

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

(Δx)2
+O

(
(Δx)2

)
,

∂2u

∂y2
(xi, yj) =

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

(Δy)2
+O

(
(Δy)2

)
.

(5.68)
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Substituting these finite difference formulae into the Poisson equation produces the linear
system

−
ui+1,j − 2ui,j + ui−1,j

(Δx)2
−

ui,j+1 − 2ui,j + ui,j−1

(Δy)2
= fi,j,

i = 1, . . . ,m− 1,

j = 1, . . . , n− 1,
(5.69)

in which ui,j denotes our numerical approximation to the solution values u(xi, yj) at the
nodes, while fi,j = f(xi, yj). If we set

ρ =
Δx

Δy
, (5.70)

then (5.69) can be rewritten in the form

2(1 + ρ2)ui,j − (ui−1,j + ui+1,j)− ρ2(ui,j−1 + ui,j+1) = (Δx)2fi,j,

i = 1, . . . ,m− 1, j = 1, . . . , n− 1.
(5.71)

Since both finite difference approximations (5.68) are of second order, one should choose
Δx and Δy to be of comparable size, thus keeping ρ around 1.

The linear system (5.71) forms the finite difference approximation to the Poisson
equation at the interior nodes. It is supplemented by the discretized Dirichlet boundary
conditions

ui,0 = gi,0, ui,n = gi,n, i = 0, . . . ,m,

u0,j = g0,j, um,j = gm,j, j = 0, . . . , n.
(5.72)

These boundary values can be substituted directly into the system, making (5.71) a system
of (m−1)(n−1) linear equations involving the (m−1)(n−1) unknowns ui,j for 1 ≤ i ≤ m−1,
1 ≤ j ≤ n − 1. We impose some convenient ordering for these entries, e.g., from left to
right and then bottom to top, forming the column vector of unknowns

w = (w1, w2, . . . , w(m−1)(n−1))
T

= (u1,1, u2,1, . . . , um−1,1, u1,2, u2,2, . . . , um−1,2, u1,3, . . . , um−1,n−1)
T .

(5.73)

The combined linear system (5.71–72) can then be rewritten in matrix form

Aw = f̂ , (5.74)

where the right-hand side is obtained by combining the column vector f = ( . . . fi,j . . . )T

with the boundary data provided by (5.72) according to where they appear in the system.
The implementation will become clearer once we work through a small-scale example.

Example 5.7. To better understand how the process works, let us look at the case
in which Ω = {0 < x < 1, 0 < y < 1} is the unit square. In order to write everything in
full detail, we start with a very coarse mesh with Δx = Δy = 1

4 ; see Figure 5.12. Thus
m = n = 4, resulting in a total of nine interior nodes. In this case, ρ = 1, and hence the
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Figure 5.12. Square mesh with Δx = Δy = 1
4 .

finite difference system (5.71) consists of the following nine equations:

−u1,0 − u0,1 + 4u1,1 − u2,1 − u1,2 = 1
16 f1,1,

−u2,0 − u1,1 + 4u2,1 − u3,1 − u2,2 = 1
16 f2,1,

−u3,0 − u2,1 + 4u3,1 − u4,1 − u3,2 = 1
16 f3,1,

−u1,1 − u0,2 + 4u1,2 − u2,2 − u1,3 = 1
16 f1,2,

−u2,1 − u1,2 + 4u2,2 − u3,2 − u2,3 = 1
16 f2,2,

−u3,1 − u2,2 + 4u3,2 − u4,2 − u3,3 = 1
16

f3,2,

−u1,2 − u0,3 + 4u1,3 − u2,3 − u1,4 = 1
16 f1,3,

−u2,2 − u1,3 + 4u2,3 − u3,3 − u2,4 = 1
16 f2,3,

−u3,2 − u2,3 + 4u3,3 − u4,3 − u3,4 = 1
16 f3,3.

(5.75)

(Note that the values at the four corner nodes, u0,0, u4,0, u0,4, u4,4, do not appear.) The

boundary data imposes the additional conditions (5.72), namely

u0,1 = g0,1, u0,2 = g0,2, u0,3 = g0,3, u1,0 = g1,0, u2,0 = g2,0, u3,0 = g3,0,

u4,1 = g4,1, u4,2 = g4,2, u4,3 = g4,3, u1,4 = g1,4, u2,4 = g2,4, u3,4 = g3,4.

The system (5.75) can be written in matrix form Aw = f̂ , where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.76)
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and

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

w7

w8

w9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
16 f1,1 + g1,0 + g0,1

1
16 f2,1 + g2,0

1
16 f3,1 + g3,0 + g4,1

1
16 f1,2 + g0,2

1
16 f2,2

1
16 f3,2 + g4,2

1
16 f1,3 + g0,3 + g1,4

1
16 f2,3 + g2,4

1
16 f3,3 + g4,3 + g3,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the known boundary values, namely ui,j = gi,j when i or j equals 0 or 4, have

been incorporated into the right-hand side f̂ of the finite difference linear system (5.74).
The resulting linear system is easily solved by Gaussian Elimination, [89]. Finer meshes
lead to correspondingly larger linear systems, all endowed with a common overall structure,
as discussed below.

For example, the function

u(x, y) = y sin(πx)

solves the particular boundary value problem

−Δu = π2y sin(πx), u(x, 0) = u(0, y) = u(1, y) = 0, u(x, 1) = sin(πx), 0 < x, y < 1.

Setting up and solving the linear system (5.75) produces the finite difference solution values

u1,1 = .1831, u2,1 = .2589, u3,1 = .1831,

u1,2 = .3643, u2,2 = .5152, u3,2 = .3643,

u1,3 = .5409, u2,3 = .7649, u3,3 = .5409,

leading to the numerical approximation plotted in the first graph† of Figure 5.13. The
maximal error between the numerical and exact solution values is .01520, which occurs at
the center of the square. In the second and third graphs, the mesh spacing is successively
reduced by half, so there are, respectively, m = n = 8 and 16 nodes in each coordinate
direction. The corresponding maximal numerical errors at the nodes are .004123 and
.001035. Observe that halving the step size reduces the error by a factor of 1

4 , which is
consistent with the numerical scheme being of second order.

Remark : The preceding test is a particular instance of the method of manufactured

solutions , in which one starts with a preselected function that almost certainly is not
a solution to the exact problem at hand. Nevertheless, substituting this function into
the differential equation and the relevant initial and/or boundary conditions leads to an
inhomogeneous problem of the same character as the original. After running the numerical
scheme on the modified problem, one can test for accuracy by comparing the numerical
output with the preselected function.

†
We are using flat triangles to interpolate the nodal data. Smoother interpolation schemes,

e.g., splines, [102], will produce a more realistic reproduction of the analytic solution graph.



5.5 Finite Difference Algorithms for the Laplace and Poisson Equations 211

Δx = Δy = .25 Δx = Δy = .125 Δx = Δy = .0625

Figure 5.13. Finite difference solutions to a Poisson boundary value problem.

Solution Strategies

The linear algebraic system resulting from a finite difference discretization can be rather
large, and it behooves us to devise efficient solution strategies. The general finite difference
coefficient matrix A has a very structured form, which can already be inferred from the
very simple case (5.76). When the underlying domain is a rectangle, it assumes a block

tridiagonal form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bρ −ρ2 I

−ρ2 I Bρ −ρ2 I

−ρ2 I Bρ −ρ2 I

. . .
. . .

. . .

−ρ2 I Bρ − ρ2 I

−ρ2 I Bρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.77)

where I is the (m− 1)× (m− 1) identity matrix, while

Bρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(1 + ρ2) −1
−1 2(1 + ρ2) −1

−1 2(1 + ρ2) −1
−1 2(1 + ρ2) −1

. . .
. . .

. . .

−1 2(1 + ρ2) −1
−1 2(1 + ρ2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.78)

is itself an (m− 1)× (m− 1) tridiagonal matrix. (Here and below, all entries not explicitly
indicated are zero.) There are n− 1 blocks in both the row and column directions.

When the finite difference linear system is of moderate size, it can be efficiently solved
by Gaussian Elimination, which effectively factorizes A = LU into a product of lower
and upper triangular matrices. (This follows since A is symmetric and nonsingular, as
guaranteed by Theorem 5.8 below.) In the present case, the factors are block bidiagonal
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matrices:

L =

⎛⎜⎜⎜⎜⎜⎜⎝

I
L1 I

L2 I
. . .

. . .

Ln−3 I
Ln−2 I

⎞⎟⎟⎟⎟⎟⎟⎠,

U =

⎛⎜⎜⎜⎜⎜⎜⎝

U1 −ρ2 I
U2 −ρ2 I

U3 −ρ2 I
. . .

. . .

Un−2 −ρ2 I
Un−1

⎞⎟⎟⎟⎟⎟⎟⎠,

(5.79)

where the individual blocks are again of size (m−1)× (m−1). Indeed, multiplying out the
matrix product LU and equating the result to (5.77) leads to the iterative matrix system

U1 = Bρ, Lj = −ρ2U−1
j , Uj+1 = Bρ + ρ2Lj , j = 1, . . . , n− 2, (5.80)

which produces the individual blocks.

With the LU factors in place, we can apply Forward and Back Substitution to solve
the block tridiagonal linear system Aw = f̂ by solving the block lower and upper triangular
systems

L z = f̂ , U w = z. (5.81)

In view of the forms (5.79) of L and U , if we write

w =

⎛⎜⎜⎝
w(1)

w(2)

...
w(n−1)

⎞⎟⎟⎠, z =

⎛⎜⎜⎝
z(1)

z(2)

...
z(n−1)

⎞⎟⎟⎠, f̂ =

⎛⎜⎜⎝
f̂ (1)

f̂ (2)

...
f̂ (n−1)

⎞⎟⎟⎠,

so that each w(j), z(j), f̂ (j), is a vector with m− 1 entries, then we must successively solve

z(1) = f̂ (1), z(j+1) = f̂ (j+1) − Ljz
(j), j = 1, 2, . . . , n− 2,

Un−1w
(n−1) = z(n−1), Ukw

(k) = z(k) − ρ2w(k+1), k = n− 2, n− 3, . . . , 1,
(5.82)

in the prescribed order. In view of the identification of Lk with −ρ2 times the inverse of
Uk, the last set of equations in (5.82) is perhaps better written as

w(k) = Lk

(
w(k+1) − ρ−2 z(k)

)
, k = n− 2, n− 3, . . . , 1. (5.83)

As the number of nodes becomes large, the preceding elimination/factorization ap-
proach to solving the linear system becomes increasingly inefficient, and one often switches
to an iterative solution method such as Gauss–Seidel, Jacobi, or, even better, Successive
Over–Relaxation (SOR); indeed, SOR was originally designed to speed up the solution
of the large-scale linear systems arising from the numerical solution of elliptic partial
differential equations. Detailed discussions of iterative matrix methods can be found in
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[89; Chapter 10] and [118]. For the SOR method, a good choice for the relaxation param-
eter is

ω =
4

2 +
√
4− cos2(π/m)− cos2(π/n)

. (5.84)

Iterative solution methods are even more attractive in dealing with irregular domains,
whose finite difference coefficient matrix, while still sparse, is less structured than in the
rectangular case, and hence less amenable to fast Gaussian Elimination algorithms.

Finally, let us address the question of unique solvability of the finite difference linear
system obtained by discretization of the Poisson equation on a bounded domain subject to
Dirichlet boundary conditions. As in the Uniqueness Theorem 4.10 for the original bound-
ary value, this will follow from an easily established Maximum Principle for the discrete
system that directly mimics the Laplace equation maximum principle of Theorem 4.9.

Theorem 5.8. Let Ω be a bounded domain. Then the finite difference linear system
(5.74) has a unique solution.

Proof : The result will follow if we can prove that the only solution to the corresponding
homogeneous linear system Aw = 0 is the trivial solution w = 0. The homogeneous
system corresponds to discretizing the Laplace equation subject to zero Dirichlet boundary
conditions.

Now, in view of (5.71), each equation in the homogeneous linear system can be written
in the form

ui,j =
ui−1,j + ui+1,j + ρ2ui,j−1 + ρ2ui,j+1

2(1 + ρ2)
. (5.85)

If ρ = 1, then (5.85) says that the value of ui,j at the node (xi, yj) is equal to the average
of the values at the four neighboring nodes. For general ρ, it says that ui,j is a weighted
average of the four neighboring values. In either case, the value of ui,j must lie strictly
between the maximum and minimum values of ui−1,j, ui+1,j, ui,j−1 and ui,j+1 — unless
all these values are the same, in which case ui,j also has the same value. This observation
suffices to establish a Maximum Principle for the finite difference system for the Laplace
equation — namely, that its solution cannot achieve a local maximum or minimum at an
interior node.

Now suppose that the homogeneous finite difference system Aw = 0 for the domain
has a nontrivial solution w 	= 0. Let ui,j = wk be the maximal entry of this purported
solution. The Maximum Principle requires that all four of its neighboring values must have
the same maximal value. But then the same argument applies to the neighbors of those
entries, to their neighbors, and so on. Eventually one of the neighbors is at a boundary
node, but, since we are dealing with the homogeneous Dirichlet boundary value problem,
its value is zero. This immediately implies that all the entries of w must be zero, which is
a contradiction. Q.E.D.

Rigorously establishing convergence of the finite difference solution to the analytic
solution to the boundary value problem as the step size goes to zero will not be discussed
here, and we refer the reader to [6, 80] for precise results and proofs.
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Exercises

♠ 5.5.1. Solve the Dirichlet problem Δu = 0, u(x, 0) = sin3 x, u(x, π) = 0, u(0, y) = 0,
u(π, y) = 0, numerically using a finite difference scheme. Compare your approximation with
the solution you obtained in Exercise 4.3.10(a).

♠ 5.5.2. Solve the Dirichlet problem Δu = 0, u(x, 0) = x, u(x, 1) = 1 − x, u(0, y) = y, u(1, y) =
1− y, numerically via finite differences. Compare your approximation with the solution you
obtained in Exercise 4.3.12(d).

♠ 5.5.3. Consider the Dirichlet boundary value problem Δu = 0 u(x, 0) = sinx, u(x, π) = 0,
u(0, y) = 0, u(π, y) = 0, on the square {0 < x, y < π}. (a) Find the exact solution. (b) Set
up and solve the finite difference equations based on a square mesh with m = n = 2 squares
on each side of the full square. How close is this value to the exact solution at the center of
the square: u

(
1
2 π,

1
2 π

)
? (c) Repeat part (b) for m = n = 4 squares per side. Is the value

of your approximation at the center of the unit square closer to the true solution? (d) Use

a computer to find a finite difference approximation to u
(
1
2 π,

1
2 π

)
using m = n = 8 and

16 squares per side. Is your approximation converging to the exact solution as the mesh
becomes finer and finer? Is the convergence rate consistent with the order of the finite dif-
ference approximation?

♠ 5.5.4.(a) Use finite differences to approximate a solution to the Helmholtz boundary value
problem Δu = u, u(x, 0) = u(x, 1) = u(0, y) = 0, u(1, y) = 1, on the unit square
0 < x, y < 1. (b) Use separation of variables to construct a series solution. Do your ana-
lytic and numerical solutions match? Explain any discrepancies.

♠ 5.5.5. A drum is in the shape of an L, as in the accompanying figure, whose
short sides all have length 1. (a) Use a finite difference scheme with mesh
spacing Δx = Δy = .1 to find and graph the equilibrium configuration
when the drum is subject to a unit upwards force while all its sides are
fixed to the (x, y)–plane. What is the maximal deflection, and at which
point(s) does it occur? (b) Check the accuracy of your answer in part (a)
by reducing the step size by half: Δx = Δy = .05.

♣ 5.5.6. A metal plate has the shape of a 3 cm square with a 1 cm square hole cut out of the
middle. The plate is heated by making the inner edge have temperature 100◦ while keep-
ing the outer edge at 0◦. (a) Find the (approximate) equilibrium temperature using finite
differences with a mesh width of Δx = Δy = .5 cm. Plot your approximate solution us-
ing a three-dimensional graphics program. (b) Let C denote the square contour lying mid-
way between the inner and outer square boundaries of the plate. Using your finite differ-
ence approximation, determine at what point(s) on C the temperature is (i) minimized;
(ii) maximimized; (iii) equal to the average of the two boundary temperatures.
(c) Repeat part (a) using a smaller mesh width of Δx = Δy = .2. How much does this
affect your answers in part (b)?

♣ 5.5.7. Answer Exercise 5.5.6 when the plate is additionally subjected to a constant heat source

f(x, y) = 600x + 800y − 2400.

♠ 5.5.8.(a) Explain how to adapt the finite difference method to a mixed boundary value
problem on a rectangle with inhomogeneous Neumann conditions. Hint : Use a one-sided
difference formula of the appropriate order to approximate the normal derivative at the
boundary. (b) Apply your method to the problem

Δu = 0, u(x, 0) = 0, u(x, 1) = 0,
∂u

∂x
(0, y) = y(1− y), u(1, y) = 0,

using mesh sizes Δx = Δy = .1, .01, and .001. Compare your answers. (c) Solve the
boundary value problem via separation of variables, and compare the value of the solution
and the numerical approximations at the center of the square.
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