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On the Use of Reduced Basis Methods to 
Accelerate and Stabilize the Parareal Method 

Feng Chen, Jan S. Hesthaven and Xueyu Zhu 

Abstract We propose a modified parallel-in-time -parareal-multi-level time inte­
gration method that, in contrast to previously proposed methods, employs a coarse 
solver based on a reduced model, built from the information obtained from the fine 
solver at each iteration. This approach is demonstrated to offer two substantial ad­
vantages: it accelerates convergence of the original parareal method for similar prob­
lems and the reduced basis stabilizes the parareal method for purely advective prob­
lems where instabilities are known to arise. When combined with empirical interpo­
lation methods (EIM), we develop this approach to solve both linear and nonlinear 
problems and highlight the minimal changes required to utilize this algorithm to ac­
celerate existing implementations. We illustrate the advantages through algorithmic 
design, through analysis of stability, convergence, and computational complexity, 
and through several numerical examples. 

7.1 Introduction 

With the number of computational cores on large scale computing platforms increas­
ing, the demands on scalability of computational methods likewise increase, due 
partly to an increasing imbalance between the cost of memory access, communica­
tion and arithmetic capabilities. Among other things, traditional domain decompo-
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sition methods tend to stagnate in scaling as the number of cores increases and the 
computational cost is overwhelmed by other tasks. This suggests a need to consider 
the development of computational techniques that better balance these constraints 
and allow for the acceleration of large scale computational challenges. 

A recent development in this direction is the parareal method, introduced in [16], 
that provide a strategy for 'parallel-in-time' computations and offers the potential 
for an increased level of parallelism. Relying on combining a computational inex­
pensive but inaccurate solver with an accurate and expensive but parallel solver, the 
parareal method utilizes an iterative, predictor-corrector procedure that allows the 
expensive solver to run across many processors in parallel. Under suitable condi­
tions, the parareal iteration converges after a small number of iterations to the serial 
solution [3]. During the last decade, the parareal method has been applied success­
fully to a number of applications (cf. [ 17, 19]), demonstrating its potential, accuracy, 
and robustness. 

As a central and serial component, the properties of the coarse solver can im­
pact the efficiency and stability of the parareal algorithm, e.g., if an explicit scheme 
is used in both the coarse and the fine stage of the algorithm, the efficiency of the 
parareal algorithm is limited by the upper bound of the time step size [19]. One can 
naturally also consider a different temporal integration approach such as an implicit 
approach, although the cost of this can be considerable and often requires the devel­
opment of a new solver. An attractive alternative is to use a simplified physics model 
as the coarse solver [2, 17, 18], thereby ignoring small scale phenomenon but poten­
tially impacting the accuracy. The success of such an approach is typically problem 
specific. 

While the choice of the coarse solver clearly impacts accuracy and overall effi­
ciency, the stability of the parareal method is considerably more subtle. For parabolic 
and diffusion dominated problems, stability is well understood and observed in many 
applications [12]. However, for hyperbolic and convection dominated problems, the 
question of stability is considerably more complex and generally remains open [3, 8, 
22]. In [8], the authors propose to regularly project the solution onto an energy man­
ifold approximated by the fine solution. The performance of this projection method 
was demonstrated for the linear wave equation and the nonlinear Burgers' equation. 
As an alternative, the Krylov subspace parareal method builds a new coarse solver 
by reusing all information from the corresponding fine solver at previous iterations. 
The stability of this approach was demonstrated for linear problems in structural dy­
namics [10] and a linear 2-D acoustic-advection system [21]. However, the Krylov 
subspace parareal method appears to be limited to linear problems. 

The approach of combining the reduced basis method [20] with the parareal meth­
od for parabolic equations was initiated in [13] in which it is demonstrated that a 
coarse solver based on an existing reduced model offers better accuracy and reduces 
the number of iterations in the examples considered. However, that work offers no 
discussion on the construction of the reduced model, nor was there any attempt to 
analyze the stability and convergence of the method. 

Inspired by [13, 21], we propose a modified parareal method, referred to as the 
reduced basis parareal method in which the Krylov subspace is replaced by a sub-
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space spanned by a set ofreduced bases, constructed on-the-fly from the fine solver. 
This method inherits most advantages of the Krylov subspace parareal method and is 
observed to retain stability and convergence for linear wave problems. We demon­
strate that this approach accelerates the convergence in situations where the original 
parareal already converges. However, it also overcomes several known challenges: 
(i) it deals with nonlinear problems by incorporating methodologies from the re­
duced basis methods; and (ii) the traditional coarse propagator is needed only once 
at the very beginning of the algorithm to generate an initial reduced basis. This al­
lows for the time step restrictions to be relaxed as compared to the coarse solver 
of the original parareal method. The main difference between our method and [13] 
lies in the reduced approximation space and the construction of reduced bases. The 
reduced model, playing the role of the coarse solver, is updated for each iteration 
while the reduced model in [13] is built only once during an initial offline process. 
Among other advantages, this allows the proposed method to adapt the dimension 
of the reduced approximation space based on the regularity of the solution, while 
in [13] the reduced model remains fixed and must be developed using some other 
approach. 

What remains of this paper is organized as follows. We first review the origi­
nal parareal method in Sect. 7.2.1 and the Krylov subspace parareal method in Sect. 
7 .2.2. This sets the stage for Sect. 7 .2.3 where we introduce the reduced basis parareal 
method and discuss different strategies to develop reduced models for problems with 
nonlinear terms. Section 7.3 offers some analysis of the stability, convergence, and 
complexity of the reduced basis parareal method and Sect. 7.4 demonstrates the fea­
sibility and performance of the reduced basis parareal method through various linear 
and nonlinear numerical examples. We conclude the paper in Sect. 7.5. 

7.2 Parareal Algorithms 

To set the stage for the general discussion, let us first discuss the original and the 
Krylov subspace parareal methods in Sect. 7.2.l and Sect. 7.2.2, respectively. We 
shall highlight issues related to stability and computational complexity to motivate 
the reduced basis parareal method, introduced in Sect. 7.2.3. 

7.2.1 The original parareal method 

Consider the following initial value problem: 

u1 = L(u) := Au(t) +N(u(t)), t E (0, T], 
u(O) = uo, 

(7.1) 

where u E JRN is the unknown solution, L is an operator, possibly arising from the 
spatial discretization of a PDE, with A being the linear part ofL, and N the nonlinear 
part. 



190 F. Chen et al. 

In the following, we denote F& as the accurate but expensive fine time integrator, 
using a constant time step size, 8t. Furthermore, G At is the inaccurate but fast coarse 
time integrator using a larger time step size, L1t. Generally, it is assumed that L1t » 
ot. 

The original parareal method is designed to solve (7.1) in a parallel-in-time fash­
ion to accelerate the computation. First, [O, T] is decomposed into Ne coarse time 
intervals or elements: 

0 = to < · · · < ti < · · · < tNc = T, ti = iL1 T, 

Assume that 

T 
L1T = -. 

Ne 
(7.2) 

(7.3) 

which implies that T = NeN1ot. Denote F&(u,ti+l ,ti) as the accurate numerical so­
lution integrated from ti to ti+l by using F& with the initial condition u and the con­
stant time step size ot. Similarly for G At ( u, ti+ 1, ti). Denote also Un = F& (no' T, 0) 
as the numerical solution generated using only the fine integrator. With the above 
notation, the original parareal method is shown below in Algorithm 7 .1 

Now assume that the k-th iterated approximation u~ is known. The parareal ap­
proach proceeds to the k + 1-th iteration as 

u~ti = GAt(u~+ 1 ,tn+1,tn) + F&(u~,tn+1,tn) - GAt(u~,tn+1,tn), 0::::; k::::; Ne - 1. 
(7.4) 

It is easy to see that Fst(u~,tn+1,tn) can be done in parallel across all temporal el­
ements. If we take the limit of k---+ oo and assume that the limit of { u~} exists, we 
obtain [16]: 

(7.5) 

In order to achieve a reasonable efficiency, the number of iterations, Nit, should be 
much smaller than Ne. 

To demonstrate the performance of the original parareal method, let us consider 
a few numerical examples, beginning with the viscous Burgers' equation: 

u2 
Ut + ( 2 )x =VU.xx, (x,t) E (0,2n) x (0, T], 

(7.6) 
u(x,O) = sin(x), 

where T = 2 and v = 10-1. A 2n-periodic boundary condition is used. The spatial 
discretization is a P1 discontinuous Galerkin method (DG) with 100 elements [15] 
and the time integrator is a first-order forward Euler method. We use the following 
parameters in the parareal integration 

Ne = 100, Mt = 5, L1t = 10-3 , 8t = 10-4 . (7.7) 

Figure 7 .1 illustrates the L=-error of the parareal solution at T = 2 against the number 
of iterations. Notice that for this nonlinear problem the algorithm converges after 
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Algorithm 7.1 The original parareal method 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GL!1(u?,t;+1,t;) 
s end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Sequential correction step: 
14 for i +-- 0 to Ne - 1 do 

15 I u7-tl = GL11(u7+1,t;+1,t;)-u/;+1 +GL11(u},t;+1,t;) 
16 end 
17 end 

10-16~~-~~-~-~~-~-
1 1.5 2.5 3 3.5 4.5 

iterations 

191 

Fig. 7.1. The L=-error at T = 2 against the number of iterations of the 1-D Burgers' equation 
using the original parareal method 

only four iterations, illustrating the potential for an expected acceleration in a parallel 
environment. 

As a second example, we consider the Kuramoto-Sivashinsky equation [25]: 

au U2 
ot = ( l )x- Uxx - Uxxxx, (x,t) E (-8, 8) X (0, T], 

(7.8) 
u(x, 0) =exp( -x2) 

with final time T = 40 and periodic boundary conditions. 
As a spatial discretization we use a Fourier collocation method with 128 points 

[ 14] and an IMEX scheme [ 1] as a time integrator, treating the linear terms implicitly 
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Fig. 7.2. The time evolution of the solution (left) and the L=-error at T = 40 against the 
number of iterations (right) of the 1-D Kuramoto-Sivashinsky equation using the original 
parareal method 

and the nonlinear tenn explicitly. The parameters in the parareal method are taken 
as 

Ne= 100, Nu= 5, L1t = 10-2
, ot = 10-4

. (7.9) 

Figure 7.2 (left) shows the time evolution of the chaotic solution to the Kuramoto­
Sivashinsky equation with a Gaussian initial condition. In Fig. 7.2 (right), we show 
the L=-error at T = 40 against the number of iterations. In this case, we take the 
solution computed by the fine solver as the exact solution. It is clear that the parareal 
solution converges, albeit at a slower rate. It should also be noted that L1t / ot = I 00, 
indicating the potential for a substantial acceleration. 

As a last and less encouraging example, we consider the 1-D advection equation 

u1 +aux= 0, (x,t) E (0,2n) x (0, T], 
u(x,O) =exp(sin(x-at)), 

(7.10) 

with a final time T = 10, a= 2n and a 2n-periodic boundary condition. We use 
a DG method of order 32 and 2 elements in space [ 15], a singly diagonal implicit 
fourth-order Runge-Kutta scheme in time (a five-stage fourth-order scheme, cf. S54b 
in [23]), and the parareal parameters: 

Nc=IOO, Nit=27, L1t=5x10-2
, 8t=10-4

. (7.11) 

Figure 7 .3 shows the L=-error at T = 10 against the number of iterations. The in­
stability of the original parareal method is apparent, as has also been observed by 
others [3, 8, 22]. 
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30 

Fig. 7.3. The L=-error at T = 10 against the number of iterations of the 1-D linear advection 
equation using the original parareal method 

7.2.2 The Krylov Subspace Parareal Method 

We notice in Algorithm 7.1 that only {ur~+i}~0 1 is used in the advancement of 
the solution to k+ 1. To fix the stability issue, [10] proposed to improve the coarse 
solver by reusing information computed at all previous iterations and applied this 
idea to linear hyperbolic problems in structural dynamics. Recently, a similar idea 
was successfully applied to linear hyperbolic systems [21]. 

The basic idea of the Krylov subspace parareal method is to project ur+1 onto a 
subspace spanned by all numerical solutions integrated by the fine solver at previous 
iterations. Denote the subspace as 

(7.12) 

The corresponding orthogonal basis set { s1, ... ,Sr} is constructed through a QR fac­
torization. 

Denote J!Dk as the L1-orthogonal projection onto sk. The previous coarse solver 
G.1.t is now replaced by K.1.t as: 

(7.13) 

For a linear problem, F& (J!Dku, ti+ 1, ti) can be computed efficiently as 

Nck Nck 

F&(wku,ti+J ,ti)= Fot(L C1s1,ti+J ,li) = L, C1F&(s1,ti+J ,li), (7.14) 
j=l j=l 

where F& ( s Ji ti+ 1, ti) are computed and stored once the s / s are available. Since this 
approach essentially produces an approximation to the fine solver, the new coarse 
solver is expected to be more accurate than the old coarse solver. It was shown in 
[11] that as the dimension of sk increases, J!Dk----+ II and K.1.t ----+ F 8t, thus achieving 
convergence. The algorithm outline is presented in Algorithm 7.2. 
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Algorithm 7.2 The Krylov subspace parareal method 

Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GL11(u?,t;+1,t;) 
s end 
6 Iterations: 
1 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 

11 I u/;+1 =F&(u7,t;+1,t;) 
12 end 
13 Constructing reduced basis: 

14 Update sk- l to sk based on u}_ 1, ur7 

15 Marching the basis: 
16 for i +-- 1 to Nr do 
17 I SJ; =F81 (s;,O,Llt); 
18 end 
19 Sequential correction step: 
20 for i +-- 0 to Ne - 1 do 

21 I u~_;t°l =K.11 (u~+ 1 ,t;+1,t;)-u/;+ 1 +K.11(u},t;+1,t;) 
22 end 

23 end 

F. Chen et al. 

To demonstrate the performance of the Krylov subspace parareal method, we use 
it to solve the linear advection equation, (7.10). In Fig. 7.4 (left) we show the L=­
error at T = 10 against the number of iterations. It is clear that the Krylov subspace 
parareal method stabilizes the parareal solver for this problem. 
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Fig. 7.4. The L=-error at T = 10 against the number of iterations (left), and the number of 
bases (right) for solving the 1-D linear advection equation using the Krylov subspace parareal 
method 
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Two observations are worth making. First, the Krylov subspace parareal method 
needs to store all the values ofSk and F(Sk). Ask increases, this induces a memory 
requirement scaling 0( kNcN) and this may be become a bottleneck as illustrated in 
Fig. 7.4 (right). Furthermore, the efficiency of the coarse solver depends critically 
on the assumption oflinearity of the operator and it is not clear how to extend this 
framework to nonlinear problems. These constraints appear to limit the practicality 
of the method. 

7.2.3 The reduced basis parareal method 

Let us first recall a few properties of reduced basis methods that will subsequently 
serve as key elements of the proposed reduced basis parareal method. 

7.2.3.1 Reduced Basis Methods 

We are generally interested in solving the nonlinear ODE (7.1). As a system, the di­
mensionality of the problem can be very large, e.g., ifthe problem originates from a 
method-of-lines discretization of a nonlinear PDE, so to achieve a high accuracy, re­
quiring a high number of degrees of freedom, N, and it is tempting to seek to identify 
an approximate model to enhance the computational efficiency without significantly 
impacting the accuracy. 

A general representation of a reduced model in matrix-form is 

u(t) ~ V 7 fi(t), (7.15) 

where the r columns of the matrix V r represent a linear space - the reduced basis -
and fi(t) E JR7 are the coefficients of the reduced model. Projecting the ODE system 
(7 .1) onto V 7, we recover the reduced system: 

T dfi.(t) T - T -V7 Vr------;Jt = V7 AVru(t) + V7 N(Vru(t)). 

Assuming that V7 is orthonormal, this simplifies as 

dfi.(t) T -( ) T ( -( )) ------;ft = Vr AVru t + Vr N Vru t . 

(7.16) 

(7.17) 

One is now left with specifying how to choose a good subspace, V7 , to adequately 
represent the dynamic behavior of the solution and develop a strategy for how to re­
cover the coefficients for the reduced model in an efficient manner. There are several 
ways to address this question, most often based on the construction of V r through 
snapshots of the solution. 

Proper orthogonal decomposition. The proper orthogonal decomposition (POD) 
[5, 6] is perhaps the most widely used approach to generate a reduced basis from a 
collection of snapshots. In this case, we assume we have a collection of Ns snapshots 

U = [01, ... , llNs], (7.18) 
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where each u; is a vector of length N; this N can be large as it reflects the number of 
degrees of freedom in system. The POD basis, denoted by { </>;}i E JRN, is chosen as 
the orthonormal vectors that solve the minimization problem: 

Ns r 

minNL, 1101- L,(u) </J;)</J;I I~, 
l/J;E~ j i=l 

(7.19) 

b. ,i..T,i.. ~ {l,i=j, 
su ~ect to 'l'i 'l'J = u;1 = 0 th . , o erw1se. 

The solution to this minimization problem is found through the singular value de­
composition (SVD) ofU: 

(7.20) 

where VE ]RNxr and WE JRNsxr are the left and right singular vectors, respectively, 
and V is the sought after basis. The entries of the diagonal matrix I provides a 
measure of the relative energy of each of the orthogonal vectors in the basis. 

Once the basis is available, we can increase the computational efficiency for solv­
ing (7.17) by precomputing V~ AV7 of sizer x r. However, the computational com­
plexity of the nonlinear term remains dependent onN and, hence, potentially costly. 

Discrete Empirical Interpolation. To address this, [7] proposed an approach, orig­
inating in previous work on empirical interpolation methods [4] but limited to the 
case of an existing discrete basis set. In this approach N(Vru(t)) is represented by 
N(t) E JRN which is subsequently approximated as 

N(Vru(t)) ~ N(t) ~ Vpc(t). (7.21) 

Here Vp = [v1, ... , vm] is an orthogonal POD basis set based on snapshots of N(t). 
To recover c(t), we seek a solution to an overdetermined system. However, rather 
than employing an expensive least square method, we extract m equations from the 
original set of snapshots. Denote 

P= [ep1, .... ,ePmJ ElRNxm, (7.22) 

where ep1 = [O, ... , 0, 1, 0, ... ,Of E JRN (1 only appears on the p1-th position of the 
vector). IfpTyP is nonsingular, c(t) can be uniquely determined by 

resulting in a final approximation ofN(t) as 

The interpolation index p; is selected iteratively by minimizing the largest magnitude 
of the residual r = Uk - V p,kc. The procedure, sometimes referred to as discrete 
empirical interpolation, is outlined in Algorithm 7.3. 
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Algorithm 7.3 Empirical interpolation with a given discrete basis set 

input : { vk}k=l c JRN linearly independent POD bases of the nonlinear term 
output: the interpolation operator Pm = [p1, .. .,pm]. 

1 begin 
2 £=max lu1 I ,PI= argmax lu1 I; 
3 P <----{pi}; V p,1 <---- {vi}; 
4 for k <---- 2 to M do 
s Solve pT vk = pTv p,kc(t) to obtain c(t); 
6 Compute the residual; r = Vk - V p,kc; 
7 £=max lrl ,pk= argmax lrl; 
8 Vp,k<--Vp,k-IU{vk}; 
9 pk<---- pk-I U {pk}; 

10 end 
11 end 

With the above approximation, we can now express the reduced system as 

197 

(7.23) 

Full Empirical Interpolation. Pursuing the above approach further, one is left won­
dering if we can use a basis other than the computational expensive POD basis, and 
whether we can choose the interpolation position based on other guidelines. Ad­
dressing these questions leads us to propose a full empirical interpolation method. 

It is well-known that the original empirical interpolation method is commonly 
used to separate the dependence of parameters and spatial variables [4], and that 
the method chooses 'optimal' interpolation points in a certain sense. We propose 
to consider time as a parameter, and use the empirical interpolation to construct the 
reduced bases VE,k ofu and the reduced bases VpE,k of the nonlinear term, i.e., 

u(t) ~ VE,kc(t), N(t) ~ VpE,kc(t). (7.24) 

The resulting reduced model can be written as 

dii(t) T - T T I T -
---;J{ = VE,k AVE,ku(t) + VE,k VpE,k(P VpE,k)- N(P VE,ku(t)). (7.25) 

The essential difference between the models based on discrete empirical interpola­
tion and the full empirical interpolation approach is found in the way in which one 
constructs the reduced basis set. In the former case, the importance of the basis el­
ements is guided by the SVD and the relative size of the singular values, resulting 
in a potentially substantial cost. The latter case is based on the interpolation error 
and the basis in constructed in a full greedy fashion. A detailed comparative study 
of the performance between the two approaches is ongoing and will be presented in 
a forthcoming paper. 
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7.2.3.2 The Reduced Basis Parareal Method 

Let us now introduce the new reduced basis parareal method. Our first observation is 
that the first term in (7.13) can be dropped under the assumption that the projection 
error vanishes asymptotically. Hence, for linear problems, we can replace K.1.t by 
K.1.t as 

Nck 
~ k '"'"' K.1.t(u, t;+1, t;) = F& (JP' u, t;+1,t;) = £... C1F01 (s1,t;+1, t;). (7.26) 

J=l 

This is essentially an approximation to the fine time integrator with an admissible 
truncation error. Keeping in mind that Fst is an expensive operation, we seek to 
reduce the dimension ofSk to achieve a better efficiency. If the solution to the ODE 
is sufficiently regular, it is reasonable to seek an r-dimensional subspace, S~ (the 
reduced basis space), of the original space sk. Now redefine JP'~ to be the orthogonal 
projection from u onto S~. Then (7.26) becomes 

(7.27) 

which is essentially an approximation to the fine time integrator using the reduced 
model. 

Consequently, our reduced basis parareal method for linear problems is as fol­
lows: 

u~tl =F&(~u~+1 ,tn+1,tn) +Fst(u~,tn+1,tn)-F&(lP'~u~,tn+l ,tn), 0 ~ k ~Nc-1. 
(7.28) 

Depending on the construction of the reduced model, we refer to it as the POD para­
real method or the EIM parareal method. 

Algorithm 7.4 describes the basic steps of the reduced basis parareal method for 
linear problems. It follows a procedure similar to Algorithm 7.2, but requires less 
memory for storing the bases. Notice that for linear problems, the coarse solver is 
needed only for initializing the algorithm. After this first step, the fine solver pro­
duces all the information needed for the reduced model, and the algorithm no longer 
depends on the coarse solver. 

For nonlinear problems, the relationship 

r 

F&(~u,t;+1,t;) = LC1F&(s1,t;+1,t;) 
j=l 

(7.29) 

does not generally hold, even iflP'ku---+ u. Therefore, the Krylov subspace parareal 
method is not applicable. Fortunately, the knowledge of the development ofreduced 
models using empirical interpolation offers insight into dealing with nonlinear prob­
lems, as mentioned in Sect. 7.2.3.1. We construct the coarse time integrator as fol­
lows: 

(7.30) 
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Algorithm 7.4 The reduced parareal method for a linear problem 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 
4 I u?+i = GLlt(u?,t;+1,t;) 
5 end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Constructing reduced basis by POD or EIM: 

14 Uk={u/;+1,i=O, ... ,Ne,}=0, ... ,k} 
15 S =POD(Uk) or S =EIM(Uk) where S = {s;,i= 1, ... ,r} 
16 Marching the basis: 
17 for i +-- 1 to r do 
18 I SJ; =F81 (s;,O,Llt); 

19 end 
20 Sequential correction step: 
21 for i +-- 0 to Ne - 1 do 
22 ll"ku} = LJ=l C1s1 +-- C1 

K, ( k+l ) - .._,N, C S 
23 Lit U; ,t;+1,t; - £...j=l j fj 

k+l K' ( k+l ) k K' ( k ) 24 U;+l = Lit U; ,t;+1,t; -Ufi+l + Lit U;,t;+1,t; 
25 end 
26 end 

199 

where F8t is the reduced model constructed by POD or EIM as we described in 
the previous section. Consequently, our reduced basis parareal method for nonlinear 
problems becomes 

u~t~ = F8t(JP'~u~+l ,tn+1,tn) + F&(u~,tn+1,tn) - F8t(~u~,tn+1,tn), 
0 ::; k ::; Ne - 1. (7.31) 

As long as there exists a suitable reduced model for the problem, we can evaluate kilt 

efficiently while maintaining an accuracy commensurate with the fine solver. The 
reduced basis parareal method for nonlinear problems is outlined in Algorithm 7.5. 
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Algorithm 7.5 The reduced parareal method for a nonlinear problem 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GLlt(u?,t;+1,t;) 
s end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Constructing reduced basis: 

14 Uk={u/;+1,i=O, ... ,Ne,}=0, ... ,k} 
1s S =POD-DEIM(Uk) or S =EIM(Uk) where S = {s;,i= 1, ... ,r} 
16 Sequential correction step: 
17 for i +-- 0 to Ne - 1 do 
18 KLlt(u},t;+1,t;) =F8t(lP'~u},t;+1,t;) 

K, ( k+l ) Fr (lP'k k+l ) 19 Lit U; ,t;+1,t; = 8t rU; ,t;+1,t; 
k+l K' ( k+l ) k K' ( k ) 20 U;+l = Lit U; ,t;+1,t; -Ufi+l + Lit U;,t;+1,t; 

21 end 
22 end 

7 .3 Analysis of the Reduced Basis Parareal Method 

F. Chen et al. 

In the following we provide some analysis of the reduced basis parareal method 
to understand its stability, convergence and overall computational complexity. 
Throughout, we assume that there exists a reduced model for the continuous prob­
lem. 

7.3.1 Stability analysis 

We first consider the linear case. Define the projection error: 

(7.32) 

where r is the dimension of the reduced space. We assume a projection error 

'1 <_5_ £, Vj,k, (7.33) 

and define: 
£ 

Cp,r = i1T' Vj,k. (7.34) 
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It is reasonable to assume that the fine propagator is L1 stable, i.e., there exists a 
nonnegative constant CF independent of the discretization parameters, such that, 

Theorem 7.1 (Stability for the linear case) Under the assumption of (7.33) and 
(7.35), the reduced basis parareal method is stable for (7.1) with N = 0, i.e., for 
each i and k, 

I lu7tl 1 IL2(0,T) :::; CLeCp(i+l)!J.T' 

where CL is a constant depending only on Cp,r, CF, and uo. 

(7.36) 

Proof Using the triangle inequality, linearity of the operator, and assumption (7.35), 
we obtain 

11°7tl 1 IL2 (O,T) :::; I IF& (JP'~u7+ 1't;+1 't;) I IL2 (O,T) + I IFot ( ur' t;+ 1 't;) 

- Fat (IP'~ur, t;+ 1, ti) I IL2 (o,ri (7 .3 7) 

:::; (1 +CFL1T)llu7+1llL2(o,T) 

+ (1 +cFLlT)l l(II- ~)url ILz(o,ri· (7.38) 

Then, by the discrete Gronwall's lemma [9] and (7.33), we recover 

i 
k+l ""' . X (lluo llL2(o,T)+LlT L,;(l+CFL1T)-1Cp,r) 

j=O 

= (1 +CFLlrr+ 1 11u~+ 1 1 IL2(0,T) 

+ dF ((1 +CFLlT)i+l _ l)Cp,r 

< eCp(i+l)!J.TI lu II + _l (eCp(i+l)!J.T - l)C . 
- 0 L2 (0,T) CF p,r 

This completes the proof. 

(7.39) 

(7.40) 

(7.41) 

Note that ifthere exists an small integer M (indicating a compact reduced approxi­
mation space) such that, 

lim Cp,r = 0, 
r--;M 

(7.42) 

then we recover the same stability property as that of the fine solver: 

For the nonlinear case, we further assume that there exists a nonnegative constant 
Cr, independent of the discretization parameters, such that, 
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where elf is the L2-difference between the fine propagator and the reduced model 
using the same initial condition vat ti. As before, we assume 

0 :::;t:, Vj,k. (7.44) 

Theorem 7.2 (Stability for the nonlinear case) Under assumptions (7.35), (7.43) 
and (7.44 ), the reduced basis parareal method is stable for (7 .1) in the sense that 
for each i and k 

I lu7-t"l 1 IL2(0,T) :::; CNeC*(i+l)AT, (7.45) 

where C = max{CF,Cr} and CN is a constant depending only on Cp,r, Cp, Cr, 
anduo. 

Proof Using the triangle inequality and assumptions (7.35) and (7.43), we have 

11 u7-t"l 1 IL2 (O,T) :::; I IF.51 (lP'~u7+ 1 , ti+ 1, ti) I IL2 (O,T) + I IF& ( uf, ti+ 1, ti) 

- F,51 (~uf ,ti+1,ti) I IL2(0,T) (7.46) 

:::; (1 +CpL1T) I lu7+1 I ILz(O,T) + (1 +CrL1T)q}. (7.47) 

Next, by the discrete Gronwall's lemma and (7.44), we derive 

i 
k+l "'"' . x (lino llL2(o,T) +L1T L,;(1 +CrL1T)-1Cp,r) 

j=O 

= (1 +cF11rr+1 11u~+ 1 I IL2(0,ri 

+ ~r ((1 +CrL1rr+1 - l)Cp,r 

<eCp(i+l)ATllu II +2-(eCr(i+l)AT -l)C . 
_ 0 L2 (0,T) Cr p,r 

This completes the proof. 

7.3.2 Convergence analysis 

(7.48) 

(7.49) 

(7.50) 

To show convergence for the linear case, we first assume that there exists a nonneg­
ative constant Cp, such that, 

I IF&(X,ti+l ,ti) - F&(Y,ti+l ,ti)l ILz(O,T) :::; (1 +CpL1T) I Ix -yl ILz(O,T), \/ti > 0. 
(7.51) 

We define 
(7.52) 

and assume that 
(7.53) 
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Theorem 7.3 (Convergence for the linear case) Under assumption (7.33), (7.42), 
(7.51), (7.53) and N = 0 in (7.1), the reduced basis parareal solution converges to 
Ui+ 1 for each i. 

Proof Using the reduced basis parareal formula and the linearity of the operator, we 
obtain 

u7_;'.l - Ui+l = F&(~u7+ 1 ,ti+1,ti) + F01 (u~,ti+J ,ti) 
-Foi(~u~,li+l,ti)-F&(Ui,ti+l,li) (7.54) 

= F&(~u7+ 1 ,ti+J ,li) -Foi(~ui,ti+J ,ti) (7.55) 

+ F&(u~,ti+l, ti) - F& (JP'~u~,ti+l, ti) (7.56) 

+ F&(~ui,ti+l ,li) -F&(Ui,li+J ,ti)· (7.57) 

By the triangular inequality and assumption (7 .51 ), we recover 

I lu7_;'.l - ui+1 I IL2(0,T) :=::: (1 +CpL1T) I lu7+l - uil IL2(0,T) (7.58) 

+ (1+CpL1T)11 (II- ~)u~l ILz(O,T) (7.59) 

+ (1+CpL1T)11 (II- ~)uil ILz(O,T)· (7.60) 

Finally by the discrete Gronwall's lemma, (7.33) and (7.53), we obtain 

I lu7tl - Ui+1 I IL2(0,T) ::::: (1 +CpL1ry+l (I lu~+l - uol IL2(0,T) (7.61) 
i 

+L1T I, (1 +CpL1T)-iCp,r 
j=O 

i 

+L1T L (1 +CpL1T)-iCp,r) 
j=O 
i 

:=:; 2L1T L (1 +CpL1T)-iCp,r 
j=O 

:::; ~F ((1 +CpL1Ty+1- l)Cp,r 

< 2_(eCF(i+l)!iT - l)C - Cp p,r, 

which approaches zero as r increases. This completes the proof. 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

For the nonlinear case, we must also assume that there exists a nonnegative con­
stant Cr, such that, 

I IF&(u~, ti+! ,ti) - Fs1 (~u~, ti+! ,ti) I ILz(O,T) :::; (1 + CrL1T)c/f, 

llF01(ui,ti+l,li)-Fs1 (lP'~ui,li+l,ti)llLz(O,T):::; (1 +CrL1T)p~, 
(7.66) 
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where </[ and P1 represent the L1-difference between the fine operator and the re­
duced solver using the same initial condition u7 and ui. As before, we assume that 

(7.67) 

Theorem 7.4 (Convergence of the nonlinear case) Under assumptions (7.42), 
(7.43), (7.44), (7.66) and (7.67), the reduced basis parareal solution of (7.1) con­
verges to U;+ 1 for each i. 

Proof Using the reduced basis parareal formula, we obtain 

u7tl -u;+1 = F81 (~u7+ 1 ,t;+1,t;) +F01 (u7,t;+1,t;) 

- Fs1 (~u7,t;+1,t;) - F&(u;,!;+1,t;) 

= F81 (IP'~u7+ 1 ,t;+1, t;) - F81 (IP'~u;,t;+1, t;) 
+ Fo1(u7,t;+1,t;) -F81 (~u7,t;+1,t;) 
+ F81 (~u;,t;+1,t;) - F81 (u;,t;+ 1,t;). 

By the triangular inequality and assumptions (7.66) and (7.43), we have 

llu7tl-u;+1llL2(0,r)::::: (1+CpL1T)llu7+1-u;llL2(0,r) 

+ (1 +CrL1T)c/f + (1 +CrL1T)p1. 

Then, by the discrete Gronwall's lemma, (7.44) and (7.67) we recover 

llu7tl-ui+illL2(o,r)::::: ~r ((1 +CrL1ry+1 - l)Cp,r 

< 3._(eCr(i+l)AT - l)C - Cr p,r, 

which approaches zero as r increases under assumption (7.42). 

For the above analysis it is worth emphasizing two points: 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

• The accuracy of the new parareal algorithm is 0( e ), since Cp,r depends one as a 
measure of the quality of the reduced model. We shall confirm this point by the 
numerical tests in Sect. 7.4. 

• Theorem 7.3 and 7.4 indicate that ifthere exists a good reduced approximation 
space for the problem, the new parareal algorithm converges in one iteration. 

7.3.3 Complexity Analysis 

Let us finally discuss the computational complexity of the reduced basis parareal 
method. Recall that the dimension of the reduced space is rand that of the fine solu­
tion is N. This is assumed to be the same for the coarse and fine solvers although this 
may not be a requirement in general. The compression ratio is R = r / N. Following 
the notation of [21]: TQR(k),rRB(k) (representing rsVD(k), TEIM(k), and TDEIM(k) 
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in different scenarios) reflect computing times required by the corresponding opera­
tions at the k-th iteration. re and r f is the time required by the coarse and fine solvers, 
respectively. N1 = NeNJ is the total number of time steps in one iteration with Ne be­
ing the number of the coarse time intervals and NJ the number of fine time steps on 
each coarse time interval. Np is the number of processors. 

In [21], the speedup is estimated as 

S(Np) R:: Nirf . 
Ne re +Nit(Nere +Ni/NprJ) +Nit't"QR(1t) 

(7.73) 

1 

( l +N )(Ne.!£.)+ N;t'fQR(Nit) +Nit. 
If Ni 1:j Nt1:j Np 

(7.74) 

In the reduced basis parareal method, re= R2~, since the complexity of the com­
putation of the right hand side of system is O(r ). In addition, 't"QR becomes rsvn or 
't°EJM· With this in mind, the speedup can be estimated as 

(7.75) 

Next, we examine the first two terms in the denominators of(7.74) and (7.75). 

• In the first term, rcf r1 takes the role of R2 . Hence, we can achieve a compa­
rable performance, if R R:: ~, i.e, if the underlying PDE solution can be 
represented by a reduced basis set of size 0( ~N). Suppose that ~ = 

JT720 R:: 0.23. This requires that R < 1/4, which is a reasonable compression 
ratio for many problems. In addition, it is possible to use a reduced basis approx­
imation to achieve a better performance for cases where CFL conditions lead to 
restrictions for the coarse solver. 

• For the second term, rsvn R:: 't"QR R:: O(NN;7N}), while 't°EJM R:: O(r3 /2NitNe + 
rNNitNe). Therefore, rsvn/'t°EJM R:: 0(2N;iNe/Rr2 ). As Ne increases, 't°EJM be­
comes smaller. In addition, EIM has very good parallel efficiency and requires 
less memory during the computation. 

Also note that N;1 would typically be different for the reduced basis parareal method 
and the original parareal method. If a reduced space exists, the modified algorithm 
usually converges within a few iterations, hence accelerating the overall conver­
gence significantly. 

7.4 Numerical Results 

In the following, we demonstrate the feasibility and efficiency of the reduced ba­
sis parareal method for both linear and nonlinear problems. We generally use the 
solution obtained from the fine time integrator as the exact solution. 
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Fig. 7.5. POD parareal method, and the EIM parareal method for the 1-D advection equation. 
On the left we show the L=-error at T = 10 against the number of iterations while the right 
shows the number of bases used for satisfying the tolerance of£ ( 1 o-13 ) in the POD and EIM 
parareal methods across the iterations 

7.4.1 The Linear Advection Equation 

We begin by considering the performance of the reduced basis parareal method and 
illustrate that it is stable for the 1-D linear advection equation (7 .10). The spatial and 
temporal discretizations are the same as used in Sect. 7.2 and parameters in (7 .11) 
are used. 

In Fig. 7 .5 (left), we show the L=-error at T = 10 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
method. The accuracy of the fine time integrator at T = 10 is 4 x 10-13 . The original 
parareal method is clearly unstable, while the other two remain stable. The very 
rapid convergence of the reduced basis parareal method reflects that the accuracy of 
reduced model is very high for this simple test case. As we will see for more complex 
nonlinear problems, this behavior does not carry over to general problems unless a 
high-accuracy reduced model is available. 

In Fig. 7 .5 (right), we show the number of bases used to satisfy the tolerance £ in 
the POD parareal method and the EIM parareal method. Here £ in the POD context 
is defined as the relative energy in the truncated mode and in the EIM context it is the 
interpolation error. In both cases, the tolerance in the basis selection using POD or 
EIM is set to 10-13 . We note that the EIM pararealmethod achieves higher accuracy 
but requires more memory to store the bases. This suggests that one can explore a 
tradeoffbetween accuracy and efficiency for a particular application. 

Remark 7.1 It should be noted that if only snapshots from the previous iteration is 
used in the EIM basis construction, the scheme becomes unstable. However, when 
including all snapshots collected up to the previous iteration level, stability is re­
stored. 

Figure 7.6 (upper left) shows the convergence behavior of the EIM parareal al­
gorithm with different tolerances(£= 10-k, k = 2,4,6, 8, 10, 12). The convergence 
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Fig. 7.6. The performance of the EIM parareal method for the 1-D advection equation against 
the tolerance used in the design of the reduced basis. On the upper left we show the L=-error 
at T = 10 against the number of iterations as the tolerance £ decreases and on the upper right 
the number of bases used for satisfying the tolerance as £ decreases, where £ = 10-k, k = 
2, 4, 6, 8, 10, 12; On the lower left and right, we show the corresponding convergence results 
and the number bases with the reorthogonalization procedure of the evolved basis 

stagnates at a certain level and instability may set in after further iterations. There 
are two reasons for this: 1) as £ becomes small, the reduced bases may become linear 
dependent, leading to a bad condition number of the related matrices that may im­
pact stability; 2) the newly evolved reduced bases Sf; for the fine solution may not be 
within S anymore. To resolve this problem, we first perform the reorthogonalization 
of the reduced bases to obtain a new space Sand then project the newly evolved so­
lution KA 1(u7+ 1,ti+1,ti) back to S. In Fig. 7.6 (lower left) we show the convergence 
results following this approach. Most importantly, stability is restored. Furthermore, 
the dependence of the final accuracy on £ is clear. These results are consistent with 
Theorem 7.3, stating that the parareal solution converges to the serial solution inte­
grated by the fine solver as long as the subspace S saturates in terms of accuracy. 
In practice, one can choose £ such that the accuracy of the parareal solution and the 
serial fine solution are comparable. 
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7.4.2 The second order wave equation 

To further evaluate the stability of the new parareal algorithm, we consider the sec­
ond-order wave equation from [8]: 

Utt= r:?uxx, (x,t) E (0,2n) x (0, T], 
u(x, 0) = f(x), u1(x, 0) = g(x), 

(7.76) 

where T = 10 and c = 5 and a 2n-periodic boundary condition is used. The initial 
conditions are set as 

and 

N 

f(x) = L uzeilX, g(x) = 0 
l=-N 

U = { ll~P ,/ -/= O, 
I 0 / =0. 

(7.77) 

and set p = 4. In the following we use a Fourier spectral discretization with 33 modes 
in space [14] and the velocity Verlet algorithm in time [24]. The following parame­
ters are used in the parareal algorithm: 

Ne = 100, Nit = 10, Lit = 10-3 , Di = 10-4 . (7.78) 

The tolerance for POD is set to 10-11 , respectively. 
In Fig. 7. 7 (left), we show the L=-error at T = 10 against the number of iterations 

for the original parareal method and the POD parareal method. The original parareal 
method is clearly unstable, while the POD parareal remains stable and converges in 
one iteration. This confirms our analysis: ifthe reduced model is accurate enough, 
the reduced basis parareal should converge in one iteration. In Fig. 7.5 (right), we 
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0 29 

I 
c 28 

27 
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.. ,~~~-~~.-~.-~~-~~,. 
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Fig. 7.7. Results obtained using the original parareal method, the POD parareal method for 
the 1-D second order wave equation. On the left we show the L=-error at T = 10 against 
the number of iterations while the right shows the number of bases used for satisfying the 
tolerance of e(l0-11 ) in the POD parareal method across the iterations 
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show the number of bases needed to satisfy the tolerance £ in the POD parareal 
method. 

7.4.3 Nonlinear Equations 

Let us also apply the reduced basis parareal method to examples with nonlinear PD Es. 
We recall that the Krylov based approach is not applicable in this case. 

7.4.3.1 Viscous Burgers' Equation 

We first consider the viscous Burgers' equation (7 .6), with the same spatial and tem­
poral discretization and the same parameters as in (7.7). To build the reduced basis, 
we set the tolerance for POD and EIM to be 10-15 and 10-10 , respectively. 

In Fig. 7.8 (left), we show the L=-error at T = 2 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
method. Note that in this case, the RB parareal performs worse than the original 
parareal does. It is a result of the reduced model not adequately capturing the in­
formation of the fine solver. Recall that in the nonlinear case, we have to deal with 
two approximations: one for the state variables and one for the nonlinear term. For 
the POD parareal algorithm, we choose the number of reduced bases based on the 
tolerance for the state variable u; alternatively, we can choose the dimension of the 
reduced approximation space based on the tolerance for the nonlinear term. The 
latter approach shows better convergence behavior in Fig. 7.8 (left, parareal-pod­
modified). It is apparent that the quality of the reduced model directly impacts the 
convergence. 

We emphasize that although the reduced basis parareal method converges slower 
than the original parareal, it is less expensive, as discussed in Sect. 7.2.3 .1. 

80 
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-parareal-pod 
----- parareal-eim 
-+- parareal-pod-modified 

Fig. 7.8. We compare the performance of the original parareal method, the POD parareal 
method, the modified POD parareal and the EIM parareal method for the 1-D Burgers' equa­
tion. On the left we show the L=-error at T = 2 against the number of iterations, while the 
right illustrates the number of bases 
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Fig. 7.9. We compare the performance of the original parareal method, the POD parareal 
method, and the EIM parareal method for the 1-D Kuramoto-Sivashinsky equation. On the 
left we show the L=-error at T = 40 against the number of iterations, while the right shows 
the number of bases used against the number of iterations 

7.4.3.2 Kuramoto-Sivashinsky Equation 

Next we consider the Kuramoto-Sivashinsky equation (7.8). The same spatial and 
temporal discretization and the same parameters as in (7 .9) are used. To build the 
reduced basis, we set the tolerance for POD and EIM to be 10-13 and 1 o-8, respec­
tively. 

In Fig. 7.9 we showtheL=-error at T = 40 against the numberofiterations for the 
original parareal method, the POD parareal method, the modified POD parareal, and 
the EIM parareal method. It is clear that the reduced basis parareal method converges 
faster than the original parareal method. This is likely caused by the solution of the 
problem being smooth enough to ensure that there exists a compact reduced model. 
Moreover, to keep the corresponding tolerance, the number of degrees of freedom in 
the reduced basis parareal methods is roughly one-third that of the original parareal 
method. 

7.4.3.3 Allan-Cahn Equation: Nonlinear Source 

As a third nonlinear example we consider the 1-D Allan-Cahn equation: 

au 3 Tt = Vux.x+u-u, (x,t) E (0,2n) x (O,T], 
(7.79) 

u(x,O) = 0.25sin(x), 

where T = 2 and v = 2, 1, 10-1, 10-2 . A periodic boundary condition is assumed. 
We use a P1 DG method with 100 elements in space [ 15] and a forward Euler scheme 
in time. The following parameters are used in the parareal algorithm 

Ne= 200, N;1 = 5, L1t = 1x10-4 , 8t = 5 x 10-6 . (7.80) 

We set the tolerance for POD and EIM to be 10-12 and 10-8, respectively. 
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Fig. 7.10. The POD parareal method for the 1-D Allan-Cahn equation. On the left we show 
the L=-error at T = 2 against the number of iterations for different values of v and on the right 
we show the number of bases 

In Fig. 7.10 (left), we show the L=-error at T = 2 against the number of iterations 
for the POD parareal method for different values of v's. It is clear that for larger 
values of v, the solution converges faster and less elements in the reduced basis is 
needed. This is expected since a larger v indicates a smoother and more localized 
solution which is presumed to allow for an efficient representation in a lower dimen­
sional space. Similar results are obtained by an EIM based parareal approach and are 
not reproduced here. 

7.4.3.4 KdV Equation: Nonlinear Flux 

As a last example we consider the KdV equation (taken from [26]): 

au u2 
7fi = -(l)x-VU.xxx, (x,t) E (-1,1) X (0,T], 

(7.81) 
u(x, 0) = 1.5 + 0.5 sin(2nx), 

where T = 2 and v = 10-3 and we assume a periodic boundary condition. The equa­
tion conserves energy, much like the linear wave equation, but the nonlinearity in­
duces a more complex behavior with the generation of propagating waves. In the 
parareal algorithm we use 

Ne = 100, N;t = 10, L1t = 10-4 , Ot = 10-5 . (7.82) 

We use a first order local discontinuous Galerkin method (LDG) with 100 el­
ements in space [15, 26] and an IMEX scheme in time [1], with the linear terms 
treated implicitly and the nonlinear term explicitly. We set the tolerance for POD 
and EIM to be 10-13 and 10-8, respectively. 

In Fig. 7 .11 (left) we show the L=-error at T = 2 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
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Fig. 7.11. We compare the performance of the original parareal method, the POD parareal 
method, and the EIM parareal method for the 1-D KdV equation. On the left we show the 
L=-error at T = 2 against the number of iterations, while the right shows the number of bases 
used against the number of iterations 

method. While the POD parareal method does not work well in this case, the EIM 
parareal method shows remarkable performance, i.e., it converges much faster than 
the original parareal method. Note that even ifthe tolerance for the POD is smaller 
than that of the EIM, it does not guarantee that the reduced model error based on the 
POD approach is smaller. There are two reasons: 1) the meaning of the tolerance in 
the context of the POD and the EIM are different. 2) in the convergence proof of 
(7.71), the constants Cr,Cp,r depend on the details of the reduced approximation and 
the dimension of reduced approximation space, which impact the final approxima­
tion error. 

7.5 Conclusions 

In this paper, we propose an approach to produce and use a reduced basis method 
to replace the coarse solver in the parareal algorithm. We demonstrate that, as com­
pared with the original parareal method, this new reduced basis parareal method has 
improved stability characteristics and efficiency, provided that the solution can be 
represented well by a reduced model. The analysis of the method is confirmed by the 
computational results, e.g., the accuracy of the parareal method is determined by the 
accuracy of the fine solver and the reduced model, used to replace the coarse solver. 
Unlike the Krylov subspace parareal method, this approach can be extended to in­
clude both linear problems and nonlinear problems, while requiring less storage and 
computing resources. The robustness and versatility of the method has been demon­
strated through a number of different problems, setting the stage for the evaluation 
on more complex problems. 
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