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On the Stability of Reduced-Order Linearized 
Computational Fluid Dynamics Models Based 
on POD and Galerkin Projection: 
Descriptor vs Non-Descriptor Forms 

David Amsallem and Charbel Farhat 

Abstract The Galerkin projection method based on modes generated by the Proper 
Orthogonal Decomposition (POD) technique is very popular for the dimensional re­
duction of linearized Computational Fluid Dynamics (CFD) models, among many 
other typically high-dimensional models in computational engineering. This, despite 
the fact that it cannot guarantee neither the optimality nor the stability of the Reduced­
Order Models (RO Ms) it constructs. Short of proposing any variant of this model 
order reduction method that guarantees the stability of its outcome, this paper con­
tributes a best practice to its application to the construction oflinearized CFD RO Ms. 
It begins by establishing that whereas the solution snapshots computed using the 
descriptor and non-descriptor forms of the discretized Euler or Navier-Stokes equa­
tions are identical, the RO Ms obtained by reducing these two alternative forms of the 
governing equations of interest are different. Focusing next on compressible fluid­
structure interaction problems associated with computational aeroelasticity, this pa­
per shows numerically that the POD-based fluid ROMs originating from the non­
descriptor form of the governing linearized CFD equations tend to be unstable, but 
their counterparts originating from the descriptor form of these equations are typi­
cally stable and reliable for aeroelastic applications. Therefore, this paper argues that 
whereas many computations are performed in CFD codes using the non-descriptor 
form of discretized Euler and/or Navier-Stokes equations, POD-based model reduc­
tion in these codes should be performed using the descriptor form of these equations. 
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8.1 Introduction 

Linearized Computational Fluid Dynamics (CFD) models are ubiquitous in many ap­
plications pertaining to fluid dynamics. These include flow control, sensitivity anal­
ysis, shape optimization, flow stability analysis, and dynamic fluid-structure per­
turbation problems such as flutter, among others. In general, these computational 
models are less CPU intensive than their nonlinear counterparts. Nevertheless, be­
cause of the large dimensionality of these CFD models and the time-criticality of 
the aforementioned applications, there is a growing interest in developing Model 
Order Reduction (MOR) methods for constructing Reduced-Order Models (ROMs) 
that can capture the main characteristics of their high-dimensional counterparts at a 
fraction of the CPU cost they entail. A large class of such MOR methods is based 
on projection methods. These map a large number of degrees of freedom to a small 
number of generalized coordinates using a right Reduced-Order Basis (ROB). They 
also constrain the residual resulting from this approximation to be orthogonal to a 
left ROB. 

The Proper Orthogonal Decomposition (POD) [27] - also known as the Singu­
lar Value Decomposition (SYD)- is a non-intrusive technique for generating a right 
ROB. Galerkin projections - that is, projections using identical left and right ROBs -
with POD "modes" constitute a popular mean for constructing CFD-based linear 
ROMs [1,2,5, 11, 14,23,29]. This, despite the fact this approach for model reduction 
does not guarantee neither the optimality nor the stability of the ROMs it produces. 
To address the issue ofROMs constructed without a guaranteed stability, stabiliza­
tion methods [4, 6] have been developed. In the specific context of CFD applica­
tions, more intrusive POD-based techniques have also been successfully developed 
for MOR. As it can be expected, each of these alternative approaches for restoring 
or guaranteeing stability has advantages and shortcomings. 

Alternatively, this paper sheds some light on the behavior of the basic POD-based 
Galerkin projection method for CFD applications. It also proposes a best practice for 
reducing the occurrence of unstable POD-based linear ROMs that has proved to be 
effective for a large number of CFD problems. It conjectures that a large number 
of these occurrences is promoted by the application of the reduction process to the 
non-descriptor form [24] of the governing CFD equations. This form of an Ordi­
nary Differential Equation (ODE) (or a set of them), which is also known as the 
"autonomous form of an ODE system," is characterized by the identity matrix as 
the coefficient of the term with the highest derivative. It is popular in many compu­
tational engineering applications including multibody dynamics [15, 17], molecular 
dynamics [26], and CFD [2, 7, 16,20,23]. This paper also shows numerically that, on 
the other hand, when MOR is applied to the descriptor form [24] of the governing 
equations, stable CFD ROMs are typically obtained. 

To this effect, the remainder of this paper is organized as follows. Section 8.2 sets 
the stage for linearized Arbitrary Lagrangian Eulerian (ALE) CFD problems with 
moving boundaries and their semi-discretization by a finite volume method. The em­
phasis on moving boundaries is due to their predominant role in generating unsteady 
flows - even in the absence of turbulence - and their importance in dynamic fluid-
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structure applications. This section also introduces the descriptor and non-descriptor 
forms of a Linear Time-Invariant (LTI) system. Section 8.3 overviews the POD­
based Galerkin projection model in the context of linearized CFD problems. More 
specifically, it shows that whereas the snapshot solutions computed using either the 
descriptor or non-descriptor form of a CFD-based L TI system are identical, the lin­
ear ROMs obtained by reducing both forms of this system using a Galerkin projec­
tion method are different. Section 8.4 focuses on realistic dynamic fluid-structure 
interaction problems to illustrate the formulated conjecture. It also highlights the ro­
bustness of Galerkin projections with POD modes when applied to the descriptor 
form of the governing fluid equations. Finally, Sect. 8.5 summarizes and this paper 
and concludes it. 

8.2 Linearized CFD-Based Analysis 

8.2.1 Governing Equations in Descriptor Form 

The semi-discretization of the ALE form of the Navier-Stokes equations with mov­
ing boundaries by a finite volume method leads to the following system ofODEs 

__,____ 
(V(x)w) + F(w, x, :i) = 0, (8.1) 

where: 

• a dot denotes the derivative with respect to time t; 
• V E YJRNJXNJ is a diagonal matrix storing the cell volumes and NJ denotes the 

dimension of the semi-discrete fluid system; 
• w(t) E YJRNJ denotes the time-dependent conservative fluid state vector; 
• F E YJRNJ denotes the vector of numerical fluxes; 
• x denotes the vector position of the CFD mesh nodes. 

The linearization of (8.1) about an equilibrium state (wo,xo,:io) designated by 
the subscript 0 leads to the following set ofODEs [21] 

Voow+Hoow+Roo:i+Goox = o, (8.2) 

where: 

• o designates a small perturbation of the quantity it is applied to; 
• The subscript 0 designates the evaluation of a quantity at the equilibrium state 

(wo,xo,:io); 

• Ho= ~:lo E YJRNJXNJ denotes the Jacobian of the vector of numerical fluxes with 

respect tow, at the equilibrium state (wo, xo, :io); 

• R = Eo + ~FI E ITRNJXNJ, where, using Einstein's notation, Ea .. = ~Au I wo1 de-
ux O 11 ux1 O 

notes the Jacobian of the vector of numerical fluxes with respect to :i, at the equi-
librium state (wo,xo,:io); 
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• G = ~~lo E "JRN1xN1 denotes the Jacobian of the vector of numerical fluxes with 

respect to x, at the equilibrium state ( wo, xo, io). 

To keep the notation as simple as possible, the symbold 8 and the subscript 0 are 
dropped throughout the remainder of this paper. Hence, Eq. (8.2) is re-written as 

Vw+Hw+Ri+Gx = 0. (8.3) 

Equation (8.3) above is said to be in "descriptor" form because V-/=- IN!' where IN1 
denotes the identity matrix of dimension Ni. Equation (8.3) is also referred to here 
as a L TI system because all matrices V, H, R, and G are time-independent. 

The reader is reminded that the leading matrix V is diagonal and that its entries 
store the volumes of the cells of the CFD mesh. For external flow problems around 
rigid or flexible bodies, the cells are usually very small near the wall boundaries, and 
very large near the far-field artificial boundaries. Hence for such CFD problems, Vis 
diagonal but ill-conditioned. 

8.2.2 Governing Equations in Non-Descriptor Form 

The nonlinear equations (8.1) can also be written as 

r(w,x,i) = 0, 

where 
r(w,x,i) = V(x)w+ V(x)w+F(w,x,i). 

(8.4) 

(8.5) 

Hence, given an iterate fluid state vector ( w1', xk, ik), r( w1', xk, ik) designates the 
residual associated with it - that is, the residual associated with a k-th iteration ap­
plied to the solution ofEq. (8.4). 

Consider next the scaled residual 

r(w,x,i) = v- 1 (x)r(w,x,i). (8.6) 

From a purely numerical analysis viewpoint, it could be argued that scaling r by 
v-1 is a bad idea because it involves the multiplication of the governing nonlinear 
equations of equilibrium (8.1) by the inverse of a matrix. However, in both steady 
and unsteady CFD codes, it is common practice to work with the scaled residual 
introduced above for the following reasons: 

• scaling the entries of r by the corresponding inverses of the cell volumes mag­
nifies the residual in the small cells. In this case, given a stopping criterion and 
a convergence tolerance, the solution of Eq. (8.4) delivered by a finite number 
of iterations is most accurate in the flow regions where the cells are the smallest. 
This is highly desirable because the smallest cells are typically located in the flow 
regions where accuracy is most sought-after in the first place; 

• after time-discretization, scaling the entries of r by the corresponding inverses 
of the cell volumes accelerates the convergence of an iterative process based on 
local time-stepping and applied to the steady-state solution ofEq. (8.3) [18]; 
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• since V is diagonal, inverting this matrix is trivial. 

The scaling (8.6) is associated with the following nonlinear semi-discrete fluid 
equations of equilibrium 

(8.7) 

The linearization of these equations about the equilibrium state ( wo, xo, :io) leads to 

(8.8) 

Equation (8.8) above is said to be in "non-descriptor" form, because the matrix coef­
ficient of its leading term (or term with the highest derivative) is the identity matrix 
INr This L TI system is mathematically equivalent to its counterpart (8.3) which is 
written in descriptor form. 

It is conjectured here that because the non-descriptor form (8.7) of the nonlin­
ear semi-discrete fluid equations of equilibrium prevails in many CFD codes, POD­
based model reduction is performed in some if not many of these codes using ei­
ther inadvertently or purposely the non-descriptor form (8.8) of the governing lin­
earized semi-discrete fluid equations of equilibrium. For example, this is the case 
for the POD-based model reductions performed in [20], [23], [2], [16], and [7]. 
For this reason, one objective of this paper is to analyze the differences, if any, be­
tween the linear ROMs constructed by reducing the descriptor form of the governing 
equations (8.3), and their counterparts constructed by reducing the non-descriptor 
form (8.8) of these equations. 

8.3 Model Order Reduction via Galerkin Projection Based on 
POD Modes 

Whether applied to the descriptor or non-descriptor form of a L TI fluid system, a 
projection-based MOR method generates another L TI fluid system of much smaller 
dimension kJ <<NJ. In general, such a MOR method operates using two ROBs: 

• a right (or trial) ROB <I> E JRN1xk1 which has full-column rank and is introduced 
to approximate the state vector w(t) as follows: 

w(t) ~ <I>wr(t). (8.9) 

In this case, the approximate state vector is uniquely defined by the vector of 
generalized coordinates Wr E JRkJ. Substituting this approximation into the LTI 
fluid system of interest yields a non-zero residual r(t) E JRNJ; 

• a left (or test) ROB 'I' E JRNJXkJ which also has full-column rank, and is intro­
duced to limit the magnitude of the residual r(t) by constraining it to satisfy the 
orthogonality condition tpT r(t) = 0, where the superscript T designates the trans­
pose. 
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When IJ' -/=- <I>, a projection-based MOR method is also known as a Petrov-Galerkin 
approximation method. When IJ' = <I>, it is known as a Galerkin approximation 
method. 

In the remainder of this paper, the focus is set on the Galerkin projection method 
(IJ' =<I>), and the POD technique for constructing the ROB <I>. 

8.3.1 Snapshot Collection 

The POD technique based on numerical snapshots [27] computes a trial ROB <I> 
by compressing the information contained in solution snapshots of the system of 
interest. For L TI systems, these snapshots can be computed either in the time domain, 
or in the frequency domain. To simplify notation, only the case of a single forcing 
input function x(t) is presented below. However, it is noted that the extension to 
multiple inputs is straightforward (for example, see [23]). 

In the time domain, solution snapshots are obtained by computing the dynamic 
response of the L TI system of interest to a given impulse forcing input and collecting 
samples of the time-dependent response {w(t;)}~1 , where Nw denotes the number 
of snapshots, in a matrix W as follows 

(8.10) 

In the frequency domain, complex-valued snapshots [19, 22, 23, 28, 30] are ob­
tained by formulating and solving the dynamic response problem in the frequency 
domain, and collecting samples of the frequency-dependent response in a similar 
matrix W. For example, when working with the L TI system (8.3) written in descrip­
tor form, the following frequency domain problems are formulated and solved 

(jw;V +H)w(ro;) = -(jro;R+G)x, i=l,2, ···,Nw, (8.11) 

where W; denotes a sampled circular frequency of interest, j denotes the pure imagi­
nary complex number satisfying j2 = -1, and x denotes the amplitude of a harmonic 
mesh motion driven by a harmonic displacement of the body around which the flow 
is computed. Then, the computed complex-valued samples w( W;) are collected in a 
snapshot matrix W as follows 

W = W(ro1,··· ,WNw) = 

[Re (w( ro1)) ... Re (w( WNw)) Im (w( ro1)) ... Im (w( WNw))] . (8.12) 

Similarly, when working with the L TI fluid system (8.8) written in non-descriptor 
form, the frequency domain problems are formulated as follows 

i = 1, 2, · · ·, Nw, (8.13) 

and the computed complex-valued samples w( W;) are collected in a similar snapshot 
matrix W as above. 

At this point, it is noted that whether collected in the time or frequency do­
main, and except for round-off effects, the snapshots are independent of the form 



8 On the Stability of Reduced-Order CFD Models 221 

in which the underlying L TI system is written. This is because both descriptor and 
non-descriptor forms of a L TI system are mathematically equivalent. However, as it 
will be shown below, the trial ROBs cp constructed using these snapshots differ. 

8.3.2 Reduction of the Descriptor Form of the Governing Equations 

Suppose that the LTI fluid system written in descriptor form (8.3) is chosen as the 
computational fluid model of interest. Note that the diagonal matrix Vis also a sym­
metric positive definite matrix and therefore defines a norm. Hence in this case, after 
all solution snapshots are computed in either the time or frequency domain, the POD 
technique proceeds with performing the eigenvalue decomposition 

(8.14) 

where WTVW E ]RNwxNw is usually a small-size matrix, and the superscript d des­
ignates the descriptor form of the underlying governing equations. Next, this de­
composition is truncated to account only for the first kJ eigenvalues of Ad and their 
corresponding eigenvectors, and the trial ROB cpd is constructed as follows 

(8.15) 

where Ud and Ad are the truncated counterparts ofiJd and Ad, respectively. 
Alternatively, cpd can be constructed by first computing the SYD of the matrix 

V~W, retaining the first kJ left singular vectors Y, and finally performing the fol­
lowing matrix-matrix multiplication 

cpd= v-~v. (8.16) 

Finally, performing a Galerkin projection of the governing equations (8.3) using 
IJ' = cp = cpd leads to the reduced-order L TI fluid system 

(8.17) 

which is also referred to here as the linear fluid ROM based on the descriptor form 
of the governing equations. 

8.3.3 Reduction of the Non-Descriptor Form of the Governing 
Equations 

If on the other hand the non-descriptor form (8.8) of the L TI system of interest is 
chosen as the computational model of interest, the POD process proceeds with per­
forming the following eigen decomposition instead 

(8.18) 

where the superscript nd designates the non-descriptor form of the underlying equa­
tions, and cpnd is constructed as in (8.15). Then, performing a Galerkin projection 
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of the governing equations (8.8) using this trial ROB leads to 

Wr + ( <I>ndT y-1 H<I>nd) Wr + ( <I>ndT y-lR) i + ( <I>ndT y-lG) X = 0. (8.19) 

This reduced L TI fluid system is also referred to here as the linear fluid ROM based 
on the non-descriptor form of the governing equations. 

8.3.4 Comparison of Alternative Reduced-Order Models 

From (8.14) and (8.18), if follows that for V =/:- IN1 , Vd =/:- und, and therefore <Pd =f­
<I>nd. Hence, the linear fluid ROM (8.17) based on the descriptor form of the gov­
erning equations is in general different from its counterpart (8.19) based on the non­
descriptor form of the governing equations. 

Remark. The reader can check that if the descriptor form of the L TI fluid system 
of interest is reduced by a Galerkin projection method, but its non descriptor form 
is reduced instead by a Petrov-Galerkin method, the choices 

(8.20) 

lead to two linear fluid ROMs that are identical. However, the focus of this work is 
set exclusively on the popular Galerkin projection method, and on the POD modes. 

8.4 Applications to Dynamic Fluid-Structure Interaction 
Problems 

Now that it has been established that the reductions of the descriptor and non­
descriptor forms of a L TI system by a Galerkin projection method lead to two dif­
ferent RO Ms, it remains to assess whether in the case where the ROBs are generated 
using the POD technique, the two alternative ROMs exhibit or not different accuracy 
and numerical stability properties for interesting applications. This is the objective 
of this section which, for this purpose, focuses on a special class of fluid-structure 
interaction problems known as aeroelasticity. Such problems are usually character­
ized by a linear, elastic structural subsystem, and a high-speed compressible fluid 
subsystem. The present focus on aeroelastic applications is motivated by the fact 
that linearized CFD is rapidly becoming a very competitive approach for modeling 
the fluid component of a perturbed aeroelastic system, primarily because it provides 
a relatively low-cost mean for capturing the effects of shocks in the transonic regime. 

To this effect, each of the two fluid RO Ms developed in Sectsions 8.3.2 and 8.3.3 
is coupled here with a classical modal ROM of the structural subsystem past which 
the flow is computed, in order to obtain in each case a linear fluid-structure ROM. 
Then, two inviscid aeroelastic applications are considered: the flutter analysis in tran­
sonic air speeds ofa wing-store-fuel configuration and of a FI A-18 fighter jet config­
uration, respectively. For each application, the numerical stability of the fluid ROM 
constructed using the descriptor or non-descriptor form of the governing fluid equa-
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tions is assessed, and its effect on the behavior of the corresponding coupled fluid­
structure ROM is highlighted. 

8.4.1 Linearized Coupled Fluid-Structure Reduced-Order Models 

CFD-based linearized computational fluid models are rapidly becoming the preferred 
computational models for representing the behavior of a compressible fluid subsys­
tem in a coupled fluid-structure system. For example, they are very popular nowa­
days in aeronautics for the flutter analysis of modem aircraft in the transonic and 
other nonlinear regimes [10, 21, 25], and for loads analysis. In this and many other 
related contexts, the structural subsystem of interest is typically represented by a 
linearized finite element model that can be described by the following set of linear 
OD Es 

Mii +Du+ Ku = JP:Pw, (8.21) 

where u E JRNs denotes the vector of structural displacements of dimension Ns, M E 
]RNsxNs, DE ]RNsxNs and KE ]RNsxNs are the finite element structural mass, damping, 
and stiffuess matrices, respectively, P= is the free-stream pressure, and PE JRNsxN1 

denotes the Jacobian of the aerodynamic forces acting on the wet surface of the 
structure with respect to the fluid state vector w. The reader is reminded that in this 
work, all vector quantities appearing in a linearized context are perturbations and that 
the symbold o is dropped to keep the notation as simple as possible (see Sect. 8.2.1 ). 

Modal decomposition is perhaps the most popular MOR method for a L TI struc­
tural subsystem such as that describedinEq. (8.21). In this case, the ROB XE JRNsxks 

is constructed using the first ks natural mode shapes of the structural subsystem, and 
Eq. (8.21) is reduced by a Galerkin projection onto the subspace of dimension ks 
spanned by the columns ofX. In other words, u(t) is approximated as follows 

u(t) ~ Xur(t), (8.22) 

where Ur E JRks is the vector of generalized (modal) coordinates, and Eq. (8.21) is 
transformed into the following linear structural ROM 

·· D · n2 r,:;-p Ur+ rUr + :: .. t.r Ur = y P=• rWr, (8.23) 

where 
~=~~' ~=~H, ~~ 

<I> = cpd if the descriptor form of the L TI fluid subsystem is reduced, or <I> = cpnd 
if the non-descriptor form of the LTI fluid subsystem is reduced, and Qr E ]Rksxks is 
the diagonal matrix of natural circular frequencies of the structure. 

Assimilating the ALE fluid mesh with a quasi-static pseudo-structure [9, 12] and 
enforcing the compatibility of the displacements of the structural subsystem and the 
ALE fluid mesh across the wet surface of the structure results in a linear relationship 
between x and u that can be written as [21] 

x=K*u, (8.25) 
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where K* is a time-independent operator described in [13, 21]. Hence, substituting 
the above relationship into the L TI fluid subsystem written in descriptor form (8.3) 
yields 

Vw+Hw+RK*ti+GK*u = 0, (8.26) 

and substituting it into the L TI fluid subsystem written in non-descriptor form (8.8) 
yields 

(8.27) 

Let 

H= {EH and G= fEG, V P= V P= 
(8.28) 

- -
where P= denotes the free-stream density, and H and G do not depend neither on 
the free-stream pressure P= nor on P= [22, 23], but only on the free-stream Mach 
number M=. 

Substituting the above expressions ofH and G into Eq. (8.26) and Eq. (8.27) leads 
in the descriptor case to 

Vw+ fEliw+RK*ti+ fEGK*u = 0, V P= V P= 
(8.29) 

and in the non-descriptor case to 

w+ fEv-1liw+ v-1RK*u+ fEv-1GK*u = o. 
VP= VP= 

(8.30) 

Next, reducing the L TI fluid subsystems (8.29) and (8.30) by the Galerkin projection 
method based on cpd and cpnd, respectively, leads to the following general expression 
of the linear fluid ROM 

where 
Hr= cpdT ff cpd, Rr = cpdT RK*X, 

in the descriptor case, and 

(8.31) 

T-
Gr =cpd GK*X (8.32) 

Hr= cpndT y-IH_cpnd, Rr = cpndT y-IRK*X, T -
Gr= cpnd v-1GK*X (8.33) 

in the non-descriptor case. 
Finally, re-writing Eq. (8.23) in first-order form and combining it with Eq. (8.31) 

leads to the following coupled fluid-structure linear ROM of dimension k1+2ks 

[~;] = [-ffi~r =::-!!;Gr] [:;] . 
Ur 0 lks 0 Ur 

(8.34) 

This ROM can be used for several fluid-structure applications ranging from real-time 
control to real-time flutter analysis. In the latter case, the onset of flutter at a given 
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free-stream Mach number M= can be established by fixing the free-stream density 
P= and increasing the free-stream pressure P= until this coupled fluid-structure ROM 
becomes unstable. At this point, the free-stream pressure P= reaches a critical value 
denoted here by p':,. This fast approach to flutter analysis requires however that the 
ROM (8.34) be stable outside the flutter point. In [ 4], it was shown that this in turn 
requires that the reduced fluid matrix Hr be stable. Hence, the application of the lin­
ear ROM (8.34) to the flutter analysis of a coupled fluid-structure system highlights 
the importance of requiring the chosen MOR method to preserve the stability of the 
LTI system or subsystem to which it is applied (for example, see [4]). 

8.4.2 Flutter Analysis of a Wing-Store-Fuel Con.figuration 

Consider first the wing-store-fuel aeroelastic configuration described in [8] and 
graphically depicted in Fig. 8.1. For a fixed altitude characterized by specific val­
ues of the free-stream pressure P= and density P=, a flight condition for this con­
figuration is defined here by an additional pair of data values corresponding to the 
free-stream Mach number M= and fuel fill level in the store (or tank). The hydroelas­
tic effects due to the presence of fuel inside the tank modify the structural properties 
of the system and affect its aeroelastic characteristics. The High-Dimensional com­
putational fluid and structural Models (HD Ms) developed in [8] for this aeroelastic 
configuration have the dimensions Nr = 689,485 and Ns = 6, 834, respectively. 

For every flight condition of interest, 44 real-valued fluid snapshots are gener­
ated by exciting the wall boundary of the structural system by each of its first ks = 4 
structural mode shapes at each of six equispaced reduced frequencies in the interval 
[O, 0.0125]. Then, these snapshots are compressed by the POD technique to construct 
a suite offluid ROBs of dimension kr E {1,- ·· ,40}. A corresponding suite offluid 
RO Ms of the same dimension kr is also constructed by performing Galerkin projec­
tions of both descriptor and non-descriptor forms of the L TI fluid subsystem onto 
these ROBs. 

In all cases, the structural ROM is constructed as in (8.23) with ks = 4 and re­
written in first-order form. 

(a) (b) 

Fig. 8.1. High-dimensional aeroelastic model of a wing-store configuration. (a) CFD surface 
grid; (b) Finite element structural model 
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(b) Accuracy 

Fig. 8.2. Wing-store-fuel configuration (M= = 0.95 and empty tank): stability of the fluid 
ROM as a function of its dimension. and accuracy of the critical free-stream pressure predicted 
using the corresponding aeroelastic ROM 

The first considered flight condition is defined by M= = 0. 95 and an empty tank. In 
this case, Figure 8.2( a) reports on the stability of the constructed fluid RO Ms - that is, 
the stability of the matrices H,. Figure 8.2(b) reports on the accuracy they deliver for 
the prediction of the critical pressure. All fluid RO Ms originating from the descriptor 
form of the LTI fluid subsystem are found to be stable. On the other hand, the fluid 
ROMs of dimension k.t E {29, 36, 37, 38} originating from the non-descriptor form 
of the L TI fluid subsystem are found to be unstable. Consequently, each unstable 
fluid ROM leads to an erroneous prediction of the critical pressure using the coupled 
fluid-structure ROM (8.34) (see Fig. 8.2(b)). In contrast, all fluid-structure RO Ms of 
dimension kr ~ I 5 originating from the descriptor form of the L Tl fluid subsystem 
deliver accurate predictions of the critical pressure. Similar results were also reported 
in [3] where a preliminary study of this problem was first performed. 

The second and third considered flight conditions are defined by M= = 1.1 and 
31 % fuel fill level in the tank, and M= = 0.75 and 69% fuel fill level, respectively. 
Figures 8.3 and 8.4 report on the stability of the constructed fluid ROMs and accu­
racy of the corresponding aeroelastic RO Ms for these two cases, respectively. These 
figures confirm the trends observed for the first flight condition and lead to similar 
conclusions. 

8.4.3 Flutter Analysis of an FIA-18 Aircraft Configuration 

Next, an aeroelastic HOM ofa full F/A-18 configuration with tip missiles is con­
sidered (see Fig. 8.5). Here, the dimension of the fluid HOM is Nr = I, 054, 500, 
and that of the structural HOM is ~1 = 9, 046. The latter is reduced by Galerkin 
projection on a modal basis with ks = 10 flexible structural mode shapes. 

The free-stream condition is set to M= = 0.99. Then, 210 fluid snapshots are 
computed in the frequency domain by exciting the wall boundary of the aircraft 
configuration using all 10 structural modal displacements individually, each at 2 I 
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Fig. 8.3. Wing-store-fuel configuration (M= = 1.1 and 31 % fuel fill level): stability of the 
fluid ROM as a function of its dimension, and accuracy of the critical free-stream pressure 
predicted using the corresponding aeroelastic ROM 
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Fig. 8.4. Wing-store-fuel configuration (M= = 0.75 and 69% fuel fill level): stability of the 
fluid ROM as a function of its dimension, and accuracy of the critical free-stream pressure 
predicted using the corresponding aeroelastic ROM 

equispaced reduced frequencies in the interval [O, 0.04]: 10 of the computed solution 
snapshots - more specifically, those associated with the zero reduced frequency -
are real-valued, and all other 200 solution snapshots are complex-valued. In other 
words, the corresponding real-valued matrix W (8.12) has in this case 410 columns. 
These are compressed by the POD technique to construct a suite of ROBs and two 
associated suites of fluid RO Ms of dimension kt E {I,· · · , 400}. The first suite of 
fluid RO Ms is obtained by Galerkin projection of the descriptor form of the L Tl fluid 
subsystem on the computed suite ofROBs. The second one is computed by Galerkin 
projection of the non-descriptor form of the L TI fluid subsystem on the same suite of 
ROBs. Then, several instances of the coupled fluid-structure ROM (8.34) are con­
structed by coupling the modal structural ROM of dimension ks= 10 with each of 
the computed fluid ROMs. 
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Fig. 8.5. FIS/A configuration at M= = 0.99: steady-state surface pressure 

First, the stability of the constructed fluid RO Ms, and more specifically that of the 
constructed matrices H,., is assessed. The obtained results are reported in Fig. 8.6. 
Once again, all fluid RO Ms originating from the descriptor form of the L TI fluid 
subsystem are found to be stable, but more than half of those originating from its 
non-descriptor form are found to be unstable. 
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Fig. 8.6. Fl 8/A aeroelastic configuration at M= = 0.99: stability of the fluid ROM as a function 
of its dimension 

Next, the accuracy of each constructed aeroelastic ROM is assessed by examining 
the critical pressure it predicts. The obtained results are reported in Fig. 8.7. From 
this figure and Fig. 8.6, the reader can observe that every unstable fluid ROM leads to 
an erroneous prediction of the critical pressure by the corresponding coupled fluid-
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Fig. 8.7. FIS/A aeroelastic configuration at M= = 0.99: accuracy of the critical free-stream 
pressure predicted using the aeroelastic ROM 

structure ROM. Furthermore, none of the aeroelastic RO Ms originating from the 
non-descriptor form of the fluid L TI subsystem delivers an accurate prediction of 
the critical pressure. On the other hand, all aeroelastic ROMs originating from this 
descriptor form and of dimension kr ~ I 00 deliver critical pressure predictions that 
match their HOM counterparts. 

8.5 Conclusions 

In theory, the Galerkin projection method equipped with Proper Orthogonal Decom­
position (POD) modes does not guarantee the stability of the Reduced-Order Models 
(RO Ms) it is often used for constructing. In practice, it is reported in some forums to 
generate ROMs that are more frequently unstable than stable. Yet, the POD-based 
Galerkin projection method is among the most popular methods for the dimensional 
reduction ofLinear Time-Invariant (LTI) systems arising from linearized Computa­
tional Fluid Dynamics (CFD). 

In general, a L TI system can be written in either descriptor or non-descriptor form. 
The non-descriptor form is characterized by the identity matrix as the coefficient of 
the highest derivative term in the governing set of Ordinary Differential Equations 
(ODEs). On the other hand, the leading matrix coefficient of the descriptor form of 
the same LTI system is usually different from the identity. Therefore, transforming 
a descriptor form of a given L TI system into its non-descriptor form typically in­
volves pre-multiplying all matrix coefficients of the descriptor form by the inverse of 
its leading matrix coefficient. Because of the usual numerical issues associated with 
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computing the inverse of a matrix and/or the solution of potentially ill-conditioned 
systems of equation, such a transformation could be dismissed a priori as a "trou­
ble maker". Nevertheless, such a transformation is routinely performed - and for 
good reasons - in many computational engineering applications. These range from 
multibody dynamics [15, 17], to molecular dynamics [26], to CFD [2, 7, 16,20,23]. 
For example, the nonlinear semi-discrete equations of dynamic equilibrium govern­
ing a flow problem are often transformed from their descriptor form to their non­
descriptor form, in order to improve accuracy and accelerate convergence. Indeed, 
the leading matrix coefficient of the governing set of nonlinear OD Es governing a 
CFD problem is usually a diagonal matrix storing the volumes of the mesh cells 
when semi-discretization is performed using a finite volume method, or the volumes 
of the mesh elements when semi-discretization is performed using a finite element 
method. Hence, in this case, transforming the descriptor form of the governing set 
of nonlinear ODEs into its non-descriptor counterpart is a trivial task. It amounts 
to scaling each entry of the residual vector associated with these equations by the 
inverse of the corresponding volume of the mesh cell or element. Given that for 
external flow problems the cells or elements of the mesh are usually very small in 
the vicinity of the wall boundaries and very large near the far-field artificial bound­
aries, the non-descriptor form of the governing nonlinear CFD equations magnifies 
the residuals associated with the small mesh cells or elements. Therefore, the ap­
plication of a finite number of steps of an iterative procedure to the solution of the 
non-descriptor form of the governing nonlinear CFD equations delivers a higher ac­
curacy in the flow regions where the mesh cells or elements are the smallest - that 
is, in the flow regions that matter most - than the application of these same steps 
to the descriptor form of these equations. Furthermore, when local time-stepping is 
applied to the solution of a steady-state CFD problem, scaling the residual vector 
by the inverse of the volumes of the cells or elements of the mesh is often observed 
to accelerate convergence. For these reasons, many CFD codes effectively operate 
on the non-descriptor form of the Euler or Navier-Stokes equations. Therefore, it 
can be conjectured that at least for software legacy reasons, many linearized CFD 
codes or modules also operate on the non-descriptor forms of the linearized Euler 
and Navier-Stokes equations. Hence, when model order reduction is or will be im­
plemented in such codes, it is likely to be applied, whether inadvertently or purposely 
for the reasons outlined above, to the non-descriptor form of the governing ODEs. 
This conjecture is supported by references such as [2, 7, 16,20,23] and others. 

In this paper however, it was shown that whereas the snapshot solutions computed 
using either the descriptor or non-descriptor form of a CFD-based L TI system are 
identical, the RO Ms obtained by reducing both forms of this system using a Galerkin 
projection method are different. More importantly, using as background the field of 
linearized computational aeroelasticity, it was also shown numerically that in gen­
eral, the fluid ROMs constructed by applying the POD-based Galerkin projection 
method to the non-descriptor form of a CFD-based LTI subsystem of interest are 
more often unstable then stable. It was also shown that the stability of these ROMs is 
very sensitive to their dimension. This is consistent with the observations frequently 
reported in various forums about the inconsistent behavior of POD as far as stability 
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is concerned. On the other hand, it was also shown numerically that for the same 
aeroelastic problems, the fluid RO Ms constructed by applying the same POD-based 
Galerkin projection method to the descriptor form of the CFD-based L TI subsystem 
of interest are typically stable. Therefore, the findings reported in this paper sug­
gest that when the objective is to construct a CFD-based linear fluid ROM using 
the POD-based Galerkin projection method, reducing the non-descriptor form of the 
linearized Euler or Navier-Stokes equations tends to promote the instability of the 
outcome ROM, whereas reducing the descriptor form of these equations tends to pre­
vent it. Hence, a best practice in implementing the POD-based Galerkin projection 
method in a given CFD code for the purpose of constructing linear fluid ROMs is to 
apply this method to the descriptor form of the linearized Euler and Navier-Stokes 
equations, even when the nonlinear computational modules of this code operate on 
the non-descriptor form of these equations. 
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