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A Robust Algorithm for Parametric Model 
Order Reduction Based on Implicit Moment 
Matching 

Peter Benner and Lihong Feng 

Abstract Parametric model order reduction (PMOR) has received a tremendous 
amount of attention in recent years. Among the first approaches considered, mainly 
in system and control theory as well as computational electromagnetics and na­
noelectronics, are methods based on multi-moment matching. Despite numerous 
other successful methods, including the reduced-basis method (RBM), other meth­
ods based on (rational, matrix, manifold) interpolation, or Kriging techniques, multi­
moment matching methods remain a reliable, robust, and flexible method for model 
reduction of linear parametric systems. Here we propose a numerically stable algo­
rithm for PMOR based on multi-moment matching. Given any number of parame­
ters and any number of moments of the parametric system, the algorithm generates 
a projection matrix for model reduction by implicit moment matching. The imple­
mentation of the method based on a repeated modified Gram-Schmidt-like process 
renders the method numerically stable. The proposed method is simple yet efficient. 
Numerical experiments show that the proposed algorithm is very accurate. 

6.1 Introduction 

The modeling of many engineering and scientific applications leads to dynamical 
systems depending on parameters varying in different design stages or computer 
experiments. For example, in a thermal model [16], the film coefficient k changes 
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with the temperature, this results in a parametric mathematical model 

Cd~~) +Gx(t)+kDx(t) =B, y(t) =LTx(t). (6.1) 

In integrated circuits, due to process variations, the width of the interconnects is in 
fact a random variable, such that a non-parametric model 

Cd~~) =Gx(t)+Bu(t), y(t)=LTx(t), (6.2) 

is not sufficient to describe the random variation. Therefore, in [22, 32], a linearized 
parametric system 

(Co+.A1C1 +.A2C2)d~~) = (Go+.A1G1 +.A2G2)x(t)+Bu(t), 
y(t) = LTx(t), 

(6.3) 

is constructed. Here and below, the system matrices are C,C;,G,G; E ]Rnxn,i = 

0, 1, 2. BE ]Rnxmi is the input matrix, L E ]Rnxmo is the output matrix. u(t) E JRm1 is 
the vector of input signals. x(t) E ]Rn is the unknown vector.y(t) E JRmo is the vector 
of output responses. Many more examples for parametric systems can be found in the 
engineering literature, see, e.g., the benchmark examples in the recently published 
MOR wiki1. 

The above mentioned parametric systems are usually of very large dimensions as 
they often result from finite element discretizations of instationary partial differential 
equations (PD Es) defined on complex geometries. Solving the parametric systems by 
conventional simulation methods is often very time-consuming. On the one hand the 
parameters have to be provided as fixed values and these values cannot be changed 
during the simulation. On the other hand, if the dimension of the system is large, 
simulating such a system already once will be costly, and the cost of a design study 
requiring many runs with different parameter values ("many-query context") may 
be overwhelming. 

Model order reduction (MOR) is an increasingly popular approach to overcome 
the obstacles posed by the computational demands in a many-query context. By 
MOR, a small dimensional approximate system can be derived, so that it can re­
liably replace the original system during the simulation. This can often save much 
simulation time and computer memory, see [2, 5, 6, 30] for some introductory texts 
on the topic and the presentation of the state-of-the-art. 

The main goal of parametric model order reduction (PMOR) is to preserve pa­
rameters in the system as symbolic quantities in the reduced-order model. Thus, 
a change in parameters does not require to compute a new reduced-order model, 
but simply the evaluation of the reduced-order model for the new parameter val­
ues. If the error in the whole feasible parameter domain can be proven to satisfy 
an acceptable error tolerance, design and optimization of systems and devices can 
be significantly accelerated. First attempts at deriving MOR for linear parametric 
systems were based on extending the popular moment-matching methods (aka Pade 

1 See http://modelreduction.org. 
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approximation, Krylov subspace-based MOR methods) to parametric systems by 
multivariate power series expansions around appropriate interpolation points. Early 
references include [7, 8, 10, 16, 19, 21, 22, 27, 32, 34]. Later, other variants of (ratio­
nal) interpolation techniques were derived, combining, e.g., balanced truncation and 
(sparse grid) interpolation [3], employing £i-optimal interpolation techniques [4], 
orusing matrix and manifold interpolation techniques (e.g., [l, 9,26]). Another large 
class of PMOR techniques is based on the Reduced Basis Method (RBM), originat­
ing in the fast approximation of parametric partial differential equations. The meth­
ods are also applicable in the context discussed here [20], but a dedicated comparison 
to the approaches mentioned here is deferred to future work. Therefore, we will not 
discuss this approach here any further and refer the reader to the survey [29] and 
other chapters in this volume. 

In the following, we will discuss a robust implementation of the multi-moment 
matching methods first discussed in [7,8, 19,34]. They have some advantages making 
them still the most popular approach used in practical applications: 

• They are easy to implement and require almost no assumptions on system prop­
erties. 

• Their cost is limited to a few (according to the number of employed expansion 
points) factorizations of sparse matrices and forward/backward solves using the 
computed factors. They do not require generation of trajectories and are therefore 
called "simulation-free" (in contrast to RBM and proper orthogonal decomposi­
tion (POD) methods). As a consequence, the "offiine-phase" for computing the 
reduced-order model is cheap compared to RBM and POD, and it is often pos­
sible to achieve the goal encountered in practical industrial engineering design 
that the time for constructing the reduced-order model plus a simulation should 
be smaller than a single simulation of the full-order model. 

• As they are simulation-free, no training inputs u(t) need to be chosen so that the 
approximation quality is usually good for all feasible input signals, not only close 
to training inputs as in RB and POD methods. 

Certainly, there are also some disadvantages: one has to first linearize parameter­
dependencies (though polynomial forms are also possible, see, e.g., [10]), and the 
order of the reduced system may not be optimal. Nevertheless, improvements on 
these aspects are in progress, so that it is to be expected that multi-moment matching 
methods will remain competitive with other approaches in the future. 

The MOR methods discussed here are based on projecting the unknown vector 
x onto a small dimensional subspace. We use system (6.2) to briefly introduce the 
concept. If a projection matrix V E ]Rnxq has been determined, using x ~ Vz we 
obtain the perturbed system 

dz(t) T 
CV--;Jt = GVz(t) +Bu(t) +e(t), y(t) =L Vz(t), 

with e(t) the introduced residual. By Galerkin projection vTe(t) = 0, we get the 
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reduced-order model: 

where z(t) E JRq is the unknown vector of the reduced model. The space dimension 
q is often called the order of the reduced model. Therefore, the key step for MOR is 
how to get the projection matrix V, which determines the dimension and the accuracy 
of the reduced order model. 

This paper is based on the ideas in [8], where the projection matrix V is obtained 
by computing an orthonormal basis of the subspace spanned by the moment vec­
tors. No detailed algorithm of computing the orthonormal basis is proposed in [8]. A 
simple way of generating V is to first obtain the moment vectors by explicit matrix 
multiplications, and then all the columns of the computed moment vectors are or­
thonormalized to get the basis. However, this explicit moment matching procedure 
may lead to numerical instability, because higher order moment vectors usually be­
come linearly dependent quickly as already observed in the non-parametric case, 
see [18]. We will demonstrate this effect in Sect. 6.2 for a practical example. 

Our intention therefore is to develop an algorithm which computes the moment 
vectors implicitly rather than explicitly. In this way, good numerical stability can be 
preserved and an accurate orthonormal basis of the subspace spanned by the moment 
vectors can be obtained. The proposed algorithm can deal with both single-input and 
multiple-input systems without any limitation on the parameters in the system. It 
should be noted that this work dates back to first variants in 2007[12,13], and other 
comparable variants of implicit moment matching methods have been proposed [ 10, 
21]. Here, we want to give a full account on the method discussed initially for only 
one parameter in [13]. 

In the following, we first review the method from [8] in Sect. 6.2 and explain 
the numerical instability resulting from explicit computation of the moments. In 
Sect. 6.3, we propose a numerical stable algorithm applicable to both single-input 
and multiple-input systems. The efficiency of the proposed algorithms is shown 
in Sect. 6.5 by simulating two examples from micro-electrical-mechanical systems 
(MEMS) and electrochemistry. Conclusions are given in the end. 

6.2 Explicit Multi-Moment Matching PMOR 

In this section, we give a short review of the method in [8] in order to explain the nu­
merical instability of explicitly computing the moment vectors. A parametric system 
in time domain can be written as below, 

C(s1,s2,··· ,sp_i)¥t(t) = G(s1,s2,·· · ,sp-1)x(t) +Bu(t), 
y(t) = LTx(t), 

(6.4) 

where the system matrices C(s1 ,s2, · · · ,sp-1), G(s1 ,s2, · · · ,sp-1) are (maybe, non­
linear, non-affine) functions of the parameters s1, s2, · · · , s p-1 · A parametric system 
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can also be stated in the frequency domain, 

E(s1, ... ,sp)x = Bu(sp), 
y = LTx, 

163 

(6.5) 

where the matrix E E JRnxn is parametrized. If the system in (6.5) is the Laplace 
transform of the system in (6.4), the new parameter Sp is in fact the frequency pa­
rameters, which corresponds to time t. The state xis the Laplace transform of the 
unknown vector x in (6.4). 

6.2.1 Review 

The method in [8] is based on the representation of a parametric system in the fre­
quency domain as in (6.5). In case of a nonlinear and/or non-affine dependence of 
the matrix Eon the parameters, the system in (6.5) is first transformed to an affine 
form 

(Eo +s1E1 +s2E2 + ... +spEp)x = Bu(sp), 
y = LTx. 

(6.6) 

Here the newly defined parameters s;, i = 1, ... , p, might be some functions (rational, 
polynomial) of the original parameters s; in (6.5). To obtain the projection matrix V 
for the reduced model, the state x in (6.6) is expanded into a Taylor series at an 

.. - ("° "°)T bl expansion pomt so= s1, ... ,sP as e ow, 

x = [J - ( <Y1M1 + ... + <YpMp)]-1 .E-1 Bu(sp) 

= I [<Y1M1 + ... +<YpMpimE-1Bu(sp) 
m=O 

= m-(k3+ ... +kp) m-kp m (6.7) 
= L L ... L 2, [Fk~, ... ,kp(M1, ... ,Mp)BMu(sp) x 

m=O kz=O kp-1=0kp=O 
m-(kz+ ... +kp) k2 kp 

0"1 0"2 ... O"p ' 

where CY;= s; -1/, E = Eo +s1E1 + ... +t},Ep, M; = -.E-1E;, i = 1,2, .. . p, and 

BM= .E-1 B. The Fk~, ... ,kp (M1, ... ,Mp) can be generated recursively as 

Fk~, ... ,kp (M1, ... , Mp) 
0, ifk; 'f'-{0,1, ... ,m},i=2, ... ,p, 
0, ifk2+ ... +kp'f'-{O,l, ... ,m}, 
I, ifm = 0, 

M1Fk~,~~,kp(M1, ... ,Mp) +M2F~=L..,kp(M1, ... ,Mp)+ ... 
. . . + MPF:km-lk _1 (M1, ... ,Mp), else. z, ... , p 
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For example, ifthere are two parameters s1 ,s2 in (6.6), F::;_, ... ,kp (M1, ... ,Mp) = F::;_ 
are: 

Foo =l, 

Fd = M1F0° = M1, Fl = M1F0° = M1 (6.8) 

FJ =M1Fa1 = (M1)2, Fi1 =M1Fl +M2Fo1 =M1M2 +M2M1, Ff =M2Fl = (M2)2, 

For the general case, the projection matrix Vis constructed as 

range{V} 
mq m-(kp+ ... +k3) m-kp m 

=colspan{ u u ... u u Fk~, ... ,kp(M1, ... ,Mp)BM} 
m=O kz=O kp-1=0kp=O 

= colspan{BM,M1BM,M2BM, ... ,MpBM, (M1 )2 BM, (M1M2 + M1M1 )BM, ... , 
(M1Mp+MpM1)BM, (M2) 2BM, (M2M3 +M3M2)BM, .. . }. 

(6.9) 
We call the coefficients in the series expansion of the state x in ( 6. 7) the moment vec­
tors of the parametric system. The corresponding moments of the transfer function 
are the moment vectors multiplied by LT from the left. For example: 

• LT BM is the 0th order moment; the columns in BM are the 0th order moment 
vectors. 

• Similarly, LT MBM, i = 1,2, ... ,p, are the first order moments, and the columns 
in MBM, i = 1, 2, ... ,p, are the first order moment vectors, which are the coeffi-
cients of s;, i = 1, ... ,p. 

• ThecolumnsinMz2BM, i= 1,2, ... ,p, (M1M+MM1)BM, i=2, ... ,p, (M2M+ 
MM2)BM, i = 3, ... ,p, ... , (Mp-1Mp + MpMp_i)BM are the second order mo­
ment vectors, which are the coefficients of sl, i = 1, 2, ... , p, si§;, i = 2, ... , p, 
s2s;, i = 3, ... ,p, ... , sp-1sp. 

Since by moments we not only denote the Taylor coefficients corresponding to 
the Laplace variables = s P' but also those associated with the other parameters s;, i = 
1, ... ,p-1, we consider them as multi-moments of the transfer function. To sum up, 
the set of coefficients corresponding to terms with powers summing up to i is the set 
of the i-th order moment vectors. From the above construction of V, the subspace 
in (6.9) includes the 0-th order moment vectors till the mq-th order moment vectors. 
The reduced model is computed as 

(Eo +s1E1 +s2E2 + ... +spEp)z =Bu, 
.Y=Fz, 

(6.10) 

~ T · ~ T~ T whereE;=V E;V, i=0,1,2, ... ,p,B=V B,L=V L.Hereweassumerealexpan-
sion points, i.e., s; E JR for all i = 1, ... ,p. Otherwise, complex conjugate transposi­
tion might be needed to apply V from the left. This results in a reduced model with 
complex system matrices, which is undesired in some applications. Alternatives to 
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obtain a real reduced order model even for complex expansion points exist [14], but 
we leave out these technical details for clarity of presentation. 

In time domain, the reduced system (6.4) is 

(6.11) 

Ideally, if the matrix V forms an orthonormal basis of the subspace in (6.9), the 
multi-moments of the reduced model in (6.10) match the multi-moments of the orig­
inal system in (6.6) up to mq-th order [8]. However, if V cannot be computed with 
sufficient numerical accuracy, the multi-moment matching property might be lost. 

6.2.2 Analysis 

Note that the subspace in (6.9) is not a Krylov subspace, therefore an orthonor­
mal basis of the subspace spanned by the moment vectors cannot be computed by 
the standard Arnoldi algorithm. In [8], no algorithm for computation of the matrix 
V is presented. If the moment vectors are computed explicitly by simple matrix­
matrix/vector multiplication, the high order moments will become linearly depen­
dent, so that it is difficult or even impossible to obtain an orthonormal basis for the 
subspace considered. 

We employ the thermal model ( 6.1) with parameter k E [I, I 09] (see Fig. 6.1) to 
illustrate this phenomenon. We observe the output of the system fork= 109 . The 
moments vectors are first computed through explicit matrix multiplications (hence, 
explicit multi-moment matching)2 , then an orthogonalization process is applied to 
the moment vectors to get the final projection matrix V. Here we use the modified 
Gram-Schmidt process (with tolerance I 0- 11 ) to get a V with orthonormal columns. 

Fig. 6.1. Physical model of a microthruster unit for which a thermal MEMS model (6.1) is 
derived. Note that the film coefficient k is applied at the top 

2 Here we use a nonzero expansion point for the Laplace variables, s0 = 0.001, a zero expansion 
point for k, k0 = 0, to ensure that the matrix E is nonsingular. For all the simulation results in 
Sect. 6.5 .1, the same expansion points are taken for all the tested MOR methods: the non-parametric 
moment-matching MOR, the explicit multi-moment matching and the proposed Algorithm 6.1. 



166 P. Benner and L. Feng 

I -------------------------
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10- 3 .v ,, ,, 

10- 4 
-' , 
I 

' 

- - - O-th- 2-th order moment 
· - · - O-th- 3-th order moments 
· · · · · · O-th- 5-th order moments 

Time (second) 

Fig. 6.2. Errors of the reduced models for the output responses of the thermal model (6.1 ), 
using explicit multi-moment matching (like in [28]) 

At first, we compute the moment vectors in (6.9) till the 2nd order to get the first 
reduced model. There are no vectors deleted during the orthogonalization process. 
The dashed line in Fig. 6.2 is the corresponding output error of the reduced model. 
If the moment vectors are computed up to order 3, the obtained second reduced 
model has smaller error. There is no deflation of the moment vectors either. If a 
more accurate model is to be derived, more moment vectors should be included. A 
third reduced model is obtained by computing the 0-th till the 5-th order moment 
vectors. This time, there are deflations during the modified Gram-Schmidt process. 
As a result, there is no increase in the number of the columns in the matrix V. The 
error of the reduced model is not further reduced, as can be seen from the dotted line 
in the figure. lfthe 6-th or higher order moment vectors are computed, the number 
of the columns in the matrix V still remains unchanged, and the accuracy of the 
corresponding reduced model cannot be improved. 

The work in [ 11] first points out the numerical instability of explicitly computing 
the moments of the linear non-parametric system (6.2) in the method A WE [28]. It 
explains the numerical problem of A WE from the eigenvector and eigenvalue point 
of view. The moment vectors of the non-parametric system (6.2) are 

These vectors are used to construct the projection matrix V and are computed explic­
itly in the method A WE. The computation of the kth moment vector ( a- 1 C)k-l a- 1 B 
in fact corresponds to the power iteration Uk =Ak-l b, with A= c-1c and b = c-1 B 
(we assume that Bis a vector for simplicity). This process converges rapidly to an 
eigenvector of A associated to the eigenvalue oflargest magnitude (assuming a sim­
ple eigenvalue). In the end, the computed vector Uk contains only information ofthis 
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"dominant" eigenvector, and the later computed vectors are all numerically linearly 
dependent to this eigenvector. This explanation also applies to the numerical insta­
bility of the explicit computation of the moment vectors in (6.9). Some part of the 
moment vectors in (6.9) are also of the power iteration form. For example, 

If directly computed, they quickly converge to the respective dominant eigenvector 
ofeachmatrix~, i= 1,2, ... ,p. 

In the next section, a numerically stable algorithm for implicitly computing the 
moment vectors is presented. The algorithm is applicable for both single-input, 
single-output systems and multiple-input, multiple-output systems. An orthonormal 
basis of the subspace spanned by the moment vectors can be obtained implicitly so 
that a more accurate reduced model can be derived. 

6.3 A Robust Algorithm for Multi-Moment Matching PMOR 

Taking a closer look at the power series expansion ofx in (6.7), we get the following 
equivalent, but different formulation, 

x = [J-(CJ1M1 + ... +apMp)]-l£-1Bu 
= 

= I. [a1M1 + ... +apMprBMu 
m=O (6.12) 

= BMu+ [a1M1 + ... + CJpMp]BMu+ [a1M1 + ... + CJpMp]2BMu+ ... 
+[a1M1 + ... +apMp]iBMu+ ... 

By defining 

xo =BM, 

x1 = [CJ1M1 + ... +CJpMp]BM, 

x2 = [a1M1 + ... +apMp]2BM, ... , 

x1 = [a1M1 + ... +apMp]iBM, ... , 

we have x = (xo +x1 +x2 + · · · +x1 + · · · )u and obtain the recursive relations 

Xo =BM, 

x1 = [a1M1 + ... +apMp]xo, 

x2 = [a1M1 + ... +apMp]x1, ... , 

Xj = [CJ1M1 + ... + CJpMp]XJ-1, .... 
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Ifwe define a vector sequence based on the coefficient matrices ofx1, j = 0, 1, ... 
as below, 

Ro =BM, 
R 1 = [M1R0 ,M2R0, ... ,MpRo], 
R1 = [M1R1,M2R1, ... ,MpR1], 

(6.13) 

and let R be the subspace spanned by the vectors in R 1, j = 0, 1, · · · , m: 

R = colspan{Ro, ... ,R1, ... ,Rm}, 

we have x R:j x E R. We see that the terms in R 1, j = 0, 1, ... , m are the coefficients of 
the parameters in the series expansion (6.12). They are also the j-th order moment 
vectors. 

The next step is to construct an orthonormal basis V of the subspace R by taking 
use of the recursive relations between the R1 in (6.13), such that the multi-moments 
of the original system are matched by those of the reduced model. A numerically 
stable algorithm for computing V is given in Algorithm 6.1. All the vectors included 
in Rare orthogonalized to each other by the modified Gram-Schmidt (MGS) pro­
cess once when constructed and then again after all R1 have been computed. In this 
sense, the algorithm can be understood as a repeated MGS process. There is no lim­
itation on the number of parameters, and the essential cost of applying £-1 E1 only 
grows linearly in the number of parameters, while the cost for orthogonalization step 
essentially grows quadratically with p. 

Some remarks on Algorithm 6.1 are in order. 

Remark 6.1 a) The application of £-1 in Steps 2 and 18 is usually performed by 
computing once a (sparse) matrix factorization (Cholesky or LU, depending on 
the system structure) before the algorithm starts. Then each application of £-1 

means a forward/backward solve step. Hence, the whole algorithm requires only 
1 matrix factorization, rendering it fairly cheap compared to other PMOR meth­
ods. 

b) The application of Et in Step 18 is a (usually sparse) matrix-vector multiplica­
tion and precedes the forward/backward solve step, which is then applied to the 
resulting vector Et v 1 using the precomputed factors of E. 

c) For systems with multiple inputs, the input matrix B has more than one column. 
All the columns in Ro = £-I B are orthogonalized in Step 5 before the columns 
in Ri, i > 0 are computed. The variable sum counts the number of columns in V. 

d) m denotes the highest order of moments to be computed and is prescribed by the 
user. 
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Algorithm 6.1 Compute V = [v1, v2, ... , vq] for a parametric system (6.6), where B 
is generally considered as a matrix 

1: Initialize a1 = 0, a2 = 0, sum= 0. 
2: Compute Ro = J;- l B. 
3: if (multiple input) then 
4: Orthogonalize the columns in Ro using MGS: [v1, v2,. .. , vq,] = orth{Ro} with respect 

to a user given tolerance £ > 0 specifying the deflation criterion for numerically lin­
early dependent vectors. 

5: sum= q1 % q1 is the number of columns remaining after deflation w.r.t. £.) 
6: else 
7: Compute the first column in V: v1 =Ro/I IRo 112 
8: sum= 1 
9: end if 

10: % Compute the orthonormal columns in R1, R1, ... , Rm iteratively as below 
11: fori=l,2,. .. ,mdo 
12: 

13: 
14: 

15: 
16: 
17: 

18: 
19: 
20: 

21: 
22: 
23: 
24: 
25: 

26: 

27: 

28: 

29: 

30: 

a2 =sum; 
fort=l,2, ... ,pdo 

if a1 = a2 then 
stop 

else 
for j = a1+1,. .. a2 do 

w=E-1E1v1; 
col =sum+ l; 
for k = 1, 2,. .. , col - 1 do 

h=viw 
w =w-hvk 

end for 

if llwll2 >£then 

Vcot=~; 
sum= col; 

end if 

end for 
end if 

end for 
31: G] = a2; 

32: end for 
33: Orthogonalize the columns in V by MGS w.r.t. £. 

e) The index tis used to refer to computations related to the t-th parameter St cor­
responding to the coefficient £-1 Et. 

t) a2 - a1 is the number of columns added to V corresponding to R;-1. 

g) a2 - a1 = 0 means that all the vectors corresponding to R;-1 are deflated because 
they are linearly dependent (w.r.t. e) to previous columns in V. In this case, there 
is no vector left which corresponds to R;-1. As for a breakdown in a Krylov sub-
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space method, we cannot continue to compute the columns in V corresponding 
to Ri, hence the algorithm stops. 

h) In Step 17, j refers to the j-th column in V and corresponds to a vector in R;-1. 

i) Steps 20-27 implement the MGS process. col is the subscript of the current col­
umn Veal in V; it is orthogonalized to all the previous columns in V by MGS. 

j) In Step 24, llwll2 < £ is the criterion used to deflate vectors in R; that are lin­
early dependent (w.r.t. £)to the previous vectors in V. It does not mean that all 
the vectors in R; are linearly dependent on the previous vectors in V. If linear 
dependence is determined by this criterion, we delete the vector w and continue 
the algorithm till ai = a1. 

k) In Step 32, we orthonormalize all the columns in V again using MGS to reduce 
llVTV - Ill2 (where I is the identity matrix of appropriate size) and to possibly 
further deflate columns. In this way, we perform a repeated MGS procedure. The 
final matrix V has q columns, which is equal to or less than the total number of 
vectors in Ri, i = 0, 1, · · · ,m. 

1) When p = 1, the algorithm reduces to a block-Arnoldi-type process, with Ro= 
BM being the starting block (the vectors in Ro are the starting vectors), which 
can be used in moment-matching MOR for multiple input, non-parametric sys­
tems (see [17,25] for other variants of block Arnoldi processes used in moment­
matching MOR). 

It should be noted that analogously to moment-matching methods for non-parametric 
systems, a Petrov-Galerkin or oblique projection method can be constructed ap­
plying Algorithm 6.1 to B replaced by L and E,Et by F,T ,E[ (and not by com­
plex conjugate transposition which would not yield the desired moment matching 
property). One would then obtain another orthogonal matrix W whose columns 
form an orthogonal basis of a complementary subspace. The reduced-order model 
is then computed by oblique projection Et = wr E;V, t = 0, ... ,p, etc., assuming 
the expansion point is chosen real. Technical issues as in standard oblique moment­
matching methods will occur here even more pronounced, e.g., the number of com­
puted columns for V and W may differ, the reduced-order model might loose sta­
bility, etc. We therefore restrict ourselves here to the presentation of the 1-sided 
( Galerkin/orthogonal) projection method to not obscure the presentation by too much 
technical details. 

6.4 Multi-Moment Matching Property 

In this section, we show that the reduced model obtained with the proposed Algo­
rithm 6.1 has indeed the moment matching property derived in [8]. 

From the analysis in Sect. 6.3, the R; defined in (6.13) are composed of the coef­
ficients in the series expansion of the state x in frequency domain. The power series 
expansion of the transfer function of the original model (6.6) is, except for the left 
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multiplication by LT, the same due to the fact that for any feasible square-integrable 
function u(. ), 

(Note that x depends implicitly on s1, ... ,sp-1 which we omit for the ease of nota­
tion.) Hence, the i-th order multi-moments of the parametric transfer function Hare 
just the terms LT Ri, i = 0, 1, 2, ... , where we recall that Ri includes the set of the i-th 
order moment vectors of x. For the reduced model in (6.10), there are corresponding 
power series expansions of the state z and the corresponding transfer functionH. We 
denote the coefficients in the series expansion of z as 

Ro= BM, 
R.1 = [M1Ro,NhRo, ... ,MpRoJ, 
R.2 = [M1R1,M2R1, ... ,MpR1J, 

~ ~ ,,o~ ,,o~ ~ ~-1~ ~ ~-1~. 

whereE =Eo+s1E1 + ... +spEp,BM=E B, and~= -E Ei, z= l, ... ,p. The 
transfer function of the reduced model can be expressed by z as 

Therefore, by the same variational argument as for the full-order system, the multi-
~ ~T ~ ~ ~ ~ 

moments of Hare L Ri, i = 0, 1,2, .... Here, Ei, i = 0, 1, ... ,p, andB,L are defined 
in (6.10). Next we will prove that the multi-moments of H match the multi-moments 
of the original transfer function H. We summarize our analysis, using Lemma 6.1 
and Lemma 6.2, in Theorem 6.1. 

Suppose we construct the projection matrix V by 

range(V) = colspan{Ro,R1,R2, ···,Rm}=: p. 

The following Lemma 6.1 is used to prove Lemma 6.2 (Lemma 6.1 recalls a known 
fact and appears in several papers, see e.g. [8]). 

Lemma 6.1 Jfthe column span ofV forms an orthonormal basis of p, then for any 
vector SE p, 

(6.14) 

Lemma 6.2 If the orthonormal projection matrix V satisfies range(V) = p,, then 
~ T . 
Ri=V Ri, z=O,l, ... ,m. 

Proof Recall that E = vr EV. Thus, for i = 0, 
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Since colspan {Ro} ~ p, we have VVT Ro = Ro by Lemma 6.1. Therefore, from the 
definition of Ro, 

Hence, considering only the first and the last expression, we get, 

Thus, Lemma 6.2 is true for i = 0. Next, we assume that Lemma 6.2 is true for 
i :::; j' so that Rj = vT R j. We will prove that it is then also true for i = j + 1. Since 
colspan{R1+i} ~ p, by Lemma 6.1 and the definition of R1+1, we get 

~ T T - T 
EV R1+1 = V EVV R1+1 

T- T- --1 --1 --1 
= V ER1+1 = V E[-E E1R1,-E E1R1, ... ,-E EpRJ] (6.15) 
= VT[-E1R1,-E2R1, ... ,-EpRJ]· 

Because colspan{R1} ~ p, we know that R1 = VVT R1 by Lemma 6.1. Hence, the 
last term of the above equation equals 

vT[-E1VVTR· -E2VVTR ... -E vvTR] 
}l }l ' p J • (6.16) 

Therefore, by the definition of E;, i = 1, ... , p, and the assumption R 1 = vT R 1, ( 6.16) 
is equal to 

[-.E1k -E2R · · · -.E k] }l }l ' p J • (6.17) 

Combining (6.15), (6.16) and (6.17), we obtain 

~T ~~ ~~ ~~ 

EV R+1 = [-E1R -E2R · · · -E R] J }l }l ' p J. (6.18) 

Then from the definition of R1+1 we get 

T ~-1 ~ ~ ~-1 ~ ~ ~-1 ~ ~ ~ 

V R1+1 = [-E E1R1,-E E1R1,··· ,-E EpRJ] =RJ+l· D 

Theorem 6.1 IfV satisfies range(V) = colspan{Ro,R1 ,R2, ···,Rm}, then the multi­
moments of the transfer function of the reduced model in (6.10) match those of the 
full system in (6.6) up to order m, i.e. LTR; =FR;, i = 0, 1, ... ,m. 

Proof From Lemma 6.2, and by the definition of 1, we have FR;= LTvvT R;, i = 

0, 1, ... ,m. By Lemma 6.1, VVTR; = R;, therefore 

~T ~ T · 
L R;=L R;, z=O,l, ... ,m. D 

6.5 Simulation Results 

In this section, some simulation results are presented to show the efficiency of the 
proposed algorithm. We employ two examples, one being the thermal MEMS model 



6 A Robust Algorithm for Parametric Model Order Reduction 173 

considered before in Fig. 6.1 and the other one is from electrochemistry. Illustrated 
in Fig. 6.8 is the computational domain of the second model, where some chemical 
reactions take place. 

6.5.1 Results for the thermal model 

The thermal model is a generic example of a device with a single heat source, where 
the generated heat dissipates through the device to the surroundings. A heater is 
shown by the block made of PolySi. The exchange between surroundings and the 
device is modeled by convection boundary conditions with the fihn coefficient k at 
the top. The corresponding mathematical parametric model is given in ( 6.1 ), where k 
is the parameter. It is a single-input multiple-output system. For simplicity, we only 
observe a single output of the system, which is the temperature in the middle of the 
heater. As has been shown, the values of k change significantly, k E [1, 109]. The size 
of the system is n = 4 725. 

To implement Algorithm 6.1, we first need to transform the system into the fre­
quency domain by the Laplace transformation assuming xlt=O = 0 for all k. The 
corresponding system in the frequency domain is 

(sC+G+kD)X(s) =BU(s), 
y=LTX(s), 

wheres is considered as the second parameter of the system. Since Bis a vector, the 
projection matrix V is constructed for the single input case in Algorithm 6.1. 

Implicit vs. explicit moment vector computation 

In Sect. 6.2.2, we have analyzed the accuracy of the PMOR method from [8] if the 
moment vectors are explicitly computed. Here, we show the efficiency of the pro­
posed Algorithm 6.1, and compare it with the explicit moment-matching described 
in Sect. 6.2.2. 

In Fig. 6.3, the errors of three reduced models computed by Algorithm 6.1 are 
plotted. The dashed line is the error of the output produced by the reduced model 
by matching the multi-moments upto order 2. The dash-dotted line is the error by 
matching multi-moments up to order 3. The dotted line is the one obtained by match­
ing the multi-moments up to order 5. Different from the errors in Fig. 6.2, the errors 
of the reduced models keep decreasing with the increasing number of matched multi­
moments, whereas the errors of the reduced models in Fig. 6.2 do not change after 
matching up to 3rd order moments. In Fig. 6.4, the accuracy of the reduced models 
computed by explicit and implicit moment-matching is compared. The solid line and 
the dashed line represent the accuracy of the reduced model computed by explicit 
moment-matching. By matching multi-moments up to the same order, the implicit 
moment-matching method implemented in Algorithm 6.1 is more accurate than the 
explicit moment-matching. 
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PMOR vs. Non-Parametric MOR 

In order to show the importance and the advantage of PMOR, we compare the pro­
posed PMOR Algorithm 6.1 with the standard non-parametric moment-matching 
MOR method (see e.g. [25]). For non-parametric MOR, all the parameters except for 
the Laplace variables must be fixed, such that the system becomes non-parametric. 
Hence, a standard non-parametric moment-matching method can be applied. Here 
the parameter k is fixed to k = 1, and the moments are the simple moments associ­
ated with the Laplace variables. The reduced models constructed by both methods 
are in the same form as in ( 6.11 ). 



6 A Robust Algorithm for Parametric Model Order Reduction 

800 

:l 400 
& 
g 

200 

0 20 

-. ... . -·-

40 

. -. . -

· - · - output for k= I 00 
-- output for - 500 
· · · · · · output for - 1000 
- - - output for - le9 

60 80 

Time (seconds) 

100 

175 

Fig. 6.5. Output responses of the original system ( 6. I) in the time-domain at different values 
of the parameter k 

In Fig. 6.5, we plot the output responses corresponding to different values of k 
by simulating the original parametric system (6.1) for several times. We see that the 
time-dependent output response varies much with k. 

In Algorithm 6.1, the 0th order till the 8th order multi-moments are matched. 
That is, range(V) = colspan{Ro,R1, ... ,Rs}. The resulting reduced model is oforder 
q = 44. For comparison, we could use the same order of moments associated with 
s for the non-parametric MOR. However, the resulting reduced model is only of 
dimension q = 9. Instead, the two methods are compared with respect to the same 
order of the reduced model. To this end, the 0th order till the 43rd order moments 
are matched by the non-parametric MOR method, and the reduced model is of the 
same dimension q = 44. 

In Fig. 6.6, the relative errors of each reduced model changing with different 
values of k are plotted. Along the x-axis, the logarithm of the parameter k is taken. 
Along they axis, the relative error defined as I ly(O, T; k) -y(O, T;k) 112/l ly(O, T;k) 112 
is plotted. Here y(O, T, k) = (y(t1; k), ... ,y(tN; k)) Tis a vector of the output responses 
at different time steps in the interesting time interval, ti E [O, T], i = 1, ... , TN, for the 
current value of the parameter k, obtained by full simulation of the original system. 
The vector y(O,T;k) is obtained analogously from the output responses computed 
with the reduced model. 

The solid line in the figure represents the errors produced by the reduced model 
with q = 44, obtained by non-parametric moment-matching MOR. It has good ac­
curacy at the values of k close to k = I, the fixed value. However, when the value 
of k grows, the error generally keeps increasing. As expected, the reduced model 
cannot catch the behavior of the output responses corresponding to values of k far 
away from the fixed value. The accuracy of the reduced model computed with the 
proposed PMOR method is much higher, though there is still a very slow trend of 
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Fig. 6.6. Relative errors of the output responses of the thermal model in the time domain for 
different values of k, computed from the reduced models derived by non-parametric MOR 
and Algorithm 6.1, respectively. The orders of the three reduced models are q = 44,44, 161, 
respectively 

error increase with increasing value of k, see the dotted line. This is because a sin­
gle expansion point for k, ko = 0, is used during the series expansion of the state 
vector x (see (6.7) and (6.12)). Multiple point expansion can be used in combination 
with Algorithm 6.1 to further decrease the error of the reduced model for very large 
values of k, see [ 14]. 

To achieve the same level of accuracy as for the reduced model resulting from 
PMOR, a reduced model with dimension q = 161 must be constructed with the non­
parametric moment-matching MOR, where the 0th till the I 60th order moments are 
matched. The error of the reduced model is plotted using dashes. This shows that the 
PMOR method provides a more compact reduced model over the entire parameter 
domain. 

Robustness of the Proposed Algorithm 

In Fig. 6. 7, relative errors of three different reduced models constructed by Algo­
rithm 6.1 are plotted. Each line represents the relative error between the output 
response of the reduced system and that of the original system according to dif­
ferent values of the parameter k. The definition of the relative error is the same 
as defined for Fig. 6.6. The line with the smallest error represents the error of 
the reduced system of order q = 44, for which the reduced system is obtained by 
range(V) = colspan{ Ro,R1, ... ,Rs}. The line in the middle is the error of the re­
duced system with q = 28; it is derived from range(V) = colspan{Ro,R1, ... ,R6}. 
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Fig. 6.7. Relative errors of the output responses of the thermal model in the time-domain 
computed from the reduced models with different order q, using Algorithm 6.1, for different 
values of k 

The line on the top corresponds to the reduced system computed from range(V) = 
colspan{Ro,R1, ... ,R4}. One can see that the error becomes smaller with in­
creasing number of moment vectors used. All in all, the errors at all the values 
of the parameter k are very small, and satisfy the accuracy requirement in real 
applications. Compared with the explicit multi-moment matching, and the non­
parametric MOR, the proposed Algorithm 6.1 produces a much more accurate re­
duced model. 

6.5.2 Results for the electrochemistry model 

The detailed description and derivation of the model for the application depicted 
in Fig. 6.8 is available from the MORwiki3 . The mathematical model after spatial 
discretization is 

E'fjf +Gc+s1D1c+s2D2c = F, c(O) =co cf 0 
y =[Tc,. 

(6.19) 

The dimension of the system is n = 16912. Here, E, G,D1 ,D2 E JFtnxn are sys­
tem matrices. l,F E JFtn are constant vectors. c(t) E JFtn is the unknown vector. 
The two parameters s1 = ef3u(t), s2 = e-f3u(t) are functions of the voltage, where 
f3 = 21.243036728240824 is a constant. The voltage u(t, a) which is a function of 

3 http://morwiki.mpi-magdeburg.mpg.de/morwiki/index. php/Scanning_ Electrochemical_ Microscopy. 
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Fig. 6.8. Example from electrochemistry. The computational domain (indicated as simulation 
domain in the figure) under the 2D-axisymmetrical approximation includes the electrolyte 
under the electrode (the square at the middle top). Some chemical reactions take place in the 
computational domain. The interesting output is the total current over the electrode surface 

time and a, follows a symmetric, triangular waveform: 

u(t, a) = uo +at, 
u(t, a) = uo - at, 

O<t<ta., 
ta. < t < 2ta.. 

Here, the variable a takes four possible values a= 0.5, 0.05, 0.005, 0.0005. Thetime 
pointta. actually varies with a by ta.= 4 x 10', when a= 0.5 x 10-1

, for i= 0, 1,2,3. 
The output y(t) is the total current over the electrode surface, changing with the 

voltage u(t, a). The waveforms of the two parameters SJ and s2 as functions of time 
and the voltage u(t, a) are given in Fig. 6.9 and Fig. 6.10, respectively. Although 
both SJ and s2 are functions of the voltage u, hence are not independent, they are 
considered as two independent parameters in Algorithm 6.1. They can further be 
simply treated as two parameters independent of any argument, e.g. the time vari­
able t, during the implementation of Algorithm 6.1, since the projection matrix Vis 
generated independently of the parameters. 

To deal with the system with nonzero initial condition, we employ the transfor­
mation method in [ 15]. That is, we first transform the system into a system with zero 
initial condition by c = c - co. The resulting transformed system is 

E'fft + Gc+s1D1c+s2D2c = F- Geo -s1D1co -s2D2co, 
y=IT(c+co), c(O)=c(O)-co=O. 

By Laplace transform, the above system in frequency domain becomes 

(sE+G+sJDJ +s2D2)x = Fu(s), 
y = lT(x+cou(s)), 

(6.20) 

(6.21) 

where xis the Laplace transform of the time-domain unknown vector c, u(s) = l/s 
is the Laplace transform of the constant 1, and F = F - Geo - s1D1 co -s2D2co. As 
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explained above, s 1 ( u(t)) and s2 ( u(t)) are treated as two constant parameters during 
the execution of Algorithm 6.1. As they are preserved in the reduced model, they can 
then again be varied with time according to their original definition when simulating 
the reduced model. 

Note that the right-hand side of the system also depends on the two parameters 
s1, s2, which, however, is not a problem. Since the function u(s) and the parameters 
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s1, s2 are both scalars, the right-hand side of the system (6.21) can be written as 

- T where B = [F - Gco,D1 co,D2co], U = [u(s), -s1 u(s), -s2u(s)] . Therefore, the sys-
tem in ( 6.21) can be considered as a multiple input system, so that the multiple input 
case in Algorithm 6.1 can be applied to construct the projection matrix V4 . The time 
domain reduced model in the form of ( 6.11) is obtained by applying Galerkin pro­
jection, using V, to the transformed system in ( 6.20) [ 15]. 

Figures 6.11-6.15 show the simulation results of the original model ( 6.19) and 
the reduced model obtained by Algorithm 6.1. The figures display the currents as 
functions of the voltages u(t, a), which is the usual way to represent the so-called 
cyclic voltammograms of the electro-chemical reaction. The solid line is the result 
obtained by full simulation of the original large model, the dashed line is the result 
computed using the small reduced model. The results of the reduced model are ac­
curate for a wide range of the dynamic behavior when the value of a changes by 
three orders of magnitude (0.005-0.5). 

The dashed lines in the Figs. 6.11-6.13 show the simulation results of three dif­
ferent reduced models with a= 0.5. As we have already seen, the projection matrix 
V depends on the moment vectors of the system. If more moment vectors are used, 
the reduced model should become more accurate, at least in theory. The simulation 
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Fig. 6.11. The current y as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 4th order, yielding a reduced model of dimension q = 26 

4 For this example, the zero expansion points s0 = 0, s? = 0 and sg = 0 are used for all the three 
parameters s,s1 ,s2 in (6.21). 
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Fig. 6.12. The currenty as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 6th order, yielding a reduced space of dimension q = 50 
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Fig. 6.13. The currenty as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 9th order, yielding a reduced space of dimension q = 86 

results in Fig. 6.3 show this fact for the previous thermal MEMS problem. For the 
current problem, the simulation results in Figs. 6.11--6.13 further justify it. In con­
trast, if V is computed by explicit matrix multiplications, the accuracy of the reduced 
model cannot be improved by using more moment vectors. In Fig. 6.11, the moment 
vectors from Ro to R4 are employed to compute V. In Fig. 6.12, Ro till R6 are used 
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for the reduced model. The moment vectors from Ro to R9 are used in Fig. 6.13 to get 
V. The result in Fig. 6.13 is most accurate. The waveform ofthe current computed 
from the reduced model shows little difference from the solid line. In this case the 
order of the reduced model is q = 86. The relative error between the two currents is 
EI a=0.5 = I IY-jJ112/IIYI12 = 6.3 x 10-4

, where y is the vector of the current at dense 
samples of the interesting time interval by full simulation, andy is the vector of the 
current at the same samples obtained by simulating the reduced model. The reduced 
model is good enough to replace the original model with space dimension n = 16912 
in practical applications of the model. 

Figures 6.14-6.15 show additional outcomes for other values of a. Here we used 
the most accurate reduced model with range(V) = colspan{ Ro,R1, ... ,R9} and study 
the effect when varying a. The order of each reduced model is the same: q = 86. 

The relative errors E are listed in Table 6.1 for a selection of different values of 
a. All these simulation results show that accurate reduced models can be obtained 
with the proposed algorithm. 

a a=0.5 

E 6.3 x 10-4 

4 

~ 
5 
;: 2 
~ .... 
:I 
u 

0 

- 1 

Table 6.1. E vs. a 
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Fig. 6.14. The currenty as a function of the voltage u(t, a), for a= 0.05, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 9th order, yielding a reduced space of dimension q = 86 
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Fig. 6.15. The current y as a function of the voltage u(t, a), for a = 0.005, for both the 
full simulation and the PMOR method Algorithm 6.1 using the multiple input variant. The 
moments are matched up to 9th order, yielding a reduced space of dimension q = 86 

6.6 Conclusions 

A numerical stable algorithm for PMOR is explored in this paper. The algorithm is 
used to construct a projection matrix V whose columns form an orthonormal basis 
of the subspace spanned by the moment vectors of the parametric system. Instead of 
explicit matrix-vector multiplications, a new moment vector is orthogonalized to all 
the previous ones during a (repeated) Modified Gram-Schmidt process. Numerical 
simulation results for both single input and multiple input parametric systems show 
that the proposed algorithm is very accurate and robust. Applications of the algo­
rithm to parametric systems with more than three parameters can be found in [14]. 

The reduced parametric model can be used in optimization [35], in statistics [24], 
and in coupled simulations [23]. When used in statistics, it is important that quantities 
like mean and variance are well approximated. In applying PMOR for uncertainty 
quantification, one thus seeks to have a "statistics-preserving PMOR". 

In some cases, the parameters may not be explicitly available. For instance, in 
modeling of electromagnetic problems, varying geometry may result in different 
meshes. For an approach to deal with this see [31]. 

Future research will focus on how to adaptively choose proper nonzero expansion 
points to attain a more compact model for systems with many (more than three) 
parameters. An error estimation for the state x of the parametric system is proposed 
in [33] for an automatic sampling selection. For many applications, the output y or the 
transfer function of the system is of interest, and an output-oriented error estimation 
for the proposed PMOR method is preferred, such that a more reliable reduced model 
can be obtained, automatically. 
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