
Chapter 2

Linear and Nonlinear Waves

Our initial foray into the vast mathematical continent that comprises partial differential
equations will begin with some basic first-order equations. In applications, first-order
partial differential equations are most commonly used to describe dynamical processes,
and so time, t, is one of the independent variables. Our discussion will focus on dynamical
models in a single space dimension, bearing in mind that most of the methods we introduce
can be extended to higher-dimensional situations. First-order partial differential equations
and systems model a wide variety of wave phenomena, including transport of pollutants in
fluids, flood waves, acoustics, gas dynamics, glacier motion, chromatography, traffic flow,
and various biological and ecological systems.

A basic solution technique relies on an inspired change of variables, which comes
from rewriting the equation in a moving coordinate frame. This naturally leads to the
fundamental concept of characteristic curve, along which signals and physical disturbances
propagate. The resulting method of characteristics is able to solve a first-order linear
partial differential equation by reducing it to one or more first-order nonlinear ordinary
differential equations.

Proceeding to the nonlinear regime, the most important new phenomenon is the pos-
sible breakdown of solutions in finite time, resulting in the formation of discontinuous
shock waves. A familiar example is the supersonic boom produced by an airplane that
breaks the sound barrier. Signals continue to propagate along characteristic curves, but
now the curves may cross each other, precipitating the onset of a shock discontinuity. The
ensuing shock dynamics is not uniquely specified by the partial differential equation, but
relies on additional physical properties, to be specified by an appropriate conservation law
along with a causality condition. A full-fledged analysis of shock dynamics becomes quite
challenging, and only the basics will be developed here.

Having attained a basic understanding of first-order wave dynamics, we then focus
our attention on the first of three paradigmatic second-order partial differential equations,
known as the wave equation, which is used to model waves and vibrations in an elastic
bar, a violin string, or a column of air in a wind instrument. Its multi-dimensional versions
serve to model vibrations of membranes, solid bodies, water waves, electromagnetic waves,
including light, radio waves, microwaves, acoustic waves, and many other physical phenom-
ena. The one-dimensional wave equation is one of a small handful of physically relevant
partial differential equations that has an explicit solution formula, originally discovered by
the eighteenth-century French mathematician (and encyclopedist) Jean d’Alembert. His
solution is the result of being able to “factorize” the second-order wave equation into a
pair of first-order partial differential equations, of a type solved in the first part of this
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Figure 2.1. Stationary wave.
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chapter. We investigate the consequences of d’Alembert’s solution formula for the initial
value problem on the entire real line; solutions on bounded intervals will be deferred until
Chapter 4. Unfortunately, d’Alembert’s method is of rather limited scope, and does not
extend beyond the one-dimensional case, nor to equations modeling vibrations of nonuni-
form media. The analysis of the wave equation in more than one space dimension can be
found in Chapters 11 and 12.

2.1 Stationary Waves

When entering a new mathematical subject — in our case, partial differential equations —
one should first analyze and fully understand the very simplest examples. Indeed, mathe-
matics is, at its core, a bootstrapping enterprise, in which one builds on one’s knowledge
of and experience with elementary topics — in the present case, ordinary differential equa-
tions — to make progress, first with the simpler types of partial differential equations, and
then, by developing and applying each newly gained insight and technique, to more and
more complicated situations.

The simplest partial differential equation, for a function u(t, x) of two variables, is

∂u

∂t
= 0. (2.1)

It is a first-order, homogeneous, linear equation. If (2.1) were an ordinary differential
equation† for a function u(t) of t alone, the solution would be obvious: u(t) = c must be
constant. A proof of this basic fact proceeds by integrating both sides with respect to t
and then appealing to the Fundamental Theorem of Calculus. To solve (2.1) as a partial
differential equation for u(t, x), let us similarly integrate both sides of the equation from,
say, 0 to t, producing

0 =

∫ t

0

∂u

∂t
(s, x) ds = u(t, x)− u(0, x).

Therefore, the solution takes the form

u(t, x) = f(x), where f(x) = u(0, x), (2.2)

and hence is a function of the space variable x alone. The only requirement is that f(x)
be continuously differentiable, so f ∈ C1, in order that u(t, x) be a bona fide classical

† Of course, in this situation, we would write the equation as du/dt = 0.
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solution of the first-order partial differential equation (2.1). The solution (2.2) represents
a stationary wave, meaning that it does not change in time. The initial profile stays frozen
in place, and the system remains in equilibrium. Figure 2.1 plots a representative solution
as a function of x at three successive times.

The preceding analysis seems very straightforward and perhaps even a little boring.
But, to be completely rigorous, we need to take a bit more care. In our derivation, we
implicitly assumed that the solution u(t, x) was defined everywhere on R2. And, in fact,
the solution formula (2.2) is not completely valid as stated if the solution u(t, x) is defined
only on a subdomain D ⊂ R2.

Indeed, a solution u(t) to the corresponding ordinary differential equation du/dt = 0 is
constant, provided it is defined on a connected subinterval I ⊂ R. A solution that is defined
on a disconnected subset D ⊂ R need only be constant on each connected subinterval
I ⊂ D. For instance, the nonconstant function

u(t) =

{
1, t > 0,

−1, t < 0,
satisfies

du

dt
= 0

everywhere on its domain of definition, that is, D = { t 	= 0}, but is constant only on the
connected positive and negative half-lines.

Similar counterexamples can be constructed in the case of the partial differential equa-
tion (2.1). If the domain of definition is disconnected, then we do not expect u(t, x) to
depend only on x if we move from one connected component of D to another. Even that
is not the full story. For example, the function

u(t, x) =

⎧⎨⎩
0, x > 0,

x2, x ≤ 0, t > 0,

−x2, x ≤ 0, t < 0,

(2.3)

is continuously differentiable† on its domain of definition, namely D = R2\{ (0, x) |x ≤ 0 },
satisfies ∂u/∂t = 0 everywhere in D, but, nevertheless, is not a function of x alone, because,
for example, u(1, x) = x2 	= u(−1, x) = −x2.

† You are asked to rigorously prove differentiability in Exercise 2.1.10.
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A completely correct formulation can be stated as follows: If u(t, x) is a classical
solution to (2.1), defined on a domain D ⊂ R2 whose intersection with any horizontal‡ line,
namely Da = D ∩ { (t, a) | t ∈ R }, for each fixed a ∈ R, is either empty or a connected
interval, then u(t, x) = f(x) is a function of x alone. An example of such a domain is
sketched in Figure 2.2. In Exercise 2.1.9, you are asked to justify these statements.

We are thus slightly chastened in our dismissal of (2.1) as a complete triviality. The
lesson is that, in future, one must always be careful when interpreting such “general”
solution formulas — since they often rely on unstated assumptions on their underlying
domain of definition.

Exercises

2.1.1. Solve the partial differential equation
∂u

∂t
= x for u(t, x).

2.1.2. Solve the partial differential equation
∂2u

∂t2
= 0 for u(t, x).

2.1.3. Find the general solution u(t, x) to the following partial differential equations:
(a) ux = 0, (b) ut = 1, (c) ut = x−t, (d) ut+3u = 0, (e) ux+t u = 0, (f ) utt+4u = 1.

2.1.4. Suppose u(t, x) is defined for all (t, x) ∈ R2 and solves ∂u/∂t + 2u = 0. Prove that
lim

t→∞
u(t, x) = 0 for all x.

2.1.5. Write down the general solution to the partial differential equation ∂u/∂t = 0 for a func-
tion of three variables u(t, x, y). What assumptions should be made on the domain of defi-
nition for your solution formula to be valid?

2.1.6. Solve the partial differential equation
∂2u

∂x ∂y
= 0 for u(x, y).

2.1.7. Answer Exercise 2.1.6 when u(x, y, z) depends on the three independent variables x, y, z.

♥ 2.1.8. Let u(t, x) solve the initial value problem
∂u

∂t
+ u2 = 0, u(0, x) = f(x), where f(x) is a

bounded C1 function of x ∈ R. (a) Show that if f(x) ≥ 0 for all x, then u(t, x) is defined
for all t > 0, and lim

t→∞
u(t, x) = 0. (b) On the other hand, if f(x) < 0, then the solution

u(t, x) is not defined for all t > 0, but in fact, lim
t→ τ−

u(t, x) = −∞ for some 0 < τ < ∞.

Given x, what is the corresponding value of τ? (c) Given f(x) as in part (b), what is the
longest time interval 0 < t < t� on which u(t, x) is defined for all x ∈ R?

♦ 2.1.9. Justify the claim in the text that if u(t, x) is a solution of ∂u/∂t = 0 that is defined on

a domain D ⊂ R2 with the property that Da = D ∩ { (t, a) | t ∈ R } is either empty or a
connected interval, then u(t, x) = v(x) depends only on x ∈ D.

♦ 2.1.10. Prove that the function in (2.3) is continuously differentiable at all points (t, x) in its
domain of definition.

‡ Important : We will adopt the (slightly unusual) convention of displaying the (t, x)–plane
with time t along the horizontal axis and space x along the vertical axis — which also conforms
with our convention of writing t before x in expressions like u(t, x). Later developments will amply
vindicate our adoption of this convention.
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2.2 Transport and Traveling Waves

In many respects, the stationary-wave equation (2.1) does not quite qualify as a partial
differential equation. Indeed, the spatial variable x enters only parametrically in the so-
lution to what is, in essence (ignoring technical difficulties with domains), a very simple
ordinary differential equation.

Let us then turn to a more “genuine” example. Consider the linear, homogeneous
first-order partial differential equation

∂u

∂t
+ c

∂u

∂x
= 0, (2.4)

for a function u(t, x), in which c is a fixed, nonzero constant, known as the wave speed for
reasons that will soon become apparent. We will refer to (2.4) as the transport equation,
because it models the transport of a substance, e.g., a pollutant, in a uniform fluid flow that
is moving with velocity c. In this model, the solution u(t, x) represents the concentration of
the pollutant at time t and spatial position x. Other common names for (2.4) are the first-
order or unidirectional wave equation. But for brevity, as well as to avoid any confusion
with the second-order, bidirectional wave equation discussed extensively later on, we will
stick with the designation “transport equation” here. Solving the transport equation is
slightly more challenging, but, as we will see, not difficult.

Since the transport equation involves time, its solutions are distinguished by their
initial values. As a first-order equation, we need only specify the value of the solution at
an initial time t0, leading to the initial value problem

u(t0, x) = f(x) for all x ∈ R. (2.5)

As we will show, as long as f ∈ C1, i.e., is continuously differentiable, the initial conditions
serve to specify a unique classical solution. Also, by replacing the time variable t by t− t0,
we can, without loss of generality, set t0 = 0.

Uniform Transport

Let us begin by assuming that the wave speed c is constant. In general, when one is
confronted with a new equation, one solution strategy is to try to convert it into an equation
that you already know how to solve. In this case, we will introduce a simple change of
variables that effectively rewrites the equation in a moving coordinate system, inspired by
the interpretation of c as the overall transport speed.

If x represents the position of an object in a fixed coordinate frame, then

ξ = x− ct (2.6)

represents the object’s position relative to an observer who is uniformly moving with ve-
locity c. Think of a passenger in a moving train to whom stationary objects appear to
be moving backwards at the train’s speed c. To formulate a physical process in the refer-
ence frame of the passenger, we replace the stationary space-time coordinates (t, x) by the
moving coordinates (t, ξ).

Remark : These are the same changes of reference frame that underlie Einstein’s spe-
cial theory of relativity. However, unlike Einstein, we are working in a purely classical,
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Figure 2.3. Traveling wave with c > 0.
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nonrelativistic universe here. Such changes to moving coordinates are, in fact, of a much
older vintage, and named Galilean boosts in honor of Galileo Galilei, who was the first to
champion such “relativistic” moving coordinate systems.

Let us see what happens when we re-express the transport equation in terms of the
moving coordinate frame. We rewrite

u(t, x) = v(t, x− ct) = v(t, ξ) (2.7)

in terms of the characteristic variable ξ = x − ct, along with the time t. To write out
the differential equation satisfied by v(t, ξ), we apply the chain rule from multivariable
calculus, [8, 108], to express the derivatives of u in terms of those of v:

∂u

∂t
=

∂v

∂t
− c

∂v

∂ξ
,

∂u

∂x
=

∂v

∂ξ
.

Therefore,
∂u

∂t
+ c

∂u

∂x
=

∂v

∂t
− c

∂v

∂ξ
+ c

∂v

∂ξ
=

∂v

∂t
. (2.8)

We deduce that u(t, x) solves the transport equation (2.4) if and only if v(t, ξ) solves the
stationary-wave equation

∂v

∂t
= 0. (2.9)

Thus, the effect of using a moving coordinate system is to convert a wave moving with
velocity c into a stationary wave. Think again of the passenger in the train — a second
train moving at the same speed appears as if it were stationary.

According to our earlier discussion, the solution v = v(ξ) to the stationary-wave
equation (2.9) is a function of the characteristic variable alone. (For simplicity, we assume
that v(t, ξ) has an appropriate domain of definition, e.g., it is defined everywhere on R2.)
Recalling (2.7), we conclude that the solution

u = v(ξ) = v(x− ct)

to the transport equation must be a function of the characteristic variable only. We have
therefore proved the following result:

Proposition 2.1. If u(t, x) is a solution to the partial differential equation

ut + cux = 0, (2.10)

which is defined on all of R2, then

u(t, x) = v(x− ct), (2.11)

where v(ξ) is a C1 function of the characteristic variable ξ = x− ct.
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In other words, any (reasonable) function of the characteristic variable, e.g., ξ2 + 1,
or cos ξ, or eξ, will produce a corresponding solution, (x − ct)2 + 1, or cos(x − ct), or
ex−ct, to the transport equation with constant wave speed c. And, in accordance with
the counting principle formulated on page 6, the general solution to this first-order partial
differential equation in two independent variables depends on one arbitrary function of a
single variable.

To a stationary observer, the solution (2.11) appears as a traveling wave of unchanging
form moving at constant velocity c. When c > 0, the wave translates to the right, as illus-
trated in Figure 2.3. When c < 0, the wave translates to the left, while c = 0 corresponds
to a stationary wave form that remains fixed at its original location, as in Figure 2.1.

At t = 0, the wave has the initial profile

u(0, x) = v(x), (2.12)

and so (2.11) provides the (unique) solution to the initial value problem (2.4, 12). For
example, the solution to the particular initial value problem

ut + 2ux = 0, u(0, x) =
1

1 + x2
, is u(t, x) =

1

1 + (x− 2 t)2
.

Since it depends only on the characteristic variable ξ = x− ct, every solution to the
transport equation is constant on the characteristic lines of slope† c, namely

x = ct+ k, (2.13)

where k is an arbitrary constant. At any given time t, the value of the solution at posi-
tion x depends only on its original value on the characteristic line passing through (t, x).

†
This makes use of our convention that the t–axis is horizontal and the x–axis is vertical.

Reversing the axes will replace the slope by its reciprocal.
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This is indicative of a general fact concerning such wave models: Signals propagate along
characteristics . Indeed, a disturbance at an initial point (0, y) only affects the value of the
solution at points (t, x) that lie on the characteristic line x = ct+ y emanating therefrom,
as illustrated in Figure 2.4.

Transport with Decay

Let a > 0 be a positive constant, and c an arbitrary constant. The homogeneous linear
first-order partial differential equation

∂u

∂t
+ c

∂u

∂x
+ au = 0 (2.14)

models the transport of, say, a radioactively decaying solute in a uniform fluid flow with
wave speed c. The coefficient a governs the rate of decay. We can solve this variant of the
transport equation by the self-same change of variables to a uniformly moving coordinate
system.

Rewriting u(t, x) in terms of the characteristic variable, as in (2.7), and then recalling
our chain rule calculation (2.8), we find that v(t, ξ) = u(t, ξ + ct) satisfies the partial
differential equation

∂v

∂t
+ av = 0.

The result is, effectively, a homogeneous linear first-order ordinary differential equation,
in which the characteristic variable ξ enters only parametrically. The standard solution
technique learned in elementary ordinary differential equations, [20, 23], tells us to multiply
the equation by the exponential integrating factor eat, leading to

eat

(
∂v

∂t
+ av

)
=

∂

∂t
(eatv) = 0.

We conclude that w = eatv solves the stationary-wave equation (2.1). Thus,

w = eatv = f(ξ), and hence v(t, ξ) = f(ξ) e−at,

where f(ξ) is an arbitrary function of the characteristic variable. Reverting to physical
coordinates, we produce the solution formula

u(t, x) = f(x− ct) e−at, (2.15)

which solves the initial value problem u(0, x) = f(x). It represents a wave that is moving
along with fixed velocity c while simultaneously decaying at an exponential rate as pre-
scribed by the coefficient a > 0. A typical solution, for c > 0, is plotted at three successive
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times in Figure 2.5. While the solution (2.15) is no longer constant on the characteris-
tics, signals continue to propagate along them, since a solution’s initial value at a point
(0, y) will only affect its subsequent (decaying) values on the associated characteristic line
x = ct+ y.

Exercises

2.2.1. Find the solution to the initial value problem ut + ux = 0, u(1, x) = x/(1 + x2).

2.2.2. Solve the following initial value problems and graph the solutions at times t = 1, 2, and 3:

(a) ut − 3ux = 0, u(0, x) = e−x2

; (b) ut + 2ux = 0, u(−1, x) = x/(1 + x2);

(c) ut + ux + 1
2 u = 0, u(0, x) = tan−1 x; (d) ut − 4ux + u = 0, u(0, x) = 1/(1 + x2).

2.2.3. Graph some of the characteristic lines for the following equations, and write down a
formula for the general solution:

(a) ut − 3ux = 0, (b) ut + 5ux = 0, (c) ut + ux + 3u = 0, (d) ut − 4ux + u = 0.

2.2.4. Solve the initial value problem ut + 2ux = 1, u(0, x) = e−x2

.

Hint : Use characteristic coordinates.

2.2.5. Answer Exercise 2.2.4 for the initial value problem ut + 2ux = sin x, u(0, x) = sin x.

♦ 2.2.6. Let c be constant. Suppose that u(t, x) solves the initial value problem ut + cux = 0,
u(0, x) = f(x). Prove that v(t, x) = u(t− t0, x) solves the initial value problem vt + cvx = 0,
v(t0, x) = f(x).

2.2.7. Is Exercise 2.2.6 valid when the transport equation is replaced by the damped transport
equation (2.14)?

2.2.8. Let c �= 0. Prove that if the initial data satisfies u(0, x) = v(x) → 0 as x → ±∞, then,
for each fixed x, the solution to the transport equation (2.4) satisfies u(t, x) → 0 as t → ∞.

2.2.9.(a) Prove that if the initial data is bounded, | f(x) | ≤ M for all x ∈ R, then the solu-
tion to the damped transport equation (2.14) with a > 0 satisfies u(t, x) → 0 as t → ∞.
(b) Find a solution to (2.14) that is defined for all (t, x) but does not satisfy u(t, x) → 0
as t → ∞.

2.2.10. Let F (t, x) be a C1 function of (t, x) ∈ R2. (a) Write down a formula for the general
solution u(t, x) to the inhomogeneous partial differential equation ut = F (t, x).
(b) Solve the inhomogeneous transport equation ut + c ux = F (t, x).

♥ 2.2.11.(a) Write down a formula for the general solution to the nonlinear partial differential

equation ut + ux + u2 = 0. (b) Show that if the initial data is positive and bounded,

0 ≤ u(0, x) = f(x) ≤ M , then the solution exists for all t > 0, and u(t, x) → 0 as t → ∞.
(c) On the other hand, if the initial data is negative somewhere, so f(x) < 0 at some x ∈ R,
then the solution blows up in finite time: lim

t→ τ−
u(t, y) = −∞ for some τ > 0 and some

y ∈ R. (d) Find a formula for the earliest blow-up time τ� > 0.

2.2.12. A sensor situated at position x = 1 monitors the concentration of a pollutant u(t, 1) as
a function of t for t ≥ 0. Assuming that the pollutant is transported with wave speed c = 3,
at what locations x can you determine the initial concentration u(0, x)?

2.2.13. Write down a solution to the transport equation ut + 2ux = 0 that is defined on a

connected domain D ⊂ R2 and that is not a function of the characteristic variable alone.
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2.2.14. Let c > 0. Consider the uniform transport equation ut + cux = 0 restricted to the
quarter-plane Q = {x > 0, t > 0} and subject to initial conditions u(0, x) = f(x) for x ≥ 0,
along with boundary conditions u(t, 0) = g(t) for t ≥ 0. (a) For which initial and bound-
ary conditions does a classical solution to this initial-boundary value problem exist? Write
down a formula for the solution. (b) On which regions are the effects of the initial condi-
tions felt? What about the boundary conditions? Is there any interaction between the two?

2.2.15. Answer Exercise 2.2.14 when c < 0.

Nonuniform Transport

Slightly more complicated, but still linear, is the nonuniform transport equation

∂u

∂t
+ c(x)

∂u

∂x
= 0, (2.16)

where the wave speed c(x) is now allowed to depend on the spatial position. Characteristics
continue to guide the behavior of solutions, but when the wave speed is not constant, we
can no longer expect them to be straight lines. To adapt the method of characteristics,
let us look at how the solution varies along a prescribed curve in the (t, x)–plane. Assume
that the curve is identified with the graph of a function x = x(t), and let

h(t) = u
(
t, x(t)

)
be the value of the solution on it. We compute the rate of change in the solution along
the curve by differentiating h with respect to t. Invoking the multivariable chain rule, we
obtain

dh

dt
=

d

dt
u
(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+

∂u

∂x

(
t, x(t)

) dx

dt
. (2.17)

In particular, if x(t) satisfies

dx

dt
= c

(
x(t)

)
, then

dh

dt
=

∂u

∂t

(
t, x(t)

)
+ c

(
x(t)

) ∂u

∂x

(
t, x(t)

)
= 0,

since we are assuming that u(t, x) solves the transport equation (2.16) for all values of
(t, x), including those points

(
t, x(t)

)
on the curve. Since its derivative is zero, h(t) must

be a constant, which motivates the following definition.

Definition 2.2. The graph of a solution x(t) to the autonomous ordinary differential
equation

dx

dt
= c(x) (2.18)

is called a characteristic curve for the transport equation with wave speed c(x).

In other words, at each point (t, x), the slope of the characteristic curve equals the
wave speed c(x) there. In particular, if c is constant, the characteristic curves are straight
lines of slope c, in accordance with our earlier construction.

Proposition 2.3. Solutions to the linear transport equation (2.16) are constant
along characteristic curves.
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Figure 2.6. Characteristic curve.

The characteristic curve equation (2.18) is an autonomous first-order ordinary differ-
ential equation. As such, it can be immediately solved by separating variables, [20, 23].
Assuming c(x) 	= 0, we divide both sides of the equation by c(x), and then integrate the
resulting equation:

dx

c(x)
= dt, whereby β(x) :=

∫
dx

c(x)
= t+ k, (2.19)

with k denoting the integration constant. For each fixed value of k, (2.19) serves to im-
plicitly define a characteristic curve, namely,

x(t) = β−1(t+ k),

with β−1 denoting the inverse function. On the other hand, if c(x�) = 0, then x� is a
fixed point for the ordinary differential equation (2.18), and the horizontal line x ≡ x� is a
stationary characteristic curve.

Since the solution u(t, x) is constant along the characteristic curves, it must therefore
be a function of the characteristic variable

ξ = β(x)− t (2.20)

alone, and hence of the form
u(t, x) = v

(
β(x)− t

)
, (2.21)

where v(ξ) is an arbitrary C1 function. Indeed, it is easy to check directly that, provided
β(x) is defined by (2.19), u(t, x) solves the partial differential equation (2.16) for any choice
of C1 function v(ξ). (But keep in mind that the algebraic solution formula (2.21) may fail
to be valid at points where the wave speed vanishes: c(x�) = 0.)

Warning : The definition of characteristic variable used here is slightly different from
that in the constant wave speed case, which, by (2.20), would be ξ = x/c− t = (x− ct)/c.
Clearly, rescaling the characteristic variable by 1/c is an inessential modification of our
original definition.
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To find the solution that satisfies the prescribed initial conditions

u(0, x) = f(x), (2.22)

we merely substitute the general solution formula (2.21). This leads to the implicit equation
v(β(x)) = f(x) for the function v(ξ) = f ◦β−1(ξ). The resulting solution formula

u(t, x) = f ◦β−1
(
β(x)− t

)
(2.23)

is not particularly enlightening, but it does have a simple graphical interpretation: To find
the value of the solution u(t, x), we look at the characteristic curve passing through the
point (t, x). If this curve intersects the x–axis at the point (0, y), as in Figure 2.6, then
u(t, x) = u(0, y) = f(y), since the solution must be constant along the curve. On the other
hand, if the characteristic curve through (t, x) doesn’t intersect the x–axis, the solution
value u(t, x) is not prescribed by the initial data.

Example 2.4. Let us solve the nonuniform transport equation

∂u

∂t
+

1

x2 + 1

∂u

∂x
= 0 (2.24)

by the method of characteristics. According to (2.18), the characteristic curves are the
graphs of solutions to the first-order ordinary differential equation

dx

dt
=

1

x2 + 1
.

Separating variables and integrating, we obtain

β(x) =

∫
(x2 + 1) dx = 1

3 x
3 + x = t+ k, (2.25)

where k is the integration constant. Representative curves are plotted in Figure 2.7. (In this
case, inverting the function β, i.e., solving (2.25) for x as a function of t, is not particularly
enlightening.)
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t = 0 t = 2 t = 5

t = 12 t = 25 t = 50

Figure 2.8. Solution to ut +
1

x2 + 1
ux = 0.

⊎

According to (2.20), the characteristic variable is ξ = 1
3 x

3 + x − t, and hence the
general solution to the equation takes the form

u = v
(

1
3 x

3 + x− t
)
, (2.26)

where v(ξ) is an arbitrary C1 function. A typical solution, corresponding to initial data

u(0, x) =
1

1 + (x+ 3)2
, (2.27)

is plotted† at the indicated times in Figure 2.8. Although the solution remains constant
along each individual curve, a stationary observer will witness a dynamically changing
profile as the wave moves through the nonuniform medium. In this example, since c(x) > 0
everywhere, the wave always moves from left to right; its speed as it passes through a point
x determined by the magnitude of c(x) = (x2 + 1)−1, with the consequence that each part
accelerates as it approaches the origin from the left, and then slows back down once it
passes by and c(x) decreases in magnitude. To a stationary observer, the wave spreads out
as it speeds through the origin, and then becomes progressively narrower and slower as it
gradually moves off to +∞.

Example 2.5. Consider the nonuniform transport equation

ut + (x2 − 1)ux = 0. (2.28)

† The required function v(ξ) in (2.26) is implicitly given by the equation v
(
1
3 x

3 + x
)
= u(0, x),

and so the explicit formula for u(t, x) is not very instructive or useful. Indeed, to make the plots,
we instead sampled the initial data (2.27) at a collection of uniformly spaced points y1 < y2 <
· · · < yn. Since the solution is constant along the characteristic curve (2.25) passing through each
sample point (0, yi), we can find nonuniformly spaced sample values for u(t, xi) at any later time.
The smooth solution curve u(t, x) is then approximated using spline interpolation, [89; §11.4], on
these sample values.
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Figure 2.9. Characteristic curves for ut + (x2 − 1)ux = 0.

In this case, the characteristic curves are the solutions to

dx

dt
= x2 − 1,

and so

β(x) =

∫
dx

x2 − 1
=

1

2
log

∣∣∣∣ x− 1

x+ 1

∣∣∣∣ = t+ k. (2.29)

One must also include the horizontal lines x = x± = ±1 corresponding to the roots of
c(x) = x2−1. The curves are graphed in Figure 2.9. Note that those curves starting below
x+ = 1 converge to x− = −1 as t → ∞, while those starting above x+ = 1 veer off to ∞
in finite time. Owing to the sign of c(x) = x2 − 1, points on the graph of u(0, x) lying over
|x | < 1 will move to the left, while those over |x | > 1 will move to the right.

In Figure 2.10, we graph several snapshots of the solution whose initial value is a
bell-shaped Gaussian profile

u(0, x) = e−x2

.

The initial conditions uniquely prescribe the value of the solution along the characteristic
curves that intersect the x–axis. On the other hand, if

x ≤ 1 + e2 t

1− e2 t
for t > 0,

the characteristic curve through (t, x) does not intersect the x–axis, and hence the value
of the solution at such points, lying in the shaded region in Figure 2.9, is not prescribed
by the initial data. Let us arbitrarily assign the solution to be u(t, x) = 0 at such points.
At other values of (t, x) with t ≥ 0, the solution (2.23) is

u(t, x) = exp

[
−
(

x+ 1 + (x− 1)e−2 t

x+ 1− (x− 1)e−2 t

)
2
]
. (2.30)
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t = 0 t = .2 t = 1

t = 2 t = 3 t = 5

Figure 2.10. Solution to ut + (x2 − 1)ux = 0.
⊎

(The derivation of this solution formula is left as Exercise 2.2.23.) As t increases, the
solution’s peak becomes more and more concentrated near x− = −1, while the section of
the wave above x > x+ = 1 rapidly spreads out to ∞. In the long term, the solution
converges (albeit nonuniformly) to a step function of height 1/e:

u(t, x) −→ s(x) =

{
1/e ≈ .367879, x ≥ −1,

0, x < −1,
as t −→ ∞.

Let us finish by making a few general observations concerning the characteristic curves
of transport equations whose wave speed c(x) depends only on the position x. Using the
basic existence and uniqueness theory for such autonomous ordinary differential equations,
[20, 23, 52], and assuming that c(x) is continuously differentiable:†

• There is a unique characteristic curve passing through each point (t, x) ∈ R2.

• Characteristic curves cannot cross each other.

• If t = β(x) is a characteristic curve, then so are all its horizontal translates:
t = β(x) + k for any k.

• Each non-horizontal characteristic curve is the graph of a strictly monotone function.
Thus, each point on a wave always moves in the same direction, and can never
reverse its direction of propagation.

• As t increases, the characteristic curve either tends to a fixed point, x(t) → x� as
t → ∞, with c(x�) = 0, or goes off to ±∞ in either finite or infinite time.

Proofs of these statements are assigned to the reader in Exercise 2.2.25.

† For those who know about such things, [18, 52], this assumption can be weakened to just
Lipschitz continuity.
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Exercises

2.2.16.(a) Find the general solution to the first-order equation ut +
3
2 ux = 0.

(b) Find a solution satisfying the initial condition u(1, x) = sinx. Is your solution unique?

2.2.17.(a) Solve the initial value problem ut − xux = 0, u(0, x) = (x2 + 1)
−1.

(b) Graph the solution at times t = 0, 1, 2, 3. (c) What is lim
t→∞

u(t, x)?

2.2.18. Suppose the initial data u(0, x) = f(x) of the nonuniform transport equation (2.28) is

continuous and satisfies f(x) → 0 as |x | → ∞. What is the limiting solution profile u(t, x)
as (a) t → ∞? (b) t → −∞?

♥ 2.2.19.(a) Find and graph the characteristic curves for the equation ut + (sin x)ux = 0.

Suppose you are given initial data (i) u(0, x) =
∣∣∣ cos 1

2 x
∣∣∣, (ii) u(0, x) = cos

1
2 πx.

(b) Write down a formula for the solution. (c) Graph your solution at times

t = 0, 1, 2, 3, 5, and 10. (d) What is the limiting solution profile as t → ∞?

2.2.20. Consider the linear transport equation ut + (1 + x2)ux = 0. (a) Find and sketch the

characteristic curves. (b) Write down a formula for the general solution. (c) Find the

solution to the initial value problem u(0, x) = f(x) and discuss its behavior as t increases.

2.2.21. Prove that, for t 	 0, the speed of the wave in Example 2.4 is asymptotically propor-

tional to t−2/3
.

2.2.22. Verify directly that formula (2.21) defines a solution to the differential equation (2.16).

♦ 2.2.23. Explain how to derive the solution formula (2.30). Justify that it defines a solution to

equation (2.28).

2.2.24. Let c(x) be a bounded C
1
function, so | c(x) | ≤ c� < ∞ for all x. Let f(x) be any C

1

function. Prove that the solution u(t, x) to the initial value problem ut + c(x)ux = 0,

u(0, x) = f(x), is uniquely defined for all (t, x) ∈ R
2
.

♥ 2.2.25. Suppose that c(x) ∈ C
1
is continuously differentiable for all x ∈ R. (a) Prove that the

characteristic curves of the transport equation (2.16) cannot cross each other. (b) A point

where c(x�) = 0 is known as a fixed point for the characteristic equation dx/dt = c(x).
Explain why the characteristic curve passing through a fixed point (t, x�) is a horizontal

straight line. (c) Prove that if x = g(t) is a characteristic curve, then so are all the horizon-

tally translated curves x = g(t + δ) for any δ. (d) True or false: Every characteristic curve

has the form x = g(t + δ), for some fixed function g(t). (e) Prove that each non-horizontal

characteristic curve is the graph x = g(t) of a strictly monotone function. (f ) Explain why

a wave cannot reverse its direction. (g) Show that a non-horizontal characteristic curve

starts, in the distant past, t → −∞, at either a fixed point or at −∞ and ends, as

t → +∞, at either the next-larger fixed point or at +∞.

♥ 2.2.26. Consider the transport equation
∂u

∂t
+ c(t, x)

∂u

∂x
= 0 with time-varying wave speed.

Define the corresponding characteristic ordinary differential equation to be
dx

dt
= c(t, x),

the graphs of whose solutions x(t) are the characteristic curves. (a) Prove that any

solution u(t, x) to the partial differential equation is constant on each characteristic curve.

(b) Suppose that the general solution to the characteristic equation is written in the form

ξ(t, x) = k, where k is an arbitrary constant. Prove that ξ(t, x) defines a characteristic
variable, meaning that u(t, x) = f(ξ(t, x)) is a solution to the time-varying transport

equation for any continuously differentiable scalar function f ∈ C
1
.

2.2.27.(a) Apply the method in Exercise 2.2.26 to find the characteristic curves for the equa-

tion ut + t2 ux = 0. (b) Find the solution to the initial value problem u(0, x) = e−x2

,

and discuss its dynamic behavior.
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2.2.28. Solve Exercise 2.2.27 for the equation ut + (x− t)ux = 0.

♥ 2.2.29. Consider the first-order partial differential equation ut + (1 − 2 t)ux = 0. Use Exercise
2.2.26 to: (a) Find and sketch the characteristic curves. (b) Write down the general solu-

tion. (c) Solve the initial value problem with u(0, x) =
1

1 + x2
. (d) Describe the behavior

of your solution u(t, x) from part (c) as t → ∞. What about t → −∞?

2.2.30. Discuss which of the conclusions of Exercise 2.2.25 are valid for the characteristic curves
of the transport equation with time-varying wave speed, as analyzed in Exercise 2.2.26.

♦ 2.2.31. Consider the two-dimensional transport equation
∂u

∂t
+ c(x, y)

∂u

∂x
+ d(x, y)

∂u

∂y
= 0,

whose solution u(t, x, y) depends on time t and space variables x, y. (a) Define a character-
istic curve, and prove that the solution is constant along it. (b) Apply the method of char-

acteristics to solve the initial value problem ut + yux − xuy, u(0, x, y) = e−(x−1)2−(y−1)2 .

(c) Describe the behavior of your solution.

2.3 Nonlinear Transport and Shocks

The first-order nonlinear partial differential equation

ut + uux = 0 (2.31)

has the form of a transport equation (2.4), but the wave speed c = u now depends, not
on the position x, but rather on the size of the disturbance u. Larger waves will move
faster, and overtake smaller, slower-moving waves. Waves of elevation, where u > 0, move
to the right, while waves of depression, where u < 0, move to the left. This equation
is considerably more challenging than the linear transport models analyzed above, and
was first systematically studied in the early nineteenth century by the influential French
mathematician Siméon–Denis Poisson and the great German mathematician Bernhard Rie-
mann.† It and its multi-dimensional and multi-component generalizations play a crucial
role in the modeling of gas dynamics, acoustics, shock waves in pipes, flood waves in rivers,
chromatography, chemical reactions, traffic flow, and so on. Although we will be able to
write down a solution formula, the complete analysis is far from trivial, and will require us
to confront the possibility of discontinuous shock waves. Motivated readers are referred to
Whitham’s book, [122], for further details.

Fortunately, the method of characteristics that was developed for linear transport
equations also works in the present context and leads to a complete mathematical solution.
Mimicking our previous construction, (2.18), but now with wave speed c = u, let us define
a characteristic curve of the nonlinear wave equation (2.31) to be the graph of a solution
x(t) to the ordinary differential equation

dx

dt
= u(t, x). (2.32)

† In addition to his fundamental contributions to partial differential equations, complex anal-
ysis, and number theory, Riemann also was the inventor of Riemannian geometry, which turned
out to be absolutely essential for Einstein’s theory of general relativity some 70 years later!
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As such, the characteristics depend upon the solution u, which, in turn, is to be specified
by its characteristics. We appear to be trapped in a circular argument.

The resolution of the conundrum is to argue that, as in the linear case, the solution
u(t, x) remains constant along its characteristics, and this fact will allow us to simultane-
ously specify both. To prove this claim, suppose that x = x(t) parametrizes a characteristic
curve associated with the given solution u(t, x). Our task is to show that h(t) = u

(
t, x(t)

)
,

which is obtained by evaluating the solution along the curve, is constant, which, as usual,
is proved by checking that its derivative is identically zero. Repeating our chain rule
computation (2.17), and using (2.32), we deduce that

dh

dt
=

d

dt
u
(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+
dx

dt

∂u

∂x

(
t, x(t)

)
=

∂u

∂t

(
t, x(t)

)
+u

(
t, x(t)

)∂u
∂x

(
t, x(t)

)
= 0,

since u is assumed to solve the nonlinear transport equation (2.31) at all values of (t, x),
including those on the characteristic curve. We conclude that h(t) is constant, and hence
u is indeed constant on the characteristic curve.

Now comes the clincher. We know that the right-hand side of the characteristic ordi-
nary differential equation (2.32) is a constant whenever x = x(t) defines a characteristic
curve. This means that the derivative dx/dt is a constant — namely the fixed value of u
on the curve. Therefore, the characteristic curve must be a straight line,

x = ut+ k, (2.33)

whose slope equals the value assumed by the solution u on it.

And, as before, since the solution is constant along each characteristic line, it must be
a function of the characteristic variable

ξ = x− tu (2.34)

alone, and so
u = f(x− tu), (2.35)

where f(ξ) is an arbitrary C1 function. Formula (2.35) should be viewed as an algebraic
equation that implicitly defines the solution u(t, x) as a function of t and x. Verification
that the resulting function is indeed a solution to (2.31) is the subject of Exercise 2.3.14.

Example 2.6. Suppose that

f(ξ) = αξ + β,

with α, β constant. Then (2.35) becomes

u = α(x− tu) + β, and hence u(t, x) =
αx+ β

1 + α t
(2.36)

is the corresponding solution to the nonlinear transport equation. At each fixed t, the graph
of the solution is a straight line. If α > 0, the solution flattens out: u(t, x) → 0 as t → ∞.
On the other hand, if α < 0, the straight line rapidly steepens to vertical as t approaches
the critical time t� = −1/α, at which point the solution ceases to exist. Figure 2.11 graphs
two representative solutions. The top row shows the solution with α = 1, β = .5, plotted
at times t = 0, 1, 5, and 20; the bottom row takes α = −.2, β = .1, and plots the solution
at times t = 0, 3, 4, and 4.9. In the second case, the solution blows up by becoming vertical
as t → 5.
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t = 0 t = 1 t = 5 t = 20

t = 0 t = 3 t = 4 t = 4.9

Figure 2.11. Two solutions to ut + uux = 0.
⊎

Remark : Although (2.36) remains a valid solution formula after the blow-up time,
t > 5, this is not to be viewed as a part of the original solution. With the appearance of
such a singularity, the physical solution has broken down, and we stop tracking it.

To solve the general initial value problem

u(0, x) = f(x), (2.37)

we note that, at t = 0, the implicit solution formula (2.35) reduces to (2.37), and hence the
function f coincides with the initial data. However, because our solution formula (2.35) is
an implicit equation, it is not immediately evident

(a) whether it can be solved to give a well-defined function u(t, x), and,

(b) even granted this, how to describe the resulting solution’s qualitative features and
dynamical behavior.

A more instructive approach is founded on the following geometrical construction.
Through each point (0, y) on the x–axis, draw the characteristic line

x = tf(y) + y (2.38)

whose slope, namely f(y) = u(0, y), equals the value of the initial data (2.37) at that point.
According to the preceding discussion, the solution will have the same value on the entire
characteristic line (2.38), and so

u(t, tf(y) + y) = f(y) for all t. (2.39)

For example, if f(y) = y, then u(t, x) = y whenever x = ty + y; eliminating y, we find
u(t, x) = x/(t+ 1), which agrees with one of our straight line solutions (2.36).

Now, the problem with this construction is immediately apparent from Figure 2.12,
which plots the characteristic lines associated with the initial data

u(0, x) = 1
2 π − tan−1 x.
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Figure 2.12. Characteristics lines for u(0, x) = 1
2 π − tan−1 x.

Two characteristic lines that are not parallel must cross each other somewhere. The value
of the solution is supposed to equal the slope of the characteristic line passing through the
point. Hence, at a crossing point, the solution is required to assume two different values,
one corresponding to each line. Something is clearly amiss, and we need to resolve this
apparent paradox.

There are three principal scenarios. The first, trivial, situation occurs when all the
characteristic lines are parallel, and so the difficulty does not arise. In this case, they all
have the same slope, say c, which means that the solution has the same value on each one.
Therefore, u(t, x) ≡ c is a constant solution.

The next-simplest case occurs when the initial data is everywhere nondecreasing , so
f(x) ≤ f(y) whenever x ≤ y, which is assured if its derivative is never negative: f ′(x) ≥ 0.
In this case, as sketched in Figure 2.13, the characteristic lines emanating from the x axis
fan out into the right half-plane, and so never cross each other at any future time t > 0.
Each point (t, x) with t ≥ 0 lies on a unique characteristic line, and the value of the
solution at (t, x) is equal to the slope of the line. We conclude that the solution u(t, x)
is well defined at all future times t ≥ 0. Physically, such solutions represent rarefaction
waves , which spread out as time progresses. A typical example, corresponding to initial
data

u(0, x) = 1
2 π + tan−1(3x),

has its characteristic lines plotted in Figure 2.13, while Figure 2.14 graphs some represen-
tative solution profiles.

The more interesting case occurs when the initial data is a decreasing function, and so
f ′(x) < 0. Now, as in Figure 2.12, some of the characteristic lines starting at t = 0 will cross
at some point in the future. If a point (t, x) lies on two or more distinct characteristic lines,
the value of the solution u(t, x), which should equal the characteristic slope, is no longer
uniquely determined. Although, in a purely mathematical context, one might be tempted
to allow such multiply valued solutions, from a physical standpoint this is unacceptable.
The solution u(t, x) is supposed to represent a measurable quantity, e.g., concentration,
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Figure 2.13. Characteristic lines for a rarefaction wave.

t = 0 t = 1

t = 2 t = 3

Figure 2.14. Rarefaction wave.
⊎

velocity, pressure, and must therefore assume a unique value at each point. In effect, the
mathematical model has broken down and no longer conforms to physical reality.

However, before confronting this difficulty, let us first, from a purely theoretical stand-
point, try to understand what happens if we mathematically continue the solution as a
multiply valued function. For specificity, consider the initial data

u(0, x) = 1
2 π − tan−1 x, (2.40)

appearing in the first graph in Figure 2.15. The corresponding characteristic lines are
displayed in Figure 2.12. Initially, they do not cross, and the solution remains a well-
defined, single-valued function. However, after a while one reaches a critical time, t� > 0,
when the first two characteristic lines cross each other. Subsequently, a wedge-shaped
region appears in the (t, x)–plane, consisting of points that lie on the intersection of three
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t = 0 t = .5

t = 1 t = 1.5

t = 2 t = 2.5

Figure 2.15. Multiply valued compression wave.
⊎

distinct characteristic lines with different slopes; at such points, the mathematical solution
achieves three distinct values. Points outside the wedge lie on a single characteristic line,
and the solution remains single-valued there. The boundary of the wedge consists of points
where precisely two characteristic lines cross.

To fully appreciate what is going on, look now at the sequence of pictures of the
multiply valued solution in Figure 2.15, plotted at six successive times. Since the initial
data is positive, f(x) > 0, all the characteristic slopes are positive. As a consequence,
every point on the solution curve moves to the right, at a speed equal to its height. Since
the initial data is a decreasing function, points on the graph lying to the left will move
faster than those to the right and eventually overtake them. At first, the solution merely
steepens into a compression wave. At the critical time t� when the first two characteristic
lines cross, say at position x�, so that (t�, x�) is the tip of the aforementioned wedge, the
solution graph has become vertical:

∂u

∂x
(t, x�) −→ ∞ as t −→ t�,

and u(t, x) is no longer a classical solution. Once this occurs, the solution graph ceases to
be a single-valued function, and its overlapping lobes lie over the points (t, x) belonging to
the wedge.

The critical time t� can, in fact, be determined from the implicit solution formula (2.35).
Indeed, if we differentiate with respect to x, we obtain

∂u

∂x
=

∂

∂x
f(ξ) = f ′(ξ)

∂ξ

∂x
= f ′(ξ)

(
1− t

∂u

∂x

)
, where ξ = x− tu.

Solving for

∂u

∂x
=

f ′(ξ)
1 + tf ′(ξ)

,
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we see that the slope blows up:

∂u

∂x
−→ ∞ as t −→ − 1

f ′(ξ)
.

In other words, if the initial data has negative slope at position x, so f ′(x) < 0, then the
solution along the characteristic line emanating from the point (0, x) will fail to be smooth
at the time −1/f ′(x). The earliest critical time is, thus,

t� := min

{
− 1

f ′(x)

∣∣∣∣ f ′(x) < 0

}
. (2.41)

If x0 is the value of x that produces the minimum t�, then the slope of the solution profile
will first become infinite at the location where the characteristic starting at x0 is at time
t�, namely

x� = x0 + f(x0) t�. (2.42)

For instance, for the particular initial configuration (2.40) represented in Figure 2.15,

f(x) =
π

2
− tan−1 x, f ′(x) = − 1

1 + x2
,

and so the critical time is

t� = min {1 + x2 } = 1, with x� = f(0) t� = 1
2 π,

since the minimum value occurs at x0 = 0.

Now, while mathematically plausible, such a multiply valued solution is physically
untenable. So what really happens after the critical time t�? One needs to decide which
(if any) of the possible solution values is physically appropriate. The mathematical model,
in and of itself, is incapable of resolving this quandary. We must therefore revisit the
underlying physics, and ask what sort of phenomenon we are trying to model.

Shock Dynamics

To be specific, let us regard the transport equation (2.31) as a model of compressible fluid
flow in a single space variable, e.g., the motion of gas in a long pipe. If we push a piston
into the pipe, then the gas will move ahead of it and thereby be compressed. However, if
the piston moves too rapidly, then the gas piles up on top of itself, and a shock wave forms
and propagates down the pipe. Mathematically, the shock is represented by a discontinuity
where the solution abruptly changes value. The formulas (2.41) and (2.42) determine the
time and position for the onset of the shock-wave discontinuity. Our goal now is to predict
its subsequent behavior, and this will be based on use of a suitable physical conservation
law. Indeed, one expects mass to be conserved – even through a shock discontinuity —
since gas atoms can neither be created nor destroyed. And, as we will see, conservation of
mass (almost) suffices to prescribe the subsequent motion of the shock wave.

Before investigating the implications of conservation of mass, let us first convince
ourselves of its validity for the nonlinear transport model. (Just because a mathematical
equation models a physical system does not automatically imply that it inherits any of its
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physical conservation laws.) If u(t, x) represents density, then, at time t, the total mass
lying in an interval a ≤ x ≤ b is calculated by integration:

Ma,b(t) =

∫ b

a

u(t, x) dx. (2.43)

Assuming that u(t, x) is a classical solution to the nonlinear transport equation (2.31), we
can determine the rate of change of mass on this interval by differentiation:

dMa,b

dt
=

d

dt

∫ b

a

u(t, x) dx =

∫ b

a

∂u

∂t
(t, x) dx = −

∫ b

a

u(t, x)
∂u

∂x
(t, x) dx

= −
∫ b

a

∂

∂x

[
1
2 u(t, x)

2
]
dx = − 1

2 u(t, x)
2
∣∣∣b
x=a

= 1
2 u(t, a)

2 − 1
2 u(t, b)

2.

(2.44)

The final expression represents the net mass flux through the endpoints of the interval.
Thus, the only way in which the mass on the interval [a, b ] changes is through its endpoints;
inside, mass can be neither created nor destroyed, which is the precise meaning of the mass
conservation law in continuum mechanics. In particular, if there is zero net mass flux, then
the total mass is constant, and hence conserved. For example, if the initial data (2.37) has
finite total mass, ∣∣∣∣ ∫ ∞

−∞
f(x) dx

∣∣∣∣ < ∞, (2.45)

which requires that f(x) → 0 reasonably rapidly as |x | → ∞, then the total mass of the
solution — at least up to the formation of a shock discontinuity — remains constant and
equal to its initial value:∫ ∞

−∞
u(t, x) dx =

∫ ∞

−∞
u(0, x) dx =

∫ ∞

−∞
f(x) dx. (2.46)

Similarly, if u(t, x) represents the traffic density on a highway at time t and position x,
then the integrated conservation law (2.44) tells us that the rate of change in the number
of vehicles on the stretch of road between a and b equals the number of vehicles entering
at point a minus the number leaving at point b — which assumes that there are no other
exits or entrances on this part of the highway. Thus, in the traffic model, (2.44) represents
the conservation of vehicles.

The preceding calculation relied on the fact that the integrand can be written as an x
derivative. This is a common feature of physical conservation laws in continuum mechanics,
and motivates the following general definition.

Definition 2.7. A conservation law , in one space dimension, is an equation of the
form

∂T

∂t
+

∂X

∂x
= 0. (2.47)

The function T is known as the conserved density , while X is the associated flux .

In the simplest situations, the conserved density T (t, x, u) and flux X(t, x, u) depend
on the time t, the position x, and the solution u(t, x) to the physical system. (Higher-order
conservation laws, which also depend on derivatives of u, arise in the analysis of integrable
partial differential equations; see Section 8.5 and [36, 87].) For example, the nonlinear
transport equation (2.31) is itself a conservation law, since it can be written in the form

∂u

∂t
+

∂

∂x

(
1
2 u

2
)
= 0, (2.48)
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Figure 2.16. Equal Area Rule.

and so the conserved density is T = u and the flux is X = 1
2 u

2. And indeed, it was
this identity that made our computation (2.44) work. The general result, proved by an
analogous computation, justifies calling (2.47) a conservation law.

Proposition 2.8. Given a conservation law (2.47), then, on any closed interval
a ≤ x ≤ b,

d

dt

∫ b

a

T dx = − X
∣∣∣b
x=a

. (2.49)

Proof : The proof is an immediate consequence of the Fundamental Theorem of Cal-
culus — assuming sufficient smoothness that allows one to bring the derivative inside the
integral sign:

d

dt

∫ b

a

T dx =

∫ b

a

∂T

∂t
dx = −

∫ b

a

∂X

∂x
dx = − X

∣∣∣b
x=a

. Q .E .D .

We will refer to (2.49) as the integrated form of the conservation law (2.47). It states
that the rate of change of the total density, integrated over an interval, is equal to the
amount of flux through its two endpoints. In particular, if there is no net flux into or out
of the interval, then the integrated density is conserved , meaning that it remains constant
over time. All physical conservation laws — mass, momentum, energy, and so on — for
systems governed by partial differential equations are of this form or its multi-dimensional
extensions, [87].

With this in hand, let us return to the physical context of the nonlinear transport
equation. By definition, a shock is a discontinuity in the solution u(t, x). We will make
the physically plausible assumption that mass (or vehicle) conservation continues to hold
even within the shock. Recall that the total mass, which at time t is the area† under
the curve u(t, x), must be conserved. This continues to hold even when the mathematical

solution becomes multiply valued, in which case one employs a line integral

∫
C

u dx, where

C represents the graph of the solution, to compute the mass/area. Thus, to construct a
discontinuous shock solution with the same mass, one replaces part of the multiply valued

† We are implicitly assuming that the mass is finite, as in (2.45), although the overall con-
struction does not rely on this restriction.
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Figure 2.17. Multiply valued step wave.
⊎

graph by a vertical shock line in such a way that the resulting function is single-valued and
has the same area under its graph. Referring to Figure 2.16, observe that the region under
the shock graph is obtained from that under the multi-valued solution graph by deleting
the upper shaded lobe and appending the lower shaded lobe. Thus the resulting area will
be the same, provided the shock line is drawn so that the areas of the two shaded lobes are
equal. This construction is known as the Equal Area Rule; it ensures that the total mass
of the shock solution matches that of the multiply valued solution, which in turn is equal
to the initial mass, as required by the physical conservation law.

Example 2.9. An illuminating special case occurs when the initial data has the form
of a step function with a single discontinuity at the origin:

u(0, x) =

{
a, x < 0,

b, x > 0.
(2.50)

If a > b, then the initial data is already in the form of a shock wave. For t > 0, the
mathematical solution constructed by continuing along the characteristic lines is multiply
valued in the region bt < x < at, where it assumes both values a and b; see Figure 2.17.
Moreover, the initial vertical line of discontinuity has become a tilted line, because each
point (0, u) on it has moved along the associated characteristic a distance ut. The Equal
Area Rule tells us to draw the shock line halfway along, at x = 1

2 (a+ b) t, in order that the
two triangles have the same area. We deduce that the shock moves with speed c = 1

2 (a+b),
equal to the average of the two speeds at the jump. The resulting shock-wave solution is

u(t, x) =

{
a, x < ct,

b, x > ct,
where c =

a+ b

2
. (2.51)

A plot of its characteristic lines appears in Figure 2.18. Observe that colliding pairs of
characteristic lines terminate at the shock line, whose slope is the average of their individual
slopes.

The fact that the shock speed equals the average of the solution values on either side
is, in fact, of general validity, and is known as the Rankine–Hugoniot condition , named af-
ter the nineteenth-century Scottish physicist William Rankine and French engineer Pierre
Hugoniot, although historically these conditions first appeared in a 1849 paper by George
Stokes, [109]. However, intimidated by criticism by his contemporary applied mathemati-
cians Lords Kelvin and Rayleigh, Stokes thought he was mistaken, and even ended up
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Figure 2.18. Characteristic lines for the step wave shock.

deleting the relevant part when his collected works were published in 1883, [110]. The
missing section was restored in the 1966 reissue, [111].

Proposition 2.10. Let u(t, x) be a solution to the nonlinear transport equation that
has a discontinuity at position x = σ(t), with finite, unequal left- and right-hand limits

u−(t) = u
(
t, σ(t)−

)
= lim

x→σ(t)−
u(t, x), u+(t) = u

(
t, σ(t)+

)
= lim

x→ σ(t)+
u(t, x), (2.52)

on either side of the shock discontinuity. Then, to maintain conservation of mass, the speed
of the shock must equal the average of the solution values on either side:

dσ

dt
=

u−(t) + u+(t)

2
. (2.53)

Proof : Referring to Figure 2.19, consider a small time interval, from t to t + Δt,
with Δt > 0. During this time, the shock moves from position a = σ(t) to position
b = σ(t +Δt). The total mass contained in the interval [a, b ] at time t, before the shock
has passed through, is

M (t) =

∫ b

a

u(t, x) dx ≈ u+(t) (b− a) = u+(t)
[
σ(t+Δt)− σ(t)

]
,

where we assume that Δt � 1 is very small, and so the integrand is well approximated by
its limiting value (2.52). Similarly, after the shock has passed, the total mass remaining in
the interval is

M (t+Δt) =

∫ b

a

u(t+Δt, x) dx ≈ u−(t+Δt) (b− a) = u−(t+Δt)
[
σ(t+Δt)− σ(t)

]
.
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Figure 2.19. Conservation of mass near a shock.

Thus, the rate of change in mass across the shock at time t is given by

dM

dt
= lim

Δt→ 0

M (t+Δt)−M (t)

Δt

= lim
Δt→ 0

[
u−(t+Δt)− u+(t)

] σ(t+Δt)− σ(t)

Δt
=

[
u−(t)− u+(t)

] dσ

dt
.

On the other hand, at any t < τ < t + Δt, the mass flux into the interval [a, b ] through
the endpoints is given by the right-hand side of (2.44):

1
2

[
u(τ, a)2 − u(τ, b)2

]
−→ 1

2

[
u−(t)2 − u+(t)2

]
, since τ → t as Δt → 0.

Conservation of mass requires that the rate of change in mass be equal to the mass flux:

dM

dt
=

[
u−(t)− u+(t)

] dσ

dt
= 1

2

[
u−(t)2 − u+(t)2

]
.

Solving for dσ/dt establishes (2.53). Q.E.D.

Example 2.11. By way of contrast, let us investigate the case when the initial data
is a step function (2.50), but with a < b, so the jump goes upwards. In this case, the
characteristic lines diverge from the initial discontinuity, and the mathematical solution is
not specified at all in the wedge-shaped region at < x < bt. Our task is to decide how to
“fill in” the solution values between the two regions where the solution is well defined and
constant.

One possible connection is by a straight line. Indeed, a simple modification of the
rational solution (2.36) produces the similarity solution†

u(t, x) =
x

t
,

† See Section 8.2 for general techniques for constructing similarity (scale-invariant) solutions
to partial differential equations.



2.3 Nonlinear Transport and Shocks 43

Figure 2.20. Rarefaction wave.
⊎

which not only solves the differential equation, but also has the required values u(t, at) = a
and u(t, b t) = b at the two edges of the wedge. This can be used to construct the piecewise
affine rarefaction wave

u(t, x) =

⎧⎨⎩
a, x ≤ at,

x/t, at ≤ x ≤ bt,

b, x ≥ bt,

(2.54)

which is graphed at four representative times in Figure 2.20.

A second possibility would be to continue the discontinuity as a shock wave, whose
speed is governed by the Rankine-Hugoniot condition, leading to a discontinuous solution
having the same formula as (2.51). Which of the two competing solutions should we
use? The first, (2.54), makes better physical sense; indeed, if we were to smooth out the
discontinuity, then the resulting solutions would converge to the rarefaction wave and not
the reverse shock wave; see Exercise 2.3.13. Moreover, the discontinuous solution (2.51)
has characteristic lines emanating from the discontinuity, which means that the shock is
creating new values for the solution as it moves along, and this can, in fact, be done in a
variety of ways. In other words, the discontinuous solution violates causality , meaning that
the solution profile at any given time uniquely prescribes its subsequent motion. Causality
requires that, while characteristics may terminate at a shock discontinuity, they cannot
begin there, because their slopes will not be uniquely prescribed by the shock profile, and
hence the characteristics to the left of the shock must have larger slope (or speed), while
those to the right must have smaller slope. Since the shock speed is the average of the two
characteristic slopes, this requires the Entropy Condition

u−(t) >
dσ

dt
=

u−(t) + u+(t)

2
> u+(t). (2.55)

With further analysis, it can be shown, [57], that the rarefaction wave (2.54) is the unique
solution† to the initial value problem satisfying the entropy condition (2.55).

† Albeit not a classical solution, but rather a weak solution, as per Section 10.4.
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Figure 2.21. Equal Area Rule for the triangular wave.
⊎

These prototypical solutions epitomize the basic phenomena modeled by the nonlinear
transport equation: rarefaction waves, which emanate from regions where the initial data
satisfies f ′(x) > 0, causing the solution to spread out as time progresses, and compression
waves , emanting from regions where f ′(x) < 0, causing the solution to progressively steepen
and eventually break into a shock discontinuity. Anyone caught in a traffic jam recognizes
the compression waves, where the vehicles are bunched together and almost stationary,
while the interspersed rarefaction waves correspond to freely moving traffic. (An intelligent
driver will take advantage of the rarefaction waves moving backwards through the jam
to switch lanes!) The familiar, frustrating traffic jam phenomenon, even on accident- or
construction-free stretches of highway, is, thus, an intrinsic effect of the nonlinear transport
models that govern traffic flow, [122].

Example 2.12. Triangular wave: Suppose the initial data has the triangular profile

u(0, x) = f(x) =

{
x, 0 ≤ x ≤ 1,

0, otherwise,

as in the first graph in Figure 2.22. The initial discontinuity at x = 1 will propagate as a
shock wave, while the slanted line behaves as a rarefaction wave. To find the profile at time
t, we first graph the multi-valued solution obtained by moving each point on the graph of
f to the right an amount equal to t times its height. As noted above, this motion preserves
straight lines. Thus, points on the x–axis remain fixed, and the diagonal line now goes
from (0, 0) to (1 + t, 1), which is where the uppermost point (1, 1) on the graph of f has
moved to, and hence has slope (1 + t)−1, while the initial vertical shock line has become
tilted, going from (1, 0) to (0, 1 + t). We now need to find the position σ(t) of the shock
line in order to satisfy the Equal Area Rule, namely so that the areas of the two shaded
regions in Figure 2.21 are identical. The reader is invited to determine this geometrically;
instead, we invoke the Rankine–Hugoniot condition (2.53). At the shock line, x = σ(t),
the left- and right-hand limiting values are, respectively,

u−(t) = u
(
t, σ(t)−

)
=

σ(t)

1 + t
, u+(t) = u

(
t, σ(t)+

)
= 0,

and hence (2.53) prescribes the shock speed to be

dσ

dt
=

1

2

(
σ(t)

1 + t
+ 0

)
=

σ(t)

2(1 + t)
.
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Figure 2.22. Triangular-wave solution.
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t

x

Figure 2.23. Characteristic lines for the triangular-wave shock.

The solution to the resulting separable ordinary differential equation is easily found. Since
the shock starts out at σ(0) = 1, we deduce that

σ(t) =
√
1 + t , with

dσ

dt
=

1

2
√
1 + t

.

Further, the strength of the shock, namely its height, is

u−(t) =
σ(t)

1 + t
=

1√
1 + t

.

We conclude that, as t increases, the solution remains a triangular wave, of steadily decreas-
ing slope, while the shock moves off to x = +∞ at a progressively slower speed and smaller
height. Its position follows a parabolic trajectory in the (t, x)–plane. See Figure 2.22 for
representative plots of the triangular wave solution, while Figure 2.23 illustrates the char-
acteristic lines and shock wave trajectory.

In more general situations, continuing on after the initial shock formation, other char-
acteristic lines may start to cross, thereby producing new shocks. The shocks themselves
continue to propagate, often at different velocities. When a fast-moving shock catches up
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with a slow-moving shock, one must then decide how to merge the shocks so as to retain a
physically meaningful solution. The Rankine–Hugoniot (Equal Area) and Entropy Condi-
tions continue to uniquely specify the dynamics. However, at this point, the mathematical
details have become too intricate for us to pursue any further, and we refer the interested
reader to Whitham’s book, [122]. See also [57] for a proof of the following existence
theorem for shock-wave solutions to the nonlinear transport equation.

Theorem 2.13. If the initial data u(0, x) = f(x) is piecewise† C1 with finitely many
jump discontinuities, then, for t > 0, there exists a unique (weak) solution to the nonlinear
transport equation (2.31) that also satisfies the Rankine–Hugoniot condition (2.53) and
the entropy condition (2.55).

Remark : Our derivation of the Rankine–Hugoniot shock speed condition (2.53) relied
on the fact that we can write the original partial differential equation in the form of a
conservation law. But there are, in fact, other ways to do this. For instance, multiplying the
nonlinear transport equation (2.31) by u allows us write it in the alternative conservative
form

u
∂u

∂t
+ u2 ∂u

∂x
=

∂

∂t

(
1
2
u2

)
+

∂

∂x

(
1
3
u3

)
= 0. (2.56)

In this formulation, the conserved density is T = 1
2 u

2, and the associated flux is X = 1
3 u

3.
The integrated form (2.49) of the conservation law (2.56) is

d

dt

∫ b

a

1
2 u(t, x)

2 dx = 1
3

[
u(t, a)3 − u(t, b)3

]
. (2.57)

In some physical models, the integral on the left-hand side represents the energy within the
interval [a, b ], and the conservation law tells us that energy can enter the interval as a flux
only through its ends. If we assume that energy is conserved at a shock, then, repeating
our previous argument, we are led to the alternative equation

dσ

dt
=

1
3

[
u−(t)3 − u+(t)3

]
1
2

[
u−(t)2 − u+(t)2

] =
2

3

u−(t)2 + u−(t)u+(t) + u+(t)2

u−(t) + u+(t)
(2.58)

for the shock speed. Thus, a shock that conserves energy moves at a different speed from
one that conserves mass! The evolution of a shock wave depends not just on the underlying
differential equation, but also on the physical assumptions governing the selection of a
suitable conservation law.

More General Wave Speeds

Let us finish this section by considering a nonlinear transport equation

ut + c(u)ux = 0, (2.59)

whose wave speed is a more general function of the disturbance u. (Further extensions,
allowing c to depend also on t and x, are discussed in Exercise 2.3.20.) Most of the

† Meaning continuous everywhere, and continuously differentiable except at a discrete set of
points; see Definition 3.7 below for the precise definition.
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development is directly parallel to the special case (2.31) discussed above, and so the
details are left for the reader to fill in, although the shock dynamics does require some
care.

In this case, the characteristic curve equation is

dx

dt
= c

(
u(t, x)

)
. (2.60)

As before, the solution u is constant on characteristics, and hence the characteristics are
straight lines, now with slope c(u). Thus, to solve the initial value problem

u(0, x) = f(x), (2.61)

through each point (0, y) on the x–axis, one draws the characteristic line of slope c(u(0, y)) =
c(f(y)). Until the onset of a shock discontinuity, the solution maintains its initial value
u(0, y) = f(y) along the characteristic line.

A shock forms whenever two characteristic lines cross. As before, the mathematical
equation no longer uniquely specifies the subsequent dynamics, and we need to appeal to
an appropriate conservation law. We write the transport equation in the form

∂u

∂t
+

∂

∂x
C(u) = 0, where C(u) =

∫
c(u)du (2.62)

is any convenient anti-derivative of the wave speed. Thus, following the same computation
as in (2.44), we discover that conservation of mass now takes the integrated form

d

dt

∫ b

a

u(t, x) dx = C(u(t, a))− C(u(t, b)), (2.63)

with C(u) playing the role of the mass flux. Requiring the conservation of mass, i.e., of
the area under the graph of the solution, means that the Equal Area Rule remains valid.
However, the Rankine–Hugoniot shock-speed condition must be modified in accordance
with the new dynamics. Mimicking the preceding argument, but with the modified mass
flux, we find that the shock speed is now given by

dσ

dt
=

C(u−(t))− C(u+(t))

u−(t)− u+(t)
. (2.64)

Note that if

c(u) = u, then C(u) =

∫
u du = 1

2 u
2,

and so (2.64) reduces to our earlier formula (2.53). Moreover, in the limit as the shock
magnitude approaches zero, u−(t)− u+(t) → 0, the right-hand side of (2.64) converges to
the derivative C′(u) = c(u) and hence recovers the wave speed, as it should.

Exercises

2.3.1. Discuss the behavior of the solution to the nonlinear transport equation (2.31) for the
following initial data:

(a) u(0, x) =

{
2, x < −1,
1, x > −1;

(b) u(0, x) =

{ −2, x < −1,
1, x > −1;

(c) u(0, x) =

{
1, x < 1,
−2, x > 1.
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2.3.2. Solve the following initial value problems: (a) ut + 3uux = 0, u(0, x) =

{
2, x < 1,
0, x > 1;

(b) ut − uux = 0, u(1, x) =

{ −1, x < 0,
3, x > 0;

(c) ut − 2uux = 0, u(0, x) =

{
1, x < 1,
0, x > 1.

2.3.3. Let u(0, x) = (x2 + 1)−1. Does the resulting solution to the nonlinear transport equation
(2.31) produce a shock wave? If so, find the time of onset of the shock, and sketch a graph
of the solution just before and soon after the shock wave. If not, explain what happens to
the solution as t increases.

2.3.4. Solve Exercise 2.3.3 when u(0, x) = (a) − (x2 + 1)−1, (b) x(x2 + 1)−1.

2.3.5. Consider the initial value problem ut − 2uux = 0, u(0, x) = e−x2

. Does the resulting
solution produce a shock wave? If so, find the time of onset of the shock and the position
at which it first forms. If not, explain what happens to the solution as t increases.

2.3.6.(a) For what values of α, β, γ, δ is u(t, x) =
αx+ β

γ t+ δ
a solution to (2.31)?

(b) For what values of α, β, γ, δ, λ, μ is u(t, x) =
λt+ αx+ β

γ t+ μx+ δ
a solution to (2.31)?

2.3.7. A triangular wave is a shock-wave solution to the initial value problem for (2.31) that

has initial data u(0, x) =

{
mx, 0 ≤ x ≤ �,
0, otherwise.

Assuming m > 0, write down a formula for

the triangular-wave solution at times t > 0. Discuss what happens to the triangular wave as
time progresses.

2.3.8. Solve Exercise 2.3.7 when m < 0.

2.3.9. Solve (2.31) for t > 0 subject to the following initial conditions, and graph your solution
at some representative times. In what sense does your solution conserve mass?

(a) u(0, x) =

{
1, 0 < x < 1,
0, otherwise,

(b) u(0, x) =

{
x, −1 < x < 1,
0, otherwise,

(c) u(0, x) =

{ −x, −1 < x < 1,
0, otherwise,

(d) u(0, x) =

{
1− |x |, −1 < x < 1,
0, otherwise.

2.3.10. An N–wave is a solution to the nonlinear transport equation (2.31) that has initial con-

ditions u(0, x) =

{
mx, − � ≤ x ≤ �,
0, otherwise,

where m > 0. (a) Write down a formula for the

N–wave solution at times t > 0. (b) What about when m < 0?

♦ 2.3.11. Suppose u(t, x) and ũ(t, x) are two solutions to the nonlinear transport equation (2.31)
such that, for some t� > 0, they agree: u(t�, x) = ũ(t�, x) for all x. Do the solutions nec-
essarily have the same initial conditions: u(0, x) = ũ(0, x)? Use your answer to discuss the
uniqueness of solutions to the nonlinear transport equation.

2.3.12. Suppose that x1 < x2 are such that the characteristic lines of (2.31) through (0, x1)
and (0, x2) cross at a shock at (t, σ(t)) and, moreover, the left- and right-hand shock values

(2.52) are f(x1) = u−(t), f(x1) = u+(t). Explain why the signed area of the region between
the graph of f(x) and the secant line connecting (x1, f(x1)) to (x2, f(x2)) is zero.

♦ 2.3.13. Consider the initial value problem uε(0, x) = 2 + tan−1(x/ε) for the nonlinear trans-

port equation (2.31). (a) Show that, as ε → 0+, the initial condition converges to a step
function (2.51). What are the values of a, b? (b) Show that, moreover, the resulting solu-
tion uε(0, x) to the nonlinear transport equation converges to the corresponding rarefaction

wave (2.54) resulting from the limiting initial condition.
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♦ 2.3.14.(a) Under what conditions can equation (2.35) be solved for a single-valued function
u(t, x)? Hint : Use the Implicit Function Theorem. (b) Use implicit differentiation to prove
that the resulting function u(t, x) is a solution to the nonlinear transport equation.

2.3.15. For what values of α, β, γ, δ, k is u(t, x) =

(
αx+ β

γ t+ δ

)k
a solution to the transport equa-

tion ut + u2 ux = 0?

2.3.16.(a) Solve the initial value problem ut + u2 ux = 0, u(0, x) = f(x), by the method of
characteristics. (b) Discuss the behavior of solutions and compare/contrast with (2.31).

2.3.17.(a) Determine the Rankine–Hugoniot condition, based on conservation of mass, for the

speed of a shock for the equation ut + u2 ux = 0. (b) Solve the initial value problem

u(0, x) =

{
a, x < 0,
b, x > 0,

when (i) | a | > | b |, (ii) | a | < | b |. Hint : Use Exercise 2.3.15

to determine the shape of a rarefaction wave.

2.3.18. Solve Exercise 2.3.17 when the wave speed c(u) = (i) 1− 2u, (ii) u3, (iii) sinu.

♦ 2.3.19. Justify the shock-speed formula (2.58).

♦ 2.3.20. Consider the general quasilinear first-order partial differential equation
∂u

∂t
+ c(t, x, u)

∂u

∂x
= h(t, x, u).

Let us define a lifted characteristic curve to be a solution (t, x(t), u(t)) to the system of or-

dinary differential equations
dx

dt
= c(t, x, u),

du

dt
= h(t, x, u). The corresponding charac-

teristic curve
(
t, x(t)

)
is obtained by projecting to the (t, x)–plane. Prove that if u(t, x) is a

solution to the partial differential equation, and u(t0, x0) = u0, then the lifted characteristic
curve passing through (t0, x0, u0) lies on the graph of u(t, x). Conclude that the graph of
the solution to the initial value problem u(t0, x) = f(x) is the union of all lifted characteris-

tic curves passing through the initial data points
(
t0, x0, f(x0)

)
.

2.3.21. Let a > 0. (a) Apply the method of Exercise 2.3.20 to solve the initial value problem
for the damped transport equation: ut + uux + au = 0, u(0, x) = f(x).
(b) Does the damping eliminate shocks?

2.3.22. Apply the method of Exercise 2.3.20 to solve the initial value problem

ut + tux = u2, u(0, x) =
1

1 + x2
.

2.4 The Wave Equation: d’Alembert’s Formula

Newton’s Second Law states that force equals mass times acceleration. It forms the bedrock
underlying the derivation of mathematical models describing all of classical dynamics.
When applied to a one-dimensional medium, such as the transverse displacements of a
violin string or the longitudinal motions of an elastic bar, the resulting model governing
small vibrations is the second-order partial differential equation

ρ(x)
∂2u

∂t2
=

∂

∂x

(
κ(x)

∂u

∂x

)
. (2.65)

Here u(t, x) represents the displacement of the string or bar at time t and position x,
while ρ(x) > 0 denotes its density and κ(x) > 0 its stiffness or tension, both of which are
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assumed not to vary with t. The right-hand side of the equation represents the restoring
force due to a (small) displacement of the medium from its equilibrium, whereas the left-
hand side is the product of mass per unit length and acceleration. A correct derivation of
the model from first principles would require a significant detour, and we refer the reader
to [120, 124] for the details.

We will simplify the general model by assuming that the underlying medium is uni-
form, and so both its density ρ and stiffness κ are constant. Then (2.65) reduces to the
one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, where the constant c =

√
κ
ρ

> 0 (2.66)

is known as the wave speed , for reasons that will soon become apparent.

In general, to uniquely specify the solution to any dynamical system arising from
Newton’s Second Law, including the wave equation (2.66) and the more general vibration
equation (2.65), one must fix both its initial position and initial velocity. Thus, the initial
conditions take the form

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), (2.67)

where, for simplicity, we set the initial time t0 = 0. (See also Exercise 2.4.6.) The initial
value problem seeks the corresponding C2 function u(t, x) that solves the wave equation
(2.66) and has the required initial values (2.67). In this section, we will learn how to
solve the initial value problem on the entire line −∞ < x < ∞. The analysis of the
wave equation on bounded intervals will be deferred until Chapters 4 and 7. The two-
and three-dimensional versions of the wave equation are treated in Chapters 11 and 12,
respectively.

d’Alembert’s Solution

Let us now derive the explicit solution formula for the second-order wave equation (2.66)
first found by d’Alembert. The starting point is to write the partial differential equation
in the suggestive form

�u = (∂2
t − c2 ∂2

x) u = utt − c2 uxx = 0. (2.68)

Here

� = ∂2
t − c2 ∂2

x

is a common mathematical notation for the wave operator , which is a linear second-order
partial differential operator. In analogy with the elementary polynomial factorization

t2 − c2 x2 = (t− cx)(t+ cx),

we can factor the wave operator into a product of two first-order partial differential oper-
ators:†

� = ∂2
t − c2 ∂2

x = (∂t − c ∂x) (∂t + c ∂x). (2.69)

† The cross terms cancel, thanks to the equality of mixed partial derivatives: ∂t∂xu = ∂x∂tu.
Constancy of the wave speed c is essential here.
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Now, if the second factor annihilates the function u(t, x), meaning

(∂t + c ∂x) u = ut + c ux = 0, (2.70)

then u is automatically a solution to the wave equation, since

�u = (∂t − c ∂x) (∂t + c ∂x) u = (∂t − c ∂x) 0 = 0.

We recognize (2.70) as the first-order transport equation (2.4) with constant wave speed c.
Proposition 2.1 tells us that its solutions are traveling waves with wave speed c :

u(t, x) = p(ξ) = p(x− ct), (2.71)

where p is an arbitrary function of the characteristic variable ξ = x − ct. As long as
p ∈ C2 (i.e., is twice continuously differentiable), the resulting function u(t, x) is a classical
solution to the wave equation (2.66), as you can easily check.

Now, the factorization (2.69) can equally well be written in the reverse order:

� = ∂2
t − c2 ∂2

x = (∂t + c ∂x) (∂t − c ∂x). (2.72)

The same argument tells us that any solution to the “backwards” transport equation

ut − c ux = 0, (2.73)

with constant wave speed −c, also provides a solution to the wave equation. Again, by
Proposition 2.1, with c replaced by −c, the general solution to (2.73) has the form

u(t, x) = q(η) = q(x+ ct), (2.74)

where q is an arbitrary function of the alternative characteristic variable η = x+ ct. The
solutions (2.74) represent traveling waves moving to the left with constant speed c > 0.
Provided q ∈ C2, the functions (2.74) will provide a second family of solutions to the wave
equation.

We conclude that, unlike first-order transport equations, the wave equation (2.68)
is bidirectional in that it admits both left and right traveling-wave solutions. Moreover,
by linearity the sum of any two solutions is again a solution, and so we can immediately
construct solutions that are superpositions of left and right traveling waves. The remarkable
fact is that every solution to the wave equation can be so represented.

Theorem 2.14. Every solution to the wave equation (2.66) can be written as a
superposition,

u(t, x) = p(ξ) + q(η) = p(x− ct) + q(x+ ct), (2.75)

of right and left traveling waves. Here p(ξ) and q(η) are arbitrary C2 functions, each
depending on its respective characteristic variable

ξ = x− ct, η = x+ ct. (2.76)

Proof : As in our treatment of the transport equation, we will simplify the wave equa-
tion through an inspired change of variables. In this case, the new independent variables
are the characteristic variables ξ, η defined by (2.76). We set

u(t, x) = v(x− ct, x+ ct) = v(ξ, η), whereby v(ξ, η) = u

(
η − ξ

2 c
,
η + ξ

2

)
. (2.77)
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Then, employing the chain rule to compute the partial derivatives,

∂u

∂t
= c

(
− ∂v

∂ξ
+

∂v

∂η

)
,

∂u

∂x
=

∂v

∂ξ
+

∂v

∂η
, (2.78)

and, further,

∂2u

∂t2
= c2

(
∂2v

∂ξ2
− 2

∂2v

∂ξ ∂η
+

∂2v

∂η2

)
,

∂2u

∂x2
=

∂2v

∂ξ2
+ 2

∂2v

∂ξ ∂η
+

∂2v

∂η2
.

Therefore

�u =
∂2u

∂t2
− c2

∂2u

∂x2
= −4c2

∂2v

∂ξ ∂η
. (2.79)

We conclude that u(t, x) solves the wave equation � u = 0 if and only if v(ξ, η) solves the
second-order partial differential equation

∂2v

∂ξ ∂η
= 0,

which we write in the form

∂

∂ξ

(
∂v

∂η

)
=

∂w

∂ξ
= 0, where w =

∂v

∂η
.

Thus, applying the methods of Section 2.1 (and making the appropriate assumptions on
the domain of definition of w), we deduce that

w =
∂v

∂η
= r(η),

where r is an arbitrary function of the characteristic variable η. Integrating both sides of
the latter partial differential equation with respect to η, we find

v(ξ, η) = p(ξ) + q(η), where q(η) =

∫
r(η) dη,

while p(ξ) represents the η integration “constant”. Replacing the characteristic variables
by their formulas in terms of t and x completes the proof. Q.E.D.

Let us see how the solution formula (2.75) can be used to solve the initial value problem
(2.67). Substituting into the initial conditions, we deduce that

u(0, x) = p(x) + q(x) = f(x),
∂u

∂t
(0, x) = −c p′(x) + c q′(x) = g(x). (2.80)

To solve this pair of equations for the functions p and q, we differentiate the first,

p′(x) + q′(x) = f ′(x),

and then subtract off the second equation divided by c; the result is

2 p′(x) = f ′(x)− 1

c
g(x).

Therefore,

p(x) =
1

2
f(x)− 1

2 c

∫ x

0

g(z) dz + a,
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 2.24. Splitting of waves.
⊎

where a is an integration constant. The first equation in (2.80) then yields

q(x) = f(x)− p(x) =
1

2
f(x) +

1

2 c

∫ x

0

g(z) dz − a.

Substituting these two expressions back into our solution formula (2.75), we obtain

u(t, x)= p(ξ) + q(η) =
f(ξ) + f(η)

2
− 1

2 c

∫ ξ

0

g(z) dz +
1

2 c

∫ η

0

g(z) dz

=
f(ξ) + f(η)

2
+

1

2 c

∫ η

ξ

g(z)dz,

where ξ, η are the characteristic variables (2.76). In this manner, we have arrived at
d’Alembert’s solution to the initial value problem for the wave equation on the real line.

Theorem 2.15. The solution to the initial value problem

∂2u

∂t2
= c2

∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), −∞ < x < ∞, (2.81)

is given by

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2 c

∫ x+ct

x−ct

g(z)dz. (2.82)

Remark : In order that (2.82) define a classical solution to the wave equation, we
need f ∈ C2 and g ∈ C1. However, the formula itself makes sense for more general
initial conditions. We will continue to treat the resulting functions as solutions, albeit
nonclassical, since they fit under the more general rubric of “weak solution”, to be developed
in Section 10.4.

Example 2.16. Suppose there is no initial velocity, so g(x) ≡ 0, and hence the
motion is purely the result of the initial displacement u(0, x) = f(x). In this case, (2.82)
reduces to

u(t, x) = 1
2 f(x− ct) + 1

2 f(x+ ct). (2.83)
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 2.25. Interaction of waves.
⊎

The effect is that the initial displacement splits into two waves, one moving to the right
and the other moving to the left, each of constant speed c, and each of exactly the same
shape as f(x), but only half as tall. For example, if the initial displacement is a localized
pulse centered at the origin, say

u(0, x) = e−x2

,
∂u

∂t
(0, x) = 0,

then the solution

u(t, x) = 1
2
e−(x−ct)2 + 1

2
e−(x+ct)2

consists of two half size pulses running away from the origin with the same speed c, but
in opposite directions. A graph of the solution at several successive times can be seen in
Figure 2.24.

If we take two initially separated pulses, say

u(0, x) = e−x2

+ 2 e−(x−1)2 ,
∂u

∂t
(0, x) = 0,

centered at x = 0 and x = 1, then the solution

u(t, x) = 1
2
e−(x−ct)2 + e−(x−1−ct)2 + 1

2
e−(x+ct)2 + e−(x−1+ct)2

will consist of four pulses, two moving to the right and two to the left, all with the same
speed. An important observation is that when a right-moving pulse collides with a left-
moving pulse, they emerge from the collision unchanged, which is a consequence of the
inherent linearity of the wave equation. In Figure 2.25, the first picture plots the initial
displacement. In the second and third pictures, the two localized bumps have each split into
two copies moving in opposite directions. In the fourth and fifth, the larger right-moving
bump is in the process of interacting with the smaller left-moving bump. Finally, in the
last picture the interaction is complete, and the individual pairs of left- and right-moving
waves move off in tandem in opposing directions, experiencing no further collisions.

In general, if the initial displacement is localized, so that | f(x) | � 1 for |x | � 0, then,
after a finite time, the left- and right-moving waves will separate, and the observer will see
two half-size replicas running away, with speed c, in opposite directions. If the displacement
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Figure 2.26. The error function erf x.

is not localized, then the left and right traveling waves will never fully disengage, and one
might be hard pressed to recognize that a complicated solution pattern is, in reality, just
the superposition of two simple traveling waves. For example, consider the elementary
trigonometric solution

cos ct cosx = 1
2 cos(x− ct) + 1

2 cos(x+ ct).
⊎

(2.84)

In accordance with the left-hand expression, an observer will see a standing cosinusoidal
wave that vibrates up and down with frequency c. However, the d’Alembert form of the
solution on the right-hand side says that this is just the sum of left- and right-traveling
cosine waves! The interactions of their peaks and troughs reproduce the standing wave.
Thus, the same solution can be interpreted in two seemingly incompatible ways. And,
in fact, this paradox lies at the heart of the perplexing wave-particle duality of quantum
physics.

Example 2.17. By way of contrast, suppose there is no initial displacement, so
f(x) ≡ 0, and the motion is purely the result of the initial velocity ut(0, x) = g(x).
Physically, this models a violin string at rest being struck by a “hammer blow” at the
initial time. In this case, the d’Alembert formula (2.82) reduces to

u(t, x) =
1

2 c

∫ x+ct

x−ct

g(z)dz. (2.85)

For example, when u(0, x) = 0, ut(0, x) = e−x2

, the resulting solution (2.85) is

u(t, x) =
1

2 c

∫ x+ct

x−ct

e−x2

dz =

√
π

4 c

[
erf(x+ ct)− erf(x− ct)

]
, (2.86)

where

erf x =
2√
π

∫ x

0

e−z2

dz (2.87)

is known as the error function due to its many applications throughout probability and
statistics, [39]. The error function integral cannot be written in terms of elementary
functions; nevertheless, its properties have been well studied and its values tabulated,
[86]. A graph appears in Figure 2.26. The constant in front of the integral (2.87) has been
chosen so that the error function has asymptotic values

lim
x→∞ erf x = 1, lim

x→−∞ erf x = −1, (2.88)
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 2.27. Error function solution to the wave equation.
⊎

which follow from a well-known integration formula to be derived in Exercise 2.4.21.

A graph of the solution (2.86) at successive times is displayed in Figure 2.27. The
first graph shows the zero initial displacement. Gradually, the effect of the initial hammer
blow is felt further and further away along the string, as the two wave fronts propagate
away from the origin, both with speed c, but in opposite directions. Thus, unlike the case
of a nonzero initial displacement in Figure 2.24, where the solution eventually returns to
its equilibrium position u = 0 after the wave passes by, a nonzero initial velocity leaves the
string permanently deformed.

In general, the lines of slope ±c, where the respective characteristic variables are
constant,

ξ = x− ct = a, η = x+ ct = b, (2.89)

are known as the characteristics of the wave equation. Thus, the second-order wave equa-
tion has two distinct characteristic lines passing through each point in the (t, x)–plane.

Remark : The characteristic lines are the one-dimensional counterparts of the light
cone in Minkowski space-time, which plays a starring role in special relativity, [70, 75].
See Section 12.5 for further details.

In Figure 2.28, we plot the two characteristics going through a point (0, y) on the x
axis. The wedge-shaped region {y − ct ≤ x ≤ y + ct, t ≥ 0} lying between them is known
as the domain of influence of the point (0, y), since, in general, the value of the initial data
at a point will affect the subsequent solution values only in its domain of influence. Indeed,
the effect of an initial displacement at the point y propagates along the two characteristic
lines, while the effect of an initial velocity there will be felt at every point in the triangular
wedge.

External Forcing and Resonance

When a homogeneous vibrating medium is subjected to external forcing, the wave equation
acquires an additional, inhomogeneous term:

∂2u

∂t2
= c2

∂2u

∂x2
+ F (t, x), (2.90)
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t

x

(0, y)

Figure 2.28. Characteristic lines and domain of influence.

in which F (t, x) represents a force imposed at time t and spatial position x. With a bit
more work, d’Alembert’s solution technique can be readily adapted to incorporate the
forcing term.

Let us, for simplicity, assume that the differential equation is supplemented by homo-
geneous initial conditions,

u(0, x) = 0, ut(0, x) = 0, (2.91)

meaning that there is no initial displacement or velocity. To solve the initial value problem
(2.90–91), we switch to the same characteristic coordinates (2.76), setting

v(ξ, η) = u

(
η − ξ

2 c
,
η + ξ

2

)
.

Invoking the chain rule formulas (2.79), we find that the forced equation (2.90) becomes

∂2v

∂ξ ∂η
= −

1

4c2
F

(
η − ξ

2 c
,
η + ξ

2

)
. (2.92)

Let us integrate both sides of the equation with respect to η, on the interval ξ ≤ ζ ≤ η:

∂v

∂ξ
(ξ, η)−

∂v

∂ξ
(ξ, ξ) = −

1

4c2

∫ η

ξ

F

(
ζ − ξ

2 c
,
ζ + ξ

2

)
dζ. (2.93)

But, recalling (2.78),

∂v

∂ξ
(ξ, η) = −

1

2c

∂u

∂t

(
η − ξ

2 c
,
η + ξ

2

)
+

1

2

∂u

∂x

(
η − ξ

2 c
,
η + ξ

2

)
,

and so, in particular,

∂v

∂ξ
(ξ, ξ) = −

1

2c

∂u

∂t
(0, ξ) +

1

2

∂u

∂x
(0, ξ) = 0,

which vanishes owing to our choice of homogeneous initial conditions (2.91). Indeed, the
initial velocity condition says that ut(0, x) = 0, while differentiating the initial displacement
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condition u(0, x) = 0 with respect to x implies that ux(0, x) = 0 for all x, including x = ξ.
As a result, (2.93) simplifies to

∂v

∂ξ
(ξ, η) = − 1

4c2

∫ η

ξ

F

(
ζ − ξ

2 c
,
ζ + ξ

2

)
dζ.

We now integrate the latter equation with respect to ξ on the interval ξ ≤ χ ≤ η, producing

− v(ξ, η) = v(η, η)− v(ξ, η) = − 1

4c2

∫ η

ξ

∫ η

χ

F

(
ζ − χ

2 c
,
ζ + χ

2

)
dζ dχ,

since v(η, η) = u(0, η) = 0, thanks again to the initial conditions. In this manner, we
have produced an explicit formula for the solution to the characteristic variable version of
the forced wave equation subject to the homogeneous initial conditions. Reverting to the
original physical coordinates, the left-hand side of this equation becomes −u(t, x). As for
the double integral on the right-hand side, it takes place over the triangular region

T (ξ, η) = { (χ, ζ) | ξ ≤ χ ≤ ζ ≤ η } . (2.94)

Let us introduce “physical” integration variables by setting

χ = y − c s, ζ = y + c s.

The defining inequalities of the triangle (2.94) become

x− ct ≤ y − c s ≤ y + c s ≤ x+ ct,

and so, in the physical coordinates, the triangular integration domain assumes the form

D(t, x) = { (s, y) | x− c (t− s) ≤ y ≤ x+ c (t− s), 0 ≤ s ≤ t } , (2.95)

which is graphed in Figure 2.29. The change of variables formula for double integrals
requires that we compute the Jacobian determinant

det

(
∂χ/∂y ∂χ/∂s

∂ζ/∂y ∂ζ/∂s

)
= det

(
1 −c
1 c

)
= 2c,

and so dχ dζ = 2c ds dy. Therefore,

u(t, x) =
1

2c

∫ ∫
D(t,x)

F (s, y) ds dy =
1

2c

∫ t

0

∫ x+c (t−s)

x−c (t−s)

F (s, y) dy ds, (2.96)

which gives the solution formula for the forced wave equation when subject to homogeneous
initial conditions.

To solve the general initial value problem, we appeal to linear superposition, writing its
solution as a sum of the solution (2.96) to the forced wave equation subject to homogeneous
initial conditions plus the d’Alembert solution (2.82) to the unforced equation subject to
inhomogeneous boundary conditions.

Theorem 2.18. The solution to the general initial value problem

utt = c2uxx + F (t, x), u(0, x) = f(x), ut(0, x) = g(x), −∞ < x < ∞, t > 0,

for the wave equation subject to an external forcing is given by

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2 c

∫ x+ct

x−ct

g(y) dy +
1

2c

∫ t

0

∫ x+c (t−s)

x−c (t−s)

F (s, y) dy ds.

(2.97)
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Figure 2.29. Domain of dependence.

Observe that the solution is a linear superposition of the respective effects of the initial
displacement, the initial velocity, and the external forcing. The triangular integration
region (2.95), lying between the x–axis and the characteristic lines going backwards from
(t, x), is known as the domain of dependence of the point (t, x). This is because, for any
t > 0, the solution value u(t, x) depends only on the values of the initial data and the
forcing function at points lying within the domain of dependence D(t, x). Indeed, the first
term in the solution formula (2.97) requires only the initial displacement at the corners
(0, x + ct), (0, x− ct); the second term requires only the initial velocity at points on the
x–axis lying on the vertical side of D(t, x); while the final term requires the value of the
external force on the entire triangular region.

Example 2.19. Let us solve the initial value problem

utt = uxx + sinωt sin x, u(0, x) = 0, ut(0, x) = 0,

for the wave equation with unit wave speed subject to a sinusoidal forcing function whose
amplitude varies periodically in time with frequency ω > 0. According to formula (2.96),
the solution is

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s

sinωs sin y dy ds

=
1

2

∫ t

0

sinωs
[
cos(x− t+ s)− cos(x+ t− s)

]
ds

=

⎧⎪⎪⎨⎪⎪⎩
sinωt− ω sin t

1− ω2
sin x, 0 < ω 	= 1,

sin t− t cos t

2
sinx, ω = 1.

⊎

Notice that, when ω 	= 1, the solution is bounded, being a combination of two vibrational
modes: an externally induced mode at frequency ω along with an internal mode, at fre-
quency 1. If ω = p/q 	= 1 is a rational number, then the solution varies periodically in
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Figure 2.30. Periodic and quasiperiodic functions.

time. On the other hand, if ω is irrational, then the solution is only quasiperiodic, and never
exactly repeats itself. Finally, if ω = 1, the solution grows without limit as t increases,
indicating that this is a resonant frequency . We will investigate external forcing and the
mechanisms leading to resonance in dynamical partial differential equations in more detail
in Chapters 4 and 6.

Example 2.20. To appreciate the difference between periodic and quasiperiodic
vibrations, consider the elementary trigonometric function

u(t) = cos t+ cosωt,

which is a linear combination of two simple periodic vibrations, of frequencies 1 and ω. If
ω = p/q is a rational number, then u(t) is a periodic function of period 2πq, so u(t+2πq) =
u(t). However, if ω is an irrational number, then u(t) is not periodic, and never repeats.
You are encouraged to inspect the graphs in Figure 2.30. The first is periodic — can you
spot where it begins to repeat? — whereas the second is only quasiperiodic. The only
quasiperiodic functions we will encounter in this text are linear combinations of periodic
trigonometric functions whose frequencies are not all rational multiples of each other. To
the uninitiated, such quasiperiodic motions may appear to be random, even though they are
built from a few simple periodic constituents. While ostensibly complicated, quasiperiodic
motion is not true chaos, which is is an inherently nonlinear phenomenon, [77].

Exercises

2.4.1. Solve the initial value problem utt = c2uxx, u(0, x) = e−x2

, ut(0, x) = sinx.

2.4.2.(a) Solve the wave equation utt = uxx when the initial displacement is the box function

u(0, x) =

{
1, 1 < x < 2,
0, otherwise,

while the initial velocity is 0.

(b) Sketch the resulting solution at several representative times.
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2.4.3. Answer Exercise 2.4.2 when the initial velocity is the box function, while the initial dis-

placement is zero.

2.4.4. Write the following solutions to the wave equation utt = uxx in d’Alembert form (2.82).

Hint : What is the appropriate initial data?

(a) cosx cos t, (b) cos 2x sin 2 t, (c) ex+t
, (d) t2 + x2, (e) t3 + 3 tx2.

♥ 2.4.5.(a) Solve the dam break problem, that is, the wave equation when the initial displacement

is a step function σ(x) =

{
1, x > 0,
0, x < 0,

and there is no initial velocity. (b) Analyze the

case in which there is no initial displacement, while the initial velocity is a step function.

(c) Are your solutions classical solutions? Explain your answer. (d) Prove that the step

function is the limit, as n → ∞, of the functions fn(x) =
1

π
tan

−1 nx +
1

2
. (e) Show that,

in both cases, the step function solution can be realized as the limit, as n → ∞, of solutions

to the initial value problems with the functions fn(x) as initial displacement or velocity.

♦ 2.4.6. Suppose u(t, x) solves the initial value problem u(0, x) = f(x), ut(0, x) = g(x), for the

wave equation (2.66). Prove that the solution to the initial value problem u(t0, x) = f(x),
ut(t0, x) = g(x), is u(t − t0, x).

2.4.7. Find all resonant frequencies for the wave equation with wave speed c when subject to

the external forcing function F (t, x) = sinωt sin kx for fixed ω, k > 0.

2.4.8. Consider the initial value problem utt = 4uxx + F (t, x), u(0, x) = f(x), ut(0, x) = g(x).
Determine (a) the domain of influence of the point (0, 2); (b) the domain of dependence of

the point (3,−1); (c) the domain of influence of the point (3,−1).

2.4.9.(a) A solution to the wave equation utt = 2uxx is generated by a displacement concen-

trated at position x0 = 1 and time t0 = 0, but no initial velocity. At what time will an

observer at position x1 = 5 feel the effect of this displacement? Will the observer continue

to feel an effect in the future? (b) Answer part (a) when there is an initial velocity concen-

trated at position x0 = 1 and time t0 = 0, but no initial displacement.

2.4.10. Suppose u(t, x) solves the initial value problem utt = 4uxx + sinωt cosx, u(0, x) = 0,
ut(0, x) = 0. Is h(t) = u(t, 0) a periodic function?

♥ 2.4.11.(a) Write down an explicit formula for the solution to the initial value problem

∂2u

∂t2
− 4

∂2u

∂x2
= 0, u(0, x) = sinx,

∂u

∂t
(0, x) = cos x, −∞ < x < ∞, t ≥ 0.

(b) True or false: The solution is a periodic function of t.
(c) Now solve the forced initial value problem

∂2u

∂t2
− 4

∂2u

∂x2
= cos 2 t, u(0, x) = sin x,

∂u

∂t
(0, x) = cos x, −∞ < x < ∞, t ≥ 0.

(d) True or false: The forced equation exhibits resonance. Explain.

(e) Does the answer to part (d) change if the forcing function is sin 2t?

2.4.12. Given a classical solution u(t, x) of the wave equation, let E =
1
2 (u

2
t + c2u2x) be the

associated energy density and P = utux the momentum density .

(a) Prove that ∂P/∂t = ∂E/∂x and ∂E/∂t = c2∂P/∂x. Explain why both E and P are

conserved densities for the wave equation.

(b) Show that E(t, x) and P (t, x) both satisfy the wave equation.

(c) Suppose that both ut(t, x) → 0 and ux(t, x) → 0 as |x | → ∞ sufficiently rapidly in

order that the integrals defining the total momentum P(t) =

∫ ∞

−∞
P (t, x) dx and the

total energy E(t) =
∫ ∞

−∞
E(t, x) dx are defined and finite for each t ∈ R. Show that P(t)

and E(t) are conserved quantities, i.e., they are constants, independent of the time t.
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♦ 2.4.13. Let u(t, x) be a classical solution to the wave equation utt = c2uxx. The total energy

E(t) =
∫ ∞

−∞

1

2

[(
∂u

∂t

)
2
+ c2

(
∂u

∂x

)
2
]
dx (2.98)

represents the sum of kinetic and potential energies of the displacement u(t, x) at time t.

Suppose that ∇u → 0 sufficiently rapidly as x → ±∞; more precisely, one can find α > 1
2

and C(t) > 0 such that |ut(t, x) |, |ux(t, x) | ≤ C(t)/|x |α for each fixed t and all sufficiently

large |x | 	 0. For such solutions, establish the Law of Conservation of Energy by showing

that E(t) is finite and constant. Hint : You do not need the formula for the solution.

♦ 2.4.14.(a) Use Exercise 2.4.13 to prove that the only classical solution to the initial-boundary

value problem utt = c2uxx, u(0, x) = 0, ut(0, x) = 0, satisfying the indicated decay assump-

tions is the trivial solution u(t, x) ≡ 0. (b) Establish the following Uniqueness Theorem for

the wave equation: there is at most one such solution to the initial-boundary value problem

utt = c2uxx, u(0, x) = f(x), ut(0, x) = g(x).

2.4.15. The telegrapher’s equation utt + aut = c2uxx, with a > 0, models the vibration of

a string under frictional damping. (a) Show that, under the decay assumptions of Exer-

cise 2.4.13, the wave energy (2.98) of a classical solution is a nonincreasing function of t.
(b) Prove uniqueness of such solutions to the initial value problem for the telegrapher’s

equation.

2.4.16. What happens to the proof of Theorem 2.14 if c = 0?

2.4.17.(a) Explain why the d’Alembert factorization method doesn’t work when the wave speed

c(x) depends on the spatial variable x.
(b) Does it work when c(t) depends only on the time t?

2.4.18. The Poisson–Darboux equation is
∂2u

∂t2
−
∂2u

∂x2
−
2

x

∂u

∂x
= 0. Solve the initial value problem

u(0, x) = 0, ut(0, x) = g(x), where g(x) = g(−x) is an even function. Hint : Set w = xu.

♥ 2.4.19.(a) Solve the initial value problem utt − 2utx − 3uxx = 0, u(0, x) = x2, ut(0, x) = ex.

Hint : Factor the associated linear differential operator. (b) Determine the domain of influ-

ence of a point (0, x). (c) Determine the domain of dependence of a point (t, x) with t > 0.

♦ 2.4.20.(a) Use polar coordinates to prove that, for any a > 0,∫∫

R2
e−a (x2+y2) dx dy =

π
a
. (2.99)

(b) Explain why
∫ ∞

−∞
e−ax2

dx =

√
π
a
. (2.100)

♦ 2.4.21. Use Exercise 2.4.20 to prove the error function formulae (2.88).
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