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Case Study: Parametrized Reduction Using 
Reduced-Basis and the Loewner Framework 

Antonio C. Ionita and Athanasios C. Antoulas 

Abstract In this case study, we compare two methods for model reduction of param­
etrized systems, namely, Reduced-Basis and Loewner rational interpolation. 

While having the same goal of constructing reduced-order models for large-scale 
parameter-dependent systems, the two methods follow fundamentally different ap­
proaches. On the one hand, the well known Reduced-Basis method takes a time­
domain approach, using offline snapshots of the full-order system combined with 
a rigorous error bound. On the other hand, the recently introduced Loewner ma­
trix framework takes a frequency-domain approach that constructs rational inter­
polants of transfer function measurements, and has the flexibility of allowing differ­
ent reduced-orders for each of the frequency and parameter variables. 

We apply the two methods to a parametrized partial differential equation model­
ing the transient temperature evolution near the surface of a cylinder immersed in 
fluid. Then, we compare the resulting reduced-order models with the full-order finite 
element system by running both time- and frequency-domain simulations. 

2.1 Introduction 

The growing need for highly accurate modeling of physical phenomena often leads to 
large-scale dynamical systems. For example, accurate simulations involving partial 
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differential equations require taking fine spatial discretizations that, in turn, lead to 
dynamical systems oflarge dimensions. Hence, high accuracy comes at a steep price. 
Simulating such large-scale systems is a prohibitively expensive task that requires 
long simulation times and large data storage. 

Model reduction seeks to overcome these obstacles by constructing models of 
low dimension that have short simulation times, require low data storage, but still 
accurately capture the behavior of the large-scale system. 

In the case of systems that do not depend on parameters, reduced-order models 
can be obtained using an extensive array of model reduction methods [l]. For in­
stance, we can follow SYD-based approaches such as the proper orthogonal decom­
position (POD) [27] for non-linear systems and Balanced Truncation [8] for linear 
systems. Alternatively, we can follow rational interpolation approaches such as (it­
erative) Rational Krylov [9, 11]. These methods are well understood and known to 
give accurate reduced-order models in various practical applications [1,5]. However, 
in the case of systems that depend on parameters, there is a limited choice of avail­
able model reduction methods. The main obstacle is the fact that, in the presence 
of parameters, approaches like Balanced Truncation or iterative Rational Krylov are 
difficult to generalize. 

Nevertheless, in recent years, a number of efficient methods have emerged to 
form the so-called Reduced-Basis framework for parametrized model reduction [13, 
14, 18, 22-24]. Reduced-Basis methods extend the POD approach to the case of 
parametrized systems by relying on an offline space that contains snapshots of state 
trajectories of the full-order system. An error bound is used to iteratively enrich this 
space and extract a reduced-basis that yields accurate reduced-order models. 

More recently, the rational interpolation approach has also been generalized to 
the case of parametrized systems [3]. Here, we apply this recent approach to con­
struct reduced-order models that interpolate transfer function measurements of the 
full-order system. The key of the rational interpolation approach is the Loewner 
matrix, which allows the flexibility of choosing different reduced orders for each 
of the frequency and parameter variables. The reduced-order models are efficiently 
computed using a rational barycentric formula together with the null space of a gen­
eralized two-variable Loewner matrix. 

In this case study, we compare the Reduced-Basis approach and the Loewner ma­
trix approach, i.e., we compare a time-domain, POD-based method with a frequency­
domain, rational interpolation method. In Sect. 2.2, we review the two methods, 
showcasing their common traits and differences. Then, in Sect. 2.3, we present a nu­
merical example involving a parametrized partial differential equation modeling the 
transient temperature evolution near the surface of a cylinder immersed in fluid. Af­
ter applying the Reduced-Basis and Loewner frameworks, we compare the resulting 
reduced-order models in both time- and frequency-domain simulations. 
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2.2 Parametrized Model Reduction 

We begin with a short introduction to model reduction of parametrized systems, 
followed by an overview of the two reduction methods compared in this study. 

We define a parametrized linear dynamical system of order n in terms of state­
space equations that depend on parameters p E JRd: 

E(p) i(t) = A(p) x(t) + B(p) u(t), 

y(t) = C(p)x(t)+D(p)u(t), 
(2.1) 

where x(t) E ]Rn denotes the system's state, u(t) E JR the input, y(t) E JR the output, 
and E(p),A(p) E ]Rnxn, B(p), CT (p) E lRn, D(p) E JR are the parameter-dependent 
system matrices. Notice that the system's state x(t) and output y(t) also depend on 
the parameters p as the system evolves in time; however, for notational simplicity, 
we only depict their dependence on time t. 

Model order reduction methods seek models of order k 

E(p)i(t) = A(p)x(t) + B(p) u(t), 

y(t) = C(p)x(t)+D(p)u(t), 

with E(p ), A(p) E ]Rkxk, B(p), cT (p) E JRk, such that 

• the new state x(t) has reduced dimension k « n; 

(2.2) 

• the reduced-order model (2.2) accurately captures the behavior of the full-order 
system (2.1), by introducing a small time-domain approximation error ly(t) -
y(t)I, or a small frequency-domain approximation error IH(s, p) - H(s,p) I, for 

H(s,p) = C(p) (sE(p)-A(p)r1 B(p) +D(p), (2.3) 

denoting a system's transfer function. 

We now review the two methods that approach the model reduction problem from 
different perspectives, but, as we shall ultimately see, both lead to accurate reduced­
order models. 

2.2.1 Reduced-Basis Approach 

Since their introduction in [18,23], Reduced-Basis methods have become a reliable 
tool for obtaining accurate parametrized reduced-order models. Here, we summarize 
the Reduced-Basis approach along the lines of the presentation given in [14]. 

Reduced-Basis methods construct the reduced state x (t) by means ofa judiciously 
chosen Petrov-Galerkin projection vwr. The reduced-order model (2.2) is obtained 
by projecting the system matrices: 

E(p) = wrE(p)V, 

B(p) = wrB(p), 

A(p) = wr A(p)V, 

C(p) = C(p)V, D(p) = D(p), 
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with initial conditions x(O) = wr x(O), and the reduced state defined as 

x(t) :=WT x(t). 

However, before discussing how to choose the projection VWT in a Reduced­
Basis setting, we outline an error analysis [14] that is valid for any general projection 
with wry = Ik. Consider the error introduced by the projection framework when 
approximating the full-order state: 

e(t) := x(t) - VX(t). 

Next, we derive a bound for this error that can be efficiently computed for different 
values of the parameters p and time t. Towards this end, we define the residual vector 

R(t, p) := A(p)VX(t) + B(p)u(t) - E(p)W(t). 

that depends only on the reduced state and the input, and satisfies by construction 
the orthogonality condition wrR(t,p) = 0. 

Then, it is easily checked that the error satisfies the following evolution equation 

E(p)e(t) = A(p)e(t) + R(t,p). 

In most practical applications, the matrix E (p) is invertible for all parameter values 
inside a domain of interest, and, therefore, we can define A(p) = E(p )-1 A(p) and 
R(t,p) = E(p)-1R(t,p) to obtain 

e(t) = A(p)e(t) +:R(t,p), 

which has the solution 

e(t) = dA(p)e(O) + 
t -
e(t-i-)A(p)ft( r, p )dr. 

0 

Then, it immediately follows that the output error can be bounded by 

lly(t) -y(t) II ::::; llCdA.(p) II ( lle(O) II+ 0t llR( r, P) lldr) , 

and, ~ssuming that we can bound the matrix exponential of the full-order system 
llCdA(p) II::::; C1 (p), the error bound becomes 

lly(t)-y(t)ll::::; C1(p) (11e(O)ll + 0t llR(r,p)lldr). (2.4) 

Since for fixed p, the residual R( t, p) depends on the reduced state x(t) and not on 
the original state x(t), the bound can be efficiently evaluated at different values of 
time t, by using numerical quadrature [16] to compute the integral. 

In practical applications, the bound given in (2.4) can be improved by using a 
norm 11 · llG tailored for the specific application, namely, 11 · llG is the vector norm in­
duced by a problem-specific symmetric positive definite matrix G, llzll~ = zT Gz. In 
addition, the bound can be further improved by considering the so-called dual prob-
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lem. For details concerning the dual problem, such as the additional computational 
cost involved, we direct the reader to the discussion given in [12,22]. 

The error bound shown in (2.4), or its tighter dual, represents a key result for the 
ojfline stage of Reduced-Basis methods. In this stage, we obtain the most computa­
tionally intensive quantities needed in the Reduced-Basis approach, and, usually, it 
may take arbitrarily long to complete. Nevertheless, the benefits of the offline com­
putational effort become clear in the online stage, when we perform fast simulations 
of the reduced-order model, with simulation times independent of the full order n. 

In the offline stage, we compute the right-hand term C1 (p) in (2.4), i.e., we bound 
the matrix exponential of the full-order system (2.1 ). In a large-scale setting, this 
task has its own well known challenges, and it often requires great computational 
effort [20,21]. Then, we compute the so-called offline space 

X _ [ ( . ·) ] IDJnx(NM) - ... , x t,, p1 , . . . E JN. (2.5) 

which is a collection of full-order state snapshots obtained for a user-selected time 
grid t;, i = 1 : N, and parameter grid p1, j = 1 : M. Computing the offline space 
requires solving the large-scale equations (2.1), leading to significant computational 
effort. In practice, the snapshots are obtained by discretizing the time t and then 
employing an Euler scheme [16]. 

The next step in the offline stage is to extract a reduced-basis V from the offline 
space X, i.e., to compute the projection matrix VE JRnxk such that column span V c 
column span X. In short, there are various ways of choosing an appropriate V, such 
as using a combination of POD, greedy algorithms and adaptive approaches [12, 13, 
22, 24]. The main idea behind these iterative approaches is to start with an initial 
reduced-basis V =Vo, then evaluate the error bound (2.4) and search for additional 
basis components V1 to obtain an enriched reduced-basis V = [Vo, V1] that in turn 
gives a new lower error bound. In this case study, the Reduced-Basis model shown 
in Sect. 2.3 is obtained using the greedy scheme presented in [22]. 

Once the reduced-basis Vis computed, we can obtain the reduced-order model. It 
is assumed that the parameter dependence of the full-order system (2.1) is separable 
into sums of constant matrices weighted by scalar functions of the parameters: 

mE mA 

E(p) = 2,e;(p)E;, A(p) = 2,a;(p)A;, 
i=l i=l 

mB me 
B(p) = 2,,B;(p)B;, C(p) = Lf1(p)C;. 

i=l i=l 

Then, the reduced-order parameter-dependent matrices result from projecting the 
· ~ T ~ T ~ T ~ 

constant matrices E; = W E;V, A; = W A;V, B; = W B;, C; = C;V, namely 

~ mA ~ 

A(p) = 2,a;(p)A;, 
i=l 

~ mB ~ 

B(p) = 2,,B;(p)B;, 

i=l 
(2.6) 

~ me ~ 

C(p) = Lf1(p)C;. 
i=l i=l 
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The final step in Reduced-Basis methods is the online stage, where the pre-com­
puted reduced-order model from the offline stage is used for fast simulations of the 
output y(t) for different input signals u(t) and parameter values p. The reduced ma­
trices (2.6) can be evaluated for different p in real time, since this operation only 
requires evaluation of scalar functions e;(p),a;(p),f:l;(p) and y;(p). Then, the out­
put y(t) is computed using an Euler scheme involving only the reduced-order ma­
trices, resulting in an overall computational complexity of the online phase that is 
independent of the full-order n. 

2.2.2 Loewner Matrix Approach 

Next, we construct parametrized reduced-order models using a two-variable rational 
interpolation approach. The discussion summarizes the recent results in [3], where 
a Loewner matrix framework was introduced for constructing rational interpolants 
for frequency-domain measurements of systems with one parameter p. 

The Loewner approach starts from measurements of the full-order parametrized 
transfer function (2.3): 

(2.7) 

i = 1 : N, j = 1 : M, and constructs a two-variable rational function H(s,p) that 

interpolates these measurements, H(s;,p1) = </>i,J· 
In the Loewner framework, the order of the reduced model H( s, p) is a pair ( k, q), 

where k is the reduced order in the frequency variables, and q is the reduced order in 
the parameter variable p, with knot necessarily equal to q. Therefore, we can choose 
different orders for s and p, resulting in greater flexibility and a better understanding 
of the structure of the underlying interpolant H(s,p). 

The first step consists in identifying the reduced order ( k, q) directly from 
the given measurements </>;,1, by computing the ranks of appropriate one-variable 
Loewner matrices [2, 19]. Hence, consider the pairs (x;,f;), i = 1 : T, which we par­
tition in any two disjoint sets 

{x;} = {A.1, ... ,A,.}u{µ1, ... ,µe}, 
{f;} = {w1, ... ,wr}U{v1, ... ,ve}, 

(2.8) 

such that r +.e = T. Then, the one-variable Loewner matrix IL associated with (x;, f;) 
and the partitioning in (2.8) is defined as 

r 
VJ -WJ • • • VJ -Wr 1 
µJ-AJ µJ-A,. 

IL- . . - . ·. . . . . . 
Vg-WJ Vg-Wr 
µg-AJ ... µg-Ar 

(2.9) 

Using this definition, we introduce the following one-variable Loewner matrices 
associated with the two-variable measurements given in (2.7): 

ILPJ =IL associated with (s;,</>;,1), 

ILs; =IL associated with (p1,</>;,1), 

j=l :M, 
i= 1 :N, 
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where the index PJ (s;) indicates thatll"PJ (Ls;) corresponds to measurements given 
by constant p = p 1 ( s = s;). Then, the ranks of these Loewner matrices give the order 

(k,q) of the underlying interpolant H(s,p): 

k = max rank Lp1 , 
j 

q = max rank Ls; , 
i 

j=l :M, 

i= 1 :N. 
(2.10) 

Next, we construct the rational interpolant H(s,p) of order (k,q) by computing 
the null space of an appropriate two-variable Loewner matrix Lw. Towards this end, 
we partition the frequency and parameter grids (2.7) into any disjoint sets 

{s;} = {.A1, ... ,Arz1}U{µ1, ... ,µN-n1}, 

{pJ} = {n1, ... ,nm1}U{v1, ... ,vM-m'}, 
(2.11) 

using the following notation for the corresponding partitioned measurements 

w1,1 W1,m1 </>1,m1+1 </>1,M 

Wn1 1 Wn1 m1 <f>n1 m1+1 · · · <f>n1 M 

</>n1+1,1 ... <f>n'+l,m1 Vl,1 V1,M-m1 

(2.12) 
namely «1>11 contains W;,1 := H(.A;, n1) for i = 1 : n', j = 1 : m', while «1>22 contains 
v;,J := H(µ;, v1), for i = 1: (N-n'), j = 1: (M-m'). 

</>N,1 <f>N,m' VN-n',1 ... VN-n',M-m' 

Then, from this partitioning, we define the two-variable Loewner matrix 

L (" ") _ Ve(i),f(i)-We(J)]U) 
w z,J - ( .A ) ( ) ' 

µe(i) - e(j) V f(i) - nJU) 
(2.13) 

of dimension (N-n')(M-m') x (n'm') and with indices e, e,JJ having the fol­
lowing Kronecker structure 

e = [1: N-n'] ®ln' = [1, ... , 1, 2, ... ,2, ... , N-n', ... ,N-n'], 
e= [1 :n1]®1N-n' = [1, ... ,1, 2, ... ,2, ... , n1 , ••• ,n'], 
f= lm1®[l :M-m'] = [1, ... ,M-m',1, ... ,M-m', ... ,1, ... ,M-m'], 
J = lM-m' Q9 [1: m'] = [1, ... ,m', 1, ... ,m', ... , 1, ... ,m'], 

for ln' E JR 1 xn' a row vector with all entries equal to 1. 
The main feature of the Loewner matrix Lw is that its rank encodes the order 

(k,q) of the underlying rational interpolant H(s,p), and, furthermore, H(s,p) can be 
easily constructed from its null space. 
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Theorem 2.1 (Two-variable rational interpolation [3]) if(k,q) is given by (2.10) 
and n' > k, m' > q, then the two-variable Loewner matrix (2.13) is singular, with 

rankLw = n'm' - (n' -k)(m' -q). 

In addition, if we set (n',m') = (k+ l,q+ 1) in (2.11), then the rational function 

H(s,p) of order (k,q) that interpolates all given measurements </>;,1 has the form 

k+Iq+l c ·w . L. L. 1,1 1,1 

~ i=IJ=l (s-A.;)(p-n1) 
H(s,p) = k+Iq+l 

LL c;,J 
i=IJ=l (s-A.;)(p-n1) 

(2.14) 

with c = [c1,1, c1,2, ... , c2,1, c2,2, ... , Ck+l,q+iJ in the null space ofLw, i.e., Lwc = 0. 

Notice that H(s,p) is given in terms of a rational barycentric formula that de­
pends on the two-variables sand p, and is, in fact, a generalization of the one-variable 
rational barycentric formula [2, 4]. It is easily checked that if we multiply both the 
numerator and denominator in (2.14) with rr7~l IT)~~(s-A.;)(p- n1), then, after 
simplification, we obtain two polynomials having the highest degree in s equal to 
k and the highest degree in p equal to q. Hence, H(s,p) is a two-variable rational 
function of order ( k, q). 

The barycentric formula allows us to write down the interpolant in terms of the 
two-variable Lagrange basis (s - A;) (p - n1), i = 1 : n', j = 1 : m', which is formed 
directly from the partitioned frequency and parameter grids in (2.11 ). The Kronecker 
structure of the Lagrange basis dictates the Kronecker structure of the denominator 
in each entry ofLw. As a result, the rank ofLw is not fixed, but it depends on 
the order (k,q) of the underlying interpolant and on the dimensions (n',m') of the 
partitioning. To obtain H(s,p) oforder (k,q), we choose (n',m') = (k+ l,q+ 1). 

Furthermore, the barycentric formula in (2.14) cannot be directly evaluated at the 
grid points A.; and n1 as it requires dividing by zero. However, just like in the case 
of evaluating a one-variable barycentric formula [4], we use the convention that 
H(A.;,n1) = c;,1w;,1/c;,1 = w;,1. Therefore, H(s,p) interpolates the measurements 
w;,1 contained in <P11 by construction. Then, we force interpolation of the remaining 
measurements <P12, <P21, <P22 by computing the barycentric coefficients c such that 
Lwc= 0. 

In practice, it is possible to obtain models of even lower order ( k, q) than the one 
given by (2.10). Choosing k <max rank LPj and q <max rank Ls;, results in a 
Loewner matrix Lw that is full rank. However, if Lw is close to being singular, 
we can still compute barycentric coefficients such that Lwc ~ 0. In this case, the 
coefficients c give a rational function H(s,p) (2.14) that interpolates <P11 by con­
struction, and, approximates the entries in <P12, <P21, <P22 with small error, i.e., we 
get a two-variable rational approximant, instead of an interpolant. 

Finally, notice that equation (2.14) gives H(s,p) in transfer function form as a 
ratio of barycentric sums. Therefore, evaluating H(s,p) for a particular frequency s 
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and parameter p, can be efficiently implemented using only O(kq) operations. Nev­
ertheless, in practical applications, we also need to have H(s,p) expressed in terms 
of state-space matrices, as in (2.2). Next, we present two simple state-space realiza­
tions for H(s,p). 

Lemma 2.1 (State-space realization) The rational barycentric form H(s,p) in 
equation (2.14) has the following state-space realization 

H(s,p) = C(p) (sE-A(p) )-l B 

with the system matrices defined as 

-1 
0 

A(p) = 

q+l C·. 
ai(P) = L _1,1_, 

J=l p-n1 

(2.15) 

The proof of this result relies on exploiting the non-zero structure of the matrices 
together with a cofactor expansion to show that det(sE -A(p)) equals the denom­
inator in (2.14). For simplicity, the full details are omitted here. 

The above state-space realization uses system matrices of dimension k + 1 and 
has no D(p) term. The parameter dependencies are present only in the C(p) and 

A(p) matrices, and take the form of barycentric sums involving the parameter p. 

In contrast to standard state-space realizations that use a companion matrix A(p) 
and coefficients ai(p) that are polynomials in p [l], the realization given in (2.15) 
is better suited for practical implementations, since the coefficients ai (p) do not 
contain powers of p. 

Furthermore, we can also avoid barycentric sums by using the following result. 

Lemma 2.2 (State-space realization [3]) The rational barycentric form H(s,p) in 
equation (2.14) has the following state-space realization 

ii(s,p) = ce(s,p)-1 n (2.16) 
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with the system matrices de.fined as 

e(s,p)= [J(s,;,k) J*(p~n,q) ~ ] ,C= [oo -e~+1],B= [~], 
lB 0 [J*(p,n,q),r] 0 

A= 

J(s,A,k) = 

[ 
CJ,! Ck+l,1 l 

CJ,~+! :-.-. Ck+;,q+l ' 

s-A1 A2 -s 
s-A1 A3 -s 

S-A1 

lB= [ 
c1,1w1,1 Ck+1,1Wk+1,1 l 

CJ,q+l~l,q+l ::·. Ck+l,q+l~k+l,q+l ' 

Unlike the realization of Lemma 2.1, the parameter p enters only linearly in the 
resolvent B(s,p) = sE -A(p). However, having such a simple parameter depen­
dence results in a realization of dimension k+ 2(q+ 1). 

We also remark that the existence of state-space realizations with linear depen­
dence in p and minimal dimension k is still an open problem [ 6, 7, 17, 25]. Such min­
imal realizations are known only for the special case ofH(s,p) having a separable 
denominator, i.e., the denominator can be factored as the product of two one-variable 
polynomials ins and p [IO]. Nevertheless, the realizations provided in this section 
are useful in practical applications, since their dimensions are close to the minimal 
dimension k in a reduced-order setting. 

2.2.3 Discussion 

Next, we discuss the common traits and differences between the two methods. We 
begin with the computational effort required for each. Notice that the most compu­
tationally intensive part of the Reduced-Basis approach is the offline stage. Its com­
putational cost depends on the number of operations needed for obtaining the snap­
shots and on the algorithm used for assembling the reduced basis. For the Loewner 
approach, the computational effort consists in computing the full-order transfer func­
tion measurements, the reduced-order (k,q) and the null space oflLw. In practice, 
computing (k,q) does not require the ranks of all Loewner matrices lLPj and lLs;; 
in fact, the ranks of only a few of these matrices usually give a good indication for 
appropriate values of (k,q). The most computationally intensive part is computing 
the full-order measurements H(s;,p1 ), since it involves the full-order matrices and 
(2.3). In most practical applications, the resolvent sE(p) -A(p) has sparse structure; 
hence, we can use sparse linear system solvers [26] in (2.3) to efficiently compute 
the measurements. 

The use of explicit transfer function measurements H(s;,p1) has another advan­
tage. Suppose we do not have a model of the full-order system (2.1 ), but we only 
have access to its transfer function measurements; for instance, suppose we use a 
device to take frequency response measurements of a system. Then, we can still ob-
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tain a reduced-order model by applying the Loewner approach; i.e., we identify a 
reduced-order model directly from the available measurements. 

We also remark that the results given in [3] developed the Loewner approach 
for the case of systems that depend on a scalar parameter p, unlike the Reduce­
Basis approach which can accommodate a vector of parameters p. However, since 
the publication of [3], the authors of this case study have generalized the Loewner 
approach to a vector of parameters p. A detailed discussion of this case is scheduled 
for publication [15]. 

Perhaps the most obvious difference between the two methods is the possibility 
of choosing different reduced-orders for s and p in the Loewner approach. This is a 
direct consequence of using the two-variable Lagrange basis, and, in practice, it can 
prove useful to differentiate betweens and p, since some systems have an inherently 
low order dependence on the parameter p. This feature is discussed in detail in the 
example given in Sect. 2.3. 

The common trait of the two methods is the fact that they both offer ways of effi­
ciently evaluating the reduced-order models for different values of p. The Reduced­
Basis approach achieves this in the online stage using equation (2.6), while the 
Loewner approach uses the rational barycentric formula (2.14). 

Finally, after these theoretical remarks, we are ready to see how these methods 
compare in a practical application. In the next section, we give such an example. 

2.3 Numerical Experiments 

In this section, we compare the Reduced-Basis approach and the Loewner rational 
interpolation approach through a numerical example treating a parameter-dependent 
partial differential equation. This parametrized system models the transient evolu­
tion of the temperature field near the surface of a cylinder immersed in fluid. For 
details on deriving the state-space matrices (2.1) using a finite element spatial dis­
cretization, we direct the reader to the book [22] and its software package. 

The parameter dependence is present only in the A matrix as 

(2.17) 

with the parameter p E [0.1, 100] representing the Peclet number. The dimension of 
the full-order state-space matrices (2.1) is n = 878, and the output matrix C is highly 
sparse with dimension 919 x 878, as it maps then= 878 system states to the 919 
nodes in the spatial discretization. 

2.3.1 The Reduced-Order Models 

First, we obtain a Reduced-Basis model (2.6) of order k = 11. This particular 
reduced-order model is already available as part of the software package included 
with [22]. The Reduced-Basis Vis computed using a greedy approach and an offiine 
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Fig. 2.1. Singular values ofLp
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space (2.5) generated from a parameter grid p E [0.1, I 00] and a time grid t E [O, I] 
having time step ot = 0.0 I. We denote the Reduced-Basis model with I1111. 

Next, to obtain the Loewnermodel (2.15), we consider a frequency grid ofN = 50 
frequencies s; logarithmically spaced in [10-2 , 102], and a parameter grid of M = 50 
parameters p1 logarithmically spaced in [0.1, I 00]. We then compute the associated 
transfer function measurements </>;,1 = H(s;,p1 ). 

The crucial step of the Loewner approach is to determine the reduced order (k, q), 
with krepresenting the order in the frequency variables, and qthe order in the param­
eter variable p. Therefore, in Fig. 2.1, we plot the singular values of the one-variable 
Loewner matrices lLPi and lL,7, and, from (2.10), the maximum rank oflLPi gives 
k and the maximum rank of lL,7 gives q. Then, by Theorem 2.1, the two-variable 
Loewner matrix lLw is singular and the barycentric coefficients c in its null space, 
lLwc = 0, give a model H(s,p) (2.14) that interpolates all given measurements </>;,1 . 

However, for the purpose of comparing the Loewner model with the Reduced­
Basis model, we select k and q lower than the ranks oflLp

1 
and lL,7, namely, we take 

k = 11, the same value as for the Reduced-Basis model. In addition, we take q = 7 
to showcase that the order in p can be chosen to be different from the order ins. 

As a result of this choice of (k, q) = (11, 7), the two-variable Loewner matrix 
lLw is not singular. However, its smallest singular value is equal to 3 · I o-8, i.e., 
lLw is close to being singular, and we can still compute barycentric coefficients c 
such thatlLwc;:::::: 0. Thus, H(s,p) in (2.14) approximates the given measurements 
</>;,1, instead of interpolating them. The final step consists in forming a state-space 
realization using either (2.15) or (2.16). We denote the Loewner model with In,. 

2.3.2 Comparison of the Reduced-Order Models 

We now compare IRB, the Reduced-Basis model, and In,, the Loewner model. Be­
fore presenting their time- and frequency-domain behavior, we briefly discuss their 
reduced orders. 

Notice that the parameter dependence (2.17) of the full-order system has a ratio­
nal form, present only in the A(p) matrix; therefore, the resolvent (sE -A(p) )-1 

E 

C 878 x 878 is also rational in both sand p. Hence, the system's transfer function H(s,p) 
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(2.3) is a two-variable rational function with the highest degree ins equal to 878 and 
highest degree in p equal to 878, i.e., H(s,p) has order (878, 878). 

Since the projection framework (2.6) preserves the structure of the parameter 
dependence, the Reduced-Basis model I 1w is also rational in both sand p, and has 
order ( 11, 11 ), given by the dimension of the reduced-order system matrices (2.6). 
On the other hand, IIL has the flexibility of differentiating between the orders of s 
and p. Therefore, we have selected a lower order for the parameter p, resulting in a 
Loewner model IIL of order ( 11, 7). 

Next, we compare the frequency-domain behavior of I 1w and IJL. In Fig. 2.2, we 
plot the frequency response of the two models for 4 different values of the parameter 
p E {0.1, 1, 10, 100}. The models have one input and 919 outputs, with frequency 
responses H1w(jwi,p), HJL(jw;,p) E IC919 x 1. To get a single line plot for each pa­
rameter value, we show the average of each frequency response. 

On one hand, Fig. 2.2 shows that IRB provides a loose approximation of the 
full-order system frequency-domain behavior. This was to be expected, since the 
Reduced-Basis method is tailored for approximation of time-domain snapshots. On 
the other hand, IIL accurately matches the full-order system, since the Loewner ap­
proach is a bespoke frequency-domain method. Nevertheless, for this particular ex­
ample ofa parametrized partial differential equation, the frequency-domain behavior 
has secondary importance. Our primary goal is to accurately match the time-domain 
transient behavior using reduced-order models. 

Therefore, we now simulate the transient behavior of the temperature field when 
the system is excited by the input u(t) = lOt fort E [O, 1]. Figure 2.3 shows the 
temperature field around the cylinder at final time t = I when the simulation is run 
for the parameter value p = 0.1. Because of the problem's symmetry, we plot only 
half of the rectangular domain and half of the cylinder. 

As expected, the Reduced-Basis approach gives an accurate approximation of 
the temperature field, with the relative error ly(t)-y(t)l/ly(t)I bellow io-2 . In 

F'r quo ncy r e pon sc 

fr c q11 e n y w 

Fig. 2.2. Frequency responses of: full-order system H(j w,p) (black) of order (878, 878), 
reduced-order model 'I:,RB (red) of order (11, 11 ), and 'I:,IL (green) of order (11, 7), for p E 
{0.1, I, 10, 100} 
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Fig. 2.3. Temperature field at time t = 1 for input u(t) = 1 Ot and p = 0.1. Upper pane: 
Reduced-Basis model .ERR· Lower pane: the Loewner model l:JL. Right-hand side: the rel­
ative error (in logarithmic scale) between the reduced-order models and the full-order finite 
element model 

addition, the lower half of Fig. 2.3 shows that the Loewner approach produces similar 
levels of accuracy. 

Therefore, through this numerical example, we have seen that, although they ap­
proach the problem from different perspectives, both methods produce accurate re­
duced-order models. 

2.4 Conclusions 

Motivated by the ever increasing need for accurate, low dimension models of param­
eter-dependent systems, this case study is one of the first efforts to compare differ­
ent approaches for parametrized model reduction. More precisely, we compared the 
well known Reduced-Basis approach with the recently introduced Loewner matrix 
approach for rational interpolation. 
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We saw that the main difference between the two is the fact that Reduced-Basis 
uses time-domain snapshots, while the Loewner approach uses frequency-domain 
transfer function measurements. Furthermore, the key feature of Reduced-Basis is 
an error bound; while for the Loewner approach, it is the possibility of choosing 
different reduced orders for the frequency and parameter variables. 

Although different in their approach, both methods proved successful at comput­
ing accurate reduced-order models in a numerical example involving a parametrized 
partial differential equation. 
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