
Chapter 11

Dynamics of Planar Media

In previous chapters, we studied the equilibrium configurations of planar media — plates
and membranes — governed by the two-dimensional Laplace and Poisson equations. In
this chapter, we analyze their dynamics, modeled by the two-dimensional heat and wave
equations. The heat equation describes diffusion of, say, heat energy in a thin metal plate,
an animal population dispersing over a region, or a pollutant spreading out into a shallow
lake. The wave equation models small vibrations of a two-dimensional membrane such as a
drum. Since both equations fit into the general framework for dynamics that we established
in Section 9.5, their solutions share many of the general qualitative and analytic properties
possessed by their respective one-dimensional counterparts.

Although the increase in dimension may tax our analytical prowess, we have, in fact,
already mastered the principal solution techniques: separation of variables, eigenfunction
series, and fundamental solutions. When applied to partial differential equations in higher
dimensions, separation of variables in curvilinear coordinates often leads to new linear,
but non-constant-coefficient, ordinary differential equations, whose solutions are no longer
elementary functions. Rather, they are expressed in terms of a variety of important special
functions , which include the error and Airy functions we encountered earlier; the Bessel
functions, which play a starring role in the present chapter; and the Legendre and Ferrers
functions, spherical harmonics, and spherical Bessel functions arising in three-dimensional
problems. Special functions are ubiquitous in more advanced applications in physics, chem-
istry, mechanics, and mathematics, and, over the last two hundred and fifty years, many
prominent mathematicians have devoted significant effort to establishing their fundamen-
tal properties, to the extent that they are now, by and large, well understood, [86]. To
acquire the requisite familiarity with special functions, in preparation for employing them
to solve higher-dimensional partial differential equations, we must first learn basic series
solution techniques for linear second-order ordinary differential equations.

11.1 Diffusion in Planar Media

As we learned in Chapter 4, the equilibrium temperature u(x, y) of a thin, uniform, isotropic
plate is governed by the two-dimensional Laplace equation

Δu = uxx + uyy = 0.

Working by analogy, the dynamical diffusion of the plate’s temperature should be modeled
by the two-dimensional heat equation

ut = γΔu = γ (uxx + uyy). (11.1)
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The coefficient γ > 0, assumed constant, measures the relative speed of diffusion of heat
energy throughout the plate; its positivity is required on physical grounds, and also serves
to avoid ill-posedness inherent in running diffusion processes backwards in time. In this
model, we are assuming that the plate is uniform and isotropic, and experiences no loss of
heat or external heat sources other than at its edge — which can be arranged by covering
its top and bottom with insulation.

The solution u(t,x) = u(t, x, y) to the heat equation measures the temperature, at
time t, at each point x = (x, y) in the (bounded) domain Ω ⊂ R2 occupied by the plate.
To uniquely specify the solution u(t, x, y), we must impose suitable initial and boundary
conditions. The initial data is the temperature of the plate

u(0, x, y) = f(x, y), (x, y) ∈ Ω, (11.2)

at an initial time, which for simplicity, we take to be t0 = 0. The most important boundary
conditions are as follows:

• Dirichlet boundary conditions: Specifying

u = h on ∂Ω (11.3)

fixes the temperature along the edge of the plate.

• Neumann boundary conditions: Let n be the unit outwards normal on the boundary
of the domain. Specifying the normal derivative of the temperature,

∂u

∂n
= k on ∂Ω, (11.4)

effectively prescribes the heat flux along the boundary. Setting k = 0 corresponds
to an insulated boundary.

• Mixed boundary conditions: More generally, we can impose Dirichlet conditions on
part of the boundary D � ∂Ω and Neumann conditions on its complement N =
∂Ω \D. For instance, homogeneous mixed boundary conditions

u = 0 on D,
∂u

∂n
= 0 on N, (11.5)

correspond to freezing a portion of the boundary and insulating the remainder.

• Robin boundary conditions:

∂u

∂n
+ β u = τ on ∂Ω, (11.6)

where the edge of the plate sits in a heat bath at temperature τ .

Under reasonable assumptions on the domain, the initial data, and the boundary data,
a general theorem, [34, 38, 99], guarantees the existence of a unique solution u(t, x, y) to
any of these initial-boundary value problems for all subsequent times t > 0. Our practical
goal is to both compute and understand the behavior of the solution in specific situations.

Derivation of the Diffusion and Heat Equations

The physical derivation of the two-dimensional (and three-dimensional) heat equation relies
on the same basic thermodynamic laws that were used, in Section 4.1, to establish the
one-dimensional version. The first principle is that heat energy flows from hot to cold as
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rapidly as possible. According to multivariable calculus, [8, 108], the negative temperature
gradient −∇u points in the direction of the steepest decrease in the temperature function
u at a point, and so heat energy will flow in that direction. Therefore, the heat flux vector
w, which measures the magnitude and direction of the flow of heat energy, should be
proportional to the temperature gradient:

w(t, x, y) = − κ(x, y)∇u(t, x, y). (11.7)

The scalar quantity κ(x, y) > 0 measures the thermal conductivity of the material, so
(11.7) is the multi-dimensional form of Fourier’s Law of Cooling (4.5). We are assuming
that the thermal conductivity depends only on the position (x, y) ∈ Ω, which means that
the material in the plate

(a) is not changing in time;

(b) is isotropic, meaning that its thermal conductivity is the same in all directions;

(c) and, moreover, its thermal conductivity is not affected by any change in temperature.

Dropping either assumption (b) or (c) would result in a considerably more challenging
nonlinear diffusion equation.

The second thermodynamic principle is that, in the absence of external heat sources,
heat can enter any subregion R ⊂ Ω only through its boundary ∂R. (Keep in mind that
the plate is insulated from above and below.) Let ε(t, x, y) denote the heat energy density
at each time and point in the domain, so that

HR(t) =

∫ ∫
R

ε(t, x, y) dx dy

represents the total heat energy contained within the subregion R at time t. The amount
of additional heat energy entering R at a boundary point x ∈ ∂R is given by the normal
component of the heat flux vector, namely −w ·n, where, as always, n denotes the outward
unit normal to the boundary ∂R. Thus, the total heat flux entering the region R is ob-

tained by integration along the boundary of R, resulting in the line integral −
∮
∂R

w · n ds.
Equating the rate of change of heat energy to the heat flux yields

dHR

dt
=

∫ ∫
R

∂ε

∂t
(t, x, y) dx dy = −

∮
∂R

w · n ds = −
∫ ∫

R

∇ ·w dx dy,

where we applied the divergence form of Green’s Theorem, (6.80), to convert the flux line
integral into a double integral. Thus,∫ ∫

R

(
∂ε

∂t
+∇ ·w

)
dx dy = 0. (11.8)

Keep in mind that this result must hold for any subdomain R ⊂ Ω. Now, according to
Exercise 11.1.13, the only way in which an integral of a continuous function can vanish for
all subdomains is if the integrand is identically zero, and so

∂ε

∂t
+∇ ·w = 0. (11.9)

In this manner, we arrive at the basic conservation law relating the heat energy density ε
and the heat flux vector w.
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As in our one-dimensional model, cf. (4.3), the heat energy density ε(t, x, y) is propor-
tional to the temperature, so

ε(t, x, y) = σ(x, y) u(t, x, y), where σ(x, y) = ρ(x, y)χ(x, y) (11.10)

is the product of the density ρ and the specific heat capacity χ of the material at the
point (x, y) ∈ Ω. Combining this with the Fourier Law (11.7) and the energy balance
equation (11.10) leads to the general two-dimensional diffusion equation

∂u

∂t
=

1

σ
∇ ·

(
κ∇u

)
(11.11)

governing the thermodynamics of an isotropic medium in the absence of external heat
sources or sinks. In full detail, this second-order partial differential equation is

∂u

∂t
=

1

σ(x, y)

[
∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)]
. (11.12)

Such diffusion equations are also used to model movements of populations, e.g., bacte-
ria in a petri dish or wolves in the Canadian Rockies, [81, 84]. Here the solution u(t, x, y)
represents the population density at position (x, y) at time t, which diffuses over the do-
main due to random motions of the individuals. Similar diffusion processes model the
mixing of solutes in liquids, with the diffusion induced by the random Brownian motion
from molecular collisions. More generally, diffusion processes in the presence of chemical
reactions and convection due to fluid motion are modeled by the more general class of
reaction-diffusion and convection-diffusion equations , [107].

In particular, if the body (or the environment or the solvent) is uniform, then both
σ and κ are constant, and so (11.11) reduces to the heat equation (11.1) with thermal
diffusivity

γ =
κ

σ
=

κ

ρχ
. (11.13)

Both the heat and more general diffusion equations are examples of parabolic partial dif-
ferential equations, the terminology being adapted from Definition 4.12 to apply to partial
differential equations in more than two variables. As we will see, all the basic qualitative
features of solutions to the one-dimensional heat equation carry over to parabolic partial
differential equations in higher dimensions.

Indeed, the general diffusion equation (11.12) can be readily fit into the self-adjoint
dynamical framework of Section 9.5, taking the form

ut = −∇∗ ◦∇u. (11.14)

The gradient operator ∇ maps scalar fields u to vector fields v = ∇u; its adjoint ∇∗, which
goes in the reverse direction, is taken with respect to the weighted inner products

〈 u , ũ 〉 =
∫ ∫

Ω

u(x, y) ũ(x, y) σ(x, y)dx dy, 〈〈v , ṽ 〉〉 =
∫ ∫

Ω

v(x, y) · ṽ(x, y) κ(x, y) dx dy,
(11.15)

between, respectively, scalar and vector fields. As in (9.33), a straightforward integration
by parts tells us that

∇∗v = − 1

σ
∇ · (κv) = − 1

σ

[
∂(κ v1)

∂x
+

∂(κ v2)

∂y

]
, when v =

(
v1
v2

)
. (11.16)
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Therefore, the right-hand side of (11.14) equals

−∇∗ ◦∇u =
1

σ
∇ · (κ∇u), (11.17)

which thereby recovers the general diffusion equation (11.11). As always, the validity of
the adjoint formula (11.16) rests on the imposition of suitable homogeneous boundary
conditions: Dirichlet, Neumann, mixed, or Robin.

In particular, to obtain the heat equation, we take σ and κ to be constant, and so
the inner products (11.15) reduce, up to a constant factor, to the usual L2 inner products
between scalar and vector fields. In this case, the adjoint of the gradient is, up to a scale
factor, minus the divergence: ∇∗ = − γ∇· , where γ = κ/σ. In this scenario, (11.14)
reduces to the two-dimensional heat equation (11.1).

Separation of Variables

Let us now discuss analytical solution techniques. According to Section 9.5, the separable
solutions to any linear evolution equation

ut = −S[u ] (11.18)

are of exponential form

u(t, x, y) = e−λt v(x, y). (11.19)

Since the linear operator S involves differentiation with respect to only the spatial variables
x, y, we obtain

∂u

∂t
= − λ e−λt v(x, y), while S[u ] = e−λt S[v ].

Substituting back into the diffusion equation (11.18) and canceling the exponentials, we
conclude that

S[v ] = λ v. (11.20)

Thus, v(x, y) must be an eigenfunction for the linear operator S, subject to the relevant
homogeneous boundary conditions.

In the case of the heat equation (11.1),

S[u ] = −γΔu,

and hence, as in Example 9.40, the eigenvalue equation (11.20) is the two-dimensional
Helmholtz equation

γΔv + λ v = 0, or, in detail, γ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ λ v = 0. (11.21)

According to Theorem 9.34, self-adjointness implies that the eigenvalues are all real and
nonnegative: λ ≥ 0. In the positive definite cases — Dirichlet and mixed boundary
conditions — they are strictly positive, while the Neumann boundary value problem admits
a zero eigenvalue λ0 = 0 corresponding to the constant eigenfunction v0(x, y) ≡ 1.

Let us index the eigenvalues in increasing order:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , (11.22)
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repeated according to their multiplicities, where λ0 = 0 is an eigenvalue only in the Neu-
mann case, and λk → ∞ as k → ∞. For each eigenvalue λk, let vk(x, y) be an independent
eigenfunction. The corresponding separable solution is

uk(t, x, y) = e−λk t vk(x, y).

Those corresponding to positive eigenvalues are exponentially decaying in time, while a
zero eigenvalue produces a constant solution u0(t, x, y) ≡ 1. The general solution to the
homogeneous boundary value problem can then be built up as an infinite series in these
basic eigensolutions

u(t, x, y) =
∞∑

k=1

ck uk(t, x, y) =
∞∑

k=1

ck e
−λk t vk(x, y). (11.23)

The coefficients ck are prescribed by the initial conditions, which require

∞∑
k=1

ck vk(x, y) = f(x, y). (11.24)

Since S is self-adjoint, Theorem 9.33 guarantees orthogonality† of the eigenfunctions under
the L2 inner product on the domain Ω:

〈 vj , vk 〉 =
∫ ∫

Ω

vj(x, y) vk(x, y) dx dy = 0, j 	= k. (11.25)

As a consequence, the coefficients in (11.24) are given by the standard orthogonality formula
(9.104), namely

ck =
〈 f , vk 〉
‖ vk ‖2

=

∫ ∫
Ω

f(x, y) vk(x, y) dx dy∫ ∫
Ω

vk(x, y)
2 dx dy

. (11.26)

(For the more general diffusion equation (11.11), one uses the appropriately weighted inner
product.) The exponential decay of the eigenfunction coefficients implies that the resulting
eigensolution series (11.23) converges and thus produces the solution to the initial-boundary
value problem for the diffusion equation. See [34; p. 369] for a precise statement and proof
of the general theorem.

Qualitative Properties

Before tackling examples in which we are able to construct explicit formulas for the eigen-
functions and eigenvalues, let us see what the eigenfunction series solution (11.23) can
tell us about general diffusion processes. Based on our experience with the case of a one-
dimensional bar, the final conclusions will not be especially surprising. Indeed, they also
apply, word for word, to diffusion processes in three-dimensional solid bodies. A reader who
is impatient to see the explicit formulas may wish to skip ahead to the following section,
returning here as needed.

† As usual, in the case of a repeated eigenvalue, one chooses an orthogonal basis of the
associated eigenspace to ensure orthogonality of all the basis eigenfunctions.
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Keep in mind that we are still dealing with the solution to the homogeneous boundary
value problem. The first observation is that all terms in the series solution (11.23), with the
possible exception of a null eigenfunction term that appears in the semi-definite Neumann
case, are tending to zero exponentially fast. Since most eigenvalues are large, all the higher-
order terms in the series become almost instantaneously negligible, and hence the solution
can be accurately approximated by a finite sum over the first few eigenfunction modes.
As time goes on, more and more of the modes can be neglected, and the solution decays
to thermal equilibrium at an exponentially fast rate. The rate of convergence to thermal
equilibrium is, for most initial data, governed by the smallest positive eigenvalue λ1 > 0
for the Helmholtz boundary value problem on the domain.

In the positive definite cases of homogeneous Dirichlet or mixed boundary conditions,
thermal equilibrium is u(t, x, y) → u�(x, y) ≡ 0. Here, the equilibrium temperature is equal
to the zero boundary temperature — even if this temperature is fixed on only a small part
of the boundary. The initial heat is eventually dissipated away through the uninsulated
part of the boundary. In the semi-definite Neumann case, corresponding to a completely
insulated plate, the general solution has the form

u(t, x, y) = c0 +

∞∑
k=1

ck e
−λkt vk(x, y), (11.27)

where the sum is over the positive eigenmodes, λk > 0. Since all the summands are expo-
nentially decaying, the final equilibrium temperature u� = c0 is the same as the constant
term in the eigenfunction expansion. We evaluate this term using the orthogonality formula
(11.26), and so, as t → ∞,

u(t, x, y) −→ c0 =
〈 f , 1 〉
‖ 1 ‖2

=

∫ ∫
Ω

f(x, y) dx dy∫ ∫
Ω

dx dy

=
1

area Ω

∫ ∫
Ω

f(x, y) dx dy. (11.28)

We conclude that the equilibrium temperature is equal to the average initial temperature
distribution. Thus, when the plate is fully insulated, the heat energy cannot escape, and
instead redistributes itself in a uniform manner over the domain.

Diffusion has a smoothing effect on the initial temperature distribution f(x, y). As-
sume that the eigenfunction coefficients are uniformly bounded, so | ck | ≤ M for some
constant M . This will certainly be the case if f(x, y) is piecewise continuous or, more gen-
erally, belongs to L2, since Bessel’s inequality, (3.117), which holds for general orthogonal
systems, implies that ck → 0 as k → ∞. Many distributions, including delta functions,
also have bounded Fourier coefficients. Then, at any time t > 0 after the initial instant,
the coefficients ck e

−λkt in the eigenfunction series solution (11.23) are exponentially small
as k → ∞, which is enough to ensure smoothness of the solution u(t, x, y) for each t > 0.
Therefore, the diffusion process serves to immediately smooth out jumps, corners, and
other discontinuities in the initial data. As time progresses, the local variations in the so-
lution become less and less pronounced, as it asymptotically reaches a constant equilibrium
state.

As a result, diffusion processes can be effectively applied to smooth and denoise planar
images. The initial data u(0, x, y) = f(x, y) represents the gray-scale value of the image at
position (x, y), so that 0 ≤ f(x, y) ≤ 1, with 0 representing black and 1 representing white.
As time progresses, the solution u(t, x, y) represents a more and more smoothed version
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Figure 11.1. Smoothing a gray scale image.

of the image. Although this has the effect of removing unwanted high-frequency noise,
there is also a gradual blurring of the actual features. Thus, the “time” or “multiscale”
parameter t needs to be chosen to optimally balance between the two effects — the larger
t is the more noise is removed, but the more noticeable the blurring. A representative
illustration appears in Figure 11.1. The blurring affects small-scale features first, then,
gradually, those at larger and larger scales, until eventually the entire image is blurred to
a uniform gray. To further suppress undesirable blurring effects, modern image-processing
filters are based on anisotropic (and thus nonlinear) diffusion equations; see [100] for a
survey of recent progress in this active field.

Since the forward heat equation effectively blurs the features in an image, we might be
tempted to reverse “time” in order to sharpen the image. However, the argument presented
in Section 4.1 tells us that the backwards heat equation is ill-posed, and hence cannot be
used directly for this purpose. Various “regularization” strategies have been devised to
circumvent this mathematical barrier, and thereby design effective image enhancement
algorithms, [46].

Inhomogeneous Boundary Conditions and Forcing

Let us next briefly discuss how to incorporate inhomogeneous boundary conditions and
external heat sources into the general solution framework. Consider, as a specific example,
the forced heat equation

ut = γΔu+ F (x, y) for (x, y) ∈ Ω, (11.29)

where F (x, y) represents an unvarying external heat source or sink, subject to inhomoge-
neous Dirichlet boundary conditions

u(x, y) = h(x, y) for (x, y) ∈ ∂Ω, (11.30)

that fixes the temperature of the plate on its boundary. When the external forcing does
not vary in time, we expect the solution to eventually settle down to an equilibrium con-
figuration: u(t, x, y) → u�(x, y) as t → ∞. This will be justified below.

The time-independent equilibrium temperature u�(x, y) satisfies the equation obtained
by setting ut = 0 in the evolution equation (11.29), which reduces it to the Poisson equation

− γΔu� = F for (x, y) ∈ Ω. (11.31)

The equilibrium solution is subject to the same inhomogeneous Dirichlet boundary condi-
tions (11.30). Positive definiteness of the Dirichlet boundary value problem implies that
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there is a unique equilibrium solution, which can be characterized as the sole minimizer of
the associated Dirichlet principle; for details see Section 9.3.

With the equilibrium solution in hand, we let

v(t, x, y) = u(t, x, y)− u�(x, y)

measure the deviation of the dynamical solution u from its eventual equilibrium. By
linearity v(t, x, y) satisfies the unforced heat equation subject to homogeneous boundary
conditions:

vt = γΔv, (x, y) ∈ Ω, v = 0, (x, y) ∈ ∂Ω. (11.32)

Therefore, v can be expanded in an eigenfunction series (11.23), and will decay to zero,
v(t, x, y) → 0, at an exponentially fast rate prescribed by the smallest eigenvalue λ1 of
the associated homogeneous Helmholtz boundary value problem. (Special initial data can
decay at a faster rate, prescribed by a larger eigenvalue.) Consequently, the solution to the
forced inhomogeneous problem (11.29–30) will approach thermal equilibrium,

u(t, x, y) = v(t, x, y) + u�(x, y) −→ u�(x, y),

at exactly the same exponential rate as its homogeneous counterpart.

The Maximum Principle

Finally, let us state and prove the (Weak) Maximum Principle for the two-dimensional
heat equation. As in the one-dimensional situation described in Section 8.3, it states that
the maximum temperature in a body that is either insulated or having heat removed from
its interior must occur either at the initial time or on its boundary. Observe that there are
no conditions imposed on the boundary temperatures.

Theorem 11.1. Suppose u(t, x, y) is a solution to the forced heat equation

ut = γΔu+ F (t, x, y), for (x, y) ∈ Ω, 0 < t < c,

where Ω is a bounded domain, and γ > 0. Suppose F (t, x, y) ≤ 0 for all (x, y) ∈ Ω and
0 ≤ t ≤ c. Then the global maximum of u on the set { (t, x, y) | (x, y) ∈ Ω, 0 ≤ t ≤ c }
occurs either when t = 0 or at a boundary point (x, y) ∈ ∂Ω.

Proof : First, let us prove the result under the assumption that F (t, x, y) < 0
everywhere. At a local interior maximum, ut = 0, and, since its Hessian matrix

∇2u =

(
uxx uxy

uxy uyy

)
must be negative semi-definite, both diagonal entries uxx, uyy ≤ 0

there. This would imply that ut − γΔu ≥ 0, resulting in a contradiction. If the maximum
were to occur when t = c, then ut ≥ 0 there, and also uxx, uyy ≤ 0, leading again to a
contradiction.

To generalize to the case F (t, x, y) ≤ 0, which includes the heat equation when
F (t, x, y) ≡ 0, set

v(t, x, y) = u(t, x, y) + ε (x2 + y2), where ε > 0.

Then,
∂v

∂t
= γΔv − 4γ ε+ F (t, x, y) = γΔv + F̃ (t, x, y),
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where
F̃ (t, x, y) = F (t, x, y)− 4γ ε < 0.

Thus, by the previous paragraph, the maximum of v occurs either when t = 0 or at a
boundary point (x, y) ∈ ∂Ω. We then let ε → 0 and conclude the same for u. More
precisely, let u(t, x, y) ≤ M on t = 0 or (x, y) ∈ ∂Ω. Then

v(t, x, y) ≤ M + C ε, where C = max
{
x2 + y2

∣∣ (x, y) ∈ ∂Ω
}
< ∞,

since Ω is a bounded domain. Thus,

u(t, x, y) ≤ v(t, x, y) ≤ M + C ε.

Letting ε → 0 proves that u(t, x, y) ≤ M at all (x, y) ∈ Ω, 0 ≤ t ≤ c, which completes the
proof. Q.E.D.

Remark : The preceding proof can be readily adapted to general diffusion equations
(11.12) — assuming that the coefficients σ, κ remain strictly positive throughout the do-
main.

Exercises

11.1.1. A homogeneous, isotropic circular metal disk of radius 1 meter has its entire boundary
insulated. The initial temperature at a point is equal to the distance of the point from the
center. Formulate an initial-boundary value problem governing the disk’s subsequent
temperature dynamics. What is the eventual equilibrium temperature of the disk?

11.1.2. A homogeneous, isotropic, circular metal disk of radius 2 cm has half its boundary fixed
at 100◦ and the other half insulated. Given a prescribed initial temperature distribution,
set up the initial-boundary value problem governing its subsequent temperature profile.
What is the eventual equilibrium temperature of the disk? Does your answer depend on
the initial temperature?

11.1.3. Given the initial temperature distribution f(x, y) = xy (1− x)(1− y) on the unit square
Ω = {0 ≤ x, y ≤ 1}, determine the equilibrium temperature when subject to homogeneous
(a) Dirichlet boundary conditions; (b) Neumann boundary conditions.

11.1.4. A square plate with side lengths 1 meter has its right and left edges insulated, its top
edge held at 100◦, and its bottom edge held at 0◦. Assuming that the plate is made out of
a homogeneous, isotropic material, formulate an appropriate initial-boundary value
problem describing the temperature dynamics of the plate. Then find its eventual equilib-
rium temperature.

11.1.5. A square plate with side lengths 1 meter has initial temperature 5◦ throughout, and
evolves subject to the Neumann boundary conditions ∂u/∂n = 1 on its entire boundary.
What is the eventual equilibrium temperature?

♥ 11.1.6. Let u(t, x, y) be a solution to the heat equation on a bounded domain Ω subject to
homogeneous Neumann conditions on its boundary ∂Ω. (a) Prove that the total heat

H(t) =
∫∫

Ω
u(t, x, y) dx dy is conserved, i.e., is constant in time. (b) Use part (a) to

prove that the eventual equilibrium solution is everywhere equal to the average of the initial
temperature u(0, x, y). (c) What can you say about the behavior of the total heat for the
homogeneous Dirichlet boundary value problem? (d) What about an inhomogeneous
Dirichlet boundary value problem?
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11.1.7. Let u(t, x, y) be a nonconstant solution to the heat equation on a connected, bounded
domain Ω subject to homogeneous Dirichlet boundary conditions on ∂Ω. (a) Prove that its

L2 norm N(t) =

√∫∫
Ω

u(t, x, y)2 dxdy is a strictly decreasing function of t. (b) Is this

also true for mixed boundary conditions? (c) For Neumann boundary conditions?

11.1.8. Are the conclusions in Exercises 11.1.6 and 11.1.7 valid for the general diffusion
equation (11.12)?

♦ 11.1.9. Write out the eigenvalue equation governing the separable solutions to the general
diffusion equation (11.11), subject to appropriate boundary conditions. Given a complete
system of eigenfunctions, write down the eigenfunction series solution to the initial value
problem u(0, x, y) = f(x, y), including the formulas for the coefficients.

11.1.10. True or false: The equilibrium temperature of a fully insulated nonuniform plate whose
thermodynamics are governed by the general diffusion equation (11.12) equals the average
initial temperature.

11.1.11. Let α > 0, and consider the initial-boundary value problem ut = Δu−αu, u(0, x, y) =

f(x, y) on a bounded domain Ω ⊂ R2, with boundary conditions ∂u/∂n = 0 on ∂Ω.

(a) Write the equation in self-adjoint form (9.122). Hint : Look at Exercise 9.3.26.
(b) Prove that the problem has a unique equilibrium solution.

11.1.12. Write each of the following linear evolution equations in the self-adjoint form (9.122)
by choosing suitable inner products and a suitable set of homogeneous boundary conditions.
Is the operator you construct positive definite?

(a) ut = uxx + uyy − u, (b) ut = y uxx + xuyy , (c) ut = Δ2u.

♦ 11.1.13. Prove that if f(x, y) is continuous and
∫∫

R
f(x, y) dx dy = 0 for all R ⊂ Ω, then

f(x, y) ≡ 0 for (x, y) ∈ Ω. Hint : Adapt the method in Exercise 6.1.23.

11.2 Explicit Solutions of the Heat Equation

Solving the two-dimensional heat equation in series form requires knowing the eigen-
functions for the associated Helmholtz boundary value problem. Unfortunately, as with
the vast majority of partial differential equations, explicit solution formulas are few and far
between. In this section, we discuss two specific cases in which the required eigenfunctions
can be found in closed form. The calculations rely on a further separation of variables,
which, as we know, works in only a very limited class of domains. Nevertheless, interesting
solution features can be gleaned from these particular geometries.

The first example is a rectangular domain, and the eigensolutions can be expressed in
terms of elementary functions — trigonometric functions and exponentials. We then study
the heating of a circular disk. In this case, the eigenfunctions are no longer elementary
functions, but, rather, are expressed in terms of Bessel functions. Understanding their
basic properties will require us to take a detour to develop the fundamentals of power
series solutions to ordinary differential equations.

Heating of a Rectangle

A homogeneous rectangular plate

R =
{
0 < x < a, 0 < y < b

}
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is heated to a prescribed initial temperature,

u(0, x, y) = f(x, y), for (x, y) ∈ R. (11.33)

Then its top and bottom are insulated, while its sides are held at zero temperature. Our
task is to understand the thermodynamic evolution of the plate’s temperature.

The temperature u(t, x, y) evolves according to the two-dimensional heat equation

ut = γ (uxx + uyy), for (x, y) ∈ R, t > 0, (11.34)

where γ > 0 is the plate’s thermal diffusivity, while subject to homogeneous Dirichlet
conditions along the boundary of the rectangle at all subsequent times:

u(t, 0, y) = u(t, a, y) = u(t, x, 0) = u(t, x, b) = 0, 0 < x < a, 0 < y < b, t > 0.
(11.35)

As in (11.19), the eigensolutions to the heat equation are obtained from the usual expo-
nential ansatz u(t, x, y) = e−λt v(x, y). Substituting this expression into the heat equation,
we conclude that the function v(x, y) solves the Helmholtz eigenvalue problem

γ (vxx + vyy) + λ v = 0, (x, y) ∈ R, (11.36)

subject to the same homogeneous Dirichlet boundary conditions:

v(0, y) = v(a, y) = v(x, 0) = v(x, b) = 0, 0 < x < a, 0 < y < b. (11.37)

To tackle the rectangular Helmholtz eigenvalue problem (11.36–37), we shall, as in
(4.89), introduce a further separation of variables, writing the solution

v(x, y) = p(x) q(y)

as the product of functions depending on the individual Cartesian coordinates. Substituting
this expression into the Helmholtz equation (11.36), we find

γ p′′(x) q(y) + γ p(x) q′′(y) + λ p(x) q(y) = 0.

To effect the variable separation, we collect all terms involving x on one side and all terms
involving y on the other side of the equation, which is accomplished by dividing by v = pq
and rearranging the terms:

γ
p′′(x)
p(x)

= − γ
q′′(y)
q(y)

− λ ≡ −μ.

The left-hand side of this equation depends only on x, whereas the middle term depends
only on y. As before, this requires that the expressions equal a common separation constant ,
denoted by −μ. (The minus sign is for later convenience.) In this manner, we reduce our
partial differential equation to a pair of one-dimensional eigenvalue problems

γ
d2p

dx2
+ μ p = 0, γ

d2q

dy2
+ (λ− μ) q = 0, (11.38)

each of which is subject to homogeneous Dirichlet boundary conditions

p(0) = p(a) = 0, q(0) = q(b) = 0, (11.39)
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stemming from the boundary conditions (11.37). To obtain a nontrivial separable solution
to the Helmholtz equation, we seek nonzero solutions to these two supplementary eigenvalue
problems.

We have already solved these particular two boundary value problems (11.38–39) many
times; see, for instance, (4.21). The eigenfunctions are, respectively,

pm(x) = sin
mπx

a
, m = 1, 2, 3, . . . , qn(y) = sin

nπy

b
, n = 1, 2, 3, . . . ,

with

μ =
m2 π2 γ

a2
, λ− μ =

n2 π2 γ

b2
, so that λ =

m2 π2 γ

a2
+

n2 π2 γ

b2
.

Therefore, the separable eigenfunction solutions to the Helmholtz boundary value problem
(11.35–36) have the doubly trigonometric form

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, for m,n = 1, 2, 3, . . . , (11.40)

with associated eigenvalues

λm,n =
m2 π2 γ

a2
+

n2 π2 γ

b2
=

(
m2

a2
+

n2

b2

)
π2 γ . (11.41)

Each of these corresponds to an exponentially decaying eigensolution

um,n(t, x, y) = e−λm,n t vm,n(x, y) = exp

[
−
(

m2

a2
+

n2

b2

)
π2 γ t

]
sin

mπx

a
sin

nπy

b
(11.42)

to the original rectangular Dirichlet boundary value problem for the heat equation.

Using the fact that the univariate sine functions form a complete system, it is not
hard to prove, [120], that the separable eigenfunction solutions (11.42) are complete, and
so there are no non-separable eigenfunctions.† As a consequence, the general solution to
the initial-boundary value problem can be expressed as a linear combination

u(t, x, y) =

∞∑
m,n=1

cm,n um,n(t, x, y) =

∞∑
m,n=1

cm,n e
−λm,n t vm,n(x, y) (11.43)

of the eigenmodes. The coefficients cm,n are prescribed by the initial conditions, which
take the form of a double Fourier sine series

f(x, y) = u(0, x, y) =

∞∑
m,n=1

cm,nvm,n(x, y) =

∞∑
m,n=1

cm,n sin
mπx

a
sin

nπy

b
.

Self-adjointness of the Laplacian operator coupled with the boundary conditions im-
plies that‡ the eigenfunctions vm,n(x, y) are orthogonal with respect to the L2 inner product

† This appears to be a general fact, true in all known examples, but I know of no general
proof. Theorem 9.47 can be used to establish completeness of the eigenfunctions, but does not
guarantee that they can all be constructed by separation of variables.

‡ Technically, orthogonality is guaranteed only when the eigenvalues are distinct: λm,n �= λk,l.

However, by a direct computation, one finds that orthogonality continues to hold even when the
indicated eigenfunctions are associated with equal eigenvalues. See the final subsection of this
chapter for a discussion of when such “accidental degeneracies” arise.
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Figure 11.2. Heat diffusion in a rectangle.
⊎

on the rectangle:

〈 vk,l , vm,n 〉 =
∫ b

0

∫ a

0

vk,l(x, y) vm,n(x, y) dx dy = 0 unless k = m and l = n.

(The skeptical reader can verify the orthogonality relations directly from the eigenfunction
formulas (11.40).) Thus, we can appeal to our usual orthogonality formula (11.26) to
evaluate the coefficients

cm,n =
〈 f , vm,n 〉
‖ vm,n ‖2

=
4

ab

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy

b
dx dy, (11.44)

where the formula for the norms of the eigenfunctions

‖ vm,n ‖2 =

∫ b

0

∫ a

0

vm,n(x, y)
2 dx dy =

∫ b

0

∫ a

0

sin2
mπx

a
sin2

nπy

b
dx dy = 1

4 ab (11.45)

follows from a direct evaluation of the double integral. Unfortunately, while orthogonality
is (mostly) automatic, computation of the norms must inevitably be done “by hand”.

For generic initial temperature distributions, the rectangle approaches thermal equi-
librium at a rate equal to the smallest eigenvalue:

λ1,1 =

(
1

a2
+

1

b2

)
π2 γ, (11.46)

i.e., the sum of the reciprocals of the squared lengths of its sides multiplied by the diffusion
coefficient. The larger the rectangle, or the smaller the diffusion coefficient, the smaller the
value of λ1,1, and hence the slower the return to thermal equilibrium. The exponentially
fast decay rate of the Fourier series implies that the solution immediately smooths out any
discontinuities in the initial temperature profile. Indeed, the higher modes, with m and
n large, decay to zero almost instantaneously, and so the solution quickly behaves like a
finite sum over a few low-order modes. Assuming that c1,1 	= 0, the slowest-decaying mode
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in the Fourier series (11.43) is

c1,1 u1,1(t, x, y) = c1,1 exp

[
−
(

1

a2
+

1

b2

)
π2 γ t

]
sin

πx

a
sin

πy

b
. (11.47)

Thus, in the long run, the temperature becomes entirely of one sign — either positive
or negative depending on the sign of c1,1 — throughout the rectangle. This observation
is, in fact, indicative of the general phenomenon that an eigenfunction associated with
the smallest positive eigenvalue of a self-adjoint elliptic operator is necessarily of one sign
throughout the domain, [34]. A typical solution is plotted at several times in Figure 11.2.
Non-generic initial conditions, with c1,1 = 0, decay more rapidly, and their asymptotic
temperature profiles are not of one sign.

Exercises

11.2.1. A rectangle of size 2 cm by 1 cm has initial temperature f(x, y) = sinπx sin πy for
0 ≤ x ≤ 2, 0 ≤ y ≤ 1. All four sides of the rectangle are held at 0◦. Assuming that the
thermal diffusivity of the plate is γ = 1, write down a formula for its subsequent tempera-
ture u(t, x, y). What is the rate of decay to thermal equilibrium?

11.2.2. Solve Exercise 11.2.1 when the initial temperature f(x, y) is

(a) x y, (b)

{
1, 0 < x < 1,
0, 1 < x < 2;

(c)
(
1− | 1− x |

) (
1
2 −

∣∣∣ 1
2 − y

∣∣∣ ).
11.2.3. Solve the initial-boundary value problem for the heat equation ut = 2Δu on the rectan-

gle −1 < x < 1, 0 < y < 1 when the two short sides are kept at 0◦, the two long sides are

insulated, and the initial temperature distribution is u(0, x, y) =

{ −1, x < 0,
+1, x > 0,

0 < y < 1.

11.2.4. Answer Exercise 11.2.3 when the two long sides are kept at 0◦ and the two short sides
are insulated.

♥ 11.2.5. A rectangular plate of size 1 meter by 3 meters is made out a metal with unit diffusiv-
ity. The plate is taken from a 0◦ freezer, and, from then on, one of its long sides is heated
to 100◦, the other is held at 0◦, while its top, bottom, and both of the short sides are fully
insulated. (a) Set up the initial-boundary value problem governing the time-dependent
temperature of the plate. (b) What is the equilibrium temperature? (c) Use your answer
from part (b) to construct an eigenfunction series for the solution. (d) How long until the
temperature of the plate is everywhere within 1◦ of its eventual equilibrium?
Hint : Once t is no longer small, you can approximate the series solution by its first term.

11.2.6. Among all rectangular plates of a prescribed area, which one returns to thermal equi-
librium the slowest when subject to Dirichlet boundary conditions? The fastest? Use your
physical intuition to explain your answer, but justify it mathematically.

11.2.7. Answer Exercise 11.2.6 for a fully insulated rectangular plate, i.e., subject to Neumann
boundary conditions.

♥ 11.2.8. A square metal plate is taken from an oven, and then set out to cool, with its top and
bottom insulated. Find the rate of cooling, in terms of the side length and the thermal
diffusivity, if (a) all four sides are held at 0◦; (b) one side is insulated and the other three
sides are held at 0◦; (c) two adjacent sides are insulated and the other two are held at 0◦;
(d) two opposite sides are insulated and the other two are held at 0◦; (e) three sides are
insulated and the remaining side is held at 0◦. Order the cooling rates of the plates from
fastest to slowest. Do your results confirm your intuition?
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♥ 11.2.9. Two square plates are made out of the same homogeneous material, and both are ini-

tially heated to 100
◦
. All four sides of the first plate are held at 0

◦
, whereas one of the

sides of the second plate is insulated while the other three sides are held at 0
◦
. Which plate

cools down the fastest? How much faster? Assuming the thermal diffusivity γ = 1, how

long do you have to wait until every point on each plate is within 1
◦
of its equilibrium

temperature? Hint : Once t is no longer small, the series solution is well approximated by

its first term.

♥ 11.2.10. Multiple choice: On a unit square that is subject to Dirichlet boundary conditions, the

eigenvalues of the Laplace operator are

(a) all simple, (b) at most double, or (c) can have arbitrarily large multiplicity.

♥ 11.2.11. The thermodynamics of a thin circular cylindrical shell of radius a and height h, e.g.,
the side of a tin can after its top and bottom are removed, is modeled by the heat equation

∂u

∂t
= γ

⎛
⎝ 1

a2
∂2u

∂θ2
+

∂2u

∂z2

⎞
⎠, in which u(t, θ, z) measures the temperature of the point on

the cylinder at time t > 0, angle −π < θ ≤ π, and height 0 < z < h. Keep in mind

that u(t, θ, z) must be a 2π–periodic function of the angular coordinate θ. Assume that the

cylinder is everywhere insulated, while its two circular ends are held at 0
◦
. Given an initial

temperature distribution at time t = 0, write down a series formula for the cylinder’s

temperature at subsequent times. What is the eventual equilibrium temperature?

How fast does the cylinder return to equilibrium?

♥ 11.2.12. Consider the initial-boundary value problem

ut = uxx + uyy , u(0, x, y) = 0, 0 < x, y < π, t > 0,

for the heat equation in a square subject to the Dirichlet conditions

u(t, 0, y) = u(t, π, y) = 0 = u(t, x, 0), u(t, x, π) = f(x), 0 < x, y < π, t > 0.

Write out an eigenfunction series formulas for

(a) the equilibrium solution u�(x, y) = lim
t→∞

u(t, x, y); (b) the solution u(t, x, y).

11.2.13. Solve Exercise 11.2.1 when one long side of the plate is held at 100
◦
.

Hint : See Exercise 11.2.12.

Heating of a Disk — Preliminaries

Let us perform a similar analysis of the thermodynamics of a circular disk. For simplicity
(or by choice of suitable physical units), we will assume that the disk

D = {x2 + y2 ≤ 1 } ⊂ R
2

has unit radius and unit diffusivity γ = 1. We shall solve the heat equation on D subject
to homogeneous Dirichlet boundary values of zero temperature at the circular edge

∂D = C = {x2 + y2 = 1 }.

Thus, the full initial-boundary value problem is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, x2 + y2 < 1,

u(t, x, y) = 0, x2 + y2 = 1,

u(0, x, y) = f(x, y), x2 + y2 ≤ 1.

t > 0,
(11.48)
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We remark that a simple rescaling of space and time, as outlined in Exercise 11.4.7, can
be used to recover the solution for an arbitrary diffusion coefficient and a disk of arbitrary
radius from this particular case.

Since we are working in a circular domain, we instinctively pass to polar coordinates
(r, θ). In view of the polar coordinate formula (4.105) for the Laplace operator, the heat
equation and boundary and initial conditions assume the form

∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
, u(t, 1, θ) = 0, u(0, r, θ) = f(r, θ), (11.49)

where the solution u(t, r, θ) is defined for all 0 ≤ r ≤ 1 and t ≥ 0. To ensure that the
solution represents a single-valued function on the entire disk, it is required to be a 2π–
periodic function of the angular variable:

u(t, r, θ + 2π) = u(t, r, θ).

To obtain the separable solutions

u(t, r, θ) = e−λt v(r, θ), (11.50)

we need to solve the polar coordinate form of the Helmholtz equation

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
+ λ v = 0,

0 ≤ r < 1,

−π < θ ≤ π,
(11.51)

subject to the boundary conditions

v(1, θ) = 0, v(r, θ + 2π) = v(r, θ). (11.52)

To solve the polar Helmholtz boundary value problem (11.51–52), we invoke a further
separation of variables by writing

v(r, θ) = p(r) q(θ). (11.53)

Substituting this ansatz into (11.51), collecting all terms involving r and all terms involving
θ, and then equating both to a common separation constant, we are led to the pair of
ordinary differential equations

r2
d2p

dr2
+ r

dp

dr
+ (λr2 − μ) p = 0,

d2q

dθ2
+ μ q = 0, (11.54)

where λ is the Helmholtz eigenvalue, and μ the separation constant.

Let us start with the equation for q(θ). The second boundary condition in (11.52)
requires that q(θ) be 2π–periodic. Therefore, the required solutions are the elementary
trigonometric functions

q(θ) = cosmθ or sinmθ, where μ = m2, (11.55)

with m = 0, 1, 2, . . . a nonnegative integer.

Substituting the formula for the separation constant, μ = m2, the differential equation
for p(r) takes the form

r2
d2p

dr2
+ r

dp

dr
+ (λ r2 −m2) p = 0, 0 ≤ r ≤ 1. (11.56)



452 11 Dynamics of Planar Media

Ordinarily, one imposes two boundary conditions in order to pin down a solution to such a
second-order ordinary differential equation. But our Dirichlet condition, namely p(1) = 0,
specifies its value at only one of the endpoints. The other endpoint is a singular point for
the ordinary differential equation, because the coefficient of the highest-order derivative,
namely r2, vanishes at r = 0. This situation might remind you of our solution to the Euler
differential equation (4.111) in the context of separable solutions to the Laplace equation
on the disk. As there, we require that the solution be bounded at r = 0, and so seek
eigensolutions that satisfy the boundary conditions

| p(0) | < ∞, p(1) = 0. (11.57)

While (11.56) appears in a variety of applications, it is more challenging than any
ordinary differential equation we have encountered so far. Indeed, most solutions cannot
be written in terms of the elementary functions (rational functions, trigonometric functions,
exponentials, logarithms, etc.) you see in first-year calculus. Nevertheless, owing to their
ubiquity in physical applications, its solutions have been extensively studied and tabulated,
and so are, in a sense, well known, [85, 86, 119].

To simplify the subsequent analysis, we make a preliminary rescaling of the indepen-
dent variable, replacing r by

z =
√
λ r.

(We know the eigenvalue λ > 0, since we are dealing with a positive definite boundary
value problem.) Note that, by the chain rule,

dp

dr
=

√
λ

dp

dz
,

d2p

dr2
= λ

d2p

dz2
,

and hence

r
dp

dr
= z

dp

dz
, r2

d2p

dr2
= z2

d2p

dz2
.

The net effect is to eliminate the eigenvalue parameter λ (or, rather, hide it in the change
of variables), so that (11.56) assumes the slightly simpler form

z2
d2p

dz2
+ z

dp

dz
+ (z2 −m2) p = 0. (11.58)

The resulting ordinary differential equation (11.58) is known as Bessel’s equation, named
after the early-nineteenth-century German astronomer Wilhelm Bessel, who first encoun-
tered its solutions, now known as Bessel functions , in his study of planetary orbits. Special
cases had already appeared in the investigations of Daniel Bernoulli on vibrations of a hang-
ing chain, and in those of Fourier on the thermodynamics of a cylindrical body. To make
further progress, we need to take time out to study their basic properties, and this will re-
quire us to develop the method of power series solutions of ordinary differential equations.
With this in hand, we can then return to complete our solution to the heat equation on a
disk.

11.3 Series Solutions of Ordinary Differential Equations

When confronted with a novel ordinary differential equation, we have several available
options for deriving and understanding its solutions. For instance, the “look-up” method
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relies on published handbooks. One of the most useful references that collects many solved
differential equations is the classic German compendium by Kamke, [62]. Two more recent
English-language handbooks are [93, 127]. In addition, many symbolic computer algebra
programs, including Mathematica and Maple, will produce solutions, when expressible
in terms of both elementary and special functions, to a wide range of differential equations.

Of course, use of numerical integration to approximate solutions, [24, 60, 80], is al-
ways an option. Numerical methods do, however, have their limitations, and are best
accompanied by some understanding of the underlying theory, coupled with qualitative
or quantitative expectations of how the solutions should behave. Furthermore, numerical
methods provide less than adequate insight into the nature of the special functions that
regularly appear as solutions of the particular differential equations arising in separation
of variables. A numerical approximation cannot, in itself, establish rigorous mathematical
properties of the solutions of the differential equation.

A more classical means of constructing and approximating the solutions of differential
equations is based on their power series expansions, a.k.a. Taylor series. The Taylor ex-
pansion of a solution at a point x0 is found by substituting a general power series into the
differential equation and equating coefficients of the various powers of x− x0. The initial
conditions at x0 serve to uniquely determine the coefficients and hence all the derivatives of
the solution at the initial point. The Taylor expansion of a special function is an effective
tool for deducing some of its key properties, as well as providing a means of comput-
ing reasonable numerical approximations to its values within the radius of convergence of
the series. (However, serious numerical computations more often rely on nonconvergent
asymptotic expansions, [85].)

In this section, we provide a brief introduction to the basic series solution techniques for
ordinary differential equations, concentrating on second-order linear differential equations,
since these form by far the most important class of examples arising in applications. At a
regular point, the method will produce a standard Taylor expansion for the solution, while
so-called regular singular points require a slightly more general type of series expansion.
Generalizations to irregular singular points, higher-order equations, nonlinear equations,
and even linear and nonlinear systems are deferred to more advanced texts, including
[54, 59].

The Gamma Function

Before delving into the machinery of series solutions and special functions, we need to
introduce the gamma function, which effectively generalizes the factorial operation to non-
integers. Recall that the factorial of a nonnegative integer n ≥ 0 is defined inductively by
the iterative formula

n ! = n · (n− 1) !, starting with 0 ! = 1. (11.59)

When n is a positive integer, the iteration terminates, yielding the familiar expression

n ! = n(n− 1)(n− 2) · · · 3 · 2 · 1. (11.60)

However, for more general values of n, the iteration never stops, and it cannot be used to
compute its factorial. Our goal is to circumvent this difficulty, and introduce a function
f(x) that is defined for all values of x and will play the role of such a factorial. First,
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mimicking (11.59), the function should satisfy the functional equation

f(x) = x f(x− 1) (11.61)

where defined. If, in addition, f(0) = 1, then we know that f(n) = n ! whenever n is a
nonnegative integer, and hence such a function will extend the definition of the factorial
to more general real and complex numbers.

A moment’s thought should convince the reader that there are many possible ways
to construct such a function; see Exercise 11.3.6 for a nonstandard example. The most
important version is due to Euler. The modern definition of Euler’s gamma function relies
on an integral formula discovered by the eighteenth-century French mathematician Adrien–
Marie Legendre, who will play a starring role in Chapter 12.

Definition 11.2. The gamma function is defined by

Γ(x) =

∫ ∞

0

e−t tx−1 dt. (11.62)

The first fact is that, for real x, the gamma function integral converges only when
x > 0; otherwise the singularity of tx−1 at t = 0 is too severe. The key property that turns
the gamma function into a substitute for the factorial function relies on an elementary
integration by parts:

Γ(x+ 1) =

∫ ∞

0

e−t tx dt = −e−t tx
∣∣∣∞
t=0

+ x

∫ ∞

0

e−t tx−1 dt.

The boundary terms vanish whenever x > 0, while the final integral is merely Γ(x). There-
fore, the gamma function satisfies the recurrence relation

Γ(x+ 1) = xΓ(x). (11.63)

If we set f(x) = Γ(x+ 1), then (11.63) becomes (11.61). Moreover, by direct integration,

Γ(1) =

∫ ∞

0

e−t dt = 1.

Combining this with the recurrence relation (11.63), we deduce that

Γ(n+ 1) = n ! (11.64)

whenever n ≥ 0 is a nonnegative integer. Therefore, we can identify x ! with the value
Γ(x+ 1) whenever x > −1 is any real number.

Remark : The reader may legitimately ask why not replace tx−1 by tx in the definition
of Γ(z), which would avoid the n + 1 in (11.64). There is no good answer; we are merely
following a well-established precedent set by Legendre and enshrined in all subsequent
works.

Thus, at integer values of x, the gamma function agrees with the elementary factorial.
A few other values can be computed exactly. One important case is at x = 1

2 . Using the
substitution t = s2, with dt = 2s ds, we obtain

Γ
(
1
2

)
=

∫ ∞

0

e−t t−1/2 dt =

∫ ∞

0

2 e−s2 ds =
√
π, (11.65)



11.3 Series Solutions of Ordinary Differential Equations 455

Figure 11.3. The gamma function.

where the final integral was evaluated in (2.100). Thus, using the identification with the

factorial function, we identify this value with
(
− 1

2

)
! =

√
π. The recurrence relation

(11.63) will then produce the value of the gamma function at all half-integers 1
2 ,

3
2 ,

5
2 , . . . .

For example,
Γ
(
3
2

)
= 1

2 Γ
(
1
2

)
= 1

2

√
π, (11.66)

and hence 1
2 ! =

1
2

√
π. The recurrence relation can also be employed to extend the definition

of Γ(x) to (most) negative values of x. For example, setting x = − 1
2 in (11.63), we have

Γ
(
1
2

)
= − 1

2 Γ
(
− 1

2

)
, so Γ

(
− 1

2

)
= −2 Γ

(
1
2

)
= −2

√
π .

The only points at which this device fails are the negative integers, and indeed, Γ(x) has
a singularity when x = −1,−2,−3, . . . . A graph† of the gamma function is displayed in
Figure 11.3.

Remark : Most special functions of importance for applications arise as solutions to
fairly simple ordinary differential equations. The gamma function is a significant exception.
Indeed, it can be proved, [11], that the gamma function does not satisfy any algebraic
differential equation!

Regular Points

We are now ready to develop the method of series solutions to ordinary differential equa-
tions. Before we proceed to develop the general computational machinery, a näıve calcula-
tion in an elementary example will be enlightening.

† The axes are at different scales; the tick marks are at integer values.
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Example 11.3. Consider the initial value problem

d2u

dx2
+ u = 0, u(0) = 1, u′(0) = 0. (11.67)

Let us investigate whether we can construct an analytic solution in the form of a convergent
power series

u(x) = u0 + u1x+ u2x
2 + u3x

3 + · · · =

∞∑
n=0

unx
n (11.68)

that is based at the initial point x0 = 0. Term-by-term differentiation yields the following
series expansions† for its derivatives:

du

dx
= u1 + 2u2x+ 3u3x

2 + 4u4x
3 + · · · =

∞∑
n=0

(n+ 1)un+1x
n,

d2u

dx2
= 2u2 + 6u3x+ 12u4x

2 + 20u5x
3 + · · · =

∞∑
n=0

(n+ 1)(n+ 2)un+2x
n.

(11.69)

The next step is to substitute the series (11.68–69) into the differential equation and collect
common powers of x:

d2u

dx2
+ u = (2u2 + u0) + (6u3 + u1)x+ (12u4 + u2)x

2 + (20u5 + u3)x
3 + · · · = 0.

At this point, one focuses attention on the individual coefficients, appealing to the following
basic observation:

Two convergent power series are equal if and only if all their coefficients are equal.

In particular, a power series represents the zero function‡ if and only if all its coefficients
are 0. In this manner we obtain the following infinite sequence of algebraic recurrence
relations among the coefficients:

1 2u2 + u0 = 0,

x 6u3 + u1 = 0,

x2 12u4 + u2 = 0,

x3 20u5 + u3 = 0,

x4 30u6 + u4 = 0,

...
...

xn (n+ 1)(n+ 2)un+2 + un = 0.

(11.70)

Now, the initial conditions serve to prescribe the first two coefficients:

u(0) = u0 = 1, u′(0) = u1 = 0.

† When working with the series in summation form, it helps to re-index in order to display
the term of degree n.

‡ Here it is essential that we work with analytic functions, since this result is not true for

C∞ functions! For example, the function e−1/x2

has identically zero power series at x0 = 0; see
Exercise 11.3.21.
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We then solve the recurrence relations in order: The first determines u2 = − 1
2 u0 = − 1

2 ;
the second, u3 = − 1

6 u1 = 0; next, u4 = − 1
12 u2 = 1

24 ; then u5 = − 1
20 u3 = 0; then

u6 = − 1
30 u4 = − 1

720 ; and so on. In general, it is not hard to see that

u2k =
(−1)k

(2k) !
, u2k+1 = 0, k = 0, 1, 2, . . . .

Hence, the required series solution is

u(x) = 1− 1
2 x

2 + 1
24 x

3 − 1
720 x

6 + · · · =

∞∑
k=0

(−1)k

k !
x2k,

which, by the ratio test, converges for all x. We have thus recovered the well-known Taylor
series for cosx, which is indeed the solution to the initial value problem. Changing the
initial conditions to u(0) = u0 = 0, u′(0) = u1 = 1, will similarly produce the usual
Taylor expansion of sinx. Note that the generation of the Taylor series does not rely on
any a priori knowledge of trigonometric functions or the direct solution method for linear
constant-coefficient ordinary differential equations.

Building on this experience, let us describe the general method. We shall concentrate
on solving a second-order homogeneous linear differential equation

p(x)
d2u

dx2
+ q(x)

du

dx
+ r(x) u = 0. (11.71)

The coefficients p(x), q(x), r(x) are assumed to be analytic functions on some common
domain. This means that, at a point x0 within the domain, they admit convergent power
series expansions

p(x) = p0 + p1 (x− x0) + p2 (x− x0)
2 + · · · ,

q(x) = q0 + q1 (x− x0) + q2 (x− x0)
2 + · · · ,

r(x) = r0 + r1 (x− x0) + r2 (x− x0)
2 + · · · .

(11.72)

We expect that solutions to the differential equation are also analytic. This expectation is
justified, provided that the equation is regular at the point x0, in the following sense.

Definition 11.4. A point x = x0 is a regular point of a second-order linear ordinary
differential equation (11.71) if the leading coefficient does not vanish there:

p0 = p(x0) 	= 0.

A point where p(x0) = 0 is known as a singular point .

In short, at a regular point, the second-order derivative term does not disappear, and
so the equation is “genuinely” of second order.

Remark : The definition of a singular point assumes that the other two coefficients do
not also vanish there, so that either q(x0) 	= 0 or r(x0) 	= 0. If all three functions happen
to vanish at x0, we can cancel any common factor (x − x0)

k, and hence, without loss of
generality, assume that at least one of the coefficient functions is nonzero at x0.

Proofs of the basic existence theorem for differential equations at regular points can
be found in [18, 54, 59].
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Theorem 11.5. Let x0 be a regular point for the second-order homogeneous linear
ordinary differential equation (11.71). Then there exists a unique, analytic solution u(x)
to the initial value problem

u(x0) = a, u′(x0) = b. (11.73)

The radius of convergence of the power series for u(x) is at least as large as the distance
from the regular point x0 to the nearest singular point of the differential equation in the
complex plane.

Thus, every solution to an analytic differential equation at a regular point x0 can be
expanded in a convergent power series

u(x) = u0 + u1(x− x0) + u2(x− x0)
2 + · · · =

∞∑
n=0

un(x− x0)
n. (11.74)

Since the power series necessarily coincides with the Taylor series for u(x), its coefficients†

un =
u(n)(x0)

n !

are multiples of the derivatives of the function at the point x0. In particular, the first two
coefficients,

u0 = u(x0) = a, u1 = u′(x0) = b, (11.75)

are fixed by the initial conditions. The remaining coefficients will then be uniquely pre-
scribed thanks to the uniqueness of solutions to initial value problems.

Near a regular point, the second-order differential equation (11.71) admits two linearly
independent analytic solutions, which we denote by û(x) and ũ(x). The general solution
can be written as a linear combination of the two basis solutions:

u(x) = a û(x) + b ũ(x). (11.76)

A convenient choice is to have the first satisfy the initial conditions

û(x0) = 1, û ′(x0) = 0, (11.77)

and the second satisfy
ũ(x0) = 0, ũ ′(x0) = 1, (11.78)

although other conventions may be used depending on the circumstances. Given (11.77–
78), the linear combination (11.76) automatically satisfies the initial conditions (11.73).

The basic computational strategy to construct the power series solution to the initial
value problem is a straightforward adaptation of the method used in Example 11.3. One
substitutes the known power series (11.72) for the coefficient functions and the unknown
power series (11.74) for the solution into the differential equation (11.71). Multiplying out
the formulas and collecting the common powers of x − x0 will result in a (complicated)
power series whose individual coefficients must be equated to zero. The lowest-order terms
are multiples of (x− x0)

0 = 1, i.e., the constant terms. They produce a linear relation

u2 = R2(u0, u1) = R2(a, b)

† Some authors prefer to include the n !’s in the original power series; this is purely a matter
of personal taste.
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that prescribes the coefficient u2 in terms of the initial data (11.75). The coefficient of
(x− x0) leads to a relation

u3 = R3(u0, u1, u2) = R3(a, b, R2(a, b))

that prescribes u3 in terms of the initial data and the previously computed coefficient u2.
And so on. At the nth stage of the procedure, the coefficient of (x − x0)

n produces the
linear recurrence relation

un+2 = Rn(u0, u1, . . . , un+1), n = 0, 1, 2, . . . , (11.79)

that will prescribe the (n + 2)nd order coefficient in terms of the previously computed
coefficients. In this fashion, we will have constructed a formal power series solution to the
differential equation at a regular point. The one remaining issue is whether the resulting
power series actually converges. The full analysis can be found in [54, 59], and will serve
to complete the proof of the general Existence Theorem 11.5.

Rather than continue on in general, the best way to learn the method is to work
through another, less trivial, example.

The Airy Equation

We will illustrate the procedure by constructing power series solutions to the Airy equation

d2u

dx2
= xu. (11.80)

This second-order linear ordinary differential equation, which arises in applications to op-
tics, rainbows, and dispersive waves, has solutions that cannot be expressed in terms of
elementary functions.

For the Airy equation (11.80), the leading coefficient is constant, and so every point
is a regular point. For simplicity, we will look only for power series based at the origin
x0 = 0, and therefore of the form (11.68). Equating the two series

u′′(x) = 2u2 + 6u3x+ 12u4x
2 + 20u5x

3 + · · · =

∞∑
n=0

(n+ 1)(n+ 2)un+2x
n,

x u(x) = u0x+ u1x
2 + u2x

3 + · · · =

∞∑
n=1

un−1x
n,

leads to the following recurrence relations relating the coefficients:

1 2u2 = 0,

x 6u3 = u0,

x2 12u4 = u1,

x3 20u5 = u2,

x4 30u6 = u3,

...
...

xn (n+ 1)(n+ 2)un+2 = un−1.
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As before, we solve them in order: The first equation determines u2. The second prescribes
u3 = 1

6 u0 in terms of u0. Next, we find u4 = 1
12 u1 in terms of u1, followed by u5 = 1

20u2 =
0; then u6 = 1

30 u3 = 1
180 u0 is first given in terms of u3, but we already know the latter in

terms of u0. And so on.

Let us now construct two basis solutions. The first has the initial conditions

u0 = û(0) = 1, u1 = û ′(0) = 0.

The recurrence relations imply that the only nonzero coefficients cn occur when n = 3k is
a multiple of 3. Moreover,

u3k =
u3k−3

3k (3k − 1)
.

A straightforward induction proves that

u3k =
1

3k (3k − 1)(3k − 3)(3k − 4) · · ·6 · 5 · 3 · 2 .

The resulting solution is

û(x) = 1+ 1
6x

3+ 1
180x

6+ · · · = 1+

∞∑
k=1

x3k

3k (3k − 1)(3k − 3)(3k − 4) · · ·6 · 5 · 3 · 2 . (11.81)

Note that the denominator is similar to a factorial, except every third term is omitted.
A straightforward application of the ratio test confirms that the series converges for all
(complex) x, in conformity with the general Theorem 11.5, which guarantees an infinite
radius of convergence because the Airy equation has no singular points.

Similarly, starting with the initial conditions

u0 = ũ(0) = 0, u1 = ũ ′(0) = 1,

we find that the only nonzero coefficients un occur when n = 3k + 1. The recurrence
relation

u3k+1 =
u3k−2

(3k + 1)(3k)
yields u3k+1 =

1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3 .

The resulting solution is

ũ(x) = x+ 1
12 x

4 + 1
504 x

7 + · · · = x+

∞∑
k=1

x3k+1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3 .

(11.82)
Again, the denominator skips every third term in the product. Every solution to the Airy
equation can be written as a linear combination of these two basis power series solutions:

u(x) = a û(x) + b ũ(x), where a = u(0), b = u′(0).

Both power series (11.81, 82), converge quite rapidly, and so the first few terms will provide
a reasonable approximation to the solutions for moderate values of x.

We have, in fact, already encountered another solution to the Airy equation. According
to formula (8.97), the integral

Ai(x) =
1

π

∫ ∞

0

cos
(
sx+ 1

3 s
3
)
ds (11.83)



11.3 Series Solutions of Ordinary Differential Equations 461

defines the Airy function of the first kind . Let us prove that it satisfies the Airy differential
equation (11.80):

d2

dx2
Ai(x) = xAi(x).

Before differentiating, we recall the integration by parts argument in (8.96) to re-express
the Airy integral in absolutely convergent form:

Ai(x) =
2

π

∫ ∞

0

s sin
(
sx+ 1

3 s
3
)

(x+ s2)2
ds.

We are now permitted to differentiate under the integral sign, producing (after some alge-
bra)

d2

dx2
Ai(x)− xAi(x) =

2

π

∫ ∞

0

d

ds

[
s (x+ s2) cos

(
sx+ 1

3 s
3
)
− sin

(
sx+ 1

3 s
3
)

(x+ s2)3

]
ds = 0.

Thus, the Airy function must be a certain linear combination of the two basic series solu-
tions:

Ai(x) = Ai(0) û(x) + Ai′(0) ũ(x).

Its values at x = 0 are, in fact, given by

Ai(0) =
1

π

∫ ∞

0

cos
(
1
3 s

3
)
ds =

Γ
(
1
3

)
2π 31/6

=
1

32/3 Γ
(
2
3

) ≈ .355028 ,

Ai′(0) = − 1

π

∫ ∞

0

s sin
(
1
3 s

3
)
ds = −

31/6 Γ
(
2
3

)
2π

= − 1

31/3 Γ
(
1
3

) ≈ − .258819.

(11.84)

The second and third expressions involve the gamma function (11.62); a proof, based on
complex integration, can be found in [85; p. 54].

Exercises

11.3.1. Find (a) Γ
(
5
2

)
, (b) Γ

(
7
2

)
, (c) Γ

(
− 3

2

)
, (d) Γ

(
− 5

2

)
.

11.3.2. Prove that Γ
(
n+ 1

2

)
=

√
π (2n) !

22n n !
for every positive integer n.

11.3.3. Let x ∈ C be complex. (a) Prove that the gamma function integral (11.62) converges,
provided Rex > 0. (b) Is formula (11.63) valid when x is complex?

♦ 11.3.4. Prove that Γ(x) =
∫ 1

0
(− log s)x−1 ds, and hence, for 0 ≤ n ∈ Z, we have

n ! =
∫ 1

0
(− log s)n ds. Remark : Euler first established the latter identity directly, and used

it to define the gamma function.

11.3.5. Evaluate
∫ ∞
0

√
x e−x3

dx.

♦ 11.3.6. Can you construct a function f(x) that satisfies the factorial functional equation (11.61)
and has the values f(x) = 1 for 0 ≤ x ≤ 1? If so, is f(x) = Γ(x + 1)?
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11.3.7. Explain how to construct the power series for sinx by solving the differential equation
(11.67).

11.3.8. Construct two independent power series solutions to the Euler equation x2u′′ − 2u = 0
based at the point x0 = 1.

11.3.9. Construct two independent power series solutions to the equation u′′ +x2u = 0 based at
the point x0 = 0.

11.3.10. Consider the ordinary differential equation u′′ + 2xu′ + 2u = 0. (a) Find two linearly
independent power series solutions in powers of x. (b) What is the radius of convergence
of your power series? (c) By inspection of your series, find one solution to the equation
expressible in terms of elementary functions. (d) Find an explicit (non-series) formula for
the second independent power series solution.

11.3.11. Answer Exercise 11.3.10 for the equation u′′ + 1
2 xu

′ − 1
2 u = 0, which is a special case

of equation (8.63).

11.3.12. Consider the ordinary differential equation u′′ + xu′ + 2u = 0. (a) Find two linearly
independent power series solutions based at x0 = 0. (b) Write down the power series for

the solution to the initial value problem u(0) = 1, u′(0) = −1. (c) What is the radius of
convergence of your power series solution in part (a)? Can you justify this by direct inspec-
tion of your power series?

♦ 11.3.13. The Hermite equation of order n is

d2u

dx2
− 2x

du

dx
+ 2nu = 0. (11.85)

Assuming n ∈ N is a nonnegative integer: (a) Find two linearly independent power series
solutions based at x0 = 0, and then show that one of your solutions is a polynomial of
degree n. (b) Prove that the Hermite polynomial Hn(x) defined in (8.64) solves the
Hermite equation (11.85) and hence is a multiple of the polynomial solution you found in
part (a). What is the multiple? (c) Prove that the Hermite polynomials are orthogonal

with respect to the inner product 〈u , v 〉 =
∫ ∞
−∞

u(x) v(x) e−x2

dx.

11.3.14. Use the ratio test to directly determine the radius of convergence of the series solu-
tions (11.81, 82) to the Airy equation.

11.3.15. Write down the general solution to the following ordinary differential equations:
(a) u′′ + (x− c)u = 0, where c is a fixed constant;
(b) u′′ = λxu, where λ �= 0 is a fixed nonzero constant.

♦ 11.3.16. The Airy function of the second kind is defined by

Bi(x) =
1

π

∫ ∞
0

[
exp

(
sx− 1

3 s3
)
+ sin

(
sx+ 1

3 s3
) ]

ds. (11.86)

(a) Prove that Bi(x) is well defined and a solution to the Airy equation. (b) Given that†

Bi(0) =
1

31/6 Γ
(
2
3

) , Bi′(0) = 31/6

Γ
(
1
3

) , (11.87)

explain why every solution to the Airy equation can be written as a linear combination of
Ai(x) and Bi(x). (c) Write the two series solutions (11.81, 82) in terms of Ai(x) and Bi(x).

11.3.17. Use the Fourier transform to construct an L2 solution to the Airy equation. Can you
identify your solution?

♦ 11.3.18. Apply separation of variables to the Tricomi equation (4.137), and write down all
separable solutions. Hint : See Exercise 11.3.15(b) and Exercise 11.3.16.

† See [85; p. 54] for a proof.
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♥ 11.3.19.(a) Show that u(x) =
∞∑

n=1

(n − 1)! xn is a power series solution to the first-order linear

ordinary differential equation x2u′ − u + x = 0. (b) For which x does the series converge?
(c) Find an analytic formula for the general solution to the equation. (d) Find a second-
order homogeneous linear ordinary differential equation that has this power series as a
(formal) solution. Remark : The lesson of this exercise is that not all power series solutions
to ordinary differential equations converge. Theorem 11.5 guarantees convergence at a regu-
lar point, but in this example the power series is based at the singular point x0 = 0.

11.3.20. True or false: The only function f(x) that has identically zero Taylor series is the zero
function.

♦ 11.3.21. Define f(x) =

⎧⎨⎩ e−1/x2

, x �= 0,
0, x = 0.

(a) Prove that f is a C∞ function for all x ∈ R.

(b) Prove that f(x) is not analytic by showing that its Taylor series at x0 = 0 does not
converge to f(x) when x �= 0.

Regular Singular Points

As we have just seen, constructing power series solutions at regular points is a reasonably
straightforward computational exercise: one writes down a power series with arbitrary
coefficients, substitutes into the differential equation along with a pair of initial conditions,
and recursively solves for the coefficients. Finding a general formula for the coefficients
might be challenging, but producing their successive numerical values, degree by degree, is
a mechanical exercise.

However, at a singular point, the solutions cannot be typically written as an ordinary
power series, and one needs to be cleverer. Of course, you may object — why not just solve
the equation away from the singular point and be done with it. But there are multiple
reasons not to do this. First, one may be unable to discover a general formula for the
power series coefficients at regular points. Second, the most informative and interesting
behavior of solutions is typically found at the singular points, and so series solutions based
at singular points are particularly enlightening. And finally, one of the boundary conditions
required for us to complete our construction of separable solutions to partial differential
equations often occurs at a singular point.

Singular points appear in two guises. The easier to handle, and, fortunately, the ones
that arise in almost all applications, are known as “regular singular points”. Irregular
singular points are nastier, and we will not make any attempt to understand them in this
text; the curious reader is referred to [54, 59].

Definition 11.6. A second-order linear homogeneous ordinary differential equation
that can be written the form

(x− x0)
2 a(x)

d2u

dx2
+ (x− x0) b(x)

du

dx
+ c(x) u = 0, (11.88)

where a(x), b(x), and c(x) are analytic at x = x0 and, moreover, a(x0) 	= 0, is said to have
a regular singular point at x0.

The simplest example of a second-order equation with a regular singular point at
x0 = 0 is the Euler equation

ax2u′′ + bxu′ + cu = 0, (11.89)
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with a, b, c all constant and a �= 0. Note that all other points are regular points. Euler
equations can be readily solved by substituting the power ansatz u(x) = xr. We find

ax2u′′ + bxu′ + cu = ar(r − 1)xr + brxr + cxr = 0,

provided the exponent r satisfies the indicial equation

ar (r − 1) + br + c = 0.

If this quadratic equation has two distinct roots r1 �= r2, we obtain two linearly independent
(possibly complex) solutions û(x) = xr1 and ũ(x) = xr2 . The general solution u(x) =
c1x

r1 + c2x
r2 is a linear combination thereof. Note that unless r1 or r2 is a nonnegative

integer, all nonzero solutions have a singularity at the singular point x = 0. A repeated root,
r1 = r2, has only one power solution, û(x) = xr1 , and requires an additional logarithmic
term, ũ(x) = xr1 log x, for the second independent solution. In this case, the general
solution has the form u(x) = c1x

r1 + c2x
r1 log x.

The series solution method at more general regular singular points is modeled on the
simple example of the Euler equation. One now seeks a solution that has a series expansion
of the form†

u(x) = (x−x0)
r

∞∑
n=0

un(x−x0)
n = u0(x−x0)

r+u1(x−x0)
r+1+u2(x−x0)

r+2+· · · . (11.90)

The exponent r is known as the index . If r = 0, or, more generally, if r is a positive
integer, then (11.90) is an ordinary power series, but we allow the possibility of a non-
integral, or even complex, index r. We can assume, without any loss of generality, that the
leading coefficient u0 �= 0. Indeed, if uk �= 0 is the first nonzero coefficient, then the series
begins with the term uk(x − x0)

r+k, and we merely replace r by r + k to write it in the
form (11.90). Since any scalar multiple of a solution is a solution, we can further assume
that u0 = 1, in which case we call (11.90) a normalized Frobenius series in honor of the
German mathematician Georg Frobenius, who systematically established the calculus of
series solutions at regular singular points in the late 1800s. The index r, and the higher-
order coefficients u1, u2, . . ., are then found by substituting the normalized Frobenius series
into the differential equation (11.88) and equating the coefficients of the powers of x− x0

to zero.

Warning : Unlike those in ordinary power series expansions, the coefficients u0 = 1
and u1 are not prescribed by the initial conditions at the point x0.

Since

u(x) = (x− x0)
r + u1(x− x0)

r+1 + · · · ,

(x− x0) u
′(x) = r (x− x0)

r + (r + 1)u1(x− x0)
r+1 + · · · ,

(x− x0)
2 u′′(x) = r (r − 1) (x− x0)

r + (r + 1) ru1(x− x0)
r+1 + · · · ,

the terms of lowest order in equation (11.88) are multiples of (x−x0)
r. Equating their

coefficients to zero produces a quadratic equation of the form

a0 r (r − 1) + b0 r + c0 = 0, (11.91)

†
If r is real but non-integral, and x < x0, then one can replace x−x0 by x0−x or, alternatively,

use absolute values throughout.
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where, referring back to (11.71),

a0 = a(x0), b0 = b(x0), c0 = c(x0),

are the leading coefficients in the power series expansions of the individual coefficient func-
tions. The quadratic equation (11.91) is known as the indicial equation, since it determines
the possible indices r in the Frobenius expansion (11.90) of a solution.

As with the Euler equation, the quadratic indicial equation usually has two roots,
say r1 and r2, which provide two allowable indices, and one thus expects to find two
independent Frobenius expansions. Usually, this expectation is realized, but there is an
important exception. The general result is summarized in the following list:

(i) If r1− r2 is not an integer, then there are two linearly independent solutions û(x) and
ũ(x), each having convergent normalized Frobenius expansions of the form (11.90).

(ii) If r1 = r2, then there is only one solution û(x) with a normalized Frobenius expansion
(11.90). One can construct a second independent solution of the form

ũ(x) = log(x− x0) û(x) + v(x), where v(x) =

∞∑
n=1

vn(x− x0)
n+r1 (11.92)

is a convergent Frobenius series.

(iii) Finally, if r1 = r2 + k, where k > 0 is a positive integer, then there is a nonzero
solution û(x) with a convergent Frobenius expansion corresponding to the larger
index r1. One can construct a second independent solution of the form

ũ(x) = c log(x− x0) û(x) + v(x), where v(x) = (x− x0)
r2 +

∞∑
n=1

vn(x− x0)
n+r2

(11.93)
is a convergent Frobenius series, and c is a constant, which may be 0, in which case
the second solution ũ(x) is also of Frobenius form.

Thus, in every case, the differential equation has at least one nonzero solution with a con-
vergent Frobenius expansion. If the second independent solution does not have a Frobenius
expansion, then it requires an additional logarithmic term of a well-prescribed form. Rather
than try to develop the general theory in any more detail here, we will content ourselves
to work through a couple of particular examples.

Example 11.7. Consider the second-order ordinary differential equation

d2u

dx2
+

(
1

x
+

x

2

)
du

dx
+ u = 0. (11.94)

We look for series solutions based at x = 0. Note that, upon multiplying by x2, the
equation takes the form

x2u′′ + x
(
1 + 1

2 x
2
)
u′ + x2u = 0,

and hence x0 = 0 is a regular singular point, with a(x) = 1, b(x) = 1 + 1
2 x

2, c(x) = x2.
We thus look for a solution that can be represented by a Frobenius expansion:

u(x) = xr + u1x
r+1 + · · ·+ unx

n+r + · · · ,

x u′(x) = rxr + (r + 1)u1x
r+1 + · · ·+ (n+ r)unx

n+r + · · · ,
1
2 x

3u′(x) = 1
2 rx

r+2 + 1
2 (r + 1)u1x

r+3 + · · ·+ 1
2 (n+ r − 2)un−2x

n+r + · · · ,

x2u′′(x) = r(r − 1)xr + (r + 1)ru1x
r+1 + · · ·+ (n+ r)(n+ r − 1)unx

n+r + · · · .

(11.95)
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Substituting into the differential equation, we find that the coefficient of xr leads to the
indicial equation

r2 = 0.

There is only one root, r = 0, and hence, even though we are at a singular point, the
Frobenius expansion reduces to an ordinary power series. The coefficient of xr+1 = x tells
us that u1 = 0. The general recurrence relation, for n ≥ 2, is

n2un + 1
2 nun−2 = 0,

and hence
un = −

un−2

2n
.

Therefore, the odd coefficients u2k+1 = 0 are all zero, while the even ones are

u2k = −
u2k−2

4k
=

u2k−4

4k (4k − 4)
= −

u2k−6

4k(4k − 4)(4k − 8)
= · · · =

(−1)k

4k k !
, since u0 = 1.

The resulting power series assumes a recognizable form:

û(x) =

∞∑
k=1

u2k x
2k =

∞∑
k=1

1

k !

(
−

x2

4

)
k

= e−x2/4,

which is an explicit elementary solution to the ordinary differential equation (11.94).

Since there is only one root to the indicial equation, the second solution ũ(x) will
require a logarithmic term. It can be constructed by a second application of the Frobenius
method using the more complicated form (11.92). Alternatively, since the first solution
is known, we can use a well-known reduction trick, [23]. Given one solution û(x) to a
second-order linear ordinary differential equation, the general solution can be found by
substituting the ansatz

u(x) = v(x) û(x) = v(x) e−x2/4 (11.96)

into the equation. In this case,

u′′ +

(
1

x
+

x

2

)
u′ + u = v

[
û ′′ +

(
1

x
+

x

2

)
û ′ + û

]
+ v′

[
2 û ′ +

(
1

x
+

x

2

)
û

]
+ v′′ û

= e−x2/4

[
v′′ +

(
1

x
−

x

2

)
v′
]
.

Bessel’s Equation

Perhaps the most important “non-elementary” ordinary differential equation is

x2 u′′ + x u′ + (x2 −m2) u = 0, (11.98)

If u is to be a solution, v′ must satisfy a linear first-order ordinary differential equation:

v′′ +

(
1

x
−

x

2

)
v′ = 0, and hence v′ =

c
x ex

2/4, v = c

∫
ex

2/4

x
dx+ b,

where c, b are arbitrary constants. We conclude that the general solution to the original
differential equation is

ũ(x) = v(x) û(x) =

(
c

∫
ex

2/4

x
dx+ b

)
e−x2/4. (11.97)
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known as Bessel’s equation of order m. We assume here that the order m ≥ 0 is a
nonnegative real number. (Exercise 11.3.30 investigates Bessel equations of imaginary
order.) The Bessel equation arises from separation of variables in a variety of partial
differential equations, including the Laplace, heat, and wave equations on a disk, a cylinder,
and a spherical ball.

The Bessel equation cannot (except in a few particular instances) be solved in terms
of elementary functions, and so the use of power series is essential. The leading coefficient,
p(x) = x2, is nonzero except when x = 0, and so all points except the origin are regular.
Therefore, at any x0 	= 0, the standard power series construction can be used to produce
the solutions of the Bessel equation. However, the recurrence relations for the coefficients
are not particularly easy to solve in closed form. Moreover, applications tend to demand
understanding the behavior of solutions at the singular point x0 = 0.

Comparison with (11.88) immediately shows that x0 = 0 is a regular singular point,
and so we seek solutions in Frobenius form. We substitute the first, second, and fourth
expressions in (11.95) into the Bessel equation and then equate the coefficients of the
various powers of x to zero. The lowest power, xr, provides the indicial equation

r(r − 1) + r −m2 = r2 −m2 = 0.

It has two solutions, r = ±m, except when m = 0, for which r = 0 is the only index.

The higher powers of x lead to recurrence relations for the coefficients un in the
Frobenius series. Replacing m2 by r2 produces

xr+1 :
[
(r + 1)2 − r2

]
u1 = (2r + 1)u1 = 0, u1 = 0,

xr+2 :
[
(r + 2)2 − r2

]
u2 + 1 = (4r + 4)u2 + 1 = 0, u2 = − 1

4r + 4
,

xr+3 :
[
(r + 3)2 − r2

]
u3 + u1 = (6r + 9)u3 + u1 = 0, u3 = − u1

6r + 9
= 0,

and, in general,

xr+n :
[
(r + n)2 − r2

]
un + un−2 = n(2r + n)un + un−2 = 0.

Thus, the general recurrence relation is

un = − 1

n(2r + n)
un−2, n = 2, 3, 4, . . . . (11.99)

Starting with u0 = 1, u1 = 0, it is easy to deduce that all un = 0 for all odd n = 2k + 1,
while for even n = 2k,

u2k = −
u2k−2

4k(k + r)
=

u2k−4

16k(k − 1)(r + k)(r + k − 1)
= · · ·

=
(−1)k

22k k(k − 1) · · ·3 · 2 (r + k)(r + k − 1) · · · (r + 2)(r + 1)
.

We have thus found the series solution

û(x) =

∞∑
k=0

u2k x
r+2k =

∞∑
k=0

(−1)k xr+2k

22k k! (r + k)(r + k − 1) · · · (r + 2)(r + 1)
. (11.100)

So far, we have not paid attention to the precise values of the indices r = ±m. In
order to continue the recurrence, we need to ensure that the denominators in (11.99) are
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never 0. Since n > 0, a vanishing denominator will appear whenever 2r + n = 0, and so
r = −1

2 n is either a negative integer −1,−2,−3, . . . or half-integer − 1
2 ,−

3
2 ,−

5
2 , . . . . This

will occur when the order m = −r = 1
2 n is either an integer or a half-integer. Indeed,

these are precisely the situations in which the two indices, namely r1 = −m and r2 = m,
differ by an integer, r2 − r1 = n, and so we are in the tricky case (iii) of the Frobenius
method.

There is, in fact, a major difference between the integral and the half-integral cases.
Recall that the odd coefficients u2k+1 = 0 in the Frobenius series automatically vanish, and
so we only have to worry about the recurrence relation (11.99) for even values of n. When
n = 2k, the factor 2r+n = 2(r + k) = 0 vanishes only when r = −k is a negative integer;
the half-integral values do not, in fact cause problems. Therefore, if the order m ≥ 0 is not
an integer, then the Bessel equation of order m admits two linearly independent Frobenius
solutions, given by the expansions (11.100) with exponents r = +m and r = −m. On the
other hand, if m is an integer, there is only one Frobenius solution, namely the expansion
(11.100) for the positive index r = +m. The Frobenius recurrence with index r = −m
breaks down, and the second independent solution must include a logarithmic term; details
appear below.

By convention, the standard Bessel function of order m is obtained by multiplying
the Frobenius solution (11.100) with r = m by

1

2m m !
, or, more generally,

1

2m Γ(m + 1)
, (11.101)

where the first factorial form can be used if m is a nonnegative integer, while the more
general gamma function expression must be employed for non-integral values of m. The
result is

Jm(x) =

∞∑
k=0

(−1)k xm+2k

22k+m k ! (m+ k) !
(11.102)

=
1

2m m !

[
xm − xm+2

4(m+1)
+

xm+4

32(m+1)(m+2)
− xm+6

384(m+1)(m+2)(m+3)
+ · · ·

]
.

When m is non-integral, the (m + k) ! should be replaced by Γ(m + k + 1), and m ! by
Γ(m + 1). With this convention, the series is well defined for all real m except when
m = −1,−2,−3, . . . is a negative integer. Actually, if m is a negative integer, the first
m terms in the series vanish, because, at negative integer values, Γ(−n) = ∞. With this
convention, one can prove that

J−m(x) = (−1)mJm(x), m = 1, 2, 3, . . . . (11.103)

A simple application of the ratio test tells us that the power series converges for all
(complex) values of x, and hence Jm(x) is everywhere analytic. Indeed, the convergence
is quite rapid when x is of moderate size, and so summing the series is a reasonably effec-
tive method for computing the Bessel function Jm(x) — although in serious applications
one adopts more sophisticated numerical techniques based on asymptotic expansions and
integral formulas, [85, 86]. In particular, we note that

J0(0) = 1, Jm(0) = 0, m > 0. (11.104)

Figure 11.4 displays graphs of the first four Bessel functions for 0 ≤ x ≤ 20; the vertical
axes range from −.5 to 1.0. Most software packages, both symbolic and numeric, include
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J0(x) J1(x)

J2(x) J3(x)

Figure 11.4. Bessel functions.

routines for accurately evaluating and graphing Bessel functions, and their properties can
be regarded as well known.

Example 11.8. Consider the Bessel equation of order m = 1
2 . There are two indices,

r = ± 1
2 , and the Frobenius method yields two independent solutions: J1/2(x) and J−1/2(x).

For the first, with r = 1
2 , the recurrence relation (11.99) takes the form

un = −
un−2

(n+ 1)n
.

Starting with u0 = 1 and u1 = 0, the general formula is easily found to be

un =

⎧⎨⎩
(−1)k

(n+ 1)!
, n = 2k even,

0 n = 2k + 1 odd.

Therefore, the resulting solution is

û(x) =
√
x

∞∑
k=0

(−1)k

(2k + 1)!
x2k =

1√
x

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 =

sinx√
x

.

According to (11.101), the Bessel function of order 1
2 is obtained by dividing this function

by
√
2 Γ

(
3
2

)
=

√
π

2
,

where we used (11.66) to evaluate the gamma function at 3
2
. Therefore,

J1/2(x) =

√
2

πx
sin x . (11.105)
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Similarly, for the other index r = − 1
2 , the recurrence relation

un = −
un−2

n(n− 1)

leads to the formula

un =

⎧⎨⎩ (−1)k

n !
, n = 2k even,

0 n = 2k + 1 odd,

for its coefficients, corresponding to the solution

ũ(x) = x−1/2
∞∑

k=0

(−1)k

(2k) !
x2k =

cosx√
x

.

Therefore, in view of (11.101) and (11.65), the Bessel function of order − 1
2 is

J−1/2(x) =

√
2

Γ
(

1
2

) cosx√
x

=

√
2

πx
cosx . (11.106)

As we noted above, if m is not an integer, the two independent solutions to the Bessel
equation of order m are Jm(x) and J−m(x). However, when m is an integer, (11.103)
implies that these two solutions are constant multiples of each other, and so one must look
elsewhere for a second independent solution. One method is to use a generalized Frobenius
expansion involving a logarithmic term, i.e., (11.92) when m = 0 (see Exercise 11.3.33)
or (11.93) when m > 0. A second approach is to employ the reduction procedure used in
Example 11.7. Yet another option relies on the following limiting procedure; see [85, 119]
for full details.

Theorem 11.9. If m > 0 is not an integer, then the Bessel functions Jm(x) and
J−m(x) provide two linearly independent solutions to the Bessel equation of order m. On
the other hand, if m = 0, 1, 2, 3, . . . is an integer, then a second independent solution,
traditionally denoted by Ym(x) and called the Bessel function of the second kind of order
m, can be found as a limiting case

Ym(x) = lim
ν →m

Jν(x) cosν π − J−ν(x)

sin ν π
(11.107)

of a certain linear combination of Bessel functions of non-integral order ν.

With some further analysis, it can be shown that the Bessel function of the second
kind of order m has the logarithmic Frobenius expansion

Ym(x) =
2

π

(
γ + log

x

2

)
Jm(x) +

∞∑
k=0

bkx
2k−m, m = 0, 1, 2, . . . , (11.108)

with coefficients

bk =

⎧⎪⎪⎨⎪⎪⎩
− (m− k − 1) !

π 22k−m k !
, 0 ≤ k ≤ m− 1,

(−1)k−m−1(hk−m + hk)

π 22k−m k ! (k −m) !
, k ≥ m,
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where

h0 = 0, hk = 1+
1

2
+

1

3
+ · · · +

1

k
, k > 0,

while

γ = lim
k→∞

(
hk − log k

)
≈ .5772156649 . . . (11.109)

is known as the Euler or Euler–Mascheroni constant . All Bessel functions of the second
kind have a singularity at the origin x = 0; indeed, by inspection of (11.108), we find that
the leading asymptotics as x → 0 are

Y0(x) ∼
2

π
log x, Ym(x) ∼ −

2m (m− 1) !

πxm
, m > 0. (11.110)

Figure 11.5 contains graphs of the first four Bessel function of the second kind on the
interval 0 < x ≤ 20; the vertical axis ranges from −1 to 1.

Finally, we show how Bessel functions of different orders are interconnected by two
important recurrence relations.

Proposition 11.10. The Bessel functions are related by the following formulae:

dJm
dx

+
m

x
Jm(x) = Jm−1(x), −

dJm
dx

+
m

x
Jm(x) = Jm+1(x). (11.111)

Proof : Differentiating the power series

xmJm(x) =
∞∑

k=0

(−1)kx2m+2k

22k+m k ! (m+ k) !

Y0(x) Y1(x)

Y2(x) Y3(x)

Figure 11.5. Bessel functions of the second kind.
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produces

d

dx
[xmJm(x) ] =

∞∑
k=0

(−1)k 2 (m+ k)x2m+2k−1

22k+m k ! (m + k) !

= xm
∞∑

k=0

(−1)kxm−1+2k

22k+m−1 k ! (m− 1 + k) !
= xm Jm−1(x).

(11.112)

Expansion of the left-hand side of this formula leads to

xm dJm
dx

+mxm−1Jm(x) =
d

dx
[xmJm(x) ] = xmJm−1(x),

which establishes the first recurrence formula (11.111). The second is proved by a similar
manipulation involving differentiation of x−m Jm(x). Q.E.D.

For example, using the second recurrence formula (11.111) along with (11.105), we
can write the Bessel function of order 3

2 in elementary terms:

J3/2(x) = −
dJ1/2(x)

dx
+

1

2x
J1/2(x)

= −
√

2

π

(
cosx

x1/2
− sin x

2x3/2

)
+

√
2

π

sinx

2x3/2
=

√
2

π

sinx− x cosx

x3/2
.

(11.113)

Iterating, one concludes that Bessel functions of half-integral order,m = ± 1
2 ,±

3
2 ,±

5
2 , . . . ,

are all elementary functions, in that they can be written in terms of trigonometric func-
tions and powers of

√
x . We will make use of these functions in our treatment of the

three-dimensional heat and wave equations in spherical geometry. On the other hand, all
of the other Bessel functions are non-elementary special functions.

With this, we conclude our brief introduction to the method of Frobenius and the
basics of Bessel functions. The reader interested in delving further into either the general
method or the host of additional properties of Bessel functions is encouraged to consult a
more specialized text, e.g., [59, 85, 119].

Exercises

11.3.22. Consider the ordinary differential equation 2xu′′ + u′ + xu = 0. (a) Prove that x = 0
is a regular singular point. (b) Find two independent series solutions in powers of x.

♥ 11.3.23. Consider the differential equation
u′′

2− x
=

u

x2
. (a) Classify all x0 ∈ R as either a

(i) regular point; (ii) regular singular point; and/or (iii) irregular singular point. Explain
your answers. (b) Find a series solution to the equation based at the point x0 = 0, or
explain why none exists. What is the radius of convergence of your series?

11.3.24. Consider the differential equation u′′ +
(
1− 1

x

)
u′ + u = 0.

(a) Classify all x0 ∈ R as either (i) a regular point; (ii) a regular singular point;
(iii) an irregular singular point; (iv) none of the above. Explain your answers.

(b) Write out the first five nonzero terms in a series solution.
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11.3.25. Consider the differential equation 4xu′′ + 2u′ + u = 0. (a) Classify the values of x for

which the equation has regular points, regular singular points, and irregular singular points.

(b) Find two independent series solutions, in powers of x. For what values of x do your

series converge? (c) By inspection of your series, write the general solution to the equation

in terms of elementary functions.

♥ 11.3.26. The Chebyshev differential equation is (1 − x2)u′′ − xu′ + m2u = 0. (a) Find all

(i) regular points; (ii) regular singular points; (iii) irregular singular points. (b) Show

that if m is an integer, the equation has a polynomial solution of degree m, known as a

Chebyshev polynomial . Write down the Chebyshev polynomials of degrees 1, 2, and 3.

(c) For m = 1, find two linearly independent series solutions based at the point x0 = 1.

11.3.27. Write the following Bessel functions in terms of elementary functions:

(a) J5/2(x), (b) J7/2(x), (c) J−3/2(x).

♦ 11.3.28. Prove the identity (11.103).

11.3.29. Suppose that u(x) solves Bessel’s equation. (a) Find a second order ordinary differen-

tial equation satisfied by the function w(x) =
√
x u(x). (b) Use this result to rederive the

formulas for J1/2(x) and J−1/2(x).

♦ 11.3.30. Let m ≥ 0 be real, and consider the modified Bessel equation of order m:

x2 u′′ + x u′ − (x2 +m2
)u = 0. (11.114)

(a) Explain why x0 = 0 is a regular singular point.

(b) Use the method of Frobenius to construct a series solution based at x0 = 0. Can you

relate your solutions to the Bessel function Jm(x)?

♦ 11.3.31.(a) Let a, b, c be constants with b, c �= 0. Show that the function u(x) = xaJ0(bx
c
)

solves the ordinary differential equation

x2
d2u

dx2
+ (1− 2a)x

du

dx
+ (b2c2x2c + a2)u = 0.

What is the general solution to this equation?

(b) Find the general solution to the ordinary differential equation

x2
d2u

dx2
+ αx

du

dx
+ (βx2c + γ)u = 0,

for constants α, β, γ, c with β, c �= 0.

♥ 11.3.32. Let k > 0 be a constant. The ordinary differential equation
d2u

dt2
+ e−2 t u = 0 describes

the vibrations of a weakening spring whose stiffness k(t) = e−2 t
is exponentially decaying

in time. (a) Show that this equation can be solved in terms of Bessel functions of order 0.

Hint : Perform a change of variables. (b) Does the solution tend to 0 as t → ∞?

♥ 11.3.33. We know that û(x) = J0(x) is a solution to the Bessel equation of order 0, namely

xu′′ + u′ + xu = 0. (11.115)

In accordance with the general Frobenius method, construct a second solution of the form

ũ(x) = J0(x) log x+

∞∑

n=1

vnx
n.

11.3.34. Is it possible to have all solutions to an ordinary differential equation bounded at a

regular singular point? If not, explain why not. If true, give an example where this

happens.
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11.4 The Heat Equation in a Disk, Continued

Now that we have acquired some familiarity with the solutions to Bessel’s ordinary differ-
ential equation, we are ready to analyze the separable solutions to the heat equation in a
polar geometry. At the end of Section 11.2, we were left with the task of solving the Bessel
equation (11.58) of integer order m. As we now know, there are two independent solutions,
namely the Bessel function of the first kind Jm, (11.102), and the more complicated Bessel
function of the second kind Ym, (11.107), and hence the general solution has the form

p(z) = c1Jm(z) + c2Ym(z),

for constants c1, c2. Reverting to our original radial coordinate r = z/
√
λ , we conclude

that every solution to the radial equation (11.56) has the form

p(r) = c1Jm
(√

λ r
)
+ c2Ym

(√
λ r

)
.

Now, the singular point r = 0 represents the center of the disk, and the solutions must
remain bounded there. While this is true for Jm(z), the second Bessel function Ym(z) has,
according to (11.110), a singularity at z = 0 and so is unsuitable for the present purposes.
(On the other hand, it plays a role in other situations, e.g., the heat equation on an annular
ring.) Thus, every separable solution that is bounded at r = 0 comes from the rescaled
Bessel function of the first kind of order m:

p(r) = Jm
(√

λ r
)
. (11.116)

The Dirichlet boundary condition at the disk’s rim r = 1 requires

p(1) = Jm
(√

λ
)
= 0.

Therefore, in order that λ be a bona fide eigenvalue,
√
λ must be a root of the mth order

Bessel function Jm.

Remark : We already know, thanks to the positive definiteness of the Dirichlet bound-
ary value problem, that the Helmholtz eigenvalues must all be positive, λ > 0, and so there
will be no difficulty in taking its square root.

The graphs of Jm(z) strongly indicate, and, indeed, it can be rigorously proved,
[85, 119], that as z increases above 0, each Bessel function oscillates, with slowly de-
creasing amplitude, between positive and negative values. In fact, asymptotically,

Jm(z) ∼
√

2
πz

cos
[
z −

(
1
2 m+ 1

4

)
π
]

as z −→ ∞, (11.117)

and so the oscillations become essentially the same as a (phase-shifted) cosine whose am-
plitude decreases like z−1/2. As a consequence, there exists an infinite sequence of Bessel
roots , which we number in increasing order:

Jm(ζm,n) = 0, where

0 < ζm,1 < ζm,2 < ζm,3 < · · · with ζm,n −→ ∞ as n −→ ∞.
(11.118)

It is worth emphasizing that the Bessel functions are not periodic, and so their roots
are not evenly spaced. However, as a consequence of (11.117), the large Bessel roots are
asymptotically close to the evenly spaced roots of the shifted cosine:

ζm,n ∼
(
n+ 1

2 m− 1
4

)
π as n −→ ∞. (11.119)
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Owing to their physical importance in a wide range of problems, the Bessel roots have
been extensively tabulated. The accompanying table displays all Bessel roots that are < 12
in magnitude. The columns of the table are indexed by m, the order of the Bessel function,
and the rows by n, the root number.

Table of Bessel Roots ζm,n

n

∖
m 0 1 2 3 4 5 6 7 . . .

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 9.9361 11.0864 . . .

2 5.5201 7.0156 8.4172 9.7610 11.0647
...

...
...

3 8.6537 10.1735 11.6198
...

...

4 11.7915
...

...

...
...

Remark : According to (11.102),

Jm(0) = 0 for m > 0, while J0(0) = 1.

However, we do not count 0 as a bona fide Bessel root, since it does not lead to a valid
eigenfunction for the Helmholtz boundary value problem.

Summarizing our progress so far, the eigenvalues

λm,n = ζ2m,n, n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (11.120)

of the Bessel boundary value problem (11.56–57) are the squares of the roots of the Bessel
function of order m. The corresponding eigenfunctions are

wm,n(r) = Jm(ζm,n r) , n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (11.121)

defined for 0 ≤ r ≤ 1. Combining (11.121) with the formula (11.55) for the angular com-
ponents, we conclude that the separable solutions (11.53) to the polar Helmholtz boundary
value problem (11.51) are

v0,n(r) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cosmθ,

v̂m,n(r, θ) = Jm(ζm,n r) sinmθ,

where m,n = 1, 2, 3, . . . . (11.122)

These solutions define the normal modes for the unit disk; Figure 11.6 plots the first few of
them. The eigenvalues λ0,n are simple, and contribute radially symmetric eigenfunctions,
whereas the eigenvalues λm,n for m > 0 are double, and produce two linearly independent
separable eigenfunctions, with trigonometric dependence on the angular variable.

Recalling the original ansatz (11.50), we have at last produced the basic separable
eigensolutions

u0,n(t, r) = e− ζ2
0,nt v0,n(r) = e− ζ2

0,nt J0(ζ0,n r),

um,n(t, r, θ) = e− ζ2
m,nt vm,n(r, θ) = e− ζ2

m,nt Jm(ζm,n r) cosmθ,

ûm,n(t, r, θ) = e− ζ2
m,nt v̂m,n(r, θ) = e− ζ2

m,nt Jm(ζm,n r) sinmθ, m, n = 1, 2, 3, . . . ,

(11.123)
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v0,1 v0,2 v0,3

v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

Figure 11.6. Normal modes for a disk.

to the homogeneous Dirichlet boundary value problem for the heat equation on the unit
disk. The general solution is obtained by linear superposition, in the form of an infinite
series

u(t, r, θ) =
1

2

∞∑
n=1

a0,n u0,n(t, r) +

∞∑
m,n=1

[
am,n um,n(t, r, θ) + bm,n ûm,n(t, r, θ)

]
, (11.124)

where the initial factor of 1
2 is included, as with ordinary Fourier series, for later conve-
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nience. As usual, the coefficients am,n, bm,n are determined by the initial condition

u(0, r, θ) =
1

2

∞∑
n=1

a0,n v0,n(r) +

∞∑
m,n=1

[
am,n vm,n(r, θ) + bm,n v̂m,n(r, θ)

]
= f(r, θ).

(11.125)
This requires that we expand the initial data into a Fourier–Bessel series in the eigen-
functions. As before, it is possible to prove, [34], that the separable eigenfunctions are
complete — there are no other eigenfunctions — and hence every (reasonable) function
defined on the unit disk can be written as a convergent series in the Bessel eigenfunctions.

Theorem 9.33 gurantees that the eigenfunctions are orthogonal† with respect to the
standard L2 inner product

〈 u , v 〉 =
∫ ∫

D

u(x, y) v(x, y)dx dy =

∫ 1

0

∫ π

−π

u(r, θ) v(r, θ) r dθ dr

on the unit disk. (Note the extra factor of r coming from the polar coordinate form of
the area element dx dy = r dr dθ.) The L2 norms of the Fourier–Bessel eigenfunctions are
given by the interesting formulae

‖ v0,n ‖ =
√
π
∣∣ J1(ζ0,n) ∣∣ , ‖ vm,n ‖ = ‖ v̂m,n ‖ =

√
π

2

∣∣ Jm+1(ζm,n)
∣∣ , (11.126)

which involve the value of the Bessel function of the next-higher order at the appropriate
Bessel root. A proof of (11.126) can be found in Exercise 11.4.22, while numerical values
are provided in the accompanying table.

Norms of the Fourier–Bessel Eigenfunctions ‖ vm,n ‖ = ‖ v̂m,n ‖

n

∖
m 0 1 2 3 4 5 6 7

1 .9202 .5048 .4257 .3738 .3363 .3076 .2847 .2658

2 .6031 .3761 .3401 .3126 .2906 .2725 .2572 .2441

3 .4811 .3130 .2913 .2736 .2586 .2458 .2347 .2249

4 .4120 .2737 .2589 .2462 .2352 .2255 .2169 .2092

5 .3661 .2462 .2353 .2257 .2171 .2095 .2025 .1962

Orthogonality of the eigenfunctions implies that the coefficients in the Fourier–Bessel

† For the two independent eigenfunctions corresponding to one of the double eigenvalues,
orthogonality must be verified by hand, but, in this case, it follows easily from the orthogonality
of their trigonometric components.
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t = 0 t = .02 t = .04

t = .06 t = .08 t = .1

Figure 11.7. Heat diffusion in a disk.
⊎

series (11.125) are given by the inner product formulae

a0,n = 2
〈 f , v0,n 〉
‖ v0,n ‖2

=
2

π J1(ζ0,n)
2

∫ 1

0

∫ π

−π

f(r, θ) J0(ζ0,n r) r dθ dr,

am,n =
〈 f , vm,n 〉
‖ vm,n ‖2

=
2

π Jm+1(ζm,n)
2

∫ 1

0

∫ π

−π

f(r, θ) Jm(ζm,n r) r cosmθ dθ dr,

bm,n =
〈 f , v̂m,n 〉
‖ v̂m,n ‖2

=
2

π Jm+1(ζm,n)
2

∫ 1

0

∫ π

−π

f(r, θ) Jm(ζm,n r) r sinmθ dθ dr.

(11.127)

In accordance with the general theory, each individual separable solution (11.123) to
the heat equation decays exponentially fast, at a rate λm,n = ζ2m,n prescribed by the square
of the corresponding Bessel root. In particular, the dominant mode, meaning the one that
persists the longest, is

u0,1(t, r, θ) = e− ζ2
0,1 t J0(ζ0,1 r). (11.128)

Its decay rate is prescribed by the smallest positive eigenvalue:

ζ20,1 ≈ 5.783, (11.129)

which is the square of the smallest root of the Bessel function J0(z). Since J0(z) > 0 for
0 ≤ z < ζ0,1, the dominant eigenfunction v0,1(r, θ) = J0(ζ0,1 r) > 0 is radially symmet-
ric and strictly positive within the entire disk. Consequently, for most initial conditions
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(specifically those for which a0,1 	= 0), the disk’s temperature distribution eventually be-
comes entirely of one sign and radially symmetric, while decaying exponentially fast to zero
at the rate given by (11.129). See Figure 11.7 for a plot of a typical solution. Note how,
in accordance with the theory, the solution soon acquires a radial symmetry as it decays
to thermal equilibrium.

Exercises

11.4.1. At the initial time t0 = 0, a concentrated unit heat source is instantaneously applied at

position x = 1
2 , y = 0, to a circular metal disk of unit radius and unit thermal diffusivity

whose outside edge is held at 0◦. Write down an eigenfunction series for the resulting tem-
perature distribution at time t > 0. Hint : Be careful working with the delta function in
polar coordinates; see Exercise 6.3.6.

11.4.2. Solve Exercise 11.4.1 when the concentrated unit heat source is instantaneously applied
at the center of the disk.

♥ 11.4.3.(a) Write down the Fourier–Bessel series for the solution to the heat equation on a unit
disk with γ = 1, whose circular edge is held at 0◦ and subject to the initial conditions
u(0, x, y) ≡ 1 for x2 + y2 ≤ 1. Hint : Use (11.112) to evaluate the integrals for the
coefficients. (b) Approximate the time t� ≥ 0 after which the temperature of the disk is
everywhere ≤ .5◦.

♣ 11.4.4.(a) Write down the first three nonzero terms in the Fourier–Bessel series for the solution
to the heat equation on a unit disk with γ = 1 whose circular edge is held at 0◦ subject to
the initial conditions u(0, r, θ) = 1 − r for r ≤ 1. Use numerical integration to evaluate the
coefficients. (b) Use your approximation to determine at which times t ≥ 0 the tempera-
ture of the disk is everywhere ≤ .5◦.

11.4.5. Prove that every separable eigenfunction of the Dirichlet boundary value problem for
the Helmholtz equation in the unit disk can be written in the form

c Jm(ζm,n r) cos(mθ − α) for fixed c �= 0 and −π < α ≤ π.

11.4.6. Suppose the initial data f(r, θ) in (11.49) satisfies
∫ 1

0

∫ π

−π
f(r, θ) J0(ζ0,1 r) r dθ dr = 0.

(a) What is the decay rate to equilibrium of the resulting heat equation solution u(t, r, θ)?
(b) Prove that, generically, the asymptotic temperature distribution has half the disk above
the equilibrium temperature and the other half below. Can you predict the diameter that
separates the two halves? (c) If you know that a0,1 = 0, and also that the long-time

temperature distribution is radially symmetric, what is the (generic) decay rate? What is
the asymptotic temperature distribution?

♦ 11.4.7. Show how to use a scaling symmetry to solve the heat equation in a disk of radius R
knowing the solution in a disk of radius 1.

11.4.8. Use rescaling, as in Exercise 11.4.7, to produce the solution to the Dirichlet initial-
boundary value problem for a disk of radius 2 with diffusion coefficient γ = 5.

11.4.9. If it takes a disk of unit radius 3 minutes to reach (approximate) thermal equilibrium,
how long will it take a disk of radius 2 made out of the same material and subject to the
same homogeneous boundary conditions to reach equilibrium?

11.4.10. Assuming Dirichlet boundary conditions, does a square or a circular disk of the same
area reach thermal equilibrium faster? Use your intuition first, and then check using the
explicit formulas.
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11.4.11. Answer Exercise 11.4.10 when the square and circle have the same perimeter.

11.4.12. Which reaches thermal equilibrium faster: a disk whose edge is held at 0
◦
or a disk of

the same radius that is fully insulated?

11.4.13. A circular metal disk is removed from an oven and then fully insulated.

True or false: (a) The eventual equilibrium temperature is constant.

(b) For large t 	 0, the temperature u(t, x, y) becomes more and more radially symmetric.

If false, what can you say about the temperature profile at large times?

♥ 11.4.14.(a) Write down an eigenfunction series formula for the temperature dynamics of a disk

of radius 1 that has an insulated boundary. (b) What is the eventual equilibrium temper-

ature? (c) Is the rate of decay to thermal equilibrium (i) faster, (ii) slower, or (iii) the

same as a disk with Dirichlet boundary conditions?

♥ 11.4.15. Write out a series solution for the temperature in a half-disk of radius 1, subject to

(a) homogeneous Dirichlet boundary conditions on its entire boundary; (b) homogeneous

Dirichlet conditions on the circular part of its boundary and homogeneous Neumann

conditions on the straight part. (c) Which of the two boundary conditions results in a

faster return to equilibrium temperature? How much faster?

11.4.16. A large sheet of metal is heated to 100
◦
. A circular disk and a semi-circular half-disk

of the same radius are cut out of it. Their edges are then held at 0
◦
, while being fully

insulated from above and below.

(a) True or false: The half-disk goes to thermal equilibrium twice as fast as the disk.

(b) If you need to wait 20 minutes for the circular disk to cool down enough to be picked up

in your bare hands, how long do you need to wait to pick up the semi-circular disk?

♣ 11.4.17. Two identical plates have the shape of an annular ring {1 < r < 2} with inner radius

1 and outer radius 2. The first has an insulated inner boundary and outer boundary held

at 0
◦
, while the second has an insulated outer boundary and inner boundary held at 0

◦
. If

both start out at the same temperature, which reaches thermal equilibrium faster?

Quantify the rates of decay.

♥ 11.4.18. Let m ≥ 0 be a nonnegative integer. In this exercise, we investigate the completeness

of the eigenfunctions of the Bessel boundary value problem (11.56–57). To this end, define

the Sturm–Liouville linear differential operator

S[u ] = −
1

x

d

dx

(
x
du

dx

)
+

m2

x2
u,

subject to the boundary conditions |u′(0) | < ∞, u(1) = 0, and either |u(0) | < ∞ when

m = 0, or u(0) = 0 when m > 0.

(a) Show that S is self-adjoint relative to the inner product 〈 f , g 〉 =
∫ 1

0
f(x) g(x) x dx.

(b) Prove that the eigenfunctions of S are the rescaled Bessel functions Jm(ζm,nx) for

n = 1, 2, 3, . . . . What are the orthogonality relations?

(c) Find the Green’s function G(x; ξ) and modified Green’s function Ĝ(x; ξ), cf. (9.59),

associated with the boundary value problem S[u ] = 0.

(d) Use the criterion of Theorem 9.47 to prove that the eigenfunctions are complete.

11.4.19. Determine the Bessel roots ζ1/2,n. Do they satisfy the asymptotic formula (11.119)?

♣ 11.4.20. Use a numerical root finder to compute the first 10 Bessel roots ζ3/2,n, n = 1, . . . , 10.

Compare your values with the asymptotic formula (11.119).

♦ 11.4.21. Prove that Jm−1(ζm,n) = −Jm+1(ζm,n).

♦ 11.4.22. In this exercise, we prove formula (11.126).

(a) First, use the recurrence formulae (11.111) to prove

d

dx

[
x2

(
Jm(x)2 − Jm−1(x) Jm+1(x)

) ]
= 2xJm(x)2.

(b) Integrate both sides of the previous formula from 0 to the Bessel zero ζm,n and then
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use Exercise 11.4.21 to show that∫ ζm,n

0
xJm(x)2 dx = − ζ2m,n

2
Jm−1(ζm,n) Jm+1(ζm,n) =

ζ2m,n

2
Jm+1(ζm,n)

2.

(c) Next, use a change of variables to establish the identity∫ 1

0
z Jm(ζm,n z)2 dz = 1

2 Jm+1(ζm,n)
2.

(d) Finally, use the formulae for vm,n and v̂m,n to complete the proof of (11.126).

♦ 11.4.23. Prove directly that the eigenfunctions vm,n(r, θ) and v̂m,n(r, θ) in (11.122) are orthog-

onal with respect to the L2 inner product on the unit disk.

11.4.24. Establish the following alternative formulae for the eigenfunction norms:

‖ v0,n ‖ =
√
π

∣∣∣ J ′
0 (ζ0,n)

∣∣∣ , ‖ vm,n ‖ = ‖ v̂m,n ‖ =

√
π

2

∣∣∣ J ′
m(ζm,n)

∣∣∣ .

11.5 The Fundamental Solution to the Planar Heat Equation

As we learned in Section 8.1, the fundamental solution to the heat equation measures
the temperature distribution resulting from a concentrated initial heat source, e.g., a hot
soldering iron applied instantaneously at a single point on a metal plate. The physical
problem is modeled mathematically by taking a delta function as the initial data along
with the relevant homogeneous boundary conditions. Once the fundamental solution is
known, one is able to use linear superposition to recover the solution generated by any
other initial data.

As in our one-dimensional analysis, we shall concentrate on the most tractable case,
in which the domain is the entire plane: Ω = R2. Thus, our first goal is to solve the initial
value problem

ut = γΔu, u(0, x, y) = δ(x− ξ) δ(y − η), (11.130)

for t > 0 and (x, y) ∈ R2. The solution u = F (t,x; ξ) = F (t, x, y; ξ, η) to this initial value
problem is known as the fundamental solution for the heat equation on R2.

The quickest route to the desired formula relies on the following means of combining
solutions of the one-dimensional heat equation to produce solutions of the two-dimensional
version.

Lemma 11.11. Let v(t, x) and w(t, x) be any two solutions to the one-dimensional
heat equation ut = γ uxx. Then their product

u(t, x, y) = v(t, x)w(t, y) (11.131)

is a solution to the two-dimensional heat equation ut = γ (uxx + uyy).

Proof : Our assumptions imply that vt = γ vxx, while wt = γ wyy when we write
w(t, y) as a function of t and y. Therefore, differentiating (11.131), we find

∂u

∂t
=

∂v

∂t
w + v

∂w

∂t
= γ

∂2v

∂x2
w + γ v

∂2w

∂y2
= γ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

and hence u(t, x, y) solves the two-dimensional heat equation. Q.E.D.
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For example, if

v(t, x) = e−γα2 t sinαx, w(t, y) = e−γβ2 t sin βy,

are separable solutions of the one-dimensional heat equation, then

u(t, x, y) = e−γ (α2+β2)t sinαx sinβy

are the separable solutions we used to solve the heat equation on a rectangle. A more
interesting case is to choose

v(t, x) =
1

2
√
πγ t

e−(x−ξ)2/(4γ t), w(t, y) =
1

2
√
πγ t

e−(y−η)2/(4γ t), (11.132)

to be the fundamental solutions (8.14) to the one-dimensional heat equation at respec-
tive locations x = ξ and y = η. Multiplying these two solutions together produces the
fundamental solution for the two-dimensional problem.

Theorem 11.12. The fundamental solution to the heat equation ut = γΔu corre-
sponding to a unit delta function placed at position (ξ, η) ∈ R2 at the initial time t0 = 0
is

F (t, x, y; ξ, η) =
1

4πγ t
e− [ (x−ξ)2+(y−η)2 ]/(4γ t). (11.133)

Proof : Since we already know that both functions (11.132) are solutions to the one-
dimensional heat equation, Lemma 11.11 guarantees that their product, which equals
(11.133), solves the two-dimensional heat equation for t > 0. Moreover, at the initial
time,

u(0, x, y) = v(0, x)w(0, y) = δ(x− ξ) δ(y − η)

is a product of delta functions, and hence the result follows. Indeed, the total heat∫ ∫
u(t, x, y) dx dy =

∫ ∞

−∞
v(t, x) dx

∫ ∞

−∞
w(t, y) dy = 1, t ≥ 0,

remains constant, while

lim
t→0+

u(t, x, y) =

{ ∞, (x, y) = (ξ, η),

0, otherwise,

has the standard delta function limit at the initial time instant. Q.E.D.

Figure 11.8 depicts the evolution of the fundamental solution when γ = 1 at the
indicated times. Observe that the initially concentrated temperature spreads out in a
radially symmetric manner, while the total amount of heat remains constant. At any
individual point (x, y) 	= (0, 0), the initially zero temperature rises slightly at first, but
then decays monotonically back to zero at a rate proportional to 1/t. As in the one-
dimensional case, since the fundamental solution is > 0 for all t > 0, the heat energy has
an infinite speed of propagation.

Both the one- and two-dimensional fundamental solutions have bell-shaped profiles
known as Gaussian filters . The most important difference is the initial factor. In a one-
dimensional medium, the fundamental solution decays in proportion to 1/

√
t, whereas in

the plane the decay is more rapid, being proportional to 1/t. The physical explanation is
that the heat energy is able to spread out in two independent directions, and hence diffuses
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t = .01 t = .02

t = .05 t = .1

Figure 11.8. The fundamental solution to the planar heat equation.
⊎

away from its initial source more rapidly. As we shall see, the decay in three-dimensional
space is more rapid still, being proportional to t−3/2 for similar reasons; see (12.120).

The principal use of the fundamental solution is for solving the general initial value
problem. We express the initial temperature distribution as a superposition of delta func-
tion impulses,

u(0, x, y) = f(x, y) =

∫ ∫
f(ξ, η) δ(x− ξ, y − η) dξ dη,

where, at the point (ξ, η) ∈ R2, the impulse has magnitude f(ξ, η). Linearity implies that
the solution is then given by the same superposition of fundamental solutions.

Theorem 11.13. The solution to the initial value problem

ut = γΔu, u(0, x, y) = f(x, y), (x, y) ∈ R2,

for the planar heat equation is given by the linear superposition formula

u(t, x, y) =
1

4πγ t

∫ ∫
f(ξ, η) e− [ (x−ξ)2+(y−η)2 ]/(4γ t) dξ dη. (11.134)



484 11 Dynamics of Planar Media

t = 0 t = .01

t = .05 t = .1

t = .2 t = .5

Figure 11.9. Diffusion of a disk.
⊎

We can interpret the solution formula (11.134) as a two-dimensional convolution

u(t, x, y) = F (t, x, y) ∗ f(x, y) (11.135)

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters

F (t, x, y) = F (t, x, y; 0, 0) =
1

4πγ t
e−(x2+y2)/(4γ t). (11.136)

As in (7.54), such a convolution can be interpreted as a Gaussian weighted averaging of
the function f(x, y), which has the effect of smoothing out the initial data.

Example 11.14. If our initial temperature distribution is constant on a circular
region, say

u(0, x, y) =

{
1 x2 + y2 < 1,

0, otherwise,

then the solution can be evaluated using (11.134), as follows:

u(t, x, y) =
1

4π t

∫ ∫
D

e−[ (x−ξ)2+(y−η)2 ]/(4 t) dξ dη,

where the integral is over the unit disk D = {ξ2 + η2 ≤ 1}. Unfortunately, the integral
cannot be expressed in terms of elementary functions. On the other hand, numerical
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evaluation of the integral is straightforward. A plot of the resulting radially symmetric
solution appears in Figure 11.9. One could also interpret this solution as the diffusion of
an animal population in a uniform isotropic environment or bacteria in a similarly uniform
large petri dish that are initially confined to a small circular region.

Exercises

11.5.1. Solve the following initial value problem: ut = 5(uxx + uyy), u(0, x, y) = e−(x2+y2).

11.5.2. Write down an integral formula for the solution to the following initial value problem:

ut = 3(uxx + uyy), u(0, x, y) = (1 + x2 + y2)−2.

11.5.3. At the initial time t = 0, a unit heat source is instantaneously applied at the origin
of the (x, y)–plane. For t > 0, what is the maximum temperature experienced at a point
(x, y) �= 0? At what time is the maximum temperature achieved? Does the temperature
approach an equilibrium value as t → ∞? If so, how fast?

11.5.4.(a) Find an eigenfunction series representation of the fundamental solution for the heat
equation ut = Δu on the unit square {0 ≤ x, y ≤ 1} when subject to homogeneous Dirich-
let boundary conditions. (b) Write the solution to the initial value problem u(0, x, y) =
f(x, y) in terms of the fundamental solution. (c) Discuss how your formula is related to the
Fourier series solution (11.43).

11.5.5. Let u(t, x, y) be a solution to the heat equation on all of R2 such that u and ‖∇u ‖ → 0

rapidly as ‖x ‖ → ∞. (a) Prove that the total heat H(t) =
∫∫

u(t, x, y) dx dy is constant.

(b) Explain how this can be reconciled with the statement that u(t, x, y) → 0 as t → ∞ at

all points (x, y) ∈ R2.

♦ 11.5.6. Consider the initial value problem ut = γΔu+H(t, x, y), u(0, x, y) = 0, for the inhomo-

geneous heat equation on the entire (x, y)–plane, where H(t, x, y) represents a time-varying
external heat source. Derive an integral formula for its solution. Hint : Mimic the solution
method in Section 8.1.

11.5.7. A flat plate of infinite extent with unit thermal diffusivity starts off at 0◦. From then
on, a unit heat source is continually applied at the origin. Find the resulting temperature
distribution. Does the temperature eventually reach a steady state?
Hint : Use Exercise 11.5.6.

♥ 11.5.8. Building on Example 11.14, we model the “diffusion” of a set D ⊂ R2 as the solution
u(t, x, y) to the heat equation ut = Δu subject to the initial condition u(0, x, y) = χD(x, y),

where χD(x, y) =

{
1, (x, y) ∈ D,
0, (x, y) �∈ D,

is the characteristic function of the set D.

(a) Write down a formula for the diffusion of the set D.
(b) True or false: At each t, the diffusion u(t, x, y) is the characteristic function of a set Dt.

(c) Prove that 0 < u(t, x, y) < 1 for all (x, y) and t > 0. (d) What is lim
t→∞

u(t, x, y)?

(e) Write down a formula for the diffusion of a unit square D = {0 ≤ x, y ≤ 1}, and then
plot the result at several times. Discuss what you observe.

11.5.9.(a) Explain why the delta function on R2 satisfies the scaling law δ(x, y) = β2 δ(βx, β y),

for β �= 0. (b) Verify that the fundamental solution to the heat equation on R2 obeys the

same scaling law: F (t, x, y) = β2F (β2 t, β x, β y). (c) Is the fundamental solution a
similarity solution?
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11.5.10.(a) Find the fundamental solution on R2 to the cable equation ut = γΔu − αu, where
α > 0 is constant. (b) Use your solution to write down a formula for the solution to the

general initial value problem u(0, x, y) = f(x, y) for (x, y) ∈ R2.

11.5.11.(a) Prove that if v(t, x) and w(t, x) solve the dispersive wave equation (8.90), then
their product u(t, x, y) = v(t, x)w(t, y) solves the two-dimensional dispersive equation

ut + uxxx + uyyy = 0.

(b) What is the fundamental solution on R2 of the latter equation? (c) Write down an in-

tegral formula for the solution to the initial value problem u(0, x, y) = f(x, y) for (x, y) ∈ R2.

11.5.12. Define the two-dimensional convolution f ∗ g of functions f(x, y) and g(x, y) so that
equation (11.135) is valid.

11.6 The Planar Wave Equation

Let us next consider the two-dimensional wave equation

∂2u

∂t2
= c2Δu = c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (11.137)

which models the unforced transverse vibrations of a homogeneous membrane, e.g., a drum.
Here, u(t, x, y) represents the vertical displacement of the membrane at time t and position
(x, y) ∈ Ω, where the domain Ω ⊂ R2, assumed bounded, represents the undeformed shape.
The constant c2 > 0 encapsulates the membrane’s physical properties — density, tension,
stiffness, etc.; its square root, c, is called, as in the one-dimensional case, the wave speed ,
since it represents the speed of propagation of localized signals.

Remark : In this simplified model, we are only allowing small, transverse (vertical)
displacements of the membrane. Large elastic vibrations lead to the nonlinear partial
differential equations of elastodynamics, [7]. In particular, the bending vibrations of a
flexible elastic plate are governed by a more complicated fourth-order partial differential
equation.

The solution u(t, x, y) to the wave equation will be uniquely specified once we impose
suitable boundary and initial conditions. The Dirichlet conditions

u(t, x, y) = h(x, y), (x, y) ∈ ∂Ω, (11.138)

correspond to gluing our membrane to a fixed boundary — a rim; more generally, we can
also allow h to depend on t, modeling a membrane attached to a moving boundary. On
the other hand, the homogeneous Neumann conditions

∂u

∂n
(t, x, y) = 0, (x, y) ∈ ∂Ω, (11.139)

represent a free boundary where the membrane is not attached to any support — although
in this model, its edge is allowed to move only in a vertical direction. Mixed boundary
conditions attach part of the boundary and leave the remaining portion free to vibrate:

u = h on D � ∂Ω,
∂u

∂n
= 0 on N = ∂Ω \D. (11.140)
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Since the wave equation is of second order in time, to uniquely specify the solution we need
to impose two initial conditions,

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = g(x, y), (x, y) ∈ Ω. (11.141)

The first specifies the membrane’s initial displacement, while the second prescribes its
initial velocity.

Separation of Variables

Unfortunately, the d’Alembert solution method does not apply to the two-dimensional
wave equation in any obvious manner. The reason is that, unlike the one-dimensional
version (2.69), one cannot factorize the planar wave operator � = ∂2

t − c2 ∂2
x − c2 ∂2

y , thus
precluding any sort of reduction to a first-order partial differential equation. However, this
is not the end of the story, and we will return to this issue at the end of Section 12.6.

We thus fall back on our universal solution tool for linear partial differential equations
— separation of variables. According to the general framework established in Section 9.5,
the separable solutions to the wave equation have the trigonometric form

uk(t, x, y) = cos(ωk t) vk(x, y) and ũk(t, x, y) = sin(ωk t) vk(x, y). (11.142)

Substituting back into the wave equation, we find that vk(x, y) must be an eigenfunction
of the associated Helmholtz boundary value problem

c2
(

∂2u

∂x2
+

∂2u

∂y2

)
+ λk v = 0, (11.143)

whose eigenvalue λk = ω2
k equals the square of the vibrational frequency. According to

Theorem 9.47, on a bounded domain, there is an infinite number of such normal modes with
progressively faster vibrational frequencies: ωk → ∞ as k → ∞. In addition, in the positive
semi-definite case — which occurs under homogeneous Neumann boundary conditions —
there is a single constant null eigenfunction, leading to the additional separable solutions

u0(t, x, y) = 1 and ũ0(t, x, y) = t. (11.144)

The first represents a stationary membrane that has been displaced to a fixed height, while
the second represents a membrane that is moving off in the vertical direction with constant
unit speed. (Think of the membrane moving in outer space unaffected by any external
gravitational force.) As in Section 9.5, the general solution can be written as an infinite
series in the eigensolutions (11.142). Unfortunately, as we know, the Helmholtz boundary
value problem can be explicitly solved only on a rather restricted class of domains. Here
we will content ourselves with investigating the two most important cases: rectangular and
circular membranes.

Remark : The vibrational frequencies represent the tones and overtones one hears when
the drum membrane vibrates. An interesting question is whether two drums of different
shapes can have identical sounds — the exact same vibrational frequencies. Or, more
descriptively, can one “hear” the shape of a drum? It was not until 1992 that the answer
was shown to be no, but for quite subtle reasons. See [47] for a discussion and some
examples of differently shaped drums that have the same vibrational frequencies.
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Vibration of a Rectangular Drum

Let us first consider the vibrations of a membrane in the shape of a rectangle

R = {0 < x < a, 0 < y < b},

with side lengths a and b, whose edges are fixed to the (x, y)–plane. Thus, we seek to solve
the wave equation

utt = c2Δu = c2(uxx + uyy), 0 < x < a, 0 < y < b, (11.145)

subject to the initial and boundary conditions

u(t, 0, y) = u(t, a, y) = 0 = u(t, x, 0) = u(t, x, b),

u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

0 < x < a,

0 < y < b.
(11.146)

As we saw in Section 11.2, the eigenfunctions and eigenvalues for the associated Helmholtz
equation on a rectangle,

c2(vxx + vyy) + λ v = 0, (x, y) ∈ R, (11.147)

when subject to the homogeneous Dirichlet boundary conditions

v(0, y) = v(a, y) = 0 = v(x, 0) = v(x, b), 0 < x < a, 0 < y < b, (11.148)

are

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, where λm,n = π2 c2

(
m2

a2
+

n2

b2

)
, (11.149)

with m,n = 1, 2, . . . . The fundamental frequencies of vibration are the square roots of the
eigenvalues, so

ωm,n =
√
λm,n = π c

√
m2

a2
+

n2

b2
, m, n = 1, 2, . . . . (11.150)

The frequencies will depend upon the underlying geometry — meaning the side lengths —
of the rectangle, as well as the wave speed c, which, in turn, is a function of the membrane’s
density and stiffness. The higher the wave speed, or the smaller the rectangle, the faster
the vibrations. In layman’s terms, (11.150) quantifies the observation that smaller, stiffer
drums made of less-dense material vibrate faster.

According to (11.142), the normal modes of vibration of our rectangle are

um,n(t, x, y) = cos

(
π c

√
m2

a2
+

n2

b2
t

)
sin

mπx

a
sin

nπy

b
,

ũm,n(t, x, y) = sin

(
π c

√
m2

a2
+

n2

b2
t

)
sin

mπx

a
sin

nπy

b
.

(11.151)

The general solution can then be written as a double Fourier series

u(t, x, y) =

∞∑
m,n=1

[
am,n um,n(t, x, y) + bm,n ũm,n(t, x, y)

]
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t = 0 t = .2 t = .4

t = .6 t = .8 t = 1.0

t = 1.2 t = 1.4 t = 1.6

in the normal modes. The coefficients am,n, bm,n are fixed by the initial displacement
u(0, x, y) = f(x, y) and the initial velocity ut(0, x, y) = g(x, y). Indeed, the usual orthogo-
nality relations among the eigenfunctions imply

am,n =
〈 vm,n , f 〉
‖ vm,n ‖2

=
4

a b

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy

b
dx dy, (11.152)

bm,n =
〈 vm,n , g 〉

ωm,n ‖ vm,n ‖2
=

4

π c
√
m2 b2 + n2 a2

∫ b

0

∫ a

0

g(x, y) sin
mπx

a
sin

nπy

b
dx dy.

Since the fundamental frequencies are not rational multiples of each other, the general
solution is a genuinely quasiperiodic superposition of the various normal modes.

In Figure 11.10, we plot the solution resulting from the initially concentrated displace-
ment†

u(0, x, y) = f(x, y) = e−100 [ (x−.5)2+(y−.5)2 ]

at the center of a unit square, so a = b = 1, with unit wave speed, c = 1. Note that, unlike
a concentrated displacement of a one-dimensional string, which remains concentrated at
all subsequent times and periodically repeats, the initial displacement here spreads out in
a radially symmetric manner and propagates to the edges of the rectangle, where it reflects

† The alert reader may object that the initial displacement f(x, y) does not exactly satisfy
the Dirichlet boundary conditions on the edges of the rectangle. But this does not prevent the
existence of a well-defined (weak) solution to the initial value problem, whose initial boundary
discontinuities will subsequently propagate into the square. However, here these are so tiny as to
be unnoticeable in the solution graphs.

Figure 11.10. Vibrations of a square membrane.
⊎
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and then interacts with itself. Moreover, due to the quasiperiodicity of the solution, the
drum’s motion never exactly repeats, and the initially concentrated displacement never
quite reforms.

Vibration of a Circular Drum

Let us next analyze the vibrations of a circular membrane of unit radius. In polar coordi-
nates, the planar wave equation (11.137) takes the form

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
. (11.153)

We will again consider the homogeneous Dirichlet boundary value problem

u(t, 1, θ) = 0, t ≥ 0, −π ≤ θ ≤ π, (11.154)

along with initial conditions

u(0, r, θ) = f(r, θ),
∂u

∂t
(0, r, θ) = g(r, θ), (11.155)

representing the initial displacement and velocity of the membrane. As always, we build up
the general solution as a quasiperiodic linear combination of the normal modes as specified
by the eigenfunctions for the associated Helmholtz boundary value problem.

As we saw in Section 11.2, the eigenfunctions of the Helmholtz equation on a disk
of radius 1, say, subject to homogeneous Dirichlet boundary conditions, are products of
trigonometric and Bessel functions:

v0,n(r, θ) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cosmθ,

ṽm,n(r, θ) = Jm(ζm,n r) sinmθ,

m, n = 1, 2, 3, . . . . (11.156)

Here r, θ are the usual polar coordinates, while ζm,n > 0 denotes the nth (positive) root
of the mth order Bessel function Jm(z), cf. (11.118). The corresponding eigenvalue is its
square, λm,n = ζ2m,n, and hence the natural frequencies of vibration are equal to the Bessel
roots scaled by the wave speed:

ωm,n = c
√
λm,n = c ζm,n. (11.157)

A table of their values (for the case c = 1) can be found in the preceding section. The Bessel
roots do not follow any easily discernible pattern, and are not rational multiples of each
other. This result, known as Bourget’s hypothesis , [119; p. 484], was rigorously proved by
the German mathematician Carl Ludwig Siegel in 1929, [106]. Thus, the vibrations of a
circular drum are also truly quasiperiodic, thereby providing a mathematical explanation
of why drums sound dissonant.

The frequencies ω0,n = c ζ0,n correspond to simple eigenvalues, with a single radially
symmetric eigenfunction J0(ζ0,n r), while the “angular modes” ωm,n, for m > 0, are double,
each possessing two linearly independent eigenfunctions (11.156). According to the general
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Figure 11.11. Vibration of a disk.
⊎
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formula (11.142), each eigenfunction engenders two independent normal modes of vibration,
having the explicit forms

cos(c ζ0,n t) J0(ζ0,n r), sin(c ζ0,n t) J0(ζ0,n r),

cos(c ζm,n t) Jm(ζm,n r) cosmθ, sin(c ζm,n t) Jm(ζm,n r) cosmθ,

cos(c ζm,n t) Jm(ζm,n r) sinmθ, sin(c ζm,n t) Jm(ζm,n r) sinmθ.

(11.158)

The general solution to (11.153–154) is then expressed as a Fourier–Bessel series:

u(t, r, θ) =
1

2

∞∑
n=1

[
a0,n cos(c ζ0,n t) + c0,n sin(c ζ0,n t)

]
J0(ζ0,n r)

+

∞∑
m,n=1

[ (
am,n cos(c ζm,n t) + cm,n sin(c ζm,n t)

)
cosmθ

+
(
bm,n cos(c ζm,n t) + dm,n sin(c ζm,n t)

)
sinmθ

]
Jm(ζm,n r),

(11.159)

whose coefficients am,n, bm,n, cm,n, dm,n are determined, as usual, by the initial displace-
ment and velocity of the membrane (11.155). In Figure 11.11, the vibrations due to an
initially off-center concentrated displacement are displayed; the wave speed is c = 1, and the
time interval between successive plots is Δt = .3. Again, the motion is only quasiperiodic
and, no matter how long you wait, never quite returns to its original configuration.

Exercises

11.6.1. Use your physical intuition to decide whether the following statements are true or false.
Then justify your answer.

(a) Increasing the stiffness of a membrane increases the wave speed.

(b) Increasing the density of a membrane increases the wave speed.

(c) Increasing the size of a membrane increases the wave speed

11.6.2. Two uniform membranes have the same shape, but are made out of different materials.

Assuming that they are both subject to the same homogeneous boundary conditions, how

are their vibrational frequencies related?

11.6.3. List the numerical values of the six lowest vibrational frequencies of a unit square with

wave speed c = 1 when subject to homogeneous Dirichlet boundary conditions. How many

linearly independent normal modes are associated with each of these frequencies?

♥ 11.6.4. The rectangular membrane R = {−1 < x < 1, 0 < y < 1} has its two short sides

attached to the (x, y)–plane, while its long sides are left free. The membrane is initially

displaced so that its right half is one unit above, while its left half is one unit below the

plane, and then released with zero initial velocity. (This discontinuous initial data serves

to model a very sharp transition region.) Assume that the physical units are chosen so the

wave speed c = 1. (a) Write down an initial-boundary value problem that governs the

vibrations of the membrane. (b) What are the fundamental frequencies of vibration of the

membrane? (c) Find the eigenfunction series solution that describes the subsequent mo-

tion of the membrane. (d) Is the motion (i) periodic? (ii) quasiperiodic? (iii) unstable?

(iv) chaotic? Explain your answer.

11.6.5. Determine the solution to the following initial-boundary value problems for the wave

equation on the rectangle R = {0 < x < 2, 0 < y < 1}:

(a)

{
utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) = sin πy, ut(0, x, y) = sinπy;
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(b)

⎧⎪⎨⎪⎩ utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) =
∂u

∂x
(t, 0, y) =

∂u

∂x
(t, 2, y) = 0,

u(0, x, y) = sinπy, ut(0, x, y) = sinπy;

(c)

⎧⎪⎪⎨⎪⎪⎩
utt = uxx + uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) =

{
1, 0 < x < 1,
0, 1 < x < 2,

ut(0, x, y) = 0;

(d)

⎧⎪⎪⎨⎪⎪⎩
utt = 2uxx + 2uyy , u(t, x, 0) = u(t, x, 1) = u(t, 0, y) = u(t, 2, y) = 0,

u(0, x, y) = 0, ut(0, x, y) =

{
1, 0 < x < 1,
0, 1 < x < 2.

11.6.6. True or false: The more sides of a rectangle that are tied down, the faster it vibrates.

11.6.7. Answer Exercise 11.6.3 when (a) two adjacent sides of the square are tied down and
the other two are left free; (b) two opposite sides of the square are tied down and the other
two are left free; (c) the membrane is freely floating in outer space.

11.6.8. A square drum has two sides fixed to a support and two sides left free. Does the drum
vibrate faster if the fixed and free sides are adjacent to each other or on opposite sides?

11.6.9. Write down a periodic solution to the wave equation on a unit square, subject to
homogeneous Dirichlet boundary conditions, that is not a normal mode. Does it vibrate at
a fundamental frequency?

11.6.10. A rectangular drum with side lengths 1 cm by 2 cm and unit wave speed c = 1 has its
boundary fixed to the (x, y)–plane while subject to a periodic external forcing of the form
F (t, x, y) = cos(ωt) h(x, y). (a) At which frequencies ω will the forcing incite resonance
in the drum? (b) If ω is a resonant frequency, write down the condition(s) on h(x, y) that
ensure excitation of a resonant mode.

11.6.11. The right half of a rectangle of side lengths 1 by 2 is initially displaced, while the left
half is quiescent. True or false: The ensuing vibrations are restricted to the right half of
the membrane.

♥ 11.6.12. A torus (inner tube) can be obtained by gluing together each of the two pairs of
opposite sides of a rubber rectangle. The (small) vibrations of the torus are described by
the following periodic initial-boundary value problem for the wave equation, in which x, y
represent angular variables:

utt = c2Δu = c2(uxx + uyy), u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

u(t,−π, y) = u(t, π, y), ux(t,−π, y) = ux(t, π, y), −π < x < π,
u(t, x,−π) = u(t, x, π), ux(t, x,−π) = ux(t, x, π), −π < y < π.

(a) Find the fundamental frequencies and normal modes of vibration. (b) Write down a
series for the solution. (c) Discuss the stability of a vibrating torus. Is the motion
(i) periodic; (ii) quasiperiodic; (iii) chaotic; (iv) none of these?

11.6.13. The forced wave equation utt = c2Δu + F (x, y) on a bounded domain Ω ⊂ R2

models a membrane subject to a constant external forcing function F (x, y). Write down
an eigenfunction series solution to the forced wave equation when the membrane is subject
to homogeneous Dirichlet boundary conditions and initial conditions u(0, x, y) = f(x, y),
ut(0, x, y) = g(x, y). Hint : Expand the forcing function in an eigenfunction series.

11.6.14. A circular drum of radius ζ0,1 ≈ 2.4048 has initial displacement and velocity

u(0, x, y) = 0,
∂u

∂t
(0, x, y) = 2 J0

(√
x2 + y2

)
.

Assuming that the circular edge of the drum is fixed to the (x, y)–plane, describe, both
qualitatively and quantitatively, its subsequent motion.

11.6.15. Write out the integral formulae for the coefficients in the Fourier–Bessel series solution
(11.159) to the wave equation in a circular disk in terms of the initial data

u(0, r, θ) = f(r, θ), ut(0, r, θ) = g(r, θ).
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11.6.16. A circular drum at rest is struck with a concentrated blow at its center. Write down

an eigenfunction series describing the resulting vibration.

♥ 11.6.17.(a) Set up and solve the initial-boundary value problem for the vibrations of a uniform

circular drum of unit radius that is freely floating in space. (b) Discuss the stability of the

drum’s motion. (c) Are the vibrations slower or faster than when its edges are fixed to a

plane?

11.6.18. A flat quarter-disk of radius 1 has its circular edge and one of its straight edges

attached to the (x, y)–plane, while the other straight edge is left free. At time t = 0 the

disk is struck with a hammer (unit delta function) at its midpoint, i.e., at radius
1
2 and

halfway between the straight edges. (a) Write down an initial-boundary value problem for

the subsequent vibrations of the quarter-disk. Hint : Be careful with the form of the delta

function in polar coordinates; see Exercise 6.3.6. (b) Assuming that the physical units are

chosen so that the wave speed c = 1, determine the quarter-disk’s vibrational frequencies.

(c) Write down an eigenfunction series solution for the subsequent motion. (d) Is the

motion unstable? periodic? If so, what is the period?

11.6.19. True or false: Assuming homogeneous Dirichlet boundary conditions, the fundamen-

tal frequencies of a vibrating half-disk are exactly twice those of the full disk of the same

radius.

♥ 11.6.20. The edge of a circular drum is moved periodically up and down, so u(t, 1, θ) = cosωt.
Assuming that the drum is initially at rest, discuss its response.

♣ 11.6.21. A drum is in the shape of a circular annulus with outer radius 1 meter and inner

radius .5 meter. Find numerical values for its first three fundamental vibrational

frequencies.

♥ 11.6.22. A homogeneous rope of length 1 and weight 1 is suspended from the ceiling. Taking x
as the vertical coordinate, with x = 1 representing the fixed end and x = 0 the free end, the

planar displacement u(t, x) of the rope satisfies the initial-boundary value problem

∂2u

∂t2
=

∂

∂x

(
x

∂u

∂x

)
,

|u(t, 0) | < ∞, u(t, 1) = 0,

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x),

t > 0, 0 < x < 1.

(a) Find the solution. Hint : Let y =
√
x . (b) Are the vibrations periodic or quasiperiodic?

(c) Describe the behavior of the rope when subject to uniform periodic external forcing

F (t, x) = a cosωt.

Scaling and Symmetry

Symmetry methods can also be effectively employed in the analysis of the wave equa-
tion. Let us consider the simultaneous rescaling

t �−→ α t, x �−→ β x, y �−→ β y, (11.160)

of time and space, whose effect is to change the function u(t, x, y) into a rescaled version

U (t, x, y) = u(α t, β x, β y). (11.161)

The chain rule is employed to relate their derivatives:

∂2U

∂t2
= α2 ∂2u

∂t2
,

∂2U

∂x2
= β2 ∂2u

∂x2
,

∂2U

∂y2
= β2 ∂2u

∂y2
.

Therefore, if u satisfies the wave equation

utt = c2Δu,
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then U satisfies the rescaled wave equation

Utt =
α2 c2

β2
ΔU = C2 ΔU, where the rescaled wave speed is C =

α c

β
. (11.162)

In particular, rescaling only time by setting α = 1/c, β = 1, results in a unit wave speed
C = 1. In other words, we are free to choose our unit of time measurement so as to fix the
wave speed equal to 1.

If we set α = β, scaling time and space in the same proportion, then the wave speed
does not change, C = c, and so

t �−→ β t, x �−→ β x, y �−→ β y, (11.163)

defines a symmetry transformation for the wave equation: If u(t, x, y) is any solution to
the wave equation, then so is its rescaled version

U (t, x, y) = u(β t, β x, β y) (11.164)

for any choice of scale parameter β �= 0. Observe that if u(t, x, y) is defined on a domain
Ω, then the rescaled solution U (t, x, y) will be defined on the rescaled domain

Ω̃ =
1

β
Ω =

{ (
x

β
,
y

β

) ∣∣∣∣ (x, y) ∈ Ω

}
= { (x, y) | (βx, β y) ∈ Ω } . (11.165)

For instance, setting the scaling parameter β = 2 halves the size of the domain. The
normal modes for the rescaled domain have the form

Un(t, x, y) = un(β t, β x, β y) = cos(β ωn t) vn(βx, β y),

Ũn(t, x, y) = ũn(β t, β x, β y) = sin(β ωn t) vn(βx, β y),

and hence the rescaled vibrational frequencies are Ωn = β ωn. Thus, when β < 1, the
rescaled membrane is larger by a factor 1/β, and its vibrations are slowed down by the
reciprocal factor β. For instance, a drum that is twice as large will vibrate twice as slowly,
and hence have an octave lower overall tone. Musically, this means that all drums of a
similar shape have the same pattern of overtones, differing only in their overall pitch, which
is a function of their size, tautness, and density.

In particular, choosing β = 1/R will rescale the unit disk into a disk of radius R. The
fundamental frequencies of the rescaled disk are

Ωm,n = β ωm,n =
c

R
ζm,n, (11.166)

where c is the wave speed and ζm,n are the Bessel roots, defined in (11.118). Observe
that the ratios ωm,n/ωm′,n′ between vibrational frequencies remain the same, independent

of the size of the disk R and the wave speed c. In general, we define the relative vibra-

tional frequencies to be the ratios between the individual frequencies and the dominant,
or smallest, one. Thus, the relative vibrational frequencies of a circular drum are

ρm,n =
ωm,n

ω0,1

=
ζm,n

ζ0,1
, where ω0,1 =

c ζ0,1
R

≈ 2.4
c

R
. (11.167)

The relative frequencies (11.167) are independent of the size, stiffness or composition of
the drum membrane. In the following table, we display a list of all relative vibrational
frequencies (11.167) that are < 6. Once the lowest frequency ω0,1 has been determined
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— either theoretically, numerically, or experimentally — all the higher overtones ωm,n =
ρm,n ω0,1 are simply obtained by rescaling.

Relative Vibrational Frequencies of a Circular Disk

n

∖
m 0 1 2 3 4 5 6 7 8 9 . . .

1 1.000 1.593 2.136 2.653 3.155 3.647 4.132 4.610 5.084 5.553 . . .

2 2.295 2.917 3.500 4.059 4.601 5.131 5.651
...

...
...

3 3.598 4.230 4.832 5.412 5.977
...

...

4 4.903 5.540
...

...
...

...
...

...

Exercises

11.6.23. True or false: Two rectangular membranes, made out of the same material and both

subject to Dirichlet boundary conditions, have the same relative vibrational frequencies if

and only if they are have similar shapes.

11.6.24. True or false: (a) The vibrational frequencies of a square with side lengths a = b = 2

are four times as slow as those of a square with side lengths a = b = 1.

(b) The vibrational frequencies of a rectangle with side lengths a = 2, b = 1, are twice as

slow as those of a square with side lengths a = b = 1.

11.6.25. A vibrating rectangle of unknown size has wave speed c = 1 and is subject to homoge-

neous Dirichlet boundary conditions. How many of its lowest vibrational frequencies do you

need to know in order to determine the size of the rectangle?

11.6.26. Answer Exercise 11.6.25 when the rectangle is subject to homogeneous Neumann

boundary conditions.

♣ 11.6.27. A circular drum has the A above middle C, which has a frequency of 440 Hertz, as its

lowest tone. What notes are the first five overtones nearest? Try playing these on a piano

or guitar. Or, if you have a synthesizer, try assembling notes of these frequencies to see how

closely it reproduces the dissonant sound of a drum.

11.6.28. In an orchestra, a circular snare drum of radius 1 foot sits near a second circular drum

made out of the same material. Vibrations of the first drum are observed to excite an unde-

sired resonant vibration in its partner. What are the possible radii of the second drum?

11.6.29. True or false: The relative vibrational frequencies of a half-disk, subject to Dirichlet

boundary conditions, are a subset of the relative vibrational frequencies of a full disk.

11.6.30. True or false: If u(t, x, y) = cos(ωt) v(x, y) is a normal mode of vibration for a unit

square subject to homogeneous Dirichlet boundary conditions, then the function û(t, x, y) =

cos(ωt) v
(
1
2 x,

1
3 y

)
is a normal mode of vibration for a 2 × 3 rectangle that is subject to the

same boundary conditions, but with a possibly different wave speed. If true, how are the

wave speeds of the two rectangles related?

11.6.31. Prove that if u(t, x, y) is a solution to the two-dimensional wave equation, so is the

translated function U(t, x, y) = u(t − t0, x− x0, y − y0), for any constants t0, x0, y0.
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♦ 11.6.32.(a) Prove that if u(t, x, y) solves the wave equation, so does U(t, x, y) = u(− t, x, y).
Thus, unlike the heat equation, the wave equation is time-reversible, and its solutions can
be unambiguously followed backwards in time. (b) Suppose u(t, x, y) solves the initial value
problem (11.141). Write down the initial value problem satisfied by U(t, x, y).

11.6.33.(a) Prove that, on R2, the solution to the pure displacement initial value problem

utt = c2Δu, u(0, x, y) = f(x, y), ut(0, x, y) = 0, is an even function of t.

(b) Prove that the solution to the pure velocity initial value problem utt = c2Δu,
u(0, x, y) = 0, ut(0, x, y) = g(x, y), is an odd function of t.
Hint : Use Exercise 11.6.32 and uniqueness of solutions to the initial value problem.

11.6.34. Suppose v(t, x) is any solution to the one-dimensional wave equation vtt = vxx. Prove
that u(t, x, y) = v(t, ax + by), for any constants (a, b) �= (0, 0), solves the two-dimensional

wave equation utt = c2(uxx + uyy) for some choice of wave speed. Describe the behavior of
such solutions.

11.6.35. A traveling-wave solution to the two-dimensional wave equation has the form
u(t, x, y) = v(x − at, y − at), where a is a constant. Find the partial differential equation
satisfied by the function v(ξ, η). Is the equation hyperbolic?

11.6.36. Is the counterpart of Lemma 11.11 valid for the wave equation? In other words, if
v(t, x) and w(t, x) are any two solutions to the one-dimensional wave equation, is their
product u(t, x, y) = v(t, x)w(t, y) a solution to the two-dimensional wave equation?

11.6.37.(a) How would you solve an initial-boundary value problem for the wave equation on a
rectangle that is not aligned with the coordinate axes? (b) Apply your method to set up
and solve an initial-boundary value problem on the square R = {|x+ y | < 1, |x− y | < 1}.

Chladni Figures and Nodal Curves

When a membrane vibrates, its individual atoms typically move up and down in a quasiperi-
odic manner. As such, there is little correlation between their motions at different locations.
However, if the membrane is set to vibrate in a pure eigenmode, say

un(t, x, y) = cos(ωn t) vn(x, y), (11.168)

then all points move up and down at a common frequency ωn =
√

λn , which is the square
root of the eigenvalue corresponding to the eigenfunction vn(x, y). The exceptions are the
points where the eigenfunction vanishes:

vn(x, y) = 0, (11.169)

which remain stationary. The set of all points (x, y) ∈ Ω that satisfy (11.169) is known as
the nth Chladni figure of the domain Ω, named in honor of the eighteenth-century German
physicist and musician Ernst Chladni who first observed them experimentally by exciting a
metal plate with his violin bow, [43]. The mathematical models governing such vibrating
plates were formulated by the French mathematician Sophie Germain in the early 1800s.
It can be shown that, in general, each Chladni figure consists of a finite system of nodal
curves , [34, 43], that partition the membrane into disjoint nodal regions . As the membrane
vibrates, the nodal curves remain stationary, while each nodal region is entirely either
above or below the equilibrium plane, except, momentarily, when the entire membrane
has zero displacement. As Chladni discovered in his original experiments, scattering small
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1.000 1.593 2.136

2.295 2.653 2.917

3.155 3.500 3.598

Figure 11.12. Nodal curves and relative vibrational
frequencies of a circular membrane.

particles (e.g., fine sand) over a membrane or plate vibrating in an eigenmode will enable
us to visualize the Chladni figure, because the particles will tend to accumulate along the
stationary nodal curves. Adjacent nodal regions, lying on the opposite sides of a nodal
curve, move in opposing directions — when one is up, its neighbors are down, and then
they switch roles as the membrane becomes momentarily flat. Let us look at a couple of
examples where the Chladni figures can be readily determined.
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Example 11.15. Circular Drums. Since the eigenfunctions (11.156) for a disk are
products of trigonometric functions in the angular variable and Bessel functions of the
radius, the nodal curves for the normal modes of vibrations of a circular membrane are
rays emanating from and circles centered at the origin. Consequently, the nodal regions
are annular sectors. Chladni figures associated with the first nine normal modes, indexed
by their relative frequencies, are plotted in Figure 11.12. Representative displacements of
the membrane in each of the first twelve modes can be found earlier, in Figure 11.6. The
dominant (lowest frequency) mode is the only one that has no nodal curves; it has the
form of a radially symmetric bump where the entire membrane flexes up and down. The
next lowest modes vibrate proportionally faster at a relative frequency ρ1,1 ≈ 1.593. The
most general solution with this vibrational frequency is a linear combination of the two
eigensolutions: αu1,1 + β ũ1,1. Each such combination has a single diameter as a nodal
curve, whose angle with the horizontal depends on the ratio β/α. The two semicircular
halves of the drum vibrate in opposing directions — when the top half is up, the bottom
half is down and vice versa. The next set of modes have two perpendicular diameters as
nodal curves; the four quadrants of the drum vibrate in tandem, with opposite quadrants
moving in the same direction. Next in increasing order of vibrational frequency is a single
mode, which has a circular nodal curve whose (relative) radius equals the ratio of the
first two roots of the order zero Bessel function, ζ0,1/ζ0,2 ≈ .43565; see Exercise 11.6.39
for a justification. In this case, the inner disk and the outer annulus vibrate in opposing
directions. And so on . . . .

Example 11.16. Rectangular Drums . For most rectangular drums, the Chladni fig-
ures are relatively uninteresting. Since the normal modes (11.151) are separable products
of trigonometric functions in the coordinate variables x, y, the nodal curves are equally
spaced straight lines parallel to the sides of the rectangle. The internodal regions are
smaller rectangles, of identical size and shape, with adjacent rectangles vibrating in oppo-
site directions.

More interesting figures appear when the rectangle admits multiple eigenvalues — so-
called accidental degeneracies . Note that two of the eigenvalues (11.149) coincide, λm,n =
λk,l, if and only if

m2

a2
+

n2

b2
=

k2

a2
+

l2

b2
, (11.170)

where (m,n) �= (k, l) are distinct pairs of positive integers. In such situations, the two
eigenmodes happen to vibrate with a common frequency ω = ωm,n = ωk,l. Consequently,
any linear combination of the eigenmodes, e.g.,

cos(ω t)

(
α sin

mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

lπy

b

)
, α, β ∈ R,

is also a pure vibration, and hence qualifies as a normal mode. The associated nodal curves,

α sin
mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

lπy

b
= 0,

0 ≤ x ≤ a,

0 ≤ y ≤ b,
(11.171)

have a more intriguing geometry, which can change dramatically as the coefficients α, β
vary.

For example, on the unit square R =
{
0 < x, y < 1

}
, an accidental degeneracy occurs

whenever
m2 + n2 = k2 + l2 (11.172)
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α = β = 1 α = 2, β = 1 α = 5, β = 1

Figure 11.13. Some Chladni figures for a square membrane.

for distinct pairs of positive integers (m,n) �= (k, l). The simplest possibility arises when-
ever m �= n, in which case we can merely reverse the order, setting k = n, l = m. In
Figure 11.13 we plot three sample nodal curves

α sin 4πx sin πy + sin πx sin 4πy = 0,

corresponding to three different linear combinations of the eigenfunctions with m = l = 4,
n = k = 1. The associated vibrational frequency is, in all cases, ω4,1 = c

√
17 π, where c is

the wave speed.

Classifying accidental degeneracies of rectangles takes us into the realm of number
theory, [9, 29]. In the case of a square, equation (11.172) is asking us to locate all integer
points (m,n) ∈ Z

2 that lie on a common circle.

Remark : Bourget’s hypothesis, mentioned after (11.157), implies that ζm,n �= ζk,l
whenever (m,n) �= (k, l). This implies that a disk has no accidental degeneracies, and
hence all its nodal curves are concentric circles and diameters.

Exercises

♦ 11.6.38. Suppose that a membrane is vibrating in a normal mode. Prove that the membrane

lies instantaneously completely flat at regular time intervals.

♦ 11.6.39. For a vibrating disk of unit radius, determine the radius of the circular nodal curve for

the next-to-lowest circular mode.

11.6.40. Order the five nodal circles displayed in Figure 11.12 according to their size.

11.6.41. Sketch the Chladni figures in a unit disk corresponding to the following vibrational

frequencies. Determine numerical values for the radii of any circular nodal curves.

(a) ω0,4, (b) ω2,4, (c) ω4,2, (d) ω3,3, (e) ω5,1.

11.6.42. True or false: Any diameter of a circular disk is a nodal curve for some normal mode.

11.6.43. True or false: The nodal curves on a semicircular disk are all semicircles and rays

emanating from the center.
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11.6.44.(a) Find the smallest distinct pair of positive integers (k, l) �= (m,n) satisfying (11.172)
that are not obtained by simply reversing the order, i.e., (k, l) �= (n,m). (b) Find the
next-smallest example. (c) Plot two or three Chladni figures arising from such degenerate
eigenfunctions.

♥ 11.6.45. Let R be a rectangle all of whose sides are fixed to the (x, y)–plane. Suppose that all
its nodal curves are straight lines. What can you say about its side lengths a, b?

11.6.46. True or false: The nodal regions of a vibrating rectangle are similarly shaped
rectangles.

♦ 11.6.47. Prove that any point of intersection (x0, y0) of two nodal curves associated with the
same normal mode is a critical point of the associated eigenfunction: ∇v(x0, y0) = 0.

11.6.48. True or false: The nodal curves on a domain do not depend on the choice of boundary
conditions.
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