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Application of the Discrete Empirical 
Interpolation Method to Reduced Order 
Modeling of Nonlinear and Parametric Systems* 

Harbir Antil, Matthias Heinkenschloss and Danny C. Sorensen 

Abstract Projection based methods lead to reduced order models (RO Ms) with dra­
matically reduced numbers of equations and unknowns. However, for nonlinear or 
parametrically varying problems the cost of evaluating these ROMs still depends on 
the size of the full order model and therefore is still expensive. The Discrete Empir­
ical Interpolation Method (DEIM) further approximates the nonlinearity in the pro­
jection based ROM. The resulting DEIM ROM nonlinearity depends only on a few 
components of the original nonlinearity. If each component of the original nonlin­
earity depends only on a few components of the argument, the resulting DEIM ROM 
can be evaluated efficiently at a cost that is independent of the size of the original 
problem. For systems obtained from finite difference approximations, the ith com­
ponent of the original nonlinearity often depends only on the ith component of the 
argument. This is different for systems obtained using finite element methods, where 
the dependence is determined by the mesh and by the polynomial degree of the finite 
element subspaces. This paper describes two approaches of applying DEIM in the 
finite element context, one applied to the assembled and the other to the unassem­
bled form of the nonlinearity. We carefully examine how the DEIM is applied in 
each case, and the substantial efficiency gains obtained by the DEIM. In addition, 
we demonstrate how to apply DEIM to obtain RO Ms for a class of parameterized 
system that arises, e.g., in shape optimization. The evaluations of the DEIM ROMs 
are substantially faster than those of the standard projection based RO Ms. Additional 
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gains are obtained with the DEIM ROMs when one has to compute derivatives of 
the model with respect to the parameter. 

4.1 Introduction 

Projection based reduced order models systematically extract the features of very 
large-scale systems to approximate these systems by substantially smaller ones. 
However, if the original system is parameter dependent or is semilinear, then, al­
though the new small system involves substantially fewer equations and unknowns 
than the original one, the computational cost of its numerical solution can be essen­
tially the same as that of the original large-scale system. The discrete empirical inter­
polation method (DEIM) of [7] further approximates projection based reduced order 
models to obtain small systems that capture the solution of the original large-scale 
system and that can also be solved at a computational cost that depends only on the 
size of the small system, provided each component of the original semilinear func­
tion depends only on a few components of its argument. So far, the DEIM has been 
primarily applied to finite difference discretizations of semilinear PD Es where the ith 
component of the nonlinearity depends only on the ith component of the argument. 
This is different in finite element discretizations, where the dependence of the non­
linear function is determined by the mesh as well as by the polynomial degree used 
to construct the finite element spaces. Therefore results from DEIM applied to finite 
difference approximations of PD Es do not necessarily carry over to DEIM applied 
to finite element approximations of PDEs. One purpose of this paper is demonstrate 
two approaches to apply DEIM to finite element discretizations of semilinear PD Es 
and numerically study their computational cost. The two approaches apply DEIM 
at different stages of the finite element assembly process. The size of the nonlin­
ear function as well as its dependence on the argument are different at each stage 
of the assembly process, which impacts the computational efficiency of the result­
ing DEIM reduced models. The second purpose of this paper is to demonstrate how 
to apply DEIM to a class of parameter dependent systems that arise, e.g., in shape 
optimization. 

Discretizations of parameterized semilinear elliptic partial differential equations 
(PDEs) lead to large scale nonlinear algebraic systems of the form 

A(8)y+F(y;8) = b(8), (4.1) 

where the parameters e E e c ]RP and for each parameter e the matrix A( e) E ]RNXN 

and the vectors F(y; 8) and b( 8) E JRN. Projection based model reduction techniques 
[1, 19,24,29] generate matrices Ve and Yr E JRNxn with n «N and replace (4.1) with 
the reduced system 

vI A(e)(y+ vrr) + vIF(y+ vrr;e) = vib(e). (4.2) 

While the reduced order system (4.2) is much smaller than the original one, the cost 
of computation of e f-+ VI A( e)Vr, e f-+ VIb( e), and (y, e) f-+ VIF(y + Vri; e) 
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still depends on N. Therefore, additional approximations are needed to obtain re­
duced order models that capture the original system as well as evaluate with a com­
putational complexity that depends only on the reduced order system size n but is 
independent of the full order model size N » n. 

The empirical interpolation method (EIM) of [2] and the DEIM of [7] gener­
ate reduced order models from (4.2) that approximate the full order model within 
desired error bounds and that can be numerically solved at a cost that essentially 
depends only on the reduced order system size. While the EIM is applied to the vari­
ational formulation that leads to the nonlinear algebraic system ( 4.1 ), its derivative, 
the DEIM is applied directly to discrete systems. Applications ofEIM and DEIM to 
nonlinear finite element computations are also discussed, e.g., in [9, 15, 17, 22]. We 
will focus on discrete systems (4.1) and therefore consider the DEIM. Especially, 
we carefully expose the dependency of the computational complexity of the DEIM 
on the polynomial degree of the finite element method. 

One purpose of this paper is the study ofDEIM to nonlinear systems Ay + F(y) = 

b obtained from finite element discretizations. The DEIM reduced order model is of 
the form vr A(y+ V8) +F(y) = vrb, where F depends only on m components of 
the original nonlinearity F. As we have mentioned before, the efficiency with which 
the DEIM reduced order model can be applied depends on how many components 
of the argument are needed to evaluate m components of the original nonlinearity F. 
For systems obtained from finite element discretizations the dependence of F on 
its argument is determined by the mesh, as well as by the polynomial degree used 
to construct the finite element spaces. One can apply DEIM at different stages of 
the finite element assembly process. This effects the structure of the nonlinearity. 
We demonstrate how to apply DEIM to finite element discretizations of nonlinear 
PDEs in the assembled and in the unassembled form, and we numerically study 
the computational cost of the resulting reduced order models. Either version of the 
DEIM is preferable over the naive application of projection based model reduction as 
in (4.2). For large systems, the application of the DEIM to the so-called unassembled 
form of the nonlinearity leads to additional gains in the on-line cost of the reduced 
order models. 

A second focus of this paper is the application of DEIM to generate reduced 
order models for parametrically dependent PDEs A(B)y = b(B), where A(B) = 

I.f!1 g;( B)A; and b( B) = I.f!1 I;(B)b;. For large Mthe complexity of evaluating the 
reduced order matrix VIA(B)Vr = I.f!1 g;(B)ViA;Vr is still high. The DEIM can 
be used to obtain an approximation that allows more pre-computation of matrices 
and that can be evaluated more efficiently in the on-line phase. Additional bene­
fits arise when derivatives of the matrix with respect to the parameter e have to be 
computed, and we illustrate these gains in the context of shape optimization. 

The next section describes two model problems, a semilinear elliptic advection 
reaction diffusion equation and the Stokes equations on a parameterized domain, 
and their finite element discretizations. These problems will be used to demonstrate 
the application of the DEIM, and to numerically evaluate the computational costs re­
quired to solve the full and the reduced order models. Section 4.3 reviews approaches 
to construct the reduced order subspaces spanned by the columns of the matrices Ve 
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and Vr E JRNxn, and it reviews the DEIM. The main contributions of this paper are 
presented in Sects. 4.4 and 4.5. 

In Sect. 4.4 we discuss the application of the DEIM to finite element discretiza­
tions of semilinear PDEs. We illustrate how ith component of the nonlinearity de­
pends on the components of its arguments for piecewise linear and piecewise quadra­
tic elements, and we demonstrate how this dependence impacts the efficiency of the 
DEIM. In addition, we discuss the application ofDEIM to the fully assembled sys­
tem, as well as the unassembled form of the nonlinearity. The latter was originally 
suggested by [9, 33]. The nonlinear vectors are larger, but each component depends 
on fewer components of the argument. We describe both version of the DEIM and 
computationally compare them on the semilinear elliptic advection reaction diffu­
sion model equation of Sect. 4.2.1. As we have mentioned before, either version of 
the DEIM is preferable over the naive application of projection based model reduc­
tion as in (4.2). For large systems, the application of the DEIM to the unassembled 
form of the nonlinearity is more expensive in the off-line cost, but leads to additional 
gains in the on-line cost of the reduced order models. 

The application of the DEIM to obtain efficient reduced order models for systems 
with parameterized matrices A( B) = If!1 gi( B)Ai and vectors b( B) = If!1 Ii( B)bi is 
demonstrated in Sect. 4.5. We numerically illustrate the efficiency gains achieved by 
the DEIM reduced order model using the Stokes equation on parameterized domains 
introduced in Sect. 4.2.2. The DEIM not only leads to reduced order models that 
can be evaluated efficiently, but in addition it also leads to reduced order models 
where derivatives with respect to the parameter (} can be computed efficiently. Both 
efficiency gains are crucial, e.g., for shape optimization. 

4.2 Model Problems 

4.2.1 Semilinear Advection-Diffusion-Reaction PDE 

Our first model problem is a semilinear advection diffusion reaction equation. Let 
Q c JRd, d E {2,3} be an open, bounded Lipschitz domain with boundary ()Q =IbU 
TN, where I'D and TN corresponds to Dirichlet and Neumann parts. Given a diffusion 
coefficient v > 0, an advection vector f3 E JRd, a nonlinear function f: JR x JRP ---+ JR, 
and Dirichlet data h, the semilinear advection diffusion reaction equation is given by 

-V · (vVy) + /3 ·Vy+ f(y, B) = 0, 

y=h, 

Vy·n=O, 

We consider the specific nonlinearity 

f(y, B) = Ay(C -y)e-E/(D-y) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4) 
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used e.g., in [11]. Here C, D are known constants and e = (In(A),E) are sys­
tem parameters that can vary within the parameter domain e = [5.00, 7.25] x 
[0.05,0.15] c JR2 . 

The weak form of (4.3) is given as follows. Find y E H 1 (Q) with y =hon I'D 
such that 

vVy·Vvdx+ f3·Vyvdx+ f(y,8)vdx=0 (4.5) 
!2 !2 !2 

for all v E H 1 ( Q) with v = 0 on I'D. Existence results for linear and nonlinear ad­
vection diffusion equations can be found, e.g., in [26, 32] and [23], [27, Sec. 6.3] 

We discretize the equations using an SUPG (streamline upwind/Petrov-Galerkin) 
stabilized FEM [5, 10,25]. The Dirichlet boundary conditions are implemented via 
interpolation. Let {ile};~ 1 be a conforming triangulation of the domain Q. Further­
more, let { cf>J }f=I be the piecewise polynomial nodal basis functions. To simplify 

the presentation, we assume that nodes with indices 1, ... ,Np are in Q \I'D and that 
the nodes with indices Np + 1, ... ,Np +ND are in I'D. We define 

ne 

+ L ref3·Vcf>(x) (-V·(vVyh(x))+f3·Vyh(x))dx, (4.6a) 
e=l !le 

Ifwe let he denote the length oflargest side of each elementile and Pe= hell/3 ll/(2v) 
the mesh Peclet number, then the SUPG stabilization parameter is defined as 

he ( 1) 
're= 211/311 l - Pe . 

The solutiony of(4.5) is approximated by 

where Yh satisfies 

Np+Nn 
Yh(x) = L Y1<f>1(x) 

j=l 

ah(yh, cf>;)+ Fh(yh, cf>;; 8) = 0, 

Yh(XNp+i) = h(XNp+;), 

i= l, ... ,Np, 

i= I, ... ,ND. 

To state the nonlinear algebraic system corresponding to (4.8), we define 

YP = (y1, ... ,yNF)T, YD= (yNp+1, ... ,yNp+Nnf, 

h = (h(XNp+l), ... ,h(XNp+Nn))T, 

(4.7) 

(4.8a) 

(4.8b) 

and partition the matrices and vectors into submatrices and subvectors corresponding 
to the free variables yp and those determined by the Dirichlet boundary conditions, 
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(4.8) leads to a system of algebraic equations of the type 

Of course, this is equivalent to AFFYF + FF(YF, h; B) + AFnh = 0. If we set b = 

-AFnh, N =NF, if we drop the subscriptF, and if we drop the constant h from the 
arguments of the nonlinearity F, then we arrive at the N x N system 

Ay+F(y;B) = b, (4.10) 

which is a special case of(4.2). In this model problem, the matrix A and the vector 
b do not depend on the parameter e. For later reference, we note that the matrix A, 
the function F, and the vector b are given by 

A;1 =ah( </J1, </J;) 
N N+Nn 

F;(y;B) =Fh(LY1<P1+ L, h(x1)</J1,</J;;B), 
j=l j=N+l 

N+Nn 

b;=bh(</J;):=ah( L, h(x1)</J1,</J;), 
j=N+l 

i,j = 1, . .. N, 

i= 1, ... N, 

i= 1, ... N. 

4.2.2 The Stokes Equations on Parameterized Domains 

(4.lla) 

(4.llb) 

(4.llc) 

As our second model problem we consider the Stokes equations posed on a family 
of parameterized domains Q ( e) c JR2 ' where e E e c ]RP. Since our numerical 
examples are 2D problems we describe the approach for parameterized domains 
in JR2 . However, everything can be easily generalized to the Stokes equations on 
parameterized domains in JR3 . The boundary ()Q =ID U I'out is decomposed into 
an outflow boundary I'out and ID = ()Q \ I'out· We assume that the parameterized 
domains Q ( e) can be mapped onto a reference domain Q c JR2 . That is we assume 
that for each BEE> there exists a diffeomorphism <P(·; B) with 

Q(B) = <P(Q;B). (4.12) 

The Stokes equations for the velocity u and the pressure p are 

-vLiu(x) + Vp(x) = f(x), in Q(B) (4.13a) 

V · u(x) = 0, in Q(B) (4.13b) 

u(x) = h(x), on I'n(B) (4.13c) 

(v'Vu(x) - p(x)) · n(x) = 0, on I'out( B), (4.13d) 
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where f E (L2 (Q(8))) 2 . The weak form of (4.13) is given as follows: Find u E 

(H1(Q(8)))2 with u =hon I'n( 8) and p E L2 (Q( 8)) such that 

vVu(x): Vv(x)- V ·v(x)p(x) = f(x)v(x), 
a(e) a(e) a(e) 

(4.14a) 

- V · u(x)q(x) = 0, 
a(e) 

(4.14b) 

for all v E { <f> E (H1(Q(8)))2 : <f> = 0 on I'n( 8)} and q E L2 (Q( 8)). Existence 
results for the Stokes equations can be found, e.g., in [12, 13]. 

We approximate (4.14) using Taylor-Hood P2-Pl finite elements [10]. We tri­
angulate the reference domain Q and use ( 4.12). Let Nv be the number of velocity 

-= 
nodes in Q U I'out and let Np be the number of pressure nodes in Q. If the pie::-

wise quadratic basis functions for the velocities on the reference domain are <t>1, 
j = 1, ... ,Nv, and the piecewise linear basis functions for the pressure on the refer­
ence domain are ij/1, j = 1, ... ,Np, then the basis functions for velocities and pressure 
on the domain Q ( 8) are 

<f>J(·; 8) =~lo <I>-1(.; 8), j = 1, ... ,Nv, 

lf!J(·; 8) = ij/1a<I>-1(.;8), i = 1, ... ,Np. 
(4.15) 

The Taylor-Hood P2-Pl finite element discretization of ( 4.14) leads to 

S(8)y = b(8), (4.16) 

with 

A(8)i1 = vVq{V</>1 dx, 
a(e) 

and 
(1) d</>1 (2) d</>1 B (8)i1 = - -lf!i dx, B (8)i = - -lf!i dx, 

D(e) dX1 J D(e) dX2 

1 "5:. j "5:. Nv, 1 "5:. i "5:. Np. 
We use the integral transformation as well as the structure (4.12) of the basis 

functions to compute 

A( 8)i1 = _ v V~(xf (D<I>(x; 8))- 1 (D<I>(x;8))-rv~(X) ldet(D<I>(x; 8)) I ax 
Q 

for 1 "5:_ i,j "5:_ Nv, and 
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Finally, we approximate the integrals by a quadrature rule with nodes x; and 
weights wi, i = 1, ... ,M. To keep the presentation simple, we assume that the 
same quadrature rule is used for all integrals. If we define functions gk : e --+ JRM, 

k = 1, ... , 7, component-wise as follows 

( (g1(B))e (g2(B))e) ( (- ))-1( (- ))-r I ( (- ))I 
(g2(e))e (g3 (e))e = v We D<P xe;B D<P xe;B det D<P xe;B , 

( (g4(B))e (gs(B))e) ( (- ))-r I ( (- ))I 
(g6(B))e (g?(B))e =we D<P xe;B det D<P xe;B , 

then, if the integrals are replaced by quadrature, the matrices in the Stokes system 
can be written as 

A( n) =~n:h(x-)r((g1(B))e(g2(B))e)n:h(x-) l<. ·<u 
u ,1 6 v'I', e (gi(B))e (g3 (B))e v'I'; e , _ 1,1 _lVv 

( B(!l(e)iJ)-~ ij/,(xe) ((g4(B))e (gs(B))e) V(f)(xe) 1 :SJ :SNv, 1:::; i:SNp. 
n(2l(e)iJ - e~ ' (g6(B))e (g1(B))e 1 ' 

If we insert this representation into ( 4.17), then 

M 7 

S(B) = L L(gk)e(B)Sek· (4.18) 
e=l k=l 

Similarly, if we replace the integrals in the right hand side vectors 

b(kl(e)i = .fk(x)<f>i(x) dx= _fk(<P(x;B))~(X) ldet(D<P(x;B))I ax, k= 1,2, 
a(e) a 

by quadrature rules, then 

M 

b(kl(e)i = L ~(Xe) (g?+k(B))e, k= 1,2, 
e=l 

4.3 Projection Based Reduced Order Models 

4.3.1 Generating the Reduced Order Model Subspaces 

The computation of the matrices Ve, Vr E JRNxn is crucial for the accuracy of the 
resulting reduced order model and involves some sort of sampling of the solutions to 
the full order model. Commonly used methods to generate these matrices include the 
greedy algorithm (see, e.g., [ 4, 6, 24, 29]), proper orthogonal decomposition (POD) 
(see, e.g., [19]), and, for time dependent linear problems, balanced POD (see, e.g., 
[ 1, 21, 28]). Since emphasis of this paper is the efficient evaluation of the reduced 
order model (4.2) using DEIM, it does not matter how Ve, Vr E JRNxn have been 
generated. We assume these matrices have been generated by a suitable method. In 
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our numerical examples, we generate V =Ve= Vr E JRNxn using a simple sampling 
strategy and proper orthogonal decomposition. This often results in good reduced 
order models, although more sophisticated sampling strategies might have provided 
equally good reduced order models using fewer samples. 

Since we will refer to the proper orthogonal decomposition (POD) later, we pro­
vide a few details on this method. First by POD we mean the construction of a k 
dimensional subspace that best approximates given samples s1, ... , SK. Thus, selec­
tion of these samples is not part of POD. We assume s1, ... , SK E JRN, but in general 
these samples could be vectors in a Hilbert space. See, e.g., [19]. Given the samples 
s1, ... , SK the POD successively computes vectors v1, ... , Vk as the solution of 

K R 

minimize L, lls1- L, vi vf s1ll~ 
j=l i=l 

subject to vf v1 = 8i1, i,j = 1, ... ,k, 

where DiJ is the Kronecker delta, or in matrix notation 

minimize llS-Vk VISll} 

subject to vivk = Ik, 

(4.19a) 

(4.19b) 

(4.20a) 

(4.20b) 

where Ik E JRkxk is the identity. Is is well known that the solution can be computed 
via the singular value decomposition (SVD) of S, S = VLWT. In fact, since W 
is orthogonal, llS-Vk VISll} = llVL -Vk VIV.Lii}. IfVk E JRNxk is submatrix 
consisting of the first k columns of VE JRNxN, and if Lk E JRNxK is obtained by 
replacing the singular values CYk+1, CYk+2, ... in LE JRNxK by zero, then 

llS-Vk vis11} = llVL -Vk vIVLll} = llVL- VLkll} = llL -Lkll} 
min{K,N} 

L cr]. 
J=k+l 

Algorithm 4.1 (POD) 

Input: Samples S = ( s1, ... , SK) E JRNxK and tolerance 'T > 0. 
Output: vk = (v1' ... 'vk) E JRNxk. 

1. Compute the singular value decomposition S = VLWT. 

2. Find smallest index k such that the singular values satisfy CYk+ 1 < 'TCY1. 
3. Return the first k columns Vk = (v1, ... , vk) E lRNxk ofV. 

(4.21) 

Given the bound (4.21), the index k is often chosen to be the smallest index such 
that r;~~~,N} cr] < 'T. This requires computation of all singular values, which can 
be expensive. Therefore, we use the smallest index k such that CYk+ 1 < 'TCY1. This 
alternative provides a bound on the relative error in the two-norm: 11 S - V k VIS I I 2 :::; 
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rllSll2- In our examples, the matrix of samples SE JRNxK satisfies K « N and we 
compute the so-called economy-sized SVD. In the large scale setting, we can use 
an iterative method (e.g. ARP ACK) to compute just the largest k singular values 
without computing all of them. 

We note that often the snapshots do not have to be approximated in the Eu­
clidean norm sense as in (4.19), but instead using a weighted dot product vfMs1 
and corresponding norm llsllii = sTMs, respectively, where ME JRNxN is a sym­
metric positive definite matrix. This is for example the case when the snapshots 
sJ(x) = 2,~ 1 SiJ<l>i(x) belong to the Hilbert space HJ (.Q). In this case, Mis the stiff­
ness matrix. See, e.g., [19]. This can be accomplished by modifying the SVD. 

4.3.2 The DEIM 

In this section we review the DEIM to approximate a function G : JRk---> JRN. We 
require a subspace with basis { u 1 , ... , Um} such that G ( z) is approximately contained 
in span{ u1, ... , um} for the arguments z of interest. Typically, one samples G and 
then applies the POD to the samples to obtain an orthonormal basis { u1, ... , um}· To 
obtain a computationally efficient DEIM approximation ofG one needs that m « N. 

The DEIM [7] can be viewed as variant of the empirical interpolation method 
of [2] (see also [14]) applied to large scale finite dimensional systems. 

The DEIM computes indices p1, ... , Pm in { 1, ... , N} and an approximation G : 
JRk ___, JRN of the function G which satisfies 

Gp;(z) = Gp;(z) for i = 1, ... ,m (4.22) 

moreover, for each z the computation of G(z) only requires the m components 
Gp, (z), ... , GPm (z) of the original function G. More specifically, if ei is the ith unit 
vector in JRN, P = [ep1 , ••• , ePml E JRNxm is the submatrix of the identity obtained by 
extracting the columns Pl, ... ,pm, and U = [u1, ... , um], then the DEIM approxima­
tion ofG is 

G = U(Pru)-1Pr G: JRk ___, JRN. 

Clearly, pTG = pT G, which verifies the interpolation property (4.22), and pT G = 

(Gp,, ... ,GPml' which means ~at only the components p1, ... ,pm ofG areneeded 

to compute the approximation G. This is the source of the complexity reduction 
provided by the DEIM. 

Before we review how DEIM computes the indices Pl, ... , Pm and the DEIM error 
bounds, we discuss when the DEIM approximation is useful. For example, in model 
reduction we have to evaluate the nonlinearity (y; B) f-7 VIF(y + V7y; B), where 
F: JRN x JRP---> JRN and Ve and V7 E JRNxn with n « N. As we have mentioned, 
this requires the computation of y + V 8, the evaluation of the nonlinearity F(y + 
V8; B) and the projection VIF(y+ V8; B). All of these operations depend on the 
size N of the full system and, therefore, the evaluation of the reduced order model 
is almost expensive as that of the full order model. The complexity of the reduced 
order model can be made independent of the full order problem size N using the 
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DEIM approximation. Ifwe compute a DEIM approximation 

F = U(PTu)-1PTF, 

then we can approximate the nonlinearity VI F(y + V 8; e) by 

vIF(y+V8;8) = (viu(PTu)-1)PTF(y+V8;8). 

111 

(4.23) 

Typically in problems arising from spatial discretization of a PDE, the ith compo­
nent of F depends only on a few components of y. Hence, the evaluation of the m 
components PTF(y+ V8; e) of the nonlinearity requires only a few, say O(m) com­
ponents of y + V rY· Hence we do not need to compute y + V r y at a cost of 2N n + N 
flops (we count multiplication and addition as a flop), but only some components of 
this vectorat a cost of O(mn). Furthermore, the matrix vru(PTu)-1 E ]RnXm can be 

precomputed so that afterwards the evaluation of (y; e) f--+ VIF(y+ V8; e) defined 
in (4.23) requires only O(mn) operations. Infinite difference approximations, the ith 
component of the nonlinearity F typically depends only on the ith component of the 
argument y. Finite difference approximations are used, e.g., in the examples in [7, 8]. 
If finite element methods are used, the ith component of the nonlinearity F depends 
on more than the ith component of the argument. The dependency of the ith com­
ponent of F on the components of the argument depends on the polynomial order 
used in the finite element method, on the mesh, and also in what stage of the finite 
element assembly process the DEIM is applied. We will explore this in Sec. 4.4. 

Algorithm 4.2 (DEIM) 

Input: Linearly independent vectors u1, ... , Um. 

Output: Indices Pl, ... ,Pm· 

1. [p,pi] = max{lu1 I} 
2. Set U = [ui], P = [ep,], p = [pi] 
3. Fori=2, ... ,mdo 

a. Solve (PTU)c = pT u; for c 
b. r; =U;-Uc 
c. [p,p;] = max{lr;I} 
d. Update U = [U u;], P = [P ep;], p =[PT p;f 

We next state an error estimate from [7] for the DEIM approximation 

G = u (PT u)-1 pT G 

to G. IfU E JRNxm has ortho-normal columns, then 

(4.24) 

This result indicates that very little accuracy is lost when the orthogonal projection 
of POD is replaced by the DEIM interpolatory projection so long as II (PTu)-1112 
is of modest size. In practice, we simply compute this quantity and use it as an a-
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posteriori estimate. The greedy DEIM index selection actually limits the growth of 
II (Pru)-1 112 and typically it has remained on the order of 100 or less in all of the 
examples we have considered. Finally, we must emphasize that the DEIM does not 
improve the accuracy of the POD reduced model. The sole benefit of the DEIM is 
to greatly reduce the complexity of evaluating the reduced model. 

4.4 Evaluation of Nonlinear Functions Arising in Finite Element 
Methods Using DEIM 

We study the application of the DEIM for the evaluation of nonlinear terms in finite 
element models. As noted in Sect. 4.3.2, the main issue here is the computational 
complexity of the DEIM reduced model. It depends on how may components of the 
argument influence a component of the nonlinearity, and it is determined by the finite 
elements used. We present two ways of applying the DEIM. One approach applies 
DEIM to the assembled form of the nonlinear term, the other approach, originally 
suggested by Dedden et al. [9, 33], to the unassembled form. 

We use the semilinear advection diffusion reaction equation from Sect. 4 .2 .1 and 
continuous finite element approximations. However, the approaches can easily be 
extended to other equations and discontinuous Galerkin methods. 

4.4.1 The Reduced Order Model 

We consider the finite element discretization of the semilinear advection diffusion 
reaction equation discussed in Sect. 4.2.1. To simplify our notation, we assume that 
the boundary data h(x) = 0 in (4.3). The finite element discretization of (4.3) leads 
to the N x N system of nonlinear equations 

Ay+F(y;B) = b, (4.25) 

where A E ]RNxN and F : ]RN x ]RP --->]RN are given by ( 4.11 ). Note that since h(x) = 

0, the vector b = 0 E JRN. 

Assume we have generated Ve and Vr E JRNxn with n « N. Then the reduced 
order model of ( 4.25) is 

(4.26) 

As we have mentioned before, VI AVr, VI Ay and VIb can be precomputed, but 
since the nonlinearity depends on y and e the term VIF(y + V8; B) needs to be 
evaluated whenever y or e changes, and the cost of evaluating this nonlinearity still 
depends on the size N of the full order model. 

To reduce the complexity of the nonlinear term, we apply the DEIM. The DEIM 
reduced order model is given by 

(4.27) 
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Fig. 4.1. Left plot: Piecewise linear finite elements on triangles. If the DEIM index p; corre­
sponds to the vertex indicated by the large dot, then the p;th component of the nonlinear func­
tion depends on the seven adjacent vertices indicated by dots. Right plot: Piecewise quadratic 
finite elements on triangles. If the DEIM index p; corresponds to the vertex indicated by the 
large dot, then the p;th component of the nonlinear function depends on nineteen adjacent 
nodes indicated by dots. If the DEIM index p; corresponds to the midpoint indicated by the 
large dot, then the p;th component of the nonlinear function depends on nine adjacent nodes 
indicated by dots 

Then x m matrix VfU(PTu)-1 can be precomputed once. We still need to study 
the complexity of the evaluation of the nonlinearity 

PTF(y+ V8;8) = (Fp1 (y+ V8;8), ... ,Fpm(Y+ Vrr;e)f E lRm 

in the DEIM reduced model ( 4.27). The ith component F; of the nonlinearity depends 
on all components Yi for which the intersection of the support of basis functions</>; 
and <f>J does not have measure zero. See ( 4.11 b ). 

This is illustrated in Fig. 4.1 for piecewise linear (left plot) and piecewise qua­
dratic (right plot) basis functions </>; on triangles. In the case of piecewise linear basis 
functions, there are N = 36 degrees of freedom, which correspond to the vertices. 
If the DEIM index p; corresponds to the vertex indicated by the large dot, then the 
p;th component ofF depends on seven components ofy, which corresponds to the 
vertices indicated by dots. If piecewise quadratic basis functions are used, then there 
are N = 121 degrees of freedom, which correspond to the vertices and edge mid­
points. If the DEIM index p; corresponds to the vertex indicated by the large dot, 
then the p;th component of F depends on nineteen components of y, which corre­
sponds to the vertices and edge midpoints indicated by dots in the bottom right part 
of the right plot in Fig. 4.1. On the other hand, if the DEIM index p; corresponds to a 
midpoint, then this midpoint is shared by only two triangles, and the p;th component 
ofF depends on nine components ofy, which corresponds to the vertices and edge 
midpoints indicated by dots in the top left part of the right plot in Fig. 4.1. 

An alternative DEIM reduced order model is obtained when we consider the un­
assembled nonlinearity. As we have mentioned earlier, this was first suggested and 
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explored by [9,33]. Since fa= I.=~ 1 foe' we can write (4.llb) as 

~ N N 

F;(y;8) =I, f(LY1<f>1;8)<f>;+re (f3·V<f>;)f(LY1<f>1;8)dx. 
e=l De j=l j=l 

When the intersection of the supports of the basis functions </>; and <f>J and of 
the element .Qe has measure zero, the integral foef(L.f=iY1<f>1;8)<f>;+re (/3 · 
V<f>;)f(L.f=iY1<f>1;8)dx is zero. Therefore for nodal basis functions, this integral 
can only be nonzero when the indices i and j correspond to nodes in .Qe. For each 
of the ne elements .Qe we can compute np integrals 

N N 
F~(y; 8) = !( LYJ<f>J; 8) </>;+'re (/3. V<f>;)f( LYJ<f>J; 8)dx, 

~ ~I ~I 
(4.28a) 

where np is the number of degrees of freedom per element and the indices i corre­
sponds to nodes in the element .Qe. This gives a function Fe (y; 8) : ]Rnenp x ]RP --+ 

]Rnenp. Then we can assemble the element information into the global vector of un­
knowns F. This can be expressed as 

F(y; 8) = Q Fe(y; 8) (4.28b) 

where Q E JRNx(nenp). The size of the unassembled nonlinearity Fe is larger than 
that of the assembled one F. If the ith component of the unassembled nonlinearity 
belongs to element .Qe, then Ff only depends on the unknowns YJ with indices j 
corresponding to nodes in the element .Qe, see Fig. 4.2. Consequently, a component 

00000 
00000 
00~00 
00000 
00000 

00000 
0t!J000 
00~00 
00000 
00000 

Fig. 4.2. If DEIM is applied to unassembled piecewise linear elements, then the p;-th com­
ponent of the unassembled nonlinearity only depends on values at nodes in the element that 
contains the node p;. Left plot: For piecewise linear elements on triangles, the p;-th component 
of the unassembled nonlinearity only depends on the values at the three vertices, indicated by 
dots, of one triangle. Right plot: For piecewise quadratic elements on triangles, the p;-th com­
ponent of the unassembled nonlinearity only depends on the values at the vertices and edge 
midpoints, indicated by dots, of one triangle 
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of unassembled nonlinearity depends on fewer components than a component of 
assembled nonlinearity does. 

The reduced order model ( 4.26) can now be written as 

(4.29) 

We can apply DEIM to the unassembled nonlinearity. Let the columns ofue = 

[ uj, ... , u~e] be a basis of a subspace that approximately contains Fe (y; e) for the 
arguments y and e of interest. The DEIM approximation of the unassembled non­
linearity is given by 

Here pe is the sub matrix of the identity generated using the indices pj , ... , p~e 
generated by the DEIM applied to uj, ... , u~e. 

Ifwe insert this into (4.29) we arrive at the DEIM reduced order model 

Then x me matrix VI Que ( (Pe)I' (Ue) )-1 can be precomputed. 
The advantage of the DEIM reduced order model (4.30) over (4.27) is that each 

component of the unassembled nonlinearity in (4.30) depends on fewer components 
of the argument than the nonlinearity in (4.27) does. Hence, ifthe dimension of the 
subspace f4! (U) containing the image of F is roughly equal to dimension of the sub­
space P£(Ue) containing the image of Fe, i.e., if m ~me, then the evaluation of ( 4.30) 
is computationally less expensive than that of ( 4.27). This is illustrated in Fig. 4.2. 
If a DEM point Pi corresponds to a node in a triangle, the the Pith nonlinearity de­
pends on all components of the argument that correspond to nodes in the triangle. 
The left plot in Fig. 4.2 illustrates this for one point when piecewise linear elements 
are used, whereas the right plot in Fig. 4.2 illustrates this when piecewise quadratic 
elements are used. Note, that if the unassembled form of the nonlinearity is used, the 
connectivity is the same no matter whether the DEIM point corresponds to an vertex 
or an edge midpoint. 

The disadvantage of the DEIM reduced order model (4.30) compared to (4.27) 
is that the size of the unassembled nonlinearity Fe (y; e) is significantly larger than 
the sizeN of the nonlinearity F(y; 8). The size nenp of the unassembled nonlinearity 
Fe (y; e) now depends on the number ne of elements and the number np of degrees of 
freedom np per element. For example, if we use piecewise linear basis functions on 
the mesh in the left plot in Fig. 4.1, there are N = 36 vertices, where as nenp = 150. 
Ifwe use piecewise quadratic basis functions on the mesh in the right plot in Fig. 4.1, 
then there are N = 121 degrees of freedom, whereas nenp = 300. Since the vectors 
u1, ... , Um and uj, ... , u~e are typically computed from a POD of samples of the 
nonlinearities F and Fe, respectively, the computation of the vectors uj, ... , u~e is 
more expensive than the computation of u 1, ... , Um. However, this computation is 
done in the off-line phase. 
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4.4.2 Numerical Examples 

We apply DEIM reduced order models to approximate the semilinear advection dif­
fusion reaction equation (4.3) with nonlinearity (4.4). The full order model is ob­
tained using the SUPG stabilized finite elements reviewed in Sect. 4.2.1. The diffu­
sivity is v = 5 · 10-6 , and the parameters C = 0.2 and D = 0.4 in ( 4.4) are fixed and 
(} = (ln(A),E) vary within E> = [5.00, 7.25] x [0.05,0.15] c JR2. 

To construct the reduced basis matrices V = Ve = Vr, we sample the fi­
nite element solution of (4.4) at 25 parameters. We denote these solutions by 
y(B1), ... ,y( Oi5 ). We compute the mean y = -fs I.?~ 1 y( B;), and generate the reduced 
basis matrices V =Ve= Vr by applying the POD, Algorithm 4.1 to the samples 
y(B1) -y, ... ,y(B2s) -y with tolerance r = 10-4 . To construct U = [01, ... , um] 
and ue = [uj, ... , u::ie] for the DEIM approximation, we sample the nonlinearities 
F(y( B); B) and Fe(y(B); B), respectively, at the same parameters used to construct 
V, and then we apply the POD with tolerance r = 10-4 to obtain U and ue, respec­
tively. 

All computations in this subsections were done using Matlab on MacBook Air 
with 8GB of memory and 1.8 GHz Intel Core i5 processor. The nonlinear full order 
or reduced order models are solved using Newton's method. The linear systems in 
Newton's method are solved using the Matlab backslash command. 

4.4.2.1 2D Example 

We consider the domain Q c JR2 shown in Fig. 4.3, taken from [3]. The Dirichlet 
boundary segments are I'D= {(O,x2) : x2 E (0,2) U (2.75,4.25) U (5, 7)} and the 
Dirichlet data his specified in Fig, 4.3. 

To study the computational cost of applying DEIM reduced order models we 
use three meshes, referred to as Mesh 1 to Mesh 3, of different sizes, and we use 
piecewise linear and quadratic elements. We compute an approximate solution of 
(4.3) atthe parameter (ln(A),E) = (6.4, 0.11) not contained in the parameter sample. 
Figure 4.4 shows the triangulation corresponding to Mesh 2, of medium size, as well 
as the full order model solution of (4.3). (The reduced order model solutions are 
indistinguishable from the full order model solution.) 

7 
h=O 

4.2~ 4.5 

2.71 
h=0.2 

2.5 

h=O 
0 

0 7.5 15 35 

Fig. 4.3. 2D Example: The domain Q with Dirichlet boundary segments I'D= { (O,x2) : x2 E 

(0,2) U (2.75,4.25) U (5, 7)} and Dirichlet data h 
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Fig. 4.4. 2D Example: A triangulation of the domain Q (top plot) and solution of the advection 
diffusion reaction equation ( 4.3) with parameter (ln(A),E) = ( 6.4, 0.11) (bottom plot) 

As we have described in the previous section, the complexity of evaluating DEIM 
reduced order models depends on the connectivity of the nodes in the finite element 
mesh. We illustrate this in Fig. 4.5 using Mesh 2. For four different configurations, 
we plot the triangles that are involved in the evaluation of the DEIM nonlinear term. 
More precisely, the degrees of freedom corresponding to all nodes in the red solid tri­
angles are needed to evaluate the DEIM nonlinear term. The top two plots correspond 
to piecewise linear finite elements using the assembled (top plot) and unassembled 
(second from top plot) form of the nonlinearity. The top two plots in Fig. 4.5 corre­
spond to the schematic plots on the left in Figs. 4.1 and 4.2, respectively. 

The bottom two plots in Fig. 4.5 correspond to quadratic finite elements. If we 
look at the third plot from the top, which colors the triangles involved in the evalu­
ation of the DEIM nonlinear functions (assembled form), then at most two triangles 
are connected. This means that all DEIM points in this case correspond to edge mid­
points (see the right plot in Fig. 4.2). We observed the same for the computations 
on Mesh 1 and Mesh 3. The bottom plot in Fig. 4.5 corresponds to the unassembled 
form of the DEIM using quadratic finite elements. In this plot a few adjacent trian­
gles are colored red, which simply means that the DEIM selected points that happen 
to correspond to nodes in adjacent triangles. 

Table 4.1 summarizes the problem size for the different models for the three 
meshes and piecewise linear and quadratic finite elements. In Tables 4.1 to 4.3, 
DEIM refers to the DEIM reduced order model (4.27) obtained using the assem­
bled form of the nonlinearity, whereas DEIM-u refers to the DEIM reduced order 
model (4.30) obtained using the unassembled form of the nonlinearity. 
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x, 

x, 

Fig. 4.5. 2D Example: The triangles that contain DETM points are shown in solid red. The 
different plots correspond to different polynomial degree used in the FEM and application of 
the DETM to the assembled or unassembled form of the nonlinearity 

The computing times to evaluate the full and the various reduced order models 
are shown in Table 4.2. The nonlinear systems are solved using Newton's method 
and the computing times listed are for the Newton solve (and not for one Newton 
iteration). The number of Newton iterations required are shown in parenthesis. The 
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Table 4.1. 2D Example: The size N of the full order finite element system, the number of 
POD basis vectors n, the number ofDEIM points m the number of nodes adjacent to DEIM 
points, the number ofDEIM points me when the unassembled (DEIM-u) nonlinearity is used, 
and the number of nodes adjacent to DEIM points for piecewise linear and quadratic finite 
elements on three grids. The mesh in Fig. 4.5 correspond to grid number 2 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

number of triangles 1,437 3,213 12,976 1,437 3,213 12,976 
number of nodes N 825 1,768 6,813 3,089 6,751 26,604 
number of POD basis vectors n 17 17 17 17 17 17 
number ofDEIM points m 20 20 21 21 21 21 
number of nodes adjacent to DEIM pts. 107 139 166 165 174 186 
number ofDEIM-u points me 20 20 21 20 21 21 
number of nodes adjacent to DEIM-u pts. 48 56 63 111 117 126 

Table 4.2. 2D Example: The computing times (in sec) and the number of Newton iterations 
(in parenthesis) needed to solve the full order model, the POD reduced order model, the POD­
DEIM reduced order model, and the POD-DEIM-u (unassembled) reduced order model for 
different grid levels and linear and quadratic finite elements 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

Full 0.55 (4) 0.41 (4) 1.49(4) 0.85 (4) 1.36 (4) 5.75 (4) 
POD 0.17(4) 0.29 (4) 1.24 (4) 0.51 (4) 1.03 (4) 3.77 (4) 
POD-DEIM 0.04 (4) 0.04 (4) 0.02 (4) 0.08 (4) 0.07 (4) 0.12 (4) 
POD-DEIM-u 0.11 (8) 0.05 (5) 0.04 (5) 0.13 (5) 0.07 (4) 0.08 (4) 

computing times do not include the time needed to compute the matrices V, U, or 
ue via POD. 

In this application, the solution of the POD-DEIM-u reduced order model re­
quired more Newton iterations in several cases, offsetting the gain in computational 
complexity of the POD-DEIM-u reduced order model nonlinearity. Another issue 
that makes computing time comparisons difficult using Matlab is that the comput­
ing time is often not determined by how many floating point operations are executed, 
but instead by how well the code is vectorized. We have made a great effort to vec­
torize the code for all models as much as possible, this is more effective for the full 
order and the POD reduced order models because by design the POD-DEIM and 
POD-DEIM-u reduced order models work with shorter vectors. Therefore the Mat­
lab timings for the smaller problems likely do not accurately reflect what would be 
observed with, say, C code. However, from the Table 4.2 we can infer that POD 
reduced order models are only slightly more computationally efficient than the full 
order model. Applying DEIM for the assembled or unassembled form of the nonlin-
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Table 4.3. 2D Example: Errors between the full order model solution and the POD reduced 
order model solution, the POD-DEIM reduced order model solution, and the POD-DEIM-u 
(unassembled) reduced order model solution 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

POD 7.8e-5 1.5e-4 3.5e-4 1.3e-4 2.5e-4 6.9e-4 
POD-DEIM 7.8e-5 9.4e-5 4.8e-4 2.5e-4 2.6e-4 7.9e-4 
POD-DEIM-u 1.2e-4 1.5e-4 2.2e-4 1.4e-4 1.8e-4 6.3e-4 

earity results in significant computational savings compared to both the full and the 
POD reduced order models when applied to larger problems. For larger problems 
the POD-DEIM-u reduced order model nonlinearities can be evaluated more effi­
ciently than the POD-DEIM reduced order model nonlinearities. Different reduced 
order models may require different numbers of Newton iterations. In this example, 
the number of Newton iterations needed to solve the POD-DEIM-u reduced order 
model was at least as large as the number of Newton iterations needed to solve the 
POD-DEIM reduced order model. If the Newton iterations needed to solve the POD­
DEIM-u reduced order model is larger, then the gains in efficiency of evaluating the 
nonlinearity is offset by the larger number of Newton iterations. 

The errors between the full order model solution and the reduced order model 
solutions shown in Table 4.3 are of the order of the tolerance 'T = 10-4 used to 
construct the bases with the POD. 

4.4.2.2 3D Example 

The domain is the cube Q = (0, 18) x (0, 9) x (0, 9) (in [mm]). The left face ()QD = 

{ 0} x [ 0, 9] x [ 0, 9] is the Dirichlet boundary, all other faces corresponds to Neumann 
boundaries ()QN. On the part {O} x [3, 6] x x [3, 6] of the Dirichlet boundary we 
impose the Dirichlet conditions y = 0.2 and on the remainder of a QD impose y = 0. 
This is the problem setup used in [11]. 

For the numerical solution, we use SUPG stabilized piecewise linear FEM on 
tetrahedra. To discretize the domain, Q is divided into cubes of size h x h x h and 
then each cube is divided into six tetrahedra. We use three meshes, Mesh 1 to Mesh 3, 
with h = 1.125, h = 0.5625, and h = 0.375, respectively. Mesh 2 is shown in the 
left plot in Fig. 4.6. The full order model solution of (4.3) parameter (ln(A),E) = 

( 6.4, 0.11) is shown in the right plot in Fig. 4.6. (The reduced order model solutions 
are indistinguishable from the full order model solution.) For reasons explained be­
low, we only apply piecewise quadratic finite elements on Meshes 1 and 2, but not 
on Mesh 3. 

Figure 4.7 shows the tetrahedra in Mesh 2 that contain a node corresponding to 
a DEIM point. The plots in the left column correspond to the DEIM applied to the 
assembled form of the nonlinearity. In case of quadratic elements, the nodes are ei-
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., " 
Fig. 4.6. 3D Example: Partitioning of the domain Q into tetrahedra (left plot) and solution of 
the advection diffusion reaction equation (4.3) with parameter (ln(A), E) = ( 6.4, 0.11) (right 
plot) 
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Fig. 4.7. 3D Example: The tetrahedra that contain DEIM points are shown. The different plots 
correspond to different polynomial degree used in the FEM and application of the DEIM to 
the assembled or unassembled form of the nonlinearity. 
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ther vertices or are edge midpoints. If we use Mesh 1, only one of the 21 DEIM 
points corresponds to a vertex. Ifwe use Mesh 2, then none of the 21 DEIM points 
corresponds to a vertex. Since vertices are shared by more tetrahedra than edge mid­
points, this means that DEIM points corresponding to edge midpoints lead to DEIM 
reduced order nonlinearities that can be evaluated more efficiently. 

Table 4.4 summarizes the problem size for the different models for the three 
meshes and piecewise linear and quadratic finite elements. As before, in Tables 4.4 
to 4.6, DEIM refers to the DEIM reduced order model (4.27) obtained using the 
assembled form of the nonlinearity, whereas DEIM-u refers to the DEIM reduced 
order model (4.30) obtained using the unassembled form of the nonlinearity. 

The computing times to evaluate the full and the various reduced order models 
are shown in Table 4.5. Again, the computing times listed are for the entire Newton 
solve (and not for one Newton iteration). The number of Newton iterations required 

Table 4.4. 3D Example: The size N of the full order finite element system, the number of 
POD basis vectors n, the number ofDEIM points m the number of nodes adjacent to DEIM 
points, the number of DEIM points me when the unassembled nonlinearity is used, and the 
number of nodes adjacent to DEIM points for piecewise linear and quadratic finite elements 
on three grids. The mesh in Fig. 4.7 corresponds to grid number 2 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

number of tetrahedra 6,144 49,152 165,888 6,144 49,152 
number of nodes N 1,296 9,248 30,000 9,248 69,696 

number of POD basis vectors n 19 18 19 18 19 

number ofDEIM points m 21 21 22 21 22 
number of nodes adjacent to DEIM pts. 183 271 320 445 559 

number ofDEIM points me 21 21 22 21 22 
number of nodes adjacent to DEIM pts. 67 80 88 193 220 

Table 4.5. 3D Example: The computing times (in sec) and the number of Newton iterations 
(in parenthesis) needed to solve the full order model, the POD reduced order model, the POD­
DEIM reduced order model, and the POD-DEIM-u (unassembled) reduced order model for 
different grid levels and linear and quadratic finite elements 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

Full 1.78 (4) 10.60 (3) 43.30 (3) 7.80 (3) 185.00 (3) 
POD 1.28(4) 8.04 (3) 23.80 (3) 4.12 (3) 38.80 (3) 
POD-DEIM 0.15 (4) 0.10 (3) 0.21 (4) 0.21 (3) 0.40 (3) 
POD-DEIM-u 0.16 (9) 0.07 (4) 0.10 (4) 0.01 (4) 0.18 (4) 
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Table 4.6. 3D Example: Errors between the full order model solution and the POD reduced 
order model solution, the POD-DEIM reduced order model solution, and the POD-DEIM-u 
(unassembled) reduced order model solution 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

POD 4.7e-5 1.7e-4 5.2e-4 1.le-4 7.3e-4 
POD-DEIM 3.4e-4 4.0e-4 4.5e-3 4.8e-4 2.4e-3 
POD-DEIM-u 4.4e-4 1.7e-3 5.7e-3 1.4e-3 4.5e-3 

are shown in (in parenthesis). The computing times do not include the time needed 
to compute the matrices V, U, or ue via POD. 

Table 4.4 shows that in the 3D case the DEIM applied to the unassembled form 
leads to nonlinear terms in the reduced order models which depend on significantly 
fewer components of the arguments than the nonlinear terms resulting from the 
DEIM applied to the assembled form. Table 4.5 shows that the POD-DEIM-u re­
duced order models are computationally more efficient than the POD-DEIM reduced 
order models, even iftheir solution required one more Newton iteration. The POD 
reduced order model leads to greater computational savings over the full order model 
in the 3D case compared to the 2D case (see Table 4.2). This is due to the computing 
time needed to solve the sparse linear systems in Newton's method. As before, sig­
nificant reductions in computing times can only be achieved after DEIM is applied 
(either to the assembled or the unassembled form of the nonlinearity). 

For 3D problems, the cost of solving the large sparse linear systems arising in 
Newton's method using the sparse LU decomposition is significant, especially for 
finer meshes and for piecewise quadratic elements. For the larger problems, it is 
likely beneficial to replace the direct solvers by iterative solvers. For this reason we 
have not included results for quadratic elements on the fine Mesh 3. The solution 
of the full order model using the sparse LU decomposition would have made the 
full order model solution artificially costly. Switching to iterative solvers for some 
discretizations would have raised the question what the 'best' iterative solver is. 
Therefore, we have limited our computational tests, to cases where the use of direct 
solvers still seems to be justifiable. 

As in the 2D case, the errors between the full order model solution and the reduced 
order model solutions shown in Table 4.6 are of the order of the tolerance -r = 10-4 

used to construct the bases with POD. 

4.5 Evaluation of Parameterized Matrices and Vectors in 
Reduced Order Models Using DEIM 

In this section we describe the use of the DEIM for the generation of efficient reduced 
order models that involve parameterized matrices. We first describe the approach 
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applied to a generic matrix A( B) and afterwards we apply it to the solution of Stokes 
equation in parameterized domains. 

4.5.1 The Reduced Order Matrix 

We consider a parametrically dependent matrix A( e) that has the representation 

M 

A(B) = I,g;(B)A; (4.31) 
i=l 

with functions g = (g1' ... 'gu l : e --+ ]RM and matrices A; E ]RNXN' i = 1, ... 'M. 
As we have seen in Sect. 4.2.2 this is, e.g., the case when A( e) is the stiffness matrix 
of a parametrically varying linear PDE. In this subsection A( e) is a generic matrix. 
In the next subsection we will apply the reduction technique to the parametrically 
dependent Stokes system (4.16). 

If we have computed the matrices Ve, V r E JRN x n, then the system matrix for the 
reduced order model is given by 

M 

vIA(B)Vr = I,g;(B) vIANr- (4.32) 
i=l 

If Mis small, we can precompute the matrices VI A; V r and for each e we can use 
(4.32) to compute VI A( B)Vr in n2 M operations. However, if Mis large, which is 
the case, e.g., in the example in Sect. 4.2.2 an additional approximation is needed to 
allow for a fast computation of an approximation of VI A( B)V7 • We can apply the 
DEIM. 

The DEIM computes a matrix U E JRMxm of rank m and a function 

- (- - )T ( T )-1 T m g = g1' ... 'gm = p u p g : e --+ JR (4.33a) 

such that 
g(B) ~g(B) = ug(B). (4.33b) 

We assume m « M. 
Ifwe insert (4.33b) into (4.32), we obtain 

M 

vI A(B)Vr = I,g;(B) vI A;Vr 
i=l 

M Mm 

~ I,g;(B) vI A;Vr =LL V;1g1(B) vI A;Vr 
i=l i=IJ=l 

= 1t (~V;1VIANr)g1(B). (4.34) 
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The matrices L,~ 1 V;1 VI A;V7 E JRnxn, j = 1, ... ,m, can be precomputed. After­
wards, for each e the reduced order matrix 

A(B) = j~ (~ V;1 vI A;Vr) g1(B) (4.35) 

can be computed at a cost ofn2m « n2 M operations. Under the assumption that b( B) 
has a decomposition similar to ( 4.31 ), we can easily extend the ideas from reduction 
to M(B) in (4.35) to b(B). We have omitted those details to avoid repetition. 

We note that the approximation presented previously can be generalized if A( B) 
is of the form 

MK 

A(B) = L 2,(g1);(B)A;1 (4.36) 
i=lj=l 

by applying the previous techniques to each of the functions g1 = (g11, ... , ~J) T, 

j= 1, ... ,K. 
In many applications we also need to compute the derivative of the matrix A( B) 

with respect toe. If the function g is differentiable, then the derivative of A(B) is 
given by 

M 

DeA(B) = 2,Deg;(B)A; (4.37) 
i=l 

and requires the evaluation of the derivative of all M functions g1, ... , ~· The same 
is true for the derivative of ( 4.32). The derivative of the DEIM reduced matrix, 

DeA(B) = 1~ (~ V;1 vI A;Vr) Deg1(B) (4.38) 

only requires the evaluation of them« Mfunctions g1, ... , g,,,. From (4.33) we have 
that 

(
Degp1 ) (Degp1 ) 

Deg= ~ =(PTu)-IPTDeg=(PTu)-1 : ' 

Degpm Degpm 

since pT just extracts them rows from Deg that corresponding to the DEIM indices 
Pl, ... ,Pm· Thus evaluating the derivative DeA( B) of the DEIM reduced matrix, 
requires the derivative of only m « M functions gp1 , ••• , gPm. 

4.5.2 Numerical Example 

We illustrate the DEIM approximation of parametrized matrices and vectors on the 
example of evaluating the objective function and its derivative in shape optimization 
of Stokes equation. 

Suppose we want to minimize the functional 

J(B) = l(u(B),p(B))dx, 
Q(e) 

(4.39) 
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where the velocities u( 8) and pressure p( 8) are the solution of the Stokes equa­
tion (4.13). The function l will be specified later. 

We assume that the domains Q ( 8) are obtained by mapping a reference domain 
as shown in ( 4.12). Furthermore, we discretize the Stokes equation using P2-Pl finite 
elements as described in Sect. 4.2.2. The discretized Stokes system is given by 

S(8) (:) = b(8), (4.40) 

where S(8) has the form (4.18). In our examples, the forcing function/in (4.13) is 
zero. Therefore, the right hand side b is determined by the S( 8) and the in homoge­
nous Dirichlet data on the velocity in (4.13). The Stokes matrix S(8) in (4.18) has 
the same structure as the generic matrix S in ( 4.36). Since the forcing function fin 
(4.13) is zero, no additional parameterization of the right hand side b( 8) is needed. 

Applying the domain mapping, the P2-Pl finite element discretization, and the 
quadrature formula from Sect. 4.2.2 to the objective (4.39) gives the discrete objec­
tive functional 

M 

Jh(8) = .L, we l(uh(xe),Ph(xe)) ldet(D<P(xe;8))1, (4.41) 
£=1 

where uh is the piecewise quadratic FEM approximation of the velocity and Ph is the 
piecewise linear FEM approximation of the pressure. The objective ( 4.41) depends 
on 8 via the function gg : EJ --+ JRM defined by 

(gs(8))e = roeldet(D<P(xe;8))1. 

Since the discretized velocity and pressure uh and Ph are determined by their 
coefficients u and p, we can write the discrete objective functional (4.41) as 

M 

Jh(8) = .L, Ie(u,p) (gs(8))e. (4.42) 
£=1 

Note that its parameter dependence has the same structure as that of the generic 
matrix and therefore DEIM can be applied to reduce the computational cost. As in 
Sect. 4.2.2 we set 

y=(:)· 
To summarize, we want to minimize 

M 

Jh(8) = I(y(8)f gs(8) = .L, Ie(y(8)) (gs(8))e, 
£=1 

where y(8) solves (4.40). In many minimization problems there will be additional 
constraints on the parameter or on the velocities or pressures. Since we focus on the 
evaluation of reduced order models, we focus on the evaluation of Jh ( 8) and on its 
gradient. 

The evaluation of the objective function requires the following steps. 
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~1: Assemble S( 8) and b( 8) and solve the state equation S( 8)y = b( 8) for y( 8). 
~1: Compute Jh(e) = I(y(e))I' gs(B). 

We briefly summarize the computation of the gradient of Jh(8) via the adjoint 
approach, see, e.g., [18, Sec. 1.6]. We define the Lagrangian functional 

L(y,}.,, 8) = l(y)I' gs( 8) + ')., T (S( 8)y- b( 8)). 

We assume that the objective has already been computed, i.e., that S(8) and b(8) 
have been assembled and that y( 8) has been computed. Then the computation of the 
gradient requires the following steps. 

~I: Solve the adjoint equation S( e)I' ')., = -Dyl(y( 8) )I' gs( 8) for').,( 8). 

~1: Compute VJh(e) = I(y(8)f Degs(8) +}.(Bf (DeS(8)y(8)-Deb(8)). 

To construct the reduced basis for the state equations ( 4.40), we sample the solu­
tion of the discrete Stokes (4.40) at r samples in the parameter domain E>. We then 
apply the POD Algorithm 4.1 with tolerance r individually to the snapshots for the 
x1- and x2-components of the velocity and the snapshots for the pressures. If Nv are 
the degrees of freedom for the x1- and x2-components of the velocity and Np are 
the degrees of freedom for the pressure, the POD generates matrices Vv1 E JRNvxnv1, 

V v2 E JRNv xnv2, and VP E JRNp xnp. The reduced order Stokes matrix and right hand 
side are 

(4.43) 

and 

(
Vv1 0 0 ) T 

VTb(8) = 0 Vv2 0 b(8). 
0 0 Vp 

The preliminary version of the reduced order Stokes system is 

(4.44) 

Since the b3 component of the right hand side (4.16) of the discrete Stokes equa­
tion is nonzero, the velocity snapshots are not divergence free (in the discrete sense). 
Therefore, as already noted in [30], there is no guarantee that the reduced Stokes ma­
trix (4.43) satisfies an inf-sup condition. In [30] a procedure is proposed that emiches 
the velocity subspaces to guarantee the inf-sup condition. Instead we monitor the inf­
sup constant corresponding to (4.43) by computing the singular values of the small 
matrix B(8) = (V~B(ll(8)Vv1 , V~B(2l(8)Vv2 )T and found that no emichment of 
the velocity space was needed in our example. 
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The matrix S( B) has the structure (4.18). Since in our examples the forcing func­
tion fin (4.13) is zero, no additional parameterization of the right hand side b( B) 
is needed. We apply the DEIM as described in the previous Sect. 4.5.1 to obtain a 
DEIM reduced order matrix S( B) and right hand side vector b( B). Specifically, the 
reduced bases, the matrices U for the nonlinear terms g1, ... , gs are constructed by 
sampling these nonlinearities at the same parameters used to construct the reduced 
basis Vv1 , Vv2 and Vp and then applying POD with tolerance r to get matrices U 
for the DEIM. We apply DEIM to each of the eight functions g1, ... , gs separately, 
i.e., for each of the eight functions we generate a matrix U. Applying the DEIM 
approximation of Sect. 4.5.1 we obtain the DEIM reduced order system 

S(B)y=b. (4.45) 

Furthermore, applying DEIM to the function gs in the objective, i.e., approxi­
mating 

gs(B) ~fa(B) =Usgs(B). 

where 
- ((- ) (- ) )T ( T )-1 T . a llllmg gg = gg I , ... , gg m = pg U 8 pg gg . Cl --+ JN.. 

leads to the reduced order objective 

(4.46) 

where y( e) is the solution of ( 4.45). In our applications, I is affine linear or quadratic 
in y, so that fast computation ofy r-+ I(V"YlUsgs( B) is possible. 

All computations were done using Matlab on a MacBook Pro with 8GB of mem­
ory and a 2.53 GHz Intel Core 2 Duo processor. The nonlinear full order or reduced 
order models are solved using Newton's method. The linear systems are solved us­
ing the Matlab backslash command. The e derivatives are computed using INTLAB 
Version5.5 [31]. 

4.5.2.1 Evaluation of Drag Generated by Parameterized Ailfoil 

The drag on the boundary portion I'ctrag ( e) c d Q ( e) is defined by 

Cn = - ~ ((vVu(x) - p(x)l)n(x)) · u=ds, 
=L Idrag(ll) 

(4.47) 

where u= = U=u= is the velocity of the incoming flow, u= is the unit vector directed 
as the incoming flow, U= is constant, andL is the characteristic length of the body. 
See, e.g., [16,20]. As usual, we use the Stokes equations (4.13) to find an equivalent 
formula for the drag that avoids integration over the boundary. We use a function 
v= E (H1 (!2( B)))2 with v= = u= on I'ctrag( B) and v= = 0 on JQ( B) \ I'ctrag( B) as a 
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test function in ( 4.13) to obtain 

0=- ((vV'u-pI)n)·v=+ (vV'u-pI):Vv=- f-v=, 
i)Q(O) Q(O) Q(O) 

((vV'u-pI)n)·u=+ (vV'u-pI):Vv=- f-v=. 
Idrag(O) !2(0) !2(0) 

Hence, 

CD=-~ ( (vV'u(x)-p(x)I): Vv=(x)dx- f(x) ·v=(x)dx). 
U=L n(e) n(e) (4.48) 

We use CD as our objective functional for this example, i.e., in this example Jin 
(4.39) is given by (4.48). 

The domain Q ( B) (for B = 0.5) is sketched in Fig. 4.8 and has the boundary 
()Q( e) = Ij'n u ID u I'ctrag( e) u I'out, where Ij'n = {-6} x (-3, 5), I'D = ( (-6,6) x 
{ -3}) U ( ( -6, 6) x { 5} ), I'out = { 6} x ( -3, 5) andI'ctrag( B) is the boundary of airfoil. 
We specify an inflow velocity h = 1, on Ij'0 and a constant viscosity v = 0.1. The 
forcing function/in (4.13) is taken to be zero. We assume that the airfoil is of unit 
length, and the boundary has the following parameterization, 

ldrag = { (x1 ,x2) I o ::::: x::::: 1,x2 = 1+11 (en 

where for BE [0,2] 

17(B) = ±~ (0.2969Vxl -0.1260x1 -0.3520.xi +0.2832xy -0.1021xi). 
0.2 

The diffeomorphism <I> that is used to map the reference domain Q, is given by 

<I>((.X1,.X2);B) = ( (1 +:(e)).XJ = (x1,x2)r. 

for .X1 E [0,1] and <I>((.X1,.X2);B) = (.Xi,.X2) else. The reference domain is Q = 
<I>((-6,6) x (-3,5);0.5)(= .Q(0.5)) and is shown in Fig. 4.8. 

The problem is discretized using P2-Pl Taylor Hood elements as described in 
Sect. 4.2.2. We compute 25 snapshots each for both the solution to the state equa­
tions and the nonlinear terms. The reduced basis are generated using the POD with 
a tolerance r = 10-6 . 

We evaluate CD (see (4.47)) and its derivative with respect to e at an arbitrary 
point e = V2 EE>, which is not in the snapshot set. Table 4.7 summarizes the size 
of the full and the reduced order systems for three finite element grids using the 
full order model, the POD reduced order model and the POD-DEIM reduced order 
model. The mesh in Fig. 4.8 is the coarse Mesh 1. The DEIM points (quadrature 
points) chosen are contained in the triangles marked in red. 

The computing times to evaluate the objective function (steps /1 + /2) and its 
gradient (steps ~I + ~2 ) for the full order model and the reduced order models are 
shown in Table 4.8. For the reduced order models the times do not include off-line 
cost. Most of the computational cost in computing objective functional occurs in Step 
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Fig. 4.8. The reference domain Q for the NACA airfoil 4-digit family. The DETM points 
(quadrature points) are contained in the triangles marked in solid red 

/1. Computing the gradient requires solving the adjoint equations (Step ~1) and the 
sensitivities of system matrices and the objective functional (Step ~2) with respect 
to the shape parameter e. Since this example only involves a scalar parameter, for 
the full order model Step ~1 is the most expensive step in the evaluation of the 
gradient of objective functional. The cost of sensitivities increases with the number 
of parameters, see Sect. 4.5.2.2. 

The errors between the full order model (objective functional Cn) and the re­
duced order model solutions shown in Table 4.9 are of the order of the tolerance 
'T = I o-6 used to construct the bases with the POD. The error in gradient compu­
tation is slightly higher, due to the fact that adjoint solutions have not been taken 
into account to generate the reduced bases. This accuracy can be easily improved by 
enriching the snapshot set. 

Table 4.7. The size N = Nv + Nv +Np of the full order finite element system, the number of 
POD basis vectors n = nv, + nv2 + np. and the number of DETM points m = L.J=l mg 

Mesh number 2 3 

number of triangles 6.094 8.838 24.990 
number of nodes N 27,039 39,343 111,887 
number of POD basis vectors n 55 58 63 
number ofDETM points m( = I,~=l mt) 26 26 26 
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4.5.2.2 Channel with Parameterized Top and Bottom Wall 

In our second example we consider a channel in which the bottom and top boundaries 
are parameterized using Bezier curves. The reference domain is Q = ( -1, 1 )2 . The 
bottom and top wall of the channel are parameterized by Bezier curves with PT 
control points for the top boundary and PB control points for the bottom boundary. 
Thus the physical domain Q ( (}) is parameterized by (} E E> c JRP, p = PT +PB· 

The boundary a Q ( (}) is decomposed into the inflow and outflow boundaries 
Iin( B) = {-1} x (-1, 1), and I'out( B) = {l} x (-1, 1), both of which are indepen­
dent of the parameterization and the top and bottom boundaries It ( (}) and Tb ( (}). 
The viscosity is v = 1.0. On the inflow boundary Iin we specify an parabolic inflow 
velocity h = 8(1 +x2)(l -x2). The velocity h = 0 on It(B) and Tb( B). The forcing 
function fin ( 4.13) is taken to be zero. 

We use PT =PB = 2 Bezier control points to specify the top and the bottom 
boundary of the variable domain Q(B). The parameters are in E> = (0.5,3.0) x 
(0.5, 3.0) x (-3.0, -0.5) x (-3.0, -0.5) 

For this example the objective functional is 

J(B) = lu-zfl 2dx 
il(e) 

where u are the velocities computed as the solution of the Stokes equations (4.13) 
on Q ( (}). The functions zi1 are the desired velocities computed by solving the stokes 
equation on Q(Bd) with fixed parameter ed = (1.0,0.5,-0.5- l.Ol. 

The problem is discretized using P2-Pl Taylor Hood elements as described in 
Sect. 4.2.2. To construct the reduced basis, we compute 54 snapshots in the param­
eter domain E> i.e., we take 5 sample points in each direction. Then we apply Algo­
rithm 4.1 with tolerance r = 10-4 to construct the reduced basis, as before. 

We evaluate J and its derivative with respect to (} at an arbitrary point (} = 

(J2,J2,-J2,-J2l EE>, which is not in the snapshot set. Table 4.10 summa­
rizes the size of the full and the reduced order systems for three finite element grids 
using the full order model, the POD reduced order model and the POD-DEIM re­
duced order model. 

Table 4.8. The computing times (in sec) to evaluate the objective functional (Steps /1 + 
/2), and the gradient of objective functional (Steps ~1 + ~2) corresponding to the full order 
model, the POD reduced order model, and the POD-DEIM reduced order model for different 
meshes 

Mesh number 2 3 

/1+/2 ~1+~2 /1+/2 ~1+~2 /1+/2 ~1+~2 

Full 2.04 2.00 3.16 2.94 12.50 12.80 
POD 0.83 0.89 1.23 1.07 3.49 2.95 
POD-DEIM 0.02 0.02 0.02 0.01 0.05 0.03 
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Table 4.9. The errors between the full order and the POD reduced order model (objective 
functional and its gradient) and errors between the full order and the POD-DETM reduced 
order model (objective functional and its gradient) for different meshes 

Mesh number 2 3 

POD 
POD-DEIM 

"' )( 

objective gradient objective gradient objective gradient 

4.67e-6 5.08e-5 5.83e-6 2.44e-4 1.12e-5 4.50e-4 
5.3 le-6 1.1 le-4 6.05e-6 2.66e-4 l.2le-5 3.67e-4 
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Fig. 4.9. The reference domain Q for the channel example. The top I'r and bottom I'B bound­
aries are parameterized by Pl = 2 and PB = 2 Bezier control points respectively. The DEIM 
points (quadrature points) lies in the interior of the triangles marked in solid red 

The mesh in Fig. 4.9 is the coarse Mesh 1. The DEIM points (quadrature points) 
chosen are contained in the triangles marked in red. 
The computing times to evaluate the full and the various reduced order objective 
(Steps /1 + /2) and its gradient (Steps <;§1 + <;§2 ) are shown in Table 4.8. For the 
reduced order models the times do not include off-line cost. As in the previous exam­
ple, most of the computing cost for the computation of the objective function occurs 
in step / 1, the assembly and solution of the state equation. Computing the gradient 
requires solving the adjoint equations (Step <;§1) and the sensitivities of system ma­
trices and the objective functional (Step <;§2) with respect to the shape parameter e. 
We observe that in this example and for the full order model, Step <;§2 is the most 
expensive step in the evaluation of the gradient of the objective functional. This is 
due to the fact that we have four parameters. 
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Table 4.10. The size N = Nv + Nv +Np of the full order finite element system, the number 
of POD basis vectors n = nv1 + nv2 + np, and the number ofDEIM points m = I,~=l mg. The 
mesh in Fig. 4.8 corresponds to grid number 1 

Mesh number 2 3 

number of triangles 800 3,200 7,200 
number of nodes N 3,561 14,321 32,281 
number of POD basis vectors n 261 264 265 
number ofDEIM points m( = I,~=l mg) 53 53 53 

Table 4.11. The computing times (in sec) to evaluate the objective functional (Steps /1 + 
/2), and the gradient of objective functional (Steps ~1 + ~2) corresponding to the full order 
model, the POD reduced order model, and the POD-DEIM reduced order model for different 
meshes 

Mesh number 2 3 

/1+/2 ~1+~2 /1+/2 ~1+~2 /1+/2 ~1+~2 

Full 0.33 0.73 1.50 3.86 5.00 13.30 
POD 0.36 1.06 1.26 4.95 4.41 15.90 
POD-DEIM 0.05 0.13 0.04 0.14 0.09 0.14 

Table 4.12. The errors between the full order and the POD reduced order model (objective 
functional and its gradient) and errors between the full order and the POD-DEIM reduced 
order model (objective functional and its gradient) for different meshes 

Mesh number 

POD 
POD-DEIM 

objective 

2.0le-3 
2.03e-3 

gradient 

2.53e-3 
2.57e-3 

objective 

1.91e-3 
1.93e-3 

2 

gradient 

1.61e-3 
1.71e-3 

objective 

1.83e-3 
1.82e-3 

3 

gradient 

1.62e-3 
1.63e-3 

The errors between the full order model (objective functional CD and its gradient) 
and the reduced order model solutions shown in Table 4.12 are of the order of the 
tolerance 'T = 10-4 used to construct the bases with the POD. 

4.6 Conclusions 

We have demonstrated the application of the DEIM to compute reduced order mod­
els for finite element discretizations of seminar elliptic PD Es and for parameterized 
linear systems that arise, e.g., in shape optimization, and we have studied the com­
putational efficiency of the resulting reduced order models. 
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The efficiency with which DEIM reduced order models of discretized semili­
nar elliptic PD Es can be evaluated is determined by how many components of the 
argument each component of the nonlinearity depends on. For finite element dis­
cretizations this dependence is determined by the mesh, the polynomial degree used 
in the finite element approximation, but also by whether the nonlinearity is defined 
in its assembled or unassembled form. For nodal based finite element methods, each 
component of the unassembled form of the nonlinearity depends only on the compo­
nents associated with the degrees of freedom corresponding to one element. This is 
different for the assembled form of the nonlinearity. Here a component of the non­
linearity can depend on the degrees of freedom in several adjacent elements. More 
precisely, ifthe component of the nonlinearity corresponds to a node on the bound­
ary of an element, then this component of the nonlinearity depends on all degrees 
of freedom in the elements that share this node. Because of the dependence of the 
components of the nonlinearity on the components of its argument, the unassembled 
form is attractive for DEIM. Since DEIM applied to the different forms of the non­
linearity generates different reduced order models, which require different numbers 
of Newton iterations to solve, the dependency of the nonlinearity on its argument 
alone cannot be used to decide which form of the DEIM is favorable. Our numerical 
examples have shown that either version of the DEIM is preferable over the naive 
application of projection based model reduction. For large systems, the application 
of the DEIM to the unassembled form of the nonlinearity led to additional gains in 
the on-line cost of the reduced order models. The off-line cost ofDEIM applied to 
the unassembled form of the nonlinearity is always higher (and can be significantly 
higher) since the unassembled form results in a nonlinear vector valued function that 
has significantly more components than the nonlinear vector valued function arising 
in the assembled form. 

A second focus of this paper was to demonstrate the application of the DEIM to 
compute reduced order models for an important class of parameterized linear sys­
tems. The DEIM not only leads to reduced order models that can be evaluated effi­
ciently, but in addition the derivatives of the reduced order models with respect to 
the parameter can be computed efficiently. Both efficiency gains are crucial, e.g., 
for shape optimization. We have demonstrated this numerically using the Stokes 
equations on parameterized domains. 
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