
Chapter 1

What Are Partial Differential Equations?

Let us begin by delineating our field of study. A differential equation is an equation that
relates the derivatives of a (scalar) function depending on one or more variables. For
example,

d4u

dx4
+

d2u

dx2
+ u2 = cosx (1.1)

is a differential equation for the function u(x) depending on a single variable x, while

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− u (1.2)

is a differential equation involving a function u(t, x, y) of three variables.

A differential equation is called ordinary if the function u depends on only a single
variable, and partial if it depends on more than one variable. Usually (but not quite always)
the dependence of u can be inferred from the derivatives that appear in the differential
equation. The order of a differential equation is that of the highest-order derivative that
appears in the equation. Thus, (1.1) is a fourth-order ordinary differential equation, while
(1.2) is a second-order partial differential equation.

Remark : A differential equation has order 0 if it contains no derivatives of the function
u. These are more properly treated as algebraic equations ,† which, while of great interest
in their own right, are not the subject of this text. To be a bona fide differential equation,
it must contain at least one derivative of u, and hence have order ≥ 1.

There are two common notations for partial derivatives, and we shall employ them
interchangeably. The first, used in (1.1) and (1.2), is the familiar Leibniz notation that
employs a d to denote ordinary derivatives of functions of a single variable, and the ∂
symbol (usually also pronounced “dee”) for partial derivatives of functions of more than
one variable. An alternative, more compact notation employs subscripts to indicate par-
tial derivatives. For example, ut represents ∂u/∂t, while uxx is used for ∂2u/∂x2, and
∂3u/∂x2∂y for uxxy. Thus, in subscript notation, the partial differential equation (1.2) is
written

ut = uxx + uyy − u. (1.3)

† Here, the term “algebraic equation” is used only to distinguish such equations from true
“differential equations”. It does not mean that the defining functions are necessarily algebraic,
e.g., polynomials. For example, the transcendental equation tanu = u, which appears later in
(4.50), is still regarded as an algebraic equation in this book.

DOI 10.1007/978-3- - -0_1
, P  Olver Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics,

319 02099 , © Springer International Publishing Switzerland 2014
.J. 1
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We will similarly abbreviate partial differential operators, sometimes writing ∂/∂x as ∂x,
while ∂2/∂x2 can be written as either ∂2

x or ∂xx, and ∂3/∂x2∂y becomes ∂xxy = ∂2
x ∂y.

It is worth pointing out that the preponderance of differential equations arising in
applications, in science, in engineering, and within mathematics itself are of either first
or second order, with the latter being by far the most prevalent. Third-order equations
arise when modeling waves in dispersive media, e.g., water waves or plasma waves. Fourth-
order equations show up in elasticity, particularly plate and beam mechanics, and in image
processing. Equations of order ≥ 5 are very rare.

A basic prerequisite for studying this text is the ability to solve simple ordinary differ-
ential equations: first-order equations; linear constant-coefficient equations, both homoge-
neous and inhomogeneous; and linear systems. In addition, we shall assume some familiar-
ity with the basic theorems concerning the existence and uniqueness of solutions to initial
value problems. There are many good introductory texts, including [18, 20, 23]. More
advanced treatises include [31, 52, 54, 59]. Partial differential equations are considerably
more demanding, and can challenge the analytical skills of even the most accomplished
mathematician. Many of the most effective solution strategies rely on reducing the partial
differential equation to one or more ordinary differential equations. Thus, in the course of
our study of partial differential equations, we will need to develop, ab initio, some of the
more advanced aspects of the theory of ordinary differential equations, including boundary
value problems, eigenvalue problems, series solutions, singular points, and special functions.

Following the introductory remarks in the present chapter, the exposition begins in
earnest with simple first-order equations, concentrating on those that arise as models of
wave phenomena. Most of the remainder of the text will be devoted to understanding and
solving the three essential linear second-order partial differential equations in one, two,
and three space dimensions:† the heat equation, modeling thermodynamics in a continuous
medium, as well as diffusion of animal populations and chemical pollutants; the wave
equation, modeling vibrations of bars, strings, plates, and solid bodies, as well as acoustic,
fluid, and electromagnetic vibrations; and the Laplace equation and its inhomogeneous
counterpart, the Poisson equation, governing the mechanical and thermal equilibria of
bodies, as well as fluid-mechanical and electromagnetic potentials.

Each increase in dimension requires an increase in mathematical sophistication, as
well as the development of additional analytic tools — although the key ideas will have
all appeared once we reach our physical, three-dimensional universe. The three starring
examples — heat, wave, and Laplace/Poisson — are not only essential to a wide range
of applications, but also serve as instructive paradigms for the three principal classes of
linear partial differential equations — parabolic, hyperbolic, and elliptic. Some interesting
nonlinear partial differential equations, including first-order transport equations modeling
shock waves, the second-order Burgers’ equation governing simple nonlinear diffusion pro-
cesses, and the third-order Korteweg–deVries equation governing dispersive waves, will
also be discussed. But, in such an introductory text, the further reaches of the vast realm
of nonlinear partial differential equations must remain unexplored, awaiting the reader’s
more advanced mathematical excursions.

More generally, a system of differential equations is a collection of one or more equa-
tions relating the derivatives of one or more functions. It is essential that all the functions

† For us, dimension always refers to the number of space dimensions. Time, although theoreti-
cally also a dimension, plays a very different physical role, and therefore (at least in nonrelativistic
systems) is to be treated on a separate footing.
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occurring in the system depend on the same set of variables . The symbols representing
these functions are known as the dependent variables, while the variables that they depend
on are called the independent variables . Systems of differential equations are called ordi-
nary or partial according to whether there are one or more independent variables. The
order of the system is the highest-order derivative occurring in any of its equations.

For example, the three-dimensional Navier–Stokes equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − ∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − ∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − ∂p

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

(1.4)

is a second-order system of differential equations that involves four functions, u(t, x, y, z),
v(t, x, y, z), w(t, x, y, z), p(t, x, y, z), each depending on four variables, while ν ≥ 0 is a
fixed constant. (The function p necessarily depends on t, even though no t derivative of
it appears in the system.) The independent variables are t, representing time, and x, y, z,
representing space coordinates. The dependent variables are u, v, w, p, with v = (u, v, w)
representing the velocity vector field of an incompressible fluid flow, e.g., water, and p the
accompanying pressure. The parameter ν measures the viscosity of the fluid. The Navier–
Stokes equations are fundamental in fluid mechanics, [12], and are notoriously difficult to
solve, either analytically or numerically. Indeed, establishing the existence or nonexistence
of solutions for all future times remains a major unsolved problem in mathematics, whose
resolution will earn you a $1,000,000 prize; see http://www.claymath.org for details. The
Navier–Stokes equations first appeared in the early 1800s in works of the French applied
mathematician/engineer Claude-Louis Navier and, later, the British applied mathemati-
cian George Stokes, whom you already know from his eponymous multivariable calculus
theorem.† The inviscid case, ν = 0, is known as the Euler equations in honor of their dis-
coverer, the incomparably influential eighteenth-century Swiss mathematician Leonhard
Euler.

We shall be employing a few basic notational conventions regarding the variables that
appear in our differential equations. We always use t to denote time, while x, y, z will rep-
resent (Cartesian) space coordinates. Polar coordinates r, θ, cylindrical coordinates r, θ, z,
and spherical coordinates‡ r, θ, ϕ, will also be used when needed. An equilibrium equation
models an unchanging physical system, and so involves only the space variable(s). The
time variable appears when modeling dynamical , meaning time-varying, processes. Both
time and space coordinates are (usually) independent variables. The dependent variables
will mostly be denoted by u, v, w, although occasionally — particularly in representing

† Interestingly, Stokes’ Theorem was taken from an 1850 letter that Lord Kelvin wrote to
Stokes, who turned it into an undergraduate exam question for the Smith Prize at Cambridge
University in England. However, unbeknownst to either, the result had, in fact, been discovered
earlier by George Green, the father of Green’s Theorem and also the Green’s function, which will
be the subject of Chapter 6.

‡ See Section 12.2 for our notational convention.

http://www.claymath.org
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particular physical quantities — other letters may be employed, e.g., the pressure p in
(1.4). On the other hand, the letters f, g, h typically represent specified functions of the
independent variables, e.g., forcing or boundary or initial conditions.

In this introductory text, we must confine our attention to the most basic analytic
and numerical solution techniques for a select few of the most important partial differential
equations. More advanced topics, including all systems of partial differential equations,
must be deferred to graduate and research-level texts, e.g., [35, 38, 44, 61, 99]. In fact,
many important issues remain incompletely resolved and/or poorly understood, making
partial differential equations one of the most active and exciting fields of contemporary
mathematical research. One of my goals is that, by reading this book, you will be both
inspired and equipped to venture much further into this fascinating and essential area of
mathematics and/or its remarkable range of applications throughout science, engineering,
economics, biology, and beyond.

Exercises

1.1. Classify each of the following differential equations as ordinary or partial, and equilibrium

or dynamic; then write down its order. (a)
du

dx
+ xu = 1, (b)

∂u

∂t
+ u

∂u

∂x
= x,

(c) utt = 9uxx, (d)
∂u

∂t
=

∂2u

∂x2
+

∂u

∂x
, (e) − ∂2u

∂x2
− ∂2u

∂y2
= x2 + y2,

(f )
d2u

dt2
+ 3u = sin t, (g) uxx + uyy + uzz + (x2 + y2 + z2)u = 0, (h) uxx = x+ u2,

(i)
∂u

∂t
+

∂3u

∂x3
+ u

∂u

∂x
= 0, (j)

∂2u

∂x2
+

∂2u

∂y ∂z
= u, (k) utt = uxxxx + 2uxxyy + uyyyy .

1.2. In two space dimensions, the Laplacian is defined as the second-order partial differential
operator Δ = ∂2x + ∂2y . Write out the following partial differential equations in (i) Leibniz

notation; (ii) subscript notation: (a) the Laplace equation Δu = 0; (b) the Poisson equa-
tion −Δu = f ; (c) the two-dimensional heat equation ∂tu = Δu; (d) the von Karman

plate equation Δ2u = 0.

1.3. Answer Exercise 1.2 for the three-dimensional Laplacian Δ = ∂2x + ∂2y + ∂2z .

1.4. Identify the independent variables, the dependent variables, and the order of the following

systems of partial differential equations: (a)
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
;

(b) uxx + vyy = cos(x+ y), uxvy − uyvx = 1; (c)
∂u

∂t
=

∂v

∂x
,

∂2v

∂t2
=

∂2u

∂x2
;

(d) ut + uux + v uy = px, vt + u vx + v vy = py, ux + vy = 0;

(e) ut = vxxx + v(1− v), vt = uxxy + vw, wt = ux + vy.

Classical Solutions

Let us now focus our attention on a single differential equation involving a single, scalar-
valued function u that depends on one or more independent variables. The function u
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is usually real-valued, although complex-valued functions can, and do, play a role in the
analysis. Everything that we say in this section will, when suitably adapted, apply to
systems of differential equations.

By a solution we mean a sufficiently smooth function u of the independent variables
that satisfies the differential equation at every point of its domain of definition. We do not
necessarily require that the solution be defined for all possible values of the independent
variables. Indeed, usually the differential equation is imposed on some domain D contained
in the space of independent variables, and we seek a solution defined only on D. In
general, the domain D will be an open subset, usually connected, and hence pathwise

connected , meaning any two points can be connected by a curve C ⊂ D, and, particularly
in equilibrium equations, often bounded, with a reasonably nice boundary, denoted by ∂D.

We will call a function smooth if it can be differentiated sufficiently often, at least
so that all of the derivatives appearing in the equation are well defined on the domain
of interest D. More specifically, if the differential equation has order n, then we require
that the solution u be of class Cn, which means that it and all its derivatives of order
≤ n are continuous functions in D, and such that the differential equation that relates the
derivatives of u holds throughout D. However, on occasion, e.g., when dealing with shock
waves, we will consider more general types of solutions. The most important such class
consists of the so-called “weak solutions” to be introduced in Section 10.4. To emphasize
the distinction, the smooth solutions described above are often referred to as classical

solutions . In this book, the term “solution” without extra qualification will usually mean
“classical solution”.

Example 1.1. A classical solution to the heat equation

∂u

∂t
=

∂2u

∂x2
(1.5)

is a function u(t, x), defined on a domain D ⊂ R
2, such that all of the functions

u(t, x),
∂u

∂t
(t, x),

∂u

∂x
(t, x),

∂2u

∂t2
(t, x),

∂2u

∂t ∂x
(t, x) =

∂2u

∂x ∂t
(t, x),

∂2u

∂x2
(t, x),

are well defined and continuous† at every point (t, x) ∈ D, so that u ∈ C2(D), and,
moreover, (1.5) holds at every (t, x) ∈ D. Observe that, even though only ut and uxx

explicitly appear in the heat equation, we require continuity of all the partial derivatives
of order ≤ 2 in order that u qualify as a classical solution. For example,

u(t, x) = t+ 1
2 x

2 (1.6)

is a solution to the heat equation that is defined on the full domain D = R
2 because it is‡

C2, and, moreover,
∂u

∂t
= 1 =

∂2u

∂x2
.

Another, more complicated but extremely important, solution is

u(t, x) =
e−x2/(4 t)

2
√
π t

. (1.7)

†
The equality of the mixed partial derivatives follows from a general theorem in multivariable

calculus, [8, 97, 108]. Classical solutions automatically enjoy equality of all their relevant mixed

partial derivatives.

‡
In fact, the function (1.6) is C

∞
, meaning infinitely differentiable, on all of R

2
.
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One easily verifies that u ∈ C2 and, moreover, solves the heat equation on the domain
D = { (t, x) | t > 0 } ⊂ R

2. The reader is invited to verify this by computing ∂u/∂t and

∂2u/∂x2, and then checking that they are equal. Finally, with i =
√
−1 denoting the

imaginary unit, we note that

u(t, x) = e−t+ i x = e−t cosx+ i e−t sin x, (1.8)

the second expression following from Euler’s formula (A.11), defines a complex-valued
solution to the heat equation. This can be verified directly, since the rules for differentiating
complex exponentials are identical to those for their real counterparts:

∂u

∂t
= −e−t+ i x,

∂u

∂x
= i e−t+ ix, and so

∂2u

∂x2
= −e−t+ ix =

∂u

∂t
.

It is worth pointing out that both the real part, e−t cosx, and the imaginary part, e−t sin x,
of the complex solution (1.8) are individual real solutions, which is indicative of a fairly
general property.

Incidentally, most partial differential equations arising in physical applications are real,
and, although complex solutions often facilitate their analysis, at the end of the day we
require real, physically meaningful solutions. A notable exception is quantum mechanics,
which is an inherently complex-valued physical theory. For example, the one-dimensional
Schrödinger equation

i �
∂u

∂t
= −

�
2

2m

∂2u

∂x2
+ V (x) u, (1.9)

with � denoting Planck’s constant , which is real, governs the dynamical evolution of the
complex-valued wave function u(t, x) describing the probabilistic distribution of a quantum
particle of mass m, e.g., an electron, moving in the force field prescribed by the (real)
potential function V (x). While the solution u is complex-valued, the independent variables
t, x, representing time and space, remain real.

Initial Conditions and Boundary Conditions

How many solutions does a partial differential equation have? In general, lots. Even
ordinary differential equations have infinitely many solutions. Indeed, the general solution
to a single nth order ordinary differential equation depends on n arbitrary constants. The
solutions to partial differential equations are yet more numerous, in that they depend
on arbitrary functions . Very roughly, we can expect the solution to an nth order partial
differential equation involving m independent variables to depend on n arbitrary functions
of m−1 variables. But this must be taken with a large grain of salt — only in a few special
instances will we actually be able to express the solution in terms of arbitrary functions.

The solutions to dynamical ordinary differential equations are singled out by the im-
position of initial conditions, resulting in an initial value problem. On the other hand,
equations modeling equilibrium phenomena require boundary conditions to specify their
solutions uniquely, resulting in a boundary value problem. We assume that the reader is
already familiar with the basics of initial value problems for ordinary differential equations.
But we will take time to develop the perhaps less familiar case of boundary value problems
for ordinary differential equations in Chapter 6.
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A similar specification of auxiliary conditions applies to partial differential equations.
Equations modeling equilibrium phenomena are supplemented by boundary conditions im-
posed on the boundary of the domain of interest. In favorable circumstances, the boundary
conditions serve to single out a unique solution. For example, the equilibrium temperature
of a body is uniquely specified by its boundary behavior. If the domain is unbounded,
one must also restrict the nature of the solution at large distances, e.g., by asking that it
remain bounded. The combination of a partial differential equation along with suitable
boundary conditions is referred to as a boundary value problem.

There are three principal types of boundary value problems that arise in most appli-
cations. Specifying the value of the solution along the boundary of the domain is called a
Dirichlet boundary condition, to honor the nineteenth-century analyst Johann Peter Gus-
tav Lejeune Dirichlet. Specifying the normal derivative of the solution along the boundary
results in a Neumann boundary condition, named after his contemporary Carl Gottfried
Neumann. Prescribing the function along part of the boundary and the normal derivative
along the remainder results in a mixed boundary value problem. For example, in thermal
equilibrium, the Dirichlet boundary value problem specifies the temperature of a body
along its boundary, and our task is to find the interior temperature distribution by solv-
ing an appropriate partial differential equation. Similarly, the Neumann boundary value
problem prescribes the heat flux through the boundary. In particular, an insulated bound-
ary has no heat flux, and hence the normal derivative of the temperature is zero on the
boundary. The mixed boundary value problem prescribes the temperature along part of
the boundary and the heat flux along the remainder. Again, our task is to determine the
interior temperature of the body.

For partial differential equations modeling dynamical processes, in which time is one of
the independent variables, the solution is to be specified by one or more initial conditions.
The number of initial conditions required depends on the highest-order time derivative
that appears in the equation. For example, in thermodynamics, which involves only the
first-order time derivative of the temperature, the initial condition requires specifying the
temperature of the body at the initial time. Newtonian mechanics describes the accelera-
tion or second-order time derivative of the motion, and so requires two initial conditions:
the initial position and initial velocity of the system. On bounded domains, one must also
impose suitable boundary conditions in order to uniquely characterize the solution and
hence the subsequent dynamical behavior of the physical system. The combination of the
partial differential equation, the initial conditions, and the boundary conditions leads to an
initial-boundary value problem. We will encounter, and solve, many important examples
of such problems during the course of this text.

Remark : An additional consideration is that, besides any smoothness required by the
partial differential equation within the domain, the solution and any of its derivatives
specified in any initial or boundary condition should also be continuous at the initial
or boundary point where the condition is imposed. For example, if the initial condition
specifies the function value u(0, x) for a < x < b, while the boundary conditions specify the

derivatives
∂u

∂x
(t, a) and

∂u

∂x
(t, b) for t > 0, then, in addition to any smoothness required

inside the domain {a < x < b, t > 0}, we also require that u be continuous at all initial

points (0, x), and that its derivative
∂u

∂x
be continuous at all boundary points (t, a) and

(t, b), in order that u(t, x) qualify as a classical solution to the initial-boundary value
problem.
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Exercises

1.5. Show that the following functions u(x, y) define classical solutions to the two-dimensional

Laplace equation
∂2u

∂x2
+

∂2u

∂y2
= 0. Be careful to specify an appropriate domain.

(a) ex cos y, (b) 1+x2−y2, (c) x3−3xy2, (d) log(x2+y2), (e) tan
−1

(y/x), (f )
x

x2 + y2
.

1.6. Find all solutions u = f(r) of the two-dimensional Laplace equation uxx + uyy = 0 that

depend only on the radial coordinate r =

√
x2 + y2.

1.7. Find all (real) solutions to the two-dimensional Laplace equation uxx+uyy = 0 of the form

u = log p(x, y), where p(x, y) is a quadratic polynomial.

1.8.(a) Find all quadratic polynomial solutions of the three-dimensional Laplace equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0. (b) Find all the homogeneous cubic polynomial solutions.

1.9. Find all polynomial solutions p(t, x) of the heat equation ut = uxx with deg p ≤ 3.

1.10. Show that each of the following functions u(t, x) is a solution to the wave equation

utt = 4uxx: (a) 4 t2 + x2; (b) cos(x+ 2 t); (c) sin 2t cosx; (d) e−(x−2 t)2
.

1.11. Find all polynomial solutions p(t, x) of the wave equation utt = uxx with

(a) deg p ≤ 2, (b) deg p = 3.

1.12. Suppose u(t, x) and v(t, x) are C
2
functions defined on R

2
that satisfy the first-order sys-

tem of partial differential equations ut = vx, vt = ux.
(a) Show that both u and v are classical solutions to the wave equation utt = uxx. Which

result from multivariable calculus do you need to justify the conclusion?

(b) Conversely, given a classical solution u(t, x) to the wave equation, can you construct a

function v(t, x) such that u(t, x), v(t, x) form a solution to the first-order system?

1.13. Find all solutions u = f(r) of the three-dimensional Laplace equation

uxx + uyy + uzz = 0 that depend only on the radial coordinate r =

√
x2 + y2 + z2.

1.14. Let u(x, y) be defined on a domain D ⊂ R
2
. Suppose you know that all its second-order

partial derivatives, uxx, uxy, uyx, uyy , are defined and continuous on all of D. Can you con-

clude that u ∈ C
2
(D)?

1.15. Write down a partial differential equation that has

(a) no real solutions; (b) exactly one real solution; (c) exactly two real solutions.

1.16. Let u(x, y) = xy
x2 − y2

x2 + y2
for (x, y) �= (0, 0), while u(0, 0) = 0. Prove that

∂2u

∂x ∂y
(0, 0) = 1 �= −1 =

∂2u

∂y ∂x
(0, 0).

Explain why this example does not contradict the theorem on the equality of mixed partials.

Linear and Nonlinear Equations

As with algebraic equations and ordinary differential equations, there is a crucial distinction
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between linear and nonlinear partial differential equations, and one must have a firm grasp
of the linear theory before venturing into the nonlinear wilderness. While linear algebraic
equations are (modulo numerical difficulties) eminently solvable by a variety of techniques,
linear ordinary differential equations, of order ≥ 2, already present a challenge, as most
cannot be solved in terms of elementary functions. Indeed, as we will learn in Chapter 11,
solving many of those equations that arise in applications requires introducing new types
of “special functions” that are typically not encountered in a basic calculus course. Linear
partial differential equations are of a yet higher level of difficulty, and only a small handful
of specific equations can be completely solved. Moreover, explicit solutions tend to be
expressible only in the form of infinite series, requiring subtle analytic tools to understand
their convergence and properties. For the vast majority of partial differential equations, the
only feasible means of producing general solutions is through numerical approximation. In
this book, we will study the two most basic numerical schemes: finite differences and finite
elements. Keep in mind that, in order to develop and understand numerics for partial
differential equations, one must already have a good understanding of their analytical
properties.

The distinguishing feature of linearity is that it enables one to straightforwardly com-
bine solutions to form new solutions, through a general Superposition Principle. Linear
superposition is universally applicable to all linear equations and systems, including linear
algebraic systems, linear ordinary differential equations, linear partial differential equa-
tions, linear initial and boundary value problems, as well as linear integral equations,
linear control systems, and so on. Let us introduce the basic idea in the context of a single
differential equation.

A differential equation is called homogeneous linear if both sides are sums of terms,
each of which involves the dependent variable u or one of its derivatives to the first power;
on the other hand, there is no restriction on how the terms involve the independent vari-
ables. Thus,

d2u

dx2
+

u

1 + x2
= 0

is a homogeneous linear second-order ordinary differential equation. Examples of homo-
geneous linear partial differential equations include the heat equation (1.5), the partial
differential equation (1.2), and the equation

∂u

∂t
= ex

∂2u

∂x2
+ cos(x− t) u.

On the other hand, Burgers’ equation

∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
(1.10)

is not linear, since the second term involves the product of u and its derivative ux. A
similar terminology is applied to systems of partial differential equations. For example, the
Navier–Stokes system (1.4) is not linear because of the terms uux, v uy, etc. — although
its final constituent equation is linear.

A more precise definition of a homogeneous linear differential equation begins with the
concept of a linear differential operator L. Such operators are assembled by summing the
basic partial derivative operators, with either constant coefficients or, more generally, coef-
ficients depending on the independent variables. The operator acts on sufficiently smooth
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functions depending on the relevant independent variables. According to Definition B.32,
linearity imposes two key requirements:

L[u+ v ] = L[u ] + L[v ], L[cu ] = cL[u ], (1.11)

for any two (sufficiently smooth) functions u, v, and any constant c.

Definition 1.2. A homogeneous linear differential equation has the form

L[u ] = 0, (1.12)

where L is a linear differential operator.

As a simple example, consider the second-order differential operator

L =
∂2

∂x2
, whereby L[u ] =

∂2u

∂x2

for any C2 function u(x, y). The linearity requirements (1.11) follow immediately from
basic properties of differentiation:

L[u+ v ] =
∂2

∂x2
(u+ v) =

∂2u

∂x2
+

∂2v

∂x2
= L[u ] + L[v ],

L[cu ] =
∂2

∂x2
(cu) = c

∂2u

∂x2
= cL[u ],

which are valid for any C2 functions u, v and any constant c. The corresponding homoge-
neous linear differential equation L[u ] = 0 is

∂2u

∂x2
= 0.

The heat equation (1.5) is based on the linear partial differential operator

L = ∂t − ∂2
x, with L[u ] = ∂tu− ∂2

xu = ut − uxx = 0. (1.13)

Linearity follows as above:

L[u+ v ] = ∂t(u+ v)− ∂2
x(u+ v) = (∂tu− ∂2

xu) + (∂tv − ∂2
xv) = L[u ] + L[v ],

L[cu ] = ∂t(cu)− ∂2
x(cu) = c (∂tu− ∂2

xu) = cL[u ].

Similarly, the linear differential operator

L = ∂2
t − ∂x κ(x) ∂x = ∂2

t − κ(x) ∂2
x − κ′(x) ∂x,

where κ(x) is a prescribed C1 function of x alone, defines the homogeneous linear partial
differential equation

L[u ] = ∂2
t u− ∂x(κ(x) ∂xu) = utt − ∂x(κ(x) ux) = utt − κ(x) uxx − κ′(x) ux = 0,

which is used to model vibrations in a nonuniform one-dimensional medium.

The defining attributes of linear operators (1.11) imply the key properties shared by
all homogeneous linear (differential) equations.

Proposition 1.3. The sum of two solutions to a homogeneous linear differential
equation is again a solution, as is the product of a solution with any constant.
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Proof : Let u1, u2 be solutions, meaning that L[u1 ] = 0 and L[u2 ] = 0. Then, thanks
to linearity,

L[u1 + u2 ] = L[u1 ] + L[u2 ] = 0,

and hence their sum u1+u2 is a solution. Similarly, if c is any constant and u any solution,
then

L[cu ] = c L[u ] = c 0 = 0,

and so the constant multiple cu is also a solution. Q.E.D.

As a result, starting with a handful of solutions to a homogeneous linear differential
equation, by repeating these operations of adding solutions and multiplying by constants,
we are able to build up large families of solutions. In the case of the heat equation (1.5),
we are already in possession of two solutions, namely (1.6) and (1.7). Multiplying each by
a constant produces two infinite families of solutions:

u(t, x) = c1(t+
1
2 x

2) and u(t, x) =
c2 e

−x2/(4 t)

2
√
π t

,

where c1, c2 are arbitrary constants. Moreover, one can add the latter solutions together,
producing a two-parameter family of solutions

u(t, x) = c1(t+
1
2 x

2) +
c2 e

−x2/(4 t)

2
√
π t

,

valid for any choice of the constants c1, c2.

The preceding construction is a special case of the general Superposition Principle for
homogeneous linear equations:

Theorem 1.4. If u1, . . . , uk are solutions to a common homogeneous linear equation
L[u ] = 0, then the linear combination, or superposition, u = c1u1+ · · ·+ ckuk is a solution
for any choice of constants c1, . . . , ck.

Proof : Repeatedly applying the linearity requirements (1.11), we find

L[u ] = L[c1u1 + · · ·+ ckuk ] = L[c1u1 + · · ·+ ck−1uk−1 ] + L[ckuk ]

= · · · = L[c1u1 ] + · · ·+ L[ckuk ] = c1L[u1 ] + · · ·+ ckL[uk ].
(1.14)

In particular, if the functions are solutions, so L[u1 ] = 0, . . . , L[uk ] = 0, then the right-
hand side of (1.14) vanishes, proving that u also solves the equation L[u ] = 0. Q.E.D.

In the linear algebraic language of Appendix B, Theorem 1.4 tells us that the solu-
tions to a homogeneous linear partial differential equation form a vector space. The same
holds true for linear algebraic equations, [89], and linear ordinary differential equations,
[18, 20, 23, 52]. In the latter two situations, once one finds a sufficient number of inde-
pendent solutions, the general solution is obtained as a linear combination thereof. In
the language of linear algebra, the solution space is finite-dimensional. In contrast, most
linear systems of partial differential equations admit an infinite number of independent
solutions, meaning that the solution space is infinite-dimensional, and, as a consequence,
one cannot hope to build the general solution by taking finite linear combinations. Instead,
one requires the far more delicate operation of forming infinite series involving the basic
solutions. Such considerations will soon lead us into the heart of Fourier analysis, and
require spending an entire chapter developing the required analytic tools.
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Definition 1.5. An inhomogeneous linear differential equation has the form

L[v ] = f, (1.15)

where L is a linear differential operator, v is the unknown function, and f is a prescribed
nonzero function of the independent variables alone.

For example, the inhomogeneous form of the heat equation (1.13) is

L[v ] = ∂tv − ∂2
xv = vt − vxx = f(t, x), (1.16)

where f(t, x) is a specified function. This equation models the thermodynamics of a one-
dimensional medium subject to an external heat source.

You already learned the basic technique for solving inhomogeneous linear equations
in your study of elementary ordinary differential equations. Step one is to determine the
general solution to the homogeneous equation. Step two is to find a particular solution to
the inhomogeneous version. The general solution to the inhomogeneous equation is then
obtained by adding the two together. Here is the general version of this procedure:

Theorem 1.6. Let v� be a particular solution to the inhomogeneous linear equation
L[v� ] = f . Then the general solution to L[v ] = f is given by v = v� + u, where u is the
general solution to the corresponding homogeneous equation L[u ] = 0.

Proof : Let us first show that v = v� + u is also a solution whenever L[u ] = 0. By
linearity,

L[v ] = L[v� + u ] = L[v� ] + L[u ] = f + 0 = f.

To show that every solution to the inhomogeneous equation can be expressed in this man-
ner, suppose v satisfies L[v ] = f . Set u = v − v�. Then, by linearity,

L[u ] = L[v − v� ] = L[v ]− L[v� ] = 0,

and hence u is a solution to the homogeneous differential equation. Thus, v = v� + u has
the required form. Q.E.D.

In physical applications, one can interpret the particular solution v� as a response of
the system to the external forcing function. The solution u to the homogeneous equation
represents the system’s internal, unforced behavior. The general solution to the inhomo-
geneous linear equation is thus a combination, v = v� + u, of the external and internal
responses.

Finally, the Superposition Principle for inhomogeneous linear equations allows one to
combine the responses of the system to different external forcing functions. The proof of
this result is left to the reader as Exercise 1.26.

Theorem 1.7. Let v1, . . . , vk be solutions to the inhomogeneous linear systems
L[v1 ] = f1, . . . , L[vk ] = fk, involving the same linear operator L. Then, given any
constants c1, . . . , ck, the linear combination v = c1v1+ · · ·+ ckvk solves the inhomogeneous
system L[v ] = f for the combined forcing function f = c1f1 + · · ·+ ckfk.

The two general Superposition Principles furnish us with powerful tools for solving
linear partial differential equations, which we shall repeatedly exploit throughout this text.
In contrast, nonlinear partial differential equations are much tougher, and, typically, knowl-
edge of several solutions is of scant help in constructing others. Indeed, finding even one
solution to a nonlinear partial differential equation can be quite a challenge. While this text
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will primarily concentrate on analyzing the solutions and their properties to some of the
most basic and most important linear partial differential equations, we will have occasion
to briefly venture into the nonlinear realm, introducing some striking recent developments
in this fascinating arena of contemporary research.

Exercises

1.17. Classify the following differential equations as either
(i) homogeneous linear; (ii) inhomogeneous linear; or (iii) nonlinear:

(a) ut = x2uxx + 2xux, (b) −uxx − uyy = sin u; (c) uxx + 2yuyy = 3;

(d) ut + uux = 3u; (e) eyux = exuy ; (f ) ut = 5uxxx + x2u+ x.

1.18. Write down all possible solutions to the Laplace equation you can construct from the var-
ious solutions provided in Exercise 1.5 using linear superposition.

1.19.(a) Show that the following functions are solutions to the wave equation utt = 4uxx:

(i) cos(x− 2 t), (ii) ex+2 t; (iii) x2 + 2xt+ 4t2.
(b) Write down at least four other solutions to the wave equation.

1.20. The displacement u(t, x) of a forced violin string is modeled by the partial differential
equation utt = 4uxx+F (t, x). When the string is subjected to the external forcing F (t, x) =

cosx, the solution is u(t, x) = cos(x − 2 t) + 1
4 cos x, while when F (t, x) = sin x, the solution

is u(t, x) = sin(x− 2 t) + 1
4 sin x. Find a solution when the forcing function F (t, x) is

(a) cosx− 5 sin x, (b) sin(x− 3).

1.21.(a) Show that the partial derivatives ∂x[f ] =
∂f

∂x
and ∂y[f ] =

∂f

∂y
both define linear

operators on the space of continuously differentiable functions f(x, y). (b) For which values

of a, b, c, d is the differential operator L[f ] = a
∂f

∂x
+ b

∂f

∂y
+ c f + d linear?

1.22.(a) Prove that the Laplacian Δ = ∂2x + ∂2y defines a linear differential operator.

(b) Write out the Laplace equation Δ[u ] = 0 and the Poisson equation −Δ[u ] = f .

1.23. Prove that, on R3, the gradient, curl, and divergence all define linear operators.

1.24. Let L and M be linear partial differential operators. Prove that the following are also
linear partial differential operators: (a) L − M , (b) 3L, (c) f L, where f is an arbitrary
function of the independent variables; (d) L ◦M .

1.25. Suppose L and M are linear differential operators and let N = L+M .
(a) Prove that N is a linear operator. (b) True or false: If u solves L[u ] = f and v solves
M [v ] = g, then w = u+ v solves N [w ] = f + g.

♦ 1.26. Prove Theorem 1.7.

1.27. Solve the following inhomogeneous linear ordinary differential equations:
(a) u′ − 4u = x− 3, (b) 5u′′ − 4u′ + 4u = ex cos x, (c) u′′ − 3u′ = e3x.

1.28. Use superposition to solve the following inhomogeneous ordinary differential equations:
(a) u′ + 2u = 1 + cosx, (b) u′′ − 9u = x+ sinx, (c) 9u′′ − 18u′ + 10u = 1 + ex cos x,

(d) u′′ + u′ − 2u = sinhx, where sinh x = 1
2 (e

x − e−x), (e) u′′′ + 9u′ = 1 + e3x.
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