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         Key Points 
•     Alcoholic liver disease is the liver manifestation of the 

end-organ effects of chronic excessive alcohol intake.  
•   The effects of alcohol on gut integrity and the adipose tis-

sue contribute to the development of ALD.  
•   Alcohol and its metabolites have some direct effects on 

the liver and reactive oxygen radicals generated during 
alcohol metabolism modulate functions of hepatocytes 
and other cell types in the liver.  

•   Activation of the innate immune system is a major com-
ponent in the development and progression of alcoholic 
liver disease.  

•   Gut-derived and endogenous danger signals contribute to 
innate immune activation in ALD.  

•   Acute alcoholic hepatitis is mediated by pro- infl ammatory 
cytokines.  

•   Understanding specifi c molecular mechanisms involved 
in ALD may guide development of new therapeutic 
interventions.     

    Introduction 

 This chapter focuses on the immune-mediated aspects of the 
pathogenesis of alcoholic liver disease (ALD). Within the 
frame of the effects of alcohol on the liver and organ interac-
tions, we discuss the cellular effects of alcohol and its 
metabolites, innate and adaptive immune responses, intra-
cellular signaling pathways, and nuclear receptors. Current 
and emerging therapeutic approaches are discussed as 
potential translation of the basic fi ndings in ALD to clinical 
applications.  

    Clinical Characteristics of Alcoholic 
Liver Disease 

    Epidemiology and Natural History of ALD 

 It is estimated that there are 17.6 million alcoholic individu-
als in the USA and 140 million worldwide; while not all 
alcoholics develop symptomatic liver disease, about 12,109 
deaths/year are attributed to ALD in the USA [ 1 ,  2 ]. The 
clinical spectrum of ALD includes liver steatosis, steatohep-
atitis, steatohepatitis with fi brosis, and cirrhosis that increases 
the risk for the development of hepatocellular cancer (HCC) 
[ 3 ]. Heavy alcohol consumption, including binge drinking, 
leads to liver steatosis in over 90 % of individuals, and fat 
deposition resolves after cessation of alcohol use in the 
absence of advanced liver disease (Fig.  22.1 ). Persistent 
heavy alcohol use leads to liver steatosis with infl ammation 
and sets the stage for progressive liver disease. Infl ammation 
triggers fi brosis, a deposition of extracellular matrix and col-
lagen that over time leads to irreversible cirrhosis [ 1 ,  3 ,  4 ]. 
Continued alcohol intake is the most important risk factor for 
progression of ALD [ 2 ,  4 ,  5 ]. Cirrhosis, decompensated liver 
disease, and HCC can be life threatening, and liver transplan-
tation is not typically offered to individuals with ongoing 
active alcohol use in most transport centers (in the USA) [ 6 ].

       Clinical Findings and Diagnosis of ALD 

 Clinically, most patients with persistent alcohol use have 
nonspecifi c symptoms that may include nausea, vomiting, 
diarrhea, or hepatomegaly [ 2 – 4 ]. Typical laboratory fi ndings 
in ALD often show increased transaminases (transaminases 
rarely increase above 300 mg/dL) with an aspartate amino-
transferase/alanine aminotransferase (AST/ALT) ratio >1. 
Serum bilirubin and alkaline phosphatase are often elevated 
and indicate more severe forms of ALD. In patients with 
severe forms of ALD, impaired liver synthetic function is 
indicated by abnormal prothrombin time (PT/INR), 
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decreased serum albumin, and thrombocytopenia [ 2 – 4 ]. 
Patients often have increased circulating white cell count 
(CBC). This does not necessarily indicate infection as it 
could be simply a manifestation of recruitment of immune 
cells from the bone marrow to the liver in response to the 
massive pro-infl ammatory cytokine activation. 

 Different scoring systems are in use to establish the sever-
ity of ALD. The Maddrey discriminant factor >32 is the 
usual cutoff for defi ning severe alcoholic hepatitis. More 
recently, Model of end-stage liver disease (MELD) score 
>21 has been introduced as a cutoff for severe alcoholic hep-
atitis. The advantage of the MELD score is that it eliminates 
the variability of prothrombin time (PT) measurements that 
could vary between different diagnostic laboratories.  

    Acute Alcoholic Hepatitis 

 Acute alcoholic hepatitis (AAH) is the most severe form of 
ALD. It is a state of hepatic and systemic pro-infl ammatory 
cascade activation with hepatocyte/liver dysfunction. 
Molecular mechanisms and biomarkers that trigger the 
development of AAH from stable ALD are yet to be 
 delineated. Previous studies identifi ed tumor necrosis factor 
(TNF) as a central mediator of ALD [ 7 – 11 ]. TNF-α was 
increased both in the serum and liver in human alcoholic 
hepatitis [ 7 ,  8 ,  12 – 14 ]. 

 Patients with severe AAH have a high mortality and often 
develop jaundice, portal hypertension, and other signs of 
hepatic decompensation. While many cases of AAH manifest 
as acute on chronic liver injury, portal hypertension develops 
even in the absence of cirrhosis as a result of sinusoidal con-
gestion in the infl amed liver [ 3 ]. The clinical course of AAH 
is often complicated with upper GI bleeding, ascites, periph-
eral edema, and renal insuffi ciency. Systemic infections or 

SBP are other complicating factors often emerging in patients 
with ALD. Renal failure and hepatorenal syndrome in AAH 
carry high mortality [ 3 ]. Alcohol withdrawal and its physical 
and behavioral symptoms provide additional challenges in 
the clinical management of these patients.   

    Pathogenesis of ALD 

 Multiple key elements have been identifi ed in the pathogen-
esis of ALD that include but are not limited to direct effects 
of alcohol and its metabolites on liver cells, alcohol-induced 
mitochondrial damage, production of reactive oxygen spe-
cies (ROS), and induction of pro-infl ammatory cytokines. 

    Organ Interactions in ALD 

 Alcohol affects virtually all organs in the body and it is 
increasingly evident that alcohol-induced changes in one 
organ can affect the function of other organs. Experimental 
evidence suggests a cross talk between the liver and intestine 
as well as the liver and adipose tissue in ALD [ 15 ,  16 ]. 

    Gut–Liver Axis in ALD 
 Increasing evidence suggests that interactions between the 
liver and gut contribute to the development of ALD. In nor-
mal homeostasis, a balance is maintained between the gut 
microbiome, gut permeability, and translocation of gut- 
derived substances that reach the liver via the portal circula-
tion summarized in [ 15 ,  17 ,  18 ]. The liver, as an immune 
organ, contains sensitive receptor systems on all of its cell 
types that trigger responses to pathogen-derived signals 
from the gut. Lipopolysaccharide (LPS), a component of 
Gram- negative bacteria, is present at increased levels in the 
portal and systemic circulation in humans and in animals 
after excessive alcohol intake [ 17 ,  19 ,  20 ]. The central role of 
LPS has been demonstrated by several studies in animal 
models of ALD [ 19 ,  21 – 23 ]. Increased serum levels of pep-
tidoglycan were found in mice after chronic alcohol admin-
istration suggesting that components of Gram-positive 
microbes may also increase in the serum after prolonged 
alcohol use [ 24 ]. These effects of alcohol have been attrib-
uted to changes in intestinal permeability. Indeed, chronic 
alcohol exposure increases gut permeability by reducing epi-
thelial cell barrier functions [ 20 ,  25 ]. Specifi cally, in vitro 
alcohol treatment of colonic epithelial cells decreases the 
expression of tight junction proteins such as zona occludin-1 
(ZO-1) and the expression of the antimicrobial peptide, 
Reg3b [ 25 ]. Mechanistically, alcohol-induced ROS contrib-
utes to increased expression of microRNA-221 that in turn 
downregulates ZO-1 protein levels in intestinal epithelial 
cells [ 25 ]. 

  Fig. 22.1    Progression of alcoholic liver disease (ALD). Percentages 
represent the proportion of alcoholic individuals who will develop liver 
disease       
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 In addition to the direct effects of alcohol on gut epithelium, 
alcohol consumption results in changes in the gut microbi-
ome. Animal studies have revealed that there are quantitative 
and qualitative changes in the gut microbiome after pro-
longed alcohol feeding [ 26 ]. Specifi cally, there was a signifi -
cant increase in the amount of bacteria in the cecum of 
alcohol-fed mice compared to controls [ 26 ]. Furthermore, 
the composition of the bacterial species has changed after 
alcohol treatment where the relative proportions of Firmicutes 
have increased at the expense of Bifi dobacteria in alcohol- 
fed mice [ 26 ]. The specifi c role of these changes in the 
pathogenesis of ALD remains unclear; however, previous 
studies elegantly demonstrated that “sterilization” of the gut 
with nonabsorbable antibiotics has a signifi cant protective 
effect on alcohol-induced steatosis and infl ammation in ani-
mal models of ALD [ 21 ].  

    Liver and Adipose Interactions 
 The role of adipose tissue-derived adipokines, including adi-
ponectin, has been highlighted in ALD [ 16 ]. Adiponectin 
contributes to the development of fatty liver and it also has 
pro-infl ammatory effects. In animal models alcohol decreases 
gene expression and secretion of adiponectin in adipose tis-
sues [ 27 ]. In vitro experiments revealed that alcohol 
decreases the activity of the mouse adiponectin promoter and 
decreases adiponectin secretion in differentiated adipocytes. 
Adiponectin exerts its biological effects through the adipo-
nectin receptors 1 and 2. In mice AdipoR2 is downregulated 
in the human liver and decreased AdipoR1 was found in 
micropigs after chronic alcohol feeding [ 16 ]. 

 Fat metabolism is also regulated by osteopontin, which is 
increased in the adipose tissue, liver, and serum of patients 
with fi brosis induced by chronic alcohol use [ 28 ]. Osteopontin 
has been suggested as a marker of liver disease progression 
[ 29 – 31 ].   

    The Effects of Alcohol, Metabolites, Reactive 
Oxygen Species, and Oxidative Stress 

    Alcohol Metabolism 
 Alcohol is metabolized by alcohol dehydrogenase (ADH) 
into acetaldehyde which is further metabolized into acetate 
by aldehyde dehydrogenase (ALDH) [ 32 ]. Acetaldehyde and 
acetate are short-lived and have high tissue toxicity; thus, 
many of the direct tissue effects of alcohol have been attrib-
uted to these metabolites (Fig.  22.2 ). Both of ADH and 
ALDH enzymes have limited capacity due to their low 
Michaelis constant. Thus, higher tissue concentration of 
alcohol is broken down by alternate enzyme systems includ-
ing cytochrome P450 2E1 (CYP2E1) and microsomal 
enzymes that are upregulated in chronic alcohol use. Their 
by-products are ROS that contribute to direct cellular oxida-

tive stress in hepatocytes and immune cells [ 33 – 35 ]. Alcohol 
metabolism results in increase in NADH/NAD+ ratio in the 
cytoplasm and mitochondria of hepatocytes [ 33 ,  36 ]. The 
increased NADP inhibits mitochondrial β oxidation and 
accumulation of lipids in hepatocytes [ 33 ].

   CYP2E1 is an effective generator of ROS such as the 
superoxide anion radical and hydrogen peroxide and, in the 
presence of iron catalysts, produces powerful oxidants such 
as the hydroxyl radical. The role of CYP2E1 in hepatocyte 
damage in ALD has been established using elegant in vitro 
cell models and animal models [ 33 ,  37 ].  

    Reactive Oxygen Species and Mitochondrial 
Stress in ALD 
 In addition to ROS associated with direct alcohol metabo-
lism, alcohol also increases mitochondrial oxidative stress 
[ 10 ]. Alcohol leads to alteration in mitochondrial membrane 
permeability and transition potential and contributes to apop-
tosis, release of cytochrome c, and caspase-3 activation [ 33 , 
 38 ]. ROS also damages mitochondrial DNA and ribosomes. 

 The NADPH oxidase complex, involving various Nox pro-
teins p47phox and p40, plays a role in ROS generation both in 
immune and parenchymal cells in the liver [ 39 ]. NADPH oxi-
dases are activated in ALD in immune as well as in liver 
parenchymal cells [ 40 ,  41 ]. NADPH p47phox was shown to 
contribute to Kupffer cell activation in ALD [ 40 ,  42 ,  43 ].  

    Endoplasmic Reticulum (ER) Stress 
 The unfolded protein response also referred to as ER stress is 
a protective cellular mechanism that is disturbed by alcohol 
[ 44 ,  45 ]. Alcohol consumption results in increased expres-
sion of key components of the unfolded protein response 
including glucose regulatory proteins (GRP78, GRP 94, 
CHOP, and caspase-12) [ 46 ]. Intracellular glutathione levels 

  Fig. 22.2    Ethanol metabolism. The enzymes and intermediates of 
alcohol metabolism       
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are depleted by chronic alcohol use and ER stress contributes 
to increased homocysteine levels [ 46 ,  47 ]. Upregulation of 
transcription factors SREBP-1c and SREBP-2 is associated 
with lipid accumulation.  

    Decreased Antioxidants 
 While alcohol increases ROS, it also reduces the availability 
of most antioxidant systems, thereby promoting oxidative 
stress and ROS-induced liver damage. Alcohol-fed mice had 
decreased expression of the antioxidant, superoxide dismutase 
(SOD) [ 44 ]. Glutathione sulfhydryl (GSH) and glutathione- S   -
transferase (GST) activity are also decreased in ALD [ 46 ].   

    Innate and Adaptive Immune Responses 

 The liver is a major immune organ that contains all cell types 
of the immune system. In ALD, there is evidence for recruit-
ment of immune cells to the liver including cell populations 
of neutrophil leukocytes, monocytes, macrophages, T cells, 
and B cells [ 48 ,  49 ]. Other key aspects in the evaluation of 
immune responses in the liver are the interactions between 
the different immune cell types, including cross talk between 
liver parenchymal cells and immune cells. It is important to 
consider that the normal liver has an immunotolerant tissue 
environment that is profoundly changed in ALD where a state 
of pro-infl ammatory cell and cytokine activation prevails and 
disturbs parenchymal cell functions in the liver [ 50 ]. The 
pathomechanism of ALD involves complex interactions 
between the effects of alcohol and its toxic metabolites on 
various cell types in the liver and gut, induction of ROS, and 
upregulation of the infl ammatory cascade [ 8 ,  10 ,  35 ,  51 – 53 ]. 

Studies using antibiotics to “sterilize” the gut and experiments 
with elimination of Kupffer cells (KC) identifi ed both gut-
derived factors, such as LPS, and Kupffer cell activation as 
central components in ALD (Fig.  22.3 ) [ 15 ,  17 ,  20 ,  21 ,  25 , 
 42 ,  54 – 56 ]. Chronic alcohol sensitizes  macrophages to LPS-
induced infl ammatory cytokine production [ 57 ,  58 ].

      Role of Innate Immunity 
 The innate immune system is the fi rst line of defense in rec-
ognition and response to danger signals in the liver [ 52 ]. 
Innate immune cells and signaling pathways recognize exog-
enous danger signals such as pathogen-derived molecular 
patterns (PAMPs) or danger-associated molecular patterns 
(DAMPs) that are released from stressed, injured of dying 
cells [ 59 – 63 ]. The slow blood fl ow in the liver sinusoids and 
the proximity of liver parenchymal cells and immune cell in 
the liver sinusoids allow ample interactions between danger 
signals, immune cells, and parenchymal cells during the dif-
ferent states of ALD. Both soluble mediators and different 
cell types of the innate system contribute to the liver and 
systemic infl ammation that characterizes ALD and particu-
larly AAH. Overexpression of pro-infl ammatory cytokines 
and chemokines (TNF-α, interleukin (IL)-1α, IL-1β, MCP-1, 
IL-8) and decreased levels of anti-infl ammatory mediators 
(IL-10) in AH represent dysregulation of innate immunity 
[ 23 ,  48 ,  51 ,  64 ,  65 ]. 

   Soluble Mediators 
   Complement 
 Complement and complement activation are involved in the 
development of ALD. Specifi cally, C1q, the recognition subunit 
of the fi rst complement component, binds to apoptotic cells. 

  Fig. 22.3    Activation of TLR4 
and infl ammasomes in ALD. 
Pattern recognition receptors 
(PRRs) are activated by danger 
signals, resulting in the 
production of infl ammatory 
cytokines       

 

G. Szabo



335

A recent study indicated that ethanol activates the classical 
complement pathway via C1q binding to apoptotic cells in 
the liver and thereby plays a role in the early stages of ALD 
[ 48 ,  53 ,  66 ].  

   Chemokines 
 Monocyte chemoattractant protein (MCP)-1, a CXC chemo-
kine, contributes to recruitment of monocytes and macro-
phages to the liver in ALD [ 53 ,  67 ,  68 ]. Monocyte production 
of MCP-1 is increased in AAH [ 69 ]. MCP-1 also has direct 
effects on hepatocytes as it induces lipid accumulation [ 49 ]. 
It has been proposed that MCP-1 exerts its lipogenic effect 
via induction of the hypoxia-inducible factor-1 (HIF-1) in 
hepatocytes [ 70 ]. In a recent study, total body defi ciency in 
MCP-1 in mice resulted in attenuation of alcohol-induced 
liver steatosis and infl ammation [ 68 ]. It has been proposed 
that MCP-1 modulated PAPR-γ activity in hepatocytes as a 
mechanism for lipid accumulation in hepatocytes [ 68 ]. 

 IL-8 is involved in many steps of neutrophil recruitment 
and activation. Increased levels of IL-8 were found in patients 
with alcoholic hepatitis while IL-8 was only moderately 
increased in patients with alcoholic cirrhosis [ 71 ].  

   Cytokines 
 The critical role of pro-infl ammatory cytokines has been 
validated by several studies in ALD [ 51 ,  53 ,  72 ]. Pro- 
infl ammatory cytokines not only mediate the pathogenesis of 
ALD but also account for many of the clinical symptoms in 
these patients. TNF-α has been identifi ed as a central media-
tor of ALD [ 8 ,  9 ,  73 ,  74 ]. There is evidence for increased 
circulating and liver levels of TNF-α, IL-6, IL-8, and IL-1 [ 7 , 
 9 ,  12 – 14 ]. Isolated monocytes from patients with alcoholic 
hepatitis produce increased levels of these pro-infl ammatory 
cytokines [ 8 ,  9 ,  75 ]. In animal models, increased gene 
expression and liver and circulating protein levels of TNF-α, 
IL-1β, MCP-1, and IL-6 were found in several studies [ 49 , 
 58 ,  67 ,  68 ]. In the liver, Kupffer cells have been identifi ed as 
the major source of the pro-infl ammatory cytokine produc-
tion [ 23 ,  48 ,  54 ]. The mechanistic role of pro-infl ammatory 
cytokines is suggested by experiments that featured cytokine 
knockout mice and found that defi ciency either in TNF 
receptor 1 (TNFR1), MCP-1, or IL-1 receptor (IL-1R) ame-
liorated ALD [ 49 ,  68 ]. Furthermore, administration of 
recombinant IL-1R antagonist, that prevents the biological 
effects of IL-1β and IL-1α on the IL-1R, attenuated the 
development of ALD in a mouse model [ 49 ]. These observa-
tions indicate that pro-infl ammatory cytokine production is 
upregulated at multiple levels in ALD and that there is a 
positive amplifi cation loop between these cytokines to per-
petuate infl ammation. 

 In addition to fueling infl ammation, TNF-α, IL-1, and 
IL-6 have important effects on hepatocytes that contribute to 
the pathogenesis of ALD [ 58 ,  67 ]. By engaging its receptors 

on normal hepatocytes, TNF-α does not induce apoptosis. In 
injured hepatocytes that are present in the alcohol-exposed 
liver, TNF-α can trigger the death pathway [ 76 ]. The role of 
TNF-α is more complex, however, as it is also involved in 
liver regeneration that is a major element in compensation in 
liver homeostasis in the alcohol-exposed organ [ 58 ]. 

 IL-1β is an endogenous pyrogen, an inducer of other pro- 
infl ammatory mediators [ 77 ]. It also has direct effects on 
hepatocytes by inducing steatosis [ 49 ]. Furthermore, IL-1β 
sensitizes hepatocytes to the killing effect of TNF-α, thereby 
fueling a synergistic effect between pro-infl ammatory cyto-
kines on hepatocyte injury [ 49 ]. 

 IL-6 also promotes fat accumulation in hepatocytes and, 
most importantly, has protective effects on the liver in steato-
hepatitis including ALD [ 59 ]. 

 IL-22, a member of the IL-10 family, was shown to have 
hepatoprotective effects in ALD. IL-22 is produced by Th17 
T and natural killer (NK) cells, and its levels were dimin-
ished in the liver after chronic alcohol feeding [ 78 ]. 
Furthermore, administration of recombinant IL-22 resulted 
in hepatoprotection in an acute alcohol binge drinking model, 
and the protective effects of IL-22 were attributed to STAT3 
activation in the hepatocytes [ 65 ,  79 ].   

   Immune Cells 
   Neutrophil Leukocytes 
 In human ALD, the histopathological pattern of alcoholic 
hepatitis includes infi ltration of neutrophil leukocytes, hepa-
tocyte degeneration ballooning, and oncotic necrosis [ 31 , 
 80 ]. Induction of chemokines (IL-8, cytokine-induced neu-
trophil chemoattractant (CINC)) and cytokines in addition to 
apoptosis of hepatocytes has been suggested as a mechanism 
for neutrophil infi ltration [ 81 ]. 

 A recent study demonstrated a correlation between neu-
trophil recruitment and the presence of IL-17 producing 
T-helper cells within the infl ammatory liver infi ltrates in 
patients after alcohol-induced liver intoxication [ 82 ]. They 
found that ALD patients showed a signifi cant increase in 
both IL-17 plasma titers and frequency of IL-17 +  T cells and 
displayed a correlation between liver infi ltration of neutro-
phils and Th17 cells. Furthermore, they found that Th17 
cells produced IL-8 as well as GRO-α and that these factors 
were both necessary and suffi cient to induce recruitment of 
neutrophils [ 82 ].  

   Kupffer Cells, Macrophages, and Monocytes 
 A central role has been suggested for Kupffer cells (KC) in 
ALD. KCs are liver resident macrophages that express sur-
face markers of F4/80 and are enriched in livers of chronic 
alcoholics and alcohol-fed mice [ 49 ,  83 ]. There is an 
increase in the number of F4/80 cells that most likely repre-
sent KCs and/or newly recruited macrophages. Blood mono-
cytes are activated in ALD and produce cytokines [ 75 ]. 
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The tremendous plasticity in the phenotype of macrophages 
has recently been recognized. Depending on the tissue envi-
ronment, danger signals, and cytokine milieu, blood mono-
cytes differentiate into M1 or M2 macrophages or similar 
phenotypes. M1 macrophages are “classically” activated by 
LPS, IFN-γ, or pro-infl ammatory cytokines and have high 
phagocytic activity while M2 macrophage differentiation is 
triggered by IL-4, IL-10, TGF-β, or adiponectin [ 84 ,  85 ]. 
M2 macrophages are “alternately activated” macrophages 
and express CD206, CD163, as well as arginase-1 [ 86 ,  87 ]. 
The role of the M1 and M2 macrophages in ALD is yet to be 
explored. 

 Most investigations focused on KCs have found that KCs 
isolated from ALD are in vivo “sensitized” to stimulation 
with LPS to produce increased amounts of TNF-α [ 88 ]. This 
has been linked to increased expression of NF-κB, ERK, 
and MAPK pathways [ 48 ,  89 – 91 ]. In vivo studies elegantly 
demonstrated that elimination of KC by gadolinium chlo-
ride in rats or clodronate in mice attenuated alcohol-induced 
liver injury [ 54 ,  92 ]. Recent studies using bone marrow 
transplantation corroborated the early fi ndings to demon-
strate the critical role of bone marrow-derived infl ammatory 
and Kupffer cells in ALD. For example, while mice defi -
cient in caspase-1 or IRF3, molecules that mediate IL-1β 
and TNF-α, respectively, are protected from ALD [ 19 ,  49 ], 
alcohol feeding after transplantation of these mice with 
wild-type bone marrow resulted in steatosis, liver damage, 
and infl ammation [ 19 ]. 

 Human studies from patients with ALD demonstrated 
increased production of monocyte IL-1β, TNF-α, and IL-6 
[ 8 ,  9 ]. Furthermore, NF-κB activation was also observed in 
circulating monocytes from patients with ALD [ 8 ,  9 ,  75 ].  

   Dendritic Cells 
 Dysfunction of dendritic cells (DCs) including their antigen 
   presentation capacity in inducing antigen-specifi c T cell acti-
vation, immunomodulatory cytokines (IL-12) production, 
and expression of co-stimulatory molecules is altered by 
acute and chronic alcohol use [ 50 ,  52 ,  93 ]. The composition 
of the dendritic cell population was changed in the liver in 
mice after alcohol administration, and DC functions were 
also altered in favor of an immature DC phenotype that is 
characterized by reduced antigen presentation capacity [ 50 ].    

    Adaptive Immunity 
 It has been shown that T cell, NK cell, and B cell functions 
are altered by chronic alcohol use [ 48 ,  53 ,  67 ]. In the liver, 
there is enrichment of T lymphocytes although their specifi c 
role to the local tissue pathology is less clear. In ALD, the 
formation of protein adducts was shown as a result of ROS- 
induced modifi cation. Reactive acetaldehyde, malondialde-
hyde (MDA), and 4-hydroxy-2-nonenal (HNE) can bind to 
proteins to form adducts [ 94 ]. These adducts are recognized 

by KCs, endothelial cells, and stellate cells in the liver via the 
scavenger receptor and induce cytokines [ 94 ]. In addition, 
protein adducts elicit antibody responses, in response to 
 protein adducts [ 94 ,  95 ].      

    Signaling Pathways 

    Pattern Recognition Receptors 
 Innate immune responses are triggered by danger signals 
from pathogens or injured self through recognition by pat-
tern recognition receptors (PRRs) (Table  22.1 ). The major 
families of PRRs in the liver are Toll-like receptors (TLRs), 
RIG-I-like RNA helicase receptors (RLHs), and NOD-like 
receptors (NLRs) [ 59 ,  60 ,  63 ,  96 ,  97 ]. Ample evidence dem-
onstrates that activation of TLRs and NLRs is a pivotal ele-
ment in the pathogenesis of ALD (Fig.  22.4 ). While most 
studies focus on the role of LPS as a trigger of innate immune 
activation, the role of other pathogen-derived or endogenous 
danger signals remains to be evaluated.

      TLRs 
 Recent advances in the understanding of ALD show the con-
tribution of the different members of these receptors. Of the 13 
TLRs, TLRs 1–6 are expressed on the cell surface recognize 
extracellular PAMPs, while intracellularly localized TLRs 
(TLR3, 7, 8, 9) sense nucleic acid sequences [ 59 ,  62 ,  63 ,  98 ]. 
The cytoplasmic TIR domain of TLRs interacts with the TIR 
domain of adapter molecules such as the My88, the common 
adapter utilized by all TLRs except for TLR3, or TRIF that is 
involved in TLR3 and TLR4 signaling. MyD88 recruitment 
triggers downstream signaling via IRAK1/4 kinases and leads 
to NF-κB activation and induction of pro- infl ammatory cyto-
kine genes reviewed in [ 63 ,  99 ,  100 ]. The TRIF adapter acti-
vates IKKε/TBK leading to IRF3 or IRF7 phosphorylation 
and Type I Interferon (IFN) induction. TLR4 recognizes endo-
toxin derived from Gram-negative bacteria, TLR2 senses 
microbial lipopeptides, while TLR1 and TLR6 combined with 

   Table 22.1    Potential danger signals activating innate immune 
responses in alcoholic liver disease   

 Danger signal  Sensor/receptor  Mediators 

 Exogenous danger signals 
 LPS  TLR4  Infl ammatory cytokine 

 TLR2  Infl ammatory cytokine 

 Endogenous danger signals 
 Saturated fatty acids  TLR4, infl ammasome  IL-1, infl ammatory 

cytokine 
 Unsaturated fatty acids 
 ROS  NF-κB, SIRT1 
 Apoptotic cells  Infl ammasome  CIg 
 Necrotic cells (ATP?)  Infl ammasome 
 Hypoxia  HIF1α 
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TLR2 distinguish between triacyl- and diacyl-lipopeptides. 
TLR3 recognizes viral double- stranded RNA, and the bacterial 
fl agellin stimulates TLR5. TLR7 and TLR8 are sensors of 
single-stranded RNA (Nan, Campoy, and Bird 1997, 471–481) 
and TLR9 recognizes CpG-rich DNA reviewed in [ 63 ,  99 , 
 100 ]. All TLRs are broadly expressed in the liver in different 
cell populations across immune and parenchymal cells [ 63 ]. 

 TLR4, the receptor that senses LPS, plays a central role in 
ALD. TLR4 recognition of LPS is facilitated by the co- 
receptors CD14 and MD-2. CD14, a GPI-anchored protein, 
facilitates the transfer of LPS to the TLR4/MD-2 receptor 
complex that modulates LPS recognition [ 96 ]. MD-2 associ-
ates with TLR4 and binds LPS directly to form a complex 
with LPS in the absence of TLRs. The association between 
LPS and CD14 can be further facilitated by LPS-binding 
protein (LBP) [ 96 ]. 

 Studies in animal models demonstrated that mutation in 
TLR4 or defi ciency (knockout) of TLR4 attenuated alcohol- 
induced liver steatosis, infl ammation, and injury [ 22 ,  49 ]. 
The TLR4 receptor complex includes the TLR4 co-receptors 
CD14 and MD2 that contribute to alcohol-related liver dam-
age [ 101 ]. Ligand engagement of TLR4 triggers rapid 
 downstream signaling by recruitment of the adaptor mole-
cules, MyD88 or TRIF. MyD88 recruitment leads to IRAK-
1/4 activation and phosphorylation that triggers downstream 
activation of the inhibitory kinase (IKK) complex and NF-κB 
activation [ 98 ]. NF-κB activation has been shown in ALD. 

NF-κB has a complex role in ALD, including protecting 
hepatocytes from apoptosis and pro-infl ammatory cytokine 
activation in Kupffer and immune cells [ 51 ,  53 ]. Nuclear 
translocation of the NF-κB p65/p50 dimer in immune cells 
correlates with pro-infl ammatory cytokine induction in ALD 
[ 51 ]. Recruitment of the TRIF adapter to TLR4 triggers 
downstream activation of the TBK/IKKε complex that phos-
phorylates IRF3 leading to IRF3 nuclear translocation and 
induction of Type I IFNs. Recent studies evaluated the 
involvement of TLR4, MyD88, and IRF3 in a mouse model 
of ALD and found that TLR4 and IRF3 were critical in the 
development of liver steatosis, infl ammation, and liver dam-
age after chronic alcohol feeding in mice [ 19 ,  22 ,  102 ]. Bone 
marrow chimera experiments revealed a cell-specifi c role for 
IRF3. Specifi cally, the absence of IRF3 in bone marrow- 
derived cells resulted in protection from alcohol-induced ste-
atosis, infl ammation, and liver damage. Conversely, IRF3 
defi ciency in the liver parenchymal cells promoted alcohol- 
induced liver injury [ 19 ].  

   NOD-Like Receptors and the Infl ammasome 
 Infl ammasomes are multiprotein complexes that include 
NLR sensors, adapter molecules, and pro-caspase-1 that 
cleave pro-caspase-1 into active caspase-1 upon ligand 
engagement [ 97 ]. Caspase-1 activation results in cleavage of 
pro-IL-1β, pro-IL-18, or IL-33 into a biologically active 
IL-1β (17 kD), IL-18, or cleaved IL-33 [ 103 ]. The family of 

  Fig. 22.4    Pathomechanisms of ALD. Both hepatic and immune-derived cells are involved in the pathogenesis of ALD. Mediators include cyto-
kines, chemokines, and reactive oxygen species. Cell types are shown in blue, whereas extracellular mediators are shown in black       
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NLR is characterized by the presence of a central nucleotide- 
binding and oligomerization (NACHT) domain, which is 
fl anked by C-terminal leucine-rich repeats (LRRs) and 
N-terminal caspase recruitment domain (CARD) or Pyrin 
(PYR) domains [ 97 ,  103 ]. NLRs function as receptors with 
ligand sensing in the LRRs region, whereas the CARD and 
PYR domains provide protein–protein interactions for down-
stream signaling. Based on their domain structures, the NLR 
family consists of subfamilies including NODs (NOD1-9), 
NLRPs (NLRP1-14, also called NALPs), IPAF (IPAF or 
NLRC4 and NAIP), and AIM2. The AIM2 infl ammasome is 
not a formal member of the NLRs but like NLRs is com-
posed of ASC and caspase-1 leading to IL-1β activation 
[ 104 ]. These NLRs all lead to caspase-1 activation and IL-1β 
cleavage while their ligand activation is unique. 

    Previous reports document increased serum IL-1β as a 
feature of human ALD [ 77 ]. Indeed, Il-1β levels are also 
increased in a mouse model of ALD while IL-1α, which is 
mostly cell-associated, is not elevated. Recent investigations 
revealed that IL-1β increase in ALD is due to infl ammasome 
activation as caspase-1-defi cient mice had signifi cantly 
attenuated alcoholic liver steatosis, infl ammation, and liver 
damage [ 49 ]. Interestingly, interruption of infl ammasome 
activation prevented alcohol-induced increase in MCP-1 and 
TNF-α, suggesting amplifi cation between these pro- 
infl ammatory cytokines [ 49 ].   

    Nuclear Receptors 
 Most nuclear receptors that have received attention in ALD 
are involved in regulation of both lipid metabolism and 
infl ammation [ 105 ]. Hypoxia has been shown to play a role 
in the pathogenesis of ALD [ 64 ]. Hypoxia-inducible factor-1 
(HIF-1α) messenger RNA was increased in livers of chronic 
alcoholics and in mice after chronic alcohol administration 
[ 70 ]. Alcohol-induced steatosis was mediated by HIF-1α, 
and involvement of HIF-1α activation was found in both 
hepatocytes and liver immune cells [ 70 ]. 

 Retinoid X receptor (RXR) was found to modulate alco-
hol metabolism by affecting ADH expression. Blood ethanol 
levels in hepatocyte-specifi c RXRα-KO mice were signifi -
cantly lower than in wild-type controls, and the same mice 
had signifi cantly increased liver damage and more pro-
nounced liver steatosis [ 106 – 109 ]. 

 PPAR-α is responsible for regulation of lipid metabo-
lism. Decrease in PPAR-α was linked to liver steatosis after 
alcohol feeding and PPAR-α agonist treatment ameliorated 
ALD in mice [ 61 ,  110 ]. Likewise, PPAR-γ is also regulated 
in chronic alcohol exposure in KCs and hepatocytes. 
Treatment with the PPAR-γ agonist pioglitazone prevented 
the development of alcohol-induced steatosis and infl amma-
tion [ 111 ]. SREBP contributes to lipophilic pathway in 
ALD [ 112 ].  

   MicroRNAs in ALD 
 MicroRNAs (miRNAs) are a class of evolutionarily con-
served, single-stranded, noncoding RNAs of 19–24 nucleo-
tides that control gene expression at the posttranscriptional 
levels [ 113 ]. MicroRNAs contribute to the regulation of liver 
parenchymal and immune cells [ 114 ]. The expression and 
potentially the function of many miRNAs are changed in 
ALD in mice [ 114 ,  115 ]. MicroRNAs also regulate stem cell 
differentiation, regeneration, and cell death [ 116 ]. Innate 
immune responses are fi ne-tuned by miR-155, miR-125b, 
and miR-146a as these miRNAs positively or negatively reg-
ulate target genes/proteins in the family of TLR signaling, 
NF-κB, ERK, and MAPK infl ammatory intracellular signal-
ing pathways [ 117 ]. MiR-155 positively regulates TNF-α 
through enhancing its translation [ 114 ,  118 ]. One of the 
important effects of alcohol is sensitization of KCs to LPS- 
induced TNF-α production [ 8 ]. It has recently been shown 
that miR-155 levels are increased in the liver after chronic 
alcohol feeding and that alcohol-induced upregulation of 
miR-155 is a major molecular mechanism for LPS sensitiza-
tion in mice [ 119 ]. Increased miR-155 expression was par-
ticularly prominent in Kupffer cells after chronic alcohol 
administration and it had a causative role in increased TNF-α 
production by KCs [ 119 ]. 

 Alcohol-induced liver steatosis has also been linked to 
alterations in miRNA expression. For example, miR-122, 
which regulates many targets in lipid metabolism, is 
decreased in the liver in ALD while miRNA-217 was shown 
to promote ethanol-induced fat accumulation in hepatocytes 
[ 120 ]. Epigenetic regulation of miR-34 has recently been 
linked to miR-34 expression and fi brosis in ALD [ 121 ]. 

 MicroRNAs are present in the circulation and are stable in 
the serum and plasma, making them attractive targets in bio-
marker discovery [ 114 ,  122 ]. For example, mir-122 repre-
sents 80 % of the total liver miRNAs and is abundantly 
expressed in hepatocytes where it regulates fat metabolism 
[ 123 ]. Recent reports demonstrated that circulating miR-122 
is increased in different forms of liver injury, and in a mouse 
model of ALD, increased circulating miRNA-122 correlated 
with reduced levels of miR-122 in the liver [ 11 ]. The utility 
of circulating miRNAs as biomarkers in AAH and ALD is an 
area of active research [ 124 – 126 ].    

    Treatment for Alcoholic Liver Disease 

    Abstinence 

 Cessation of alcohol intake is the fi rst-line intervention in 
patients with alcoholic hepatitis [ 127 ]. This fully depends on 
the patient’s motivation and often requires participation in 
detox programs and a supportive domestic environment. 
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Steatosis and early steatohepatitis are reversible, while cir-
rhosis may not regress after discontinuation of alcohol use.  

    Current Medical Treatment 

 Alcoholic hepatitis (AH), the most severe form of ALD, has 
high morbidity and limited treatment options [ 128 ]. While cor-
ticosteroid treatment improves short-term survival, it increases 
the risk of infections [ 129 ]. The standard of care is prednisolone 
40 mg daily for 28 days. A recent study demonstrated that using 
the Lille score at day 7 of steroid treatment, patients can be 
stratifi ed to those who respond to therapy where continued treat-
ment has benefi ts in contrast to those who show no decrease in 
serum bilirubin after 7 days of prednisone treatment [ 130 ]. In 
the latter group steroids should be discontinued. 

 Pentoxifylline, a weak phosphodiesterase inhibitor, has 
been evaluated as an alternate to steroid treatment in AH; how-
ever, most studies found it inferior compared to steroids [ 131 , 
 132 ]. A recent study investigated the combination of steroids 
and pentoxifylline and found no benefi ts over single therapy 
except for a small population of patients with hepatorenal syn-
drome as well as in animal models of ALD [ 133 ,  134 ].  

    Liver Transplantation in ALD 

 In the USA, patients with AAH that is linked to recent alco-
hol abuse are not considered candidates for liver transplanta-
tion. Most transplant centers in the USA require at least 6 
months of abstinence and participation in support groups for 
eligibility for listing for liver transplantation. These rules 
obviously eliminate many patients because of the high 
6-month mortality associated with AAH. In a recent multi-
center study in the European Union, liver transplantation was 
effective as a treatment in patients with AAH [ 135 ]. While in 
pre-transplant all of the recipients heavily used alcohol, 
<10 % had relapse in alcohol use after liver transplantation 
for AAH [ 135 ]. 

 Liver transplantation for alcohol-induced liver cirrhosis is 
highly successful and part of standard of care in the USA and 
other parts of the world. Transplanted organ survival is excel-
lent both in 1 and 5 years, and recipient survival is also high 
compared to transplantations for many other etiologies, par-
ticularly viral hepatitis [ 136 ].  

    Potential Therapeutic Targets and 
Considerations in Future Therapies 

 Advances in the understanding of the cellular and molecular 
mechanism of ALD in the last decades provide multiple 
attractive therapeutic targets in ALD. Table  22.2  lists the 

most actively    studied potential targets in the pathogenesis of 
ALD that may provide the basis for new therapeutic inter-
ventions. For example, considering that AAH is a state of 
hepatic and systemic pro-infl ammatory cascade activation 
with hepatocyte/liver dysfunction, approaches to interrupt 
these vicious cycles are highly attractive. In addition, molec-
ular mechanisms and biomarkers that distinguish the devel-
opment of AAH from stable ALD are yet to be delineated.

   Previous studies identifi ed TNF-α as a central mediator 
of ALD and TNF-α was increased both in the serum and 
liver in human alcoholic hepatitis [ 8 ,  9 ,  58 ]. While TNF-α 
blockade showed protection in animal models, human 
clinical trials using anti-TNF antibodies with steroids 
were discontinued due to infectious complications [ 137 –
 140 ]. These studies had several limitations including high 
doses of anti-TNF-α and co-administration with steroids 
that increased immunosuppression. Pro-infl ammatory 

    Table 22.2    Current therapies and emerging therapeutic targets in alco-
holic liver disease   

 Target  Functional effect 

 Current therapies 
 Steroid  Anti-infl ammatory 
 Pentoxifylline  Phosphodiesterase inhibitor 
 Liver transplantation  Healthy liver 
 Zinc  Intestinal barrier 

 Emerging therapeutic targets 
 TNFΑ  Infl ammation, hepatocyte death 
 IL-1β  Infl ammation, steatosis 
 IL-1 receptor antagonist  Infl ammation, steatosis 
 IL-17  Infl ammation, hepatocyte death 
 IL-22 
 IL-6  Infl ammation, regeneration 

 Chemokines 
 MCP-1  Infl ammatory cell recruitment steatosis 
 IL-8  Neutrophil recruitment 
 GRO-α  Neutrophil recruitment 
 Osteopontin  Infl ammation, regeneration 

 Signaling molecules 
 TLR4  Infl ammation, fi brosis 
 IRF3  TLR signaling 
 NF-κB  Infl ammation, cell survival 
 Caspase-1  IL-1β production 
 Heat shock protein 90  Steatosis, infl ammation 
 Hypoxia-inducible factor-1  Steatosis 
 Heme-oxygenase1  Infl ammation 
 SIRT1  ROS steatosis, infl ammation 
 PPAR-α  Steatosis 
 Cell death 
 Fas  Apoptosis 
 Bcl-2  Apoptosis 
 Microbiome 
 LPS  Infl ammation 
 Pro-/prebiotics  Infl ammation of gut phase 
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cytokines, other than TNF-α, are also increased in AH 
including IL-6, IL-8, and IL-1. 

 Recent preclinical data demonstrated upregulation of 
IL-1β in the liver after chronic alcohol administration and 
showed amelioration of liver steatosis and infl ammation 
after therapeutic blockade of IL-1-mediated signaling. This 
may provide basis for translation to clinical application by 
evaluation of the therapeutic utility of IL-1R blockade or 
anti-IL-1 antibodies in ALD. There are several reasons for 
this. First, IL-1 inhibition can prevent the autoregulatory 
amplifi cation loop of IL-1α and IL-1β upregulation. 
Second, inhibition of IL-1 should attenuate TNF-α induc-
tion and break the vicious cycle of pro-infl ammatory cyto-
kine cascade activation in AH. Third, because IL-1 induces 
steatosis and sensitizes hepatocytes to the cytotoxic effects 
of TNF-α, IL-1 inhibition should attenuate hepatocyte 
damage in AH [ 141 ]. 

 Inhibition of MCP-1 could be another attractive approach 
considering that MCP-1 is an early mediator in ALD that 
contributes to steatosis and infl ammatory cell recruitment. 
Additional potential targets are listed in Table  22.2 ; all of 
these potential therapeutic targets were identifi ed based on 
experimental evidence and their role in the pathomecha-
nisms of ALD and further preclinical and potential clinical 
investigations.      
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