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Preface 

This book contains selected peer-reviewed contributions submitted by the ple­
nary speakers to the workshop "Reduced Basis, POD and Reduced Order Meth­
ods for model and computational reduction: towards real-time computing and vi­
sualization?" funded by CECAM (European Center for Atomistic and Molecular 
Computing) hosted at Ecole Polytechnique Federale de Lausanne, Switzerland on 
14-16 May 2012 (More info: http://www.cecam.org/workshop-681.html). 

This book addresses a wide range of model reduction strategies with applications 
in various fields. 

The increasing complexity of mathematical models used to predict real-world 
systems, such as climate or the human cardiovascular system, calls for the devel­
opment of model reduction strategies, that is computationally cheaper algorithms 
that however still accurately capture the most important features of the phenom­
ena being modelled. Model reduction strategies can be classified according to two 
main approaches: "reduce-then-model" and "discretize-then-reduce". In the former 
approach the continuous equations representing the underlying physics are first re­
duced, e.g. by symmetry assumptions that allow us to consider ID or 2D equations 
instead of the full 3D equations, before a computational model is derived. In the latter 
approach a computational model is obtained by discretizing the continuous equations 
and only then a reduced model is sought. Some subtopics include spatial dimension­
ality reduction and multiscale modelling frameworks in the "reduce-then-model" 
category; state space and parameter space reduction - with a special accent on re­
duced basis and proper orthogonal decomposition - in the "discretize-then-reduce" 
category. This monograph focuses more on this second aspect. 

It can be regarded as a state of the art survey and integration of several contribu­
tions on model order reduction developed in the last few years in different fields and 
with different purposes, in order to: 

1. facilitate a stronger interaction between scientists doing model order reduction 
on ordinary and partial differential equations (both theory and applications); 

2. enhance the state of the art in model reduction making it possible to perform 
real-time computing for complex systems; 
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3. address the reliability of reduced order models when compared to more clas­
sical high fidelity discretization techniques (and discuss the trade-off between 
accuracy and costs); 

4. improve and generalize parametrization techniques from both a physical and a 
geometrical point of view, in order to better deal with realistic parametrized ge­
ometries and complex parametrized systems; 

5. propose and analyze novel sampling and parameter space exploration techniques; 
6. certify reduced order modelling for time-dependent problems by simulating long­

time phenomena; 
7. explore several possible combinations of reduction strategies (like POD, RB, 

PGD). 

The monograph emphasizes model reduction topics in several areas: 

1. design, optimization, and control theory in real-time with applications in engi­
neering; 

2. data assimilation, geometry registration, and parameter estimation with a special 
attention to real-time computing in biomedical engineering and computational 
physics; 

3. the treatment of high-dimensional problems in state space, physical space or pa­
rameter space; 

4. the interactions between different model reduction and dimensionality reduction 
approaches; 

5. the development of general error estimation frameworks which accommodate 
both model and discretization effects. 

The book deals with mathematical models based on both ordinary and partial differ­
ential equations with emphasis on engineering and life-sciences applications, includ­
ing continuum mechanics, fluid dynamics, and transport problems with a method­
ological focus. 

We anticipate a wide range of both academic and industrial problems of high 
complexity to motivate, stimulate, and ultimately demonstrate the meaningfulness 
and efficiency of the selected approaches. 

The proposed topics open new perspectives in the development of efficient 
methodologies related with new frontiers in computational science and engineering 
in order to assist scientists and engineers during design, construction, manufacturing 
or production phases, and even medical doctors during surgery or diagnosis. 

The methodologies we consider are motivated by, optimized for, and applied with­
in two particular contexts: real-time (e.g., parameter estimation or control) and many 
query (e.g., design, optimization or multimodel/scale simulation). Both contexts are 
crucial to computational science and engineering and to more widespread adoption 
and application of numerical methods for partial and/or ordinary differential equa­
tions in engineering practice and education. 

The real-time context can be found in engineering situations dealing with in-the­
field robust parameter estimation (or inverse problems, or nondestructive evalua­
tion), design and optimization, and control. On the other side the many-query context 
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involves multiscale (temporal or spatial) or multiphysics models in which behavior 
at a larger scale must "invoke" many spatial or temporal realizations of parametrized 
behavior at a smaller scale. 

Both the real-time and many-query contexts present a significant and often unsur­
mountable challenge to "classical" numerical techniques such as the finite element 
method (or finite difference, finite volume, spectral methods). These contexts are of­
ten much better served by the reduced order modelling techniques (even associated 
with a posteriori error estimation techniques). 

The development of reduced order modelling can perhaps be viewed as a response 
to the considerations and imperatives described above. In particular, the parametric 
real-time and many query contexts represent not only computational challenges, but 
also computational opportunities. 

The state of the art is currently moving towards interaction between different re­
duced order modelling techniques. For example, reduced basis method and proper 
orthogonal decomposition are combined to solve time-dependent parametrized dif­
fusion-reaction problems with certification of accuracy for the reduced model pro­
vided by a posteriori error bounds. 

Theoretical studies are being carried out to ensure a better understanding of model 
order reduction and the reliability and the applicability of the methodologies pro­
posed. Parametrization of systems is advancing by proposing new techniques to deal 
with more complex configurations and more parameters. Techniques to improve the 
exploration of parameter space (sampling procedures, greedy algorithms) have been 
refined, combined, and specialized. 

Advances made in computer graphics and physics-based simulation communi­
ties can be adapted to produce new methodologies satisfying the real-time needs of 
applications. 

The book is organized as it follows. Chapter 1 deals with model order reduction 
techniques for coupled multiphysics problems, then Chap. 2 introduces a case study 
to compare reduced basis method in a time domain and the Loewner rational inter­
polation in a frequency domain. Chapter 3 focuses on the comparison with some 
reduced representation approximations by showing different features, in Chap. 4 
the emphasis is on reduction techniques for nonlinear parametrized problems. Then 
Chap. 5 deals with efficient sampling techniques using nonlinear optimization; Chap­
ter 6 introduces parametrized model order reduction by implicit moment matching. 
In Chap. 7 the focus is on reduced basis method for parareal time integration. Stabil­
ity of reduced order linearized models in computational fluid dynamics is discussed 
in Chap. 8, followed by Chap. 9 with some more challenges and perspectives for 
model order reduction in fluid dynamics; window proper orthogonal decomposition 
and applications is the content of Chap. 10, followed by Chap. 11 with applications 
of reduced order modeling in aeronautics and medicine. 

We would like to thank the reviewers of each chapter for their remarks, criticism 
and insights that have allowed a significant improvement of the book's content. 

We acknowledge the support provided for the workshop also by the MA THI CSE 
Institute of EPFL and by CADMOS (Center for Advanced Modeling Science), a 
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joint-initiative by Ecole Polytechnique Federale de Lausanne, University of Lau­
sanne and University of Geneva. 

Last, but not least, special thanks to Francesca Bonadei and Francesca Ferrari of 
Springer Milano for their invaluable help and care. 

Lausanne, Milano and Trieste 
September 2013 

Alfio Quarteroni 
Gianluigi Rozza 
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1 

A Novel Approach to Model Order Reduction 
for Coupled Multiphysics Problems 

Wil H.A. Schilders and Agnieszka Lutowska 

Abstract Model order reduction (MOR) has become an important tool in the design 
of complex high-tech systems. It can be used to find a low-order model that approx­
imates the behavior of the original high-order model, where this low-order approx­
imation facilitates both the computationally efficient analysis and controller design 
for the system to induce desired behavior. This chapter introduces MOR techniques 
that are designed especially for coupled problems, meaning that different physical 
phenomena are simulated in conjunction with each other. The method developed 
makes use of the reduction of the individual systems, and low rank approximations 
of the coupling blocks. This is done in such a way that existing software for indus­
trial problems can be adapted in a straightforwward way. An industrial test case is 
described in detail, so as to demonstrate the effectiveness of the reduction technique. 

1.1 Introduction 

This chapter focuses on the development of a model reduction methodology for cou­
pled multi-physical models to serve the efficient simulation-based design of the un­
derlying coupled systems. Examples of coupled systems are larger systems such 
as magnetic resonance imaging (MRI) scanners, printers/copiers, precision motion 
stages, foldable solar panels of a space-telescope, down to very small systems such 
as very large scale integrated (VLSI) systems (see for instance [ 12, 21]) and micro­
electromechanical systems (MEMS) (see for instance [15]). Figure 1.1 shows such 
examples. 

W.H.A. Schilders (ri:s::) 
TU Eindhoven, Centre for Analysis, Scientific Computing and Applications 
e-mail: w.h.a.schilders@tue.nl 

A. Lutowska 
TU Eindhoven, Centre for Analysis, Scientific Computing and Applications 

A. Quarteroni, G. Rozza (eds.): Reduced Order Methods for Modeling and Computational Reduction, 

MS&A 9. DOI 10.1007/978-3-319-02090-7 _l, ©Springer International Publishing Switzerland 2014 



2 W.H.A. Schilders and A. Lutowska 

(a) (b) 

Fig. 1.1. Coupled systems. (a) Foldable solar panels (courtesy ESA); (b) A MEMS comb drive 

The word system, which originates from the Greek word s'ustema and the Latin 
word sustema, stands for "a set of interacting or interdependent components form­
ing an integrated whole". In this chapter, the integrated whole is called the system 
or coupled system and its individual components are called sub-systems. The word 
model as in "physical model" stands for a "representation" for the system under 
consideration, usually in terms of a set of physical quantities and relations. A cou­
pled system's model consists of the coupled sub-systems' models. A multi-physical 
model is a model which is represented by multiple physical quantities such as tem­
perature, structural mechanical displacements [7], electro-magnetic fields, and so 
forth. Simple systems in an insulated environment can often be described with few 
physical quantities and relations, while interacting systems frequently require more 
of such quantities and relations. 

This chapter is about sub-systems which interact. When the interaction takes place 
inside a domain of interest or through the boundary which separates, such a domain 
of interest from the outside world such a system is called a coupled system. If the 
physical quantities interact through a discrete amount of inputs and outputs in space, 
then the system is said to be an interconnected system (see for instance [24]) rather 
than a coupled system. 

To explain the envisioned reduction, first note that most physical models can­
not be solved exactly with contemporary computers. To calculate an approximate 
solution, the involved physical quantities such as an electromagnetic field are first 
discretized, i.e., represented by a finite number of degrees of freedom, after which the 
physical equations are reformulated for the discretized physical quantities, leading to 
a discrete system of equations. This process is called discretization of the model. An 
accurate representation of physical quantities such as an electromagnetic field can 
require millions of degrees of freedom and consume a considerable amount of data 
storage and computation time. Therefore, an analysis of a coupled system's dynamic 
behavior can require excessive amounts of data storage and computation time. 

We focus on state-of-the-art model order reduction techniques which reduce the 
system as a whole based on available reduction techniques for the individual sub­
systems. Such methods are scarcely available and mostly in development. They have 
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an advantage that the individual sub-systems can be reduced in parallel (see [3]) with 
the method best suited for each of them. This can save a considerable amount of data 
storage and computational time since these systems are also smaller than the system 
as a whole. On the other hand, one must figure out how to couple the individually 
reduced models to a reduced model for the whole, i.e., need to figure out how to 
effectively deal with interior couplings/interconnections. 

Our reduction methods are primarily for coupled time-invariant linear models. 
Time-dependent linear models, affine models (such as presented in [4]) and non­
linear models (see for instance [14, 23]) require other than the presented reduction 
techniques. Furthermore, we restrict ourselves to Krylov subspace projection tech­
niques (see [11]). 

In more detail, without loss of generality, we focus at systems which consist of 
two coupled subsystems. We suggest a method for the parallel reduction of the in­
dividual sub-systems, call it the Separate Bases Reduction algorithm (SBR), and 
show how to create a reduced model for the whole system based on the reduced 
parts. Furthermore, we show that this algorithm applied to coupled systems matches 
at least the same amount of moments as a standard method applied to the whole sys­
tem would (see [24] for interconnected systems). We establish that a large amount 
of internal couplings leads to large and hence undesirable reduced models and show 
that this can be overcome with the use of a generalized singular value decomposition 
(GSVD) based reduction of the coupling blocks. However, the use ofa GSVD-based 
approximation leads to an approximation of the moments - which as benchmark ex­
amples show can still be quite accurate. 

The remainder of this chapter is focused on the presentation of the SBR algorithm 
and the GSVD reduction of the internal couplings. It is organized as follows. Sec­
tion 1.2 describes Krylov subspace techniques, focusing on coupled and intercon­
nected time-invariant linear systems. First, it shows what happens if standard tech­
niques are applied to the coupled system as a whole - it shows that the block structure 
is lost. Next, it introduces existing techniques from the literature such as [1,6,9], still 
based on Krylov subspace methods for the coupled system as a whole, which pre­
serve the block-structure and the number of matched moments. At the end of this 
chapter, we show an alternative method to efficiently calculate the second Krylov 
projector and extend the proof of [6] to a more general case, under assumptions. 

In Sect. 1.3 we assume that Krylov subspace reduction methods are already avail­
able for the individual sub-systems and based thereon, we focus on the construction 
of a reduced-order model for the system as a whole. We show that this is possi­
ble (and also that moments are matched) in Theorem 1.2 and call the approach the 
Separate Bases Reduction algorithm (SBR). In Subsection 1.3.6 we show that the 
SBR algorithm also matches the standard double amount of moments if one uses 
two Krylov subspace projectors instead of one. 

In Sect. 1.4 we show that the replacement of the coupling blocks by an explicitly 
rank-revealing GSVD based components leads to the same Krylov subspaces and 
hence matched moments. Approximations based on a few of the dominant modes 
lead to quite accurate moment approximation. 
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Finally, in Sect. 1.5 we apply the SBR algorithm to a benchmark system. The 
system under consideration is scaled in a specific manner such that it is numerically 
better conditioned. We conclude with some remarks and recommendations for fur­
ther research in Sect. 1.6. 

1.2 Block-Structure Preserving Model Order Reduction 

Model order reduction is frequently based on Kry lov subspace projections. The start­
ing point is a linear time-invariant system, that in the Laplace domain is given by 
(later we will also use small letters x, y for unknowns in the Laplace domain) 

sEX(s) = AX(s) + BU(s) 

Y(s) = CTX(s). 
(1.1) 

The left side of Fig. 1.2 represents a schematic model of an interconnected system 
which consists of four sub-systems and a number of interconnections. These inter­
connections can be realized in different ways, which will be focused on in Sect. 1.3. 
The right side of Fig. 1.2 shows the system matrix A which corresponds to the graph 
on the left. The matrix A has a visible block-structure. Each of the gray diagonal 
blocks corresponds to one sub-system. The off-diagonal blocks are related to the 
interconnections. The blue dots in the off-diagonal blocks show that the two corre­
sponding sub-systems are interconnected. The empty off-diagonal blocks show that 
there is no coupling between the corresponding two sub-systems. 

In general, a system of k components, can be described by a linear system 

s rE11 •.• '"1 rX11 rA11 •.• A·"1 rX11 + rB11 U 

Ek1 ... Ekk xk Ak1 ... Akk xk Bk 
(1.2) 

2 · .. 
3 

4 

Fig. 1.2. Modeling of a coupled system 
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.. 
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3 

4 .. ·. 
Fig. 1.3. Loo ing of the tructure in the reduced-order matrix A 
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4 

4 

Fig. 1.4. Block structure preservation in the reduced-order matrix A 

5 

where the Xi E Jl{N7, Ni E N, i = 1, ... , k, and the corresponding sub-blocks have 
compatible dimensions, where typically the off-diagonal blocks are not square. Nat­
urally, we would like to still be able to recognize this type of block-structure in a 
reduced-order system matrix A. Unfortunately, if we apply a standard Krylov sub­
space reduction technique to the matrix A we unavoidably lose the block-structure 
and obtain a non-structured dense reduced-order matrix A as shown in Fig. 1.3. In the 
next two subsections, we present a brief overview of Krylov-subspace based block­
structure preserving reduction techniques. Such techniques applied to a structured 
matrix A result in a reduced-order matrix A like the one shown in Fig. 1.4. Al­
though the potential sparse nature of the interconnection off-diagonal blocks is lost, 
one can still recognize the system's general block-structure. The diagonal blocks 
still correspond to the reduced-order sub-systems and the zero blocks related to un­
coupled sub-systems are preserved. The reduction techniques of this type are called 
block-structure preserving (BSP) methods (see for instance [9]). For more informa­
tion about this type of technique the reader can consult for instance [ 18]. 

For the sake of simplicity assume that there are two coupled sub-systems (k = 2 
in (1.2)). Then the system matrix has the block structure 

[
A11 A11] 
A21 A22 

We call such a system an interconnected system if A11 and A11 are explicitly defined 
by means of their inputs and outputs, i.e., if for instance Ai2 = B3CJ. Otherwise, if 
Ai2 and A11 are specified in unfactored form, we call the system a coupled system. 
However, it is reasonable to assume that even for the blocks specified in unfactored 
form there might be defined related input and output operators, i.e., that there can be 
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constructed B3 and C4 such that for instance A11 = B3CJ. [13] considers possible 
construction methods for the input and output maps when A11 and A11 are specified 
in unfactored form. 

1.2.1 Moment Matching Methods for the Coupled Formulations 

We will begin with BSP methods that are directly applicable to coupled systems of 
the form (1.2) 

Eu · · · E1k 

s 

This type of methods is studied in more detail in for instance [2, 6, 9]. These methods 
aim at the creation of a reduced-order model whose matrices exhibit the original 
block-structure and whose transfer function matches a number of moments of the 
transfer function of the original system. As for standard Krylov methods, the moment 
matching property is realized by projecting the original system matrices onto the 
appropriate input- and/or output-based Krylov subspaces by using the matrices V 
and W for a chosen expansion point so E C. However, to preserve the block structure 
of the original system, the reduction bases also need to have a special shape. They 
are created by partitioning the matrices V and W into k sub-blocks (with k being the 
number of sub-systems) 

where the number of rows in the blocks Vi, Wi, i = 1, ... ,k corresponds to the 
number of rows of the diagonal blocks Au. Next, the blocks Vi and Wi are used to 
build block-diagonal reduction matrices V and W 

V= l [W1 

and W= 

vk 
(1.3) 
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and the reduced-order system is obtained by projecting the original matrices 

A.= wr Av, :E = wrEv, B = wrB, c = vr c. (1.4) 

Note that since the splitting of the matrices V and W into sub-blocks may create 
linearly dependent columns, one needs to apply a re-orthogonalization of the ma­
trices V and W to remove every possible linear dependence. Moreover, after re­
orthogonalization, one has to assure, that the matrices V and W have the same num­
ber of columns. This can be done by adding the necessary number of random or­
thogonal columns to the matrix with the smallest amount of columns. 

For the reduction bases created in the way described above, the following theorem 
holds. 

Theorem 1.1 Let V and W span the input- and output-based Krylov subspaces of 
the rth order around the expansion points E C for the system ( 1.2). If 

colspanV i:;;; colspanV and colspanW i:;;; colspanW, 

then a reduced-order system computed as in (1.4) has the transfer function that 
matches 2p moments of the transfer function of the original system (1.2). 

There are several examples of methods that satisfy the foregoing. Paper [6] pre­
sents SP RIM, a structure preserving reduced order method for interconnect macro­
modeling. It focuses on an RLC circuit application, as model order reduction meth­
ods are of importance to microchip manufacturers since complex microchips such 
as processors contain many interconnected substructures. The relevant equations are 
(notation as in [6]) 

<#x + 'ef'x' = /J?Ju (1.5) 

with 

'ef' = [EJ CEc OJ 
0 L ' 

where G, C, and Lare symmetric positive definite (square) matrices. The matrices 
Eg, Ee, Ez and E; are parts of an adjacency matrix E which describes the connectivity 
of the electronic circuit, the subscripts g, c,l, i stand for branches containing resis­
tors, capacitors, inductors and current sources. The SPRIM related Laplace domain 
transfer function HsPRIM is 

where 8?1, 'ef' and<;§ are re-written 

The paper presents a reduction basis V of the type (1.3) in [6, (21)] and proves in [6, 
Theorem 3] that it (W = V) preserves 2p moments, double the amount preserved by 
PRIMA. 
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The technique proposed in [5] is motivated by the fact, that for some applica­
tions the single-point expansion does not give a sufficient approximation accuracy 
in the frequency range. On the other hand, using a multi-point expansion can result 
in excessively large models, especially for systems with many external inputs and 
outputs. The method proposed in the paper mentioned above, is based on creating 
a reduction space that consists ofa number of sampling matrices ZJ, j = 1, ... ,p, 
computed for the system (1.2) for p sampling points SJ as follows 

In other words, ZJ, j = 1, ... ,pis a vector (or a matrix) that, after projecting the 
system (1.2) onto, will match the 0th moment around the point SJ of the original 
transfer function, since it consists of the input based starting matrix for the Krylov 
subspace for s J. After computing p samples, the total sampling matrix Z is defined 
as 

Z = [Z1, ... ,Zp]· 

Next, following the block-structure presented by the system matrices, matrix Z is 
split row-wise into k blocks vi' i = 1, ... 'k 

and a block-diagonal projector is created 

Finally, the singular value decomposition (SVD) is performed on each of the blocks 
separately, to produce the orthogonal matrix V 

where Vi, i = 1, ... , k is an orthogonal basis for Vi. At this point, further reduction 
in size is possible, by removing from the bases Vi, i = 1, ... , k the columns that cor­
respond to to small singular values. Having the reduction bases V, one can project 
the original system in the way defined in (1.4). 

A noticeable advantage of the technique described above is, next to the block­
structure preservation, the possibility of reducing different sub-systems with differ-
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ent reduction ratio, determined for each sub-system separately, based on the sin­
gular values related to this sub-block as well as the importance of the considered 
sub-system in the total coupled system. 

1.2.2 Two-Sided Structure Preserving Methods 

In this section we will explain how the two-sided projection idea can be implemented 
in case of the block-structure preserving methods. A detailed explanation of the two­
sided methods one can find for instance in [8]. Generally speaking, the use of a 
two-sided reduction method means, that the system is projected onto two subspaces, 
V and W, based on input and output matrices, respectively. In case of the coupled 
system (1.10) (defined somewhat later), the reduction matrices V and W, for an 
expansion point so E C, are built according to the following algorithm: 

1. Create matrix V, whose columns span the nth Krylov subspace around so E C 

V = Jf;.(P(so),R(so)), 

where P(so) and R(so) are 

P(so) = (soE-A)-1E and R(so) = (soE-A)-1B. 

2. Create matrix W, whose columns span the nth Krylov subspace around so EC 

W = Jf;.(S(so), T(so)), 

where S(so) and T(so) are 

S(so) = (soE-A)-TET and T(so) = (soE-A)-TC. 

3. Build the block-diagonal reduction matrix V with N1 + N1 = N rows 

where V 1 and V 2 contain the first N1 respectively last N1 rows of the matrix V. 
4. Build the block-diagonal reduction matrix W with N1 + N1 = N rows 

W= [W1 0 l 
0 W2 ' 

where W1 and W2 contain the first Ni respectively lastN2 rows of the matrix W. 
Different algorithms lead to V and W (and hence V and W) with different specific 
properties (such as orthogonality or bi-orthogonality). Some properties and their ad­
vantages and disadvantages are discussed in [17]. 

The described BSP algorithm results in a block-structured reduced order system 
and uses both inputs and outputs. Consequently, the BSP-based reduced order sys-
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tern's transfer function matches twice as many moments of the original system's 
transfer function. 

1.3 Separate Bases Reduction Algorithm 

Model order reduction techniques, designed especially for coupled or interconnected 
systems, became a new field of research in recent years. The common feature of this 
type of methods is the use of a special block-diagonal form reduction basis V 

(1.6) 

that results from the splitting a matrix V created by a Krylov method applied directly 
to the coupled system. This approach allows for preservation of the zero-blocks in 
the coupled system's coefficient matrix. Such blocks appear when two of the sub­
systems are not coupled (interconnected) or the coupling holds only in one direction. 
An example of uni-directional coupling can be a case of a vibrating structure, where 
the movement of the structure causes acoustic noise, but there is no influence (feed­
back) of the acoustic behavior of the system on it's dynamics. 

Due to the fact that the zero-blocks are preserved in the reduced system, such 
MOR techniques are called block structure preserving (ESP) model reduction meth­
ods. Their application usually results in a good approximation of the original model. 
For most of them one can prove the moment matching property. However, this type 
of methods also has three important drawbacks: 

• Though V in (1.6) (possibly) matches the same (number of) moments as V, it 
has k times more column vectors and therefore leads to a k times larger reduced 
system. 

• The calculation ofVrequires (repeatedly) solving systems with the entire coupled 
system's coefficient matrix which can be computationally (time- and memory­
wise) expensive. 

• In practice, the reduction techniques based on an uncoupled formulation of the 
system (see e.g. [24]) are restricted to the case of interconnected systems with 
a limited number of interconnections. Otherwise, the reduction procedure is not 
very efficient, since the dimension of the reduction basis (hence, the reduced­
order model) grows very fast. Moreover, such techniques assume that the inputs 
B and outputs C of the sub-systems are both explicitly available. In case of a 
coupled system these are not explicitly available, only their product BC is. 

In the remainder of this chapter, we will focus on the second and third issue. We 
present a reduction algorithm suitable for systems, coupled through a large num­
ber of couplings. We introduce a reduction technique based on an uncoupled for­
mulation of a coupled system, called Separate Bases Reduction (SER) algorithm. 
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Fig. 1.5. Schematic representation of the interconnected system S 

u(x_i) 

e(x_i) 

(a) (b) 

Fig. 1.6. Different types of strong coupling. (a) an interface coupling; (b) a strong coupling 
between different physical domains 

It creates a reduction basis for each sub-system separately, hence is computation­
ally cheaper compared to the reduction techniques that use a coupled formulation 
such as the BSP methods discussed in Sect. 1.2. However, the algorithm still suffers 
from the third point of the drawback list presented above. They can be easily applied 
to interconnected systems of a form shown in Fig. 1.5, where the sub-systems are 
not strongly interconnected (i.e. each sub-system exchanges information only with 
a small number of other sub-systems). We suggest a way to relax this limitation, and 
will also show how to apply the SBR algorithm to strongly coupled systems, i.e. to 
the systems, where many degrees of freedom of one sub-system are coupled to many 
degrees of freedom of other sub-systems and where the internal input and output ma­
trices are not explicitly given in the system formulation. Examples of these types of 
coupled problems are shown in Fig. 1.6. Figure 6(a) presents a coupled system that 
consists of two sub-structures, for instance a solid body and a fluid. The coupling 
occurs at the interface, where all degrees of freedom of one sub-domain which are 
sufficiently close to the interface influence similar degrees of freedom of the second 
sub-domain and vice versa. A different type of strong coupling is shown in Fig. 6(b ). 
This picture shows a situation, where all degrees of freedom related to both physi­
cal quantities u and e are located inside the same domain. Such situations appear for 
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instance in case of modeling of systems, where the dynamics of the structure is influ­
enced by an electromagnetic field (and vice versa). In the depicted case the change 
of the velocity of the node u(xi) influences the electromagnetic field x r--+ e(x) at the 
node Xi, and at many nodes in the neighborhood of Xi. 

1.3.1 Interconnected System - System Definition 

In this subsection we introduce the family oflinear interconnected systems to which 
the reduction algorithm is to be applied to. For the sake of simplicity, we focus on 
a system of two-subsystems where one sub-system's output is used as a part of the 
other sub-system's input and vice versa. However, the proposed method can easily 
be extended to systems composed of an arbitrary number of sub-systems. 

1.3.1.1 The Uncoupled Formulation 

The time domain behavior of each of the sub-systems S1 and S2 is modeled by a sys­
tem of first order differential-algebraic equations after which the frequency domain 
behavior is obtained via Laplace transformation. For the two sub-system examples 
in Fig. 1. 7, this procedure leads to the Laplace domain systems 

ul yl s 
Sl 

u3 y3 

y4 u4 

52 
y2 u2 

Fig. 1.7. Schematic representation of the interconnected system 
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Using matrix notation, the system Si and system S2 can be described as 

(1.7) 

(1.8) 

1.3.1.2 The Coupled System 

When the output of Si is used as an input of S2 and the output of S2 is used as an 
input of Si, equations (1.7) and (1.8) reduce to an interconnected Laplace domain 
system. Due to the design of the system depicted in Fig. 1. 7 one has 

(1.9) 

which in addition implies 

Using relation (1.9), the interconnected system (1.7) can be represented as a single 
coupled system S of equations 

S: 

and in matrix form 

sE11xi = Auxi +Biui +B3Crx2, 

sE22x2 = A12x2 + B2u2 + B4C§ xi, 

Yi= cf xi, 

Y2 = Cix2 

S: 

s [En 0 ] [xi] 
0 E21 X2 

[xi] + [Bi 0 l [ui] 
X2 0 B2 U2 

[~:] [cf o l [xi] · 
o cI x2 

(1.10) 
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C = [C1 0] , (1.1 l) 
0 C2 

where A,E E JRNxN, BE JRNxm, CE JRNxp_ The matrices defined in (1.11) show a 
special block structure. The sub-systems' matrices A11 and A21 form the diagonal 
blocks of the system matrix A of S. The off-diagonal blocks are the products B3Cr 
and B4 C§ of the internal input and output matrices of the sub-system. The input and 
output matrices Band Care block structured, as well as the matrix E. 

1.3.2 Transfer Functions of the Uncoupled and Coupled Systems 

One of the questions arising at this point is the relation between the transfer functions 
of the sub-systems S 1 and S2, and the transfer function of the coupled system. In this 
subsection we will study this issue. Let us begin with the uncoupled sub-systems. At 
s E C the transfer function of sub-system S 1 defined in (1. 7) is given by 

[cf] 1 H(s)= c§ (sE11-A11)- [B1B3] 

[
Cf (sE11 -A11)-1B1 Cf (sE11 -A11)-1B3] [H11(s) H12(s)l 

- C§(sE11 -A11)-1B1 C§(sE11 -A11)-1B3 - H21(s) H22(s) . 
1.12) 

For the sub-system S2 defined in (1.8), similarly 

[cI] 1 G(s) = er (sE22 -A22)- [B2 B4] 

= [CI (sE22 -A22)-1 B2 CI(sE22 -A22)-1 B4] = [G11 (s) G11(s)l · 
cr(sE22 -A22)-1B2 CI{sE22 -A22)-1B4 G11(s) G21(s) 

1.13) 
Ats EC the transfer function of the coupled system (1.10) is 

( ) T( )-1 [cf 0 l ( [E11 0 l [ A11 B3Crl )-l [Bi 0 l Z s = C sE - A B = r s - r 
0 C2 0 E21 B4C3 A21 0 B2 

= [Z11(s) Z12(s)l · 
Z21(s) Z22(s) 

(1.14) 
Based on definitions Eqs. (1.12) to (1.14) we will express the components of the 

transfer function Z(s) in terms of the components of the transfer functions H(s) 
and G(s) in two manners. First we follow the typical approach used in the field of 
systems and control (more details can be found in for instance [19]). Secondly we 
use the Sherman-Morrison-Woodbury formula. 



1 MOR for Multiphysics Problems 15 

The Systems and Control Approach 

The starting point of this approach are two transfer functions H(s) and G(s) of the 
sub-systems 1 and 2, respectively. For each sub-system, its transfer function relates 
its inputs to outputs: 

[YI] = [H11 (s) H12(s)l [01] , 
Y3 H21 (s) H22(s) 03 

[Y2] = [G11 (s) G12(s)l [02] 
Y4 G11 (s) G12(s) 04 

and 

[~:] = [::~~:~ ::~~:~] [::] · 

Systems (1.12) and (1.13) in combination with relation (1.9) lead to 

YI = H11 (s)o1 + H12(s)y4 

y3 = H21 (s)o1 + H22(s)y4 

Y2 = G11(s)o2 +G12(s)y3 

Y4 =G21(s)o2+G22(s)y3. 

Substituting y4 of (1.19) for y4 in (1.17) we obtain 

and hence 

With this result and (1.19), we can also express y4 in terms ofo1 and 02 

Y4 = G11(s)o2+G22(s)y3 =G21(s)o2 

+ G21(s) [I- H22(s)G22(s)]-1 [H21 (s)o1 + H22(s)G21 (s)o2]. 

Using (1.20) and (1.21) in (1.16) and (1.18), we arrive at 

YI = H11 (s)o1 + H12(s)y4 = H11 (s)o1 

+H12(s) ( G11 (s)o2 + G21(s)[I- H22(s)G22(s)]-1 

x [H21(s)o1 +H22(s)G21(s)o2]) 

= ( H11 (s) + H12(s)G22(s)[I-H22(s)G22(s)]-1H21 (s) )01 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.21) 

+ ( H12(s)G21 (s) + H12(s)G22(s)[I- H22(s)G22(s)]-1H22(s)G21 )02 
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and 

Y2 = G11 (s)u2 + G12(s)y3 = G11 (s)u2 + G12(s) [I- H22(s)G22(s)]-1 [H21 (s)u1 

+ H22(s)G21 (s)u2] = G12(s) [I- H22(s)G22(s)]-1H21 (s)u1 

+ ( G11 (s) + G12(s) [I- H22(s)G22(s)]-1 H22(s)G21 (s) )02. 

This shows that the components of Z(s), as defined in (1.15), are 

Z11 (s) = H11 (s) + H12 (s)G22(s) [I - H22 (s)G22(s)r1 H21 (s) (1.22) 

Z12(s) = H12(s)G21 (s) + H12(s)G22(s)[I-H22(s)G22(s)r1H22(s)G21 (s) (1.23) 

Z21(s) =G12(s)[I-H22(s)G22(s)r1H21(s) (1.24) 

Z22(s) = G11 (s) + G12(s)[I-H22(s)G22(s)r1H22(s)G21 (s). (1.25) 

Computing the Transfer Function of the Coupled System Using the 
Sherman-Morrison-Woodbury Formula 

The evaluation of the transfer function of the coupled system, as defined in (1.14), 
requires a computation of an inverse of a block matrix. For a system consisting of 
an arbitrary number of sub-systems, a suitable tool towards this end is the Sherman­
Morrison-W oodbury formula (see for instance [10] and references therein). This 
formula allows for a computationally cheap matrix inversion, as long as the con­
sidered matrix can be easily expressed as a sum of a matrix for which an inverse is 
known (or easy to compute) and a (low rank) correction. Let L be non-singular and 
let matrices J, M, N be of compatible size. Then the formula of K = L + MJNT is 
(after [10]) 

K-1 = (L+MJNT)-1 = L-1 -L - 1M(r1 +NTL-1M)-1NTL -l, (1.26) 

In our case, the matrix to be inverted can be decomposed into 

where Lis a block-diagonal matrix, whose inverse can be calculated by computing 
the inverses of each sub-block separately and the correction matrix can be factored 
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Abbreviate G;(s) = (sE;; -A;;)-1, P;(s) = G;(s)E;; and R;(s) = G;(s)[B; Bi+;], 
i = 1, 2 and omit the argument s when possible. Note that R; = [Ri!, Ri2] = 

[G;B;,G;Bi+;] consists of two blocks. Substituting the formulas for L,M,J and N 
into the the Sherman-Morrison-Woodbury formula, we get 

(1.27) 

where the entries ofG and R depend on s. Using this result and Eqs. (1.12), (1.13), 
(1.14), one can find the formula for the transfer function of the coupled system 

Z(s) = [cf OT] ( [G1 0 l + [ 0 R12] 0 

0 C2 0 G1 R21 0 

( I- [ To CfR12] )-] [CfG1 To l) [Bi 0 l 
C4 R22 0 0 C4 G2 0 B1 

= [cf Ru o l + [ o cf R12] 0 

o cIR21 cIR22 o 

(i-[ To cfR12])-
1

[cfRu To ] 
C4 R22 0 0 C4 R21 

(1.28) 

= [Hu(s) 0 l + [ 0 H12(s)l 0 

0 Gu(s) G12(s) 0 

(I-[ 0 H22(s)])-l[H21(s) 0 ]· 
G21(s) 0 0 G11(s) 

It is easy to show, that the formulation (1.28) is equivalent to the formulation given 
by Eqs. (1.22) to (1.25). Moreover, (1.28) provides an elegant relationship between 
the components of the transfer functions of the sub-systems and the coupled system, 
that reveals the symmetry and the structure of the coupled system. In addition it 
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shows that the relation between the transfer functions is not straightforward. Since 
several sub-expressions such as (sEu -Au)-i reoccur frequently, we will introduce 
abbreviations in the upcoming sections. 

Formula (1.28) reveals a structure which is more difficult to find in (1.22}-(1.25) 
and can be used to calculate the transfer function of the coupled system if the transfer 
functions of the individual sub-systems are available. The involved inverse is of a 
small matrix which means that calculation of the transfer function of the coupled 
system is relatively cheap. 

1.3.3 Standard Block Structure Preserving Reduction 

In this section we will recall the general ideas of the standard block-structure pre­
serving methods. 

A typical block structure preserving (ESP) model reduction method applied to 
the system (1.10) consists of the following three steps: 

1. Create the matrix V whose columns span the nth Krylov subspace around so E <C 

V = Jf,;(P(so),R(so)), 

where P(so) and R(so) are 

P(so) = (soE -A)-i EE lRNxN and R(so) = (soE -A)-i BE lRN. 

2. Build a the block-diagonal reduction matrix V with Ni + N1 = N rows 

V= [Vi 0] 
0 V2 ' 

where Vi and V 2 contain the first Ni respectively last N1 rows of the matrix V. 
3. Project the original system onto a lower-dimensional space 

E=VrEv, A=Vr AV, B=VrB, C=Vrc. 

When possible we write P and R rather than P(so) respectively R(so). The model 
reduction methods based on this idea are widely applied and popular due to a good 
accuracy of the reduced-order systems that they deliver. However, they have a few 
drawbacks, one of them being the high cost of the construction of the reduction basis. 
The main computational cost of this type of methods is related to evaluation ofx r-+ 

(soE-A)-ix, which involves solving a system of equations with a large coefficient 
matrix. In the next section we introduce an alternative structure preserving method 
which for some cases can significantly reduce the computational costs. 

1.3.4 Separate Bases Reduction Algorithm 

In the classical case, the reduction basis is built using the coupled formulation of 
the system (1.10). The construction of this basis requires repeated evaluations of 
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x f--+ (soE-A)-ix where soE-A is anN x N matrix. For largeN this procedure can 
be computationally very expensive or even unfeasible. In such cases one can try to 
make use of a natural block structure of the coupled system and for instance replace 
the evaluations involving ( soE - A)- i by evaluations involving ( soE ii - Ai i )- i and 
(soE22 -A22)-i, i.e., by evaluations involving only the coefficient matrices of both 
sub-systems. IfN is large and for instance Ni = N1 = N /2 then the serial computation 
of (soE11 -A11)-i and (soE22 -A22)-i may be much faster that of (soE -A)-i. 
Further acceleration can be achieved through parallelism. 

Following this idea, we introduce a new model reduction algorithm, called Sep­
arate Bases Reduction (SER) algorithm. Here the Krylov subspaces that create the 
reduction bases correspond to the uncoupled sub-systems (as defined in (1.7) and 
(1.8)) rather than to the coupled system (1.10). The procedure is as follows: 

1. Create two matrices Vi and V2, one for each sub-system: 

• For the sub-system Si, build a matrix Vi, whose columns span the ni th Krylov 
subspace around so E C 

where Pi (so) and Ri (so) are 

Pi(so) = (soE11-A11)-iE11 and Ri(so) = (soE11-A11)-i[Bi B3]. 

Matrix Vi has Ni rows. 
• For the sub-systemS2, build a matrix V2, whose columns span the n1thKrylov 

subspace around so E C 

whereP2(so) andR2(so) are 

P2(so) = (soE22 -A22)-i E12 and R1(so) = (soE22 -A22)-i [B2 B4]. 

Matrix V 2 has N1 rows. 

2. Build the block-diagonal reduction matrix V with Ni + N1 = N rows 

V = [Vi 0 l · 
0 V2 

3. Project the original system onto a lower-dimensional space 

In the sequel, when possible without causing confusion, we omit the argument so of 
P; and R;, i = 1, 2. In the next subsection, we will compare the SBR algorithm with 
a standard BSP reduction method, by examining their most important properties. 
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1.3.5 Separate Bases Reduction Algorithm - Properties 

In this subsection we will discuss the differences and similarities between Separate 
Bases Reduction algorithm and standard block structure preserving model reduction 
methods. 

Block-Structure Preservation 

As described in subsection 1.3.4, the SBR algorithm uses reduction matrices of the 
block-diagonal form 

V = [Vi 0 l · 
0 V2 

Therefore, its application preserves the block structure of the coupled system matri­
ces. 

Rank and Orthogonality 

The sub-blocks V1 and V2 of the projector V are constructed separately, using one 
of the Krylov basis building algorithms. Hence, both of them have a full column 
rank and, as a result, the matrix V also has a full column rank. If the sub-blocks V1 
and V2 have orthogonal columns then also matrix V has (automatically) orthogonal 
columns, i.e., no explicit orthogonalization has to be applied. 

Computational Cost 

The difference between the computational costs for a standard block structure pre­
serving method and the Separate Bases Reduction algorithm comes from the fact, 
that the SBR algorithm computes the reduction bases for the set of uncoupled sys­
tems instead of using the coupled formulation of the system. This approach can sig­
nificantly reduce the computational time and storage requirements needed during the 
model reduction process. 

The main cost of the Kry lov basis construction lies in the evaluation of the matrix 
pencil inverse function x r--+ (soE-A)-1x. For coupled models with many degrees n 
of freedom this evaluation may be unfeasible. But for sub-problems of smaller size 
evaluation may be possible. The amount of computational work required for the so­
lution of (soE-A)x = d depends on the employed solution method which at its tum 
relies on specific properties of the matrix soE - A (symmetry, monotone, positive 
definite, etc.). Different methods lead to different amounts of computational work: 
The minimal amount of work of O(n) operations is usually achieved by multigrid 
methods (see [25]), other methods such as GMRES, PCG, CGS and BiCGstab(l) 
(see [16,20,22]) are more expensive. Classical fixed point methods such as Jacobi, 
Gauss-Seidel and matrix-splitting based methods are usually even slower. 
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Size of the Reduction Space 

Another difference with respect to the standard BSP reduction methods is the size 
of the reduction matrix V and, as a result, dimension of the reduced order model. 

Let us consider the coupled system (1.10) and assume, for simplicity, that there is 
no need for deflation (all columns turn out to be linearly independent) while building 
the matrix V. We will apply a typical reduction procedure like described in subsec­
tion 1.3.3 and the SBR algorithm. In both cases, we will build a Krylov subspace of 
order n and estimate the size of the reduction space and reduced order model. 

We begin with the analysis of the standard structure preserving algorithm. The 
nth Krylov subspace built for the coupled system for the starting matrices as defined 
in subsection 1.3.3 will be of the form 

~ ( ) -1 V = Jf,; P,R = colspan{R, ... , pn R} 

where P = (soE -A)-1 E and R = (soE -A)-1 B. Since B E JRNxm, each of the 
components PiR of the matrix V has m columns. Thus, for a degree n Krylov space, 
assuming no deflation, the size ofV is N x (nm). Next, the block-diagonal reduction 
matrix V is created by splitting the rows of V according to the dimensions of the 
sub-problems. In our case, the coupled system consists of two sub-systems, so the 
final size of the reduction matrix V is N x (2nm). This leads to a reduced model of 
order 2nm. 

Next, we will focus on the SER algorithm. In this case two matrices V1 and V2, are 
built separately and we assume that each of them corresponds to an nth degree Krylov 
subspace based on the appropriate matrices (for i = 1,2 define Gi(so) = (soEu -
Aii)-1, Pi(so) = GiEii and Ri(so) = Gi[Bi B2+i] and observe that Ri = [Ri!,Ri2] 
where Ril and Ri2 are GiBi, respectively GiB2+i). For the sub-system S1, we create 
the matrix V 1 

V1 =fn(P1, R1). 

Here, R1, [B1 B3] E JRNix(mi+m3l, so each component P{R1 of the matrix V1 has 
(m1 +m3) columns whence V1 has n x (m1 +m3) columns. 
For the sub-system S2, we create 

V2 = ,;t,;(P2, R1). 

Similarly, since R2 , [B2 B4] E JRN2x(m2+m4), every component ~R2 of the matrix 
V2 has (m2 +m4) columns, andmatrix V2 has n x (m2 +m4) columns. 

Next, matrices V1 and V2 are used as diagonal blocks of the reduction matrix V, 
resulting in a reduced model of order 

This result shows that the SBR algorithm creates a smaller reduced order model than 
standard BSP methods if (m3 + m4) < m. This is for instance the case for coupled 
systems for which the number of internal inputs is not larger than the number of 
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external inputs. If there are many more internal inputs than external ones, the size of 
the SBR algorithm based reduction matrix will grow very fast compared to the size 
of the BSP reduction matrix. However, this problem can be avoided for the category 
of systems for which the internal input matrices B2 and B4 can be approximated by 
only a small number of dominant components. This approach will be explained in 
more detail in the next section. 

The Moment Matching Property 

In order to assess the SBR moment matching properties we compare the column­
spaces of the BPS and SBRreduction matrices. For simplicity, without loss of gener­
alization, we focus on the S/SO case (the coupled system is SISO) where in addition 
B;, C;, i = 1, ... , 4 related to the sub-systems are column-vectors which implies that 
all products Cf ( .. . )B1, i,j = 1, ... ,4, are scalars. A similar analysis is possible for 
the MIMO case (a MIMO coupled system with sub-system matrices B;, C;). 

Theorem 1.2 Let the coupled system be as in Fig. I. 7, described by (1.7) and (1.8). 
Assume that all inputs and outputs are column-vectors, i.e., m; = p; = 1, i = 1, 2, 3, 4. 
Then the SBR reduced-order model transfer function matches at least the same 
(number of) moments as the BSP reduced-order model transfer function. 

Proof First, we examine the reduction space built by a standard BSP method. To 
match the first k moments at so EC, of the coupled system of the form (1.10), one 
has to construct the Krylov space 

V = Jfi(P,R), 

where 
P= (sE-A)-1E and R= (sE-A)-1B. 

The fh Krylov step for the BSP method adds to the reduction basis the column span 
of the following matrix V~~P 

[ 
(i) (i) l (i) V11 V12 0 0 

V BSP = O O y(i) y(i) 
21 22 

(1.29) 

with blocks of the form 

(1.30) 

By (1.27) there exist scalars a, b, c, d and by construction (induction) there exist 
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coefficient vectors a = [al, ... , a1] E JRi-2 , /3, y, o E JRi-2 such that 

[ R:2 R~2 l [: ; l [: : l 
[p

;-1R +~;-1 ..,.;R ~;-1 ..,.;R l 
1 11 L-J=l a1r1 12 L-J=l 'J'ir1 12 . 

~;-1 f3 ..,.,R pi-lR +~;-1 s: ..,.,R + 
L-J=l 1r2 22 2 21 L-J=l u1r2 22 

(1.31) 
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where a= [µ1,a], s = [µ3,/3], r= [µ2,y], 8 = [J.14,0], and the matrix with'*' is 
a full matrix. Now it is easy to see that the column span of the matrix constructed 
from the matrix v~~p by splitting its rows, has the same column span as the matrix 
defined in (1.29). Finally, the reduction basis VBsP after k steps of the BSP algorithm 
has the following form 

(1) (k) 
VBsP = [VBSP' · · ·, VBsPl· (1.32) 

Now we will examine the SBR reduction space algorithm. Let Pi,Ri = [Rn,Ri2], 
i = 1,2 be as defined before. Fors EC SBR builds two Krylov subspaces 

One can easily prove, that the fh step of the Krylov iteration within the SBR algo­
rithm adds to the reduction basis the column span of the following matrix V~~R 

(i) [v~il o ] 
VSBR = O v¥l ' (1.33) 

where 
V (i) _ [pi-IR pi-IR ] 1 - 1 11, 1 12 

and 
V (i) _ [pi-IR pi-lR ] 2 - 2 2I, 2 22 . 

Finally, the reduction basis V SBR after k steps of the SBR algorithm has the following 
form 

(I) (k) 
VsBR = [VsBR,. · · 'VsBR]. (1.34) 

Comparing (1.30) and (1.33), we observe that 

colspanVBsP c colspanVsBR· 

Because the dimensions of the spaces are equal for our case (SISO external and 
column-vectors Bi, Ci for the sub-systems) one finds that in addition 

colspanVBsP = colspanVsBR· (1.35) 

Because colspanVBsP c colspanVsBR the SBR reduced-order model transfer func­
tion matches (at least) the same (number of) moments as the BSP reduced-order 
model transfer function which at its turn (Theorem 2, [6]) matches the same (num­
ber of) moments as the original coupled system's transfer function. For the more 
general case where Bi, Ci, i = 1, ... , 4 are matrices one should also obtain 

colspanVBsP ~ colspanVsBR (1.36) 

which is sufficient to prove the moment matching property of the SBR reduced-order 
system. 
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1.3.6 Two-Sided Separate Bases Reduction Algorithm 

The two-sided projection technique introduced in the previous section can be adapted 
to similarly improve the moment matching properties of the SBR algorithm, where 
we assume, as in the previous section, thath the B; and C; are column vectors. With 
the uncoupled formulation (1. 7) and (1.8) in mind we define the reduction algorithm 
as follows. 

1. For the sub-system Si, create two matrices: 

• Matrix Vi, whose columns span the ni th Krylov subspace around so E <C 

Vi= Xrz1 (Pi(so),Ri(so)), 

where Pi (so) and Ri (so) are 

Matrix Vi has Ni rows. 
• Matrix W i, whose columns span the ni th Krylov subspace around so E <C 

where Si (so) and Ti (so) are 

Matrix W i has Ni rows. 

2. For the sub-system S2, create two matrices: 

• Matrix V2, whose columns span the n1th Krylov subspace around so E <C 

whereP2(so) andR2(so) are 

P2(so) = (soE22 -A22)-i E21 and R1(so) = (soE22 -A22)-i [B2 B4]. 

Matrix V 2 has N1 rows. 
• Matrix W2, whose columns span the n1th Krylov subspace around so E <C 

where S2(so) and T1(so) are 

Matrix W2 has N1 rows. 
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3. Build two block-diagonal reduction matrices V and W with N1 + N1 = N rows 

and 

4. Project the original system onto the lower-dimensional space 

~ T 
BsBR=W B, 

~ T 
CsBR =V C. 

Again, different algorithms lead to V1, V2 and W1, W2 with different properties. 
Also the above SBR algorithm results in a block-structured reduced order system and 
uses all of the inputs and outputs. Consequently, also the above SBR-based reduced 
order system's transfer function matches twice as many moments of the original 
system's transfer function as the only inputs based one in Sect. 1.3.3 (the moment 
matching property follows from the BSP algorithm, Theorem 1 and Theorem 2). 

1.4 Low-Rank Approximations Based SBR Algorithm 

In Sect. 1.3 we presented the Separate Bases Reduction algorithm - a block-struc­
ture preserving model reduction method for coupled systems. As discussed in that 
section, one of the SBR method's disadvantages is that the sizes of the its Krylov 
subspaces increase very fast for systems with a large number of internal inputs and 
outputs. Hence, the use of the SBR algorithm was recommended for the cases, in 
which the number of internal inputs and outputs was considerably smaller than the 
dimension of the system or comparable to the number of the external inputs and 
outputs. In this section, we approximate the internal inputs (outputs) by their GSVD­
based dominant parts. This improves the efficiency of the SBR method. In addition 
we will prove that both the SBR algorithm and its low-rank based variant can be 
applied to coupled systems for which the internal input and output operators B and 
C are not explicitly availabe. 

1.4.1 Implicitly De.fined Couplings 

In Sect. 1.3, we introduced the interconnected system (1.10) as a result of the cou­
pling of the two sub-systems, ( 1. 7) and ( 1.8). Here, the coupling blocks are given 
by the explicit products of the internal inputs and outputs of the two sub-systems, 
namely B3Cr and B4C§_ Having such a formulation at our disposal, we can ap­
ply the SBR algorithm in a straightforward way. However, for some applications it 
may be impossible to obtain matrices B3, B4, C3 and C4. In the following sections 
we propose a way of transforming an interconnected system with implicitly de.fined 
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couplings of a form 

with 

0 E12 x2 
S: l s [Eu 0 l [xi] 

[~:] 
[Au A12] [xi] + [Bi 0 l [u1] 
A11 A21 x2 0 B1 u2 

[Cf 0 l [XI] 
o cI x2 

E = [Eu 0 ] , A= [Au A12] , B = [Bi 0 l 
0 E21 A11 A21 0 B1 ' 

27 

(1.37) 

(1.38) 

into a form that can be reduced using the SBR algorithm. Our goal is to find decom­
positions (factorizations) of the two coupling blocks 

and (1.39) 

that provide a good (with respect to the corresponding Krylov subspaces) approx­
imation of the original internal inputs and outputs of the coupled system (1.37). A 
factorization of the type A = BC is not be unique. The next section shows how to 
deal with this. 

1.4.2 Decomposition Theorem 

In this section, related to (1.37), first we show that a factorization A= BC is not 
unique and next we prove that if A12 = B1 C1 and simultaneously A12 = B1C2 then 
Jtj,(Au, B1) = Jtj,(Au, B1) if C1 and C2 are of full column rank. The proofs will 
be for the input-based Krylov subspaces. Similar theory applies to the output-based 
Krylov subspaces. 

First, a factorization of the type A= BC is not unique since A= IA and A= AI are 
two different factorizations. Even a QR factorization A= QR is not unique since 
if A= QR then A= (QS)(SR) for all complex valued diagonal matrices S with 
unit-length diagonal elements (S denotes the complex conjugate of S). Also other 
factorizations such as Gaussian-elimination based A= LU exist. 

Since we aim atthe use ofB forthe generation ofaKrylov subspace Jtj,(Au ,B1) 
we will next show that the non-uniqueness does not need to be an issue. To this end 
we prove the following Lemma 1.1 and Theorem 1.3. 

Lemma 1.1 Let B E JRnxp, C E JRPxm, m, n,p E N. Then 

rank( C) = p ===} co/span BC = colspanB. 

Proof Matrix C has rank p which implies p :::; m and that Chas p linearly indepen­
dent columns oflength p. Thus based on 

colspanC = { Cx: x E ]Rm} (1.40) 
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one finds 
colspanC = {Cx: x E JRm} = ]RP 

(1.40) p'5cm 
(1.41) 

whence 

colspanBC = {BCx: x E JRm} = {By: y E JRP} = colspanB. 
(1.40) (1.41) (1.40) 

Note: The condition that Chas full column rank is sufficient but not necessary. It can 
be relaxed: If for instance B has only 2 :::; p linearly independent columns, e.g. the ith 
and the jth column, then a sufficient condition is colspanC = colspan { ei, e1} c JRP. 

Theorem 1.3 LetB1,B2 E ]Rnxp, C1,C2 E JRPxm andm,n,p EN. 

If 

then 
colspanB1 = colspanB2. 

Proof Observe that 

colspanB1 = colspanB1 C1 = colspanB2C2 = colspanB2. 
Lem.1.1 Lem.1.1 

Next we prove that certain Krylov subspaces are identical. 

Theorem 1.4 Let A E ]Rnxn is non-singular andB1,B2 E ]Rnxm, n,m EN. Then 

colspanB1 = colspanB2 ===} Jf],(A,B1) = Jf],(A,B2). 

Proof Note that 

colspanB1 = colspanB2 ~ 

{B1x: XE lRm} = {B2x: x E lRm} ~ 

{AB1x: x E lRm} = {AB2x: x E JRm} ~ 

colspan AB1 = colspan AB2, 

which, repeatedly applied, shows that colspanAkB1 = colspanAkB2 for all k ~ 0 
whence Jfj,(A,B1) = Jfj,(A,B2). 

Theorem 1.3 in combination with Theorem 1.4 show that every factorization of 
an off-diagonal block of the form A11 = BCT with C of full column rank leads 
to the same krylov space Jtp (A 11, B). The following sections show how to use this 
property for the application of the SBRmethod to an arbitrary coupled system (1.37). 

1.4.3 Decomposition Theorem -Numerical Example 

In Sect. 1.4.2 we showed that the Krylov space does not depend on the factors of the 
decomposition A11 = BCT when these factors are of maximal column rank. To illus­
trate this numerically, we calculate these factors of A 12 with different factorization 
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techniques, based on a QRfactoration and LU factorization. For simplicity, we use 
a one-sided variant of the SBR method. The system used for the test is a linear beam 
coupled to a controller. Only the beam system has an external input and external 
output. Hence, the considered system is of a form 

(1.42) 

Let A11 = B3CI and A11 = B4C§. Here, the full coupled system has 80 degrees of 
freedom, 40 for each sub-system. Both of the sub-systems have 5 internal inputs and 
5 internal outputs. It means, that the coupling blocks A11 and A11 are ofrank 5. For 
all cases, the same number of Krylov iterations is performed and the reduced-order 
systems are of the order 55 (originally 80). The first sub-system was reduced from 
order 40 down to 30 and the second from order 40 down to 25. 

To reduce the original system, we will build three reduction matrices involving 
an nth-order Krylov sub-space as follows: 

• Reduction matrix based on the original internal input blocks 
The diagonal sub-blocks of the reduction matrix span the Krylov subspaces 

where 

and 

and 

where 

and 

The block-diagonal reduction matrix Vis of the form 

• Reduction matrix based on a QR decomposition of the coupling blocks 
Based on a QR decomposition of the coupling matrices A11 and A11, we get 

and 

We use an rank-revealing version of the QR algorithm, i.e., 2?1, 2?2, 843!, 84!J 
are of full column rank. Hence, the matrices 2?1 and 2?2 used to build the Krylov 
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subspaces have the same rank (and most likely amount of columns) as B3 and B4. 
Next, the reduction sub-blocks are created 

where 

and 

and 
yQR = Jt:, (PQR »QR) 

2 n 2 ,.'2 ' 

where 

and 

The block-diagonal reduction matrix yQR is of the form 

QR_ [y~R 0 l V - QR . 
0 V2 

• Reduction matrix based on the LU decomposition of the coupling blocks 
Based on the LU decomposition of the coupling matrices A11 and A11, we get 

and 

We use a rank-revealing version of the LU algorithm, i.e., 21, 22, 'Pt? and 'Pll 
are of full column rank. Hence, the matrices 21 and 22 used to build the Krylov 
subspaces have the same rank (and most likely amount of columns) as B3 and B4. 
Next, the reduction sub-blocks are created 

LU '<// (~r.u LU) V1 = J[,n I] ,R1 , 

where 

PfU = (sl11 -A11)-l and 

and 

where 

and 

The block-diagonal reduction matrix vw is of the form 

yw = [vf u ~u] . 
0 V2 

Figure 1.8 shows the magnitude plots with respect to the frequency of the frequency 
response functions of the three reduced-order systems, created using original, QR-, 
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Fig. 1.8. Magnitude plots of the frequency response functions of the reduced-order systems 
based on different decompositions of the coupling blocks 

- OR 
1 • 1 • 1 LU 

10"'~-~~~~~-~~~~~~~~~~~~~ 
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Fig. 1.9. Magnitude plots of the relative errors of the reduced-order frequency response func­
tions based on different decompositions of the coupling blocks with respect to the reduced­
order frequency response function based on the original input and output matrices 

and LU-decomposition based input matrices. The plots are almost identical, which 
is confirmed in Fig. 1.9, that shows the relative errors between the reduced-order 
frequency response function of the original system and the frequency response func­
tions computed based on both decompositions. The small differences between the 
three frequency response functions should be caused by round-off errors. 
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The next section shows how Theorems 1.3 and 1.4 in combination with GSVD 
can be used to improve the performance of the SBR algorithm applied to coupled 
systems with a high number of couplings (or interconnections). 

1.4.4 Low-Rank Approximations Based SBR Algorithm 

For coupled systems it is not always necessary to take into account all of the coupling 
components. Sometimes only a small number of them determines the behavior of 
the system and the rest can be neglected without much loss of accuracy. This section 
extends the application of the SBR algorithm to coupled (or interconnected) systems 
characterized by a high number of couplings of which only a small percentage is 
relevant to obtain an accurate solution. 

Section 1.3 pointed out that the standard SBR method should be applied only 
for the systems with a relatively small number of internal inputs and outputs. That 
is, only for coupled systems where few degrees of freedom of one sub-system (re­
lated to one physical domain or to a physcial quantity) are coupled/connected to the 
other sub-system, which implies that the coupling blocks A12 and A11 of the system 
( 1.3 7) are of low rank. Otherwise, the SBR method produces reduction bases which 
increase in size too fast with respect to the number ofKrylov iterations. However, 
if only a part of the components of the high rank coupling blocks is relevant, we 
can decrease the growth speed of the reduction bases. To do so, we first need to de­
termine, which components of the coupling are important and should be kept, and 
which ones can be neglected. One of the ways to make this decision, is to apply the 
generalized singular value decomposition (GSVD) to the coupling matrices A12 and 
A11. The GSVD should be applied to the pairs (Af1,Af2) and (AI2,AI1). One then 
has 

Af2 = V1S1Xf and AI1 = V2S2XI 

which results in the expressions for the coupling blocks 

A12 =X1SfVf 

A11 = X2sivI. 

(1.43) 

(1.44) 

Note, that here the matrices C1 and C2 are not used to denote external output ma­
trices, but components of the GSVD. Assuming that the coupling blocks are of the 
form (1.39), since S1 and S2 are real-valued non-negative diagonal, we can define 
the input and output matrices as following products 

(1.45) 

(1.46) 

Since S1 and S2 are diagonal matrices with non-negative entries their square roots 
are diagonal matrices with entries ~ and ~- Constructing the inputs and 
outputs as in (1.45) and (1.46), all ofB; and C;, i = 3,4 are scaled by JSl or y'S2. 
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According to the Theorems 1.3 and 1.4, Jtf,(A11,B3CD = Jtf,(A11,B3CD and 
Jtp ( A21, B4 en = Jtp (A 11, B4 en. Moreover, using a type of the decomposition 
that orders the components with respect to their importance has an additional benefit. 
It makes it possible to approximate the inputs and outputs leaving only the most 
relevant components and, as a result, reduces the dimensions of the blocks. In some 
cases, this reduction is sufficient to allow for an efficient application of the SBR 
algorithm. 

Let us now compare the procedures of building the standard and GS VD-based 
Krylov subspaces. Here, we will limit the discussion to the case of creation of a 
Krylov space based on inputs of the sub-system (1.7), but a similar analysis applies 
to all the other cases, i.e. input-based Krylov subspace for (1.8) and output-based 
Krylov subspaces for both sub-systems, (1.7) and (1.8). As defined in Chap. 1.3, 
matrices A11 E JRNi xNi, B1 E JRNi xmi and B3 E JRNi xm3 • Assume, that B3 has full 
column rank m3 and that application ofGSVD to the pair (Afi ,Af2) leads to 

- 1/2 - - N xm B3 =X1S1 = [b1, .. ,bm3 ] E JR 1 3 • 

where both X1 and S1 in (1.45) are of full column rank. Next, let B3 = xik) (Slk)) 112 

approximate B3 with the use of k dominant components. Then 

(1.47) 

For simplicity, we assume that m1 + m3 is a multiple of m1 + k (this may not be the 
case in general), so there exists A E N such that 

(1.48) 

The pth Krylov subspace created by the SBR algorithm for the sub-system (1. 7) for 
so E <C is 

where 

and consists of p( m 1 + m3) columns (assuming that no linear dependence occurs). 
Likewise, 

(1.49) 

where 

consists also of p(m1 + m3) columns, but approximately matches A as many mo­
ments of the original transfer function. 

Projecting system (1.7) onto a subspace ~p(P1 ,R1) in (1.49) does not preserve 
the moments of the transfer function of this sub-system. However, ifthe column span 
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of the matrix B3 gives a good approximation of the column span of the matrix B3 
we can expect that the reduced-order system obtained by projection onto the space 
( 1.49) will give an accurate approximation of the appropriate number of moments 
of the transfer function of the original system. Moreover, if the matrix B3 can be 
approximated by B3 with a significantly smaller number of columns, A times more 
steps may be used during the Krylov procedure (to approximate a higher number of 
moments) or one can use more expansion points, keeping the reduced-order model 
still relatively small. 

In the next section, we present the results of some numerical tests that show the 
advantage of using the low-rank approximation based SBR algorithm for a system 
with a high order of coupling. 

1.5 Numerical Examples 

In this section, we present two examples of the application of the SBR method com­
bined with low rank approximations for the coupling blocks. The first example is a 
simple and small example, yet exhibiting interesting behaviour as far as coupling is 
concerned. The second example is described in much more detail, as this is an in­
dustrial benchmark problem and needs some preliminary steps before the methods 
described in this chapter can be applied. 

1.5.1 A Simple Example 

In this section, we consider a simple example. The difficulty of this test case is that 
here the coupling blocks of the system are ofrank 10 (the coupled system has 10 in­
ternal inputs and 10 internal outputs), while each of the sub-systems contains only 40 
degrees of freedom (80 degrees of freedom in total). In this case, the standard SBR 
algorithm generates too many columns to be competitive. However, the use oflow­
rank approximations makes the SBR algorithm more competitive. Fig. 1.10 shows 
the magnitude plots with respect to the frequency of the original and reduced-order 
frequency response functions. In case of the two-sided BSP method and the two­
sided SBR algorithm based reduced-order systems, the original system was reduced 
to 42 degrees of freedom. The low-rank approximation based two-sided SBR algo­
rithm created the reduction bases for rank 3 approximations of the coupling blocks, 
i.e. the internal input and output matrices Bi, Ci E JR40 x 10 , i = 3,4 were approx­
imated by Bi, Ci E JR40 x 3 , i = 3,4. Hence, every Krylov step was adding 4 new 
columns to the reduction basis (3 corresponding to B3 or C4 and 1 corresponding to 
B1 or C1) in case of the sub-system S1 and 3 new columns (corresponding to B4 or 
C3) in case of the sub-system S2. To construct the reduced-order system of dimen­
sion 42, the low-rank approximation based SBR algorithm performed 6 iterations 
for each sub-system (for both, input and output related bases). Figure 1.11 shows 
the magnitude plots of the relative errors of the reduced-order frequency response 
functions with respect to the original one. Note that the two-sided SBR algorithm 
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Fig. 1.10. Magnitude plots of the frequency response functions of the original and reduced­
order systems 
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Fig. 1.11. Magnitude plots of the relative errors of the reduced-order frequency response 
functions with respect to the original frequency response function 

based on low-rank approximations of the internal inputs and outputs leads to much 
better results than the SBR algorithm applied to the original coupling blocks. The 
two-sided low-rank based reduced-order transfer function H1ow-rank-SBR approxi­
mates H less accurate than the standard two-sided BSP transfer function but in the 
neighborhood of the expansion points the relative error is still below 2%. Table 1.1 
shows that not only the first 6 derivatives are matched but also the 7th one is well 
approximated. 
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Table 1.1. Derivatives of the original and low-rank approximation based reduced-order trans­
fer functions for the expansion point (s) for the second example, multiplied by 107 

(1'H(s) (1'H1ow-rank-SBR (s) 

0 -0.349984611544531 -0.349975323605725 

0.000580754070987 0.000580770193275 

2 -0.000001928114532 -0.000001928787960 

3 0. 000000012 770698 0.000000012766510 

4 -0.000000000067912 -0. 000000000068062 

5 0.000000000000859 0.000000000000859 

6 -0. 000000000000014 -0. 000000000000014 

7 0.000000000000000 0. 000000000000000 

8 -0.000000000000000 -0. 000000000000000 

9 0.000000000000000 0. 000000000000000 

1.5.2 Industrial Benchmark Problem 

The benchmark system treated in this chapter is a model ofa printhead delivered by 
Oce Technologies B.V. in the Netherlands. It is a MEMS (micro-electro-mechanical­
system) based design, containing a large number of individual channels integrated 
into a single chip. A schematic overview of a single channel (a side and bottom view) 
is shown in Fig. 1.12. The dotted line depicts the ink flow; the ink, coming from the 
reservoir, enters through a restriction (I), from which it flows into the actuation 

Nozzle plate wafer 

Side view 

Bottom view 

Fig. 1.12. A schematic overview of a single channel (courtesy of Herman Wijshoff) 
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chamber (2). Below the actuation chamber, a 300 µm long feed-through is placed 
(3), after which the nozzle plate is reached. The nozzle plate is 75 µm thick and 
consists of a pyramid shaped funnel ( 4) and a nozzle ( 5) with a radius of 11 µm. 

The main goal is to suppress acoustic pressure waves, which can be generated in 
a number of ways, such as the non-continuous ink supply by many thousands of ink 
channels, residual vibrations at the inlet of the ink channels, fast movement of the 
printhead, resonance of the whole structure, etc. 

The models of such devices used for simulations can reach large dimensions, 
hence application of the model order reduction techniques is often required, to de­
crease the simulation time. In this chapter, we study the application of the GSVD 
based approximations for the coupling blocks in the model of the printhead. 

1.5.3 The Second and First Order System 

The related system of equations is a second order system. Let ni, n1 E N and n = 

ni + n1. The second order system of interest is 

{
Mx"+Kx = b 

y =ex 

with (n1 + n1) x (n1 + n1), 2 x 2 block-matrices 

[M11 0 l 
M= M12 M12 ' 

K= [K11 K11] 
0 K21 

(1.50) 

(1.51) 

and M11 = -pKI2 . The first sub-system corresponds to the displacement of the 
structure and the second sub-system describes the pressure of the fluid. The related 
Laplace transformation 

leads to transfer function 

{
w2MX+KX=B 

Y=cX 

H(w) = c(K+w2M)-1b, wEC. 

Searching for purely oscillatory modes implies that the related w is purely imaginary, 
i.e., that one is interested in positive real values w of: 

wER (1.52) 

Let x2 = x~. Then the.first order system reformulation of(l.50) is 
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which implies 

Its related transfer function is 

H(s) =C(sE-A)-1B. (1.53) 

Solution of FX = B: 

{ 
sx1-X2=0 ====?{ sx1-X2=0 ===?{X1=(s2M+Kr1b 

sMx2 +Kx1 = b s2Mx1 +Kx1 = b x2 = sx1. 

This implies that 

is identical toy if and only ifs = iw, w E R 
In the sequel we will examine the second order system. 

1.5.4 Sparsity Patterns and Magnitudes of the Blocks ofM, K 

There are three available discretizations forthe OCE application: coarse: 1188_1050, 

medium: 4752_5304 and.fine: 20748_35775. The numbers relate to the amount of 
degrees of freedom as follows: Case 4752_5304 implies n1 = 4752 and n1 = 5304. 
Extracted from ANSYS, the blocks Mn,M21,M22,Kn,K12,K22 in (1.51) are very 
differently scaled: For instance, for the medium case their absolute value greatest 
resp. smallest entries (magnitude) are of the order 

[
10-lO 0 l 

M = 0( 10-s 10-18 ), 

[
10-12 0 l 

M = 0( 10-6 10-20 ), 

[
10+8 10-8] 

K-0( ) 
- 0 10-4 ' 

(1.54) 

[
10-12 10-9] 

K= 0( 6 ). 
0 10-

For the calculation of the transfer function furthermore note that w E [O, 2n * 1500]. 
Thus approximately, w2 E[O,108]. The use of the standard MATLAB'\' operations 
to solve (K - w2M)x = b leads to error messages and abortions, not to solutions. 
An alternative, the use of the MATLAB package Factorize, alleviates this problem, 
but (too) severe round-off remains. Furthermore, the'\' operation turns out to be 
very slow for this poorly scaled problem. Investigation shows that that K11 contains 
entries in [ 10-12 , 1 o+8]. The use of standard double precision floating point IEEE 
arithmetic involved in matrix operations such as matrix multiplication is bound to 
round-away contributions of the smaller entries. 
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Further investigation shows that all diagonal blocks but K11 are symmetric. For 
the results shown in this chapter the slightly non-symmetric ANSYS block K11 has 
been used as is. The results would be the same if one had instead used its symmetric 
part (K11 + Ki1) /2 (tested). It has also been shown that indeed M11 = -pKi2 for 
all three examples, where p = 1090. 

Observe that the determination of the smallest absolute value positive entry of 
a sparse MATLAB matrix with MATLAB is not trivial: The smallest entry of a sparse 
matrix usually is zero (since the default entry has value zero), MATHWORKS and 
other sources do not provide an on-the-shelf solution. To obtain the smallest non­
zero entry we have written a MATLAB function vfilter which for a full or sparse 
matrix X writes all entries X;1 such that IX;11 > e 2: 0 column-wise into a full vector. 
The use of this function applied to matrix X and e = 0 in combination with min 
provides the smallest absolute value entry of X. 

Naturally, small entries should only be discarded if they are not relevant to the 
system of interest, i.e., if the the system is properly scaled, which is the topic of 
discussion of the next subsection. 

1.5.5 Scaling the Second Order System 

We need to scale the matrices Kand M (E and A) to obtain a numerically robust 
solution of the system 

[
K11 -w2M11 K12 l F(w)x = b {==} (K-w2M)x = b ¢==? 2 T 2 x = b, 

pw K 12 K21-w M21 

which depends on w. For the problem of interest we expect symmetric blocks 
M11,M22,K11 and K12, and M11 = -pKi2. This implies that this system could be 
scaled (preconditioned) into a symmetric one (symmetry scaling), for which effi­
cient linear solvers exist. This can be done as follows: Observe that for a two by two 
matrix 

[1 ] _1 [ a -../Cd] JC1d ===} D 1 AD1 = -../Cd b 

can be scaled to a symmetric one. Hence, based on c = pw2 and d = 1, define 

Furthermore, to better scale the entries inside and between blocks (create diagonal 
elements of magnitude 1 ), define 
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We now scale with a diagonal scaling: 

~ -1 
M := D2D1 MD1D2, 

'-v-" .__,,._, 
Q p 
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K := QKP, b := Qb,c := cP, 

which, by invariance under inputs and outputs transformations means that 

is identical to Hin (1.52) for all w. Obviously D1 is non-singular except for w = 0 
and D2 exists and is non-singular when all diagonal entries ofD] 1 FD1 are non-zero. 

The factors P = P(w) and Q = Q(w) depend on w. This is fine forthe construction 
of Krylov spaces to match moments. However, to plot the transfer function H one 
needs to evaluate c(K -wiM) for many wk E [O, 108]. Repeated calculation of P( wk) 
and Q(wk) would be (too) costly, so we decided to use thew-independent factors 
P := P(w) Q := Q(w) for all w where w is the average of all wk. For the OCE 
example, to plot the transfer functions, we sample the provided region of interest: 
Wk = 5n · k, k = 0, ... , 600. The value of w turns out to be w301 which is close to 
but not too close to a pole of H and such that all diagonal entries of D] 1 FD1 are 
non-zero. 

1.5.6 The Structure and the GSVD o/K12 

Here we briefly comment on the GSVD of the scaled KT2. Figure 1.13 and numer­
ical investigation show that K11 E JR1188xlOSO is a sparse matrix which contains a 
small non-zero sub-block of size 295 x 175 (window (3, ... ,297) x (561, ... , 735)). 
This is typical for applications where the different physical quantities are defined in 
bordering sub-domains and are coupled via the mutual boundary - if one numbers 
the degrees of freedom on the mutual boundary consecutively. Since KT2 has this 
structure it is of the required type. This means that also V has all its non-zero entries 
in the same sub-block, i.e., it only has possible non-zero entries from row 561 to 
735. This information is of importance, because the standard GSVD implementa­
tions such as MATLAB' s do not use this information and generate V which contains 
round-off(non-zero) entries outside the window, as can be seen in Fig. 1.14. For the 
medium test case the results are worse, as to be expected: For p = 5 and e = 0, K~) 
(definitions, see below) is a full matrix. 

To work around this problem we have written a MATLAB function spf il ter which 
for a full or sparse matrix X copies all entries X;1 such that IX;1 1 > M(X) · e into a 
sparse matrix Y, where M(X) := max{IXl;1 hi· This way, using e = 10-11 , both 

K 12 = xsTyT and all of its dominant parts K~l := x(pJs(pJy(p) (for some p:::; n) 
have similar sparsity patterns. 

In MATLAB there are different but equivalent manners for the filtering of entries 
from a matrix. However, most of them do not terminate or lead to out of memory 
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Fig. 1.14. Entries of K\il greater than E · M(K\ilJ, small case 

errors even for the small case. Functions vfilter and spfilter contain information 
on manners which somehow do not lead to the desired result. 

Explicit multiplication with factors X(P), S(P) and y(p) for the multiplication with 
x c--+ Kx is likely to be the more efficient then the use of multiplication with K~i). 
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Fig. 1.15. Entries ofx in (1.55), sorted 

1.5. 7 A GSVD-Based Approximation o/K12 

In this subsection we analyse how the GSVD based approximation of K 12 influences 
the solution of the static problem 

(1.55) 

Based on the definition of K\i) the approximation leads to system 

(1.56) 

We intend to estimate 
(1.57) 

over the set of indices i for which x; is non-zero (outside round-off region). To deter­
mine this set, we first solved ( 1.55) and made a log-plot of its sorted entries, shown 
in Fig. 1.15. Based on this plot we decided to omit all entries smaller than I 0-7 and 
obtained the results in Table 1.2. The accuracy does not seem to be (very) sensitive 
to the amount of principal components used, which is due to the fact that the scaled 
Ki2 block is still of magnitude 105 smaller than the scaled diagonal blocks Ki 1 and 
K22· However, Sect. 1.5.8 shows that different amounts of principal components do 
have a remarkable effect on the related transfer function. 

1.5.8 The K11(p) GSVD-Approximation Based Transfer Function 

The aim is to determine a principal component analysis (PCA) based rank-revealing 
factorization K 12 ~ BCT where B and C are constructed with the use of the first 
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Table 1.2. Relative errors due to use of the GSVD approximation 

P lllx(i)-y(Pl(i)l/lx(i)lll= 

3.750080647e-008 
2 l.427208120e-007 
3 l.l l 9493657e-007 
4 l.468582269e-007 
5 l.500944068e-007 

p:::; n principal components, based on the scaled versions of K (and if needed M) 
as constructed above. 

To the scaled matrix K (which depends on w) we apply a GSVD to KT1 and KT2 
such that Kfi = ucxT and KT2 = vsxT. Hence, 

Figure 1.16 shows all of the diagonal values of the matrix Sand Fig. 1.17 shows the 
first 1000 of them. Next, for p = I, ... , 5 we approximate K12 by the contribution 
of its p most dominant modes 

l ........ __ _ 
1 

10-20~---~---~---~---~--=o~ 
0 1000 2000 3000 4000 5000 

Fig. 1.16. Diagonal elements of S 
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Fig. 1.17. First 1000 diagonal elements of S 

and plot the related transfer functions, together with the transfer function related to 
K12 (blue) in Fig. 1.18. One can observe that the transfer function related to K(P) 

closely approximates p peaks of the original transfer function (the one for K12). 

1.5.9 The GSVD Approximation o/M}1
1 Kn 

In fact, we need to apply the GSVD to Mj1
1 K12 ratherthan K12. Fortunately, there is 

a straightforward relation between the GSVD of(Kn, K12) and (M]/ K11, M]/ K12). 
To see this, abbreviate K := K12 and M :=Mn and observe that 

KT = vsxT ====? 

K = xsTvT ====? 

M-1K = M-1xsTyT ====} 

M-1K = (M-1X)VST VSfyT 
'--v--'"-.,.--"' 

y z 

which leads to the principal component based approximation: 

One first rewrites ( 1.53) to produce the term sl, for instance as follows: 

H(w) = c(K-w2M)-1b ====? 

H(w) = c(M- 1K-w2I)M- 1b ====? 

H(w) = -c(w21-M-1K)M-1b. 

(1.58) 
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Fig. 1.18. Low-rank approximations of block K12 

Observe that the inverse of block-matrix M in (1.51) is 
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whence 

M_1K= [ Mi/K11 Mi/K12 l 
-M221M21M!/K11 -M221M21M!/K12 +M221K22 

Now, SBR applied to the first row of this system leads to the approximation 

M-lK~ [ Mi/K11 Mi/X(p)s(p)y(p) l 
-M221M21M!/K11 -M221M21M!/K12 +M221K22 

which shows that one can use the GSVD-based approximation 

where 

K = [Kn x(pJs(pJy(pJ] · 
0 K21 

1.6 Conclusions 

We proposed a new model order reduction technique for coupled systems. Our meth­
od, called the Separate Bases Reduction (SBR) algorithm, belongs to the family of 
block-structure preserving (BSP) reduction techniques based on the uncoupled for­
mulation of the coupled problem. However, unlike other reduction approaches deal­
ing with the separate sub-system representation, the SBR algorithm can be applied 
to a wide category of coupled systems, including strongly coupled systems and in­
terconnected systems with many interconnections. This is due to the fact that for 
such cases we avoid a too fast growth of the reduction bases and related reduced­
order model, as long as the coupling can be well approximated by a relatively small 
number of GSVD principal components. Examples of such strongly coupled sys­
tems are systems with an interface coupling, for instance systems describing inter­
actions between a fluid and a solid wall, or systems which for instance describe an 
electromagnetic-structural coupling in an electronic device. Another advantage of 
the proposed technique is that it is computationally cheaper than the more common 
BSP reduction methods which deal with the coupled formulation of the system. 

For the initial version of the SBR algorithm (without low-rank approximations of 
the couplings), we proved the moment matching property. The GSVD based approx­
imation of the couplings only approximates the moments, but numerical experiments 
show that taking a sufficient number of dominant components still results in accu­
rately approximated moments. What makes the SBR algorithm universal, is the fact, 
that it can be applied even if the internal input and output matrices are not known 
explicitly. We show, that having at our disposal only the coupled system's matri­
ces, external inputs and outputs, and the dimensions of the sub-systems, we are able 
to create appropriate Krylov subspaces for each sub-system. This property of the 
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reduction method is desirable when dealing with industrial problems for which the 
separate sub-systems' information may not be available. 

The SBR method has been designed keeping in mind the practical use in an in­
dustrial environment. It is fairly straightforward to adapt existing software modules 
and make them suitable for application of SBR. This is certainly not the case for 
the BSP type methods. Although the reduced-order models obtained by application 
of the BSP methods frequently show a bit better approximation accuracy, the SBR 
algorithm is much more beneficial from the point of view of the computational time. 
This property is especially valuable in case of large industrial applications. 
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Case Study: Parametrized Reduction Using 
Reduced-Basis and the Loewner Framework 

Antonio C. Ionita and Athanasios C. Antoulas 

Abstract In this case study, we compare two methods for model reduction of param­
etrized systems, namely, Reduced-Basis and Loewner rational interpolation. 

While having the same goal of constructing reduced-order models for large-scale 
parameter-dependent systems, the two methods follow fundamentally different ap­
proaches. On the one hand, the well known Reduced-Basis method takes a time­
domain approach, using offline snapshots of the full-order system combined with 
a rigorous error bound. On the other hand, the recently introduced Loewner ma­
trix framework takes a frequency-domain approach that constructs rational inter­
polants of transfer function measurements, and has the flexibility of allowing differ­
ent reduced-orders for each of the frequency and parameter variables. 

We apply the two methods to a parametrized partial differential equation model­
ing the transient temperature evolution near the surface of a cylinder immersed in 
fluid. Then, we compare the resulting reduced-order models with the full-order finite 
element system by running both time- and frequency-domain simulations. 

2.1 Introduction 

The growing need for highly accurate modeling of physical phenomena often leads to 
large-scale dynamical systems. For example, accurate simulations involving partial 
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differential equations require taking fine spatial discretizations that, in turn, lead to 
dynamical systems oflarge dimensions. Hence, high accuracy comes at a steep price. 
Simulating such large-scale systems is a prohibitively expensive task that requires 
long simulation times and large data storage. 

Model reduction seeks to overcome these obstacles by constructing models of 
low dimension that have short simulation times, require low data storage, but still 
accurately capture the behavior of the large-scale system. 

In the case of systems that do not depend on parameters, reduced-order models 
can be obtained using an extensive array of model reduction methods [l]. For in­
stance, we can follow SYD-based approaches such as the proper orthogonal decom­
position (POD) [27] for non-linear systems and Balanced Truncation [8] for linear 
systems. Alternatively, we can follow rational interpolation approaches such as (it­
erative) Rational Krylov [9, 11]. These methods are well understood and known to 
give accurate reduced-order models in various practical applications [1,5]. However, 
in the case of systems that depend on parameters, there is a limited choice of avail­
able model reduction methods. The main obstacle is the fact that, in the presence 
of parameters, approaches like Balanced Truncation or iterative Rational Krylov are 
difficult to generalize. 

Nevertheless, in recent years, a number of efficient methods have emerged to 
form the so-called Reduced-Basis framework for parametrized model reduction [13, 
14, 18, 22-24]. Reduced-Basis methods extend the POD approach to the case of 
parametrized systems by relying on an offline space that contains snapshots of state 
trajectories of the full-order system. An error bound is used to iteratively enrich this 
space and extract a reduced-basis that yields accurate reduced-order models. 

More recently, the rational interpolation approach has also been generalized to 
the case of parametrized systems [3]. Here, we apply this recent approach to con­
struct reduced-order models that interpolate transfer function measurements of the 
full-order system. The key of the rational interpolation approach is the Loewner 
matrix, which allows the flexibility of choosing different reduced orders for each 
of the frequency and parameter variables. The reduced-order models are efficiently 
computed using a rational barycentric formula together with the null space of a gen­
eralized two-variable Loewner matrix. 

In this case study, we compare the Reduced-Basis approach and the Loewner ma­
trix approach, i.e., we compare a time-domain, POD-based method with a frequency­
domain, rational interpolation method. In Sect. 2.2, we review the two methods, 
showcasing their common traits and differences. Then, in Sect. 2.3, we present a nu­
merical example involving a parametrized partial differential equation modeling the 
transient temperature evolution near the surface of a cylinder immersed in fluid. Af­
ter applying the Reduced-Basis and Loewner frameworks, we compare the resulting 
reduced-order models in both time- and frequency-domain simulations. 
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2.2 Parametrized Model Reduction 

We begin with a short introduction to model reduction of parametrized systems, 
followed by an overview of the two reduction methods compared in this study. 

We define a parametrized linear dynamical system of order n in terms of state­
space equations that depend on parameters p E JRd: 

E(p) i(t) = A(p) x(t) + B(p) u(t), 

y(t) = C(p)x(t)+D(p)u(t), 
(2.1) 

where x(t) E ]Rn denotes the system's state, u(t) E JR the input, y(t) E JR the output, 
and E(p),A(p) E ]Rnxn, B(p), CT (p) E lRn, D(p) E JR are the parameter-dependent 
system matrices. Notice that the system's state x(t) and output y(t) also depend on 
the parameters p as the system evolves in time; however, for notational simplicity, 
we only depict their dependence on time t. 

Model order reduction methods seek models of order k 

E(p)i(t) = A(p)x(t) + B(p) u(t), 

y(t) = C(p)x(t)+D(p)u(t), 

with E(p ), A(p) E ]Rkxk, B(p), cT (p) E JRk, such that 

• the new state x(t) has reduced dimension k « n; 

(2.2) 

• the reduced-order model (2.2) accurately captures the behavior of the full-order 
system (2.1), by introducing a small time-domain approximation error ly(t) -
y(t)I, or a small frequency-domain approximation error IH(s, p) - H(s,p) I, for 

H(s,p) = C(p) (sE(p)-A(p)r1 B(p) +D(p), (2.3) 

denoting a system's transfer function. 

We now review the two methods that approach the model reduction problem from 
different perspectives, but, as we shall ultimately see, both lead to accurate reduced­
order models. 

2.2.1 Reduced-Basis Approach 

Since their introduction in [18,23], Reduced-Basis methods have become a reliable 
tool for obtaining accurate parametrized reduced-order models. Here, we summarize 
the Reduced-Basis approach along the lines of the presentation given in [14]. 

Reduced-Basis methods construct the reduced state x (t) by means ofa judiciously 
chosen Petrov-Galerkin projection vwr. The reduced-order model (2.2) is obtained 
by projecting the system matrices: 

E(p) = wrE(p)V, 

B(p) = wrB(p), 

A(p) = wr A(p)V, 

C(p) = C(p)V, D(p) = D(p), 
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with initial conditions x(O) = wr x(O), and the reduced state defined as 

x(t) :=WT x(t). 

However, before discussing how to choose the projection VWT in a Reduced­
Basis setting, we outline an error analysis [14] that is valid for any general projection 
with wry = Ik. Consider the error introduced by the projection framework when 
approximating the full-order state: 

e(t) := x(t) - VX(t). 

Next, we derive a bound for this error that can be efficiently computed for different 
values of the parameters p and time t. Towards this end, we define the residual vector 

R(t, p) := A(p)VX(t) + B(p)u(t) - E(p)W(t). 

that depends only on the reduced state and the input, and satisfies by construction 
the orthogonality condition wrR(t,p) = 0. 

Then, it is easily checked that the error satisfies the following evolution equation 

E(p)e(t) = A(p)e(t) + R(t,p). 

In most practical applications, the matrix E (p) is invertible for all parameter values 
inside a domain of interest, and, therefore, we can define A(p) = E(p )-1 A(p) and 
R(t,p) = E(p)-1R(t,p) to obtain 

e(t) = A(p)e(t) +:R(t,p), 

which has the solution 

e(t) = dA(p)e(O) + 
t -
e(t-i-)A(p)ft( r, p )dr. 

0 

Then, it immediately follows that the output error can be bounded by 

lly(t) -y(t) II ::::; llCdA.(p) II ( lle(O) II+ 0t llR( r, P) lldr) , 

and, ~ssuming that we can bound the matrix exponential of the full-order system 
llCdA(p) II::::; C1 (p), the error bound becomes 

lly(t)-y(t)ll::::; C1(p) (11e(O)ll + 0t llR(r,p)lldr). (2.4) 

Since for fixed p, the residual R( t, p) depends on the reduced state x(t) and not on 
the original state x(t), the bound can be efficiently evaluated at different values of 
time t, by using numerical quadrature [16] to compute the integral. 

In practical applications, the bound given in (2.4) can be improved by using a 
norm 11 · llG tailored for the specific application, namely, 11 · llG is the vector norm in­
duced by a problem-specific symmetric positive definite matrix G, llzll~ = zT Gz. In 
addition, the bound can be further improved by considering the so-called dual prob-
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lem. For details concerning the dual problem, such as the additional computational 
cost involved, we direct the reader to the discussion given in [12,22]. 

The error bound shown in (2.4), or its tighter dual, represents a key result for the 
ojfline stage of Reduced-Basis methods. In this stage, we obtain the most computa­
tionally intensive quantities needed in the Reduced-Basis approach, and, usually, it 
may take arbitrarily long to complete. Nevertheless, the benefits of the offline com­
putational effort become clear in the online stage, when we perform fast simulations 
of the reduced-order model, with simulation times independent of the full order n. 

In the offline stage, we compute the right-hand term C1 (p) in (2.4), i.e., we bound 
the matrix exponential of the full-order system (2.1 ). In a large-scale setting, this 
task has its own well known challenges, and it often requires great computational 
effort [20,21]. Then, we compute the so-called offline space 

X _ [ ( . ·) ] IDJnx(NM) - ... , x t,, p1 , . . . E JN. (2.5) 

which is a collection of full-order state snapshots obtained for a user-selected time 
grid t;, i = 1 : N, and parameter grid p1, j = 1 : M. Computing the offline space 
requires solving the large-scale equations (2.1), leading to significant computational 
effort. In practice, the snapshots are obtained by discretizing the time t and then 
employing an Euler scheme [16]. 

The next step in the offline stage is to extract a reduced-basis V from the offline 
space X, i.e., to compute the projection matrix VE JRnxk such that column span V c 
column span X. In short, there are various ways of choosing an appropriate V, such 
as using a combination of POD, greedy algorithms and adaptive approaches [12, 13, 
22, 24]. The main idea behind these iterative approaches is to start with an initial 
reduced-basis V =Vo, then evaluate the error bound (2.4) and search for additional 
basis components V1 to obtain an enriched reduced-basis V = [Vo, V1] that in turn 
gives a new lower error bound. In this case study, the Reduced-Basis model shown 
in Sect. 2.3 is obtained using the greedy scheme presented in [22]. 

Once the reduced-basis Vis computed, we can obtain the reduced-order model. It 
is assumed that the parameter dependence of the full-order system (2.1) is separable 
into sums of constant matrices weighted by scalar functions of the parameters: 

mE mA 

E(p) = 2,e;(p)E;, A(p) = 2,a;(p)A;, 
i=l i=l 

mB me 
B(p) = 2,,B;(p)B;, C(p) = Lf1(p)C;. 

i=l i=l 

Then, the reduced-order parameter-dependent matrices result from projecting the 
· ~ T ~ T ~ T ~ 

constant matrices E; = W E;V, A; = W A;V, B; = W B;, C; = C;V, namely 

~ mA ~ 

A(p) = 2,a;(p)A;, 
i=l 

~ mB ~ 

B(p) = 2,,B;(p)B;, 

i=l 
(2.6) 

~ me ~ 

C(p) = Lf1(p)C;. 
i=l i=l 
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The final step in Reduced-Basis methods is the online stage, where the pre-com­
puted reduced-order model from the offline stage is used for fast simulations of the 
output y(t) for different input signals u(t) and parameter values p. The reduced ma­
trices (2.6) can be evaluated for different p in real time, since this operation only 
requires evaluation of scalar functions e;(p),a;(p),f:l;(p) and y;(p). Then, the out­
put y(t) is computed using an Euler scheme involving only the reduced-order ma­
trices, resulting in an overall computational complexity of the online phase that is 
independent of the full-order n. 

2.2.2 Loewner Matrix Approach 

Next, we construct parametrized reduced-order models using a two-variable rational 
interpolation approach. The discussion summarizes the recent results in [3], where 
a Loewner matrix framework was introduced for constructing rational interpolants 
for frequency-domain measurements of systems with one parameter p. 

The Loewner approach starts from measurements of the full-order parametrized 
transfer function (2.3): 

(2.7) 

i = 1 : N, j = 1 : M, and constructs a two-variable rational function H(s,p) that 

interpolates these measurements, H(s;,p1) = </>i,J· 
In the Loewner framework, the order of the reduced model H( s, p) is a pair ( k, q), 

where k is the reduced order in the frequency variables, and q is the reduced order in 
the parameter variable p, with knot necessarily equal to q. Therefore, we can choose 
different orders for s and p, resulting in greater flexibility and a better understanding 
of the structure of the underlying interpolant H(s,p). 

The first step consists in identifying the reduced order ( k, q) directly from 
the given measurements </>;,1, by computing the ranks of appropriate one-variable 
Loewner matrices [2, 19]. Hence, consider the pairs (x;,f;), i = 1 : T, which we par­
tition in any two disjoint sets 

{x;} = {A.1, ... ,A,.}u{µ1, ... ,µe}, 
{f;} = {w1, ... ,wr}U{v1, ... ,ve}, 

(2.8) 

such that r +.e = T. Then, the one-variable Loewner matrix IL associated with (x;, f;) 
and the partitioning in (2.8) is defined as 

r 
VJ -WJ • • • VJ -Wr 1 
µJ-AJ µJ-A,. 

IL- . . - . ·. . . . . . 
Vg-WJ Vg-Wr 
µg-AJ ... µg-Ar 

(2.9) 

Using this definition, we introduce the following one-variable Loewner matrices 
associated with the two-variable measurements given in (2.7): 

ILPJ =IL associated with (s;,</>;,1), 

ILs; =IL associated with (p1,</>;,1), 

j=l :M, 
i= 1 :N, 
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where the index PJ (s;) indicates thatll"PJ (Ls;) corresponds to measurements given 
by constant p = p 1 ( s = s;). Then, the ranks of these Loewner matrices give the order 

(k,q) of the underlying interpolant H(s,p): 

k = max rank Lp1 , 
j 

q = max rank Ls; , 
i 

j=l :M, 

i= 1 :N. 
(2.10) 

Next, we construct the rational interpolant H(s,p) of order (k,q) by computing 
the null space of an appropriate two-variable Loewner matrix Lw. Towards this end, 
we partition the frequency and parameter grids (2.7) into any disjoint sets 

{s;} = {.A1, ... ,Arz1}U{µ1, ... ,µN-n1}, 

{pJ} = {n1, ... ,nm1}U{v1, ... ,vM-m'}, 
(2.11) 

using the following notation for the corresponding partitioned measurements 

w1,1 W1,m1 </>1,m1+1 </>1,M 

Wn1 1 Wn1 m1 <f>n1 m1+1 · · · <f>n1 M 

</>n1+1,1 ... <f>n'+l,m1 Vl,1 V1,M-m1 

(2.12) 
namely «1>11 contains W;,1 := H(.A;, n1) for i = 1 : n', j = 1 : m', while «1>22 contains 
v;,J := H(µ;, v1), for i = 1: (N-n'), j = 1: (M-m'). 

</>N,1 <f>N,m' VN-n',1 ... VN-n',M-m' 

Then, from this partitioning, we define the two-variable Loewner matrix 

L (" ") _ Ve(i),f(i)-We(J)]U) 
w z,J - ( .A ) ( ) ' 

µe(i) - e(j) V f(i) - nJU) 
(2.13) 

of dimension (N-n')(M-m') x (n'm') and with indices e, e,JJ having the fol­
lowing Kronecker structure 

e = [1: N-n'] ®ln' = [1, ... , 1, 2, ... ,2, ... , N-n', ... ,N-n'], 
e= [1 :n1]®1N-n' = [1, ... ,1, 2, ... ,2, ... , n1 , ••• ,n'], 
f= lm1®[l :M-m'] = [1, ... ,M-m',1, ... ,M-m', ... ,1, ... ,M-m'], 
J = lM-m' Q9 [1: m'] = [1, ... ,m', 1, ... ,m', ... , 1, ... ,m'], 

for ln' E JR 1 xn' a row vector with all entries equal to 1. 
The main feature of the Loewner matrix Lw is that its rank encodes the order 

(k,q) of the underlying rational interpolant H(s,p), and, furthermore, H(s,p) can be 
easily constructed from its null space. 
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Theorem 2.1 (Two-variable rational interpolation [3]) if(k,q) is given by (2.10) 
and n' > k, m' > q, then the two-variable Loewner matrix (2.13) is singular, with 

rankLw = n'm' - (n' -k)(m' -q). 

In addition, if we set (n',m') = (k+ l,q+ 1) in (2.11), then the rational function 

H(s,p) of order (k,q) that interpolates all given measurements </>;,1 has the form 

k+Iq+l c ·w . L. L. 1,1 1,1 

~ i=IJ=l (s-A.;)(p-n1) 
H(s,p) = k+Iq+l 

LL c;,J 
i=IJ=l (s-A.;)(p-n1) 

(2.14) 

with c = [c1,1, c1,2, ... , c2,1, c2,2, ... , Ck+l,q+iJ in the null space ofLw, i.e., Lwc = 0. 

Notice that H(s,p) is given in terms of a rational barycentric formula that de­
pends on the two-variables sand p, and is, in fact, a generalization of the one-variable 
rational barycentric formula [2, 4]. It is easily checked that if we multiply both the 
numerator and denominator in (2.14) with rr7~l IT)~~(s-A.;)(p- n1), then, after 
simplification, we obtain two polynomials having the highest degree in s equal to 
k and the highest degree in p equal to q. Hence, H(s,p) is a two-variable rational 
function of order ( k, q). 

The barycentric formula allows us to write down the interpolant in terms of the 
two-variable Lagrange basis (s - A;) (p - n1), i = 1 : n', j = 1 : m', which is formed 
directly from the partitioned frequency and parameter grids in (2.11 ). The Kronecker 
structure of the Lagrange basis dictates the Kronecker structure of the denominator 
in each entry ofLw. As a result, the rank ofLw is not fixed, but it depends on 
the order (k,q) of the underlying interpolant and on the dimensions (n',m') of the 
partitioning. To obtain H(s,p) oforder (k,q), we choose (n',m') = (k+ l,q+ 1). 

Furthermore, the barycentric formula in (2.14) cannot be directly evaluated at the 
grid points A.; and n1 as it requires dividing by zero. However, just like in the case 
of evaluating a one-variable barycentric formula [4], we use the convention that 
H(A.;,n1) = c;,1w;,1/c;,1 = w;,1. Therefore, H(s,p) interpolates the measurements 
w;,1 contained in <P11 by construction. Then, we force interpolation of the remaining 
measurements <P12, <P21, <P22 by computing the barycentric coefficients c such that 
Lwc= 0. 

In practice, it is possible to obtain models of even lower order ( k, q) than the one 
given by (2.10). Choosing k <max rank LPj and q <max rank Ls;, results in a 
Loewner matrix Lw that is full rank. However, if Lw is close to being singular, 
we can still compute barycentric coefficients such that Lwc ~ 0. In this case, the 
coefficients c give a rational function H(s,p) (2.14) that interpolates <P11 by con­
struction, and, approximates the entries in <P12, <P21, <P22 with small error, i.e., we 
get a two-variable rational approximant, instead of an interpolant. 

Finally, notice that equation (2.14) gives H(s,p) in transfer function form as a 
ratio of barycentric sums. Therefore, evaluating H(s,p) for a particular frequency s 
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and parameter p, can be efficiently implemented using only O(kq) operations. Nev­
ertheless, in practical applications, we also need to have H(s,p) expressed in terms 
of state-space matrices, as in (2.2). Next, we present two simple state-space realiza­
tions for H(s,p). 

Lemma 2.1 (State-space realization) The rational barycentric form H(s,p) in 
equation (2.14) has the following state-space realization 

H(s,p) = C(p) (sE-A(p) )-l B 

with the system matrices defined as 

-1 
0 

A(p) = 

q+l C·. 
ai(P) = L _1,1_, 

J=l p-n1 

(2.15) 

The proof of this result relies on exploiting the non-zero structure of the matrices 
together with a cofactor expansion to show that det(sE -A(p)) equals the denom­
inator in (2.14). For simplicity, the full details are omitted here. 

The above state-space realization uses system matrices of dimension k + 1 and 
has no D(p) term. The parameter dependencies are present only in the C(p) and 

A(p) matrices, and take the form of barycentric sums involving the parameter p. 

In contrast to standard state-space realizations that use a companion matrix A(p) 
and coefficients ai(p) that are polynomials in p [l], the realization given in (2.15) 
is better suited for practical implementations, since the coefficients ai (p) do not 
contain powers of p. 

Furthermore, we can also avoid barycentric sums by using the following result. 

Lemma 2.2 (State-space realization [3]) The rational barycentric form H(s,p) in 
equation (2.14) has the following state-space realization 

ii(s,p) = ce(s,p)-1 n (2.16) 
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with the system matrices de.fined as 

e(s,p)= [J(s,;,k) J*(p~n,q) ~ ] ,C= [oo -e~+1],B= [~], 
lB 0 [J*(p,n,q),r] 0 

A= 

J(s,A,k) = 

[ 
CJ,! Ck+l,1 l 

CJ,~+! :-.-. Ck+;,q+l ' 

s-A1 A2 -s 
s-A1 A3 -s 

S-A1 

lB= [ 
c1,1w1,1 Ck+1,1Wk+1,1 l 

CJ,q+l~l,q+l ::·. Ck+l,q+l~k+l,q+l ' 

Unlike the realization of Lemma 2.1, the parameter p enters only linearly in the 
resolvent B(s,p) = sE -A(p). However, having such a simple parameter depen­
dence results in a realization of dimension k+ 2(q+ 1). 

We also remark that the existence of state-space realizations with linear depen­
dence in p and minimal dimension k is still an open problem [ 6, 7, 17, 25]. Such min­
imal realizations are known only for the special case ofH(s,p) having a separable 
denominator, i.e., the denominator can be factored as the product of two one-variable 
polynomials ins and p [IO]. Nevertheless, the realizations provided in this section 
are useful in practical applications, since their dimensions are close to the minimal 
dimension k in a reduced-order setting. 

2.2.3 Discussion 

Next, we discuss the common traits and differences between the two methods. We 
begin with the computational effort required for each. Notice that the most compu­
tationally intensive part of the Reduced-Basis approach is the offline stage. Its com­
putational cost depends on the number of operations needed for obtaining the snap­
shots and on the algorithm used for assembling the reduced basis. For the Loewner 
approach, the computational effort consists in computing the full-order transfer func­
tion measurements, the reduced-order (k,q) and the null space oflLw. In practice, 
computing (k,q) does not require the ranks of all Loewner matrices lLPj and lLs;; 
in fact, the ranks of only a few of these matrices usually give a good indication for 
appropriate values of (k,q). The most computationally intensive part is computing 
the full-order measurements H(s;,p1 ), since it involves the full-order matrices and 
(2.3). In most practical applications, the resolvent sE(p) -A(p) has sparse structure; 
hence, we can use sparse linear system solvers [26] in (2.3) to efficiently compute 
the measurements. 

The use of explicit transfer function measurements H(s;,p1) has another advan­
tage. Suppose we do not have a model of the full-order system (2.1 ), but we only 
have access to its transfer function measurements; for instance, suppose we use a 
device to take frequency response measurements of a system. Then, we can still ob-
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tain a reduced-order model by applying the Loewner approach; i.e., we identify a 
reduced-order model directly from the available measurements. 

We also remark that the results given in [3] developed the Loewner approach 
for the case of systems that depend on a scalar parameter p, unlike the Reduce­
Basis approach which can accommodate a vector of parameters p. However, since 
the publication of [3], the authors of this case study have generalized the Loewner 
approach to a vector of parameters p. A detailed discussion of this case is scheduled 
for publication [15]. 

Perhaps the most obvious difference between the two methods is the possibility 
of choosing different reduced-orders for s and p in the Loewner approach. This is a 
direct consequence of using the two-variable Lagrange basis, and, in practice, it can 
prove useful to differentiate betweens and p, since some systems have an inherently 
low order dependence on the parameter p. This feature is discussed in detail in the 
example given in Sect. 2.3. 

The common trait of the two methods is the fact that they both offer ways of effi­
ciently evaluating the reduced-order models for different values of p. The Reduced­
Basis approach achieves this in the online stage using equation (2.6), while the 
Loewner approach uses the rational barycentric formula (2.14). 

Finally, after these theoretical remarks, we are ready to see how these methods 
compare in a practical application. In the next section, we give such an example. 

2.3 Numerical Experiments 

In this section, we compare the Reduced-Basis approach and the Loewner rational 
interpolation approach through a numerical example treating a parameter-dependent 
partial differential equation. This parametrized system models the transient evolu­
tion of the temperature field near the surface of a cylinder immersed in fluid. For 
details on deriving the state-space matrices (2.1) using a finite element spatial dis­
cretization, we direct the reader to the book [22] and its software package. 

The parameter dependence is present only in the A matrix as 

(2.17) 

with the parameter p E [0.1, 100] representing the Peclet number. The dimension of 
the full-order state-space matrices (2.1) is n = 878, and the output matrix C is highly 
sparse with dimension 919 x 878, as it maps then= 878 system states to the 919 
nodes in the spatial discretization. 

2.3.1 The Reduced-Order Models 

First, we obtain a Reduced-Basis model (2.6) of order k = 11. This particular 
reduced-order model is already available as part of the software package included 
with [22]. The Reduced-Basis Vis computed using a greedy approach and an offiine 
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Fig. 2.1. Singular values ofLp
1 

(green dots) and Ls; (blue dots), i =I : N, j =I : M 

space (2.5) generated from a parameter grid p E [0.1, I 00] and a time grid t E [O, I] 
having time step ot = 0.0 I. We denote the Reduced-Basis model with I1111. 

Next, to obtain the Loewnermodel (2.15), we consider a frequency grid ofN = 50 
frequencies s; logarithmically spaced in [10-2 , 102], and a parameter grid of M = 50 
parameters p1 logarithmically spaced in [0.1, I 00]. We then compute the associated 
transfer function measurements </>;,1 = H(s;,p1 ). 

The crucial step of the Loewner approach is to determine the reduced order (k, q), 
with krepresenting the order in the frequency variables, and qthe order in the param­
eter variable p. Therefore, in Fig. 2.1, we plot the singular values of the one-variable 
Loewner matrices lLPi and lL,7, and, from (2.10), the maximum rank oflLPi gives 
k and the maximum rank of lL,7 gives q. Then, by Theorem 2.1, the two-variable 
Loewner matrix lLw is singular and the barycentric coefficients c in its null space, 
lLwc = 0, give a model H(s,p) (2.14) that interpolates all given measurements </>;,1 . 

However, for the purpose of comparing the Loewner model with the Reduced­
Basis model, we select k and q lower than the ranks oflLp

1 
and lL,7, namely, we take 

k = 11, the same value as for the Reduced-Basis model. In addition, we take q = 7 
to showcase that the order in p can be chosen to be different from the order ins. 

As a result of this choice of (k, q) = (11, 7), the two-variable Loewner matrix 
lLw is not singular. However, its smallest singular value is equal to 3 · I o-8, i.e., 
lLw is close to being singular, and we can still compute barycentric coefficients c 
such thatlLwc;:::::: 0. Thus, H(s,p) in (2.14) approximates the given measurements 
</>;,1, instead of interpolating them. The final step consists in forming a state-space 
realization using either (2.15) or (2.16). We denote the Loewner model with In,. 

2.3.2 Comparison of the Reduced-Order Models 

We now compare IRB, the Reduced-Basis model, and In,, the Loewner model. Be­
fore presenting their time- and frequency-domain behavior, we briefly discuss their 
reduced orders. 

Notice that the parameter dependence (2.17) of the full-order system has a ratio­
nal form, present only in the A(p) matrix; therefore, the resolvent (sE -A(p) )-1 

E 

C 878 x 878 is also rational in both sand p. Hence, the system's transfer function H(s,p) 
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(2.3) is a two-variable rational function with the highest degree ins equal to 878 and 
highest degree in p equal to 878, i.e., H(s,p) has order (878, 878). 

Since the projection framework (2.6) preserves the structure of the parameter 
dependence, the Reduced-Basis model I 1w is also rational in both sand p, and has 
order ( 11, 11 ), given by the dimension of the reduced-order system matrices (2.6). 
On the other hand, IIL has the flexibility of differentiating between the orders of s 
and p. Therefore, we have selected a lower order for the parameter p, resulting in a 
Loewner model IIL of order ( 11, 7). 

Next, we compare the frequency-domain behavior of I 1w and IJL. In Fig. 2.2, we 
plot the frequency response of the two models for 4 different values of the parameter 
p E {0.1, 1, 10, 100}. The models have one input and 919 outputs, with frequency 
responses H1w(jwi,p), HJL(jw;,p) E IC919 x 1. To get a single line plot for each pa­
rameter value, we show the average of each frequency response. 

On one hand, Fig. 2.2 shows that IRB provides a loose approximation of the 
full-order system frequency-domain behavior. This was to be expected, since the 
Reduced-Basis method is tailored for approximation of time-domain snapshots. On 
the other hand, IIL accurately matches the full-order system, since the Loewner ap­
proach is a bespoke frequency-domain method. Nevertheless, for this particular ex­
ample ofa parametrized partial differential equation, the frequency-domain behavior 
has secondary importance. Our primary goal is to accurately match the time-domain 
transient behavior using reduced-order models. 

Therefore, we now simulate the transient behavior of the temperature field when 
the system is excited by the input u(t) = lOt fort E [O, 1]. Figure 2.3 shows the 
temperature field around the cylinder at final time t = I when the simulation is run 
for the parameter value p = 0.1. Because of the problem's symmetry, we plot only 
half of the rectangular domain and half of the cylinder. 

As expected, the Reduced-Basis approach gives an accurate approximation of 
the temperature field, with the relative error ly(t)-y(t)l/ly(t)I bellow io-2 . In 

F'r quo ncy r e pon sc 

fr c q11 e n y w 

Fig. 2.2. Frequency responses of: full-order system H(j w,p) (black) of order (878, 878), 
reduced-order model 'I:,RB (red) of order (11, 11 ), and 'I:,IL (green) of order (11, 7), for p E 
{0.1, I, 10, 100} 
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Fig. 2.3. Temperature field at time t = 1 for input u(t) = 1 Ot and p = 0.1. Upper pane: 
Reduced-Basis model .ERR· Lower pane: the Loewner model l:JL. Right-hand side: the rel­
ative error (in logarithmic scale) between the reduced-order models and the full-order finite 
element model 

addition, the lower half of Fig. 2.3 shows that the Loewner approach produces similar 
levels of accuracy. 

Therefore, through this numerical example, we have seen that, although they ap­
proach the problem from different perspectives, both methods produce accurate re­
duced-order models. 

2.4 Conclusions 

Motivated by the ever increasing need for accurate, low dimension models of param­
eter-dependent systems, this case study is one of the first efforts to compare differ­
ent approaches for parametrized model reduction. More precisely, we compared the 
well known Reduced-Basis approach with the recently introduced Loewner matrix 
approach for rational interpolation. 
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We saw that the main difference between the two is the fact that Reduced-Basis 
uses time-domain snapshots, while the Loewner approach uses frequency-domain 
transfer function measurements. Furthermore, the key feature of Reduced-Basis is 
an error bound; while for the Loewner approach, it is the possibility of choosing 
different reduced orders for the frequency and parameter variables. 

Although different in their approach, both methods proved successful at comput­
ing accurate reduced-order models in a numerical example involving a parametrized 
partial differential equation. 
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Comparison of Some Reduced Representation 
Approximations 

Mario Bebendorf, Yvon Maday and Benjamin Stamm 

Abstract In the field of numerical approximation, specialists considering highly 
complex problems have recently proposed various ways to simplify their underly­
ing problems. In this field, depending on the problem they were tackling and the 
community that are at work, different approaches have been developed with some 
success and have even gained some maturity, the applications can now be applied to 
information analysis or for numerical simulation of PD E's. At this point, a crossed 
analysis and effort for understanding the similarities and the differences between 
these approaches that found their starting points in different backgrounds is of in­
terest. It is the purpose of this paper to contribute to this effort by comparing some 
constructive reduced representations of complex functions. We present here in full 
details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation 
Method (EIM) together with other approaches that enter in the same category. 

3.1 Introduction 

This paper deals with the economical representation of dedicated sets of data, that 
are currently- and more and more importantly- available stemming out of various 
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experiences or given by formal expressions. The amount of information that can be 
derived out of a given massive set of data is far much smaller than the size of the 
data itself, therefore, parallel to the increasing size of data acquisition and storage 
available on computer architectures, an effort for post processing and economically 
represent, analyze and derive pertinent information out of the data has been done 
during the last century. The main idea starts from the translation of the fact that the 
data are dedicated to some phenomenon and thus, there exists a certain amount of 
coherence in these data which can be separated into two classes: deterministic or 
statistical. Among them have been proposed: regularity, sparsity, small n-width etc. 
that can be either assumed, verified or proven. 

The data themselves can be known in different ways, either (i) completely explic­
itly, like for instance (i-1) from an analytic representation or at least access to the 
values at every point, (i-2) or only given on a large set of points, (i-3) or also given 
through various global measures like moments, or (ii) given implicitly through a 
model like a partial differential equation (PDE). The range of applications is huge, 
examples can be found in statistics, image and information process, learning pro­
cess, experiments in mechanics, meteorology, earth sciences, medicine, biology, etc. 
and the challenge is in computationally processing such a large amount of high­
dimensional data so as to obtain low-dimensional descriptions and capture much of 
the phenomena of interest. 

We consider the following problem formulation: Let us assume that we are given 
a (presumably large) set ff of functions <p E ff defined over Qx C JRdx (with dx ~ 1). 
Our aim is to find some functions hi, h1, ... , hQ : Qx ---+ JR such that every <p E ff 

can be well approximated as follows 

Q 
<p(x) R:; .L, ipqhq(x), 

q=l 

where Q «dim( span{ ff}). As said above, the ability for ff to posses this property is 
an assumption. It is precisely stated under the notion of small Kohnogorov n-width, 
defined as follows: 

Let ff be a subset of some Banach space &;" and V Q be a generic Q-dimensional 
subspace of &;". The angle between ff and V Q is 

The Kohnogorov n-width of ff in &;" is given by 

dQ(ff, &;°) := inf{E(ff;VQ) IVQ a Q-dimensional subspace of&;°}. 

The n-width of ff thus measures to what extent the set ff can be approximated by 
a n-dimensional subspace of &;". 

This assumption of small Kohnogorov n-width can be taken for granted, but there 
are also reasons on the elements of ff that can lead to such a smallness such as regu­
larity of the functions <p E ff. As an example, we can quote, in the periodic settings, 



3 Comparison of Some Reduced Representation Approximations 69 

the well-known Fourier series. Small truncated Fourier series are good approxima­
tions of the full expansion ifthe decay rate of the Fourier coefficients is fast enough, 
i.e. if the functions <p have enough continuous derivatives. In this case, the basis is 
actually multipurpose since it is not dedicated to the particular set ff. Fourier series 
are indeed adapted to any set of regular enough functions, the more regular they are, 
the better the approximation is. Another property for ff to have a small Kohnogorov 
n-width is that it satisfies the principle of transform sparsity, i.e., we assume that the 
functions <p E ff are expressed in a sparse way when written in some orthonormal 
basis set { l/fi }, e.g. an orthonormal wavelet basis, a Fourier basis, or a local Fourier 
basis, depending on the application: this means that the coefficients cpi = ( <p, l/fi) 
satisfy, for some p, 0 < p < 2, and some R: 

( ) 
1/p 

ll<f'llRP = L l<Pilp ::::; R. 
l 

A key implication of this assumption is that if we denote by <(JN the sum of the N 
largest contributions then 

3C(R,p), V<p E ff, ll<f'- <f'Nllt2::::; C(R,p)(N + 1) 112- 1/P, 

i.e. there exists a contracted representation of such a <p. Note that the representation 
is adaptive and tuned to each <p (it is what is called a nonlinear approximation). 
However, under these assumptions, and if ff is finite dimensional (with a dimension 
that is much larger than N), the theory of compressed sensing (see [29]), at the price 
ofhaving a slight logarithmic degradation of the convergence rate, allows to propose 
a non-adaptive recovery of £P functions, with p ::::; 1, that is ahnost optimal. We refer 
to [29] and the references therein for more details on this question. Anyway, these 
are cases where the set of basis functions {hi} does not constitute a multipurpose 
approximation set, all the contrary: it is tuned to that choice of ff and will not have 
any good property for another one. 

The difficulty is of course to find the basis set {hi}. Note additionally that, from 
the definition of the small Kohnogorov n-width, except in a Hilbertian framework, 
the optimal elements need not even be in span{ ff}. 

Let us proceed and propose a way to better identify the various elements in ff: 
we consider that they are parametrized with y E QY c JRdy (with dy ~ 1), so that 
ff consists of the parametrized functions f : Qx x QY ----+ R In what follows, we 
denote the function fas a function of x for some fixed parameter value y as fy := 
f( · ,y). However, the role of x and y could be interchanged and both x and y will be 
considered equally as variables of the same level or as variable and parameter in all 
what follows. 

In this paper, we present a survey of algorithms that search for an affine decom­
position of the form 

Q 
f(x,y) R:; L, gq(y) hq(x). (3.1) 

q=l 
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We focus on the case where the decomposition is chosen in an optimal way (in terms 
of sparse representation) and additionally we focus on methods with minimal com­
putational complexity. It is assumed that we have a priori some or all the knowledge 
on functions fin§, i.e. they are not implicitly defined by a PDE. In that "implicit" 
case there exists a family of reduced modeling approaches such as the reduced basis 
method; see e.g. [62]. 

Note that the domains .Qx and .Oy can be with finite cardinality Mand N, in which 
case the functions can be written as matrices, then, the above algorithms can often be 
stated as a low-rank approximation: Given a matrix M E JRMxN, find a decomposition 
of the matrix M: 

where U is of size M x Q and V of size N x Q. 
In this completely discrete setting, the Singular Value Decomposition (SVD), or 

the related Proper Orthogonal Decomposition (POD), yields an optimal (in terms 
of approximability with respect to the II · llrnorm) solution, but is rather expensive 
to compute. After presenting the POD in a general setting in Sect. 3.2, we present 
two alternatives, the Adaptive Cross Approximation (ACA) in Sect. 3.3 and the Em­
pirical Interpolation Method (EIM), in Sect. 3.4, which originate from completely 
different backgrounds. We give a comparative overview of features and existing 
results of those approaches which are computationally much cheaper and yield in 
practice similar approximation results. The relation between ACA and the EIM is 
studied in Sect. 3.5. Section 3.6 is devoted to a projection method based on incom­
plete data known as Gappy POD or Missing Point Estimation, which in some cases 
can be interpreted as an interpolation scheme. 

3.2 Proper Orthogonal Decomposition 

Let us start by assuming that we have an unlimited knowledge of the data set and that 
we have unlimited computer resources - coming back at the end of this section to 
more realistic matter of facts. The first approach is known under the generic concept 
of Proper Orthogonal Decomposition (POD) which is a mathematical technique that 
stands at the intersection of various horizons that have actually been developed inde­
pendently and concomitantly in various disciplines and is thus known under various 
names, including: 

• Proper Orthogonal Decomposition (POD): a term used in turbulence; 
• Singular Value Decomposition (SVD): a term used in algebra; 
• Principal Component Analysis (PCA): a term used in statistics for discrete ran­

dom processes; 
• the discrete Karhunen-Loeve transform (KLT): a term used in statistics for con­

tinuous random processes; 
• the Hotelling transform: a term used in image processing; 
• Principal Orthogonal Direction (POD): a term used in geophysics; 
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• Empirical Orthogonal Functions (EOFs): a term used in meteorology and geo-
physics. 

All these somewhat equivalent approaches aim at obtaining low-dimensional ap­
proximate descriptions of high-dimensional processes, therefore eliminating infor­
mation which has little impact on the overall understanding. 

3.2.1 Historical Overview 

As stated above, the POD is present under various forms in many contributions. 
The original SYD was established for real-square matrices in the 1870's by Bel­

trami and Jordan, for complex square matrices in 1902 by Autonne, and for general 
rectangular matrices in 1936 by Eckart and Young; see also the generalization to 
unitarily invariant norms by Mirsky [58]. The SYD can be viewed as the extension 
of the eigenvalue decomposition for the case of non-symmetric matrices and non­
square matrices. 

The PCA is a statistical technique. The earliest descriptions of the technique were 
given by Pearson [63] and Hotelling [44]. The purpose of the PCA is to identify the 
dependence structure behind a multivariate stochastic observation in order to obtain 
a compact description of it. 

Lumley [51] traced the idea of the POD back to independent investigations by 
Kosambi [47], Loeve [50], Karhunen [46], Pougachev [64] and Obukhov [59]. 

These methods aim at providing a set of orthonormal basis functions that allow to 
express approximately and optimally any function in the data set. The equivalence 
between all these approaches has been also investigated by many authors, among 
them [48,56, 71]. 

3.2.2 Algorithm 

Let us now present the POD algorithm in a semi-discrete framework, that is, we 
consider a finite family of functions {fy} yEDjrain where fy : .Qx ----+ JR for each y E 

.QY = .a;rain where .a;rain is finite with cardinality N. In this context, the goal is to 
define an approximation PQ[fy] to fy defined by 

Q 
PQlfy](x) = L gq(y) hq(x) (3.2) 

q=l 

with Q « N. The POD actually incorporates a scalar product, for functions depend­
ing on x E .Ox, and the above projection is then an orthogonal projection on the 
Q-dimensional vectorial space span { hq, q = 1, ... , Q}. 

The question is now to select properly the functions hq. With a scalar product, 
orthonormality is useful, since we would like that these modes are selected in order 
that they carry as much of the information that exists in the {fy }yEnjrain, i.e. the first 
function h1 should be selected such that it provides the best one-term approximation 
similarly, then hq should be selected so that, with h1, h1, ... , hq-1 it gives the best q-
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Scheme 3.1. Proper orthogonal decomposition (POD) 

a. Let a :rain = {Y1, •.. ,YN } be a -dimen ional dicrete repre entation of ily. 
b. Con truct the correlation matrix 

I ::5 i, j :S N, 

where(· ·).a, denote a scalar product of functions depending on ilx. 
c. Then, ol e fo r the Q largest eigenvalue-eigenvector pairs (A,.1, vq ) uch that 

Vq = 'Aqvq , I :::; q :::; Q. 

d. The orthogonal POD basi function {hr 
then given by th linear combinations 

N 

hq (x) = L (vq)11f(x Y11), I ::5 q ::5 Q x E ilx, 
11= 1 

and where (vq )11 denote then-th coefficient of the eigenvector vq . 

(3.3) 

Approximation. The approximation PQ[/y] to fy : ilx ---> JR, for any y E ily, is then given 
by 

0 

PQ [/y](x) = ~ gq(y) hq (x), 
q= I 

'ti (y) Y'"hq~llx WI lgq = I I . 
lq. lq flx 

term approximation. The best q-term above is understood in the sense that the mean 
square error over ally E Q;rain is the smallest. Such specially ordered orthonormal 
functions are called the proper orthogonal modes for the function f(x,y). With these 
functions, the expression (3.2) is called the POD off and the algorithm is given in 
Table 3.1. 

Proposition 3.1 The approximation error 

minimizes the mean square error V fv LyEDrin llfy- 9"Q[.fy] llhx over all projec­

tion operators 9"Q onto a space of dimension Q. It is given by 

N 

d~OD(Q) = L Aq, (3.4) 
q=Q+l 
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where { \?+ 1, ... , AN} denotes the set of the N - Q smallest eigenvalues of the eigen­
value problem (3.3). 

Remark 3.1 (Relation to SVD) If the scalar product ( ·, ·) ilx is approximated in the 
sense of £2 on a discrete set of points .a;rain = { .X1, ... ,.XM} C .Qx, i.e. 

(v, w)Qtrain = l.!2xl f v(.X;)w(.X;), 
x M i=l 

then we see that C =AT A where A is the matrix defined by A;,1 = /Tjjjjjfpj(x;). And 
thus, the square roots of the eigenvalues (3.3) are singular values of A. 

Remark 3.2 (Infinite dimensional version) In the case where the POD is processed by 
leaving the parameter y continuous in .QY, the correlation matrix becomes an operator 
C: L2 (.Qy) ----+ L2 (.Qy) with kernel C(y1 ,Y2) = (!YI ,fy2 )Qx that acts on functions of 
y E .QY as follows 

Assuming that f E L2 (.Qx x .Qy), by the results obtained in [67] (that generalize 
Mercer's theorem to more general domains) there exists a sequence of positive real 
eigenvalues (that can be ranked in decreasing order) and associated orthonormal 
eigenvectors, which can be used to construct best L 2-approximations (3 .1 ). 

The infinite dimensional version is important to understand the generality of the 
approach, e.g. how the various POD algorithms are linked together. In essence, this 
boils down to spectral theory of self-adjoint operators, either finite (in the matrix 
case) or infinite (for integral operator defined with symmetric kernels). Such opera­
tors have positive real eigenvalues and the corresponding eigenvectors can be ranked 
in decreasing order of eigenvalues. The approximation is based on considering the 
only eigenmodes that corresponds to the largest eigenvalues, they are those that carry 
the maximum information. 

In practice though, both in the x and they variables, sample sets .a;rain and .a;rain 
are devised. Depending on the size ofN, the solution of the eigenvalue problem (3.3) 
can be prohibitively expensive. Most of the time though, there is not much hint on 
the way these training points should be chosen and they are generally quite large sets 
withN» Q. 

We finally remind that the original goal is to approximate any function f(x,y) 
for all x E .Qx and y E .QY. In this regard, the error bound (3.4) only provides an 
upper error estimate for functions fy with y E .a;rain and no certified error bound 
for functions fy withy E .QY \.a;rain can be provided. 
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3.3 Adaptive Cross Approximation 

In order to cope with the difficulty of implementation of the POD algorithms, let us 
present here the Adaptive Cross Approximation. The approximation leading to (3 .1) 
is 

(3.5) 

with points Xq, yq, q = 1, ... , Q, chosen such that the matrix 

is invertible. Notice that while PQ used in the construction of the POD is an orthog­
onal projector, JQ : c0 (!2x) ----+ V Q is an interpolation operator from the space of 
continuous functions c0(!2x) onto the system V Q := span{fy1 , ••• ,fyQ}, i.e. 

JQ[h](xq) =f(xq,y) forallyandq= 1, ... ,Q. 

Due to the symmetry ofx andy in (3.5), we also have JQ[hq](x) = f(x,yq) for allx 
and q = 1, ... ,Q. 

3.3.1 Historical Overview 

Approximations of type (3.5) were first considered by Micchelli and Pinlrus in [57]. 
There, it was proved for so-called totally positive functions f, i.e. continuous func­
tions f: [O, 1] x [O, 1] ---+JR with non-negative determinants 

[
/( ~1:' V1) ... f( ~1:' Vq )] 

f ( ~q, V1 ) ... f ( ~q, Vq) 

for all 0 :::; ~1 < ... < ~q :::; 1, 0 :::; V1 < ... < Vq :::; 1, and q = 1, ... , Q, that such 
approximations are optimal with respect to the L 1-norm, i.e. 

1 I Q I 1 f(x,y) - L uq(x)vq(y) dydx = 
0 q=l 0 

1 

lf(x,y) - JQ[h] (x) I dydx, 
0 

where JQ is defined at implicitly known nodes x1, ... ,XQ andy1, ... ,yQ; see [57] for 
an additional technical assumption. 
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Instead of L 1-estimates, it is usually required to obtain L =-estimates. The obvious 
estimate 

contains the expression 

Since there is usually no estimate on the previous infimum (note that V Q also de­
pends on§= {fy}yED,J, one tries to relate fy-JQ[fy] with the interpolation error 
in another system W Q =span{ w1, ... , wQ} of functions (e.g. polynomials, spheri­
cal harmonics, etc.); cf. [6, 12]. Assume that the determinant of the Vandermonde 
matrix W Q := [wi(x1 )]i,J=l, ... ,Q does not vanish and let L: Qx --> ]RQ be the vector 
consisting of Lagrange functions Li E WQ, i.e. L;(x1) = 8i1, i,j = I, ... ,Q. Then, 
the interpolation operator JQ defined over cO(Qx) with values in WQ can be repre­
sented as 

and we obtain 

Hence, for any y E ily 

where 
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3.3.2 Construction of Interpolation Nodes 

The assumption that the determinant of the Vandermonde matrix W Q does not van­
ish, can be guaranteed by the choice of x1, ... , XQ. To this end, let Q linearly indepen-
dent functions w1, ... , WQ be given as above. As in [8], we construct linearly indepen-
dent functions £1, ... ,£.Q satisfying Cq(xp) = 0, p < q, and span{ £1, ... ,£.Q} = WQ, 
q:::; Q, in the following way. Let £.1 = w1 andx1 E Qx be a maximum of 1£1 I- Assume 
that £.Q-1 has already been constructed. For the construction of £.Q define £.Q,O := WQ 
and 

·- Cq £.Q,q .- £.Q,q-1 - £.Q,q-1 (xq) Cq(xq), q = 1, ... , Q- 1. 

Then £.Q,Q-1 (xq) = 0, q < Q, and span{ £.Q,o, ... ,£.Q,Q-i} = span{£.1, ... ,£.Q-1, WQ}· 
Hence, we set £.Q := £.Q,Q-1 and choose 

XQ := arg sup 1£.Q(x)I. 
xEflx 

(3.7) 

The previous construction guarantees unisolvency at the nodes xq, q = 1, ... , Q. 

Lemma 3.1 /t holds that det W Q -/=- 0. 

Proof Since span{ £1, ... ,£.Q} = span{w1, ... , WQ} it follows thatthere is anon-singular 
matrix TE )RQxQ such that 

Hence, RQ = TWQ where RQ := [£.i(x1 )]~J=l is upper triangular. The assertion fol­
lows from 

As an example, we choose W Q = IIQ-1 the space of polynomials of degree at most 
Q- 1. Then, it follows from (3.6) that ACA converges if, e.g., f is analytic with 
respect to x, and the speed of convergence is determined by the decay off's deriva­
tives or the elliptical radius of the ellipse in which f has a holomorphic extension. 
Furthermore, it can be seen that 

Q-1 
£.Q(x) = IJ (x-xq)· 

q=l 

Hence, the choice (3.7) ofxQ is a generalization ofa construction that is due to Leja 
[ 49]. Leja recursively defines a sequence ofnodes { x1, ... ,XQ} for polynomial inter­
polation in acompactsetK c <C as follows. Letx1 E Kbe arbitrary. Oncex1, ... ,XQ-1 

have been found, choose XQ E K so that 
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In [68] it is proved that Lebesgue constants associated with Leja points are subex­
ponential for fairly general compact sets in C; see also [65]. Hence, analyticity is 
required in general for the convergence of the interpolation process. 

The expression CY21/1 on the right-hand side of (3.6) can be controlled by the 
choice of the pointsy1, ... ,yQ E fly. Due to Laplace's theorem 

q= 1, ... ,Q, 

where Mq(y) arises from replacing the q-th column of MQ by the vector 
lf(x1 ,y), ... ,f(xQ,y)f, we obtain that CY21/1 :::; Q ify1, ... ,yQ are chosen such that 

(3.8) 

In connection with the so-called maximum volume condition (3.8), we also refer to 
the error estimates in [66] which are based on the technique of exact annihilators 
(see [2, 3]) in order to provide similar results as (3.6). 

3.3.3 Incremental Construction 

The maximum volume condition (3.8) is difficult to satisfy by an a-priori choice 
of Y1, ... ,yQ. Therefore, the following incremental construction of approximations 
(3.5), which is called Adaptive Cross Approximation (ACA) [6], has turned out to be 
practically more relevant. Let ro(x,y) := f(x,y) and define the sequence ofremain­
ders as 

( ) ._ ( )- rq-1(x,yq)rq-1(xq,y) 
rq x,y .-rq-1 x,y ( ) , q= 1, ... ,Q, 

rq-1 Xq,yq 
(3.9) 

where Xq andyq are chosen such that rq-1 (xq,yq)-/=- 0. Then, the algorithm is sum­
marized in Table 3.2. 

Since rq-1 (xq,Yq) coincides with the q-th diagonal entry of the upper triangular 
factor of the LU decomposition ofMQ, we obtain that detMQ-/=- 0. In [12], it is shown 
that 

f(x,y) = JQl/Y](x) +rQ(x,y) (3.10) 

and 

This method is used in [21] (see also [23]) under the name Geddes-Newton series 
expansion for the numerical integration of bivariate functions, where instead of the 
maximum volume condition (3.8) (xq,Yq) is found from maximizing lrq-11. This 
choice of (xq,Yq) is usually referred to as global pivoting. Another pivoting strategy 



78 M. Bebendorf et al. 

Scheme 3.2. Bivariate Adaptive Cross Approximation (ACA2) 

et q := I. 
While err < tol 

a. Define the remainder rq- 1 = f - 2,i~i c; and choose (xq,Yq) E Dx x D y such that 

b. Defi ne the next ten or product by 

( ) 
rq- 1(x,yq)rq- 1(xq,y) 

Cq x,y = ( ) . rq- 1 Xq ,yq 

c. Define the error level by 

and et q := q + I. 

is the so-called partial pivoting, i.e., Yq is chosen in the q-th step such that 

for Xq E .Qx chosen by (3. 7). For the latter condition (and in particular for the stronger 
global pivoting) the conservative bound <J2 lf1 :::; 2Q - 1 can be guaranteed; see [ 6]. 
The actual growth of CJ2 [/] with respect to Q is, however, typically significantly 
weaker. 

3.3.4 Application to Matrices 

Approximations of the form (3.5) are particularly useful when they are applied to 
large-scale matrices A E JRMxN. In this case, (3.5) becomes 

A ~A- ·-A A- 1 A ,........_, .- :~a r~a r~:' (3.11) 

where r := {i1, ... ,iQ} and CJ:= {Ji, ... ,}Q} are sets ofrow and column indices, 
respectively, such that Ar.CJ E ]RQxQ is invertible. Here and in the following, we use 
the notation Ar .. for the rows r and A.CJ for the columns CJ of A. Notice that the 
approximation A has rank at most Q and is constructed from few of the original ma­
trix entries. Such kind of approximations were investigated by Eisenstat and Gu [37] 
and Tyrtyshnikov et al. [35] in the context of the maximum volume condition. Again, 
the approximation can be constructed incrementally by the sequence of remainders 
R(O) :=A and 

R(q-1) R(q-1) 
R(q) ·= R(q-1) - :,1q iq,: 

. R(q-1) 
lqJq 

q= l, ... ,Q, 
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where the index pair (iq,jq) is chosen such that R~q1-:-- 1 l-/=- 0. The previous condition 
q q 

guarantees that A7:,cr is invertible, and we obtain 

If A arises from evaluating a smooth function at given points, then R (q) can be esti­
mated using (3 .6). 

In order to avoid the computation of each entry of the remainders R (q), it is im­
portant to notice that only the entries in the iq-th row and the jq-th column ofR(q-l) 
are required for the construction of A. Therefore, the following algorithm computes 
the column vectors 11~ := R(q1-l) and row vectors Vq := R1(q~!J resulting in 

~ ., q q1· 

Q T 
- ""' UqVq A- L.,--

- q=l (vq)Jq. 
(3.12) 

The iteration stops after Q steps ifthe error satisfies 

llA-Allc2 = llR (Q) llc2 < £ (3.13) 

with given accuracy £ > 0. The previous condition cannot be evaluated with linear 
complexity. Since the nextrank-1 term (vQ+ 1).f~ 1 UQ+l vb+i approximates R(Ql, we 
replace (3.13) with the error indicator Q 

lluQ+1vb+1 llR2 lluQ+1 llc2 llvQ+1 llc2 
--~~-= <£. 

l(vQ+I)JQ+1 I l(vQ+I)JQ+1 I 

The algorithm is presented in Table 3 .3. 

Remark 3.3 Notice that almost no condition has been imposed on the row index iq. 
The following three methods are commonly used to choose iq. In addition to choos­
ing iq randomly, iq can be found as 

iq := argmax l(uq-J)il, 
i=l, ... ,M 

which leads to a cyclic pivoting strategy. If A stems from the evaluation of a func­
tion at given nodes, then the construction of Sect. 3.3.2 should be used in order to 
guarantee the well-posedness of the interpolation operator JQ and exploit the error 
estimate (3.6). 

In some cases (see [15]), it is required to put more effort in the choice of iq to 
guarantee a well-suited approximation space span { Ai1 ,: , ••• , AiQ,:}; cf. [7]. 

Instead of the M · N entries of A, we only have to compute Q(M + N) entries 
of A for the approximation by A. The construction of (3.12) requires tJ(Q2(M + 
N)) arithmetic operations, and A can be stored with Q(M + N) units of storage. 
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Scheme 3.3. Adaptive Cross Matrix Approximation 

et q :- I. 
While err < tol 

a. Choo e iq such that 

is nonzero and )q such that l(vq)10 I = max1= 1. ... . N l( vq)J 
b. ompute the vector 

. q- 1 (v1)1. 
uq .- A ,.10 - L, -( -)-u' . 

(= I £ }I 

c. Compute the error indicator 

and set q := q + I. 

Possible redundancies among the vectors uq, v "' q = 1, ... , Q, can be removed via 
orthogonalization. 

The origin of this matrix version of ACA is the construction ofso-called hierar­
chical matrices [7,39,40] for the efficient treatment of integral formulations of ellip­
tic boundary value problems. Hierarchical matrices allow to treat discretizations of 
such non-local operators with logarithmic-linear complexity. To this end, subblocks 
A1 ,s from a suitable partition oflarge-scale matrices A are approximated by low-rank 
matrices. 

A form that is slightly different from (3.11) and which looks more complicated 
at first glance is 

with suitable index sets 'r1, CJ1, -r;,, and 0:1 depending on the respective index t ors 
only. Notice that in contrast to A, A does not interpolate A on the "cross" but rather 
at single points specified by the indices 'r1 , o:,, i.e. A,1,0:, = A,1,o:s· The advantage of 
this approach is the fact that the large parts Ao:1 A~ 10:1 and A~'o:,Ars, depend only 
on either one of the two index sets t ors, while only the small matrix A,1,o:s de­
pends on both. This allows to further reduce the complexity of hierarchical matrix 
approximations by constructing so-called nested bases approximations [ 13], which 
are mandatory to efficiently treat high-frequency Helmholtz problems; see [11]. 

3.3.5 Relation with Gaussian Elimination 

Without loss of generality, we may assume for the moment that iq = }q = q, q = 
1, ... , Q. Otherwise, interchange the rows and columns of the original matrix R(O). 
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Then 

R(q) = (1- R(q-l)eqe~) R(q-1) =L(q)R(q-1) 
eTR(q-l)e ' 

q q 

where L(q) E JRMxN is the matrix 

0 
L(q) = e~+ 1 R(q-l)eq 

e[R(q-l)eq 
1 

e£.R(q-l)eq 
1 

e[R(q-l)eq 

which differs from a Gaussian matrix only in the position (q, q); cf. [6]. This relation 
was exploited in [41] for the convergence analysis of ACA in the case of positive 
definite matrices A. 

Furthermore, it is an interesting observation that ACA reduces the rank of the 
remainder in each step, i.e. rankR(q) = rankR(q-l) - 1. This was first discovered 
by Wedderburn in [69, p. 69]; see also [6, 26]. Hence, ACA may be regarded as a 
rank revealing LU factorization [22,45]. As we know, it is possible that the elements 
grow in the LU decomposition algorithm; cf. [34]. Thus the exponential bound 2Q 
on 0"2 lf] is not a result of overestimation. 

3.3. 6 Generalizations of ACA 

The Adaptive Cross Approximation can easily be generalized to a linear functional 
setting. Instead the evaluation of the remainders at the chosen points Xq, yq, q = 
1, ... , Q, one considers the recursive construction 

( ) ·- ( )-(rq-1(x,·),lf/q)(<pq,rq-1(·,y)) 1 Q 
rq x,y .-rq-1 x,y ( ) , q= , ... , . 

<(Jq, r q-1, l/fq 

Here, <(Jq and lf/q denote given linear functionals acting on x and y, respectively. It is 
easy to show (see [10]) that 

(<p;,rq(·,y)) = 0 = (rq(x, ·), lfl;) for all i:::; q, x E Qx andy E !2y. (3.14) 

Hence, r q vanishes for an increasing number of functionals and 

,..,,, [ r] ( ) ~ ( ( ) ) ( <(Jq, r q-1 ( · ,y)) 
..iQ ;y x := L., rq-1 x, · , l/fq ( ) 

q=l <pq,rq-1, l/fq 
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gradually interpolates fy (in the sense of functionals). The Adaptive Cross Approxi­
mation (3.9) is obtained from choosing the Dirac functionals <pq := Oxq and lf/q := 8yq. 

The benefits of the separation of variables resulting form (3.5) are even more im­
portant for multivariate functions f. We present two ways to generalize (3 .9) to func­
tions depending on d variables. An obvious idea is to group the set of variables into 
two parts each containing d/2 variables; see [10] for a method that uses the covari­
ance off to construct this separation. Each of the two parts can be treated as a single 
new variable. Then, the application of (3 .9) results in a sequence ofless-dimensional 
functions which inherit the smoothness off. Hence, (3.9) can be applied again until 
only univariate functions are left. Due the nestedness of the construction, the con­
structed approximation cannot be regarded as an interpolation. Error estimates for 
this approximation were derived in [8] for d = 3, 4. The application to tensors of 
order d > 2 was presented in [ 4, 60, 61]. 

A more sophisticated way to generalize ACA to multivariate functions is pre­
sented in [9]. For the cased= 3, the sequence ofremainders is constructed as 

( ) ._ ( )- rq-1(x,y,zq)rq-1(x,yq,z)rq-l(xq,y,z)rq-l(xq,yq,zq) 
rq x,y,z .- rq-1 x,y,z ( ) ( ) ( ) rq-1 x,yq,Zq rq-1 xq,y,zq rq-1 xq,yq,z 

instead of (3.9). Notice that this kind of approximation requires that xq,yq,zq can 
be found such that the denominator rq-1(x,yq,zq)rq-1(xq,y,zq)rq-1(xq,yq,z)-/=- 0. 
On the other hand, the advantage of this generalization is that it is equi-directional 
in contrast to the aforementioned idea, i.e., none of the variables is preferred to the 
others. Hence, similar to (3.14) we obtain for all x,y,z 

rq(x,y,z;) = rq(x,y;,z) = rq(x;,y,z) = 0, i::::; q. 

3.4 Empirical Interpolation Method 

3.4.1 Historical Overview 

The Empirical Interpolation Method (EIM) [5] originates from reduced order mod­
eling and its application to the resolution of parameter dependent partial differential 
equations. We are thus in the context where the set of solutions u( · ,y) to the PDE 
generates a manifold, parametrized by y (the parameter is generally calledµ in these 
applications) that possesses a small Kohnogorov n-width. In the construction stage 
of the reduced basis method, the reduced basis is constructed from a greedy ap­
proach where each new basis function, that is a solution to the PDE associated to 
an optimally chosen parameter, is incorporated recursively. The selection criteria of 
the parameter is based on maximal (a posteriori) error estimates over the parameter 
space. This construction stage can be expensive: indeed it requires an initial accu­
rate classical discretization method of finite element, spectral or finite volume type 
and every solution associated to a parameter that is optimally selected, needs to be 
approximated during this stage by the classical method. Once the preliminary stage 
is performed off-line, all the approximations of solutions corresponding to a new 
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parameter are performed as a linear combination of the (few) basis functions con­
structed during the first phase. This second on-line stage is very cheap. This is due to 
two facts. The first one is related to the fact that the greedy approach is proven to be 
quite optimal [14, 16, 28], for exponential or polynomial decay of the Kolmogorov 
n-width, the greedy method provides a basis set that has the same feature. 

The second fact is related to the approximation process. A Galerkin approxima­
tion in this reduced space indeed provides very good approximations, and if Q modes 
are used, a linear PDE can be simulated by inverting Q x Q matrices only, i.e. much 
smaller complexity than the classical approaches. 

In order that the same remains true for nonlinear PDE's, a strategy, similar to the 
pseudo-spectral approximation for high-order Fourier or polynomial approximations 
has been sought. This involves the use of an interpolation operator. In order to be 
coherent, an approximation uQ(·,y) = 2,~ 1 a;(y) u(·,y;) being given (where they; 
are the parameters that define the reduced basis snapshots) we want to approximate 
<;# ( UQ ( · ,y)) (<;# being a nonlinear functional) as a linear combination 

Q 
<;#(uQ(·,y)) ~ L,f3;(y)<;#(u(·,y;)). 

i=l 

The derivation of the set {/3;}; from {a;}; needs to be very fast, it is defined by 
interpolation through the Empirical Interpolation Method defined in the following 
section. This has been extensively used for different types of equations in [36] and 
has led to the definition of general interpolation techniques and rapid derivation of 
the associated points. 

The approach having a broader scope than only the use in reduced basis approx­
imation, a dedicated analysis of the approximation properties for sets with small­
Kolmogorov n-width has been presented in [54]. This approach for nonlinear prob­
lems has actually also been used for problems where the dependency in the parame­
ter is involved (the so called "non-affine problems") and has boosted the domain of 
application of reduced order approximations. 

3.4.2 Motivation 

As said above and in the introduction, we are in a situation where the set § = 

{f ( · ,y )}yEf.!y denotes a family of parametrized functions with small Kolmogorov 
n-width. We therefore do not identify Qx with ily. In addition, for a given parame­
ter y, f(·,y) is supposed to be accessible at all values in Qx· 

The EIM is designed to find approximations to members of§ through an in­
terpolation operator Iq that interpolates the function fy = f(·,y) at some particular 
points in Qx. That is, given an interpolatory system defined by a set of basis functions 
{h1, ... ,hq} (linear combination of particular "snapshots" fy1 , ••• ,fyq) and interpo­
lation points { x1, ... ,xq}, the interpolant Iq [fy] of fy with y E QY written as 

q 

Iq[fy](x) = LgJ(y)hJ(x), x E ilx, 
j=l 

(3.15) 
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Scheme 3.4. Empirical Interpolation Method 

et q - 1. Do while err< tol: 

a. Pick the ampl point 

Yq = arg sup ll/y- lq- d.l)·Jllu(.a )> yE!ly x 

and the corre ponding interpolation point 

b. Define the next basi function as 

c. Define the error level by 

err = llerrpllLw(Q,) with errp(y) = 11/v- fq_i[fy]liu(!l,)> 

and set q := q I . 

is defined by 
lq[_fy](xi) = .fy(xi), i = 1, ... ,q. 

Thus, (3.16) is equivalent to the following linear system 

q 

L,g1(y)h1 (xi) =_{y(xi), i= 1, ... ,q. 
J=l 

(3.18) 

(3.19) 

(3.20) 

(3.16) 

(3.17) 

One of the problems is to ensure that the system above is uniquely solvable, i.e. 
that the matrix (h1 (xi) )i,J is invertible, which will be considered in the design of the 
interpolation scheme. 

3.4.3 Algorithm 

The construction of the basis functions and interpolation points is based on a greedy 
algorithm. Note that the EIM is defined with respect to a given norm on Qx and we 
consider here LP(Qx)-norms for I :::; p:::; =.The algorithm is given in Table 3.4. 

Remark 3.4 Note that whenever dim( span{§}) = q*, the algorithm finishes for 
q=q*. 

As long as q :::; q*, note that the basis functions { h1, ... , hq} and the snapshots 
{_fy1 , ••. ,_fyq} span the same space, i.e., 
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The former are preferred to the latter due to the following properties 

h;(x;) = 1, Vi= 1, ... ,q and hJ(x;) = 0, 1 ::::; i < j::::; q. (3.21) 

Remark 3.5 It is easy to show that the interpolation operator Iq is the identity ifre­
stricted to the space Vq, i.e., 

Iqlfy;](x) = fy;(x), i = 1, ... ,q, x E Qx· 

Remark 3.6 The construction of the interpolating functions and the associated in­
terpolation points follows a greedy approach: we add the function in § that is the 
worse approximated by the current interpolation operator and the interpolation point 
is where the error is the largest. The construction is thus recursive which, in turn, 
means that it is of low computational cost. 

Remark 3. 7 As explained in [5], the algorithm can be reduced to the selection of 
the interpolation points only, in the case where the family of interpolating functions 
{fy, , ... , fyq, ... } is preexisting. This can be the case for instance if a POD strategy 
has been used previously or when one considers a set that has a canonical basis and 
ordering (like the set of polynomials). 

Note that solving the interpolation system (3.17) can be written as a linear system 
B gy = fy with q unknowns and equations where 

B;,J = h1(x;), (fy); = fy(x;), i,j = 1, ... ,q, 

such that the interpolant is defined by 

q 

Iqlfy](x) = 2,(gy)Jh1(x), x E Qx· 
j=l 

This construction of the basis functions and interpolation points satisfies the follow­
ing theoretical properties (see [5]): 

• the basis functions { h1, ... , hq} consist oflinearly independent functions; 
• the interpolation matrix B;,1 is lower triangular with unity diagonal by (3.21) and 

hence invertible, the remaining entries belong to [-1, 1]; 
• the empirical interpolation procedure is well-posed inLP(Qx), as long as q::::; q*. 

If the L = ( Qx )-norm (p = oo) is considered, the error analysis of the interpolation pro­
cedure classically involves the Lebesgue constant Aq = supxEf.!x LF=I IL; (x) I where 
L; E Vq are the Lagrange functions satisfying L;(x1) = D;1. The following bound 
holds [5] 

llfy-Jqlfy]llL00 (f.!x)::::; (l+Aq) inf llfy-vq]llL00 (Dx)· VqEVq 

An (in practise very pessimistic) upper bound (cf. [ 54]) of the Lebesque constant is 
given by 
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which in tum results in the following estimate. Assume that§ c &: c L=(!lx) and 
that there exists a sequence of finite dimensional spaces 

Z1 c Z2 c ... , dim(Zq) = q, and Zq c §, 

such that there exists c > 0 and a > log( 4) with 

then 
ll/y-JqLfYJllL00 (f.!x):::; ce-(a-log(4))q_ 

Remark 3.8 The worst-case situation where the Lebesgue constant scales indeed like 
Aq :::; 2q - 1 is rather artificial and in all implementations we have done so far involv­
ing functions belonging to some reasonable set with small Kolmogorov n-width, the 
growth of the Lebesgue constant is much more reasonable and in most of the times a 
linear growth is observed. Note that, the points that are generated by the EIM using 
polynomial basis functions (in increasing order of degree) on [-1, l] are exactly the 
Leja points as indicated in the frame of the EIM by A. Chkifa1 and the discussion in 
Sect. 3 .3 .2 in the case of ACA. On the other hand, if one considers the Leja points on 
a unit circle and then project them onto the interval [-1, 1] a linear growth is shown 
in [25]. 

3.4.4 Practical Implementation 

In the practical implementation of the EIM one encounters the following problem. 
Finding the supremum respectively the arg sup in (3.18) and (3.19) is not feasible if 
any kind of approximation is effected. The least difficult way, but not the only one, is 
to consider representative point-sets .a;rain = {.X1 ,.X2, ... ,.XM} of Qx and .a;rain = 

{Yi ,y2, ... ,.YN} of QY. Then, the EIM is written as in Table 3.5. 
This possible implementation of the EIM is sometimes referred to as the Discrete 

Empirical Interpolation Method (DEIM) [24]. 

Remark 3.9 Different strategies have been reported in [38, 55] to successively enrich 
the training set .a;rain. The main idea is to start with a small number of training 
points and enrich the set during the iterations of the algorithm and obtain a very fine 
discretization only towards the end of the algorithm. One can also think of enriching 
the training set .a;rain simultaneously. 

Remark 3.10 Using representative pointsets .a;rain and .a;rain is only one way to 
discretize the problem. Alternatively, one can think of using optimization methods 
to find the maximum over Qx and ily. Such a strategy has been reported in [18, 19] 
in the context of the reduced basis method, which, as well as the EIM, is based on a 
greedy algorithm. 

1 personal communication. 
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Scheme 3.5. Empirical Interpolation Method (possible implementation ofETM) 

etq = I. Do while err < tol: 

a. Pick the ample point 

87 

Yq = arg max llh - lq- 1 [/y] llt..J'(!l,), 
yen ;ruu 

(3.22) 

and the corre ponding interpolation point 

Xq = arg max lfy,,(x)- lq- 1 [fy,,](x)I . 
xen;nin 

b. Define the next basis function as 

c. Defin the error level by 

err = ll errpllLw(Q,) with errp(y) = 11.1), - lq - I [fyJ lltY(!l,) 

and setq := q + I. 

3.4.5 Practical Implementation Using the Matrix Representation 
of the Function 

One can define an implementation of the EIM in a completely discrete setting us­
ing the representative matrix off defined by M;,1 = f(x;,y1 ) for 1 <::: i <:::Mand 
1 <::: j <::: N. For the sake of short notation we recall the notation M J used for the 
}-th column ofM. 

Assume that we are given a set of basis vectors {h1, ... ,hq} and interpolation 
indices i1, .•• , iq, the discrete interpolation operator Iq : JRN ____., JR.N of column vectors 
is given in the span of the basis vectors {h1 }'!=l •i.e. by Iq[r] = LJ=l g1(r)h1 for some 
scalars g1 (r), such that 

q 

(Iq[r]);k = L,g1 (r)(h1 );k =r;k, rEIRN, k= l, ... ,q. 
t=l 

Using this notation, we then present the matrix version of the EIM in Table 3.6. 
This procedure allows to define an approximation of any coefficient of the ma­

trix M. In some cases however, one would like to obtain an approximation of f(x,y) 
for any (x,y) E Dx x Dy. After running the implementation, one can still construct 
the continuous interpolant IQ[/] (x,y) for any (x,y) E Dx x Dy. Indeed, the interpola­
tion points x1, ... ,xQ are provided by Xq = x;q. The construction of the (continuous) 
basis functions hq is based on mimicking part b of the discrete algorithm but in a 
continuous context. Therefore, during the discrete version one saves the following 
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Scheme 3.6. Empirical Interpolation Method (implementation based on representative ma­
trix M off) 

etq = I. Do while err < tol 

a. Pick the ample index 

}q = argmax ll M .J- Iq- 1 [M:.1l llu, 
1= 1. ... M 

and the corre ponding interpolation inde 

iq = argmax IM;Jq - (Iq- 1 [M:.Jq]) ; I. 
i= l , .... N 

b. Define the next approx imation col umn by 

c. Define the error level by 

and set q := q + I. 

data 

M. · - I 1[M ·] 
h - .. Jq q- .. Jq ,, - [ ]) . 

M;,,J·q - (lq- 1 M :,1,, 1,1 

err = . max llM:.J- lq-dM:1 llleP 
j = l.. .. Jv/ 

q-l 

from lq_i[M Jq] = L g1 (M,1q) h1 , 

t=l 

Then, the continuous basis functions can be recovered by the following recursive 
formula 

using the notation Yq = Yiq· 

{' ~q-1 h 
h 

_ .!Yq - L..1=1 SqJ J 
q-

Sq,q 

3.4.6 Generalizations of the EIM 

In the following, we present some generalizations of the core concept behind the 
EIM. 

3.4.6.1 Generalized Empirical Interpolation Method (gEIM) 

We have seen that the EIM-interpolation operator lq[fy], y E Qy, interpolates the 
function fy at some empirically constructed points x1, ••• ,xq. The EIM can be gen-
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Scheme 3.7. Generalized Empirical Interpolation Method (gEIM) 

et q = 1. Do while err < tol: 

a. Pick the ample point 

Yq = arg sup 11/y- J£1-d/y] II 1..P(fl ) , 
y Efl1 ' 

and the corre ponding interpolation moment 

b. Define the next basi function as 

c. Define the error level by 

err = ll errpllL~(n,) with errp(y) = ll/y- lq- 1 [/y]llu(fl,) 

and et q := q + I. 

89 

eralized in the following sense as proposed in [52]. Let E be a dictionary of linear 
continuous forms (say for the L2(Qx)-norm) acting on functions fy , y E Qy· Then, 
the gEIM consists in providing a set of basis functions hi , ... , hq, such that V q = 
span {hi , ... , hq} = span {fy, , ... , fyq} for some empirically chosen {yi , ... ,y q} c 
QY , and a set of linear forms, or moments, { <J1, ... , <Yq} c E. The generalized inter­
polant then takes the form 

q 

Jq [fy ] = L g1 (y)h1(x), x E Qx, y E QY , 
J= I 

and is defined in the following way 

<Y1 (Jq [fy]) = <J;(fy ), i = 1, ... , q, 

which will define the coefficients g1(y) for each y E QY. We note that if the lin­
ear forms are Dirac functionals Ox with x E Qx, then the gEIM reduces to the plain 
EIM. The algorithm is given in Table 3.7. This constructive algorithm satisfies the 
following theoretical properties (see [52]): 

• the set { h1, ... , hq} consists of linearly independent functions ; 
• the generalized interpolation matrix (B)11 = <Y;(h1) is lower triangular with unity 

diagonal (hence invertible) with other entries s E [- 1, 1]; 
• the generalized empirical interpolation procedure is well-posed in L2(Qx)· 



90 M. Bebendorf et al. 

In order to quantify the error of the interpolation procedure, like in the standard 
interpolation procedure, we introduce the Lebesgue constant in the L2-norm: 

i.e. the L2-operator norm of Jq. Thus, the interpolation error satisfies: 

Again, a (very pessimistic) upper-bound for Aq is: 

indeed, the Lebesgue constant is, in many cases, uniformly bounded in this gener­
alized case. The following result proves that the greedy construction is quite opti­
mal [53]. 

1. Assume that the Kohnogorov n-width of§ in L2 (flx) is upper bounded by 
Con-a for any n ?: 1, then the interpolation error of the gEIM greedy selec­
tion process satisfies for any f E ff the inequality llf(·,y) -JQ[f(·,y)J llL2(f.!x) :::; 
Co(l +AQ)3Q-a. 

2. Assume that the Kohnogorov n-width of§ in L2 (flx) is upper bounded by 
Coe-c1n" for any n?: 1, then the interpolation error of the gEIM greedy selec­
tion process satisfies for any f E ff the inequality llf(·,y) -JQ[f(·,y)J llL2(f.!x):::; 
Co ( 1 + AQ )3 e-czQ" for a positive constant c2 slightly smaller than c1. 

3.4.6.2 hp-EIM 

If the Kohnogov n-width is only decaying slowly with respect ton and the resulting 
number of basis functions and associated integration points is larger than desired, 
a remedy consists of partitioning the space fly into different elements Qi , ... , Q: 
on which a separate interpolation operator Iqp : {fy} yEf.!f ---+ V qp with p = 1, ... , P 

is constructed. That is, for each element Qf a standard EIM as described above 
is performed. The choice of creating the partition is subject to some freedom and 
different approaches have been presented in [30, 32]. 

A somewhat different approach is presented in [55], although in the framework 
of a projection method, where the idea of a strict partition of the space fly is aban­
doned. Instead, given a set of sample points y1, ... ,yK for which the basis func­
tions f ( · ,Yl), ... , f ( · ,yK) are known (or have been computed) a local approximation 
space for any y E fly is constructed by considering the N basis functions whose 
parameter values are closest toy. In addition, the distance function, measuring the 
distance between two points in fly, can be empirically built in order to represent lo­
cal anisotropies in the parameter space fly. Further, the distance function can also be 
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used to define the training set n;rain which can be uniformly sampled with respect 
to the problem dependent distance function. 

3.4.6.3 Curse of High-Dimensionality 

Several approaches have been presented in cases where ily is high-dimensional 
(dim(Qy) ~ 10). In such cases, finding the maximizer in (3.22) becomes a challenge. 
Since the discrete set n;rain should be representative of ily, we require that n;rain 
consists of a very large number of training points. Finding the maximum over this 
huge set is therefore prohibitive expensive as a result of the curse of dimensionality. 

In [ 42], the authors propose a computational approach that randomly samples the 
space ily with a feasible number of training points, that is however changing over 
the iterations. Therefore, counting all tested training points over all iterations is still 
a very large number, at each iteration though finding the maximum is a feasible task. 

In [ 43 ], the authors use, in the framework of the reduced basis method, an ANOV A 
expansion based on sparse grid quadrature in order to identify the sensitivity of each 
dimension in ily. Then, once unimportant dimensions in ily are identified, the values 
of the unimportant dimensions are fixed to some reference value and the variation 
of y in QY is then restricted to the important dimensions. Finally, a greedy-based 
algorithm is used to construct a low-order approximation. 

3.5 Comparison of ACA versus EIM 

In the previous sections, we have given independent presentations of the basics of 
the ACA and the EIM type methods. As was explained, the backgrounds and the 
applications are different. In addition, we have also presented the results of the con­
vergence analysis of these approximations yielding another fundamental difference 
between the two approaches. The frame for the convergence of the ACA is a compar­
ison to any other interpolating system, such as the polynomial approximation and the 
existence of derivatives for the family of functions fy, y E ily is then the reason for 
convergence. The convergence of the EIM is compared with respect to the n-width 
expressed by the Kolmogorov small dimension. 

Nevertheless, despite there differences in origins, it is clear that some link exist 
between these two constructive approximation methods. We show now the relation 
between the ACA and the EIM in a particular case. 

Theorem 3.1 The Bivariate Adaptive Cross Approximation with global pivoting is 
equivalent to the Empirical Interpolation Method using the L=(Qx)-norm. 

Proof We proceed by induction. Our affirmation Aq at the q-th step is: 

(Aq)i: the interpolation points {x1, ... ,xq} and {n, ... ,yq} of the EIM and ACA 
are identical; 

(Aq)2: gq(y) = rq-1 (xq,y), 

(Aq)3: Iq[fy](x) = Jq[fy](x), 

yEily; 

(x,y) E ilx X ily. 
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Induction base (q = l): First, we note that ro = f and thus 

(xi,yi) = arg sup lro(x,y)I = arg sup lf(x,y)I. 
(x,y)E!2xx!2y (x,y)E!2xx!2y 

Then, from (3.20) we conclude that hi(x) = ~~~;) and by (3.17) we obtain that 

gi (y) = ~~(~~f = f(xi ,y) = ro(xi ,y) since hi (xi) = 1. Further, using additionally 
(3.15), we get 

for all (x,y) E Qx x !2y and Ai holds in consequence. 

Induction step (q > l): Let us assume Aq-i to be true and we first note that 

rq-i (x,y) = f(x,y) -lq-i [fy] (x) (3.23) 

by (3.10) and (Aq-ih- Therefore, the selection criteria for the points (xq,Yq) are 
identical for the EIM wit p = oo and the ACA with global pivoting. In consequence, 
the chosen sample points (xq,Yq) are identical. Further, combining (3.20) and (3.23) 
yields 

hq(x) = fyq(x)-lq-dfyq](x) = rq-i(x,yq). 
fyq(xq)-lq-i[fyq](xq) rq-i(xq,yq) 

(3.24) 

By (3.17) for i= q, using that hq(xq) = 1 and (3.23), we obtain (Aq)i: 

q-i 
gq(y) = f(xq,y) - L gJ(y)h1(xq) = f(xq,y) -lq-i [fy](xq) = rq-i (xq,y). (3.25) 

j=i 

Finally, combining (3.24) and (3.25) in addition to (Aq-i)3, we conclude that 

rq-i(x,yq) 
lq[fy](x) =lq-i[fy](x)+gq(y)hq(x) =Jq-i[fy](x)+rq-i(xq,y) ( ) 

rq-i Xq,Yq 

= Jq[fy](x) 

and the proof is complete. 

3.6 Gappy POD 

In the following, we present a completion to the POD method called Gappy POD [17, 
31, 70] or Missing Point Estimation [1]. We refer to it as the Gappy POD in the 
following. It is a projection based method (thus not an interpolation based method 
although in some particular cases it can be interpreted as an interpolation scheme). 
However, the projection matrix is approximated by a low-rank approximation that 
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in tum is based on partial or incomplete ("gappy") data of the functions under con­
sideration. In a first tum, we present the method as introduced in [17, 70] and we 
generalize it in a second tum. 

3.6.1 The Gappy POD Algorithm 

We start from the conceptual idea that a set of basis functions {hi, ... , hQ}, that 
can - but does not need to - be obtained through a POD procedure, is given. We 
first introduce the idea of Gappy POD in the context of Remark 3 .1 where functions 
are represented by a vector containing its pointwise values on a given grid .a;rain = 

{.Xi, ... , XM}. We remind that the projection PQ lfy] of fy with y E .Oy onto the space 
spanned by {hi , ... , hQ} is defined by 

(PQl{y], hq )!Wain = (fy, hq)Q.;.rain, q = 1, ... , Q. 

Next, assume that we only dispose of some incomplete data of fy. That is, we are 
given say L ( < M) distinct points {xi, ... , XL} among .a;rain where fy (x;) is avail­
able. Then, we define the gappy scalar product by 

l.Oxl L 
(v, w)L atrain = - ""v(x;) w(x;), 

'X L £,,,, 
i=i 

which only takes into account available data of fy. We can compute the gappy pro­
jection defined by 

(PQ,Ll{y],hq)L,Q.£rain = (fy,hq)L,Q.£rain, q= 1, ... ,Q. 

Observe that the basis functions {hi, ... , hQ} are no longer orthonormal for the gappy 
scalar product and that the stability of the method mainly depends on the properties 
of the mass matrix Mh,L defined by 

To summarize, in the above presentation we assumed that the data of fy at some 
given points was available and then defined a "best approximation" with respect 
to the available but incomplete data. For instance, the data can be assimilated by 
physical experiments and the Gappy POD allows to reconstruct the solution in the 
whole domain .a;rain assuming that it can be accurately represented by the basis 
functions {hi, ... , hQ}. 

We now change the viewpoint and ask the question: Ifwe can place L sensors 
at the locations {x;}f=i c Qx at which we have access to the data fy(x;) (through 
measurements), where would we place the points {x;}f=i? 

One might consider different criteria to chose the sensors. In [70] the placement 
of L sensors is stated as a minimization problem 

min K"(Mh,L) where Mh,L is based on L points {xi, ... ,xL} 
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Scheme 3.8. Sensor placement algorithm with Gappy POD and minimal condition number 

For I $ / $ l : 

where 

x1 = argmin K(M1i.1(x)) 
xen. 

I $ i j $ min (Q,1) . 

Scheme 3.9. Sensor placement algorithm wi th Gappy POD and minimal error 

For I $ I $ l : 

x1 = argmax ll PQ,1- 1 [fy)-hllu(.'2,) 
xen. 

where PQJ- I [/y) i the gappy projection of fy onto the span of {h1 ... , hmin(Q./- J j} based 
on th pointwis information at {x1, ... ,x,_ 1 }. 

and K(Mh.1) denotes the condition number ofMh,t,· We report in Table 3.8 a slight 
modification of the algorithm presented in [1, 70] to construct a sequence of sensor 
placements {x1, ... ,x;J (with L :::=: Q) based on an incremental greedy algorithm. 

This natural algorithm actually seems to have some difficulties at the beginning, 
for small values of l. It is thus recommended to start with the algorithm presented in 
Table 3.9. 

This criterion is actually the one that is used in the Gappy POD method presented 
in [20] in the frame of the GNAT approach that allows a stabilized implementation 
of the gappy method for a challenging CFO problem. Further, we have the following 
link between the gappy projection and the EIM as noticed in [33]. 

Lemma 3.2 Let { h1, ... , hQ} and { x1, ... ,XQ} be given basis functions and interpo­
lation nodes. If the interpolation is well-defined (i.e. the interpolation matrix being 
invertible), then the interpolatory system based on the basis functions {hi, ... , hQ} 
and the interpolation nodes {x1, ... ,XQ} is equivalent to the gappy projection sys­
tem based on the basis functions { h1, ... , hQ} with available data at the points 
{ x1, ... ,XQ }, that is, for any y E fly the unique interpol ant IQ [fy] E span{ h1, ... , hQ} 
such that 

IQ[.fy](xq) =fy(xq), q= l, ... ,Q, (3.26) 

is equivalent to the unique gappy projection PQ,L [fy] defined by 

(3.27) 
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Proof Multiply (3 .26) by Id I h; (xq) and take the sum over all q = 1, ... , Q to obtain 

which is equivalent to (!Qlfy], h;)u2train = (fy,h;)u2train for all i = 1, ... , Q. On 
the other hand, if PQ,L l/Y] is the sol~tion of (3.27), th~n" there holds that 

Q Q 
L, PQ,Ll/Y](xq)h;(xq) = L, fy(xq)h;(xq), i = 1, ... ,Q. (3.28) 
q=l q=l 

Since the interpolating system is well-posed, the interpolation matrix B;,J = h1(x;) is 
invertible and thus there exists a vector u i such that Bui = e i for some j = 1, ... , Q 
where e i is the canonical basis vector. Then, multiply (3 .28) by ( u i); and sum over 
all i: 

Q Q 
L, PQ,Ll/Y](xq) (u1);Bq; = L, fy(xq) (u1);Bq,;, j = 1, ... ,Q, 

i,q=l i,q=l 

to get 
PQ,Ll/Y](x1) =fy(xJ), j= l, ... ,Q. 

Thus, the gappy projection satisfies the interpolation scheme. 

One feature of the sensor placement algorithm based on the Gappy POD frame­
work is that the basis functions {hi, ... , hq} are given and the sensors are chosen 
accordingly. As a consequence of the interpretation of the gappy projection as an in­
terpolation scheme ifthe number of basis functions and sensors coincide, one might 
combine the Gappy POD approach with the EIM in the following way in order to 
construct basis functions and redundant sensor locations simultaneously: 

1. use the EIM to construct simultaneously Q basis functions { hq }~= 1 and interpo­
lation points { Xq }~=l until a sufficiently small error is achieved; 

2. use the gappy projection framework as outlined above to add interpolation points 
(sensors) to enhance the stability of the scheme. 

3.6.2 Generalization o/Gappy POD 

In the previous algorithm the functions were represented by their nodal values at 
some points .X1, ... , XM. That is, we can introduce for each point x; a functional &; = 

Ox; (ox denoting the Dirac functional associated to the point x) such that the inter­
polant of any continuous function f onto the space V M of piecewise linear and glob­
ally continuous functions can be written as 

M 

L &m (!) <Pm' 
m=l 
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where { <Pm};;i=i denotes the Lagrange basis of V M with respect to the points 
xi, ... ,XM. 

We present a generalization where we allow a more general discrete space VM. 
Therefore, let V M be a M-dimensional discrete space spanned by a set of basis func­
tions { <fl;}f!i such as for example the finite element hat-functions, Fourier-basis or 
polynomial basis functions. In the context of the theory offinite elements, cf. [27], we 
are given M functionals { cYm};;i=i' associated with the basis set { <fl;}f!i, which de­
termine the degrees of freedom of a function. That is, for f regular enough such that 
all degrees of freedom &m (!) are well-defined, the following interpolation scheme 

M 

f--+ L CTm (!)<Pm 
m=i 

defines a function in V M that interpolates the degrees of freedom. 
We start with noting that the scalar product between two functions f, g in V M is 

given by 
M 

(J,g)Dx = L CTn(f)&m(g)(<fJn,<fJm)Dx· 
n,m=i 

In this framework, the meaning of"gappy" data is generalized. We speak of gappy 
data if only partial data of degrees of freedom, i.e. the &m (f) is available. Thus, in 
this generalized context, the degrees of freedom are not necessarily nodal values, 
i.e. the functionals being Dirac functionals, and depend on the choice of the basis 
functions. 

Assume that we are given Q basis functions hi, ... , hQ that describe a subspace 
in V M and L ?: Q degrees of freedom CJ1 = &;1, for l = 1, ... , L (chosen among all 
M degrees of freedom &i, ... , cJL). Denoting by <p1 = <fl;1 the corresponding L basis 
functions, we then define a gappy scalar product 

ML 
(f,g)L,flx =LL CJ1(/)CJk(g)(<p1,<fJk)flx· 

l,k=i 

Given any fy, y E fly, the gappy projection PQ,L [fy] E span {hi, ... , hQ} is defined by 

(PQ,L[{y],hq)L,flx = (fy,hq)L,flx' q = 1, ... ,Q. 

Then, the sensor placement algorithm introduced in the previous section can easily 
be generalized to this setting. 

Remark 3.11 If the mass matrix M;,1 = ( q,1, <fl;) flx associated with the basis 

set { <fl;}f!i satisfies the following orthogonality property M;,1 = ( q,1, <fl;)Dx = l~I 8;1 
either by construction of the basis functions or using mass lumping (in the case of fi­
nite elements) and ifthe basis functions { <fl;}f!i are nodal basis functions associated 
with the set of points a;rain ={.Xi, ... ,.XM}, then the original Gappy POD method 
is established. 

Remark 3.12 If the mass matrix (M);,1 = ( q,1, <fl;)Dx associated with the selected func­
tions { <p;}f=i is orthonormal, then the gappy projection PQ,L[fy] is solution to the 
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following quadratic minimization problem 

Since L > Qin a general setting, this means that the gappy projection fits the selected 
degrees of freedom optimally in a least-squares sense. In the general case, PQ,L[fy] 
is solution to the following minimization problem 

L 

fm{P L ( C5z (fy) - C5z (!)) ( <pz, <f>m)Dx ( ak(fy) - ak(f)) · 
E Q/,k=l 
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components of the original nonlinearity. If each component of the original nonlin­
earity depends only on a few components of the argument, the resulting DEIM ROM 
can be evaluated efficiently at a cost that is independent of the size of the original 
problem. For systems obtained from finite difference approximations, the ith com­
ponent of the original nonlinearity often depends only on the ith component of the 
argument. This is different for systems obtained using finite element methods, where 
the dependence is determined by the mesh and by the polynomial degree of the finite 
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gains are obtained with the DEIM ROMs when one has to compute derivatives of 
the model with respect to the parameter. 

4.1 Introduction 

Projection based reduced order models systematically extract the features of very 
large-scale systems to approximate these systems by substantially smaller ones. 
However, if the original system is parameter dependent or is semilinear, then, al­
though the new small system involves substantially fewer equations and unknowns 
than the original one, the computational cost of its numerical solution can be essen­
tially the same as that of the original large-scale system. The discrete empirical inter­
polation method (DEIM) of [7] further approximates projection based reduced order 
models to obtain small systems that capture the solution of the original large-scale 
system and that can also be solved at a computational cost that depends only on the 
size of the small system, provided each component of the original semilinear func­
tion depends only on a few components of its argument. So far, the DEIM has been 
primarily applied to finite difference discretizations of semilinear PD Es where the ith 
component of the nonlinearity depends only on the ith component of the argument. 
This is different in finite element discretizations, where the dependence of the non­
linear function is determined by the mesh as well as by the polynomial degree used 
to construct the finite element spaces. Therefore results from DEIM applied to finite 
difference approximations of PD Es do not necessarily carry over to DEIM applied 
to finite element approximations of PDEs. One purpose of this paper is demonstrate 
two approaches to apply DEIM to finite element discretizations of semilinear PD Es 
and numerically study their computational cost. The two approaches apply DEIM 
at different stages of the finite element assembly process. The size of the nonlin­
ear function as well as its dependence on the argument are different at each stage 
of the assembly process, which impacts the computational efficiency of the result­
ing DEIM reduced models. The second purpose of this paper is to demonstrate how 
to apply DEIM to a class of parameter dependent systems that arise, e.g., in shape 
optimization. 

Discretizations of parameterized semilinear elliptic partial differential equations 
(PDEs) lead to large scale nonlinear algebraic systems of the form 

A(8)y+F(y;8) = b(8), (4.1) 

where the parameters e E e c ]RP and for each parameter e the matrix A( e) E ]RNXN 

and the vectors F(y; 8) and b( 8) E JRN. Projection based model reduction techniques 
[1, 19,24,29] generate matrices Ve and Yr E JRNxn with n «N and replace (4.1) with 
the reduced system 

vI A(e)(y+ vrr) + vIF(y+ vrr;e) = vib(e). (4.2) 

While the reduced order system (4.2) is much smaller than the original one, the cost 
of computation of e f-+ VI A( e)Vr, e f-+ VIb( e), and (y, e) f-+ VIF(y + Vri; e) 
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still depends on N. Therefore, additional approximations are needed to obtain re­
duced order models that capture the original system as well as evaluate with a com­
putational complexity that depends only on the reduced order system size n but is 
independent of the full order model size N » n. 

The empirical interpolation method (EIM) of [2] and the DEIM of [7] gener­
ate reduced order models from (4.2) that approximate the full order model within 
desired error bounds and that can be numerically solved at a cost that essentially 
depends only on the reduced order system size. While the EIM is applied to the vari­
ational formulation that leads to the nonlinear algebraic system ( 4.1 ), its derivative, 
the DEIM is applied directly to discrete systems. Applications ofEIM and DEIM to 
nonlinear finite element computations are also discussed, e.g., in [9, 15, 17, 22]. We 
will focus on discrete systems (4.1) and therefore consider the DEIM. Especially, 
we carefully expose the dependency of the computational complexity of the DEIM 
on the polynomial degree of the finite element method. 

One purpose of this paper is the study ofDEIM to nonlinear systems Ay + F(y) = 

b obtained from finite element discretizations. The DEIM reduced order model is of 
the form vr A(y+ V8) +F(y) = vrb, where F depends only on m components of 
the original nonlinearity F. As we have mentioned before, the efficiency with which 
the DEIM reduced order model can be applied depends on how many components 
of the argument are needed to evaluate m components of the original nonlinearity F. 
For systems obtained from finite element discretizations the dependence of F on 
its argument is determined by the mesh, as well as by the polynomial degree used 
to construct the finite element spaces. One can apply DEIM at different stages of 
the finite element assembly process. This effects the structure of the nonlinearity. 
We demonstrate how to apply DEIM to finite element discretizations of nonlinear 
PDEs in the assembled and in the unassembled form, and we numerically study 
the computational cost of the resulting reduced order models. Either version of the 
DEIM is preferable over the naive application of projection based model reduction as 
in (4.2). For large systems, the application of the DEIM to the so-called unassembled 
form of the nonlinearity leads to additional gains in the on-line cost of the reduced 
order models. 

A second focus of this paper is the application of DEIM to generate reduced 
order models for parametrically dependent PDEs A(B)y = b(B), where A(B) = 

I.f!1 g;( B)A; and b( B) = I.f!1 I;(B)b;. For large Mthe complexity of evaluating the 
reduced order matrix VIA(B)Vr = I.f!1 g;(B)ViA;Vr is still high. The DEIM can 
be used to obtain an approximation that allows more pre-computation of matrices 
and that can be evaluated more efficiently in the on-line phase. Additional bene­
fits arise when derivatives of the matrix with respect to the parameter e have to be 
computed, and we illustrate these gains in the context of shape optimization. 

The next section describes two model problems, a semilinear elliptic advection 
reaction diffusion equation and the Stokes equations on a parameterized domain, 
and their finite element discretizations. These problems will be used to demonstrate 
the application of the DEIM, and to numerically evaluate the computational costs re­
quired to solve the full and the reduced order models. Section 4.3 reviews approaches 
to construct the reduced order subspaces spanned by the columns of the matrices Ve 
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and Vr E JRNxn, and it reviews the DEIM. The main contributions of this paper are 
presented in Sects. 4.4 and 4.5. 

In Sect. 4.4 we discuss the application of the DEIM to finite element discretiza­
tions of semilinear PDEs. We illustrate how ith component of the nonlinearity de­
pends on the components of its arguments for piecewise linear and piecewise quadra­
tic elements, and we demonstrate how this dependence impacts the efficiency of the 
DEIM. In addition, we discuss the application ofDEIM to the fully assembled sys­
tem, as well as the unassembled form of the nonlinearity. The latter was originally 
suggested by [9, 33]. The nonlinear vectors are larger, but each component depends 
on fewer components of the argument. We describe both version of the DEIM and 
computationally compare them on the semilinear elliptic advection reaction diffu­
sion model equation of Sect. 4.2.1. As we have mentioned before, either version of 
the DEIM is preferable over the naive application of projection based model reduc­
tion as in (4.2). For large systems, the application of the DEIM to the unassembled 
form of the nonlinearity is more expensive in the off-line cost, but leads to additional 
gains in the on-line cost of the reduced order models. 

The application of the DEIM to obtain efficient reduced order models for systems 
with parameterized matrices A( B) = If!1 gi( B)Ai and vectors b( B) = If!1 Ii( B)bi is 
demonstrated in Sect. 4.5. We numerically illustrate the efficiency gains achieved by 
the DEIM reduced order model using the Stokes equation on parameterized domains 
introduced in Sect. 4.2.2. The DEIM not only leads to reduced order models that 
can be evaluated efficiently, but in addition it also leads to reduced order models 
where derivatives with respect to the parameter (} can be computed efficiently. Both 
efficiency gains are crucial, e.g., for shape optimization. 

4.2 Model Problems 

4.2.1 Semilinear Advection-Diffusion-Reaction PDE 

Our first model problem is a semilinear advection diffusion reaction equation. Let 
Q c JRd, d E {2,3} be an open, bounded Lipschitz domain with boundary ()Q =IbU 
TN, where I'D and TN corresponds to Dirichlet and Neumann parts. Given a diffusion 
coefficient v > 0, an advection vector f3 E JRd, a nonlinear function f: JR x JRP ---+ JR, 
and Dirichlet data h, the semilinear advection diffusion reaction equation is given by 

-V · (vVy) + /3 ·Vy+ f(y, B) = 0, 

y=h, 

Vy·n=O, 

We consider the specific nonlinearity 

f(y, B) = Ay(C -y)e-E/(D-y) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4) 
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used e.g., in [11]. Here C, D are known constants and e = (In(A),E) are sys­
tem parameters that can vary within the parameter domain e = [5.00, 7.25] x 
[0.05,0.15] c JR2 . 

The weak form of (4.3) is given as follows. Find y E H 1 (Q) with y =hon I'D 
such that 

vVy·Vvdx+ f3·Vyvdx+ f(y,8)vdx=0 (4.5) 
!2 !2 !2 

for all v E H 1 ( Q) with v = 0 on I'D. Existence results for linear and nonlinear ad­
vection diffusion equations can be found, e.g., in [26, 32] and [23], [27, Sec. 6.3] 

We discretize the equations using an SUPG (streamline upwind/Petrov-Galerkin) 
stabilized FEM [5, 10,25]. The Dirichlet boundary conditions are implemented via 
interpolation. Let {ile};~ 1 be a conforming triangulation of the domain Q. Further­
more, let { cf>J }f=I be the piecewise polynomial nodal basis functions. To simplify 

the presentation, we assume that nodes with indices 1, ... ,Np are in Q \I'D and that 
the nodes with indices Np + 1, ... ,Np +ND are in I'D. We define 

ne 

+ L ref3·Vcf>(x) (-V·(vVyh(x))+f3·Vyh(x))dx, (4.6a) 
e=l !le 

Ifwe let he denote the length oflargest side of each elementile and Pe= hell/3 ll/(2v) 
the mesh Peclet number, then the SUPG stabilization parameter is defined as 

he ( 1) 
're= 211/311 l - Pe . 

The solutiony of(4.5) is approximated by 

where Yh satisfies 

Np+Nn 
Yh(x) = L Y1<f>1(x) 

j=l 

ah(yh, cf>;)+ Fh(yh, cf>;; 8) = 0, 

Yh(XNp+i) = h(XNp+;), 

i= l, ... ,Np, 

i= I, ... ,ND. 

To state the nonlinear algebraic system corresponding to (4.8), we define 

YP = (y1, ... ,yNF)T, YD= (yNp+1, ... ,yNp+Nnf, 

h = (h(XNp+l), ... ,h(XNp+Nn))T, 

(4.7) 

(4.8a) 

(4.8b) 

and partition the matrices and vectors into submatrices and subvectors corresponding 
to the free variables yp and those determined by the Dirichlet boundary conditions, 
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(4.8) leads to a system of algebraic equations of the type 

Of course, this is equivalent to AFFYF + FF(YF, h; B) + AFnh = 0. If we set b = 

-AFnh, N =NF, if we drop the subscriptF, and if we drop the constant h from the 
arguments of the nonlinearity F, then we arrive at the N x N system 

Ay+F(y;B) = b, (4.10) 

which is a special case of(4.2). In this model problem, the matrix A and the vector 
b do not depend on the parameter e. For later reference, we note that the matrix A, 
the function F, and the vector b are given by 

A;1 =ah( </J1, </J;) 
N N+Nn 

F;(y;B) =Fh(LY1<P1+ L, h(x1)</J1,</J;;B), 
j=l j=N+l 

N+Nn 

b;=bh(</J;):=ah( L, h(x1)</J1,</J;), 
j=N+l 

i,j = 1, . .. N, 

i= 1, ... N, 

i= 1, ... N. 

4.2.2 The Stokes Equations on Parameterized Domains 

(4.lla) 

(4.llb) 

(4.llc) 

As our second model problem we consider the Stokes equations posed on a family 
of parameterized domains Q ( e) c JR2 ' where e E e c ]RP. Since our numerical 
examples are 2D problems we describe the approach for parameterized domains 
in JR2 . However, everything can be easily generalized to the Stokes equations on 
parameterized domains in JR3 . The boundary ()Q =ID U I'out is decomposed into 
an outflow boundary I'out and ID = ()Q \ I'out· We assume that the parameterized 
domains Q ( e) can be mapped onto a reference domain Q c JR2 . That is we assume 
that for each BEE> there exists a diffeomorphism <P(·; B) with 

Q(B) = <P(Q;B). (4.12) 

The Stokes equations for the velocity u and the pressure p are 

-vLiu(x) + Vp(x) = f(x), in Q(B) (4.13a) 

V · u(x) = 0, in Q(B) (4.13b) 

u(x) = h(x), on I'n(B) (4.13c) 

(v'Vu(x) - p(x)) · n(x) = 0, on I'out( B), (4.13d) 
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where f E (L2 (Q(8))) 2 . The weak form of (4.13) is given as follows: Find u E 

(H1(Q(8)))2 with u =hon I'n( 8) and p E L2 (Q( 8)) such that 

vVu(x): Vv(x)- V ·v(x)p(x) = f(x)v(x), 
a(e) a(e) a(e) 

(4.14a) 

- V · u(x)q(x) = 0, 
a(e) 

(4.14b) 

for all v E { <f> E (H1(Q(8)))2 : <f> = 0 on I'n( 8)} and q E L2 (Q( 8)). Existence 
results for the Stokes equations can be found, e.g., in [12, 13]. 

We approximate (4.14) using Taylor-Hood P2-Pl finite elements [10]. We tri­
angulate the reference domain Q and use ( 4.12). Let Nv be the number of velocity 

-= 
nodes in Q U I'out and let Np be the number of pressure nodes in Q. If the pie::-

wise quadratic basis functions for the velocities on the reference domain are <t>1, 
j = 1, ... ,Nv, and the piecewise linear basis functions for the pressure on the refer­
ence domain are ij/1, j = 1, ... ,Np, then the basis functions for velocities and pressure 
on the domain Q ( 8) are 

<f>J(·; 8) =~lo <I>-1(.; 8), j = 1, ... ,Nv, 

lf!J(·; 8) = ij/1a<I>-1(.;8), i = 1, ... ,Np. 
(4.15) 

The Taylor-Hood P2-Pl finite element discretization of ( 4.14) leads to 

S(8)y = b(8), (4.16) 

with 

A(8)i1 = vVq{V</>1 dx, 
a(e) 

and 
(1) d</>1 (2) d</>1 B (8)i1 = - -lf!i dx, B (8)i = - -lf!i dx, 

D(e) dX1 J D(e) dX2 

1 "5:. j "5:. Nv, 1 "5:. i "5:. Np. 
We use the integral transformation as well as the structure (4.12) of the basis 

functions to compute 

A( 8)i1 = _ v V~(xf (D<I>(x; 8))- 1 (D<I>(x;8))-rv~(X) ldet(D<I>(x; 8)) I ax 
Q 

for 1 "5:_ i,j "5:_ Nv, and 
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Finally, we approximate the integrals by a quadrature rule with nodes x; and 
weights wi, i = 1, ... ,M. To keep the presentation simple, we assume that the 
same quadrature rule is used for all integrals. If we define functions gk : e --+ JRM, 

k = 1, ... , 7, component-wise as follows 

( (g1(B))e (g2(B))e) ( (- ))-1( (- ))-r I ( (- ))I 
(g2(e))e (g3 (e))e = v We D<P xe;B D<P xe;B det D<P xe;B , 

( (g4(B))e (gs(B))e) ( (- ))-r I ( (- ))I 
(g6(B))e (g?(B))e =we D<P xe;B det D<P xe;B , 

then, if the integrals are replaced by quadrature, the matrices in the Stokes system 
can be written as 

A( n) =~n:h(x-)r((g1(B))e(g2(B))e)n:h(x-) l<. ·<u 
u ,1 6 v'I', e (gi(B))e (g3 (B))e v'I'; e , _ 1,1 _lVv 

( B(!l(e)iJ)-~ ij/,(xe) ((g4(B))e (gs(B))e) V(f)(xe) 1 :SJ :SNv, 1:::; i:SNp. 
n(2l(e)iJ - e~ ' (g6(B))e (g1(B))e 1 ' 

If we insert this representation into ( 4.17), then 

M 7 

S(B) = L L(gk)e(B)Sek· (4.18) 
e=l k=l 

Similarly, if we replace the integrals in the right hand side vectors 

b(kl(e)i = .fk(x)<f>i(x) dx= _fk(<P(x;B))~(X) ldet(D<P(x;B))I ax, k= 1,2, 
a(e) a 

by quadrature rules, then 

M 

b(kl(e)i = L ~(Xe) (g?+k(B))e, k= 1,2, 
e=l 

4.3 Projection Based Reduced Order Models 

4.3.1 Generating the Reduced Order Model Subspaces 

The computation of the matrices Ve, Vr E JRNxn is crucial for the accuracy of the 
resulting reduced order model and involves some sort of sampling of the solutions to 
the full order model. Commonly used methods to generate these matrices include the 
greedy algorithm (see, e.g., [ 4, 6, 24, 29]), proper orthogonal decomposition (POD) 
(see, e.g., [19]), and, for time dependent linear problems, balanced POD (see, e.g., 
[ 1, 21, 28]). Since emphasis of this paper is the efficient evaluation of the reduced 
order model (4.2) using DEIM, it does not matter how Ve, Vr E JRNxn have been 
generated. We assume these matrices have been generated by a suitable method. In 
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our numerical examples, we generate V =Ve= Vr E JRNxn using a simple sampling 
strategy and proper orthogonal decomposition. This often results in good reduced 
order models, although more sophisticated sampling strategies might have provided 
equally good reduced order models using fewer samples. 

Since we will refer to the proper orthogonal decomposition (POD) later, we pro­
vide a few details on this method. First by POD we mean the construction of a k 
dimensional subspace that best approximates given samples s1, ... , SK. Thus, selec­
tion of these samples is not part of POD. We assume s1, ... , SK E JRN, but in general 
these samples could be vectors in a Hilbert space. See, e.g., [19]. Given the samples 
s1, ... , SK the POD successively computes vectors v1, ... , Vk as the solution of 

K R 

minimize L, lls1- L, vi vf s1ll~ 
j=l i=l 

subject to vf v1 = 8i1, i,j = 1, ... ,k, 

where DiJ is the Kronecker delta, or in matrix notation 

minimize llS-Vk VISll} 

subject to vivk = Ik, 

(4.19a) 

(4.19b) 

(4.20a) 

(4.20b) 

where Ik E JRkxk is the identity. Is is well known that the solution can be computed 
via the singular value decomposition (SVD) of S, S = VLWT. In fact, since W 
is orthogonal, llS-Vk VISll} = llVL -Vk VIV.Lii}. IfVk E JRNxk is submatrix 
consisting of the first k columns of VE JRNxN, and if Lk E JRNxK is obtained by 
replacing the singular values CYk+1, CYk+2, ... in LE JRNxK by zero, then 

llS-Vk vis11} = llVL -Vk vIVLll} = llVL- VLkll} = llL -Lkll} 
min{K,N} 

L cr]. 
J=k+l 

Algorithm 4.1 (POD) 

Input: Samples S = ( s1, ... , SK) E JRNxK and tolerance 'T > 0. 
Output: vk = (v1' ... 'vk) E JRNxk. 

1. Compute the singular value decomposition S = VLWT. 

2. Find smallest index k such that the singular values satisfy CYk+ 1 < 'TCY1. 
3. Return the first k columns Vk = (v1, ... , vk) E lRNxk ofV. 

(4.21) 

Given the bound (4.21), the index k is often chosen to be the smallest index such 
that r;~~~,N} cr] < 'T. This requires computation of all singular values, which can 
be expensive. Therefore, we use the smallest index k such that CYk+ 1 < 'TCY1. This 
alternative provides a bound on the relative error in the two-norm: 11 S - V k VIS I I 2 :::; 
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rllSll2- In our examples, the matrix of samples SE JRNxK satisfies K « N and we 
compute the so-called economy-sized SVD. In the large scale setting, we can use 
an iterative method (e.g. ARP ACK) to compute just the largest k singular values 
without computing all of them. 

We note that often the snapshots do not have to be approximated in the Eu­
clidean norm sense as in (4.19), but instead using a weighted dot product vfMs1 
and corresponding norm llsllii = sTMs, respectively, where ME JRNxN is a sym­
metric positive definite matrix. This is for example the case when the snapshots 
sJ(x) = 2,~ 1 SiJ<l>i(x) belong to the Hilbert space HJ (.Q). In this case, Mis the stiff­
ness matrix. See, e.g., [19]. This can be accomplished by modifying the SVD. 

4.3.2 The DEIM 

In this section we review the DEIM to approximate a function G : JRk---> JRN. We 
require a subspace with basis { u 1 , ... , Um} such that G ( z) is approximately contained 
in span{ u1, ... , um} for the arguments z of interest. Typically, one samples G and 
then applies the POD to the samples to obtain an orthonormal basis { u1, ... , um}· To 
obtain a computationally efficient DEIM approximation ofG one needs that m « N. 

The DEIM [7] can be viewed as variant of the empirical interpolation method 
of [2] (see also [14]) applied to large scale finite dimensional systems. 

The DEIM computes indices p1, ... , Pm in { 1, ... , N} and an approximation G : 
JRk ___, JRN of the function G which satisfies 

Gp;(z) = Gp;(z) for i = 1, ... ,m (4.22) 

moreover, for each z the computation of G(z) only requires the m components 
Gp, (z), ... , GPm (z) of the original function G. More specifically, if ei is the ith unit 
vector in JRN, P = [ep1 , ••• , ePml E JRNxm is the submatrix of the identity obtained by 
extracting the columns Pl, ... ,pm, and U = [u1, ... , um], then the DEIM approxima­
tion ofG is 

G = U(Pru)-1Pr G: JRk ___, JRN. 

Clearly, pTG = pT G, which verifies the interpolation property (4.22), and pT G = 

(Gp,, ... ,GPml' which means ~at only the components p1, ... ,pm ofG areneeded 

to compute the approximation G. This is the source of the complexity reduction 
provided by the DEIM. 

Before we review how DEIM computes the indices Pl, ... , Pm and the DEIM error 
bounds, we discuss when the DEIM approximation is useful. For example, in model 
reduction we have to evaluate the nonlinearity (y; B) f-7 VIF(y + V7y; B), where 
F: JRN x JRP---> JRN and Ve and V7 E JRNxn with n « N. As we have mentioned, 
this requires the computation of y + V 8, the evaluation of the nonlinearity F(y + 
V8; B) and the projection VIF(y+ V8; B). All of these operations depend on the 
size N of the full system and, therefore, the evaluation of the reduced order model 
is almost expensive as that of the full order model. The complexity of the reduced 
order model can be made independent of the full order problem size N using the 
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DEIM approximation. Ifwe compute a DEIM approximation 

F = U(PTu)-1PTF, 

then we can approximate the nonlinearity VI F(y + V 8; e) by 

vIF(y+V8;8) = (viu(PTu)-1)PTF(y+V8;8). 
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(4.23) 

Typically in problems arising from spatial discretization of a PDE, the ith compo­
nent of F depends only on a few components of y. Hence, the evaluation of the m 
components PTF(y+ V8; e) of the nonlinearity requires only a few, say O(m) com­
ponents of y + V rY· Hence we do not need to compute y + V r y at a cost of 2N n + N 
flops (we count multiplication and addition as a flop), but only some components of 
this vectorat a cost of O(mn). Furthermore, the matrix vru(PTu)-1 E ]RnXm can be 

precomputed so that afterwards the evaluation of (y; e) f--+ VIF(y+ V8; e) defined 
in (4.23) requires only O(mn) operations. Infinite difference approximations, the ith 
component of the nonlinearity F typically depends only on the ith component of the 
argument y. Finite difference approximations are used, e.g., in the examples in [7, 8]. 
If finite element methods are used, the ith component of the nonlinearity F depends 
on more than the ith component of the argument. The dependency of the ith com­
ponent of F on the components of the argument depends on the polynomial order 
used in the finite element method, on the mesh, and also in what stage of the finite 
element assembly process the DEIM is applied. We will explore this in Sec. 4.4. 

Algorithm 4.2 (DEIM) 

Input: Linearly independent vectors u1, ... , Um. 

Output: Indices Pl, ... ,Pm· 

1. [p,pi] = max{lu1 I} 
2. Set U = [ui], P = [ep,], p = [pi] 
3. Fori=2, ... ,mdo 

a. Solve (PTU)c = pT u; for c 
b. r; =U;-Uc 
c. [p,p;] = max{lr;I} 
d. Update U = [U u;], P = [P ep;], p =[PT p;f 

We next state an error estimate from [7] for the DEIM approximation 

G = u (PT u)-1 pT G 

to G. IfU E JRNxm has ortho-normal columns, then 

(4.24) 

This result indicates that very little accuracy is lost when the orthogonal projection 
of POD is replaced by the DEIM interpolatory projection so long as II (PTu)-1112 
is of modest size. In practice, we simply compute this quantity and use it as an a-
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posteriori estimate. The greedy DEIM index selection actually limits the growth of 
II (Pru)-1 112 and typically it has remained on the order of 100 or less in all of the 
examples we have considered. Finally, we must emphasize that the DEIM does not 
improve the accuracy of the POD reduced model. The sole benefit of the DEIM is 
to greatly reduce the complexity of evaluating the reduced model. 

4.4 Evaluation of Nonlinear Functions Arising in Finite Element 
Methods Using DEIM 

We study the application of the DEIM for the evaluation of nonlinear terms in finite 
element models. As noted in Sect. 4.3.2, the main issue here is the computational 
complexity of the DEIM reduced model. It depends on how may components of the 
argument influence a component of the nonlinearity, and it is determined by the finite 
elements used. We present two ways of applying the DEIM. One approach applies 
DEIM to the assembled form of the nonlinear term, the other approach, originally 
suggested by Dedden et al. [9, 33], to the unassembled form. 

We use the semilinear advection diffusion reaction equation from Sect. 4 .2 .1 and 
continuous finite element approximations. However, the approaches can easily be 
extended to other equations and discontinuous Galerkin methods. 

4.4.1 The Reduced Order Model 

We consider the finite element discretization of the semilinear advection diffusion 
reaction equation discussed in Sect. 4.2.1. To simplify our notation, we assume that 
the boundary data h(x) = 0 in (4.3). The finite element discretization of (4.3) leads 
to the N x N system of nonlinear equations 

Ay+F(y;B) = b, (4.25) 

where A E ]RNxN and F : ]RN x ]RP --->]RN are given by ( 4.11 ). Note that since h(x) = 

0, the vector b = 0 E JRN. 

Assume we have generated Ve and Vr E JRNxn with n « N. Then the reduced 
order model of ( 4.25) is 

(4.26) 

As we have mentioned before, VI AVr, VI Ay and VIb can be precomputed, but 
since the nonlinearity depends on y and e the term VIF(y + V8; B) needs to be 
evaluated whenever y or e changes, and the cost of evaluating this nonlinearity still 
depends on the size N of the full order model. 

To reduce the complexity of the nonlinear term, we apply the DEIM. The DEIM 
reduced order model is given by 

(4.27) 
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Fig. 4.1. Left plot: Piecewise linear finite elements on triangles. If the DEIM index p; corre­
sponds to the vertex indicated by the large dot, then the p;th component of the nonlinear func­
tion depends on the seven adjacent vertices indicated by dots. Right plot: Piecewise quadratic 
finite elements on triangles. If the DEIM index p; corresponds to the vertex indicated by the 
large dot, then the p;th component of the nonlinear function depends on nineteen adjacent 
nodes indicated by dots. If the DEIM index p; corresponds to the midpoint indicated by the 
large dot, then the p;th component of the nonlinear function depends on nine adjacent nodes 
indicated by dots 

Then x m matrix VfU(PTu)-1 can be precomputed once. We still need to study 
the complexity of the evaluation of the nonlinearity 

PTF(y+ V8;8) = (Fp1 (y+ V8;8), ... ,Fpm(Y+ Vrr;e)f E lRm 

in the DEIM reduced model ( 4.27). The ith component F; of the nonlinearity depends 
on all components Yi for which the intersection of the support of basis functions</>; 
and <f>J does not have measure zero. See ( 4.11 b ). 

This is illustrated in Fig. 4.1 for piecewise linear (left plot) and piecewise qua­
dratic (right plot) basis functions </>; on triangles. In the case of piecewise linear basis 
functions, there are N = 36 degrees of freedom, which correspond to the vertices. 
If the DEIM index p; corresponds to the vertex indicated by the large dot, then the 
p;th component ofF depends on seven components ofy, which corresponds to the 
vertices indicated by dots. If piecewise quadratic basis functions are used, then there 
are N = 121 degrees of freedom, which correspond to the vertices and edge mid­
points. If the DEIM index p; corresponds to the vertex indicated by the large dot, 
then the p;th component of F depends on nineteen components of y, which corre­
sponds to the vertices and edge midpoints indicated by dots in the bottom right part 
of the right plot in Fig. 4.1. On the other hand, if the DEIM index p; corresponds to a 
midpoint, then this midpoint is shared by only two triangles, and the p;th component 
ofF depends on nine components ofy, which corresponds to the vertices and edge 
midpoints indicated by dots in the top left part of the right plot in Fig. 4.1. 

An alternative DEIM reduced order model is obtained when we consider the un­
assembled nonlinearity. As we have mentioned earlier, this was first suggested and 
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explored by [9,33]. Since fa= I.=~ 1 foe' we can write (4.llb) as 

~ N N 

F;(y;8) =I, f(LY1<f>1;8)<f>;+re (f3·V<f>;)f(LY1<f>1;8)dx. 
e=l De j=l j=l 

When the intersection of the supports of the basis functions </>; and <f>J and of 
the element .Qe has measure zero, the integral foef(L.f=iY1<f>1;8)<f>;+re (/3 · 
V<f>;)f(L.f=iY1<f>1;8)dx is zero. Therefore for nodal basis functions, this integral 
can only be nonzero when the indices i and j correspond to nodes in .Qe. For each 
of the ne elements .Qe we can compute np integrals 

N N 
F~(y; 8) = !( LYJ<f>J; 8) </>;+'re (/3. V<f>;)f( LYJ<f>J; 8)dx, 

~ ~I ~I 
(4.28a) 

where np is the number of degrees of freedom per element and the indices i corre­
sponds to nodes in the element .Qe. This gives a function Fe (y; 8) : ]Rnenp x ]RP --+ 

]Rnenp. Then we can assemble the element information into the global vector of un­
knowns F. This can be expressed as 

F(y; 8) = Q Fe(y; 8) (4.28b) 

where Q E JRNx(nenp). The size of the unassembled nonlinearity Fe is larger than 
that of the assembled one F. If the ith component of the unassembled nonlinearity 
belongs to element .Qe, then Ff only depends on the unknowns YJ with indices j 
corresponding to nodes in the element .Qe, see Fig. 4.2. Consequently, a component 

00000 
00000 
00~00 
00000 
00000 

00000 
0t!J000 
00~00 
00000 
00000 

Fig. 4.2. If DEIM is applied to unassembled piecewise linear elements, then the p;-th com­
ponent of the unassembled nonlinearity only depends on values at nodes in the element that 
contains the node p;. Left plot: For piecewise linear elements on triangles, the p;-th component 
of the unassembled nonlinearity only depends on the values at the three vertices, indicated by 
dots, of one triangle. Right plot: For piecewise quadratic elements on triangles, the p;-th com­
ponent of the unassembled nonlinearity only depends on the values at the vertices and edge 
midpoints, indicated by dots, of one triangle 
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of unassembled nonlinearity depends on fewer components than a component of 
assembled nonlinearity does. 

The reduced order model ( 4.26) can now be written as 

(4.29) 

We can apply DEIM to the unassembled nonlinearity. Let the columns ofue = 

[ uj, ... , u~e] be a basis of a subspace that approximately contains Fe (y; e) for the 
arguments y and e of interest. The DEIM approximation of the unassembled non­
linearity is given by 

Here pe is the sub matrix of the identity generated using the indices pj , ... , p~e 
generated by the DEIM applied to uj, ... , u~e. 

Ifwe insert this into (4.29) we arrive at the DEIM reduced order model 

Then x me matrix VI Que ( (Pe)I' (Ue) )-1 can be precomputed. 
The advantage of the DEIM reduced order model (4.30) over (4.27) is that each 

component of the unassembled nonlinearity in (4.30) depends on fewer components 
of the argument than the nonlinearity in (4.27) does. Hence, ifthe dimension of the 
subspace f4! (U) containing the image of F is roughly equal to dimension of the sub­
space P£(Ue) containing the image of Fe, i.e., if m ~me, then the evaluation of ( 4.30) 
is computationally less expensive than that of ( 4.27). This is illustrated in Fig. 4.2. 
If a DEM point Pi corresponds to a node in a triangle, the the Pith nonlinearity de­
pends on all components of the argument that correspond to nodes in the triangle. 
The left plot in Fig. 4.2 illustrates this for one point when piecewise linear elements 
are used, whereas the right plot in Fig. 4.2 illustrates this when piecewise quadratic 
elements are used. Note, that if the unassembled form of the nonlinearity is used, the 
connectivity is the same no matter whether the DEIM point corresponds to an vertex 
or an edge midpoint. 

The disadvantage of the DEIM reduced order model (4.30) compared to (4.27) 
is that the size of the unassembled nonlinearity Fe (y; e) is significantly larger than 
the sizeN of the nonlinearity F(y; 8). The size nenp of the unassembled nonlinearity 
Fe (y; e) now depends on the number ne of elements and the number np of degrees of 
freedom np per element. For example, if we use piecewise linear basis functions on 
the mesh in the left plot in Fig. 4.1, there are N = 36 vertices, where as nenp = 150. 
Ifwe use piecewise quadratic basis functions on the mesh in the right plot in Fig. 4.1, 
then there are N = 121 degrees of freedom, whereas nenp = 300. Since the vectors 
u1, ... , Um and uj, ... , u~e are typically computed from a POD of samples of the 
nonlinearities F and Fe, respectively, the computation of the vectors uj, ... , u~e is 
more expensive than the computation of u 1, ... , Um. However, this computation is 
done in the off-line phase. 
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4.4.2 Numerical Examples 

We apply DEIM reduced order models to approximate the semilinear advection dif­
fusion reaction equation (4.3) with nonlinearity (4.4). The full order model is ob­
tained using the SUPG stabilized finite elements reviewed in Sect. 4.2.1. The diffu­
sivity is v = 5 · 10-6 , and the parameters C = 0.2 and D = 0.4 in ( 4.4) are fixed and 
(} = (ln(A),E) vary within E> = [5.00, 7.25] x [0.05,0.15] c JR2. 

To construct the reduced basis matrices V = Ve = Vr, we sample the fi­
nite element solution of (4.4) at 25 parameters. We denote these solutions by 
y(B1), ... ,y( Oi5 ). We compute the mean y = -fs I.?~ 1 y( B;), and generate the reduced 
basis matrices V =Ve= Vr by applying the POD, Algorithm 4.1 to the samples 
y(B1) -y, ... ,y(B2s) -y with tolerance r = 10-4 . To construct U = [01, ... , um] 
and ue = [uj, ... , u::ie] for the DEIM approximation, we sample the nonlinearities 
F(y( B); B) and Fe(y(B); B), respectively, at the same parameters used to construct 
V, and then we apply the POD with tolerance r = 10-4 to obtain U and ue, respec­
tively. 

All computations in this subsections were done using Matlab on MacBook Air 
with 8GB of memory and 1.8 GHz Intel Core i5 processor. The nonlinear full order 
or reduced order models are solved using Newton's method. The linear systems in 
Newton's method are solved using the Matlab backslash command. 

4.4.2.1 2D Example 

We consider the domain Q c JR2 shown in Fig. 4.3, taken from [3]. The Dirichlet 
boundary segments are I'D= {(O,x2) : x2 E (0,2) U (2.75,4.25) U (5, 7)} and the 
Dirichlet data his specified in Fig, 4.3. 

To study the computational cost of applying DEIM reduced order models we 
use three meshes, referred to as Mesh 1 to Mesh 3, of different sizes, and we use 
piecewise linear and quadratic elements. We compute an approximate solution of 
(4.3) atthe parameter (ln(A),E) = (6.4, 0.11) not contained in the parameter sample. 
Figure 4.4 shows the triangulation corresponding to Mesh 2, of medium size, as well 
as the full order model solution of (4.3). (The reduced order model solutions are 
indistinguishable from the full order model solution.) 

7 
h=O 

4.2~ 4.5 

2.71 
h=0.2 

2.5 

h=O 
0 

0 7.5 15 35 

Fig. 4.3. 2D Example: The domain Q with Dirichlet boundary segments I'D= { (O,x2) : x2 E 

(0,2) U (2.75,4.25) U (5, 7)} and Dirichlet data h 
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Fig. 4.4. 2D Example: A triangulation of the domain Q (top plot) and solution of the advection 
diffusion reaction equation ( 4.3) with parameter (ln(A),E) = ( 6.4, 0.11) (bottom plot) 

As we have described in the previous section, the complexity of evaluating DEIM 
reduced order models depends on the connectivity of the nodes in the finite element 
mesh. We illustrate this in Fig. 4.5 using Mesh 2. For four different configurations, 
we plot the triangles that are involved in the evaluation of the DEIM nonlinear term. 
More precisely, the degrees of freedom corresponding to all nodes in the red solid tri­
angles are needed to evaluate the DEIM nonlinear term. The top two plots correspond 
to piecewise linear finite elements using the assembled (top plot) and unassembled 
(second from top plot) form of the nonlinearity. The top two plots in Fig. 4.5 corre­
spond to the schematic plots on the left in Figs. 4.1 and 4.2, respectively. 

The bottom two plots in Fig. 4.5 correspond to quadratic finite elements. If we 
look at the third plot from the top, which colors the triangles involved in the evalu­
ation of the DEIM nonlinear functions (assembled form), then at most two triangles 
are connected. This means that all DEIM points in this case correspond to edge mid­
points (see the right plot in Fig. 4.2). We observed the same for the computations 
on Mesh 1 and Mesh 3. The bottom plot in Fig. 4.5 corresponds to the unassembled 
form of the DEIM using quadratic finite elements. In this plot a few adjacent trian­
gles are colored red, which simply means that the DEIM selected points that happen 
to correspond to nodes in adjacent triangles. 

Table 4.1 summarizes the problem size for the different models for the three 
meshes and piecewise linear and quadratic finite elements. In Tables 4.1 to 4.3, 
DEIM refers to the DEIM reduced order model (4.27) obtained using the assem­
bled form of the nonlinearity, whereas DEIM-u refers to the DEIM reduced order 
model (4.30) obtained using the unassembled form of the nonlinearity. 
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x, 

x, 

Fig. 4.5. 2D Example: The triangles that contain DETM points are shown in solid red. The 
different plots correspond to different polynomial degree used in the FEM and application of 
the DETM to the assembled or unassembled form of the nonlinearity 

The computing times to evaluate the full and the various reduced order models 
are shown in Table 4.2. The nonlinear systems are solved using Newton's method 
and the computing times listed are for the Newton solve (and not for one Newton 
iteration). The number of Newton iterations required are shown in parenthesis. The 
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Table 4.1. 2D Example: The size N of the full order finite element system, the number of 
POD basis vectors n, the number ofDEIM points m the number of nodes adjacent to DEIM 
points, the number ofDEIM points me when the unassembled (DEIM-u) nonlinearity is used, 
and the number of nodes adjacent to DEIM points for piecewise linear and quadratic finite 
elements on three grids. The mesh in Fig. 4.5 correspond to grid number 2 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

number of triangles 1,437 3,213 12,976 1,437 3,213 12,976 
number of nodes N 825 1,768 6,813 3,089 6,751 26,604 
number of POD basis vectors n 17 17 17 17 17 17 
number ofDEIM points m 20 20 21 21 21 21 
number of nodes adjacent to DEIM pts. 107 139 166 165 174 186 
number ofDEIM-u points me 20 20 21 20 21 21 
number of nodes adjacent to DEIM-u pts. 48 56 63 111 117 126 

Table 4.2. 2D Example: The computing times (in sec) and the number of Newton iterations 
(in parenthesis) needed to solve the full order model, the POD reduced order model, the POD­
DEIM reduced order model, and the POD-DEIM-u (unassembled) reduced order model for 
different grid levels and linear and quadratic finite elements 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

Full 0.55 (4) 0.41 (4) 1.49(4) 0.85 (4) 1.36 (4) 5.75 (4) 
POD 0.17(4) 0.29 (4) 1.24 (4) 0.51 (4) 1.03 (4) 3.77 (4) 
POD-DEIM 0.04 (4) 0.04 (4) 0.02 (4) 0.08 (4) 0.07 (4) 0.12 (4) 
POD-DEIM-u 0.11 (8) 0.05 (5) 0.04 (5) 0.13 (5) 0.07 (4) 0.08 (4) 

computing times do not include the time needed to compute the matrices V, U, or 
ue via POD. 

In this application, the solution of the POD-DEIM-u reduced order model re­
quired more Newton iterations in several cases, offsetting the gain in computational 
complexity of the POD-DEIM-u reduced order model nonlinearity. Another issue 
that makes computing time comparisons difficult using Matlab is that the comput­
ing time is often not determined by how many floating point operations are executed, 
but instead by how well the code is vectorized. We have made a great effort to vec­
torize the code for all models as much as possible, this is more effective for the full 
order and the POD reduced order models because by design the POD-DEIM and 
POD-DEIM-u reduced order models work with shorter vectors. Therefore the Mat­
lab timings for the smaller problems likely do not accurately reflect what would be 
observed with, say, C code. However, from the Table 4.2 we can infer that POD 
reduced order models are only slightly more computationally efficient than the full 
order model. Applying DEIM for the assembled or unassembled form of the nonlin-
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Table 4.3. 2D Example: Errors between the full order model solution and the POD reduced 
order model solution, the POD-DEIM reduced order model solution, and the POD-DEIM-u 
(unassembled) reduced order model solution 

Polynomial degree p=l p=2 

Mesh number 2 3 2 3 

POD 7.8e-5 1.5e-4 3.5e-4 1.3e-4 2.5e-4 6.9e-4 
POD-DEIM 7.8e-5 9.4e-5 4.8e-4 2.5e-4 2.6e-4 7.9e-4 
POD-DEIM-u 1.2e-4 1.5e-4 2.2e-4 1.4e-4 1.8e-4 6.3e-4 

earity results in significant computational savings compared to both the full and the 
POD reduced order models when applied to larger problems. For larger problems 
the POD-DEIM-u reduced order model nonlinearities can be evaluated more effi­
ciently than the POD-DEIM reduced order model nonlinearities. Different reduced 
order models may require different numbers of Newton iterations. In this example, 
the number of Newton iterations needed to solve the POD-DEIM-u reduced order 
model was at least as large as the number of Newton iterations needed to solve the 
POD-DEIM reduced order model. If the Newton iterations needed to solve the POD­
DEIM-u reduced order model is larger, then the gains in efficiency of evaluating the 
nonlinearity is offset by the larger number of Newton iterations. 

The errors between the full order model solution and the reduced order model 
solutions shown in Table 4.3 are of the order of the tolerance 'T = 10-4 used to 
construct the bases with the POD. 

4.4.2.2 3D Example 

The domain is the cube Q = (0, 18) x (0, 9) x (0, 9) (in [mm]). The left face ()QD = 

{ 0} x [ 0, 9] x [ 0, 9] is the Dirichlet boundary, all other faces corresponds to Neumann 
boundaries ()QN. On the part {O} x [3, 6] x x [3, 6] of the Dirichlet boundary we 
impose the Dirichlet conditions y = 0.2 and on the remainder of a QD impose y = 0. 
This is the problem setup used in [11]. 

For the numerical solution, we use SUPG stabilized piecewise linear FEM on 
tetrahedra. To discretize the domain, Q is divided into cubes of size h x h x h and 
then each cube is divided into six tetrahedra. We use three meshes, Mesh 1 to Mesh 3, 
with h = 1.125, h = 0.5625, and h = 0.375, respectively. Mesh 2 is shown in the 
left plot in Fig. 4.6. The full order model solution of (4.3) parameter (ln(A),E) = 

( 6.4, 0.11) is shown in the right plot in Fig. 4.6. (The reduced order model solutions 
are indistinguishable from the full order model solution.) For reasons explained be­
low, we only apply piecewise quadratic finite elements on Meshes 1 and 2, but not 
on Mesh 3. 

Figure 4.7 shows the tetrahedra in Mesh 2 that contain a node corresponding to 
a DEIM point. The plots in the left column correspond to the DEIM applied to the 
assembled form of the nonlinearity. In case of quadratic elements, the nodes are ei-
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Fig. 4.6. 3D Example: Partitioning of the domain Q into tetrahedra (left plot) and solution of 
the advection diffusion reaction equation (4.3) with parameter (ln(A), E) = ( 6.4, 0.11) (right 
plot) 
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Fig. 4.7. 3D Example: The tetrahedra that contain DEIM points are shown. The different plots 
correspond to different polynomial degree used in the FEM and application of the DEIM to 
the assembled or unassembled form of the nonlinearity. 
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ther vertices or are edge midpoints. If we use Mesh 1, only one of the 21 DEIM 
points corresponds to a vertex. Ifwe use Mesh 2, then none of the 21 DEIM points 
corresponds to a vertex. Since vertices are shared by more tetrahedra than edge mid­
points, this means that DEIM points corresponding to edge midpoints lead to DEIM 
reduced order nonlinearities that can be evaluated more efficiently. 

Table 4.4 summarizes the problem size for the different models for the three 
meshes and piecewise linear and quadratic finite elements. As before, in Tables 4.4 
to 4.6, DEIM refers to the DEIM reduced order model (4.27) obtained using the 
assembled form of the nonlinearity, whereas DEIM-u refers to the DEIM reduced 
order model (4.30) obtained using the unassembled form of the nonlinearity. 

The computing times to evaluate the full and the various reduced order models 
are shown in Table 4.5. Again, the computing times listed are for the entire Newton 
solve (and not for one Newton iteration). The number of Newton iterations required 

Table 4.4. 3D Example: The size N of the full order finite element system, the number of 
POD basis vectors n, the number ofDEIM points m the number of nodes adjacent to DEIM 
points, the number of DEIM points me when the unassembled nonlinearity is used, and the 
number of nodes adjacent to DEIM points for piecewise linear and quadratic finite elements 
on three grids. The mesh in Fig. 4.7 corresponds to grid number 2 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

number of tetrahedra 6,144 49,152 165,888 6,144 49,152 
number of nodes N 1,296 9,248 30,000 9,248 69,696 

number of POD basis vectors n 19 18 19 18 19 

number ofDEIM points m 21 21 22 21 22 
number of nodes adjacent to DEIM pts. 183 271 320 445 559 

number ofDEIM points me 21 21 22 21 22 
number of nodes adjacent to DEIM pts. 67 80 88 193 220 

Table 4.5. 3D Example: The computing times (in sec) and the number of Newton iterations 
(in parenthesis) needed to solve the full order model, the POD reduced order model, the POD­
DEIM reduced order model, and the POD-DEIM-u (unassembled) reduced order model for 
different grid levels and linear and quadratic finite elements 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

Full 1.78 (4) 10.60 (3) 43.30 (3) 7.80 (3) 185.00 (3) 
POD 1.28(4) 8.04 (3) 23.80 (3) 4.12 (3) 38.80 (3) 
POD-DEIM 0.15 (4) 0.10 (3) 0.21 (4) 0.21 (3) 0.40 (3) 
POD-DEIM-u 0.16 (9) 0.07 (4) 0.10 (4) 0.01 (4) 0.18 (4) 
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Table 4.6. 3D Example: Errors between the full order model solution and the POD reduced 
order model solution, the POD-DEIM reduced order model solution, and the POD-DEIM-u 
(unassembled) reduced order model solution 

Polynomial degree p=l p=2 

Mesh number 2 3 2 

POD 4.7e-5 1.7e-4 5.2e-4 1.le-4 7.3e-4 
POD-DEIM 3.4e-4 4.0e-4 4.5e-3 4.8e-4 2.4e-3 
POD-DEIM-u 4.4e-4 1.7e-3 5.7e-3 1.4e-3 4.5e-3 

are shown in (in parenthesis). The computing times do not include the time needed 
to compute the matrices V, U, or ue via POD. 

Table 4.4 shows that in the 3D case the DEIM applied to the unassembled form 
leads to nonlinear terms in the reduced order models which depend on significantly 
fewer components of the arguments than the nonlinear terms resulting from the 
DEIM applied to the assembled form. Table 4.5 shows that the POD-DEIM-u re­
duced order models are computationally more efficient than the POD-DEIM reduced 
order models, even iftheir solution required one more Newton iteration. The POD 
reduced order model leads to greater computational savings over the full order model 
in the 3D case compared to the 2D case (see Table 4.2). This is due to the computing 
time needed to solve the sparse linear systems in Newton's method. As before, sig­
nificant reductions in computing times can only be achieved after DEIM is applied 
(either to the assembled or the unassembled form of the nonlinearity). 

For 3D problems, the cost of solving the large sparse linear systems arising in 
Newton's method using the sparse LU decomposition is significant, especially for 
finer meshes and for piecewise quadratic elements. For the larger problems, it is 
likely beneficial to replace the direct solvers by iterative solvers. For this reason we 
have not included results for quadratic elements on the fine Mesh 3. The solution 
of the full order model using the sparse LU decomposition would have made the 
full order model solution artificially costly. Switching to iterative solvers for some 
discretizations would have raised the question what the 'best' iterative solver is. 
Therefore, we have limited our computational tests, to cases where the use of direct 
solvers still seems to be justifiable. 

As in the 2D case, the errors between the full order model solution and the reduced 
order model solutions shown in Table 4.6 are of the order of the tolerance -r = 10-4 

used to construct the bases with POD. 

4.5 Evaluation of Parameterized Matrices and Vectors in 
Reduced Order Models Using DEIM 

In this section we describe the use of the DEIM for the generation of efficient reduced 
order models that involve parameterized matrices. We first describe the approach 
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applied to a generic matrix A( B) and afterwards we apply it to the solution of Stokes 
equation in parameterized domains. 

4.5.1 The Reduced Order Matrix 

We consider a parametrically dependent matrix A( e) that has the representation 

M 

A(B) = I,g;(B)A; (4.31) 
i=l 

with functions g = (g1' ... 'gu l : e --+ ]RM and matrices A; E ]RNXN' i = 1, ... 'M. 
As we have seen in Sect. 4.2.2 this is, e.g., the case when A( e) is the stiffness matrix 
of a parametrically varying linear PDE. In this subsection A( e) is a generic matrix. 
In the next subsection we will apply the reduction technique to the parametrically 
dependent Stokes system (4.16). 

If we have computed the matrices Ve, V r E JRN x n, then the system matrix for the 
reduced order model is given by 

M 

vIA(B)Vr = I,g;(B) vIANr- (4.32) 
i=l 

If Mis small, we can precompute the matrices VI A; V r and for each e we can use 
(4.32) to compute VI A( B)Vr in n2 M operations. However, if Mis large, which is 
the case, e.g., in the example in Sect. 4.2.2 an additional approximation is needed to 
allow for a fast computation of an approximation of VI A( B)V7 • We can apply the 
DEIM. 

The DEIM computes a matrix U E JRMxm of rank m and a function 

- (- - )T ( T )-1 T m g = g1' ... 'gm = p u p g : e --+ JR (4.33a) 

such that 
g(B) ~g(B) = ug(B). (4.33b) 

We assume m « M. 
Ifwe insert (4.33b) into (4.32), we obtain 

M 

vI A(B)Vr = I,g;(B) vI A;Vr 
i=l 

M Mm 

~ I,g;(B) vI A;Vr =LL V;1g1(B) vI A;Vr 
i=l i=IJ=l 

= 1t (~V;1VIANr)g1(B). (4.34) 
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The matrices L,~ 1 V;1 VI A;V7 E JRnxn, j = 1, ... ,m, can be precomputed. After­
wards, for each e the reduced order matrix 

A(B) = j~ (~ V;1 vI A;Vr) g1(B) (4.35) 

can be computed at a cost ofn2m « n2 M operations. Under the assumption that b( B) 
has a decomposition similar to ( 4.31 ), we can easily extend the ideas from reduction 
to M(B) in (4.35) to b(B). We have omitted those details to avoid repetition. 

We note that the approximation presented previously can be generalized if A( B) 
is of the form 

MK 

A(B) = L 2,(g1);(B)A;1 (4.36) 
i=lj=l 

by applying the previous techniques to each of the functions g1 = (g11, ... , ~J) T, 

j= 1, ... ,K. 
In many applications we also need to compute the derivative of the matrix A( B) 

with respect toe. If the function g is differentiable, then the derivative of A(B) is 
given by 

M 

DeA(B) = 2,Deg;(B)A; (4.37) 
i=l 

and requires the evaluation of the derivative of all M functions g1, ... , ~· The same 
is true for the derivative of ( 4.32). The derivative of the DEIM reduced matrix, 

DeA(B) = 1~ (~ V;1 vI A;Vr) Deg1(B) (4.38) 

only requires the evaluation of them« Mfunctions g1, ... , g,,,. From (4.33) we have 
that 

(
Degp1 ) (Degp1 ) 

Deg= ~ =(PTu)-IPTDeg=(PTu)-1 : ' 

Degpm Degpm 

since pT just extracts them rows from Deg that corresponding to the DEIM indices 
Pl, ... ,Pm· Thus evaluating the derivative DeA( B) of the DEIM reduced matrix, 
requires the derivative of only m « M functions gp1 , ••• , gPm. 

4.5.2 Numerical Example 

We illustrate the DEIM approximation of parametrized matrices and vectors on the 
example of evaluating the objective function and its derivative in shape optimization 
of Stokes equation. 

Suppose we want to minimize the functional 

J(B) = l(u(B),p(B))dx, 
Q(e) 

(4.39) 
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where the velocities u( 8) and pressure p( 8) are the solution of the Stokes equa­
tion (4.13). The function l will be specified later. 

We assume that the domains Q ( 8) are obtained by mapping a reference domain 
as shown in ( 4.12). Furthermore, we discretize the Stokes equation using P2-Pl finite 
elements as described in Sect. 4.2.2. The discretized Stokes system is given by 

S(8) (:) = b(8), (4.40) 

where S(8) has the form (4.18). In our examples, the forcing function/in (4.13) is 
zero. Therefore, the right hand side b is determined by the S( 8) and the in homoge­
nous Dirichlet data on the velocity in (4.13). The Stokes matrix S(8) in (4.18) has 
the same structure as the generic matrix S in ( 4.36). Since the forcing function fin 
(4.13) is zero, no additional parameterization of the right hand side b( 8) is needed. 

Applying the domain mapping, the P2-Pl finite element discretization, and the 
quadrature formula from Sect. 4.2.2 to the objective (4.39) gives the discrete objec­
tive functional 

M 

Jh(8) = .L, we l(uh(xe),Ph(xe)) ldet(D<P(xe;8))1, (4.41) 
£=1 

where uh is the piecewise quadratic FEM approximation of the velocity and Ph is the 
piecewise linear FEM approximation of the pressure. The objective ( 4.41) depends 
on 8 via the function gg : EJ --+ JRM defined by 

(gs(8))e = roeldet(D<P(xe;8))1. 

Since the discretized velocity and pressure uh and Ph are determined by their 
coefficients u and p, we can write the discrete objective functional (4.41) as 

M 

Jh(8) = .L, Ie(u,p) (gs(8))e. (4.42) 
£=1 

Note that its parameter dependence has the same structure as that of the generic 
matrix and therefore DEIM can be applied to reduce the computational cost. As in 
Sect. 4.2.2 we set 

y=(:)· 
To summarize, we want to minimize 

M 

Jh(8) = I(y(8)f gs(8) = .L, Ie(y(8)) (gs(8))e, 
£=1 

where y(8) solves (4.40). In many minimization problems there will be additional 
constraints on the parameter or on the velocities or pressures. Since we focus on the 
evaluation of reduced order models, we focus on the evaluation of Jh ( 8) and on its 
gradient. 

The evaluation of the objective function requires the following steps. 
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~1: Assemble S( 8) and b( 8) and solve the state equation S( 8)y = b( 8) for y( 8). 
~1: Compute Jh(e) = I(y(e))I' gs(B). 

We briefly summarize the computation of the gradient of Jh(8) via the adjoint 
approach, see, e.g., [18, Sec. 1.6]. We define the Lagrangian functional 

L(y,}.,, 8) = l(y)I' gs( 8) + ')., T (S( 8)y- b( 8)). 

We assume that the objective has already been computed, i.e., that S(8) and b(8) 
have been assembled and that y( 8) has been computed. Then the computation of the 
gradient requires the following steps. 

~I: Solve the adjoint equation S( e)I' ')., = -Dyl(y( 8) )I' gs( 8) for').,( 8). 

~1: Compute VJh(e) = I(y(8)f Degs(8) +}.(Bf (DeS(8)y(8)-Deb(8)). 

To construct the reduced basis for the state equations ( 4.40), we sample the solu­
tion of the discrete Stokes (4.40) at r samples in the parameter domain E>. We then 
apply the POD Algorithm 4.1 with tolerance r individually to the snapshots for the 
x1- and x2-components of the velocity and the snapshots for the pressures. If Nv are 
the degrees of freedom for the x1- and x2-components of the velocity and Np are 
the degrees of freedom for the pressure, the POD generates matrices Vv1 E JRNvxnv1, 

V v2 E JRNv xnv2, and VP E JRNp xnp. The reduced order Stokes matrix and right hand 
side are 

(4.43) 

and 

(
Vv1 0 0 ) T 

VTb(8) = 0 Vv2 0 b(8). 
0 0 Vp 

The preliminary version of the reduced order Stokes system is 

(4.44) 

Since the b3 component of the right hand side (4.16) of the discrete Stokes equa­
tion is nonzero, the velocity snapshots are not divergence free (in the discrete sense). 
Therefore, as already noted in [30], there is no guarantee that the reduced Stokes ma­
trix (4.43) satisfies an inf-sup condition. In [30] a procedure is proposed that emiches 
the velocity subspaces to guarantee the inf-sup condition. Instead we monitor the inf­
sup constant corresponding to (4.43) by computing the singular values of the small 
matrix B(8) = (V~B(ll(8)Vv1 , V~B(2l(8)Vv2 )T and found that no emichment of 
the velocity space was needed in our example. 
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The matrix S( B) has the structure (4.18). Since in our examples the forcing func­
tion fin (4.13) is zero, no additional parameterization of the right hand side b( B) 
is needed. We apply the DEIM as described in the previous Sect. 4.5.1 to obtain a 
DEIM reduced order matrix S( B) and right hand side vector b( B). Specifically, the 
reduced bases, the matrices U for the nonlinear terms g1, ... , gs are constructed by 
sampling these nonlinearities at the same parameters used to construct the reduced 
basis Vv1 , Vv2 and Vp and then applying POD with tolerance r to get matrices U 
for the DEIM. We apply DEIM to each of the eight functions g1, ... , gs separately, 
i.e., for each of the eight functions we generate a matrix U. Applying the DEIM 
approximation of Sect. 4.5.1 we obtain the DEIM reduced order system 

S(B)y=b. (4.45) 

Furthermore, applying DEIM to the function gs in the objective, i.e., approxi­
mating 

gs(B) ~fa(B) =Usgs(B). 

where 
- ((- ) (- ) )T ( T )-1 T . a llllmg gg = gg I , ... , gg m = pg U 8 pg gg . Cl --+ JN.. 

leads to the reduced order objective 

(4.46) 

where y( e) is the solution of ( 4.45). In our applications, I is affine linear or quadratic 
in y, so that fast computation ofy r-+ I(V"YlUsgs( B) is possible. 

All computations were done using Matlab on a MacBook Pro with 8GB of mem­
ory and a 2.53 GHz Intel Core 2 Duo processor. The nonlinear full order or reduced 
order models are solved using Newton's method. The linear systems are solved us­
ing the Matlab backslash command. The e derivatives are computed using INTLAB 
Version5.5 [31]. 

4.5.2.1 Evaluation of Drag Generated by Parameterized Ailfoil 

The drag on the boundary portion I'ctrag ( e) c d Q ( e) is defined by 

Cn = - ~ ((vVu(x) - p(x)l)n(x)) · u=ds, 
=L Idrag(ll) 

(4.47) 

where u= = U=u= is the velocity of the incoming flow, u= is the unit vector directed 
as the incoming flow, U= is constant, andL is the characteristic length of the body. 
See, e.g., [16,20]. As usual, we use the Stokes equations (4.13) to find an equivalent 
formula for the drag that avoids integration over the boundary. We use a function 
v= E (H1 (!2( B)))2 with v= = u= on I'ctrag( B) and v= = 0 on JQ( B) \ I'ctrag( B) as a 



4 Application ofDEIM to Nonlinear and Parametric Systems 129 

test function in ( 4.13) to obtain 

0=- ((vV'u-pI)n)·v=+ (vV'u-pI):Vv=- f-v=, 
i)Q(O) Q(O) Q(O) 

((vV'u-pI)n)·u=+ (vV'u-pI):Vv=- f-v=. 
Idrag(O) !2(0) !2(0) 

Hence, 

CD=-~ ( (vV'u(x)-p(x)I): Vv=(x)dx- f(x) ·v=(x)dx). 
U=L n(e) n(e) (4.48) 

We use CD as our objective functional for this example, i.e., in this example Jin 
(4.39) is given by (4.48). 

The domain Q ( B) (for B = 0.5) is sketched in Fig. 4.8 and has the boundary 
()Q( e) = Ij'n u ID u I'ctrag( e) u I'out, where Ij'n = {-6} x (-3, 5), I'D = ( (-6,6) x 
{ -3}) U ( ( -6, 6) x { 5} ), I'out = { 6} x ( -3, 5) andI'ctrag( B) is the boundary of airfoil. 
We specify an inflow velocity h = 1, on Ij'0 and a constant viscosity v = 0.1. The 
forcing function/in (4.13) is taken to be zero. We assume that the airfoil is of unit 
length, and the boundary has the following parameterization, 

ldrag = { (x1 ,x2) I o ::::: x::::: 1,x2 = 1+11 (en 

where for BE [0,2] 

17(B) = ±~ (0.2969Vxl -0.1260x1 -0.3520.xi +0.2832xy -0.1021xi). 
0.2 

The diffeomorphism <I> that is used to map the reference domain Q, is given by 

<I>((.X1,.X2);B) = ( (1 +:(e)).XJ = (x1,x2)r. 

for .X1 E [0,1] and <I>((.X1,.X2);B) = (.Xi,.X2) else. The reference domain is Q = 
<I>((-6,6) x (-3,5);0.5)(= .Q(0.5)) and is shown in Fig. 4.8. 

The problem is discretized using P2-Pl Taylor Hood elements as described in 
Sect. 4.2.2. We compute 25 snapshots each for both the solution to the state equa­
tions and the nonlinear terms. The reduced basis are generated using the POD with 
a tolerance r = 10-6 . 

We evaluate CD (see (4.47)) and its derivative with respect to e at an arbitrary 
point e = V2 EE>, which is not in the snapshot set. Table 4.7 summarizes the size 
of the full and the reduced order systems for three finite element grids using the 
full order model, the POD reduced order model and the POD-DEIM reduced order 
model. The mesh in Fig. 4.8 is the coarse Mesh 1. The DEIM points (quadrature 
points) chosen are contained in the triangles marked in red. 

The computing times to evaluate the objective function (steps /1 + /2) and its 
gradient (steps ~I + ~2 ) for the full order model and the reduced order models are 
shown in Table 4.8. For the reduced order models the times do not include off-line 
cost. Most of the computational cost in computing objective functional occurs in Step 
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Fig. 4.8. The reference domain Q for the NACA airfoil 4-digit family. The DETM points 
(quadrature points) are contained in the triangles marked in solid red 

/1. Computing the gradient requires solving the adjoint equations (Step ~1) and the 
sensitivities of system matrices and the objective functional (Step ~2) with respect 
to the shape parameter e. Since this example only involves a scalar parameter, for 
the full order model Step ~1 is the most expensive step in the evaluation of the 
gradient of objective functional. The cost of sensitivities increases with the number 
of parameters, see Sect. 4.5.2.2. 

The errors between the full order model (objective functional Cn) and the re­
duced order model solutions shown in Table 4.9 are of the order of the tolerance 
'T = I o-6 used to construct the bases with the POD. The error in gradient compu­
tation is slightly higher, due to the fact that adjoint solutions have not been taken 
into account to generate the reduced bases. This accuracy can be easily improved by 
enriching the snapshot set. 

Table 4.7. The size N = Nv + Nv +Np of the full order finite element system, the number of 
POD basis vectors n = nv, + nv2 + np. and the number of DETM points m = L.J=l mg 

Mesh number 2 3 

number of triangles 6.094 8.838 24.990 
number of nodes N 27,039 39,343 111,887 
number of POD basis vectors n 55 58 63 
number ofDETM points m( = I,~=l mt) 26 26 26 
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4.5.2.2 Channel with Parameterized Top and Bottom Wall 

In our second example we consider a channel in which the bottom and top boundaries 
are parameterized using Bezier curves. The reference domain is Q = ( -1, 1 )2 . The 
bottom and top wall of the channel are parameterized by Bezier curves with PT 
control points for the top boundary and PB control points for the bottom boundary. 
Thus the physical domain Q ( (}) is parameterized by (} E E> c JRP, p = PT +PB· 

The boundary a Q ( (}) is decomposed into the inflow and outflow boundaries 
Iin( B) = {-1} x (-1, 1), and I'out( B) = {l} x (-1, 1), both of which are indepen­
dent of the parameterization and the top and bottom boundaries It ( (}) and Tb ( (}). 
The viscosity is v = 1.0. On the inflow boundary Iin we specify an parabolic inflow 
velocity h = 8(1 +x2)(l -x2). The velocity h = 0 on It(B) and Tb( B). The forcing 
function fin ( 4.13) is taken to be zero. 

We use PT =PB = 2 Bezier control points to specify the top and the bottom 
boundary of the variable domain Q(B). The parameters are in E> = (0.5,3.0) x 
(0.5, 3.0) x (-3.0, -0.5) x (-3.0, -0.5) 

For this example the objective functional is 

J(B) = lu-zfl 2dx 
il(e) 

where u are the velocities computed as the solution of the Stokes equations (4.13) 
on Q ( (}). The functions zi1 are the desired velocities computed by solving the stokes 
equation on Q(Bd) with fixed parameter ed = (1.0,0.5,-0.5- l.Ol. 

The problem is discretized using P2-Pl Taylor Hood elements as described in 
Sect. 4.2.2. To construct the reduced basis, we compute 54 snapshots in the param­
eter domain E> i.e., we take 5 sample points in each direction. Then we apply Algo­
rithm 4.1 with tolerance r = 10-4 to construct the reduced basis, as before. 

We evaluate J and its derivative with respect to (} at an arbitrary point (} = 

(J2,J2,-J2,-J2l EE>, which is not in the snapshot set. Table 4.10 summa­
rizes the size of the full and the reduced order systems for three finite element grids 
using the full order model, the POD reduced order model and the POD-DEIM re­
duced order model. 

Table 4.8. The computing times (in sec) to evaluate the objective functional (Steps /1 + 
/2), and the gradient of objective functional (Steps ~1 + ~2) corresponding to the full order 
model, the POD reduced order model, and the POD-DEIM reduced order model for different 
meshes 

Mesh number 2 3 

/1+/2 ~1+~2 /1+/2 ~1+~2 /1+/2 ~1+~2 

Full 2.04 2.00 3.16 2.94 12.50 12.80 
POD 0.83 0.89 1.23 1.07 3.49 2.95 
POD-DEIM 0.02 0.02 0.02 0.01 0.05 0.03 
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Table 4.9. The errors between the full order and the POD reduced order model (objective 
functional and its gradient) and errors between the full order and the POD-DETM reduced 
order model (objective functional and its gradient) for different meshes 

Mesh number 2 3 

POD 
POD-DEIM 

"' )( 

objective gradient objective gradient objective gradient 

4.67e-6 5.08e-5 5.83e-6 2.44e-4 1.12e-5 4.50e-4 
5.3 le-6 1.1 le-4 6.05e-6 2.66e-4 l.2le-5 3.67e-4 
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Fig. 4.9. The reference domain Q for the channel example. The top I'r and bottom I'B bound­
aries are parameterized by Pl = 2 and PB = 2 Bezier control points respectively. The DEIM 
points (quadrature points) lies in the interior of the triangles marked in solid red 

The mesh in Fig. 4.9 is the coarse Mesh 1. The DEIM points (quadrature points) 
chosen are contained in the triangles marked in red. 
The computing times to evaluate the full and the various reduced order objective 
(Steps /1 + /2) and its gradient (Steps <;§1 + <;§2 ) are shown in Table 4.8. For the 
reduced order models the times do not include off-line cost. As in the previous exam­
ple, most of the computing cost for the computation of the objective function occurs 
in step / 1, the assembly and solution of the state equation. Computing the gradient 
requires solving the adjoint equations (Step <;§1) and the sensitivities of system ma­
trices and the objective functional (Step <;§2) with respect to the shape parameter e. 
We observe that in this example and for the full order model, Step <;§2 is the most 
expensive step in the evaluation of the gradient of the objective functional. This is 
due to the fact that we have four parameters. 



4 Application ofDEIM to Nonlinear and Parametric Systems 133 

Table 4.10. The size N = Nv + Nv +Np of the full order finite element system, the number 
of POD basis vectors n = nv1 + nv2 + np, and the number ofDEIM points m = I,~=l mg. The 
mesh in Fig. 4.8 corresponds to grid number 1 

Mesh number 2 3 

number of triangles 800 3,200 7,200 
number of nodes N 3,561 14,321 32,281 
number of POD basis vectors n 261 264 265 
number ofDEIM points m( = I,~=l mg) 53 53 53 

Table 4.11. The computing times (in sec) to evaluate the objective functional (Steps /1 + 
/2), and the gradient of objective functional (Steps ~1 + ~2) corresponding to the full order 
model, the POD reduced order model, and the POD-DEIM reduced order model for different 
meshes 

Mesh number 2 3 

/1+/2 ~1+~2 /1+/2 ~1+~2 /1+/2 ~1+~2 

Full 0.33 0.73 1.50 3.86 5.00 13.30 
POD 0.36 1.06 1.26 4.95 4.41 15.90 
POD-DEIM 0.05 0.13 0.04 0.14 0.09 0.14 

Table 4.12. The errors between the full order and the POD reduced order model (objective 
functional and its gradient) and errors between the full order and the POD-DEIM reduced 
order model (objective functional and its gradient) for different meshes 

Mesh number 

POD 
POD-DEIM 

objective 

2.0le-3 
2.03e-3 

gradient 

2.53e-3 
2.57e-3 

objective 

1.91e-3 
1.93e-3 

2 

gradient 

1.61e-3 
1.71e-3 

objective 

1.83e-3 
1.82e-3 

3 

gradient 

1.62e-3 
1.63e-3 

The errors between the full order model (objective functional CD and its gradient) 
and the reduced order model solutions shown in Table 4.12 are of the order of the 
tolerance 'T = 10-4 used to construct the bases with the POD. 

4.6 Conclusions 

We have demonstrated the application of the DEIM to compute reduced order mod­
els for finite element discretizations of seminar elliptic PD Es and for parameterized 
linear systems that arise, e.g., in shape optimization, and we have studied the com­
putational efficiency of the resulting reduced order models. 
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The efficiency with which DEIM reduced order models of discretized semili­
nar elliptic PD Es can be evaluated is determined by how many components of the 
argument each component of the nonlinearity depends on. For finite element dis­
cretizations this dependence is determined by the mesh, the polynomial degree used 
in the finite element approximation, but also by whether the nonlinearity is defined 
in its assembled or unassembled form. For nodal based finite element methods, each 
component of the unassembled form of the nonlinearity depends only on the compo­
nents associated with the degrees of freedom corresponding to one element. This is 
different for the assembled form of the nonlinearity. Here a component of the non­
linearity can depend on the degrees of freedom in several adjacent elements. More 
precisely, ifthe component of the nonlinearity corresponds to a node on the bound­
ary of an element, then this component of the nonlinearity depends on all degrees 
of freedom in the elements that share this node. Because of the dependence of the 
components of the nonlinearity on the components of its argument, the unassembled 
form is attractive for DEIM. Since DEIM applied to the different forms of the non­
linearity generates different reduced order models, which require different numbers 
of Newton iterations to solve, the dependency of the nonlinearity on its argument 
alone cannot be used to decide which form of the DEIM is favorable. Our numerical 
examples have shown that either version of the DEIM is preferable over the naive 
application of projection based model reduction. For large systems, the application 
of the DEIM to the unassembled form of the nonlinearity led to additional gains in 
the on-line cost of the reduced order models. The off-line cost ofDEIM applied to 
the unassembled form of the nonlinearity is always higher (and can be significantly 
higher) since the unassembled form results in a nonlinear vector valued function that 
has significantly more components than the nonlinear vector valued function arising 
in the assembled form. 

A second focus of this paper was to demonstrate the application of the DEIM to 
compute reduced order models for an important class of parameterized linear sys­
tems. The DEIM not only leads to reduced order models that can be evaluated effi­
ciently, but in addition the derivatives of the reduced order models with respect to 
the parameter can be computed efficiently. Both efficiency gains are crucial, e.g., 
for shape optimization. We have demonstrated this numerically using the Stokes 
equations on parameterized domains. 
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Greedy Sampling Using Nonlinear Optimization 

Karsten Urban, Stefan Volkwein and Oliver Zeeb 

Abstract We consider the reduced basis generation in the offline stage. As an alter­
native for standard Greedy-training methods based upon a-posteriori error estimates 
on a training subset of the parameter set, we consider a nonlinear optimization com­
bined with a Greedy method. We define an optimization problem for selecting a new 
parameter value on a given reduced space. This new parameter is then used -in a 
Greedy fashion- to determine the corresponding snapshot and to update the reduced 
basis. We show the well-posedness of this nonlinear optimization problem and de­
rive first- and second-order optimality conditions. Numerical comparisons with the 
standard Greedy-training method are shown. 

5.1 Introduction 

Reduced Basis Methods (RBM) are nowadays a well-known tool to solve paramet­
ric partial differential equations (PPDEs) in cases where the PPDE has to be solved 
for various values of the parameters (the so-called multi-query context, e.g. in op­
timization) or when the solution for different parameter values has to be computed 
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extremely efficiently (the realtime context), see e.g. [15]. A key ingredient is an 
offline-online-decomposition. In the offline stage, detailed and thus expensive simu­
lations (sometimes called truth) are computed for a moderate number of the param­
eters, µi, ... ,µN. The arising solutions u(µi), i = 1, ... ,N, of the PPDE (sometimes 
called snapshots) are stored and are used to form a low-dimensional linear space 
spanned by the reduced basis. In the online stage, an approximation uN(µ) for a new 
parameterµ -/=- µi is determined as the Galerkin projection onto the reduced space 
VN =span{ u(µi) : i = 1, ... ,N}. A whole variety of results for all sorts of problems 
has been published in the last years so that an even only halfway complete review 
including a reference list is far beyond the scope of this paper. 

The topic of this paper is the generation of the reduced basis in the offline stage, 
namely the selection of µi, ... , µN above. It is nowadays basically standard to use 
a Greedy method, see e.g. [12]. The starting point is an a-posteriori error estimator 
LiN(µ) for the quantity of interest on a current reduced space VN. Such an estimator 
can often be constructed in such a way that the evaluation for a given parameter µ is 
highly efficient (in particular independent of the size of the truth system). A training 
set E'train is defined and the error estimator LlN(µ) is maximized over E'train· The 
arising maximizer µN+l is used to compute the next snapshot u(µN+l) in order to 
form the reduced space VN+l of the next higher dimension. We refer to this approach 
as Greedy-training. 

Even though this approach obviously has the advantage of being efficiently re­
alizable, it may also suffer from the following fact: The training set E'train needs to 
be defined. This may be a delicate task since E'train should be small for efficiency 
reasons and at the same time sufficiently large in order to represent the whole pa­
rameter range as well as possible. The performance of the RBM crucially depends 
on the choice of E'train. 

This is the starting point of the present paper. Instead of maximizing the error 
estimator LiN(µ) over E'train, we develop a nonlinear optimization problem w.r.t. µ 
on VN based upon the residual of the primal (and possibly the dual) problem. We 
show the well-posedness of this optimization problem and derive first-order optimal­
ity conditions. The optimization problem is solved numerically by a gradient-type 
method. This method suffers from the fact that we can only determine local but not 
global solutions. To overcome this problem we combine the optimization strategy 
with different choices for the initial value for the optimization. 

Let us refer to the work [2, 3], where reduced bases are computed for high-dimen­
sional input spaces. In our paper we prove existence of optimal solutions and de­
rive optimality conditions, which can be also applied in the case, where one has 
to deal with distributed parameter functions; compare [8]. We also mention the re­
cent work [ 4--6, 11 ], where adaptive strategies are suggested for the Greedy-training 
to overcome the problem with high-dimensional parameter spaces. In the context of 
the method of proper orthogonal decomposition (POD) nonlinear optimization is uti­
lized in [10] to determine optimal snapshot locations in order to control the number 
of snapshots and minimize the error in the POD reduced-order model. 

The remainder of the paper is organized as follows. In Sect. 5 .2, we review the ba­
sic ingredients of the RBM and develop the nonlinear optimization problem (which, 
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in fact, is a minimization problem). We also prove the existence of a solution (Theo­
rem 5 .1 ). Section 5.3 is devoted to the derivation of first order optimality conditions 
(Theorem 5.2) while second-order conditions are discussed in Sect. 5.4. Finally, in 
Sect. 5.5 we report on numerical experiments in which we compare the optimization 
method with the known Greedy-training approach. 

5.2 Problem Formulation 

In this section we introduce our minimization problem and discuss the existence of 
optimal solutions. 

5.2.1 The Exact Variational Problem 

Let P c JRP be a given nonempty, closed, bounded and convex parameter domain 
and Va separable Hilbert space. For given£ E V' (V' denotes the space of all bounded 
and linear functionals defined on V with norm 11 · llv' and scalar product(·, ·)vi), the 
goal is to find the scalar output 

s(µ) := (£,u(µ))v',V' µ E P, (5.la) 

where u(µ) E V satisfies the variational problem (j E V' given) 

a(u(µ),<p;µ) = (f,<p)v',V forall <p EV. (5.lb) 

In(5.la), we denote by(·, ·)v',v the dual pairing of the spaces V' and V. Furthermore, 
in ( 5 .1 b) the parameter-dependent, bilinear form a(· , · ; µ) : V x V ----+ JR is assumed 
to have the affine form 

Q 
a( <p, lfl; µ) = L 1'Jq (µ) aq ( <p, lfl) for <p, lfl E V andµ E P 

q=l 

with (twice) continuously differentiable coefficient functions 1'Jq : P----+ JR and with 
parameter-independent bounded bilinear forms~ : V x V----+ JR, 1 ::::; q::::; Q. More­
over, that the parameter-dependent bilinear form a is uniformly bounded and coer­
cive, i.e., there exist constants ao > 0 and r > 0 such that 

a(µ) := inf a( <p, <p; µ) > ao > 0 for allµ E P, (5.2a) 
cpEV\{O} II <p 11i -

la( <p, <f>;µ) I ::::; rll 'Pllvll</> llv for all <p, </> E v andµ E P. (5.2b) 

Since the bilinear forms ~ are bounded we assume that 

1~( <p, </>)I ::::; rll'Pllvll</> llv for all <p, </> E v and for 1 ::::; q::::; Q. (5.3) 
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Notice that (5.2a) implies 

a( <p, <p; µ) ~ ao II <f'lli for all <p E V and for allµ E P. (5.4) 

Let us mention that we suppose that both f and C do not depend on µ in the affine 
form only for simplifying the presentation. From (5.2a) it follows by standard argu­
ments that ( 5 .1 b) has a unique solution u(µ) E V for any µ E P. 

Due to (5. la) we require the following dual problem: for givenµ E P find p(µ) E 
V solving 

a(<p,z(µ);µ)=-(C,<p)v'v forall<pEV. , (5.5) 

Since the bilinear form a(· , · ; µ) is bounded and uniformly coercive, the dual prob­
lem (5.5) possesses a unique solution z(µ) E V for anyµ E P. 

5.2.2 The Truth Approximation 

Next we introduce a so-called truth approximation for (5.1). For that purpose let 
vJY =span { <p1, ••• , <f'JY} c V be a finite dimensional subspace with linearly inde­
pendent functions <p;. The subspace vJY is endowed with the topology of V. We 
think of JV» 1 being 'large'. Then, for anyµ E P we consider the 'truth' output 

sJY (µ) := (C,uJY (µ))v' v' , (5.6a) 

where~(µ) E vJY satisfies the variational equation 

(5.6b) 

We define the discrete coercivity constant 

aJY(µ) := inf a(<pJY,<pJY;µ) µ E P. 
rpuY EVuY\{O} ll<f'JYl1i 

Unsing vJY c V and (5.2a) we find 

aJY(µ) > inf a(<p,<p;µ) > ao forallµ E P. 
- rpEV\{O} ll<f'lli -

Thus, (5.6b) has a unique solution uJY (µ) E vJY for everyµ E P. 

5.2.3 The Reduced-Order Modelling 

Let us introduce a reduced-order scheme for (5.6). For chosen linearly independent 
elements { l/f;}~~ in vJY we define VNPf :=span { l/f!' ... ' lf/NPf }. Analogously, for 
linearly independent { </>;}~~ in vJY we set VNctu := span { </>1, ... , <f>Nctu }. We have 
that max(Nl'r,~u) :::; JV. In the context ofreduced-order modeling, max(Nl'r,Nctu) 
is much smaller than JV. 



5 Greedy Sampling Using Nonlinear Optimization 141 

For anyµ E P we consider the scalar output 

(5.7a) 

where uN(µ) E VNPr satisfies the variational equation 

(5.7b) 

For notational convenience, we just write UN instead of uNPr (also for other quantities) 
since there should be no misunderstanding. We collect some more or less known 
facts for later reference. 

Lemma 5.1 Suppose that the bilinear form a(·,·;µ) satisfies (5.2). Further, f E V' 
holds. Then, there exists a unique solution UN(µ) E VNPr to (5.7b)for everyµ E P 
with 

lluN(µ)llv::::; llfllv' for allµ E P. 
ao 

(5.8) 

Proof By assumption, the bilinear form a(·,·;µ) is bounded for everyµ E P. Since 
VNPr c V, the form a(·,·;µ) is also uniformly coercive on VNPr· Thus, it follows from 
the Lax-Milgram theorem that (5.7b) possesses a unique solution UN E VNPr for every 
µ E P. Utilizing (5.4) and (5.7b) and the uniform coercivity, we obtain 

which gives (5.8). 

Remark 5.1 1) Due to Lemma 5.1 we can define the primal (non-linear) solution 
operator YJl : P ----+ VNPr, where uN(µ) = Y}l (µ) denotes the unique solution to 
(5.7b). 

2) Let us consider a specific case. Suppose that the bilinear form is given by 
a(·,·;µ)= '61(µ)a1(·,·) (i.e., Q = 1) and -61(µ) -I- 0 holds for allµ E P. 
Let u}v = uN(µI) be a solution to (5.7b) for given µ1 E P. Then, the function 
u'fv = '61(µ1)u}v/-6 1(µ2) E vN solves (5.7b) for µ1 E P. In fact, we have 

a(u'fv, lf/i;µ2) = '61(µ2)a1(u'fv, lf/i) = '6 1(µ1)a 1(u}v, lf/i) = a(u}v,<pi;µI) 

= (!, lf/i)v',V for 1 ::::; i::::; N. 

Consequently, solutions to different parameter values are linearly dependent. D 

For givenµ E P the associated dual variable zN(µ) solves the dual problem [1], 
namely 

(5.9) 

Remark 5.2 1) If the bilinear form satisfies (5.2) and£ EV' holds, it follows by sim­
ilar arguments as in the proof of Lemma 5 .1 that ( 5 .9) admits a unique solution 
ZN(µ) E VNctu satisfying 

llzN(µ)llv::::; ll£llv' for allµ E P. 
ao 

(5.10) 
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2) We define the (non-linear) solution operator y~u: P ____, VNctu, wherezN = y~u(µ) 
is the unique solution to (5.9). D 

Next we define the residuals rlif (· ;µ ),rtu(· ;µ) E (VJY)' by 

r)if ( <pJY ;µ) := (!, <pJY)v',V - a(uN(µ ), <pJY ;µ) 

rtu(<pJY;µ) := (£,<pJY)v1,v+a(<pJY,zN(µ);µ) 

for <p E vJY andµ E P, 

for <p E vJY andµ E P. 

It has turned out that the primal-dual output defined as 

gives rise to favorable output error estimates which take the form (see [15], for in­
stance) 

I .%()- ()I <Lls( )= llrlif(·;µ)llwvYl' llrtu(·;µ)llwvYl' (5.ll) 
s µ SN µ - N µ 1/2 1/2 . 

ao ao 

Remark 5.3 1) From 

Nl'r ~u 

uN(µ) = L, uN,J(µ)lJfJ and ZN(µ)= L,zN,J(µ)<f>J 
j=l j=l 

we infer that 

NJ'f 

r)if (<pi;µ) = (!, 'Pi)v',V - L, UN,J(µ) a( lJIJ, <pi;µ) 
j=l 

NJ'f Q 

= (/, 'Pi)v1,v - L UN,J(µ) L iJq(µ) dl(lJIJ> 'Pi), 
j=l q=l 

rtu(<pi;µ) = (£,<pi)v,,v+a(<pi,zN(µ);µ) 
~u Q 

= (£,<pi)v,,v+ L,zN,J(µ) L, iJq(µ)dl(<pi,</>J) 
j=l q=l 

for 1 :::; i :::; JV. These representations of the residuals are utilized to realize an 
efficient offline-online decomposition for the reduced-order approach, see e.g. 
[12, 15]. 

2) Suppose that the bilinear form is given by a(· , . ; µ) = f} 1 (µ) a1 (. , . ) (i.e., Q = 1) 
and fJ 1 (µ) -/=- 0 holds for allµ E P. Then, solutions to different parameter values 
are linearly dependent; see Remark 5.1-2). Let µ1, µ1 E P be chosen arbitrarily. 
By u]v, i = 1,2, we denote the solutions to (5.7b) for parameterµ= µi. From 
u'fv = fJ 1 (µ1)u}v/iJ 1 (µ2) we infer that 

V' 3 a(u'fv,·;µ2)- f = :~~~~~ a(u}v,·;µ2)- f = a(u}v,·;µi)- f. 
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Hence, the norm lla(uN(µ ), · ;µ )-fll(VuY)' is constant forallµ E P, where uN(µ) 
denotes the solution to (5.7b) forthe parameterµ. Analogously, we can prove that 
the norm Ila(· ,zN(µ );µ) +Cll(vuY)' is constant for allµ E P, wherezN(µ) denotes 
the solution to (5.9) for the parameterµ. D 

5.2.4 The Minimization Problem 

Let N := (NPr,Nctu), YN := VNP' x VNctu, XN = YN x JRP andX,Vd = YN x P. We en­
dow XN with the natural product topology. In the Greedy algorithm a new reduced­
basis solution uN(Ji,) associated with a certain parameter valueµ is added to the al­
ready computed set of ansatz functions provided an a-posteriori error measure Lifv(Ji,) 
in ( 5 .11) is maximal. The idea here is to avoid the Greedy method and to determine 
Ji, as the solution of a minimization problem. Thus, we introduce the cost functional 
J:XN--+ JR for XN = (uN,ZN,µ) EXN by 

To ensure that the objective J is twice continuously differentiable we do not utilize 
directly the estimator Lifv(µ) from (5.11), but a quadratic upper bound. This choice 
also ensures that both the primal and the dual residual are minimized during the op­
timization process, whereas in ( 5 .11) it would be sufficient if only one of the factors 
becomes small. IfJ(xN(µ)) 2: -£CX() holds true for XN(µ) := (uN(µ),zN(µ),µ), we 
infer by using Young's inequality that 

I A'( ) ( )I llr~'l ;µ)ll(vuY)' + llrtu(· ;µ)ll(vuY)' 
S µ - SN µ :::; lCX() = 

J(xN(µ)) < £. 
CX() -

Now we consider the following optimization problem: 

where we have set Y'N = (Y'Jr,y~u): P----+ YN, i.e.,yN = Y'N(µ) means thatyN = 
( uN(µ) ,zN(µ)). Introducing the reduced cost functional 

}(µ) :=J(Y'N(µ),µ) forµ E P, 

we can express (P) equivalently in the reduced form 

min}(µ). 
µE'!d 

(P) 

If (P) has a local solutionµ E P, then XN := (jiN, Ji,) is a local solution to (P), where 
we setyN = (iiN,PN) := Y'N(Ji,). We now give a general existence result. 

Theorem 5.1 Suppose that the bilinear form a(·,·;µ) satisfies (5.2). Further, f and 
.e belong to V'. Then, there exists at least one optimal solution XN = (jiN, Ji,), YN = 

(iiN,zN) E YN, to (P). 
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Proof Since P is assumed to be nonempty and Y'N : P ____, YN is well-defined, the 
set of admissible solutions 

:f'(P) = { XN = (yN' µ) E XNd I YN = Y'N(µ)} 

is nonempty Let {x(n)} C :f'(P) x(n) = (y(n) µ(n)) and y(n) = (u(n) z(n)) be a 
· N nEN ' N N ' N N ' N ' 

minimizing sequence for J: 

Since Pis bounded and the a-priori bounds (5.8), (5.10) hold, infxNE'.T(P)J(xN) is 
bounded from below. Moreover, fromµ (n) E P c ]RP for every n we infer that there 
exists a subsequence {µ (nk) hEN in P and an element Ji, E P so that 

lim µ (nk) = Ji, in ]RP. 
k->= 

It follows from the a-priori estimates (5.8) and (5.10) that the sequence 
{ (ut) ,zt)HnEN is bounded in YN. Consequently, there exist a subsequence 

{ytk)} kEN and a pair YN = (UN, PN) E YN such that 

Next we prove that YN = Y'N(Ji,) holds. For 1 :::; i :::; ]{Pr we have 

(/, l/fi)v',V -a(uN, l/fi;Ji,) = a(utk), l/fi;µ(nk)) - a(uN, l/fi;Ji,) = 

= a( utk), l/fi; µ (nk)) - a( utk), l/fi; Ji,) +a( utk) - UN, l/fi; Ji,) 

Q 
= L ( ( iJq(µ(nk)) - iJq(Ji,)) a'l(utk), l/fi)) + a(utk) - uN, l/fi;Ji,). 

q=l 

Let us define the functionals F; EV' c Vfv by (F;,<p)v',V := a(<p, l/fi;Ji,) for <p EV 
and 1:::; i:::; NPr. From (5.12) we infer that 

Moreover, llutk) llv is uniformly bounded and the iJq's are continuous. Thus, 

Q 
I, ( ( i}q (µ (nk)) - i}q (Ji,)) aq ( utk), l/fi)) ____, 0 fork____, oo and 1 :::; i:::; Q. 
q=l 

Consequently, UN= Y'//(Ji,) holds. Analogously, we find that ZN= yctu(Ji,) holds 
true. Thus, XN = (YN, Ji,) E :f'(P) is satisfied. Next, we show that XN is a minimizer 
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for J. Note that with the above arguments 

ll a(u(nk) .· µ-) - a(u(nk) .· µ(nk)) II 
N ' ' N ' ' (VuY)' 

Q 
~ L l~q(.U)- ~q(µ(nkl)l ll~(utkl, ·)llwJVl' ~ 0. 

q=l 

This and (5.12) imply 

lim II/- a(u(nk) .. µ(nk)) II = 
k-+= N ' ' (Vu'V)' 

= lim II/ - a(utk)'. ;jl) ll(vuY)' + lim lla(utkl'. ;jl) - a(utk)'. ;µ (nk)) ll(vuY)' 
k~~ k~~ 

= llf-a(uN,.;.U)llwuYy· 

Analogously, limk-+= 11.C +a(· ,ztk); µ (nkl) II (vuY)' = 11.C +a(· ,zN; jl) II (VuY)' and there­
fore 

inf J(xN) = lim J(xtk)) = J(xN), 
XNE'.F(P) k-+= 

i.e., XN is a solution to (P). D 

Before we continue, let us collect some notation that will be needed in the se­
quel. Let XN = (YN,jl), YN = (uN,zN), be an optimal solution to (P) according to 
Theorem 5 .1. Then, define corresponding (optimal) primal and dual residuals as 

for <pJV E VJV, 

for <pJV E vJV. 

We define the corresponding Riesz representations jiff' ji~U E vJV' i.e., 

This in particular implies that 

for all <pJV E VJV, 

for all <pJV E VJV. 

which will be used later. It is noticable to mention that we have in general jiff r:j_ VNPr 
-d -and PNU r:j_ VNdu. 

5.3 First-Order Necessary Optimality Conditions 

First we write the equality constraints in (P) in a compact from. For that purpose we 
introduce the nonlinear mapping e = ( ei , e1) : XN ----+ Yf..r by 

(e(xN),lw)y1 r:N = (e1(xN),A-k)v1 v +(e2(xN),A-i)v1 v,,,, 
N' _NPr' _NPr _N(iu' 1v ... u 
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for XN = (uN,ZN,µ) E Xf/ and /w = (A,k,AR) E YN. Here, we identify the dual Y)v 
I - I with VNP' x VNdu and we put 

Using ( 5 .2b) we infer that 

lle(xN)llY' = sup (e(xN),AN)y1 y 
N PwllY =1 N' N 

N 

= sup (e1(xN),Ak)v' v + sup (e2(xN),A1~)v' v.,,, NPf' NPf _N(iu' 1yuU 

p,,{,llv=l P"Rllv=l 

~Ce (1 + lluNllv + llzNllv) 

with Ce= max(llfllv1 + ll£llv1 , y). 
To derive first-order optimality conditions for (P) we have to ensure that the map­

ping e is continuously (Frechet) differentiable and satisfies a standard constraint qual­
ification; see, e.g., [7, 16]. 

Proposition 5.1 Suppose that the bilinear form a(·,·;µ) satisfies (5.2). Further, 
f, £ E V' holds and the functions i}q are continuously differentiable for 1 ~ q ~ Q. 
Then, the mapping e is continuously (Frechet) differentiable and its (Frechet) 
derivative at XN = (yN, µ) E Xf/, YN = (UN, ZN), is given by 

(e'(xN)xt,AN)y' y = (e~(xN)xt,Ak)v' v +(e~(xN)xt,AR)v' v 
N' N NPr ' NPr }{'iu ' Ndu 

with V 1'Jq (µ) = ( iJZ1 (µ), ... , iJZP (µ)) T E JRP and iJZ; = ~~;. Furthermore, the (Fre­

chet) derivative e' (xN) : XN ----+ Yfv is a surjective operator for every XN E Xf/, 

Proof It follows by standard arguments that e is (Frechet) differentiable for every 
XN E Xf/, Therefore, we only prove that the linear operator e' (xN) is onto. Let FN = 

(FJ,F'J) E Yfv be chosen arbitrarily. Then, e'(xN) is surjective ifthere exists an ele­

mentxt = (ut,zt,µ 8) EXN satisfying 

e'(xN)xt = FN in Y)v. (5.13) 

Equation ( 5 .13) is equivalent with 

I ( ) 0 Dl ' TT/ fil• el XN XN = I'N m r NP' (5.14) 
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Choosing µ 8 = 0 we obtain from (5.14) that 

a(ut,A.J;µ) = -(FJ,A.J)v1 v 
NPr' NPr 

a(A.}r,zt;µ) = (F'J,A.Jr)v' 17,,,, 
~u, Iv-u 

for all A.J E VNPr, 

2 -for all AN E VNctu. 

147 

(5.15) 

Since the bilinear form a(· , · ; µ) is bounded and coercive, there exists a unique pair 
Yt = (ut,zt) E YN solving (5.15). Summarizing, xt = (yt,o) solves (5.13) which 
implies that e' (xN) is surjective. 

Next let us introduce the Lagrange functional 2 : XN x YN ____, JR for XN = 

(xJr,xi,µ) EXN and AN= (A.J,A.}r) E YN as 

We infer from Proposition 5.1 that first-order necessary optimality conditions are 
given as follows [7, 16]: Let XN = (YN,ji) E Xf!/, YN =:=_ (iiN,°fN) E YN, be a local 
solution to (P). Then, there exists a Lagrange multiplier AN= (A.J, A.Jr) E YN solving 
the following system 

2uN(xN,X-N)ut = 0 

2zN(xN,X-N)zt = 0 

2µ(XN,X,N)(µ8 -ji) ~ 0 

for all ut E VNPr, 
(j -for all ZN E VNdu, 

for all µ 8 E ~' 

(5.16a) 

(5.16b) 

(5.16c) 

where, for instance, 2uN denote the (Frechet) derivative of the Lagrangian with re­
spect to the argument UN. First we study (5.16a). For ut E VNPr we find 

2uN(xN,X-N)ut = (f - a(iiN, · ;ji), a(ut, · ;ji))(VJi)' - a(ut,X.J;ji). 

Using the Riesz representation pff E V'·/V of 1W E ( V JV)', we get 

2uN(xN,XN)ut = (i}[,a(ut, · ;ji))(VJi)' - a(ut,X.J;ji) 

( 8 ~r. -) ( 8 11. -) ( 8 ~r 11. -) =a uN,pN,µ -a uN,/\,N,µ =a uN,PN -/1,N,µ. 

From (5.16a) and (5.17) we infer the first adjoint equation: 

a(ut,XJ;ji) = a(ut,Pf!;ji) for all ut E VNPr· 

(5.17) 

(5.18) 

!lemark 5.4 Since in general pff rj. VNPrholds, we oh_tain in general A.J =J pff. Rather, 
A.J is the a-orthogonal projection of pff E V onto A.J E VNPr. D 

Further, we have 
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forany direction zt E VN<lu. Using the Riesz representation P-tu E V JV of ~u E ( V JV)', 
combining (5.16b) and (5.19) we get 

which gives the second adjoint equation 

(-;;-2 8. -) (::-du 8. -) 8 a /\,N,zN, µ =a PN ,zN, µ for all zN E VN<lu. (5.20) 

Remark 5.5 Analogous to Remark 5.4 we infer that .iJ is the a-orthogonal decom­
position of Ptu onto VN<lu. D 

Next we consider (5.16c). Using the Riesz representations pf!,ptu E vJV ofiW, 
~u E (VJV)', respectively, it follows that 

- Q 
2µ(XN,AN)µ 8 = L ViJq(ji)T µ 8 (ryJ,~(iiN,·))(VA')' 

q=l 

+I VfJq(ji)T µ 8 ((-~u,~(·,zN))v1+aq(J:J,zN)-aq(iiN,.ik)) (5.21) 
q=l 

= f ( ~(iiN,Pf! -.ik) + ~(.iJ-P-tu,z-N) )viJq(ji) T µ 8 

q=l 

for any direction µ 8 E JRP. We define the Jacobi matrix 

( 
VfJl(ji)T) 

DiJ(ji) = : E JRQxP 

VfJQ(ji)T 

~ith V_iJq (µ) :' ( iJZ, p), ... , iJZP (µ)) T E lRP and f}z; = ~!:. Further, we set ~ = 
~(xN,AN) = (~1, ... ,~Q)T E ]RQ with 

~ = ~(iiN,Pf! -.ik) +~(.iJ-P-tu,zN) for 1::; q::; Q. 

Then, we derive from (5.16c) and (5.21) 

(DiJ(ji) T ~) T (µ 8 - ji) ~ 0 for all µ 8 E P. (5.22) 

Summarizing we have proved the following result. 

Theorem 5.2 Suppose that the bilinear form a(· , · ; µ) satisfies ( 5 .2). Further, f, £ E 

V' holds and the functions f}q are continuously differentiable for 1 ::; q ::; Q. Let 
XN = (jiN,ji) E XJ:/, YN = (iiN,zN) E YN, be a locaLsolutiJ!n to (P). Then, there 
exists a unique associated Lagrange multiplier pair AN= (.A.k,.A.J) E YN satisfYing 
together with XN the.first-order necessary optimality conditions (5.18), (5.20) and 
(5.22). 
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The gradient VJ of the reduced cost functional J at a point µ E P.J is given by the 
formula [7, 16] 

V}(µ)=DiJ(µ)Ts E~P, 

where the components of the vectors E ~Qare 

Sq= dl(uN,iif! -A}r) +dl(A,J-fJtu,zN) for 1 ~ q ~ Q, 

(uN,zN) = Y(µ) holds and AN= (A,}r,A,J) E YN solves the dual system 

a(ut,A,Jr;µ) = a(ut,pf!;µ) 

a(A,J,zt;µ) = a(ptu,zt;µ) 

for all ut E VNPr, 
0 -for all ZN E VNctu. 

(5.23) 

Here, pf!,ptu E vJY are the Rieszrepresentants of the residuals r}if (· ;µ ), rtu(· ;µ) E 

(VJY)', respectively. 

Remark5.6Suppose that the bilinear form is given by a(·,·;µ)= 1'J 1(µ)a 1(·,·) 

(i.e., Q = 1) and 1'} 1 (µ) =I- 0 holds for allµ E P.J. Then, solutions to different param­
eter values are linearly dependent; see Remark 5.1-2) and Remark 5.3-2). Then, it 
follows from 1'}1 (µ) =I- 0, (5.18) and (5.20) that 

a1(ut,XJr) = a1(ut,iif!) 

a1(XJ,zt) = a1(Ptu,zt) 

for all ut E VNPr, 
0 -for all ZN E VNdu. 

In particular, a1 (iiN,pf/ -XJr) = a1 (XJ-fitu,z-N) = 0 holds true, which gives S1=0. 
Therefore, VJ(µ)= 0 is satisfied. This coincides with the observation inRemark5.3-
2 that the mappings 

are constant. D 

5.4 Second-Order Derivatives 

To solve (P) in our numerical experiments we apply a globalized sequential quadratic 
programming (SQP) method which is makes use of second-order derivatives of the 
Lagrange functional; see [13], for example. For that reason we address second-order 
optimality conditions in this section. We restrict ourselves to simple bounds, i.e., we 
assume that the bounded and convex parameter set P.J is given by 

P-times 

with lower and upper bounds µa,i ~ µb,;, 1 ~ i ~ P. Let XN = (iN, ii) E Xf/, YN = 
(iiN,zN) E YN, be a solution to the first-order necessary optimatity conditions for (P); 
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see Theorem 5.2. Moreover, the pair X.N = (.Ak,.AR) E YN denotes forthe associated 
unique Lagrange multiplier. We suppose that the functions i}q are twice continu­
ously differentiable. For ut, ut E VNP' we deduce 

Analogously, we find for zt,zt E VNctu 

Further, it follows that 

for ut E V NP' and zt E VN<lu. Using i]" = f - a( UN, · ; ji) E V' and the Riesz repre­
sentant jiff E V of i]" we observe that 

2µuN(xN, X.N) (ut, µ0) = 2uNµ (xN, X.N) (ut, µ 0) 

= I ViJq (ji) T µ 0 ( ~ (ut, Pf! - X.k) - ( ~ (uN, · ), a(ut, ·; ji) )(VJV)'). 
q=l 

for ut E VNP' and µ0 E JRP. Let °fJ!'q E vJV, 1:::; q:::; Q, denote the Riesz represen­
tants of ~(uN, ·) E (VJV)', i.e. 

( t;tr,q' <pJV) v = aq (UN' <pJV) for all <pJV E vJV. 

Then, we derive that 

2uNµ (xN, X.N) ( ut, µ 0 ) 

Q - - (5.27) 
= I, V iJq (ji) T µ0 ( ~ (ut,iif! - .Ak) - a( ut, t;J!'q; ii)) 

q=l 

for ut E VNP' and µ0 E JRP. As above we apply ~u =£+a(· ,zN;ji) E (VJV)' and 
the Riesz representant iitu E V JV of ~u we observe that 

2µzN(xN,X.N)(µ8,zt) = ZNµ(xN,X.N)(zt,µ8) 

= I ViJq(ji) T µ0 ( ~(X.i-Ptu,zt) - (~(·,ZN), a(· ,zt;ii) )(VJV)') 
q=l 

for zt E VN<lu and µ0 E JRP. Let wiu,q E vJV, 1:::; q:::; Q, denote the Riesz represen­
tants of~(· ,zN) E (VJV)', i.e. 

( wiu,q, <pJV) v = aq ( <pJV, ZN) for all <pJV E V JV. 
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Then, we conclude that 

.!C'zNµ (xN,-;.N) (zt, µ 8) 

Q - 0.2~ 
= L, ViJq(ji) T µ 8 (d1(Ai- p~u,zt) - a(w1t'q,zt;ii)) 

q=l 

for zt E VNctu andµ 8 E JRP. Finally, we find forµ 8 , fl 8 E JRP 

2'µµ(XN,-;.N )(µ 8 ,/18 ) 

= µo,T ( (! (d1(iiN,Pf!) -d1(p~u,zN))) V2iJq(ji)) µo 

-f ViJq(ji) T µ 8ViJq(ji) T /1 8 (11 [ff,qll~ + llro~u,qll~) 
q=l 

with µo,T =(/lo) T. 

(5.29) 

The convergence of the SQP method relies on second-order sufficient optimality 
conditions for (P). For an arbitrary r ~ 0 let us define the set of strongly active 
constraints for the parameter ji by 

J?17:(ji) = {i E {l, ... ,P} I l(VJ(ji))il ~ r} 
= {i E {l, ... ,P} I l(VDfJ(ji) T .g\I ~ r }, 

where (VJ(ji)); denotes the i-th component of the vector V}(ji) E JRP. Second-order 
sufficient optimality conditions for (P) are as follows [ 16]: Let XN = (yN, ji) E Xf/, 
YN = (iiN,ZN) E YN, be a solution to the first-_Qrder n~ce~ary optimatity conditions 
for (P); see Theorem 5.2. Moreover, the pair AN= (AJ, Ai) E YN are the associated 
Lagrange multiplier. If there exists a K > 0 such that 

(5.30) 

for allxt = (yt,µ 8 ) E XN,Yt = (ut,zt), satisfyingyt E kere'(xN) and 

{ 
= 0 if i E J?/7:(ji), 

(µ 8 ); ~ 0 if§= µa,i and i rf_ J?/7:(g_), 
::; 0 ifµ;= µb,i and i rj_ J?/7:(µ). 

then XN is a strictly local solution to (P). 
Suppose thatxt = (yt,µ 8) E kere'(xN) withyt = (ut,zt) E YN. Then we have 

Q 
a(ut, lfl;jl) = - L ViJq(ji) T µ 8 aq(iiN, lfl) for all lfl E V NP', (5.3 la) 

q=l 
Q 

a(<f>,zt;ii) = - L ViJq(ji)T µ8 d1(</>,ZN) (5.3lb) 
q=l 
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Utilizing (5.2a), (5.3) and (5.3 la) we find 

Q 
Cl{) llutll~:::; a(ut,ut;ii):::; rllzlNllv L llViJq(.U)llJRPllutllvllµ 8 llJRP 

q=l 

which implies 

(5.32a) 

with C1 = rllzlNllv I,~=1 llViJq(.U) llJRP· Analogously, we derive from (5.2a), (5.3) 
and (5.31a) 

(5.32b) 

with c; = rllzNllv L~=l llViJq(.U) llJRP· From (5.2b), (5.32) and (5.32b) we infer that 

0 - 2 0 - 2 .2 ( 0 2 0 2 ) -lla(uN,. ;µ)llwuYl' - Ila(· ,zN;µ)llwuYy 2: -r lluNllv + llzNllv 

2: -r2 (q +q) llµll~p. 
(5.33) 

We set 6i = y2(Cr +c~). Then, we derive from (5.24)--{5.29) and (5.33) that 

2xNxN(xN,XN)(ut,ut) = 

- 2 Q - -
2: -C3 llµ 8 llJRP +2 L ViJq(.U) T µ 8 (aq(ut,Pf! -Ak) -a(ut, sl!'q;.U)) 

q=l 
Q -

+2 I, ViJq(jl) T µ 0 (~(A.Jr- Plru,zt) -a(wiu,q,zt;.U)) 
q=l 

+ µ 0,T ( (! (aq(uN,Pf!) - ~(fifl,ZN))) V2iJq(.U) )µ 0 

-I IViJq(.U) T µ 0
1
2 (11 [J!'qll~ + ll~u,qll~) 

q=l 

for all xt E ker e' (xN). Since 

-Qi llµ 8 ll!p- I IViJq(jl)T µ0 l 2 (ll[~r,qll~+ ll~u,qll~):::; 0 
q=l 

holds and the matrix 

Q 
(I, (~(uN,Pf!)-~(fifl,ZN)) )v2 tJq(.U) 

q=l 

need not be positive definite, the second-order sufficient optimality condition (5.30) 
is not obvious in our case. 
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Remark 5. 7 If ji is strongly active in all P components, it follows that d-r(ii) = 
{1, ... ,P}. Thus, µ 8 = 0 is satisfied. From (5.32) and (5.32b) we conclude thatyt = 
0 holds. This imply the second-order necessary optimality conditions at XN. D 

5.5 Numerical Experiments 

In this section we present some numerial results for the described theory. We use 
two versions of the well-known Thermal-Block-Model (see e.g. [15]) as a model 
example. Model 1 consists of two blocks while Model 2 consists of 12 blocks, see 
Fig. 5.1. The parameter domain is chosen as~= [0.2,2jP, wherePagaindenotes the 
number of parameters, i.e., P = 2 for Model 1 and P = 12 for Model 2, see Fig. 5.1. 
We choose 11(µ) I ~ £stop = 1 e - 5 as stopping criteria for the Greedy-algorithm. 
Since P = 2 for Model 1, we can easily visualize the reduced cost functional}(µ) 
in that case, see Fig. 5.2. 

As we can deduce from the shape of the cost functional, the appropriate choice for 
an initial value for the optimization scheme1 is crucial in order to avoid determining a 
local minimum only. Let us clarify this in Fig. 5.2 (b): Choosing an initial parameter 
µf/i.it in the left half of the plane will lead to a local minimum whereas an initial value 
located in the right halfofthe plane will yield the global optimum (0.2,2). In order 
to avoid the output of a local minimum, we have used four different strategies: 

1. euclidian_mu: ~1/i.it is chosen by maximizing the Euclidian distance to the bary­
center of the previously determined parameter values µi, 1 ~ i ~ N - 1. 

Fig. 5.1. Left: Model 1 (2 dimensions), right: Model 2 (12 dimensions) 

1 We used MATLAB's function fmincon for this. We set options.To1Con=1e-6; options. 
To1Fun=1e-6; and options.Algorithm=' sqp ',i.e., we used a MATLAB internal SQP algorithm. 
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Fig. 5.2. Reduced cost functional }(µ) for Model I. Note that the range for the y-axis for 
N = 3 is 10-6 

2. coarse_grid_mu: An equidistant coarse parameter-mesh consisting of M = 31' = 

9 points for Model I and M = 21' = 4096 for Model 2 is used. We choose that 
parameter as initial value µ,~it whose cost functional is minimal on that grid. 

3. random_mu with "safety zone": µf/nt is chosen randomly in §, but ensuring a 
minimal distance (measured in the Euclidian norm) to all µi, 1 <::: i <::: N - 1. This 
"safety zone" is chosen adaptively, i.e., the radius of the circular zone is decreased 
with increasing N. If we would not do that, we would get an Nmax, where no 
additional feasible points could be found. 

4. multiple_random_mu: This is similar to coarse_grid_mu, except that we use 
a fixed number of Nrand uniform randomly chosen parameters µ instead of a fixed 
coarse grid. 

Especially in higher dimensions best results were obtained using multiple_ 
random_mu and due to the curse of dimension coarse_grid_mu is not applicable 
properly in higher dimensions. We used an SQP algorithm as optimization scheme 
and compare the results to a classical training set strategy, using equidistant train­
ing sets consisting of 32 = 9 respectively 102 = 100 parameter values for Model 1 
and 312 = 531.441 parameter values for Model 2. Fig. 5.3 (left) shows the decay 
of the mean error estimator during the Greedy-process (i.e., with increasing N) for 
a randomly chosen test set of I 0.000 parameters. We choose µ0 = (I, 1) as initial 
snapshot-parameter. As expected (see [14]) the Greedy stops after two steps with 
µi = (µmin,µmax) and µ2 = (µmax,µmin). In this example there is no difference be­
tween using an optimization algorithm and using a training set strategy since the 
optimal parameter values µ, and µ2 are contained in the training set. Hence, our 
optimization procedure is consistent with the known theory. 

In Fig. 5.3 (right)the decay of the mean error estimator again for I 0.000 randomly 
chosen parameters is shown for Model 2 with increasing basis size N. We observe 
the expected exponential decay and our optimization strategies perform as well as 
the classical training set strategy. This is remarkable since the number of reduced 
simulations needed in the offiine phase is significantly smaller than for the classical 
training set Greedy approach (see Table 5.1 ). 
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Fig. 5.3. Mean error estimators ,1N (µ) for different bases on a test set consisting of 10.000 
randomly chosen parametersµ for Model 1 (left) and Model 2 (right). Note that on the left 
the scale is linear, while the right plot has a semilog scale 

Table 5.1. Number of reduced simulations during the offline phase for Model 1 (left) and 
Model 2 (right) 

Model 1 # RB simulations Model 2 # RB simulations 

SQP, Nrand = 3 34 SQP, Nrand = 10 26.127 
SQP, Nrand = 10 98 SQP, Nrand = 500 55.536 

SQP, ICoarseGridl = 9 101 
SQP, Nrand = 1000 91.983 

IEtrainl = 9 18 
SQP, ICoarseGridl = 4096 302.259 

IEtrain I = 100 200 IEaainl = 531.441 37.732.311 

In Table 5.1 we show the overall number of evaluations of}(µ) - i.e., the number 
ofreduced simulations - during the Greedy process in the offline phase for Model I 
and Model 2. Especially for Model 2 the Greedy algorithm combined with the opti­
mization scheme needs much less function calls than the Greedy algorithm combined 
with a training set strategy. This can be an advantage in order to overcome the curse 
of dimension which prohibits to choose the training set arbitrarily large especially 
in high dimensions. 

With our approach we were also able to generate bases for a 4 x 4-ThermalBlock 
consisting of93 to 94 basis functions. The results are shown in Table 5.2. The coarse 
grid consisting of only 2 parameters per dimension already consists of2 16 = 65.536 
points which leads to a total number of reduced simulations of about 6.100.000. 
The classical Greedy, using a training set consisting of 3 parameters per dimension, 
would need 316 = 43.046.721 reduced simulations just for one new basis function. 
For a basis length of90 this would result in approximately 3.87 · le9 reduced simu­
lations during the offline phase, which nowadays clearly is out of scope. 
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Table 5.2. Number of reduced simulations during the offline phase for a 4 x 4-Thermal Block 

References 

4x4-Thermal Block 

SQP, Nrand = 10 
SQP, Nrand = 500 
SQP, Nrand = 1000 

SQP, ICoarseGridl = 65.536 

IEtrainl = 316 = 43.046.721 

# RB simulations 

43.265 
89.221 

133.318 
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A Robust Algorithm for Parametric Model 
Order Reduction Based on Implicit Moment 
Matching 

Peter Benner and Lihong Feng 

Abstract Parametric model order reduction (PMOR) has received a tremendous 
amount of attention in recent years. Among the first approaches considered, mainly 
in system and control theory as well as computational electromagnetics and na­
noelectronics, are methods based on multi-moment matching. Despite numerous 
other successful methods, including the reduced-basis method (RBM), other meth­
ods based on (rational, matrix, manifold) interpolation, or Kriging techniques, multi­
moment matching methods remain a reliable, robust, and flexible method for model 
reduction of linear parametric systems. Here we propose a numerically stable algo­
rithm for PMOR based on multi-moment matching. Given any number of parame­
ters and any number of moments of the parametric system, the algorithm generates 
a projection matrix for model reduction by implicit moment matching. The imple­
mentation of the method based on a repeated modified Gram-Schmidt-like process 
renders the method numerically stable. The proposed method is simple yet efficient. 
Numerical experiments show that the proposed algorithm is very accurate. 

6.1 Introduction 

The modeling of many engineering and scientific applications leads to dynamical 
systems depending on parameters varying in different design stages or computer 
experiments. For example, in a thermal model [16], the film coefficient k changes 

P. Benner 
Max Planck Institute for Dynamics of Complex Teclmical Systems, Sandtorstr. 1, 39106 Magde­
burg, Germany 
e-mail: benner@mpi-magdeburg.mpg.de 

L. Feng (12:s:) 
Max Planck Institute for Dynamics of Complex Teclmical Systems, Sandtorstr. 1, 39106 Magde­
burg, Germany 
e-mail: feng@mpi-magdeburg.mpg.de 

A. Quarteroni, G. Rozza (eds.): Reduced Order Methods for Modeling and Computational Reduction, 
MS&A 9. DOI 10.1007 /978-3-319-02090-7 _6, © Springer International Publishing Switzerland 2014 



160 P. Benner and L. Feng 

with the temperature, this results in a parametric mathematical model 

Cd~~) +Gx(t)+kDx(t) =B, y(t) =LTx(t). (6.1) 

In integrated circuits, due to process variations, the width of the interconnects is in 
fact a random variable, such that a non-parametric model 

Cd~~) =Gx(t)+Bu(t), y(t)=LTx(t), (6.2) 

is not sufficient to describe the random variation. Therefore, in [22, 32], a linearized 
parametric system 

(Co+.A1C1 +.A2C2)d~~) = (Go+.A1G1 +.A2G2)x(t)+Bu(t), 
y(t) = LTx(t), 

(6.3) 

is constructed. Here and below, the system matrices are C,C;,G,G; E ]Rnxn,i = 

0, 1, 2. BE ]Rnxmi is the input matrix, L E ]Rnxmo is the output matrix. u(t) E JRm1 is 
the vector of input signals. x(t) E ]Rn is the unknown vector.y(t) E JRmo is the vector 
of output responses. Many more examples for parametric systems can be found in the 
engineering literature, see, e.g., the benchmark examples in the recently published 
MOR wiki1. 

The above mentioned parametric systems are usually of very large dimensions as 
they often result from finite element discretizations of instationary partial differential 
equations (PD Es) defined on complex geometries. Solving the parametric systems by 
conventional simulation methods is often very time-consuming. On the one hand the 
parameters have to be provided as fixed values and these values cannot be changed 
during the simulation. On the other hand, if the dimension of the system is large, 
simulating such a system already once will be costly, and the cost of a design study 
requiring many runs with different parameter values ("many-query context") may 
be overwhelming. 

Model order reduction (MOR) is an increasingly popular approach to overcome 
the obstacles posed by the computational demands in a many-query context. By 
MOR, a small dimensional approximate system can be derived, so that it can re­
liably replace the original system during the simulation. This can often save much 
simulation time and computer memory, see [2, 5, 6, 30] for some introductory texts 
on the topic and the presentation of the state-of-the-art. 

The main goal of parametric model order reduction (PMOR) is to preserve pa­
rameters in the system as symbolic quantities in the reduced-order model. Thus, 
a change in parameters does not require to compute a new reduced-order model, 
but simply the evaluation of the reduced-order model for the new parameter val­
ues. If the error in the whole feasible parameter domain can be proven to satisfy 
an acceptable error tolerance, design and optimization of systems and devices can 
be significantly accelerated. First attempts at deriving MOR for linear parametric 
systems were based on extending the popular moment-matching methods (aka Pade 

1 See http://modelreduction.org. 
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approximation, Krylov subspace-based MOR methods) to parametric systems by 
multivariate power series expansions around appropriate interpolation points. Early 
references include [7, 8, 10, 16, 19, 21, 22, 27, 32, 34]. Later, other variants of (ratio­
nal) interpolation techniques were derived, combining, e.g., balanced truncation and 
(sparse grid) interpolation [3], employing £i-optimal interpolation techniques [4], 
orusing matrix and manifold interpolation techniques (e.g., [l, 9,26]). Another large 
class of PMOR techniques is based on the Reduced Basis Method (RBM), originat­
ing in the fast approximation of parametric partial differential equations. The meth­
ods are also applicable in the context discussed here [20], but a dedicated comparison 
to the approaches mentioned here is deferred to future work. Therefore, we will not 
discuss this approach here any further and refer the reader to the survey [29] and 
other chapters in this volume. 

In the following, we will discuss a robust implementation of the multi-moment 
matching methods first discussed in [7,8, 19,34]. They have some advantages making 
them still the most popular approach used in practical applications: 

• They are easy to implement and require almost no assumptions on system prop­
erties. 

• Their cost is limited to a few (according to the number of employed expansion 
points) factorizations of sparse matrices and forward/backward solves using the 
computed factors. They do not require generation of trajectories and are therefore 
called "simulation-free" (in contrast to RBM and proper orthogonal decomposi­
tion (POD) methods). As a consequence, the "offiine-phase" for computing the 
reduced-order model is cheap compared to RBM and POD, and it is often pos­
sible to achieve the goal encountered in practical industrial engineering design 
that the time for constructing the reduced-order model plus a simulation should 
be smaller than a single simulation of the full-order model. 

• As they are simulation-free, no training inputs u(t) need to be chosen so that the 
approximation quality is usually good for all feasible input signals, not only close 
to training inputs as in RB and POD methods. 

Certainly, there are also some disadvantages: one has to first linearize parameter­
dependencies (though polynomial forms are also possible, see, e.g., [10]), and the 
order of the reduced system may not be optimal. Nevertheless, improvements on 
these aspects are in progress, so that it is to be expected that multi-moment matching 
methods will remain competitive with other approaches in the future. 

The MOR methods discussed here are based on projecting the unknown vector 
x onto a small dimensional subspace. We use system (6.2) to briefly introduce the 
concept. If a projection matrix V E ]Rnxq has been determined, using x ~ Vz we 
obtain the perturbed system 

dz(t) T 
CV--;Jt = GVz(t) +Bu(t) +e(t), y(t) =L Vz(t), 

with e(t) the introduced residual. By Galerkin projection vTe(t) = 0, we get the 
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reduced-order model: 

where z(t) E JRq is the unknown vector of the reduced model. The space dimension 
q is often called the order of the reduced model. Therefore, the key step for MOR is 
how to get the projection matrix V, which determines the dimension and the accuracy 
of the reduced order model. 

This paper is based on the ideas in [8], where the projection matrix V is obtained 
by computing an orthonormal basis of the subspace spanned by the moment vec­
tors. No detailed algorithm of computing the orthonormal basis is proposed in [8]. A 
simple way of generating V is to first obtain the moment vectors by explicit matrix 
multiplications, and then all the columns of the computed moment vectors are or­
thonormalized to get the basis. However, this explicit moment matching procedure 
may lead to numerical instability, because higher order moment vectors usually be­
come linearly dependent quickly as already observed in the non-parametric case, 
see [18]. We will demonstrate this effect in Sect. 6.2 for a practical example. 

Our intention therefore is to develop an algorithm which computes the moment 
vectors implicitly rather than explicitly. In this way, good numerical stability can be 
preserved and an accurate orthonormal basis of the subspace spanned by the moment 
vectors can be obtained. The proposed algorithm can deal with both single-input and 
multiple-input systems without any limitation on the parameters in the system. It 
should be noted that this work dates back to first variants in 2007[12,13], and other 
comparable variants of implicit moment matching methods have been proposed [ 10, 
21]. Here, we want to give a full account on the method discussed initially for only 
one parameter in [13]. 

In the following, we first review the method from [8] in Sect. 6.2 and explain 
the numerical instability resulting from explicit computation of the moments. In 
Sect. 6.3, we propose a numerical stable algorithm applicable to both single-input 
and multiple-input systems. The efficiency of the proposed algorithms is shown 
in Sect. 6.5 by simulating two examples from micro-electrical-mechanical systems 
(MEMS) and electrochemistry. Conclusions are given in the end. 

6.2 Explicit Multi-Moment Matching PMOR 

In this section, we give a short review of the method in [8] in order to explain the nu­
merical instability of explicitly computing the moment vectors. A parametric system 
in time domain can be written as below, 

C(s1,s2,··· ,sp_i)¥t(t) = G(s1,s2,·· · ,sp-1)x(t) +Bu(t), 
y(t) = LTx(t), 

(6.4) 

where the system matrices C(s1 ,s2, · · · ,sp-1), G(s1 ,s2, · · · ,sp-1) are (maybe, non­
linear, non-affine) functions of the parameters s1, s2, · · · , s p-1 · A parametric system 
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can also be stated in the frequency domain, 

E(s1, ... ,sp)x = Bu(sp), 
y = LTx, 
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(6.5) 

where the matrix E E JRnxn is parametrized. If the system in (6.5) is the Laplace 
transform of the system in (6.4), the new parameter Sp is in fact the frequency pa­
rameters, which corresponds to time t. The state xis the Laplace transform of the 
unknown vector x in (6.4). 

6.2.1 Review 

The method in [8] is based on the representation of a parametric system in the fre­
quency domain as in (6.5). In case of a nonlinear and/or non-affine dependence of 
the matrix Eon the parameters, the system in (6.5) is first transformed to an affine 
form 

(Eo +s1E1 +s2E2 + ... +spEp)x = Bu(sp), 
y = LTx. 

(6.6) 

Here the newly defined parameters s;, i = 1, ... , p, might be some functions (rational, 
polynomial) of the original parameters s; in (6.5). To obtain the projection matrix V 
for the reduced model, the state x in (6.6) is expanded into a Taylor series at an 

.. - ("° "°)T bl expansion pomt so= s1, ... ,sP as e ow, 

x = [J - ( <Y1M1 + ... + <YpMp)]-1 .E-1 Bu(sp) 

= I [<Y1M1 + ... +<YpMpimE-1Bu(sp) 
m=O 

= m-(k3+ ... +kp) m-kp m (6.7) 
= L L ... L 2, [Fk~, ... ,kp(M1, ... ,Mp)BMu(sp) x 

m=O kz=O kp-1=0kp=O 
m-(kz+ ... +kp) k2 kp 

0"1 0"2 ... O"p ' 

where CY;= s; -1/, E = Eo +s1E1 + ... +t},Ep, M; = -.E-1E;, i = 1,2, .. . p, and 

BM= .E-1 B. The Fk~, ... ,kp (M1, ... ,Mp) can be generated recursively as 

Fk~, ... ,kp (M1, ... , Mp) 
0, ifk; 'f'-{0,1, ... ,m},i=2, ... ,p, 
0, ifk2+ ... +kp'f'-{O,l, ... ,m}, 
I, ifm = 0, 

M1Fk~,~~,kp(M1, ... ,Mp) +M2F~=L..,kp(M1, ... ,Mp)+ ... 
. . . + MPF:km-lk _1 (M1, ... ,Mp), else. z, ... , p 
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For example, ifthere are two parameters s1 ,s2 in (6.6), F::;_, ... ,kp (M1, ... ,Mp) = F::;_ 
are: 

Foo =l, 

Fd = M1F0° = M1, Fl = M1F0° = M1 (6.8) 

FJ =M1Fa1 = (M1)2, Fi1 =M1Fl +M2Fo1 =M1M2 +M2M1, Ff =M2Fl = (M2)2, 

For the general case, the projection matrix Vis constructed as 

range{V} 
mq m-(kp+ ... +k3) m-kp m 

=colspan{ u u ... u u Fk~, ... ,kp(M1, ... ,Mp)BM} 
m=O kz=O kp-1=0kp=O 

= colspan{BM,M1BM,M2BM, ... ,MpBM, (M1 )2 BM, (M1M2 + M1M1 )BM, ... , 
(M1Mp+MpM1)BM, (M2) 2BM, (M2M3 +M3M2)BM, .. . }. 

(6.9) 
We call the coefficients in the series expansion of the state x in ( 6. 7) the moment vec­
tors of the parametric system. The corresponding moments of the transfer function 
are the moment vectors multiplied by LT from the left. For example: 

• LT BM is the 0th order moment; the columns in BM are the 0th order moment 
vectors. 

• Similarly, LT MBM, i = 1,2, ... ,p, are the first order moments, and the columns 
in MBM, i = 1, 2, ... ,p, are the first order moment vectors, which are the coeffi-
cients of s;, i = 1, ... ,p. 

• ThecolumnsinMz2BM, i= 1,2, ... ,p, (M1M+MM1)BM, i=2, ... ,p, (M2M+ 
MM2)BM, i = 3, ... ,p, ... , (Mp-1Mp + MpMp_i)BM are the second order mo­
ment vectors, which are the coefficients of sl, i = 1, 2, ... , p, si§;, i = 2, ... , p, 
s2s;, i = 3, ... ,p, ... , sp-1sp. 

Since by moments we not only denote the Taylor coefficients corresponding to 
the Laplace variables = s P' but also those associated with the other parameters s;, i = 
1, ... ,p-1, we consider them as multi-moments of the transfer function. To sum up, 
the set of coefficients corresponding to terms with powers summing up to i is the set 
of the i-th order moment vectors. From the above construction of V, the subspace 
in (6.9) includes the 0-th order moment vectors till the mq-th order moment vectors. 
The reduced model is computed as 

(Eo +s1E1 +s2E2 + ... +spEp)z =Bu, 
.Y=Fz, 

(6.10) 

~ T · ~ T~ T whereE;=V E;V, i=0,1,2, ... ,p,B=V B,L=V L.Hereweassumerealexpan-
sion points, i.e., s; E JR for all i = 1, ... ,p. Otherwise, complex conjugate transposi­
tion might be needed to apply V from the left. This results in a reduced model with 
complex system matrices, which is undesired in some applications. Alternatives to 
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obtain a real reduced order model even for complex expansion points exist [14], but 
we leave out these technical details for clarity of presentation. 

In time domain, the reduced system (6.4) is 

(6.11) 

Ideally, if the matrix V forms an orthonormal basis of the subspace in (6.9), the 
multi-moments of the reduced model in (6.10) match the multi-moments of the orig­
inal system in (6.6) up to mq-th order [8]. However, if V cannot be computed with 
sufficient numerical accuracy, the multi-moment matching property might be lost. 

6.2.2 Analysis 

Note that the subspace in (6.9) is not a Krylov subspace, therefore an orthonor­
mal basis of the subspace spanned by the moment vectors cannot be computed by 
the standard Arnoldi algorithm. In [8], no algorithm for computation of the matrix 
V is presented. If the moment vectors are computed explicitly by simple matrix­
matrix/vector multiplication, the high order moments will become linearly depen­
dent, so that it is difficult or even impossible to obtain an orthonormal basis for the 
subspace considered. 

We employ the thermal model ( 6.1) with parameter k E [I, I 09] (see Fig. 6.1) to 
illustrate this phenomenon. We observe the output of the system fork= 109 . The 
moments vectors are first computed through explicit matrix multiplications (hence, 
explicit multi-moment matching)2 , then an orthogonalization process is applied to 
the moment vectors to get the final projection matrix V. Here we use the modified 
Gram-Schmidt process (with tolerance I 0- 11 ) to get a V with orthonormal columns. 

Fig. 6.1. Physical model of a microthruster unit for which a thermal MEMS model (6.1) is 
derived. Note that the film coefficient k is applied at the top 

2 Here we use a nonzero expansion point for the Laplace variables, s0 = 0.001, a zero expansion 
point for k, k0 = 0, to ensure that the matrix E is nonsingular. For all the simulation results in 
Sect. 6.5 .1, the same expansion points are taken for all the tested MOR methods: the non-parametric 
moment-matching MOR, the explicit multi-moment matching and the proposed Algorithm 6.1. 
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Fig. 6.2. Errors of the reduced models for the output responses of the thermal model (6.1 ), 
using explicit multi-moment matching (like in [28]) 

At first, we compute the moment vectors in (6.9) till the 2nd order to get the first 
reduced model. There are no vectors deleted during the orthogonalization process. 
The dashed line in Fig. 6.2 is the corresponding output error of the reduced model. 
If the moment vectors are computed up to order 3, the obtained second reduced 
model has smaller error. There is no deflation of the moment vectors either. If a 
more accurate model is to be derived, more moment vectors should be included. A 
third reduced model is obtained by computing the 0-th till the 5-th order moment 
vectors. This time, there are deflations during the modified Gram-Schmidt process. 
As a result, there is no increase in the number of the columns in the matrix V. The 
error of the reduced model is not further reduced, as can be seen from the dotted line 
in the figure. lfthe 6-th or higher order moment vectors are computed, the number 
of the columns in the matrix V still remains unchanged, and the accuracy of the 
corresponding reduced model cannot be improved. 

The work in [ 11] first points out the numerical instability of explicitly computing 
the moments of the linear non-parametric system (6.2) in the method A WE [28]. It 
explains the numerical problem of A WE from the eigenvector and eigenvalue point 
of view. The moment vectors of the non-parametric system (6.2) are 

These vectors are used to construct the projection matrix V and are computed explic­
itly in the method A WE. The computation of the kth moment vector ( a- 1 C)k-l a- 1 B 
in fact corresponds to the power iteration Uk =Ak-l b, with A= c-1c and b = c-1 B 
(we assume that Bis a vector for simplicity). This process converges rapidly to an 
eigenvector of A associated to the eigenvalue oflargest magnitude (assuming a sim­
ple eigenvalue). In the end, the computed vector Uk contains only information ofthis 
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"dominant" eigenvector, and the later computed vectors are all numerically linearly 
dependent to this eigenvector. This explanation also applies to the numerical insta­
bility of the explicit computation of the moment vectors in (6.9). Some part of the 
moment vectors in (6.9) are also of the power iteration form. For example, 

If directly computed, they quickly converge to the respective dominant eigenvector 
ofeachmatrix~, i= 1,2, ... ,p. 

In the next section, a numerically stable algorithm for implicitly computing the 
moment vectors is presented. The algorithm is applicable for both single-input, 
single-output systems and multiple-input, multiple-output systems. An orthonormal 
basis of the subspace spanned by the moment vectors can be obtained implicitly so 
that a more accurate reduced model can be derived. 

6.3 A Robust Algorithm for Multi-Moment Matching PMOR 

Taking a closer look at the power series expansion ofx in (6.7), we get the following 
equivalent, but different formulation, 

x = [J-(CJ1M1 + ... +apMp)]-l£-1Bu 
= 

= I. [a1M1 + ... +apMprBMu 
m=O (6.12) 

= BMu+ [a1M1 + ... + CJpMp]BMu+ [a1M1 + ... + CJpMp]2BMu+ ... 
+[a1M1 + ... +apMp]iBMu+ ... 

By defining 

xo =BM, 

x1 = [CJ1M1 + ... +CJpMp]BM, 

x2 = [a1M1 + ... +apMp]2BM, ... , 

x1 = [a1M1 + ... +apMp]iBM, ... , 

we have x = (xo +x1 +x2 + · · · +x1 + · · · )u and obtain the recursive relations 

Xo =BM, 

x1 = [a1M1 + ... +apMp]xo, 

x2 = [a1M1 + ... +apMp]x1, ... , 

Xj = [CJ1M1 + ... + CJpMp]XJ-1, .... 
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Ifwe define a vector sequence based on the coefficient matrices ofx1, j = 0, 1, ... 
as below, 

Ro =BM, 
R 1 = [M1R0 ,M2R0, ... ,MpRo], 
R1 = [M1R1,M2R1, ... ,MpR1], 

(6.13) 

and let R be the subspace spanned by the vectors in R 1, j = 0, 1, · · · , m: 

R = colspan{Ro, ... ,R1, ... ,Rm}, 

we have x R:j x E R. We see that the terms in R 1, j = 0, 1, ... , m are the coefficients of 
the parameters in the series expansion (6.12). They are also the j-th order moment 
vectors. 

The next step is to construct an orthonormal basis V of the subspace R by taking 
use of the recursive relations between the R1 in (6.13), such that the multi-moments 
of the original system are matched by those of the reduced model. A numerically 
stable algorithm for computing V is given in Algorithm 6.1. All the vectors included 
in Rare orthogonalized to each other by the modified Gram-Schmidt (MGS) pro­
cess once when constructed and then again after all R1 have been computed. In this 
sense, the algorithm can be understood as a repeated MGS process. There is no lim­
itation on the number of parameters, and the essential cost of applying £-1 E1 only 
grows linearly in the number of parameters, while the cost for orthogonalization step 
essentially grows quadratically with p. 

Some remarks on Algorithm 6.1 are in order. 

Remark 6.1 a) The application of £-1 in Steps 2 and 18 is usually performed by 
computing once a (sparse) matrix factorization (Cholesky or LU, depending on 
the system structure) before the algorithm starts. Then each application of £-1 

means a forward/backward solve step. Hence, the whole algorithm requires only 
1 matrix factorization, rendering it fairly cheap compared to other PMOR meth­
ods. 

b) The application of Et in Step 18 is a (usually sparse) matrix-vector multiplica­
tion and precedes the forward/backward solve step, which is then applied to the 
resulting vector Et v 1 using the precomputed factors of E. 

c) For systems with multiple inputs, the input matrix B has more than one column. 
All the columns in Ro = £-I B are orthogonalized in Step 5 before the columns 
in Ri, i > 0 are computed. The variable sum counts the number of columns in V. 

d) m denotes the highest order of moments to be computed and is prescribed by the 
user. 
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Algorithm 6.1 Compute V = [v1, v2, ... , vq] for a parametric system (6.6), where B 
is generally considered as a matrix 

1: Initialize a1 = 0, a2 = 0, sum= 0. 
2: Compute Ro = J;- l B. 
3: if (multiple input) then 
4: Orthogonalize the columns in Ro using MGS: [v1, v2,. .. , vq,] = orth{Ro} with respect 

to a user given tolerance £ > 0 specifying the deflation criterion for numerically lin­
early dependent vectors. 

5: sum= q1 % q1 is the number of columns remaining after deflation w.r.t. £.) 
6: else 
7: Compute the first column in V: v1 =Ro/I IRo 112 
8: sum= 1 
9: end if 

10: % Compute the orthonormal columns in R1, R1, ... , Rm iteratively as below 
11: fori=l,2,. .. ,mdo 
12: 

13: 
14: 

15: 
16: 
17: 

18: 
19: 
20: 

21: 
22: 
23: 
24: 
25: 

26: 

27: 

28: 

29: 

30: 

a2 =sum; 
fort=l,2, ... ,pdo 

if a1 = a2 then 
stop 

else 
for j = a1+1,. .. a2 do 

w=E-1E1v1; 
col =sum+ l; 
for k = 1, 2,. .. , col - 1 do 

h=viw 
w =w-hvk 

end for 

if llwll2 >£then 

Vcot=~; 
sum= col; 

end if 

end for 
end if 

end for 
31: G] = a2; 

32: end for 
33: Orthogonalize the columns in V by MGS w.r.t. £. 

e) The index tis used to refer to computations related to the t-th parameter St cor­
responding to the coefficient £-1 Et. 

t) a2 - a1 is the number of columns added to V corresponding to R;-1. 

g) a2 - a1 = 0 means that all the vectors corresponding to R;-1 are deflated because 
they are linearly dependent (w.r.t. e) to previous columns in V. In this case, there 
is no vector left which corresponds to R;-1. As for a breakdown in a Krylov sub-
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space method, we cannot continue to compute the columns in V corresponding 
to Ri, hence the algorithm stops. 

h) In Step 17, j refers to the j-th column in V and corresponds to a vector in R;-1. 

i) Steps 20-27 implement the MGS process. col is the subscript of the current col­
umn Veal in V; it is orthogonalized to all the previous columns in V by MGS. 

j) In Step 24, llwll2 < £ is the criterion used to deflate vectors in R; that are lin­
early dependent (w.r.t. £)to the previous vectors in V. It does not mean that all 
the vectors in R; are linearly dependent on the previous vectors in V. If linear 
dependence is determined by this criterion, we delete the vector w and continue 
the algorithm till ai = a1. 

k) In Step 32, we orthonormalize all the columns in V again using MGS to reduce 
llVTV - Ill2 (where I is the identity matrix of appropriate size) and to possibly 
further deflate columns. In this way, we perform a repeated MGS procedure. The 
final matrix V has q columns, which is equal to or less than the total number of 
vectors in Ri, i = 0, 1, · · · ,m. 

1) When p = 1, the algorithm reduces to a block-Arnoldi-type process, with Ro= 
BM being the starting block (the vectors in Ro are the starting vectors), which 
can be used in moment-matching MOR for multiple input, non-parametric sys­
tems (see [17,25] for other variants of block Arnoldi processes used in moment­
matching MOR). 

It should be noted that analogously to moment-matching methods for non-parametric 
systems, a Petrov-Galerkin or oblique projection method can be constructed ap­
plying Algorithm 6.1 to B replaced by L and E,Et by F,T ,E[ (and not by com­
plex conjugate transposition which would not yield the desired moment matching 
property). One would then obtain another orthogonal matrix W whose columns 
form an orthogonal basis of a complementary subspace. The reduced-order model 
is then computed by oblique projection Et = wr E;V, t = 0, ... ,p, etc., assuming 
the expansion point is chosen real. Technical issues as in standard oblique moment­
matching methods will occur here even more pronounced, e.g., the number of com­
puted columns for V and W may differ, the reduced-order model might loose sta­
bility, etc. We therefore restrict ourselves here to the presentation of the 1-sided 
( Galerkin/orthogonal) projection method to not obscure the presentation by too much 
technical details. 

6.4 Multi-Moment Matching Property 

In this section, we show that the reduced model obtained with the proposed Algo­
rithm 6.1 has indeed the moment matching property derived in [8]. 

From the analysis in Sect. 6.3, the R; defined in (6.13) are composed of the coef­
ficients in the series expansion of the state x in frequency domain. The power series 
expansion of the transfer function of the original model (6.6) is, except for the left 
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multiplication by LT, the same due to the fact that for any feasible square-integrable 
function u(. ), 

(Note that x depends implicitly on s1, ... ,sp-1 which we omit for the ease of nota­
tion.) Hence, the i-th order multi-moments of the parametric transfer function Hare 
just the terms LT Ri, i = 0, 1, 2, ... , where we recall that Ri includes the set of the i-th 
order moment vectors of x. For the reduced model in (6.10), there are corresponding 
power series expansions of the state z and the corresponding transfer functionH. We 
denote the coefficients in the series expansion of z as 

Ro= BM, 
R.1 = [M1Ro,NhRo, ... ,MpRoJ, 
R.2 = [M1R1,M2R1, ... ,MpR1J, 

~ ~ ,,o~ ,,o~ ~ ~-1~ ~ ~-1~. 

whereE =Eo+s1E1 + ... +spEp,BM=E B, and~= -E Ei, z= l, ... ,p. The 
transfer function of the reduced model can be expressed by z as 

Therefore, by the same variational argument as for the full-order system, the multi-
~ ~T ~ ~ ~ ~ 

moments of Hare L Ri, i = 0, 1,2, .... Here, Ei, i = 0, 1, ... ,p, andB,L are defined 
in (6.10). Next we will prove that the multi-moments of H match the multi-moments 
of the original transfer function H. We summarize our analysis, using Lemma 6.1 
and Lemma 6.2, in Theorem 6.1. 

Suppose we construct the projection matrix V by 

range(V) = colspan{Ro,R1,R2, ···,Rm}=: p. 

The following Lemma 6.1 is used to prove Lemma 6.2 (Lemma 6.1 recalls a known 
fact and appears in several papers, see e.g. [8]). 

Lemma 6.1 Jfthe column span ofV forms an orthonormal basis of p, then for any 
vector SE p, 

(6.14) 

Lemma 6.2 If the orthonormal projection matrix V satisfies range(V) = p,, then 
~ T . 
Ri=V Ri, z=O,l, ... ,m. 

Proof Recall that E = vr EV. Thus, for i = 0, 
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Since colspan {Ro} ~ p, we have VVT Ro = Ro by Lemma 6.1. Therefore, from the 
definition of Ro, 

Hence, considering only the first and the last expression, we get, 

Thus, Lemma 6.2 is true for i = 0. Next, we assume that Lemma 6.2 is true for 
i :::; j' so that Rj = vT R j. We will prove that it is then also true for i = j + 1. Since 
colspan{R1+i} ~ p, by Lemma 6.1 and the definition of R1+1, we get 

~ T T - T 
EV R1+1 = V EVV R1+1 

T- T- --1 --1 --1 
= V ER1+1 = V E[-E E1R1,-E E1R1, ... ,-E EpRJ] (6.15) 
= VT[-E1R1,-E2R1, ... ,-EpRJ]· 

Because colspan{R1} ~ p, we know that R1 = VVT R1 by Lemma 6.1. Hence, the 
last term of the above equation equals 

vT[-E1VVTR· -E2VVTR ... -E vvTR] 
}l }l ' p J • (6.16) 

Therefore, by the definition of E;, i = 1, ... , p, and the assumption R 1 = vT R 1, ( 6.16) 
is equal to 

[-.E1k -E2R · · · -.E k] }l }l ' p J • (6.17) 

Combining (6.15), (6.16) and (6.17), we obtain 

~T ~~ ~~ ~~ 

EV R+1 = [-E1R -E2R · · · -E R] J }l }l ' p J. (6.18) 

Then from the definition of R1+1 we get 

T ~-1 ~ ~ ~-1 ~ ~ ~-1 ~ ~ ~ 

V R1+1 = [-E E1R1,-E E1R1,··· ,-E EpRJ] =RJ+l· D 

Theorem 6.1 IfV satisfies range(V) = colspan{Ro,R1 ,R2, ···,Rm}, then the multi­
moments of the transfer function of the reduced model in (6.10) match those of the 
full system in (6.6) up to order m, i.e. LTR; =FR;, i = 0, 1, ... ,m. 

Proof From Lemma 6.2, and by the definition of 1, we have FR;= LTvvT R;, i = 

0, 1, ... ,m. By Lemma 6.1, VVTR; = R;, therefore 

~T ~ T · 
L R;=L R;, z=O,l, ... ,m. D 

6.5 Simulation Results 

In this section, some simulation results are presented to show the efficiency of the 
proposed algorithm. We employ two examples, one being the thermal MEMS model 
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considered before in Fig. 6.1 and the other one is from electrochemistry. Illustrated 
in Fig. 6.8 is the computational domain of the second model, where some chemical 
reactions take place. 

6.5.1 Results for the thermal model 

The thermal model is a generic example of a device with a single heat source, where 
the generated heat dissipates through the device to the surroundings. A heater is 
shown by the block made of PolySi. The exchange between surroundings and the 
device is modeled by convection boundary conditions with the fihn coefficient k at 
the top. The corresponding mathematical parametric model is given in ( 6.1 ), where k 
is the parameter. It is a single-input multiple-output system. For simplicity, we only 
observe a single output of the system, which is the temperature in the middle of the 
heater. As has been shown, the values of k change significantly, k E [1, 109]. The size 
of the system is n = 4 725. 

To implement Algorithm 6.1, we first need to transform the system into the fre­
quency domain by the Laplace transformation assuming xlt=O = 0 for all k. The 
corresponding system in the frequency domain is 

(sC+G+kD)X(s) =BU(s), 
y=LTX(s), 

wheres is considered as the second parameter of the system. Since Bis a vector, the 
projection matrix V is constructed for the single input case in Algorithm 6.1. 

Implicit vs. explicit moment vector computation 

In Sect. 6.2.2, we have analyzed the accuracy of the PMOR method from [8] if the 
moment vectors are explicitly computed. Here, we show the efficiency of the pro­
posed Algorithm 6.1, and compare it with the explicit moment-matching described 
in Sect. 6.2.2. 

In Fig. 6.3, the errors of three reduced models computed by Algorithm 6.1 are 
plotted. The dashed line is the error of the output produced by the reduced model 
by matching the multi-moments upto order 2. The dash-dotted line is the error by 
matching multi-moments up to order 3. The dotted line is the one obtained by match­
ing the multi-moments up to order 5. Different from the errors in Fig. 6.2, the errors 
of the reduced models keep decreasing with the increasing number of matched multi­
moments, whereas the errors of the reduced models in Fig. 6.2 do not change after 
matching up to 3rd order moments. In Fig. 6.4, the accuracy of the reduced models 
computed by explicit and implicit moment-matching is compared. The solid line and 
the dashed line represent the accuracy of the reduced model computed by explicit 
moment-matching. By matching multi-moments up to the same order, the implicit 
moment-matching method implemented in Algorithm 6.1 is more accurate than the 
explicit moment-matching. 
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PMOR vs. Non-Parametric MOR 

In order to show the importance and the advantage of PMOR, we compare the pro­
posed PMOR Algorithm 6.1 with the standard non-parametric moment-matching 
MOR method (see e.g. [25]). For non-parametric MOR, all the parameters except for 
the Laplace variables must be fixed, such that the system becomes non-parametric. 
Hence, a standard non-parametric moment-matching method can be applied. Here 
the parameter k is fixed to k = 1, and the moments are the simple moments associ­
ated with the Laplace variables. The reduced models constructed by both methods 
are in the same form as in ( 6.11 ). 
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Fig. 6.5. Output responses of the original system ( 6. I) in the time-domain at different values 
of the parameter k 

In Fig. 6.5, we plot the output responses corresponding to different values of k 
by simulating the original parametric system (6.1) for several times. We see that the 
time-dependent output response varies much with k. 

In Algorithm 6.1, the 0th order till the 8th order multi-moments are matched. 
That is, range(V) = colspan{Ro,R1, ... ,Rs}. The resulting reduced model is oforder 
q = 44. For comparison, we could use the same order of moments associated with 
s for the non-parametric MOR. However, the resulting reduced model is only of 
dimension q = 9. Instead, the two methods are compared with respect to the same 
order of the reduced model. To this end, the 0th order till the 43rd order moments 
are matched by the non-parametric MOR method, and the reduced model is of the 
same dimension q = 44. 

In Fig. 6.6, the relative errors of each reduced model changing with different 
values of k are plotted. Along the x-axis, the logarithm of the parameter k is taken. 
Along they axis, the relative error defined as I ly(O, T; k) -y(O, T;k) 112/l ly(O, T;k) 112 
is plotted. Here y(O, T, k) = (y(t1; k), ... ,y(tN; k)) Tis a vector of the output responses 
at different time steps in the interesting time interval, ti E [O, T], i = 1, ... , TN, for the 
current value of the parameter k, obtained by full simulation of the original system. 
The vector y(O,T;k) is obtained analogously from the output responses computed 
with the reduced model. 

The solid line in the figure represents the errors produced by the reduced model 
with q = 44, obtained by non-parametric moment-matching MOR. It has good ac­
curacy at the values of k close to k = I, the fixed value. However, when the value 
of k grows, the error generally keeps increasing. As expected, the reduced model 
cannot catch the behavior of the output responses corresponding to values of k far 
away from the fixed value. The accuracy of the reduced model computed with the 
proposed PMOR method is much higher, though there is still a very slow trend of 
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Fig. 6.6. Relative errors of the output responses of the thermal model in the time domain for 
different values of k, computed from the reduced models derived by non-parametric MOR 
and Algorithm 6.1, respectively. The orders of the three reduced models are q = 44,44, 161, 
respectively 

error increase with increasing value of k, see the dotted line. This is because a sin­
gle expansion point for k, ko = 0, is used during the series expansion of the state 
vector x (see (6.7) and (6.12)). Multiple point expansion can be used in combination 
with Algorithm 6.1 to further decrease the error of the reduced model for very large 
values of k, see [ 14]. 

To achieve the same level of accuracy as for the reduced model resulting from 
PMOR, a reduced model with dimension q = 161 must be constructed with the non­
parametric moment-matching MOR, where the 0th till the I 60th order moments are 
matched. The error of the reduced model is plotted using dashes. This shows that the 
PMOR method provides a more compact reduced model over the entire parameter 
domain. 

Robustness of the Proposed Algorithm 

In Fig. 6. 7, relative errors of three different reduced models constructed by Algo­
rithm 6.1 are plotted. Each line represents the relative error between the output 
response of the reduced system and that of the original system according to dif­
ferent values of the parameter k. The definition of the relative error is the same 
as defined for Fig. 6.6. The line with the smallest error represents the error of 
the reduced system of order q = 44, for which the reduced system is obtained by 
range(V) = colspan{ Ro,R1, ... ,Rs}. The line in the middle is the error of the re­
duced system with q = 28; it is derived from range(V) = colspan{Ro,R1, ... ,R6}. 
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Fig. 6.7. Relative errors of the output responses of the thermal model in the time-domain 
computed from the reduced models with different order q, using Algorithm 6.1, for different 
values of k 

The line on the top corresponds to the reduced system computed from range(V) = 
colspan{Ro,R1, ... ,R4}. One can see that the error becomes smaller with in­
creasing number of moment vectors used. All in all, the errors at all the values 
of the parameter k are very small, and satisfy the accuracy requirement in real 
applications. Compared with the explicit multi-moment matching, and the non­
parametric MOR, the proposed Algorithm 6.1 produces a much more accurate re­
duced model. 

6.5.2 Results for the electrochemistry model 

The detailed description and derivation of the model for the application depicted 
in Fig. 6.8 is available from the MORwiki3 . The mathematical model after spatial 
discretization is 

E'fjf +Gc+s1D1c+s2D2c = F, c(O) =co cf 0 
y =[Tc,. 

(6.19) 

The dimension of the system is n = 16912. Here, E, G,D1 ,D2 E JFtnxn are sys­
tem matrices. l,F E JFtn are constant vectors. c(t) E JFtn is the unknown vector. 
The two parameters s1 = ef3u(t), s2 = e-f3u(t) are functions of the voltage, where 
f3 = 21.243036728240824 is a constant. The voltage u(t, a) which is a function of 

3 http://morwiki.mpi-magdeburg.mpg.de/morwiki/index. php/Scanning_ Electrochemical_ Microscopy. 
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Fig. 6.8. Example from electrochemistry. The computational domain (indicated as simulation 
domain in the figure) under the 2D-axisymmetrical approximation includes the electrolyte 
under the electrode (the square at the middle top). Some chemical reactions take place in the 
computational domain. The interesting output is the total current over the electrode surface 

time and a, follows a symmetric, triangular waveform: 

u(t, a) = uo +at, 
u(t, a) = uo - at, 

O<t<ta., 
ta. < t < 2ta.. 

Here, the variable a takes four possible values a= 0.5, 0.05, 0.005, 0.0005. Thetime 
pointta. actually varies with a by ta.= 4 x 10', when a= 0.5 x 10-1

, for i= 0, 1,2,3. 
The output y(t) is the total current over the electrode surface, changing with the 

voltage u(t, a). The waveforms of the two parameters SJ and s2 as functions of time 
and the voltage u(t, a) are given in Fig. 6.9 and Fig. 6.10, respectively. Although 
both SJ and s2 are functions of the voltage u, hence are not independent, they are 
considered as two independent parameters in Algorithm 6.1. They can further be 
simply treated as two parameters independent of any argument, e.g. the time vari­
able t, during the implementation of Algorithm 6.1, since the projection matrix Vis 
generated independently of the parameters. 

To deal with the system with nonzero initial condition, we employ the transfor­
mation method in [ 15]. That is, we first transform the system into a system with zero 
initial condition by c = c - co. The resulting transformed system is 

E'fft + Gc+s1D1c+s2D2c = F- Geo -s1D1co -s2D2co, 
y=IT(c+co), c(O)=c(O)-co=O. 

By Laplace transform, the above system in frequency domain becomes 

(sE+G+sJDJ +s2D2)x = Fu(s), 
y = lT(x+cou(s)), 

(6.20) 

(6.21) 

where xis the Laplace transform of the time-domain unknown vector c, u(s) = l/s 
is the Laplace transform of the constant 1, and F = F - Geo - s1D1 co -s2D2co. As 
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explained above, s 1 ( u(t)) and s2 ( u(t)) are treated as two constant parameters during 
the execution of Algorithm 6.1. As they are preserved in the reduced model, they can 
then again be varied with time according to their original definition when simulating 
the reduced model. 

Note that the right-hand side of the system also depends on the two parameters 
s1, s2, which, however, is not a problem. Since the function u(s) and the parameters 
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s1, s2 are both scalars, the right-hand side of the system (6.21) can be written as 

- T where B = [F - Gco,D1 co,D2co], U = [u(s), -s1 u(s), -s2u(s)] . Therefore, the sys-
tem in ( 6.21) can be considered as a multiple input system, so that the multiple input 
case in Algorithm 6.1 can be applied to construct the projection matrix V4 . The time 
domain reduced model in the form of ( 6.11) is obtained by applying Galerkin pro­
jection, using V, to the transformed system in ( 6.20) [ 15]. 

Figures 6.11-6.15 show the simulation results of the original model ( 6.19) and 
the reduced model obtained by Algorithm 6.1. The figures display the currents as 
functions of the voltages u(t, a), which is the usual way to represent the so-called 
cyclic voltammograms of the electro-chemical reaction. The solid line is the result 
obtained by full simulation of the original large model, the dashed line is the result 
computed using the small reduced model. The results of the reduced model are ac­
curate for a wide range of the dynamic behavior when the value of a changes by 
three orders of magnitude (0.005-0.5). 

The dashed lines in the Figs. 6.11-6.13 show the simulation results of three dif­
ferent reduced models with a= 0.5. As we have already seen, the projection matrix 
V depends on the moment vectors of the system. If more moment vectors are used, 
the reduced model should become more accurate, at least in theory. The simulation 
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Fig. 6.11. The current y as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 4th order, yielding a reduced model of dimension q = 26 

4 For this example, the zero expansion points s0 = 0, s? = 0 and sg = 0 are used for all the three 
parameters s,s1 ,s2 in (6.21). 
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Fig. 6.12. The currenty as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 6th order, yielding a reduced space of dimension q = 50 

8 

6 

~ 
4 

5 
c 2 
"' t: 
::l 
<.> 

0 

- 2 

- 4 
- I 

Full simulation, 
11= 16912 
Reduced model 
q=86 

- 0.5 0 

voltage u(t, a), a =0.5 

05 

Fig. 6.13. The currenty as a function of the voltage u(t, a), for a= 0.5, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 9th order, yielding a reduced space of dimension q = 86 

results in Fig. 6.3 show this fact for the previous thermal MEMS problem. For the 
current problem, the simulation results in Figs. 6.11--6.13 further justify it. In con­
trast, if V is computed by explicit matrix multiplications, the accuracy of the reduced 
model cannot be improved by using more moment vectors. In Fig. 6.11, the moment 
vectors from Ro to R4 are employed to compute V. In Fig. 6.12, Ro till R6 are used 
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for the reduced model. The moment vectors from Ro to R9 are used in Fig. 6.13 to get 
V. The result in Fig. 6.13 is most accurate. The waveform ofthe current computed 
from the reduced model shows little difference from the solid line. In this case the 
order of the reduced model is q = 86. The relative error between the two currents is 
EI a=0.5 = I IY-jJ112/IIYI12 = 6.3 x 10-4

, where y is the vector of the current at dense 
samples of the interesting time interval by full simulation, andy is the vector of the 
current at the same samples obtained by simulating the reduced model. The reduced 
model is good enough to replace the original model with space dimension n = 16912 
in practical applications of the model. 

Figures 6.14-6.15 show additional outcomes for other values of a. Here we used 
the most accurate reduced model with range(V) = colspan{ Ro,R1, ... ,R9} and study 
the effect when varying a. The order of each reduced model is the same: q = 86. 

The relative errors E are listed in Table 6.1 for a selection of different values of 
a. All these simulation results show that accurate reduced models can be obtained 
with the proposed algorithm. 

a a=0.5 

E 6.3 x 10-4 

4 

~ 
5 
;: 2 
~ .... 
:I 
u 

0 

- 1 

Table 6.1. E vs. a 

a= 0.05 

1.8 x 10-5 

Full simulation, 
11=16912 
Reduced model, 
q=86 

- 0.5 

a= 0.005 

1.64 x 10-6 

0 

voltage u(t, a), a =0.05 

a= 0.0005 

1.38 x 10-6 

0.5 

Fig. 6.14. The currenty as a function of the voltage u(t, a), for a= 0.05, for both the full sim­
ulation and the PMOR method Algorithm 6.1 using the multiple input variant. The moments 
are matched up to 9th order, yielding a reduced space of dimension q = 86 
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Fig. 6.15. The current y as a function of the voltage u(t, a), for a = 0.005, for both the 
full simulation and the PMOR method Algorithm 6.1 using the multiple input variant. The 
moments are matched up to 9th order, yielding a reduced space of dimension q = 86 

6.6 Conclusions 

A numerical stable algorithm for PMOR is explored in this paper. The algorithm is 
used to construct a projection matrix V whose columns form an orthonormal basis 
of the subspace spanned by the moment vectors of the parametric system. Instead of 
explicit matrix-vector multiplications, a new moment vector is orthogonalized to all 
the previous ones during a (repeated) Modified Gram-Schmidt process. Numerical 
simulation results for both single input and multiple input parametric systems show 
that the proposed algorithm is very accurate and robust. Applications of the algo­
rithm to parametric systems with more than three parameters can be found in [14]. 

The reduced parametric model can be used in optimization [35], in statistics [24], 
and in coupled simulations [23]. When used in statistics, it is important that quantities 
like mean and variance are well approximated. In applying PMOR for uncertainty 
quantification, one thus seeks to have a "statistics-preserving PMOR". 

In some cases, the parameters may not be explicitly available. For instance, in 
modeling of electromagnetic problems, varying geometry may result in different 
meshes. For an approach to deal with this see [31]. 

Future research will focus on how to adaptively choose proper nonzero expansion 
points to attain a more compact model for systems with many (more than three) 
parameters. An error estimation for the state x of the parametric system is proposed 
in [33] for an automatic sampling selection. For many applications, the output y or the 
transfer function of the system is of interest, and an output-oriented error estimation 
for the proposed PMOR method is preferred, such that a more reliable reduced model 
can be obtained, automatically. 
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On the Use of Reduced Basis Methods to 
Accelerate and Stabilize the Parareal Method 

Feng Chen, Jan S. Hesthaven and Xueyu Zhu 

Abstract We propose a modified parallel-in-time -parareal-multi-level time inte­
gration method that, in contrast to previously proposed methods, employs a coarse 
solver based on a reduced model, built from the information obtained from the fine 
solver at each iteration. This approach is demonstrated to offer two substantial ad­
vantages: it accelerates convergence of the original parareal method for similar prob­
lems and the reduced basis stabilizes the parareal method for purely advective prob­
lems where instabilities are known to arise. When combined with empirical interpo­
lation methods (EIM), we develop this approach to solve both linear and nonlinear 
problems and highlight the minimal changes required to utilize this algorithm to ac­
celerate existing implementations. We illustrate the advantages through algorithmic 
design, through analysis of stability, convergence, and computational complexity, 
and through several numerical examples. 

7.1 Introduction 

With the number of computational cores on large scale computing platforms increas­
ing, the demands on scalability of computational methods likewise increase, due 
partly to an increasing imbalance between the cost of memory access, communica­
tion and arithmetic capabilities. Among other things, traditional domain decompo-
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sition methods tend to stagnate in scaling as the number of cores increases and the 
computational cost is overwhelmed by other tasks. This suggests a need to consider 
the development of computational techniques that better balance these constraints 
and allow for the acceleration of large scale computational challenges. 

A recent development in this direction is the parareal method, introduced in [16], 
that provide a strategy for 'parallel-in-time' computations and offers the potential 
for an increased level of parallelism. Relying on combining a computational inex­
pensive but inaccurate solver with an accurate and expensive but parallel solver, the 
parareal method utilizes an iterative, predictor-corrector procedure that allows the 
expensive solver to run across many processors in parallel. Under suitable condi­
tions, the parareal iteration converges after a small number of iterations to the serial 
solution [3]. During the last decade, the parareal method has been applied success­
fully to a number of applications (cf. [ 17, 19]), demonstrating its potential, accuracy, 
and robustness. 

As a central and serial component, the properties of the coarse solver can im­
pact the efficiency and stability of the parareal algorithm, e.g., if an explicit scheme 
is used in both the coarse and the fine stage of the algorithm, the efficiency of the 
parareal algorithm is limited by the upper bound of the time step size [19]. One can 
naturally also consider a different temporal integration approach such as an implicit 
approach, although the cost of this can be considerable and often requires the devel­
opment of a new solver. An attractive alternative is to use a simplified physics model 
as the coarse solver [2, 17, 18], thereby ignoring small scale phenomenon but poten­
tially impacting the accuracy. The success of such an approach is typically problem 
specific. 

While the choice of the coarse solver clearly impacts accuracy and overall effi­
ciency, the stability of the parareal method is considerably more subtle. For parabolic 
and diffusion dominated problems, stability is well understood and observed in many 
applications [12]. However, for hyperbolic and convection dominated problems, the 
question of stability is considerably more complex and generally remains open [3, 8, 
22]. In [8], the authors propose to regularly project the solution onto an energy man­
ifold approximated by the fine solution. The performance of this projection method 
was demonstrated for the linear wave equation and the nonlinear Burgers' equation. 
As an alternative, the Krylov subspace parareal method builds a new coarse solver 
by reusing all information from the corresponding fine solver at previous iterations. 
The stability of this approach was demonstrated for linear problems in structural dy­
namics [10] and a linear 2-D acoustic-advection system [21]. However, the Krylov 
subspace parareal method appears to be limited to linear problems. 

The approach of combining the reduced basis method [20] with the parareal meth­
od for parabolic equations was initiated in [13] in which it is demonstrated that a 
coarse solver based on an existing reduced model offers better accuracy and reduces 
the number of iterations in the examples considered. However, that work offers no 
discussion on the construction of the reduced model, nor was there any attempt to 
analyze the stability and convergence of the method. 

Inspired by [13, 21], we propose a modified parareal method, referred to as the 
reduced basis parareal method in which the Krylov subspace is replaced by a sub-



7 Reduced Basis Parareal Method 189 

space spanned by a set ofreduced bases, constructed on-the-fly from the fine solver. 
This method inherits most advantages of the Krylov subspace parareal method and is 
observed to retain stability and convergence for linear wave problems. We demon­
strate that this approach accelerates the convergence in situations where the original 
parareal already converges. However, it also overcomes several known challenges: 
(i) it deals with nonlinear problems by incorporating methodologies from the re­
duced basis methods; and (ii) the traditional coarse propagator is needed only once 
at the very beginning of the algorithm to generate an initial reduced basis. This al­
lows for the time step restrictions to be relaxed as compared to the coarse solver 
of the original parareal method. The main difference between our method and [13] 
lies in the reduced approximation space and the construction of reduced bases. The 
reduced model, playing the role of the coarse solver, is updated for each iteration 
while the reduced model in [13] is built only once during an initial offline process. 
Among other advantages, this allows the proposed method to adapt the dimension 
of the reduced approximation space based on the regularity of the solution, while 
in [13] the reduced model remains fixed and must be developed using some other 
approach. 

What remains of this paper is organized as follows. We first review the origi­
nal parareal method in Sect. 7.2.1 and the Krylov subspace parareal method in Sect. 
7 .2.2. This sets the stage for Sect. 7 .2.3 where we introduce the reduced basis parareal 
method and discuss different strategies to develop reduced models for problems with 
nonlinear terms. Section 7.3 offers some analysis of the stability, convergence, and 
complexity of the reduced basis parareal method and Sect. 7.4 demonstrates the fea­
sibility and performance of the reduced basis parareal method through various linear 
and nonlinear numerical examples. We conclude the paper in Sect. 7.5. 

7.2 Parareal Algorithms 

To set the stage for the general discussion, let us first discuss the original and the 
Krylov subspace parareal methods in Sect. 7.2.l and Sect. 7.2.2, respectively. We 
shall highlight issues related to stability and computational complexity to motivate 
the reduced basis parareal method, introduced in Sect. 7.2.3. 

7.2.1 The original parareal method 

Consider the following initial value problem: 

u1 = L(u) := Au(t) +N(u(t)), t E (0, T], 
u(O) = uo, 

(7.1) 

where u E JRN is the unknown solution, L is an operator, possibly arising from the 
spatial discretization of a PDE, with A being the linear part ofL, and N the nonlinear 
part. 
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In the following, we denote F& as the accurate but expensive fine time integrator, 
using a constant time step size, 8t. Furthermore, G At is the inaccurate but fast coarse 
time integrator using a larger time step size, L1t. Generally, it is assumed that L1t » 
ot. 

The original parareal method is designed to solve (7.1) in a parallel-in-time fash­
ion to accelerate the computation. First, [O, T] is decomposed into Ne coarse time 
intervals or elements: 

0 = to < · · · < ti < · · · < tNc = T, ti = iL1 T, 

Assume that 

T 
L1T = -. 

Ne 
(7.2) 

(7.3) 

which implies that T = NeN1ot. Denote F&(u,ti+l ,ti) as the accurate numerical so­
lution integrated from ti to ti+l by using F& with the initial condition u and the con­
stant time step size ot. Similarly for G At ( u, ti+ 1, ti). Denote also Un = F& (no' T, 0) 
as the numerical solution generated using only the fine integrator. With the above 
notation, the original parareal method is shown below in Algorithm 7 .1 

Now assume that the k-th iterated approximation u~ is known. The parareal ap­
proach proceeds to the k + 1-th iteration as 

u~ti = GAt(u~+ 1 ,tn+1,tn) + F&(u~,tn+1,tn) - GAt(u~,tn+1,tn), 0::::; k::::; Ne - 1. 
(7.4) 

It is easy to see that Fst(u~,tn+1,tn) can be done in parallel across all temporal el­
ements. If we take the limit of k---+ oo and assume that the limit of { u~} exists, we 
obtain [16]: 

(7.5) 

In order to achieve a reasonable efficiency, the number of iterations, Nit, should be 
much smaller than Ne. 

To demonstrate the performance of the original parareal method, let us consider 
a few numerical examples, beginning with the viscous Burgers' equation: 

u2 
Ut + ( 2 )x =VU.xx, (x,t) E (0,2n) x (0, T], 

(7.6) 
u(x,O) = sin(x), 

where T = 2 and v = 10-1. A 2n-periodic boundary condition is used. The spatial 
discretization is a P1 discontinuous Galerkin method (DG) with 100 elements [15] 
and the time integrator is a first-order forward Euler method. We use the following 
parameters in the parareal integration 

Ne = 100, Mt = 5, L1t = 10-3 , 8t = 10-4 . (7.7) 

Figure 7 .1 illustrates the L=-error of the parareal solution at T = 2 against the number 
of iterations. Notice that for this nonlinear problem the algorithm converges after 
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Algorithm 7.1 The original parareal method 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GL!1(u?,t;+1,t;) 
s end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Sequential correction step: 
14 for i +-- 0 to Ne - 1 do 

15 I u7-tl = GL11(u7+1,t;+1,t;)-u/;+1 +GL11(u},t;+1,t;) 
16 end 
17 end 

10-16~~-~~-~-~~-~-
1 1.5 2.5 3 3.5 4.5 

iterations 

191 

Fig. 7.1. The L=-error at T = 2 against the number of iterations of the 1-D Burgers' equation 
using the original parareal method 

only four iterations, illustrating the potential for an expected acceleration in a parallel 
environment. 

As a second example, we consider the Kuramoto-Sivashinsky equation [25]: 

au U2 
ot = ( l )x- Uxx - Uxxxx, (x,t) E (-8, 8) X (0, T], 

(7.8) 
u(x, 0) =exp( -x2) 

with final time T = 40 and periodic boundary conditions. 
As a spatial discretization we use a Fourier collocation method with 128 points 

[ 14] and an IMEX scheme [ 1] as a time integrator, treating the linear terms implicitly 
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Fig. 7.2. The time evolution of the solution (left) and the L=-error at T = 40 against the 
number of iterations (right) of the 1-D Kuramoto-Sivashinsky equation using the original 
parareal method 

and the nonlinear tenn explicitly. The parameters in the parareal method are taken 
as 

Ne= 100, Nu= 5, L1t = 10-2
, ot = 10-4

. (7.9) 

Figure 7.2 (left) shows the time evolution of the chaotic solution to the Kuramoto­
Sivashinsky equation with a Gaussian initial condition. In Fig. 7.2 (right), we show 
the L=-error at T = 40 against the number of iterations. In this case, we take the 
solution computed by the fine solver as the exact solution. It is clear that the parareal 
solution converges, albeit at a slower rate. It should also be noted that L1t / ot = I 00, 
indicating the potential for a substantial acceleration. 

As a last and less encouraging example, we consider the 1-D advection equation 

u1 +aux= 0, (x,t) E (0,2n) x (0, T], 
u(x,O) =exp(sin(x-at)), 

(7.10) 

with a final time T = 10, a= 2n and a 2n-periodic boundary condition. We use 
a DG method of order 32 and 2 elements in space [ 15], a singly diagonal implicit 
fourth-order Runge-Kutta scheme in time (a five-stage fourth-order scheme, cf. S54b 
in [23]), and the parareal parameters: 

Nc=IOO, Nit=27, L1t=5x10-2
, 8t=10-4

. (7.11) 

Figure 7 .3 shows the L=-error at T = 10 against the number of iterations. The in­
stability of the original parareal method is apparent, as has also been observed by 
others [3, 8, 22]. 
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30 

Fig. 7.3. The L=-error at T = 10 against the number of iterations of the 1-D linear advection 
equation using the original parareal method 

7.2.2 The Krylov Subspace Parareal Method 

We notice in Algorithm 7.1 that only {ur~+i}~0 1 is used in the advancement of 
the solution to k+ 1. To fix the stability issue, [10] proposed to improve the coarse 
solver by reusing information computed at all previous iterations and applied this 
idea to linear hyperbolic problems in structural dynamics. Recently, a similar idea 
was successfully applied to linear hyperbolic systems [21]. 

The basic idea of the Krylov subspace parareal method is to project ur+1 onto a 
subspace spanned by all numerical solutions integrated by the fine solver at previous 
iterations. Denote the subspace as 

(7.12) 

The corresponding orthogonal basis set { s1, ... ,Sr} is constructed through a QR fac­
torization. 

Denote J!Dk as the L1-orthogonal projection onto sk. The previous coarse solver 
G.1.t is now replaced by K.1.t as: 

(7.13) 

For a linear problem, F& (J!Dku, ti+ 1, ti) can be computed efficiently as 

Nck Nck 

F&(wku,ti+J ,ti)= Fot(L C1s1,ti+J ,li) = L, C1F&(s1,ti+J ,li), (7.14) 
j=l j=l 

where F& ( s Ji ti+ 1, ti) are computed and stored once the s / s are available. Since this 
approach essentially produces an approximation to the fine solver, the new coarse 
solver is expected to be more accurate than the old coarse solver. It was shown in 
[11] that as the dimension of sk increases, J!Dk----+ II and K.1.t ----+ F 8t, thus achieving 
convergence. The algorithm outline is presented in Algorithm 7.2. 
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Algorithm 7.2 The Krylov subspace parareal method 

Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GL11(u?,t;+1,t;) 
s end 
6 Iterations: 
1 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 

11 I u/;+1 =F&(u7,t;+1,t;) 
12 end 
13 Constructing reduced basis: 

14 Update sk- l to sk based on u}_ 1, ur7 

15 Marching the basis: 
16 for i +-- 1 to Nr do 
17 I SJ; =F81 (s;,O,Llt); 
18 end 
19 Sequential correction step: 
20 for i +-- 0 to Ne - 1 do 

21 I u~_;t°l =K.11 (u~+ 1 ,t;+1,t;)-u/;+ 1 +K.11(u},t;+1,t;) 
22 end 

23 end 

F. Chen et al. 

To demonstrate the performance of the Krylov subspace parareal method, we use 
it to solve the linear advection equation, (7.10). In Fig. 7.4 (left) we show the L=­
error at T = 10 against the number of iterations. It is clear that the Krylov subspace 
parareal method stabilizes the parareal solver for this problem. 
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Fig. 7.4. The L=-error at T = 10 against the number of iterations (left), and the number of 
bases (right) for solving the 1-D linear advection equation using the Krylov subspace parareal 
method 
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Two observations are worth making. First, the Krylov subspace parareal method 
needs to store all the values ofSk and F(Sk). Ask increases, this induces a memory 
requirement scaling 0( kNcN) and this may be become a bottleneck as illustrated in 
Fig. 7.4 (right). Furthermore, the efficiency of the coarse solver depends critically 
on the assumption oflinearity of the operator and it is not clear how to extend this 
framework to nonlinear problems. These constraints appear to limit the practicality 
of the method. 

7.2.3 The reduced basis parareal method 

Let us first recall a few properties of reduced basis methods that will subsequently 
serve as key elements of the proposed reduced basis parareal method. 

7.2.3.1 Reduced Basis Methods 

We are generally interested in solving the nonlinear ODE (7.1). As a system, the di­
mensionality of the problem can be very large, e.g., ifthe problem originates from a 
method-of-lines discretization of a nonlinear PDE, so to achieve a high accuracy, re­
quiring a high number of degrees of freedom, N, and it is tempting to seek to identify 
an approximate model to enhance the computational efficiency without significantly 
impacting the accuracy. 

A general representation of a reduced model in matrix-form is 

u(t) ~ V 7 fi(t), (7.15) 

where the r columns of the matrix V r represent a linear space - the reduced basis -
and fi(t) E JR7 are the coefficients of the reduced model. Projecting the ODE system 
(7 .1) onto V 7, we recover the reduced system: 

T dfi.(t) T - T -V7 Vr------;Jt = V7 AVru(t) + V7 N(Vru(t)). 

Assuming that V7 is orthonormal, this simplifies as 

dfi.(t) T -( ) T ( -( )) ------;ft = Vr AVru t + Vr N Vru t . 

(7.16) 

(7.17) 

One is now left with specifying how to choose a good subspace, V7 , to adequately 
represent the dynamic behavior of the solution and develop a strategy for how to re­
cover the coefficients for the reduced model in an efficient manner. There are several 
ways to address this question, most often based on the construction of V r through 
snapshots of the solution. 

Proper orthogonal decomposition. The proper orthogonal decomposition (POD) 
[5, 6] is perhaps the most widely used approach to generate a reduced basis from a 
collection of snapshots. In this case, we assume we have a collection of Ns snapshots 

U = [01, ... , llNs], (7.18) 
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where each u; is a vector of length N; this N can be large as it reflects the number of 
degrees of freedom in system. The POD basis, denoted by { </>;}i E JRN, is chosen as 
the orthonormal vectors that solve the minimization problem: 

Ns r 

minNL, 1101- L,(u) </J;)</J;I I~, 
l/J;E~ j i=l 

(7.19) 

b. ,i..T,i.. ~ {l,i=j, 
su ~ect to 'l'i 'l'J = u;1 = 0 th . , o erw1se. 

The solution to this minimization problem is found through the singular value de­
composition (SVD) ofU: 

(7.20) 

where VE ]RNxr and WE JRNsxr are the left and right singular vectors, respectively, 
and V is the sought after basis. The entries of the diagonal matrix I provides a 
measure of the relative energy of each of the orthogonal vectors in the basis. 

Once the basis is available, we can increase the computational efficiency for solv­
ing (7.17) by precomputing V~ AV7 of sizer x r. However, the computational com­
plexity of the nonlinear term remains dependent onN and, hence, potentially costly. 

Discrete Empirical Interpolation. To address this, [7] proposed an approach, orig­
inating in previous work on empirical interpolation methods [4] but limited to the 
case of an existing discrete basis set. In this approach N(Vru(t)) is represented by 
N(t) E JRN which is subsequently approximated as 

N(Vru(t)) ~ N(t) ~ Vpc(t). (7.21) 

Here Vp = [v1, ... , vm] is an orthogonal POD basis set based on snapshots of N(t). 
To recover c(t), we seek a solution to an overdetermined system. However, rather 
than employing an expensive least square method, we extract m equations from the 
original set of snapshots. Denote 

P= [ep1, .... ,ePmJ ElRNxm, (7.22) 

where ep1 = [O, ... , 0, 1, 0, ... ,Of E JRN (1 only appears on the p1-th position of the 
vector). IfpTyP is nonsingular, c(t) can be uniquely determined by 

resulting in a final approximation ofN(t) as 

The interpolation index p; is selected iteratively by minimizing the largest magnitude 
of the residual r = Uk - V p,kc. The procedure, sometimes referred to as discrete 
empirical interpolation, is outlined in Algorithm 7.3. 
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Algorithm 7.3 Empirical interpolation with a given discrete basis set 

input : { vk}k=l c JRN linearly independent POD bases of the nonlinear term 
output: the interpolation operator Pm = [p1, .. .,pm]. 

1 begin 
2 £=max lu1 I ,PI= argmax lu1 I; 
3 P <----{pi}; V p,1 <---- {vi}; 
4 for k <---- 2 to M do 
s Solve pT vk = pTv p,kc(t) to obtain c(t); 
6 Compute the residual; r = Vk - V p,kc; 
7 £=max lrl ,pk= argmax lrl; 
8 Vp,k<--Vp,k-IU{vk}; 
9 pk<---- pk-I U {pk}; 

10 end 
11 end 

With the above approximation, we can now express the reduced system as 
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(7.23) 

Full Empirical Interpolation. Pursuing the above approach further, one is left won­
dering if we can use a basis other than the computational expensive POD basis, and 
whether we can choose the interpolation position based on other guidelines. Ad­
dressing these questions leads us to propose a full empirical interpolation method. 

It is well-known that the original empirical interpolation method is commonly 
used to separate the dependence of parameters and spatial variables [4], and that 
the method chooses 'optimal' interpolation points in a certain sense. We propose 
to consider time as a parameter, and use the empirical interpolation to construct the 
reduced bases VE,k ofu and the reduced bases VpE,k of the nonlinear term, i.e., 

u(t) ~ VE,kc(t), N(t) ~ VpE,kc(t). (7.24) 

The resulting reduced model can be written as 

dii(t) T - T T I T -
---;J{ = VE,k AVE,ku(t) + VE,k VpE,k(P VpE,k)- N(P VE,ku(t)). (7.25) 

The essential difference between the models based on discrete empirical interpola­
tion and the full empirical interpolation approach is found in the way in which one 
constructs the reduced basis set. In the former case, the importance of the basis el­
ements is guided by the SVD and the relative size of the singular values, resulting 
in a potentially substantial cost. The latter case is based on the interpolation error 
and the basis in constructed in a full greedy fashion. A detailed comparative study 
of the performance between the two approaches is ongoing and will be presented in 
a forthcoming paper. 
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7.2.3.2 The Reduced Basis Parareal Method 

Let us now introduce the new reduced basis parareal method. Our first observation is 
that the first term in (7.13) can be dropped under the assumption that the projection 
error vanishes asymptotically. Hence, for linear problems, we can replace K.1.t by 
K.1.t as 

Nck 
~ k '"'"' K.1.t(u, t;+1, t;) = F& (JP' u, t;+1,t;) = £... C1F01 (s1,t;+1, t;). (7.26) 

J=l 

This is essentially an approximation to the fine time integrator with an admissible 
truncation error. Keeping in mind that Fst is an expensive operation, we seek to 
reduce the dimension ofSk to achieve a better efficiency. If the solution to the ODE 
is sufficiently regular, it is reasonable to seek an r-dimensional subspace, S~ (the 
reduced basis space), of the original space sk. Now redefine JP'~ to be the orthogonal 
projection from u onto S~. Then (7.26) becomes 

(7.27) 

which is essentially an approximation to the fine time integrator using the reduced 
model. 

Consequently, our reduced basis parareal method for linear problems is as fol­
lows: 

u~tl =F&(~u~+1 ,tn+1,tn) +Fst(u~,tn+1,tn)-F&(lP'~u~,tn+l ,tn), 0 ~ k ~Nc-1. 
(7.28) 

Depending on the construction of the reduced model, we refer to it as the POD para­
real method or the EIM parareal method. 

Algorithm 7.4 describes the basic steps of the reduced basis parareal method for 
linear problems. It follows a procedure similar to Algorithm 7.2, but requires less 
memory for storing the bases. Notice that for linear problems, the coarse solver is 
needed only for initializing the algorithm. After this first step, the fine solver pro­
duces all the information needed for the reduced model, and the algorithm no longer 
depends on the coarse solver. 

For nonlinear problems, the relationship 

r 

F&(~u,t;+1,t;) = LC1F&(s1,t;+1,t;) 
j=l 

(7.29) 

does not generally hold, even iflP'ku---+ u. Therefore, the Krylov subspace parareal 
method is not applicable. Fortunately, the knowledge of the development ofreduced 
models using empirical interpolation offers insight into dealing with nonlinear prob­
lems, as mentioned in Sect. 7.2.3.1. We construct the coarse time integrator as fol­
lows: 

(7.30) 
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Algorithm 7.4 The reduced parareal method for a linear problem 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 
4 I u?+i = GLlt(u?,t;+1,t;) 
5 end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Constructing reduced basis by POD or EIM: 

14 Uk={u/;+1,i=O, ... ,Ne,}=0, ... ,k} 
15 S =POD(Uk) or S =EIM(Uk) where S = {s;,i= 1, ... ,r} 
16 Marching the basis: 
17 for i +-- 1 to r do 
18 I SJ; =F81 (s;,O,Llt); 

19 end 
20 Sequential correction step: 
21 for i +-- 0 to Ne - 1 do 
22 ll"ku} = LJ=l C1s1 +-- C1 

K, ( k+l ) - .._,N, C S 
23 Lit U; ,t;+1,t; - £...j=l j fj 

k+l K' ( k+l ) k K' ( k ) 24 U;+l = Lit U; ,t;+1,t; -Ufi+l + Lit U;,t;+1,t; 
25 end 
26 end 
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where F8t is the reduced model constructed by POD or EIM as we described in 
the previous section. Consequently, our reduced basis parareal method for nonlinear 
problems becomes 

u~t~ = F8t(JP'~u~+l ,tn+1,tn) + F&(u~,tn+1,tn) - F8t(~u~,tn+1,tn), 
0 ::; k ::; Ne - 1. (7.31) 

As long as there exists a suitable reduced model for the problem, we can evaluate kilt 

efficiently while maintaining an accuracy commensurate with the fine solver. The 
reduced basis parareal method for nonlinear problems is outlined in Algorithm 7.5. 
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Algorithm 7.5 The reduced parareal method for a nonlinear problem 

1 Initialization: 

2 ug = uo; 
3 for i +-- 0 to Ne - 1 do 

4 I u?+i = GLlt(u?,t;+1,t;) 
s end 
6 Iterations: 
7 k=O; 
s for k +-- 0 to Nit do 
9 Parallel predictor step: 

10 for i +-- 0 to Ne - 1 do 
11 I u/;+1 =F&(u},t;+1,t;) 
12 end 
13 Constructing reduced basis: 

14 Uk={u/;+1,i=O, ... ,Ne,}=0, ... ,k} 
1s S =POD-DEIM(Uk) or S =EIM(Uk) where S = {s;,i= 1, ... ,r} 
16 Sequential correction step: 
17 for i +-- 0 to Ne - 1 do 
18 KLlt(u},t;+1,t;) =F8t(lP'~u},t;+1,t;) 

K, ( k+l ) Fr (lP'k k+l ) 19 Lit U; ,t;+1,t; = 8t rU; ,t;+1,t; 
k+l K' ( k+l ) k K' ( k ) 20 U;+l = Lit U; ,t;+1,t; -Ufi+l + Lit U;,t;+1,t; 

21 end 
22 end 

7 .3 Analysis of the Reduced Basis Parareal Method 

F. Chen et al. 

In the following we provide some analysis of the reduced basis parareal method 
to understand its stability, convergence and overall computational complexity. 
Throughout, we assume that there exists a reduced model for the continuous prob­
lem. 

7.3.1 Stability analysis 

We first consider the linear case. Define the projection error: 

(7.32) 

where r is the dimension of the reduced space. We assume a projection error 

'1 <_5_ £, Vj,k, (7.33) 

and define: 
£ 

Cp,r = i1T' Vj,k. (7.34) 
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It is reasonable to assume that the fine propagator is L1 stable, i.e., there exists a 
nonnegative constant CF independent of the discretization parameters, such that, 

Theorem 7.1 (Stability for the linear case) Under the assumption of (7.33) and 
(7.35), the reduced basis parareal method is stable for (7.1) with N = 0, i.e., for 
each i and k, 

I lu7tl 1 IL2(0,T) :::; CLeCp(i+l)!J.T' 

where CL is a constant depending only on Cp,r, CF, and uo. 

(7.36) 

Proof Using the triangle inequality, linearity of the operator, and assumption (7.35), 
we obtain 

11°7tl 1 IL2 (O,T) :::; I IF& (JP'~u7+ 1't;+1 't;) I IL2 (O,T) + I IFot ( ur' t;+ 1 't;) 

- Fat (IP'~ur, t;+ 1, ti) I IL2 (o,ri (7 .3 7) 

:::; (1 +CFL1T)llu7+1llL2(o,T) 

+ (1 +cFLlT)l l(II- ~)url ILz(o,ri· (7.38) 

Then, by the discrete Gronwall's lemma [9] and (7.33), we recover 

i 
k+l ""' . X (lluo llL2(o,T)+LlT L,;(l+CFL1T)-1Cp,r) 

j=O 

= (1 +CFLlrr+ 1 11u~+ 1 1 IL2(0,T) 

+ dF ((1 +CFLlT)i+l _ l)Cp,r 

< eCp(i+l)!J.TI lu II + _l (eCp(i+l)!J.T - l)C . 
- 0 L2 (0,T) CF p,r 

This completes the proof. 

(7.39) 

(7.40) 

(7.41) 

Note that ifthere exists an small integer M (indicating a compact reduced approxi­
mation space) such that, 

lim Cp,r = 0, 
r--;M 

(7.42) 

then we recover the same stability property as that of the fine solver: 

For the nonlinear case, we further assume that there exists a nonnegative constant 
Cr, independent of the discretization parameters, such that, 
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where elf is the L2-difference between the fine propagator and the reduced model 
using the same initial condition vat ti. As before, we assume 

0 :::;t:, Vj,k. (7.44) 

Theorem 7.2 (Stability for the nonlinear case) Under assumptions (7.35), (7.43) 
and (7.44 ), the reduced basis parareal method is stable for (7 .1) in the sense that 
for each i and k 

I lu7-t"l 1 IL2(0,T) :::; CNeC*(i+l)AT, (7.45) 

where C = max{CF,Cr} and CN is a constant depending only on Cp,r, Cp, Cr, 
anduo. 

Proof Using the triangle inequality and assumptions (7.35) and (7.43), we have 

11 u7-t"l 1 IL2 (O,T) :::; I IF.51 (lP'~u7+ 1 , ti+ 1, ti) I IL2 (O,T) + I IF& ( uf, ti+ 1, ti) 

- F,51 (~uf ,ti+1,ti) I IL2(0,T) (7.46) 

:::; (1 +CpL1T) I lu7+1 I ILz(O,T) + (1 +CrL1T)q}. (7.47) 

Next, by the discrete Gronwall's lemma and (7.44), we derive 

i 
k+l "'"' . x (lino llL2(o,T) +L1T L,;(1 +CrL1T)-1Cp,r) 

j=O 

= (1 +cF11rr+1 11u~+ 1 I IL2(0,ri 

+ ~r ((1 +CrL1rr+1 - l)Cp,r 

<eCp(i+l)ATllu II +2-(eCr(i+l)AT -l)C . 
_ 0 L2 (0,T) Cr p,r 

This completes the proof. 

7.3.2 Convergence analysis 

(7.48) 

(7.49) 

(7.50) 

To show convergence for the linear case, we first assume that there exists a nonneg­
ative constant Cp, such that, 

I IF&(X,ti+l ,ti) - F&(Y,ti+l ,ti)l ILz(O,T) :::; (1 +CpL1T) I Ix -yl ILz(O,T), \/ti > 0. 
(7.51) 

We define 
(7.52) 

and assume that 
(7.53) 
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Theorem 7.3 (Convergence for the linear case) Under assumption (7.33), (7.42), 
(7.51), (7.53) and N = 0 in (7.1), the reduced basis parareal solution converges to 
Ui+ 1 for each i. 

Proof Using the reduced basis parareal formula and the linearity of the operator, we 
obtain 

u7_;'.l - Ui+l = F&(~u7+ 1 ,ti+1,ti) + F01 (u~,ti+J ,ti) 
-Foi(~u~,li+l,ti)-F&(Ui,ti+l,li) (7.54) 

= F&(~u7+ 1 ,ti+J ,li) -Foi(~ui,ti+J ,ti) (7.55) 

+ F&(u~,ti+l, ti) - F& (JP'~u~,ti+l, ti) (7.56) 

+ F&(~ui,ti+l ,li) -F&(Ui,li+J ,ti)· (7.57) 

By the triangular inequality and assumption (7 .51 ), we recover 

I lu7_;'.l - ui+1 I IL2(0,T) :=::: (1 +CpL1T) I lu7+l - uil IL2(0,T) (7.58) 

+ (1+CpL1T)11 (II- ~)u~l ILz(O,T) (7.59) 

+ (1+CpL1T)11 (II- ~)uil ILz(O,T)· (7.60) 

Finally by the discrete Gronwall's lemma, (7.33) and (7.53), we obtain 

I lu7tl - Ui+1 I IL2(0,T) ::::: (1 +CpL1ry+l (I lu~+l - uol IL2(0,T) (7.61) 
i 

+L1T I, (1 +CpL1T)-iCp,r 
j=O 

i 

+L1T L (1 +CpL1T)-iCp,r) 
j=O 
i 

:=:; 2L1T L (1 +CpL1T)-iCp,r 
j=O 

:::; ~F ((1 +CpL1Ty+1- l)Cp,r 

< 2_(eCF(i+l)!iT - l)C - Cp p,r, 

which approaches zero as r increases. This completes the proof. 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

For the nonlinear case, we must also assume that there exists a nonnegative con­
stant Cr, such that, 

I IF&(u~, ti+! ,ti) - Fs1 (~u~, ti+! ,ti) I ILz(O,T) :::; (1 + CrL1T)c/f, 

llF01(ui,ti+l,li)-Fs1 (lP'~ui,li+l,ti)llLz(O,T):::; (1 +CrL1T)p~, 
(7.66) 
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where </[ and P1 represent the L1-difference between the fine operator and the re­
duced solver using the same initial condition u7 and ui. As before, we assume that 

(7.67) 

Theorem 7.4 (Convergence of the nonlinear case) Under assumptions (7.42), 
(7.43), (7.44), (7.66) and (7.67), the reduced basis parareal solution of (7.1) con­
verges to U;+ 1 for each i. 

Proof Using the reduced basis parareal formula, we obtain 

u7tl -u;+1 = F81 (~u7+ 1 ,t;+1,t;) +F01 (u7,t;+1,t;) 

- Fs1 (~u7,t;+1,t;) - F&(u;,!;+1,t;) 

= F81 (IP'~u7+ 1 ,t;+1, t;) - F81 (IP'~u;,t;+1, t;) 
+ Fo1(u7,t;+1,t;) -F81 (~u7,t;+1,t;) 
+ F81 (~u;,t;+1,t;) - F81 (u;,t;+ 1,t;). 

By the triangular inequality and assumptions (7.66) and (7.43), we have 

llu7tl-u;+1llL2(0,r)::::: (1+CpL1T)llu7+1-u;llL2(0,r) 

+ (1 +CrL1T)c/f + (1 +CrL1T)p1. 

Then, by the discrete Gronwall's lemma, (7.44) and (7.67) we recover 

llu7tl-ui+illL2(o,r)::::: ~r ((1 +CrL1ry+1 - l)Cp,r 

< 3._(eCr(i+l)AT - l)C - Cr p,r, 

which approaches zero as r increases under assumption (7.42). 

For the above analysis it is worth emphasizing two points: 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

• The accuracy of the new parareal algorithm is 0( e ), since Cp,r depends one as a 
measure of the quality of the reduced model. We shall confirm this point by the 
numerical tests in Sect. 7.4. 

• Theorem 7.3 and 7.4 indicate that ifthere exists a good reduced approximation 
space for the problem, the new parareal algorithm converges in one iteration. 

7.3.3 Complexity Analysis 

Let us finally discuss the computational complexity of the reduced basis parareal 
method. Recall that the dimension of the reduced space is rand that of the fine solu­
tion is N. This is assumed to be the same for the coarse and fine solvers although this 
may not be a requirement in general. The compression ratio is R = r / N. Following 
the notation of [21]: TQR(k),rRB(k) (representing rsVD(k), TEIM(k), and TDEIM(k) 
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in different scenarios) reflect computing times required by the corresponding opera­
tions at the k-th iteration. re and r f is the time required by the coarse and fine solvers, 
respectively. N1 = NeNJ is the total number of time steps in one iteration with Ne be­
ing the number of the coarse time intervals and NJ the number of fine time steps on 
each coarse time interval. Np is the number of processors. 

In [21], the speedup is estimated as 

S(Np) R:: Nirf . 
Ne re +Nit(Nere +Ni/NprJ) +Nit't"QR(1t) 

(7.73) 

1 

( l +N )(Ne.!£.)+ N;t'fQR(Nit) +Nit. 
If Ni 1:j Nt1:j Np 

(7.74) 

In the reduced basis parareal method, re= R2~, since the complexity of the com­
putation of the right hand side of system is O(r ). In addition, 't"QR becomes rsvn or 
't°EJM· With this in mind, the speedup can be estimated as 

(7.75) 

Next, we examine the first two terms in the denominators of(7.74) and (7.75). 

• In the first term, rcf r1 takes the role of R2 . Hence, we can achieve a compa­
rable performance, if R R:: ~, i.e, if the underlying PDE solution can be 
represented by a reduced basis set of size 0( ~N). Suppose that ~ = 

JT720 R:: 0.23. This requires that R < 1/4, which is a reasonable compression 
ratio for many problems. In addition, it is possible to use a reduced basis approx­
imation to achieve a better performance for cases where CFL conditions lead to 
restrictions for the coarse solver. 

• For the second term, rsvn R:: 't"QR R:: O(NN;7N}), while 't°EJM R:: O(r3 /2NitNe + 
rNNitNe). Therefore, rsvn/'t°EJM R:: 0(2N;iNe/Rr2 ). As Ne increases, 't°EJM be­
comes smaller. In addition, EIM has very good parallel efficiency and requires 
less memory during the computation. 

Also note that N;1 would typically be different for the reduced basis parareal method 
and the original parareal method. If a reduced space exists, the modified algorithm 
usually converges within a few iterations, hence accelerating the overall conver­
gence significantly. 

7.4 Numerical Results 

In the following, we demonstrate the feasibility and efficiency of the reduced ba­
sis parareal method for both linear and nonlinear problems. We generally use the 
solution obtained from the fine time integrator as the exact solution. 
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Fig. 7.5. POD parareal method, and the EIM parareal method for the 1-D advection equation. 
On the left we show the L=-error at T = 10 against the number of iterations while the right 
shows the number of bases used for satisfying the tolerance of£ ( 1 o-13 ) in the POD and EIM 
parareal methods across the iterations 

7.4.1 The Linear Advection Equation 

We begin by considering the performance of the reduced basis parareal method and 
illustrate that it is stable for the 1-D linear advection equation (7 .10). The spatial and 
temporal discretizations are the same as used in Sect. 7.2 and parameters in (7 .11) 
are used. 

In Fig. 7 .5 (left), we show the L=-error at T = 10 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
method. The accuracy of the fine time integrator at T = 10 is 4 x 10-13 . The original 
parareal method is clearly unstable, while the other two remain stable. The very 
rapid convergence of the reduced basis parareal method reflects that the accuracy of 
reduced model is very high for this simple test case. As we will see for more complex 
nonlinear problems, this behavior does not carry over to general problems unless a 
high-accuracy reduced model is available. 

In Fig. 7 .5 (right), we show the number of bases used to satisfy the tolerance £ in 
the POD parareal method and the EIM parareal method. Here £ in the POD context 
is defined as the relative energy in the truncated mode and in the EIM context it is the 
interpolation error. In both cases, the tolerance in the basis selection using POD or 
EIM is set to 10-13 . We note that the EIM pararealmethod achieves higher accuracy 
but requires more memory to store the bases. This suggests that one can explore a 
tradeoffbetween accuracy and efficiency for a particular application. 

Remark 7.1 It should be noted that if only snapshots from the previous iteration is 
used in the EIM basis construction, the scheme becomes unstable. However, when 
including all snapshots collected up to the previous iteration level, stability is re­
stored. 

Figure 7.6 (upper left) shows the convergence behavior of the EIM parareal al­
gorithm with different tolerances(£= 10-k, k = 2,4,6, 8, 10, 12). The convergence 
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Fig. 7.6. The performance of the EIM parareal method for the 1-D advection equation against 
the tolerance used in the design of the reduced basis. On the upper left we show the L=-error 
at T = 10 against the number of iterations as the tolerance £ decreases and on the upper right 
the number of bases used for satisfying the tolerance as £ decreases, where £ = 10-k, k = 
2, 4, 6, 8, 10, 12; On the lower left and right, we show the corresponding convergence results 
and the number bases with the reorthogonalization procedure of the evolved basis 

stagnates at a certain level and instability may set in after further iterations. There 
are two reasons for this: 1) as £ becomes small, the reduced bases may become linear 
dependent, leading to a bad condition number of the related matrices that may im­
pact stability; 2) the newly evolved reduced bases Sf; for the fine solution may not be 
within S anymore. To resolve this problem, we first perform the reorthogonalization 
of the reduced bases to obtain a new space Sand then project the newly evolved so­
lution KA 1(u7+ 1,ti+1,ti) back to S. In Fig. 7.6 (lower left) we show the convergence 
results following this approach. Most importantly, stability is restored. Furthermore, 
the dependence of the final accuracy on £ is clear. These results are consistent with 
Theorem 7.3, stating that the parareal solution converges to the serial solution inte­
grated by the fine solver as long as the subspace S saturates in terms of accuracy. 
In practice, one can choose £ such that the accuracy of the parareal solution and the 
serial fine solution are comparable. 
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7.4.2 The second order wave equation 

To further evaluate the stability of the new parareal algorithm, we consider the sec­
ond-order wave equation from [8]: 

Utt= r:?uxx, (x,t) E (0,2n) x (0, T], 
u(x, 0) = f(x), u1(x, 0) = g(x), 

(7.76) 

where T = 10 and c = 5 and a 2n-periodic boundary condition is used. The initial 
conditions are set as 

and 

N 

f(x) = L uzeilX, g(x) = 0 
l=-N 

U = { ll~P ,/ -/= O, 
I 0 / =0. 

(7.77) 

and set p = 4. In the following we use a Fourier spectral discretization with 33 modes 
in space [14] and the velocity Verlet algorithm in time [24]. The following parame­
ters are used in the parareal algorithm: 

Ne = 100, Nit = 10, Lit = 10-3 , Di = 10-4 . (7.78) 

The tolerance for POD is set to 10-11 , respectively. 
In Fig. 7. 7 (left), we show the L=-error at T = 10 against the number of iterations 

for the original parareal method and the POD parareal method. The original parareal 
method is clearly unstable, while the POD parareal remains stable and converges in 
one iteration. This confirms our analysis: ifthe reduced model is accurate enough, 
the reduced basis parareal should converge in one iteration. In Fig. 7.5 (right), we 
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Fig. 7.7. Results obtained using the original parareal method, the POD parareal method for 
the 1-D second order wave equation. On the left we show the L=-error at T = 10 against 
the number of iterations while the right shows the number of bases used for satisfying the 
tolerance of e(l0-11 ) in the POD parareal method across the iterations 
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show the number of bases needed to satisfy the tolerance £ in the POD parareal 
method. 

7.4.3 Nonlinear Equations 

Let us also apply the reduced basis parareal method to examples with nonlinear PD Es. 
We recall that the Krylov based approach is not applicable in this case. 

7.4.3.1 Viscous Burgers' Equation 

We first consider the viscous Burgers' equation (7 .6), with the same spatial and tem­
poral discretization and the same parameters as in (7.7). To build the reduced basis, 
we set the tolerance for POD and EIM to be 10-15 and 10-10 , respectively. 

In Fig. 7.8 (left), we show the L=-error at T = 2 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
method. Note that in this case, the RB parareal performs worse than the original 
parareal does. It is a result of the reduced model not adequately capturing the in­
formation of the fine solver. Recall that in the nonlinear case, we have to deal with 
two approximations: one for the state variables and one for the nonlinear term. For 
the POD parareal algorithm, we choose the number of reduced bases based on the 
tolerance for the state variable u; alternatively, we can choose the dimension of the 
reduced approximation space based on the tolerance for the nonlinear term. The 
latter approach shows better convergence behavior in Fig. 7.8 (left, parareal-pod­
modified). It is apparent that the quality of the reduced model directly impacts the 
convergence. 

We emphasize that although the reduced basis parareal method converges slower 
than the original parareal, it is less expensive, as discussed in Sect. 7.2.3 .1. 

80 
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Fig. 7.8. We compare the performance of the original parareal method, the POD parareal 
method, the modified POD parareal and the EIM parareal method for the 1-D Burgers' equa­
tion. On the left we show the L=-error at T = 2 against the number of iterations, while the 
right illustrates the number of bases 
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Fig. 7.9. We compare the performance of the original parareal method, the POD parareal 
method, and the EIM parareal method for the 1-D Kuramoto-Sivashinsky equation. On the 
left we show the L=-error at T = 40 against the number of iterations, while the right shows 
the number of bases used against the number of iterations 

7.4.3.2 Kuramoto-Sivashinsky Equation 

Next we consider the Kuramoto-Sivashinsky equation (7.8). The same spatial and 
temporal discretization and the same parameters as in (7 .9) are used. To build the 
reduced basis, we set the tolerance for POD and EIM to be 10-13 and 1 o-8, respec­
tively. 

In Fig. 7.9 we showtheL=-error at T = 40 against the numberofiterations for the 
original parareal method, the POD parareal method, the modified POD parareal, and 
the EIM parareal method. It is clear that the reduced basis parareal method converges 
faster than the original parareal method. This is likely caused by the solution of the 
problem being smooth enough to ensure that there exists a compact reduced model. 
Moreover, to keep the corresponding tolerance, the number of degrees of freedom in 
the reduced basis parareal methods is roughly one-third that of the original parareal 
method. 

7.4.3.3 Allan-Cahn Equation: Nonlinear Source 

As a third nonlinear example we consider the 1-D Allan-Cahn equation: 

au 3 Tt = Vux.x+u-u, (x,t) E (0,2n) x (O,T], 
(7.79) 

u(x,O) = 0.25sin(x), 

where T = 2 and v = 2, 1, 10-1, 10-2 . A periodic boundary condition is assumed. 
We use a P1 DG method with 100 elements in space [ 15] and a forward Euler scheme 
in time. The following parameters are used in the parareal algorithm 

Ne= 200, N;1 = 5, L1t = 1x10-4 , 8t = 5 x 10-6 . (7.80) 

We set the tolerance for POD and EIM to be 10-12 and 10-8, respectively. 
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Fig. 7.10. The POD parareal method for the 1-D Allan-Cahn equation. On the left we show 
the L=-error at T = 2 against the number of iterations for different values of v and on the right 
we show the number of bases 

In Fig. 7.10 (left), we show the L=-error at T = 2 against the number of iterations 
for the POD parareal method for different values of v's. It is clear that for larger 
values of v, the solution converges faster and less elements in the reduced basis is 
needed. This is expected since a larger v indicates a smoother and more localized 
solution which is presumed to allow for an efficient representation in a lower dimen­
sional space. Similar results are obtained by an EIM based parareal approach and are 
not reproduced here. 

7.4.3.4 KdV Equation: Nonlinear Flux 

As a last example we consider the KdV equation (taken from [26]): 

au u2 
7fi = -(l)x-VU.xxx, (x,t) E (-1,1) X (0,T], 

(7.81) 
u(x, 0) = 1.5 + 0.5 sin(2nx), 

where T = 2 and v = 10-3 and we assume a periodic boundary condition. The equa­
tion conserves energy, much like the linear wave equation, but the nonlinearity in­
duces a more complex behavior with the generation of propagating waves. In the 
parareal algorithm we use 

Ne = 100, N;t = 10, L1t = 10-4 , Ot = 10-5 . (7.82) 

We use a first order local discontinuous Galerkin method (LDG) with 100 el­
ements in space [15, 26] and an IMEX scheme in time [1], with the linear terms 
treated implicitly and the nonlinear term explicitly. We set the tolerance for POD 
and EIM to be 10-13 and 10-8, respectively. 

In Fig. 7 .11 (left) we show the L=-error at T = 2 against the number of iterations 
for the original parareal method, the POD parareal method, and the EIM parareal 
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Fig. 7.11. We compare the performance of the original parareal method, the POD parareal 
method, and the EIM parareal method for the 1-D KdV equation. On the left we show the 
L=-error at T = 2 against the number of iterations, while the right shows the number of bases 
used against the number of iterations 

method. While the POD parareal method does not work well in this case, the EIM 
parareal method shows remarkable performance, i.e., it converges much faster than 
the original parareal method. Note that even ifthe tolerance for the POD is smaller 
than that of the EIM, it does not guarantee that the reduced model error based on the 
POD approach is smaller. There are two reasons: 1) the meaning of the tolerance in 
the context of the POD and the EIM are different. 2) in the convergence proof of 
(7.71), the constants Cr,Cp,r depend on the details of the reduced approximation and 
the dimension of reduced approximation space, which impact the final approxima­
tion error. 

7.5 Conclusions 

In this paper, we propose an approach to produce and use a reduced basis method 
to replace the coarse solver in the parareal algorithm. We demonstrate that, as com­
pared with the original parareal method, this new reduced basis parareal method has 
improved stability characteristics and efficiency, provided that the solution can be 
represented well by a reduced model. The analysis of the method is confirmed by the 
computational results, e.g., the accuracy of the parareal method is determined by the 
accuracy of the fine solver and the reduced model, used to replace the coarse solver. 
Unlike the Krylov subspace parareal method, this approach can be extended to in­
clude both linear problems and nonlinear problems, while requiring less storage and 
computing resources. The robustness and versatility of the method has been demon­
strated through a number of different problems, setting the stage for the evaluation 
on more complex problems. 
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On the Stability of Reduced-Order Linearized 
Computational Fluid Dynamics Models Based 
on POD and Galerkin Projection: 
Descriptor vs Non-Descriptor Forms 

David Amsallem and Charbel Farhat 

Abstract The Galerkin projection method based on modes generated by the Proper 
Orthogonal Decomposition (POD) technique is very popular for the dimensional re­
duction of linearized Computational Fluid Dynamics (CFD) models, among many 
other typically high-dimensional models in computational engineering. This, despite 
the fact that it cannot guarantee neither the optimality nor the stability of the Reduced­
Order Models (RO Ms) it constructs. Short of proposing any variant of this model 
order reduction method that guarantees the stability of its outcome, this paper con­
tributes a best practice to its application to the construction oflinearized CFD RO Ms. 
It begins by establishing that whereas the solution snapshots computed using the 
descriptor and non-descriptor forms of the discretized Euler or Navier-Stokes equa­
tions are identical, the RO Ms obtained by reducing these two alternative forms of the 
governing equations of interest are different. Focusing next on compressible fluid­
structure interaction problems associated with computational aeroelasticity, this pa­
per shows numerically that the POD-based fluid ROMs originating from the non­
descriptor form of the governing linearized CFD equations tend to be unstable, but 
their counterparts originating from the descriptor form of these equations are typi­
cally stable and reliable for aeroelastic applications. Therefore, this paper argues that 
whereas many computations are performed in CFD codes using the non-descriptor 
form of discretized Euler and/or Navier-Stokes equations, POD-based model reduc­
tion in these codes should be performed using the descriptor form of these equations. 
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8.1 Introduction 

Linearized Computational Fluid Dynamics (CFD) models are ubiquitous in many ap­
plications pertaining to fluid dynamics. These include flow control, sensitivity anal­
ysis, shape optimization, flow stability analysis, and dynamic fluid-structure per­
turbation problems such as flutter, among others. In general, these computational 
models are less CPU intensive than their nonlinear counterparts. Nevertheless, be­
cause of the large dimensionality of these CFD models and the time-criticality of 
the aforementioned applications, there is a growing interest in developing Model 
Order Reduction (MOR) methods for constructing Reduced-Order Models (ROMs) 
that can capture the main characteristics of their high-dimensional counterparts at a 
fraction of the CPU cost they entail. A large class of such MOR methods is based 
on projection methods. These map a large number of degrees of freedom to a small 
number of generalized coordinates using a right Reduced-Order Basis (ROB). They 
also constrain the residual resulting from this approximation to be orthogonal to a 
left ROB. 

The Proper Orthogonal Decomposition (POD) [27] - also known as the Singu­
lar Value Decomposition (SYD)- is a non-intrusive technique for generating a right 
ROB. Galerkin projections - that is, projections using identical left and right ROBs -
with POD "modes" constitute a popular mean for constructing CFD-based linear 
ROMs [1,2,5, 11, 14,23,29]. This, despite the fact this approach for model reduction 
does not guarantee neither the optimality nor the stability of the ROMs it produces. 
To address the issue ofROMs constructed without a guaranteed stability, stabiliza­
tion methods [4, 6] have been developed. In the specific context of CFD applica­
tions, more intrusive POD-based techniques have also been successfully developed 
for MOR. As it can be expected, each of these alternative approaches for restoring 
or guaranteeing stability has advantages and shortcomings. 

Alternatively, this paper sheds some light on the behavior of the basic POD-based 
Galerkin projection method for CFD applications. It also proposes a best practice for 
reducing the occurrence of unstable POD-based linear ROMs that has proved to be 
effective for a large number of CFD problems. It conjectures that a large number 
of these occurrences is promoted by the application of the reduction process to the 
non-descriptor form [24] of the governing CFD equations. This form of an Ordi­
nary Differential Equation (ODE) (or a set of them), which is also known as the 
"autonomous form of an ODE system," is characterized by the identity matrix as 
the coefficient of the term with the highest derivative. It is popular in many compu­
tational engineering applications including multibody dynamics [15, 17], molecular 
dynamics [26], and CFD [2, 7, 16,20,23]. This paper also shows numerically that, on 
the other hand, when MOR is applied to the descriptor form [24] of the governing 
equations, stable CFD ROMs are typically obtained. 

To this effect, the remainder of this paper is organized as follows. Section 8.2 sets 
the stage for linearized Arbitrary Lagrangian Eulerian (ALE) CFD problems with 
moving boundaries and their semi-discretization by a finite volume method. The em­
phasis on moving boundaries is due to their predominant role in generating unsteady 
flows - even in the absence of turbulence - and their importance in dynamic fluid-
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structure applications. This section also introduces the descriptor and non-descriptor 
forms of a Linear Time-Invariant (LTI) system. Section 8.3 overviews the POD­
based Galerkin projection model in the context of linearized CFD problems. More 
specifically, it shows that whereas the snapshot solutions computed using either the 
descriptor or non-descriptor form of a CFD-based L TI system are identical, the lin­
ear ROMs obtained by reducing both forms of this system using a Galerkin projec­
tion method are different. Section 8.4 focuses on realistic dynamic fluid-structure 
interaction problems to illustrate the formulated conjecture. It also highlights the ro­
bustness of Galerkin projections with POD modes when applied to the descriptor 
form of the governing fluid equations. Finally, Sect. 8.5 summarizes and this paper 
and concludes it. 

8.2 Linearized CFD-Based Analysis 

8.2.1 Governing Equations in Descriptor Form 

The semi-discretization of the ALE form of the Navier-Stokes equations with mov­
ing boundaries by a finite volume method leads to the following system ofODEs 

__,____ 
(V(x)w) + F(w, x, :i) = 0, (8.1) 

where: 

• a dot denotes the derivative with respect to time t; 
• V E YJRNJXNJ is a diagonal matrix storing the cell volumes and NJ denotes the 

dimension of the semi-discrete fluid system; 
• w(t) E YJRNJ denotes the time-dependent conservative fluid state vector; 
• F E YJRNJ denotes the vector of numerical fluxes; 
• x denotes the vector position of the CFD mesh nodes. 

The linearization of (8.1) about an equilibrium state (wo,xo,:io) designated by 
the subscript 0 leads to the following set ofODEs [21] 

Voow+Hoow+Roo:i+Goox = o, (8.2) 

where: 

• o designates a small perturbation of the quantity it is applied to; 
• The subscript 0 designates the evaluation of a quantity at the equilibrium state 

(wo,xo,:io); 

• Ho= ~:lo E YJRNJXNJ denotes the Jacobian of the vector of numerical fluxes with 

respect tow, at the equilibrium state (wo, xo, :io); 

• R = Eo + ~FI E ITRNJXNJ, where, using Einstein's notation, Ea .. = ~Au I wo1 de-
ux O 11 ux1 O 

notes the Jacobian of the vector of numerical fluxes with respect to :i, at the equi-
librium state (wo,xo,:io); 
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• G = ~~lo E "JRN1xN1 denotes the Jacobian of the vector of numerical fluxes with 

respect to x, at the equilibrium state ( wo, xo, io). 

To keep the notation as simple as possible, the symbold 8 and the subscript 0 are 
dropped throughout the remainder of this paper. Hence, Eq. (8.2) is re-written as 

Vw+Hw+Ri+Gx = 0. (8.3) 

Equation (8.3) above is said to be in "descriptor" form because V-/=- IN!' where IN1 
denotes the identity matrix of dimension Ni. Equation (8.3) is also referred to here 
as a L TI system because all matrices V, H, R, and G are time-independent. 

The reader is reminded that the leading matrix V is diagonal and that its entries 
store the volumes of the cells of the CFD mesh. For external flow problems around 
rigid or flexible bodies, the cells are usually very small near the wall boundaries, and 
very large near the far-field artificial boundaries. Hence for such CFD problems, Vis 
diagonal but ill-conditioned. 

8.2.2 Governing Equations in Non-Descriptor Form 

The nonlinear equations (8.1) can also be written as 

r(w,x,i) = 0, 

where 
r(w,x,i) = V(x)w+ V(x)w+F(w,x,i). 

(8.4) 

(8.5) 

Hence, given an iterate fluid state vector ( w1', xk, ik), r( w1', xk, ik) designates the 
residual associated with it - that is, the residual associated with a k-th iteration ap­
plied to the solution ofEq. (8.4). 

Consider next the scaled residual 

r(w,x,i) = v- 1 (x)r(w,x,i). (8.6) 

From a purely numerical analysis viewpoint, it could be argued that scaling r by 
v-1 is a bad idea because it involves the multiplication of the governing nonlinear 
equations of equilibrium (8.1) by the inverse of a matrix. However, in both steady 
and unsteady CFD codes, it is common practice to work with the scaled residual 
introduced above for the following reasons: 

• scaling the entries of r by the corresponding inverses of the cell volumes mag­
nifies the residual in the small cells. In this case, given a stopping criterion and 
a convergence tolerance, the solution of Eq. (8.4) delivered by a finite number 
of iterations is most accurate in the flow regions where the cells are the smallest. 
This is highly desirable because the smallest cells are typically located in the flow 
regions where accuracy is most sought-after in the first place; 

• after time-discretization, scaling the entries of r by the corresponding inverses 
of the cell volumes accelerates the convergence of an iterative process based on 
local time-stepping and applied to the steady-state solution ofEq. (8.3) [18]; 
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• since V is diagonal, inverting this matrix is trivial. 

The scaling (8.6) is associated with the following nonlinear semi-discrete fluid 
equations of equilibrium 

(8.7) 

The linearization of these equations about the equilibrium state ( wo, xo, :io) leads to 

(8.8) 

Equation (8.8) above is said to be in "non-descriptor" form, because the matrix coef­
ficient of its leading term (or term with the highest derivative) is the identity matrix 
INr This L TI system is mathematically equivalent to its counterpart (8.3) which is 
written in descriptor form. 

It is conjectured here that because the non-descriptor form (8.7) of the nonlin­
ear semi-discrete fluid equations of equilibrium prevails in many CFD codes, POD­
based model reduction is performed in some if not many of these codes using ei­
ther inadvertently or purposely the non-descriptor form (8.8) of the governing lin­
earized semi-discrete fluid equations of equilibrium. For example, this is the case 
for the POD-based model reductions performed in [20], [23], [2], [16], and [7]. 
For this reason, one objective of this paper is to analyze the differences, if any, be­
tween the linear ROMs constructed by reducing the descriptor form of the governing 
equations (8.3), and their counterparts constructed by reducing the non-descriptor 
form (8.8) of these equations. 

8.3 Model Order Reduction via Galerkin Projection Based on 
POD Modes 

Whether applied to the descriptor or non-descriptor form of a L TI fluid system, a 
projection-based MOR method generates another L TI fluid system of much smaller 
dimension kJ <<NJ. In general, such a MOR method operates using two ROBs: 

• a right (or trial) ROB <I> E JRN1xk1 which has full-column rank and is introduced 
to approximate the state vector w(t) as follows: 

w(t) ~ <I>wr(t). (8.9) 

In this case, the approximate state vector is uniquely defined by the vector of 
generalized coordinates Wr E JRkJ. Substituting this approximation into the LTI 
fluid system of interest yields a non-zero residual r(t) E JRNJ; 

• a left (or test) ROB 'I' E JRNJXkJ which also has full-column rank, and is intro­
duced to limit the magnitude of the residual r(t) by constraining it to satisfy the 
orthogonality condition tpT r(t) = 0, where the superscript T designates the trans­
pose. 
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When IJ' -/=- <I>, a projection-based MOR method is also known as a Petrov-Galerkin 
approximation method. When IJ' = <I>, it is known as a Galerkin approximation 
method. 

In the remainder of this paper, the focus is set on the Galerkin projection method 
(IJ' =<I>), and the POD technique for constructing the ROB <I>. 

8.3.1 Snapshot Collection 

The POD technique based on numerical snapshots [27] computes a trial ROB <I> 
by compressing the information contained in solution snapshots of the system of 
interest. For L TI systems, these snapshots can be computed either in the time domain, 
or in the frequency domain. To simplify notation, only the case of a single forcing 
input function x(t) is presented below. However, it is noted that the extension to 
multiple inputs is straightforward (for example, see [23]). 

In the time domain, solution snapshots are obtained by computing the dynamic 
response of the L TI system of interest to a given impulse forcing input and collecting 
samples of the time-dependent response {w(t;)}~1 , where Nw denotes the number 
of snapshots, in a matrix W as follows 

(8.10) 

In the frequency domain, complex-valued snapshots [19, 22, 23, 28, 30] are ob­
tained by formulating and solving the dynamic response problem in the frequency 
domain, and collecting samples of the frequency-dependent response in a similar 
matrix W. For example, when working with the L TI system (8.3) written in descrip­
tor form, the following frequency domain problems are formulated and solved 

(jw;V +H)w(ro;) = -(jro;R+G)x, i=l,2, ···,Nw, (8.11) 

where W; denotes a sampled circular frequency of interest, j denotes the pure imagi­
nary complex number satisfying j2 = -1, and x denotes the amplitude of a harmonic 
mesh motion driven by a harmonic displacement of the body around which the flow 
is computed. Then, the computed complex-valued samples w( W;) are collected in a 
snapshot matrix W as follows 

W = W(ro1,··· ,WNw) = 

[Re (w( ro1)) ... Re (w( WNw)) Im (w( ro1)) ... Im (w( WNw))] . (8.12) 

Similarly, when working with the L TI fluid system (8.8) written in non-descriptor 
form, the frequency domain problems are formulated as follows 

i = 1, 2, · · ·, Nw, (8.13) 

and the computed complex-valued samples w( W;) are collected in a similar snapshot 
matrix W as above. 

At this point, it is noted that whether collected in the time or frequency do­
main, and except for round-off effects, the snapshots are independent of the form 
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in which the underlying L TI system is written. This is because both descriptor and 
non-descriptor forms of a L TI system are mathematically equivalent. However, as it 
will be shown below, the trial ROBs cp constructed using these snapshots differ. 

8.3.2 Reduction of the Descriptor Form of the Governing Equations 

Suppose that the LTI fluid system written in descriptor form (8.3) is chosen as the 
computational fluid model of interest. Note that the diagonal matrix Vis also a sym­
metric positive definite matrix and therefore defines a norm. Hence in this case, after 
all solution snapshots are computed in either the time or frequency domain, the POD 
technique proceeds with performing the eigenvalue decomposition 

(8.14) 

where WTVW E ]RNwxNw is usually a small-size matrix, and the superscript d des­
ignates the descriptor form of the underlying governing equations. Next, this de­
composition is truncated to account only for the first kJ eigenvalues of Ad and their 
corresponding eigenvectors, and the trial ROB cpd is constructed as follows 

(8.15) 

where Ud and Ad are the truncated counterparts ofiJd and Ad, respectively. 
Alternatively, cpd can be constructed by first computing the SYD of the matrix 

V~W, retaining the first kJ left singular vectors Y, and finally performing the fol­
lowing matrix-matrix multiplication 

cpd= v-~v. (8.16) 

Finally, performing a Galerkin projection of the governing equations (8.3) using 
IJ' = cp = cpd leads to the reduced-order L TI fluid system 

(8.17) 

which is also referred to here as the linear fluid ROM based on the descriptor form 
of the governing equations. 

8.3.3 Reduction of the Non-Descriptor Form of the Governing 
Equations 

If on the other hand the non-descriptor form (8.8) of the L TI system of interest is 
chosen as the computational model of interest, the POD process proceeds with per­
forming the following eigen decomposition instead 

(8.18) 

where the superscript nd designates the non-descriptor form of the underlying equa­
tions, and cpnd is constructed as in (8.15). Then, performing a Galerkin projection 
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of the governing equations (8.8) using this trial ROB leads to 

Wr + ( <I>ndT y-1 H<I>nd) Wr + ( <I>ndT y-lR) i + ( <I>ndT y-lG) X = 0. (8.19) 

This reduced L TI fluid system is also referred to here as the linear fluid ROM based 
on the non-descriptor form of the governing equations. 

8.3.4 Comparison of Alternative Reduced-Order Models 

From (8.14) and (8.18), if follows that for V =/:- IN1 , Vd =/:- und, and therefore <Pd =f­
<I>nd. Hence, the linear fluid ROM (8.17) based on the descriptor form of the gov­
erning equations is in general different from its counterpart (8.19) based on the non­
descriptor form of the governing equations. 

Remark. The reader can check that if the descriptor form of the L TI fluid system 
of interest is reduced by a Galerkin projection method, but its non descriptor form 
is reduced instead by a Petrov-Galerkin method, the choices 

(8.20) 

lead to two linear fluid ROMs that are identical. However, the focus of this work is 
set exclusively on the popular Galerkin projection method, and on the POD modes. 

8.4 Applications to Dynamic Fluid-Structure Interaction 
Problems 

Now that it has been established that the reductions of the descriptor and non­
descriptor forms of a L TI system by a Galerkin projection method lead to two dif­
ferent RO Ms, it remains to assess whether in the case where the ROBs are generated 
using the POD technique, the two alternative ROMs exhibit or not different accuracy 
and numerical stability properties for interesting applications. This is the objective 
of this section which, for this purpose, focuses on a special class of fluid-structure 
interaction problems known as aeroelasticity. Such problems are usually character­
ized by a linear, elastic structural subsystem, and a high-speed compressible fluid 
subsystem. The present focus on aeroelastic applications is motivated by the fact 
that linearized CFD is rapidly becoming a very competitive approach for modeling 
the fluid component of a perturbed aeroelastic system, primarily because it provides 
a relatively low-cost mean for capturing the effects of shocks in the transonic regime. 

To this effect, each of the two fluid RO Ms developed in Sectsions 8.3.2 and 8.3.3 
is coupled here with a classical modal ROM of the structural subsystem past which 
the flow is computed, in order to obtain in each case a linear fluid-structure ROM. 
Then, two inviscid aeroelastic applications are considered: the flutter analysis in tran­
sonic air speeds ofa wing-store-fuel configuration and of a FI A-18 fighter jet config­
uration, respectively. For each application, the numerical stability of the fluid ROM 
constructed using the descriptor or non-descriptor form of the governing fluid equa-
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tions is assessed, and its effect on the behavior of the corresponding coupled fluid­
structure ROM is highlighted. 

8.4.1 Linearized Coupled Fluid-Structure Reduced-Order Models 

CFD-based linearized computational fluid models are rapidly becoming the preferred 
computational models for representing the behavior of a compressible fluid subsys­
tem in a coupled fluid-structure system. For example, they are very popular nowa­
days in aeronautics for the flutter analysis of modem aircraft in the transonic and 
other nonlinear regimes [10, 21, 25], and for loads analysis. In this and many other 
related contexts, the structural subsystem of interest is typically represented by a 
linearized finite element model that can be described by the following set of linear 
OD Es 

Mii +Du+ Ku = JP:Pw, (8.21) 

where u E JRNs denotes the vector of structural displacements of dimension Ns, M E 
]RNsxNs, DE ]RNsxNs and KE ]RNsxNs are the finite element structural mass, damping, 
and stiffuess matrices, respectively, P= is the free-stream pressure, and PE JRNsxN1 

denotes the Jacobian of the aerodynamic forces acting on the wet surface of the 
structure with respect to the fluid state vector w. The reader is reminded that in this 
work, all vector quantities appearing in a linearized context are perturbations and that 
the symbold o is dropped to keep the notation as simple as possible (see Sect. 8.2.1 ). 

Modal decomposition is perhaps the most popular MOR method for a L TI struc­
tural subsystem such as that describedinEq. (8.21). In this case, the ROB XE JRNsxks 

is constructed using the first ks natural mode shapes of the structural subsystem, and 
Eq. (8.21) is reduced by a Galerkin projection onto the subspace of dimension ks 
spanned by the columns ofX. In other words, u(t) is approximated as follows 

u(t) ~ Xur(t), (8.22) 

where Ur E JRks is the vector of generalized (modal) coordinates, and Eq. (8.21) is 
transformed into the following linear structural ROM 

·· D · n2 r,:;-p Ur+ rUr + :: .. t.r Ur = y P=• rWr, (8.23) 

where 
~=~~' ~=~H, ~~ 

<I> = cpd if the descriptor form of the L TI fluid subsystem is reduced, or <I> = cpnd 
if the non-descriptor form of the LTI fluid subsystem is reduced, and Qr E ]Rksxks is 
the diagonal matrix of natural circular frequencies of the structure. 

Assimilating the ALE fluid mesh with a quasi-static pseudo-structure [9, 12] and 
enforcing the compatibility of the displacements of the structural subsystem and the 
ALE fluid mesh across the wet surface of the structure results in a linear relationship 
between x and u that can be written as [21] 

x=K*u, (8.25) 
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where K* is a time-independent operator described in [13, 21]. Hence, substituting 
the above relationship into the L TI fluid subsystem written in descriptor form (8.3) 
yields 

Vw+Hw+RK*ti+GK*u = 0, (8.26) 

and substituting it into the L TI fluid subsystem written in non-descriptor form (8.8) 
yields 

(8.27) 

Let 

H= {EH and G= fEG, V P= V P= 
(8.28) 

- -
where P= denotes the free-stream density, and H and G do not depend neither on 
the free-stream pressure P= nor on P= [22, 23], but only on the free-stream Mach 
number M=. 

Substituting the above expressions ofH and G into Eq. (8.26) and Eq. (8.27) leads 
in the descriptor case to 

Vw+ fEliw+RK*ti+ fEGK*u = 0, V P= V P= 
(8.29) 

and in the non-descriptor case to 

w+ fEv-1liw+ v-1RK*u+ fEv-1GK*u = o. 
VP= VP= 

(8.30) 

Next, reducing the L TI fluid subsystems (8.29) and (8.30) by the Galerkin projection 
method based on cpd and cpnd, respectively, leads to the following general expression 
of the linear fluid ROM 

where 
Hr= cpdT ff cpd, Rr = cpdT RK*X, 

in the descriptor case, and 

(8.31) 

T-
Gr =cpd GK*X (8.32) 

Hr= cpndT y-IH_cpnd, Rr = cpndT y-IRK*X, T -
Gr= cpnd v-1GK*X (8.33) 

in the non-descriptor case. 
Finally, re-writing Eq. (8.23) in first-order form and combining it with Eq. (8.31) 

leads to the following coupled fluid-structure linear ROM of dimension k1+2ks 

[~;] = [-ffi~r =::-!!;Gr] [:;] . 
Ur 0 lks 0 Ur 

(8.34) 

This ROM can be used for several fluid-structure applications ranging from real-time 
control to real-time flutter analysis. In the latter case, the onset of flutter at a given 
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free-stream Mach number M= can be established by fixing the free-stream density 
P= and increasing the free-stream pressure P= until this coupled fluid-structure ROM 
becomes unstable. At this point, the free-stream pressure P= reaches a critical value 
denoted here by p':,. This fast approach to flutter analysis requires however that the 
ROM (8.34) be stable outside the flutter point. In [ 4], it was shown that this in turn 
requires that the reduced fluid matrix Hr be stable. Hence, the application of the lin­
ear ROM (8.34) to the flutter analysis of a coupled fluid-structure system highlights 
the importance of requiring the chosen MOR method to preserve the stability of the 
LTI system or subsystem to which it is applied (for example, see [4]). 

8.4.2 Flutter Analysis of a Wing-Store-Fuel Con.figuration 

Consider first the wing-store-fuel aeroelastic configuration described in [8] and 
graphically depicted in Fig. 8.1. For a fixed altitude characterized by specific val­
ues of the free-stream pressure P= and density P=, a flight condition for this con­
figuration is defined here by an additional pair of data values corresponding to the 
free-stream Mach number M= and fuel fill level in the store (or tank). The hydroelas­
tic effects due to the presence of fuel inside the tank modify the structural properties 
of the system and affect its aeroelastic characteristics. The High-Dimensional com­
putational fluid and structural Models (HD Ms) developed in [8] for this aeroelastic 
configuration have the dimensions Nr = 689,485 and Ns = 6, 834, respectively. 

For every flight condition of interest, 44 real-valued fluid snapshots are gener­
ated by exciting the wall boundary of the structural system by each of its first ks = 4 
structural mode shapes at each of six equispaced reduced frequencies in the interval 
[O, 0.0125]. Then, these snapshots are compressed by the POD technique to construct 
a suite offluid ROBs of dimension kr E {1,- ·· ,40}. A corresponding suite offluid 
RO Ms of the same dimension kr is also constructed by performing Galerkin projec­
tions of both descriptor and non-descriptor forms of the L TI fluid subsystem onto 
these ROBs. 

In all cases, the structural ROM is constructed as in (8.23) with ks = 4 and re­
written in first-order form. 

(a) (b) 

Fig. 8.1. High-dimensional aeroelastic model of a wing-store configuration. (a) CFD surface 
grid; (b) Finite element structural model 
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Fig. 8.2. Wing-store-fuel configuration (M= = 0.95 and empty tank): stability of the fluid 
ROM as a function of its dimension. and accuracy of the critical free-stream pressure predicted 
using the corresponding aeroelastic ROM 

The first considered flight condition is defined by M= = 0. 95 and an empty tank. In 
this case, Figure 8.2( a) reports on the stability of the constructed fluid RO Ms - that is, 
the stability of the matrices H,. Figure 8.2(b) reports on the accuracy they deliver for 
the prediction of the critical pressure. All fluid RO Ms originating from the descriptor 
form of the LTI fluid subsystem are found to be stable. On the other hand, the fluid 
ROMs of dimension k.t E {29, 36, 37, 38} originating from the non-descriptor form 
of the L TI fluid subsystem are found to be unstable. Consequently, each unstable 
fluid ROM leads to an erroneous prediction of the critical pressure using the coupled 
fluid-structure ROM (8.34) (see Fig. 8.2(b)). In contrast, all fluid-structure RO Ms of 
dimension kr ~ I 5 originating from the descriptor form of the L Tl fluid subsystem 
deliver accurate predictions of the critical pressure. Similar results were also reported 
in [3] where a preliminary study of this problem was first performed. 

The second and third considered flight conditions are defined by M= = 1.1 and 
31 % fuel fill level in the tank, and M= = 0.75 and 69% fuel fill level, respectively. 
Figures 8.3 and 8.4 report on the stability of the constructed fluid ROMs and accu­
racy of the corresponding aeroelastic RO Ms for these two cases, respectively. These 
figures confirm the trends observed for the first flight condition and lead to similar 
conclusions. 

8.4.3 Flutter Analysis of an FIA-18 Aircraft Configuration 

Next, an aeroelastic HOM ofa full F/A-18 configuration with tip missiles is con­
sidered (see Fig. 8.5). Here, the dimension of the fluid HOM is Nr = I, 054, 500, 
and that of the structural HOM is ~1 = 9, 046. The latter is reduced by Galerkin 
projection on a modal basis with ks = 10 flexible structural mode shapes. 

The free-stream condition is set to M= = 0.99. Then, 210 fluid snapshots are 
computed in the frequency domain by exciting the wall boundary of the aircraft 
configuration using all 10 structural modal displacements individually, each at 2 I 
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Fig. 8.3. Wing-store-fuel configuration (M= = 1.1 and 31 % fuel fill level): stability of the 
fluid ROM as a function of its dimension, and accuracy of the critical free-stream pressure 
predicted using the corresponding aeroelastic ROM 
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Fig. 8.4. Wing-store-fuel configuration (M= = 0.75 and 69% fuel fill level): stability of the 
fluid ROM as a function of its dimension, and accuracy of the critical free-stream pressure 
predicted using the corresponding aeroelastic ROM 

equispaced reduced frequencies in the interval [O, 0.04]: 10 of the computed solution 
snapshots - more specifically, those associated with the zero reduced frequency -
are real-valued, and all other 200 solution snapshots are complex-valued. In other 
words, the corresponding real-valued matrix W (8.12) has in this case 410 columns. 
These are compressed by the POD technique to construct a suite of ROBs and two 
associated suites of fluid RO Ms of dimension kt E {I,· · · , 400}. The first suite of 
fluid RO Ms is obtained by Galerkin projection of the descriptor form of the L Tl fluid 
subsystem on the computed suite ofROBs. The second one is computed by Galerkin 
projection of the non-descriptor form of the L TI fluid subsystem on the same suite of 
ROBs. Then, several instances of the coupled fluid-structure ROM (8.34) are con­
structed by coupling the modal structural ROM of dimension ks= 10 with each of 
the computed fluid ROMs. 
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Fig. 8.5. FIS/A configuration at M= = 0.99: steady-state surface pressure 

First, the stability of the constructed fluid RO Ms, and more specifically that of the 
constructed matrices H,., is assessed. The obtained results are reported in Fig. 8.6. 
Once again, all fluid RO Ms originating from the descriptor form of the L TI fluid 
subsystem are found to be stable, but more than half of those originating from its 
non-descriptor form are found to be unstable. 
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Fig. 8.6. Fl 8/A aeroelastic configuration at M= = 0.99: stability of the fluid ROM as a function 
of its dimension 

Next, the accuracy of each constructed aeroelastic ROM is assessed by examining 
the critical pressure it predicts. The obtained results are reported in Fig. 8.7. From 
this figure and Fig. 8.6, the reader can observe that every unstable fluid ROM leads to 
an erroneous prediction of the critical pressure by the corresponding coupled fluid-
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Fig. 8.7. FIS/A aeroelastic configuration at M= = 0.99: accuracy of the critical free-stream 
pressure predicted using the aeroelastic ROM 

structure ROM. Furthermore, none of the aeroelastic RO Ms originating from the 
non-descriptor form of the fluid L TI subsystem delivers an accurate prediction of 
the critical pressure. On the other hand, all aeroelastic ROMs originating from this 
descriptor form and of dimension kr ~ I 00 deliver critical pressure predictions that 
match their HOM counterparts. 

8.5 Conclusions 

In theory, the Galerkin projection method equipped with Proper Orthogonal Decom­
position (POD) modes does not guarantee the stability of the Reduced-Order Models 
(RO Ms) it is often used for constructing. In practice, it is reported in some forums to 
generate ROMs that are more frequently unstable than stable. Yet, the POD-based 
Galerkin projection method is among the most popular methods for the dimensional 
reduction ofLinear Time-Invariant (LTI) systems arising from linearized Computa­
tional Fluid Dynamics (CFD). 

In general, a L TI system can be written in either descriptor or non-descriptor form. 
The non-descriptor form is characterized by the identity matrix as the coefficient of 
the highest derivative term in the governing set of Ordinary Differential Equations 
(ODEs). On the other hand, the leading matrix coefficient of the descriptor form of 
the same LTI system is usually different from the identity. Therefore, transforming 
a descriptor form of a given L TI system into its non-descriptor form typically in­
volves pre-multiplying all matrix coefficients of the descriptor form by the inverse of 
its leading matrix coefficient. Because of the usual numerical issues associated with 
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computing the inverse of a matrix and/or the solution of potentially ill-conditioned 
systems of equation, such a transformation could be dismissed a priori as a "trou­
ble maker". Nevertheless, such a transformation is routinely performed - and for 
good reasons - in many computational engineering applications. These range from 
multibody dynamics [15, 17], to molecular dynamics [26], to CFD [2, 7, 16,20,23]. 
For example, the nonlinear semi-discrete equations of dynamic equilibrium govern­
ing a flow problem are often transformed from their descriptor form to their non­
descriptor form, in order to improve accuracy and accelerate convergence. Indeed, 
the leading matrix coefficient of the governing set of nonlinear OD Es governing a 
CFD problem is usually a diagonal matrix storing the volumes of the mesh cells 
when semi-discretization is performed using a finite volume method, or the volumes 
of the mesh elements when semi-discretization is performed using a finite element 
method. Hence, in this case, transforming the descriptor form of the governing set 
of nonlinear ODEs into its non-descriptor counterpart is a trivial task. It amounts 
to scaling each entry of the residual vector associated with these equations by the 
inverse of the corresponding volume of the mesh cell or element. Given that for 
external flow problems the cells or elements of the mesh are usually very small in 
the vicinity of the wall boundaries and very large near the far-field artificial bound­
aries, the non-descriptor form of the governing nonlinear CFD equations magnifies 
the residuals associated with the small mesh cells or elements. Therefore, the ap­
plication of a finite number of steps of an iterative procedure to the solution of the 
non-descriptor form of the governing nonlinear CFD equations delivers a higher ac­
curacy in the flow regions where the mesh cells or elements are the smallest - that 
is, in the flow regions that matter most - than the application of these same steps 
to the descriptor form of these equations. Furthermore, when local time-stepping is 
applied to the solution of a steady-state CFD problem, scaling the residual vector 
by the inverse of the volumes of the cells or elements of the mesh is often observed 
to accelerate convergence. For these reasons, many CFD codes effectively operate 
on the non-descriptor form of the Euler or Navier-Stokes equations. Therefore, it 
can be conjectured that at least for software legacy reasons, many linearized CFD 
codes or modules also operate on the non-descriptor forms of the linearized Euler 
and Navier-Stokes equations. Hence, when model order reduction is or will be im­
plemented in such codes, it is likely to be applied, whether inadvertently or purposely 
for the reasons outlined above, to the non-descriptor form of the governing ODEs. 
This conjecture is supported by references such as [2, 7, 16,20,23] and others. 

In this paper however, it was shown that whereas the snapshot solutions computed 
using either the descriptor or non-descriptor form of a CFD-based L TI system are 
identical, the RO Ms obtained by reducing both forms of this system using a Galerkin 
projection method are different. More importantly, using as background the field of 
linearized computational aeroelasticity, it was also shown numerically that in gen­
eral, the fluid ROMs constructed by applying the POD-based Galerkin projection 
method to the non-descriptor form of a CFD-based LTI subsystem of interest are 
more often unstable then stable. It was also shown that the stability of these ROMs is 
very sensitive to their dimension. This is consistent with the observations frequently 
reported in various forums about the inconsistent behavior of POD as far as stability 
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is concerned. On the other hand, it was also shown numerically that for the same 
aeroelastic problems, the fluid RO Ms constructed by applying the same POD-based 
Galerkin projection method to the descriptor form of the CFD-based L TI subsystem 
of interest are typically stable. Therefore, the findings reported in this paper sug­
gest that when the objective is to construct a CFD-based linear fluid ROM using 
the POD-based Galerkin projection method, reducing the non-descriptor form of the 
linearized Euler or Navier-Stokes equations tends to promote the instability of the 
outcome ROM, whereas reducing the descriptor form of these equations tends to pre­
vent it. Hence, a best practice in implementing the POD-based Galerkin projection 
method in a given CFD code for the purpose of constructing linear fluid ROMs is to 
apply this method to the descriptor form of the linearized Euler and Navier-Stokes 
equations, even when the nonlinear computational modules of this code operate on 
the non-descriptor form of these equations. 
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Model Order Reduction in Fluid Dynamics: 
Challenges and Perspectives 

Toni Lassila, Andrea Manzoni, Alfio Quarteroni and Gianluigi Rozza 

Abstract This chapter reviews techniques of model reduction of fluid dynamics sys­
tems. Fluid systems are known to be difficult to reduce efficiently due to several 
reasons. First of all, they exhibit strong nonlinearities - which are mainly related 
either to nonlinear convection terms and/or some geometric variability - that often 
cannot be treated by simple linearization. Additional difficulties arise when attempt­
ing model reduction of unsteady flows, especially when long-term transient behavior 
needs to be accurately predicted using reduced order models and more complex fea­
tures, such as turbulence or multiphysics phenomena, have to be taken into consider­
ation. We first discuss some general principles that apply to many parametric model 
order reduction problems, then we apply them on steady and unsteady viscous flows 
modelled by the incompressible Navier-Stokes equations. We address questions of 
inf-sup stability, certification through error estimation, computational issues and- in 
the unsteady case - long-time stability of the reduced model. Moreover, we provide 
an extensive list of literature references. 
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9.1 Introduction 

Numerical methods for Computational Fluid Dynamics (CFD) are by now essential 
in engineering applications dealing with flow simulation and control, such as the 
ones arising in aerodynamics, hydrodynamics and, more recently, in physiological 
flows. In despite of a constant increase in available computational power, numerical 
simulations of turbulent flows, multiscale and multiphysics phenomena, flows sep­
aration and/or bifurcation phenomena are still very demanding, possibly requiring 
millions or tens of millions of degrees of freedom and several days of CPU time 
on powerful parallel hardware architectures. This effort is even more substantial 
whenever we are interested in the repeated solution of the fluid equations for differ­
ent values of model parameters, such as in flow control or optimal design problems 
(many-query contexts), or in real time flow visualization and output evaluation. 

These problems represent a remarkable challenge to classical numerical approxi­
mations techniques, such as Finite Elements (FE), Finite Volumes or spectral meth­
ods. In fact, these methods require huge computational efforts (and also data/memory 
management) if we are interested to provide accurate response, thus making both 
real-time and many-query simulations unaffordable. For this reason, we need to rely 
on suitable Reduced-Order Models (ROMs) - that can reduce both the amount of 
CPU time and storage capacity - in order to enhance the computational efficiency 
in these contexts. 

This chapter reviews the current state-of-the art for the model reduction of pa­
rametrized fluid dynamics equations. In particular, we focus on the incompressible 
Navier-Stokes equations, because of their ubiquitous presence in fluid flow appli­
cations and the fact that they involve the most important features and challenges 
relevant to nonlinear model reduction. These equations are usually written in prim­
itive variables as follows: find the velocity field u : Q x [O, T) ---+ JRd and pressure 
field p: Q x (0, T) ---+JR such that 

du 1 
Tt + (u· V)u+ Vp- Rel'::.u = 0, 

V-u=O, 
u(x,O) = uo(x), 

in Q x (O,T) 

in.Q x (O,T) (9.1) 

where Q c JRd denotes the fluid domain, Re = lumaxlL/v is the nondimensional 
Reynolds number, L is a characteristic length, v is the fluid kinematic viscosity and 
lulmax = maxxED lul. In addition, suitable boundary conditions need to be prescribed 
in order to solve problem (9 .1 ), see e.g. [ 51, 80, 118]. 

The Navier-Stokes equations are the most accurate continuum-based approxi­
mation for viscous flows where both convective and diffusive effects contribute, 
and they are known to accurately reproduce many interesting physical phenomena 
observed in fluids, such as the onset of turbulence. Concerning the functional set­
ting required to frame the analysis of problem (9 .1 ), let us denote (HJ ( Q) )d c V c 
(H1(.Q))d and Q c L2(.Q). The solution of(9.1) is such that (u,p) E L2 (0, T; V) x 
cO(o, T;Q); see e.g. [102, 118] for the definition of Sobolev spaces and more details 
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about this functional setting. Moreover, let us introduce a further functional space 
W ~ V x Q, denote (-, ·)x the scalar product over a generic space X and 11 · llx its 
induced norm. When the subscript is omitted, ( ·, ·) denotes in the following the L 2-

scalar product and II· II the induced norm, respectively. 

In many applications, the fluid problem can depend in addition on a number of 
parameters. In this case we deal with a parametric model reduction problem. We 
denote µ E f!lJ c ]RP a vector of P parameters of interest for a given fluid dynamics 
problem, as in the case of the Reynolds number appearing in (9 .1 ). Other typical 
examples deal with different physical parametrizations (e.g. by considering Grashof 
number, Prandtl number, inflow velocity peaks, etc. as parameters) or geometrical 
parametrization, i.e. when the fluid domain Q = Q (µ) depends on a set of parame­
ters allowing to describe/modify its shape. For the sake of simplicity, in this chapter 
we will focus on physical parameters, whereas several details about flexible but ef­
ficient geometrical parametrizations can be found e.g. in [87]. 

Model reduction of the Navier-Stokes equations is a challenging task because 
their solutions tend to exhibit complex phenomena at multiple temporal and spatial 
scales, which means they are difficult to reduce to low-dimensional models without 
losing at least some of the scales. In the case of unsteady flows, application of the 
standard "method oflines" to the time-discretization of the unsteady Navier-Stokes 
equations leads in three dimensions to the lack of sharp long-time stability estimates. 
It is well known [68] that application of the discrete Gronwall lemma leads to exces­
sive growth of error bounds in time, because standard linear stability analysis of the 
unsteady Navier-Stokes equations results in stability constants that can be of the or­
der Cs '""exp(Re T). While turbulence has sometimes been offered as an explanation 
to this difficulty, the underlying situation is more delicate. The same type of prob­
lem is exhibited by the one-dimensional Burgers' equation, which does not possess 
turbulent solutions. This also makes hard to provide meaningful error bounds for the 
solutions ofROMs for the unsteady Navier-Stokes equations. 

During the last three decades, several efforts in theoretical foundations, numeri­
cal investigations and methodological improvements have made possible to develop 
general ideas in reduced order modelling and to tackle several problems arising in 
fluid dynamics. Among a number of early contributions, we want to highlight the 
most important- in our opinion - that date back to the late 1980s (see e.g. [39, 98, 
114 ]). These were mainly based on ad hoc selection of the basis functions, with­
out the benefit of a formal algorithm. Indeed, model reduction has come into play 
as a truly invaluable tool in CFD applications only once systematic strategies for 
constructing quasi-optimal bases were made available. 

For the sake of exposition, we limit ourselves to describe two main algorithms for 
choosing the basis on which to build RO Ms, namely the Proper Orthogonal Decom­
position (POD) and the (greedy) Reduced basis (RB) methods. They share several 
features but have been historically introduced and developed to address different 
types of problems - POD is typically applied to build bases for time-dependent prob­
lems, while the greedy RB method is usually applied to build bases for parameter-
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dependent problems. Moreover, we provide detailed remarks and references about 
extensions of these techniques and alternative strategies. We do not address in this 
review the case of combined time and parameter-dependent problems; the interested 
reader can refer to some recent works concerning error estimates for ROMs in the 
case of acoustic Helmholtz and incompressible Navier-Stokes equations [63], the 
Boussinesq equations [70], and the viscous Burgers' equation using the method of 
lines [93] or in the space-time formulation [131]. 

9.1.1 Proper Orthogonal Decomposition 

POD is the leading model reduction tool for the unsteady Navier-Stokes equations. 
It was first introduced in [83] in the context of fluid dynamics as a method for dis­
cerning and analyzing coherent structures in experimental turbulent flows, and more 
recently in direct numerical simulations of turbulent flows in [53, 126], where also 
the concept of space-time windowing of POD has been introduced, to identify tur­
bulent effects in transitional flow that are highly localized both in space and time. 

POD techniques reduce the dimensionality of a system by transforming the orig­
inal unknowns onto a new set of Nr variables (called POD modes, or principal com­
ponents) such that the first few modes retain most of the energy present in all of the 
original unknowns. This allows to obtain a reduced, modal representation through a 
spectral decomposition which requires basic matrix computations (a singular value 
decomposition) also for nonlinear equations. For a deeper review on POD we recall 
here also the contribution of Bergman et al. and Grinberg et al. in this volume. 

For the reader's convenience, we recall briefly the POD based on the method of 
snapshots, as presented in [114]. An approximation ur(x, t) to the solution u(x,t) of 
(9.1) is sought as the sum ofa base flow u and a linear combination of some spatial 
modes P;(x) through a set of temporal coefficients, as follows: 

N, 

u(x,t) ~ Ur(x,t) := u(x) + L,a;(t)o/;(x), 
i=l 

(9.2) 

for a suitable Nr ~ 1, where u(x) := Il u(x, r) dr is the time-averaged base flow. 
This ansatz is reasonable assuming that the flow field can be approximated by a 
stochastic process that is stationary in time and ergodic [60]. In Sect. 9.4.3 we will 
discuss some extensions in situations where such assumptions do not hold. 

The spatial modes are assumed to satisfy the orthogonality relation ('¥;, ~) = 0 
if i-/=- j, for (-, ·) denoting a convenient scalar product, whereas the coefficients a;(t) 
satisfy the following system ofODEs 

da;(t) Nr Nr Nr 

~ = F; + 1~A;1a1(t) + k6 C;1ka1(t)ak(t), t ~ 0 (9.3) 

a;(O) = ('¥;, uo), 

for i = 1, ... ,Nr, where the functional forms of the reduced system coefficient tensors 
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R ·= _ _!_!Vo/; VU\- lo/; (u· V)U\ 
1 • Re\ 1, u; \ 1, u; 

- ;;\ 1 (9.4) 
Aii := -(P;, (u · V)~) - (P;, (~ · V)u1 - Re (VP;, V~) 

CiJk := -(P;, (~ · V)lfk) 

are obtained by Galerkin projection of the original system (9.1) on the spatial modes 
lf'i, ... , 'PN, in (9.2). The resulting ROM is referred to as a Galerkin ROM. 

We point out that the pressure terms do not appear in these equations, and our 
space is defined as X = V. In fact, by construction the POD modes {lf1}!1 are 
discretely divergence-free. However, for some flows we could be interested either 
in evaluating the pressure field through the ROM, or to explicitly enforce the diver­
gence-free constraint in the ROM; we will go back to this point in Sect. 9.3.1. 

From the structure of (9.2) we note immediately that trajectories of the reduced 
solution Ur live in an Nr-dimensional submanifold of the full space. Thus the ac­
curacy of the ROM is implicitly dependent on the assumption that the trajectories 
of the full-order system (9.1) can reasonably be approximated on a much lower­
dimensional submanifold. As we will see in the following sections, these two in­
gredients, namely (i) the expression of the approximate solution in a reduced-order 
model as a linear combination of properly selected snapshots and (ii) a projection 
onto the subspace spanned by the snapshot solutions in order to find the weights in 
the linear combination, are peculiar also to the (greedy) reduced basis methods. 

We now focus on computation of the spatial modes {lf1}!1. We start from a 
set of snapshot solutions Un(x) := u(x,tn) ofthe trajectory u(x,t) at some selected 
times tn, for n = 1, ... , Ns. These solutions can be either obtained through accurate 
numerical simulations of the discretized N avier-Stokes equations (9 .1 ), or by exper­
imental measurements of the physical system. In the former case, a POD approach is 
premised upon a "truth approximation" spaceXh c X of (typically very large) dimen­
sion, for which the snapshot solutions Un(x) := uh(x,tn) of the (truth approximation 
of the) trajectory uh(x,t) at some selected times tn, for n = 1, ... ,N8 • Nonetheless, 
we omit the subscript h wherever possible. The snapshots are typically equispaced 
in time along the entire period T and obtained after discarding the initial transient of 
the flow until a stable regime is reached and the flow can be modelled as a stochastic 
process that is stationary in time1. 

The POD spaceX~?D := span{P; : i = 1, ... ,Nr} of dimension 1 ~ Nr ~ N8 , for a 
suitable N8 , is defined as the subspace which minimizes the least-squares discrepancy 
between the snapshots {Ui(x)}!1 and their best approximation in theX-norm: 

1 In practice, N, POD modes are required to resolve the first N, /2 temporal harmonics, and these 
can be computed from Ns = 2N, snapshots [96]. 
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where IIxNr denotes the (L2 ( Q) )d projection onto the subspace XNs; for incompress­
ible fluid problems this means that the POD basis is the best approximation basis in 
the sense of capturing the kinetic energy contained in the snapshots. 

From a practical point of view, we form the correlation matrix C E JRNs xNs, whose 
components are 

1 
Cnm := T Q [Un(x)- U(x)] · [Um(x)- U(x)] dx, (9.6) 

where U(x) := ~ I.~=l Un(x) is the ensemble average that approximates the base 
flow u. Then, we compute the eigenpairs (.Ak, lJf k), k = 1, ... ,Ns (with positive eigen­
values ordered by decreasing size) of C. The central result of POD states that the 
optimal subspace X~?D of dimension Nr satisfying (9 .5) is such that 

Ns 

'11 = lf1/lllf111w, tJ1 = L l/fi,n(Vn(x)- U(x)), (9.7) 
n=l 

being l/fin = (lJfJn then-th component of the i-th eigenvector. In this way, the basis 
functions {P;} ~1 are L2-orthonormal2 . 

The POD can equally be applied to the reduction of parametric fluid flow prob­
lems (see e.g. the parametric studies in [33] for rotating transitional flow, in [54] for 
modeling the airflow in a large public building, and in [67] for the analysis of turbu­
lent plane channel flow). In fact, ifthe system (9.1) depends in addition on a vector 
µ E f!lJ c JRP of P parameters of interest, we can follow the same procedure, except 
that the snapshots are now sampled also in the parameter space. It should be noted, 
however, that even if the POD procedure is the same in both the time interval and 
the parameter space, the practical results will differ considerably, due to the causal 
nature of time as opposed to other types of physical parameters. 

So far we have not mentioned the treatment ofboundary conditions that need to be 
imposed on (9 .1 ). In the case of homogeneous boundary conditions, the snapshots as 
well as their linear combinations will naturally satisfy the same boundary conditions 
so that nothing special needs to be done. If we have non-homogeneous Dirichlet 
boundary conditions, the linear combinations of snapshots will not in general satisfy 
them, and neither will the ROM solution. To remedy this problem we can either sub­
tract the non-homogeneous boundary values from the snapshots before constructing 
the POD basis, or add an additional constraint equation to the ROM that enforces the 
boundary condition. These two methods can also be applied to parameter-dependent 
problems with multiple parameters in the boundary data. For a comparison of the 
two approaches we refer to [54], where both methods were found to produce similar 
results. 

2 For numerical stability reasons the POD eigenvalues are usually not computed from the correlation 
matrix itself, but rather as the squares of the singular values of the snapshot matrix obtained by 
collecting all the snapshots as column vectors. 
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More difficulties arise when the non-homogeneous boundary conditions depend 
on time. This is a very typical case when POD-based ROMs are used for boundary 
control applications on unsteady flows. In [112] the time-dependent velocity bound­
ary condition was handled by augmenting the Galerkin system (9.3) with a penalty 
term, so that (9.3) can be written as 

da (t) Nr Nr Nr [ . Nr l + = F; + i~ Ai1a1(t) + i~ ~ CiJka1(t)ak(t) + r Ufn(t) - ti ~1a1(t) ' 

ai(O) = ('!1, uo), 
(9.8) 

where the boundary tensors are uin and Mare defined as 

~in(t) := 'f1(x) · Uin(x) ds, ~J := 'f1(x) · IJ-}(x) ds (9.9) 
fin fin 

with the assumption that the time-averaged base flow is zero on the inflow section Iin, 
i.e. iifon = 0. The penalty term r > 0 was chosen such that the correct asymptotically 
stable solution was obtained. This can be understood as a weak imposition of the 
Dirichlet condition that approaches strong imposition as r ---+ oo. 

9.1.2 Reduced Basis Construction by Greedy Algorithms 

A popular strategy for constructing RO Ms in the case of parameter-dependent prob­
lems is that ofusing greedy algorithms, based on the idea of selecting at each step the 
locally optimal element. This option can be seen as an alternative to POD strategy of 
previous section, yet preferable in the context of parametrized problems for reasons 
that will be sketched later on. 

Before describing the greedy algorithm, let us formulate a steady version of prob­
lem (9.1), depending on a set of parameters µ E 9 c JRP, in a convenient way 
also for the following. Here we introduce the weak form, which was not the case in 
Sec. 9.1.1 to go from (9.2) to (9.3). The weak form of parametrized steady Navier­
Stokes equations reads as follows: find (u,p) = (u(µ),p(µ)) EV x Q such that 

{ 
a(u,~;µ) ~b(p,.w;µ) +c(u,u, w;µ) = F(w;µ), 

b(q, u,µ) - G(q,µ), 

'Vw EV 

'Vq E Q, 

where the parametrized bilinear and trilinear forms are defined as follows: 

(9.10) 

dV dW dW· 
a(v,w;µ) = -=i-ViJ(·;µ)-=>dQ, b(q,w;µ) = - qXiJ(·;µ)--=.-1-dQ, 

Q OXi OXj Q OXi 
(9.11) 

dWm 
c(v, w,z;µ) = ViXJi(·;µ)-=;--zm dQ. 

Q OXj 
(9.12) 

In what follows, we consider the more general case including the pressure field, 
so that X = V x Q. Here µ may denote both physical and geometrical parameters, 
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whose action on the problem is encoded by parametrized tensors v( ·; µ ), x( ·;µ).We 
point out that tensors components might depend a priori on both parameter compo­
nents and spatial coordinates; see e.g. [87, 100, 109] for their complete derivation. 
Furthermore, F ( ·; µ) and G( ·; µ) are linear forms accounting for non-homogeneous 
boundary data and source terms. Until stated otherwise, summation over repeated 
indices is understood. 

The goal of the Reduced Basis (RB) method is to compute a low-dimensional 
approximation (Ur(µ), Pr(µ)) of the solution to problem (9 .10) by seeking a linear 
combination of well-chosen solutions3 (lf1,Si) = (u(µ;),p(µ;)) of problem (9.10), 
corresponding to specific choices of the parameter values: 

N, N, 

Ur(x;µ) := ~:,Ui(µ)P;(x), Pr(x;µ) := LPi(µ)si(x), (9.13) 
i=l i=l 

where the coefficients u; (µ), p; (µ) are computed by solving the following nonlinear 
algebraic system: 

with i = 1, ... ,Nr. Reduced spaces for pressure and velocity fields (denoted respec­
tively e}l and VjJ!3) have the same dimension in the case of physical parametriza­
tions, whereas geometrical parametrizations require modifying the velocity space 
in order to manage the divergence-free constraint; see Sect. 9 .3 .1. As in the case of 
problem (9 .1 ), the functional forms appearing in (9 .14) are obtained by Galerkin pro­
jection of the original problem (9.10) onto the RB spaceX~ = VJJ!3 x e}l, spanned 
by the solutions (P;,s;), so that, for 1:::; i,j,k :::;Nr, 

A;1(µ) := a(P;, 'I'j;µ), BkJ(µ) = b(Sk, 'I'j;µ), 
F;(µ) :=F(P;;µ), Gz = G(sz;µ), 

C;Jk(µ) = c(P;, 'I'j, 'I'Jc;µ) 

(9.15) 
resulting again in a Galerkin ROM. In the parametrized setting the goal is to approx­
imate uniformly well all the elements of the parametric manifold of solutions 

M(µ) = {U(µ) := (u(µ),p(µ)) EX, µ E 9} 

using finite dimensional subspaces X~ generated from elements of M(µ). 
From a practical point of view, this approach is premised upon a classical Finite 

Element (FE) method "truth approximation" space Xh c X of (typically very large) 
dimension. The RB method thus consists in a low-order approximation of the "truth" 

3 Gram-Schmidt orthonormalization is required in order to ensure the algebraic stability of the 
reduced basis approximation. Furthermore, in case of parameter-dependent geometries, the velocity 
space has to be enriched, as detailed in Sect. 9 .3. 
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manifoldMh = {Uh(µ): = (uh(µ),ph(µ)) E Xh : µ E ~}.Nonetheless, weomitthe 
subscript h wherever possible. 

Next we address the construction of these subspaces. The so-called greedy algo­
rithm, first proposed in [125] , provides a quasi-optimal procedure for sampling the 
parameter space 9 - and so the manifold M(µ). 

Thus, we seek a set of snapshot functions {U (µ 1) , U (µ 2) , ... , U (µNr )} such that 
each U(µ) E M(µ) is well approximated by the elements of the subspace XNr = 
span{U(µ n), 1 ::; n::; Nr }, according to the following algorithm: 

S1 - {µ 1}; compute (µ 1);Xf1B - pan{U (µ 1)}; 

for n = 2: ,. 
compute U(µ 11 ) = argmaxwEM(µ ) llW - n.r,,_ 1 Wllx: 
set S,, = Sn-I U {µ" }: 
set X,~8 = X/;!1 U span{U(µ 11 )}; 

if maxweM(µ ) llW - nx.(lllWllx ~ '1~1 
set ,. = n- I; 

end: 
end. 

where llx,, is the orthogonal projection w.r.t. the scalar product induced by 11 · llx onto 
X /;13 . Thus, at each step n = 1, ... ,Nr, V(µ n) is the worst case element, which max­
imizes the error in approximating the subspace M(µ) using the elements of X /;13 . 
However, this procedure (sometimes called strong greedy algorithm) is computa­
tionally infeasible: finding the maximum of the error of best approximation II W -
llx,. Wllx inx:s would require a suitable maximization algorithm, which would also 
involve a large number of solutions of the full-order system (9.10). In a more feasi­
ble variant of this algorithm - sometimes called weak greedy algorithm - we replace 
the max over W E M(µ) with a max over a very fine sample E 1rain c ~ of cardinal­
ity IE irain l = n1ra111 , and the true error ll W - llx,, Wllx with a suitable error estimate 
.1,, (µ ), satisfying 

'VW EM(µ) (9.16) 

for some constants C.1 > c.1 > 0. In this way, U(µ 11 ) = argmaxwEM(µ) .111 (µ) can 
be computed more effectively, under the assumption that the surrogate error .111 (µ) 
is cheap to evaluate. In Sect. 9.3.2 we recall some a posteriori error estimates for 
reduced basis approximations for steady Navier-Stokes equations, and refer to [ 101] 
for their practical numerical implementation. 

We point out that greedy-RB sampling methods are similar in objective to, but 
substantially different in approach from, the POD methods, which are more expen­
sive from a computational standpoint. In fact, in the former we only need to com­
pute the Nr retained snapshots (or winning candidates), which are typically very few. 
Only the error estimate has to be evaluated over the whole train set E1ram , which is 
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very large - this is the reason why we require that the surrogate error must be cheap 
to evaluate. Instead, in the latter we must compute all the Ns candidate snapshots as 
well as compute the SYD of a large matrix. 

We conclude this section by mentioning also some additional techniques quite 
close to POD for generating efficiently reduced spaces, the Centroidal Voronoi 
Tessellation (CVT) [25, 26, 46] and the Proper Generalized Decomposition (PGD) 
method [92], which has been recently applied to the solution of Navier-Stokes 
equations [ 4 7, 117]. Recent contributions are also contained in this book, see the 
chapter by Farhat and Amsallem dealing both with POD and Galerkin projection, 
and by Urban et al. A comparison on reduced representation approximations is 
provided instead by Bebendorf et al. in this volume. 

The rest of the chapter is structured as follows: In Sect. 9.2 we lay out some 
general guidelines that should be considered before attempting to build a ROM for 
any specific fluid problem. In Sect. 9.3 we address some issues related to approxi­
mation stability and error estimation which occur in the reduced basis approxima­
tion of steady-state solutions of parametrized Navier-Stokes equations. Moreover, 
in Sect. 9.4 we discuss specific issues related to the POD/Galerkin -based ROMs, 
such as the need for stabilizing the ROM, and how to ensure that the proper long­
term behavior is recovered by the ROM. Some final remarks and a quick glance on 
current developments in the field are given in Sect. 9.5. 

9.2 Some Principles of Model Reduction of Fluid Systems 

In this section we try to condense some fundamental principles to take into account 
when building RO Ms that are known to most practitioners in the reduced-order mod­
elling community but not always clearly communicated or established in literature. 
They are based both on our personal experience as well as on the general impres­
sion conveyed by state-of-the art literature on this subject. We have included mo­
tivating examples and several references to literature. Moreover, together with the 
description of these fundamental principles, we also sketch the basic ingredients of 
reduced-order models for the computational reduction of PD Es. 

9.2.1 "Never try to reduce the irreducible" 

Once a full-order computational model for the fluid dynamics problem has been con­
structed, e.g. by means of finite elements or finite volumes discretizations, we may 
begin the process of constructing a suitable reduced-order model (ROM). The first 
step is to verify the assumption that the trajectories of the system live on a low­
dimensional submanifold of the full space. From a practical point of view such a 
check is straightforward: it is sufficient to compute several trajectories of the full­
order dynamical system, to collect snapshots into one matrix, and to perform a POD 
by using the singular value decomposition of this matrix. If the decay of the sin-
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gular values is sufficiently rapid, then a limited number of modes will potentially 
suffice to represent the solution trajectories and an attempt at building a ROM can 
be performed. 

It is ea y to con truct example where slow decay or even no decay of the singular 
value of empirical snapshot i obtained. Consider for in tance the one-dimensional 
linear transport equation 

d1u(x ,1) + cdxu(x,1) = 0, (x,1) E IR. x (0, T) 

u(x,O) - uo(x) , x ER 
(9.17) 

with olulion u(x, t) = uo(x - cl). Take s snapshots of this solution at Lime t = 

0,Lll , 2.11 , ... , ( .1 - 2).dt. T. Assume that 110 E L2(JR) and localized so that the measure 
of it support A.( pt(uo)) < lclLlt /2. Thus. it follows that 

uAs J uk(s J ds = uo(s - c;.a1) uo(s - ckilt) ds = lluoll1,i<IRJ 01k (9.18) 
JR Ill 

o that the correlation matrix of the snap hots (9.6) is diagonal with all eigenvalue 
equal. The ingular values of the snap hot matrix do not decay at all. so that snapshot­
based POD is not successful at representing traveling waves. 

Using the empirical singular values to measure the feasibility of model reduction 
can also be theoretically justified. As already mentioned, the subset where solutions 
of the dynamical system live has typically the structure of a compact manifold M(µ) 
belonging to some larger function space X. To quantify how well such a manifold 
can be approximated by Galerkin projection onto a low-dimensional subspace, one 
can rely on the concept ofKolmogorov n-width, defined as 

dn(M;X) := inf sup _inf llu-iillx 
X,,cx uEM uEX11 

(9.19) 

where the first infimum is taken over all linear subspaces Xn c X of dimension n. 
The decay of dn ---+ 0 as n ---+ oo can then be used as a measure of how many (POD or 
greedy-RB) modes need to be considered for the ROM (9.2) - the faster the decay, 
the smaller need to be the dimension of the linear subspace. 

In the case that one is able to obtain exponential convergence in the n-width, that 
is to say dn(M;X):::; Cexp(-an/3) for some constants C, a, f3 > 0, exponential con­
vergence is also inherited (albeit at a reduced rate) by reduced-order approximations, 
and the same equivalence holds also for algebraic convergence rates, as was recently 
proved in [ 18]. Results regarding the connection between n-width decay rates and 
greedy algorithm converges rates can be found in [ 18, 22] for parametric problems, 
in [55] for time-dependent problems, and results regarding then-width decay rates 
for parameter-dependent elliptic PDEs in [77, 86]. We stress that such results rely 
on a suitable sampling algorithm (such as the greedy algorithm, that selects proper 
time instances tn or parameter points µn) where to compute the snapshots Un(-,tn) 
(respectively Un(·, µn)) according to a reliable estimate of the error between the 
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ROM and the full-order model. This is in order to actually find a (quasi-)optimal 
approximation space. We will revisit this point in Sect. 9.2.2. 

Exponentially fast convergence of numerical approximations is often linked to 
spectral approximations of smooth (analytic) functions. In the case of elliptic coer­
cive PDEs with random coefficients it was shown (see e.g. [10], Lemma 3.2) that 
if an elliptic and uniformly coercive parametric bilinear form a : X x X x f!lJ ---> JR 
(consider for instance the scalar equivalent of the one defined in (9.11)) is such that 

a(w, w;µ) ~ Vminllwlll for all w EX,µ E f!lJ C JR 

and its dependence on µ is analytic, then also the solutions u(µ) of 

a(u(µ), w;µ) = f(w) for all w EX 

(9.20) 

(9.21) 

for any f EX' are analytic functions ofµ, provided that the parameter range f!lJ = 

[µmin, µmaxl is bounded. The analyticity is then sufficient to prove exponential con­
vergence of certain approximations to the solutions by expanding the solution as a 
power series. For example, when an approximation uh,p is obtained by using the FE 
method in space (with mesh size h) and the spectral collocation method in parameter 
(with polynomial order p), an exponential convergence result was obtained in [10] 
(Theorem 4.1): for anyµ E ~ 

1 ( 1 )1/2 
llu(µ)-uh,p(µ)llL2(Y')®X:::; ~ inf I '1JJI vlV(u(µ)-w)l 2 

P y Vmin wEL~(Y')®X <:r Y'x!l 

+ c exp (-p log [I~ I ( 1 + I ~r) l ) , 
(9.22) 

where the (sub)exponential convergence rate in p depends on the distance 'T > 0 
between f!lJ and the nearest singularity in the complex (parameter) plane. Unfortu­
nately, theoretical results that give estimates on the regularity ofNavier-Stokes solu­
tion with respect to parameters acting on boundary terms, external forces, or initial 
data require stringent assumptions of small data and small Reynolds number that 
are not usually fulfilled by realistic flows. Nevertheless, exponential convergence of 
ROM approximation is often recovered also in nonlinear fluid problems. 

9.2.2 "/fit is not in the snapshots, it is not in the ROM" 

We now tum to the question of how to choose the dimension Nr of the reduced space, 
so that we can take advantage of a substantial computational reduction but dealing 
with a reliable reduced-order model. In the case of the greedy-RB algorithm, reliable 
error estimates L1n (µ) satisfying (9 .16) can be used to assess the quality of the ROM, 
so that the sampling procedure stops when the error between the full-order model and 
the ROM is (estimated) lower than a give threshold, say 1 o-m with m ~ 2, uniformly 
over the parameter space. 

In the POD case, we can rely on the Relative Information Content (RIC) of the 
POD basis, which is defined as the ratio between the sum of the retained POD modes 
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vs. the sum of the whole set of eigenvalues of the correlation matrix: 

RIC ·= I!1~ 
. Ns . 

2.;=1~ 
(9.23) 

The RIC is usually chosen up to 100(1- a)% by retaining a limited number of the 
most energetic POD modes, being, say a E [10-m, 10-1] for a suitable m > 1. Flow 
features that are not sufficiently energetic will be omitted in the POD and thus cannot 
be captured by the ROM. A possible way to check which features to retain is to use 
a spatially weighted L2-norm in the computation of the POD that gives more weight 
to features located at particular sites of interest. 

Individual snapshots in the ensemble can be weighted accordingly to their im­
portance, as proposed in [33]. In a series of papers (see e.g. [31,36,37]) Navon et al 
proposed a dual-weighted POD method, where the weights assigned to each snap­
shot were derived from an adjoint related to the optimality system of a variational 
data assimilation problem in meteorology. It is also known that for compressible 
flows the choice of inner product and weighting of the different flow variables (ve­
locity, pressure, speed of sound) in the snapshot matrix can have a large effect on 
the stability and accuracy of the ROM [14, 35]. Similarly, the H 1 inner product was 
recommended for the computation of POD modes for compressible Navier-Stokes 
equations in [66] for the purpose of enhancing stability. 

On the other hand, in the case of parametrized problems, the approximation prop­
erties of the basis depend on the parameter points µk where the snapshots are com­
puted. It is known that, in general, a POD basis computed at a single parameter 
point is not a good approximation for solutions computed at different parameter 
points. This is another reason, in addition to computational efficiency pointed out 
in Sect. 9.1.2, why a greedy algorithm should be chosen in order to manage with a 
careful sampling of a parameter space. In summary, two typical improvements to 
the POD sampling process are adopted: 

1. Adaptivity. In this case an initial POD basis is constructed and the resulting ROM 
used for simulations, but is later updated based on some problem-dependent cri­
teria. This is a typical approach in ROM-based optimization and optimal control 
applications, such as those presented in [17, 103], where the snapshots and the 
POD are updated after every optimization step to improve the accuracy of the 
ROM near the optimal point. The price to be paid is that the cost of the opti­
mization loop will increase due to the need of additional full-order simulations to 
update the ROM. The idea of a trust-region POD method was presented in [49]. 
In this case, the POD version of the optimality system is solved at each iteration 
within a trust-region radius Ll (k) to obtain a quasi-optimal c(k+l) set of controls. 
Then the full-order Navier-Stokes equations are solved with the quasi-optimal 
controls to obtain u( c(k+ 1). The discrepancy between the ROM prediction and 
the full-order solution is then measured, and if its too large the step is rejected and 
the trust region radius decreased, Ll (k+I) < Ll (k). Otherwise, the step is accepted 
and the trust region possibly increased, Ll (k+I) 2: Ll (k). The ROM is updated after 
each iteration step to incorporate the newly computed snapshots. 
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2. Optimality (or near-optimality). A priori error estimates for POD approximations 
were introduced in [72] and can be used to gauge the total number of POD modes 
to retain to achieve a given representation accuracy at one single parameter point. 
In this case, snapshots are typically chosen iteratively by measuring the error of 
the current ROM at different trial points of the parameter space, then computing 
snapshots at the parameter point where the maximum error (estimate) is obtained 
and adding them to the ROM, like in the greedy-RB algorithm, first proposed 
in [52], and now standard in the parametric model reduction community. For 
sampling in time POD-greedy strategies have been proposed for linear evolution 
equations in [ 56], the viscous nonlinear Burgers' equation in [93], and the N avier­
Stokes equations in [127]. 
In [73] the authors derived sensitivity equations to measure the effect of adding 
new snapshots in the POD basis and use them to find optimal locations for new 
snapshots that minimize the error between the POD-solution and the trajectory 
of the full-order system. This can avoid the expensive computation of full-order 
trial solutions typically needed in a POD-greedy approach. Furthermore, in [24] 
the POD procedure was extended to incorporate goal-oriented quantities related 
to specific outputs of interest over the entire range of parameters. 

9.2.3 "Exploit the known structure of the solutions" 

Both POD and greedy-RB strategies use a set of full-order solutions to build a global 
basis for the approximation of the solution of a PDE problem for any given time 
t E (O,T) or parameter valueµ E 9. It is important to understand that the basis 
functions of a ROM do not really tell us much about the dynamical structure of a 
time-dependent problem. In the case of parameter-dependent problems, a parameter 
value µ different from the snapshots µ 1, ... , µNr may result in a flow regime that 
is qualitatively very different (for instance when the flow is parametrized with re­
spect to the Reynolds number) than those exhibited at the snapshot parameters. Also 
parametrized geometrical features can greatly affect the qualitative behavior of the 
solutions. Thus, in order to make the ROM capable to represent the physics of the 
full model correctly, we need to let the equations play a role also at the evaluation 
level, for any new problem instance to solve. This is the reason why, in equations 
(9 .3) or (9 .14 ), we follow a projection approach, rather than an interpolation-based 
strategy. This makes more reliable also the evaluation of outputs derived from the 
solution, such as energy, stresses, vorticity, etc. 

We still have to explain how to pursue a strong computational reduction when 
solving the problem obtained by plugging the reduced solution into the equations. 
Thus, we need to equip ROMs of previous sections with an efficient implementation 
aiming at decoupling the generation and projection stages. Let us focus, for the sake 
of clarity, on the case of parametrized problems. In particular, two ingredients need 
to come into play, in order to obtain the so-called Ojfline!Online splitting: 

1. Affine parameter dependence. In order to speed up the evaluation of a reduced 
approximation when the differential operators depend on some parameters, the 
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key point is to isolate the contribute of parametrized quantities in the differential 
operators, so that expensive parameter-independent structures can be computed 
Ojfline and stored once, whereas inexpensive parameter-dependent quantities can 
be efficiently evaluated Online for each new value of the parameters. 

To make the Online evaluation step efficient, we need to take the parametrized 
quantities out of the integrals appearing in (9.11)-(9.12). The usual assumption 
required in the reduced-basis methods is the so-called affine parameter depen­
dence, i.e. we require that parametrized forms (9.11)-(9.12) can be expressed as 
linear combinations of parameter-independent operators: 

gi Qb 

a(v,w;µ) =I, eg(µ)dl(v,w), b(q,w;µ) =I, ef(µ)bq(q,w); (9.24) 
q=l q=l 

QC 
c(v,w,z;µ) =I, eg(µ)cq(v,w,z) (9.25) 

q=l 

for some integers q1, ft, Qc, where q is a condensed index of i,j quantities. This 
is straightforward when dealing with common physical parametrizations (e.g. by 
considering Reynolds number, Grashofnumber, Prandtl number, inflow velocity 
peaks, etc. as parameters [42,44]) or simple affine geometrical parametrization­
in all these cases, parametrized tensors entering in (9.11)-(9.12) depend only on 
parameterµ. Instead, when parametrized tensors depend also on x, affinity as­
sumptions (9.24)-(9.25) can only be recovered by suitable approximations, such 
as the ones based on the so-called Empirical Interpolation Method (EIM); see 
e.g. [15, 85]. 

2. Reduced matrix structures. Once the parameters have been taken out of the op­
erators by requiring the affine parameter dependence (9.24)-(9.25), the reduced 
operators (9.15) can be expressed (e.g. for the diffusion term) as 

l;J1 Qa 

Ai1(µ) = a(P;, Pj;µ) =I, eg(µ)dl(P;, IJ'i) =I, eg(µ)Aji" 
q=l q=l 

In order to make the Online evaluation independent of the dimension of the full­
order space, structures Aq and Cq corresponding to parameter-independent oper­
ators must be constructed properly and stored during the Ojfline stage. 

We remark that the basis functions are given by full-order approximations of 
(9.10) for selected values of the parameters, under the form 

N" NP 
P;(x) = L IJ';m</>~(x), ~i(x) = L ~t<f>f:.(x), 

m=l m=l 

where {<f>~(x)}~ 1 , {</>f:.(x)}~: 1 are two bases of the full-order (velocity, resp. 
pressure) approximation spaces, of dimension Nll, NP, respectively. Thus, the 
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assembling of reduced-order algebraic structures (9.15) can be efficiently per­
formed by combining the matrices collecting the basis functions, given by 

and the full-order algebraic structures. It is straightforward to check that, e.g., 

N" N" 

dl(P;, 'I'j) = I I 'I'zmdl(<t>::Z,<t>::)lf'/, i.e. 
m=ln=l 

where A'tin(µ) = dl(<f>::.,<t>::) is the full-order stiffness matrix corresponding to 
the bilinear form di ( ·, ·). The same procedure can be applied to pressure and 
nonlinear terms as well; see e.g. [87, 100] for a detailed explanation. 

Both these ingredients, together with the snapshot selection procedures and (wher­
ever available) rigorous error estimates allow to successfully apply Galerkin ROMs 
to incompressible flows. However, some caveats should be mentioned. 

For instance, the evaluation of the trilinear convective term - given by 
CiJka1(t)ak(t) in (9.3) or CiJk(µ )u1(µ )uk(µ) in (9.14) - even in the reduced-order 
formulation requires evaluating tensorial terms ofrelatively large sizes. This is even 
more involved when the size Qc of the affine expansion (9.25) is large. For more 
general nonpolynomial nonlinearities of the form 

( f ( u(x) + ~ ai(t)P;(x)) 'u(x) + j~ a1(t)'I'j(x)) (9.26) 

deflating the nonlinear terms to their full-order representations may be necessary in 
order to evaluate the nonlinear terms, negating many advantages of using a ROM in 
the first place. In order to reduce the online cost of evaluating the nonlinear term( s ), 
several "hyper-reduction" techniques have been proposed, such as DEIM [30] (Dis­
crete Empirical Interpolation Method), DBPIM [12] (Discrete Best Points Interpo­
lation Method), MPE (Missing Point Estimation) [8] and GNAT [5] (Gauss-Newton 
with Approximated Tensor quantities). In general, most of these methods attempt to 
approximate the nonlinearity using linear combinations of the POD basis functions 

( 
Nr ) Nr 

f u(x) + ~ ai(t)P;(x) ~ fo u(x) + ~l(t) P;(x) (9.27) 

and differ mainly on the strategy of choosing the approximation coefficients .,f;(t). 
When the nonlinearity is treated using a Newton algorithm, a similar approximation 
can be applied to the Jacobian Jf, see e.g. [5, 30]. A contribution on discrete EIM 
(DEIM) is the chapter by Antil et al. in this book. 

9.2.4 "Divide and conquer whenever possible" 

The rationale behind the efficacy of the ROMs we have discussed so far is the regu­
larity of the parameter dependence in the case of parametrized problems like (9.10) 
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- respectively, time continuity in the case of time-dependent problems like (9 .1 ). In 
other words, solutions to these problems lie on a low-dimensional manifold, as al­
ready pointed out in Sect. 9.1.2. The more regular the manifold (and the parametric 
dependence), the more conveniently the solution can be approximated by a suitable 
combination of snapshots. 

However, even laminar flow can experience strong qualitative changes (bifurca­
tions) when critical parameters such as the Reynolds number is varied. For example, 
the flow behind a cylinder experiences first a transition from steady flow to a time­
periodic flow, then a loss of periodicity in the vortex shedding, and finally transition 
to a chaotic turbulent regime as the Reynolds number is gradually increased. In order 
to make sure that a ROM approximates correctly the fluid flow in some range of the 
parameter(s), we require that the parameter space (or the time interval) are chosen 
such that the manifold is locally a branch of nonsingular solutions. 

Although quite restrictive, this is a standard assumption also in the case of full­
order approximations, based e.g. on the FE method (see e.g. [21,27]). Nevertheless, 
bases constructed using the greedy algorithm provide reliable approximations also 
in the case ofbifurcation points included in the parameter space; for instance, ROMs 
have been used to track particular solution branches past the bifurcation point, see 
e.g. [97, 119]. In case of parametrized flows, in order to minimize the required num­
ber of basis functions, a good ROM should be tailored so that different flow regimes 
can be captured in a reliable way. Since POD-based RO Ms provide poor approxima­
tions away from the parameter values for which the snapshot solutions were com­
puted, it rarely makes sense to try and develop one global approximation basis for 
the entire parameter space. Many works have been focused in these last years on 
possible strategies to rectify this aspect. 

One possibility is to combine ROMs computed for different physical flow re­
gimes. In [3,4] the ROMs computed at different parameter points were interpolated 
to obtain a new ROM that was valid also in the intermediate zone between the origi­
nal parameter points. In [58, 59] the parametric sensitivities of the POD modes were 
computed and added to the snapshot set, which improved the validity of the reduced 
solutions away from the parametric snapshots. However, in a more involved geo­
metrical parametrization case the ROM failed completely, as it did not converge to 
the exact solution even when the number of POD modes was increased. 

A "compact POD" approach based on goal-oriented Petrov-Galerkin projection 
was proposed in [28], in order to minimize the approximation error subject to a 
chosen output criteria, also including sensitivity information (with proper weighting 
coming from the Taylor-expansion) and including "mollification" ofbasis functions 
far away from the snapshot parameter. A further option, described in [5], exploits a 
k-means clustering procedure to construct local RO Ms by grouping together nearby 
snapshots. In this way, once the snapshots have been computed, the reduced space 
is partitioned in subregions and a local reduced basis is assigned to each subregion. 
This can be seen as an adaptive version of a former strategy based on the so-called 
Centroidal Voronoi Tessellation, introduced in [46] and extended in [25,26]. 
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Finally, we mention that local ROMs can be properly combined also in view of 
a further computational reduction for instance in the solution of parametrized prob­
lems featuring a repetitive geometrical structure - such as networks, or multi-domain 
configurations. The Reduced Basis Element (RBE) method combines domain de­
composition with parametric RO Ms, by exploiting nonconforming approaches -such 
as mortar methods or discontinuous Galerkin methods - between the subdomains 
and the greedy RB method within each subdomain. Recent application of the RBE 
method to fluid flows can be found e.g. in [43, 65, 81]. A more advanced variant 
exploits static condensation at the interdomain level [62] by connecting (at some 
interfaces, or ports, during the online stage) a library of reference, interchangeable 
components. 

9.3 Model Reduction of Steady Viscous Flows 

In this section we summarize those features which are peculiar to ROMs for param­
etrized steady viscous flows, such as inf-sup stability, correct treatment of pressure, 
suitable a posteriori error estimates. We also point out the analogies with the case 
of linear viscous flows modelled by Stokes equations. In particular, we exploit a 
greedy algorithm for the construction of the reduced space: at each step the basis of 
snapshots is augmented by the solution corresponding to the largest error estimate. 
The downside is that the method is completely reliant on the existence of computable 
a posteriori error bounds, which are not really available for the unsteady Navier­
Stokes equations, as we mentioned. This is the main reason why, so far, this method 
has largely been limited to steady Navier-Stokes equations. 

9.3.1 A Question of Stability: inf-sup Constants and Supremizers 

A feature of the standard POD-Galerkin ROM (9.3) is that the pressure term -Vp 
has been completely eliminated. In fact, assuming that the POD modes lf1 satisfy the 
strong incompressibility constraint by construction, V · lf1 = 0 pointwise, integration 
by parts of the pressure-gradient term evaluated on the POD modes gives 

(Vp,lf'i) = Vp·lf'idx= - p(V·lf'i)dx+ p(lf'i·n)ds, 
Q Q ~ 

(9.28) 

which demonstrates that the pressure only enters the ROM on the boundary and for 
enclosed flows (lf'i · n = 0 on ()Q) it vanishes completely from the equations. For 
instance, this is the case of a standard driven cavity problem. It should be noted, 
however, that the situation also depends on the choice of the adopted spatial dis­
cretization. For standard FE discretizations the incompressibility of solutions applies 
only elementwise, i.e. 

V · lf1 dx = 0 for all mesh elements K E 3j, 
KE.°Jj, 

(9.29) 
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so that unless piecewise constant functions in each mesh element K are used for 
the pressure, the term - f0 p(V · '!1) dx does not vanish identically. Nevertheless, 
this term is neglected for many flows as small and unnecessary to enforce the in­
compressibility of the ROM solutions. It is known that neglecting the pressure term 
for convectively unstable shear layers, especially ones with two-dimensional mix­
ing layers, can result in large errors as was demonstrated in [96]. Pressure-extended 
ROMs include also the pressure in the equations, either by deriving the necessary 
terms in the expansion (9.3) to account for the pressure [96], or by performing a 
separate POD to construct another basis { <P1 }~~ 1 for the pressure field [16, 79]. The 
benefit of the latter approach is that the pressure field is immediately recovered with­
out any post-processing steps necessary. 

We focus our analysis on pressure-extended ROMs, using a greedy algorithm to 
also build a basis for the pressure. In this way, for each selected parameter value, we 
compute both the (truth FE approximation of the) velocity and the pressure fields. 
Reduced velocity and pressure spaces result as follows: 

VN, :=span('I'J: j= l, ... ,Nr), QN, :=span(<PJ: j= l, ... ,Nr), 

(we omit the superscript RB for the sake of brevity) where 'I'J E Vh and <P1 E Qh 
for any j = 1, ... ,Nr, being Vi and Qh the truth velocity and pressure approxima­
tion spaces. Mathematically, a necessary and sufficient condition ensuring the ROM 
stability is the reduced (Brezzi) irif-sup condition 

/3 ( ) . b(q, v;µ) 
r µ := mf sup II II II II > o, 

qEQNr vEVNr q Q V V 
(9.30) 

which is obviously related to, but not implied by, the full-order (Brezzi) irif-sup con­
dition 

/3 ( ) . b(q,v;µ) 
h µ := mf sup II II II II > o, 

qEQh vEVh q Q V V 
(9.31) 

for velocity and pressure spaces Vh :J VNr and Qh :J QNr· We recall that b(q, v;µ) 
denotes the pressure/divergence bilinear form, defined in (9.11). We also point out 
that now the stability factors such as f3r (µ), f3h (µ) are functions of the parameter 
vector µ, rather than constants, as in usual discretization techniques. We remind 
that (9.31) is ensured e.g. by choosing as Vh x Qh the space of Taylor-Hood lP'2 -lP'1 
elements (see [19,20]); however, this choice is not restrictive, the whole construction 
keeps holding for other spaces combinations as well (e.g. [99]). 

Instead, in order to fulfill the reduced inf-sup condition (9.30), we define for 
each pressure basis function <P1 the corresponding inner supremizer velocity func­
tion [106, 109] 

µ .. _ b(<PJ>v;µ) 
T <P; .- argsup II II ' 

vEVh V V 

which can be obtained by solving the discrete elliptic problem 

(Tµ<P1, v)v = b( <P1, v;µ ), for all v E Vh. 

(9.32) 

(9.33) 
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By applying (9.32) and enriching the RB velocity space Vh to include the inner 
supremizers, we define a new extended velocity space as 

such that 

(9.34) 

Thus, the inf-sup stability of the full-order space now implies the stability of the 
supremizer-enchanced reduced space, provided that this latter is enriched with the 
solutions of the supremizer equation (9.33). 

We remark that, by enriching VNr with the supremizers {Tµ<P1 }~~ 1 , the new RB 
velocity space VJr has dimension 2Nr, the double of the dimension Nr of the RB 
pressure space. 

The treatment of the (Brezzi) inf-sup stability through the supremizer operator is 
common to Stokes and N avier-Stokes equations, and more in general to any problem 
written under a saddle-point form. Further details about the efficient construction of 
the supremizer solutions and the Gram-Schmidt orthonormalization of the RB basis 
functions can be found for instance in [87, 106, 109], whereas a general context drawn 
for saddle-point problems has been developed in [50]. 

9.3.2 Certification of RO Ms for the Steady Navier-Stokes 
Equations 

We now introduce the main aspects related with a posteriori error estimation in 
the RB context for parametrized steady Navier-Stokes equations. This approach is 
in analogy with the so-called (Babuska) inf-sup stability theory [11], which can be 
seen as a generalization to the Petrov-Galerkin case of the Lax-Milgram result for 
the Galerkin-type formulation. Its application to the Stokes problem is just a possible 
use, as shown in [106], where a general framework to compute error bounds for 
noncoercive problems solved by the RB method has been introduced. Within this 
framework, a joint residual-based estimation for velocity and pressure fields in the 
Stokes case can be easily obtained under the form 

llr(µ) llx1 • 

llUh(µ)- Ur(µ)llx::::; /3§,~(µ) =. ,1Nr(µ), VµEP, (9.35) 

where: 

• Uh(µ)= (uh(µ),ph(µ)) EXh = Vh X Qh and Ur(µ)= (ur(µ),Pr(µ)) EXNr = 

v;;r x QNr denote the truth and the RB approximations of velocity and pressure; 
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• llr(µ) llx' = supyah r(V; µ )/llVllx is the dual norm of the global residual 

r(V;µ) := ~(v;µ) +rp(q;µ), 

being 
r~(v;µ) := F(v;µ) - a(ur(µ ), v;µ) - b(pr(µ), v;µ ), 

rp(q;µ) := G(q;µ)-b(q,ur(µ);µ); 
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(9.36) 

• the bilinear form As(·, ·; µ) : X x X ----+ JR denotes the global Stokes operator 

As(V, V;µ) := a(u, v;µ) +b(p, v;µ) +b(q, u;µ); (9.37) 

• f3f~ (µ) is a computable lower bound for the Babuska inf-sup stability factor 
f3s:h(µ), involving the global Stokes operator: 

/3LB( ) n ( ) . As(V, V; µ) f3LB( ) 
::3 s,h µ > O: J-iS,h µ = u1Nh~~,K llUllxllVllx ~ s,h µ ' V µ E P. (9.38) 

In this way, the stability of the reduced basis approximation is based on Brezzi's 
saddle point theory (and the introduction of a supremizer operator on the pressure 
terms), whereas a rigorous a posteriori error estimation procedure for velocity and 
pressure fields is based on Babuska's inf-sup constant. 

Alternatively, we could rely on the Brezzi's theory also for the sake of error es­
timation, by deriving two distinct error bounds for velocity and pressure, as shown 
in [50]. However, despite their similar effectivity, these latter require the approxi­
mation of two stability factors (for stiffness and pressure/divergence terms) and ofa 
continuity constant (for the stiffuess term), which entail larger computational costs 
in a parametrized context. 

In the Navier-Stokes case we can instead obtain a rigorous a posteriori error es­
timation by relying on the so-called Brezzi-Rappaz-Raviart (BRR) theory [21,27], 
which is useful for the analysis ofa wider class of nonlinear equations. We require 
some slight modifications with respect to the linear preliminaries, even if also for the 
Navier-Stokes problem the a posteriori error estimation takes advantage of the dual 
norm ofresiduals and of an effective lower bound ofa suitable (parametric) stability 
factor, given in this case by the Babuska inf-sup constant referred not to the global 
Navier-Stokes operator 

A(U,V;µ) =As(U,V;µ)+C(U,U,V;µ), (9.39) 

but to its Frechet derivative (with respect to the first variable), defined as 

dA(W; µ )(U, V) = As(V, V; µ) + C(W, U, V; µ) +C(U, W, V; µ ), (9.40) 

when evaluated at W EX. In both cases, we denote byC(U, U, V;µ) = c(u, u, v;µ). 
In this framework, a joint residual-based estimation for velocity and pressure fields 
in the Navier-Stokes case takes the following form: for any Nr ~ N* (µ ), 

f3!J~,h(µ) ( v ) 
llUh(µ )-Dr(µ) llx::; 2y(p;µ) 1 -1 - 'rN, (µ) =: LiN,(µ ), VµEP(9.41) 
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provided that 'rN, (µ) < 1. In particular: 

• 'rN, (µ) is a non-dimensional measure of the residual, defined as 

r (µ) = 4y(p;µ)llr(µ)llx 1 • 

N, (f3LB (µ) )2 ' NS,h 

moreover, we denote N*(µ) the smallest Nr such that 'rN,(µ) < 1, for all Nr 2: 
N* (µ). Since 11 r(µ) I Ix' - and thus 'rN, (µ) - undergoes a fast decrease when Nr 
increases, usually N* (µ) < 10, so that (9 .41) holds for reasonable dimensions N7 ; 

• y(ph;µ) is the (discrete) continuity constant of the trilinear form c(·, ·,·;µ),de­
pending on the Sobolev embedding constant Ph defined as 

2 llvllf 4(Q) 
Ph= sup ; 

vEVh (v, v)H 

• the dual norm 11 r(µ) I Ix' of the global residual, which is given in this case by 

r(V;µ) := ru(v;µ) +rp(q;µ), 

ru(v;µ) := r~(v; µ) - c(ur(µ ), 0 7 (µ ), v;µ ); 
(9.42) 

• f3/;~ h (µ) is a computable lower bound for the Babuska inf-sup stability factor 
f3Ns:h(µ ), involving the Frechet derivative of the global Navier-Stokes operator: 

LB . dA(Uh(µ);µ)(V,W) LB 
3 f3Ns,h(µ) > 0: f3Ns,h(µ) = v1Nh~~h llVllxllWllx 2: f3Ns,h(µ). 

(9.43) 

We remark that the framework described above is essential the nonlinear exten­
sion of the much simpler linear a posteriori error estimation (9.35), to which the 
nonlinear error estimation (9.41) reduces in the limit that llr(µ) llx' ---+ 0. 

A posteriori error estimation for the Navier-Stokes problem poses, from a com­
putational standpoint, more severe challenges than for Stokes problem. We do not 
provide any detail about the evaluation of these quantities; the interested reader can 
refer, for instance, to [76, 87, 94, 124]. 

9.3.3 Relevant Computational Issues 

Finally we point out the most relevant computational difficulties encountered in de­
veloping/applying the methodology presented in this section. We focus, in particular, 
on the evaluation of the a posteriori error bounds, a crucial aspect when attempting 
to build a reduced space with the greedy RB method. 

With respect to linear problems, where the computational speedup between a re­
duced basis method and a truth approximation is usually about 102, reduction may be 
even larger (sometimes up to one order of magnitude) in nonlinear problems. In this 
case, nonlinear solvers might require several iterations to converge to the solution. 
Each iteration entails a large linear system to solve in the case of the truth approx-
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imation. Instead, a reduced-order model requires at each iteration of the nonlinear 
solver the solution of a small linear system, which can be assembled by exploiting 
the precomputed structures (9.14). 

Nevertheless, we need to rely on a suitable Offline/Online splitting to speed up 
our computation. Such a strategy is also required to evaluate in a very small amount 
of time the error estimates (9 .3 5) or (9 .41 ), so that all the parametric-dependent quan­
tities appearing in these formulas can exploit the affine parametric dependence. 

Moreover, error estimates should to be uniformly effective across entire param­
eter range, to avoid the greedy algorithm skew towards particular locations in pa­
rameter space. In this case, the basis resulting from the selected snapshots could 
be inadequate to uniformly approximate the whole manifold of solutions, or result 
larger than required. Essentially, we pursue the following strategy: 

1. Stability factors. If the (Navier)-Stokes operator is parameter-dependent, so is 
the lower bound of the stability factor (9.38) or (9.43). In this case, computing its 
lower bound according to a suitable Offline/Online splitting is not easy. We face 
it by using the so-called Successive Constraint Method (SCM)4 which converts 
the eigenproblem corresponding to the computation of (9.38) or (9.43) on the 
successive solution of suitable linear optimization problems. 
This algorithm has been applied for the first time to saddle point Stokes problems 
in [106], while a first extension to the nonlinear Navier-Stokes case has been 
considered in [87]. In case of physical parametrizations (for instance, involving 
the Reynolds number) and large parametric variations, stability factors might un­
dergo large variations and the SCM algorithm is able to capture this behavior. In­
stead, according to our own experience, in case of geometrical parametrizations 
arising from local shape changes or simple scaling (or affine) transformations, 
piecewise constant approximations of the stability factors can provide good re­
sult at a very lower cost. In more involved cases, alternative heuristic strategies 
to derive lower bounds of stability factors might take advantage of suitable inter­
polation techniques (see e.g. [87]). 

2. Residuals. A suitable Offline/Online splitting can be used to evaluate the dual 
norms of residuals (9.36)--{9.42). Indeed, these quantities can be expressed as 
the sum of products of µ-dependent known functions and µ-independent inner 
products, formed of more complicated but precomputable quantities, involving 
the Riesz representations of r u (µ) and r P (µ). 
As already remarked in Sect. 9.2.3, in the case of nonlinear convective terms 
tensorial terms of relatively large sizes are generated; they depend on both the 
dimension Nr of the reduced spaces and the parametric complexity CZ of the 
trilinear convective term. Unfortunately, evaluating and storing these structures 

4 This algorithm has been first introduced in [64] for both coercive and noncoercive problems, an­
alyzed in [107] in the coercive case and afterwards improved in [32]. A general version using the 
so-called "natural norm" [110] has been analyzed in [61], where it has been applied to noncoer­
cive problems such as Helmholtz equations - the simpler coercive case can be seen as a particular 
instance where the stability factor is just the coercivity constant. 
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might become computationally infeasible, so that an Offiine/Online splitting for 
evaluating the dual norms of residuals is not always practicable. 

A Galerkin projection is well suited for symmetric and coercive PDEs, as in this 
case it provides the optimal approximation in the corresponding energy norm. In the 
case of convection-dominated flows, symmetry is broken and no a priori optimal­
ity can be ascertained. Indeed, a large gap between the magnitude of the observed 
nonlinear residuals and the true error between full and reduced solution may exist. 

A remedy consists in using Petrov-Galerkin methods, with different spaces of 
test and trial functions. They are usually presented in the guise of stabilization meth­
ods, such as in the case of the Streamline-Upwind Petrov-Galerkin (SUPG) method. 
However, one is then left with the question of how to choose the test space. Re­
cent works on optimal or near-optimal choice of Petrov-Galerkin test spaces were 
presented in [40, 41] and [38]. These options are "optimal" in the sense that they 
give the best possible ratio of continuity constant to stability constant in the energy 
norm estimates. In the finite element or discontinuous Galerkin context, optimal test 
spaces are usually avoided, as this would lead to using test functions with global 
support. However, in the ROM setting one does not care too much if the reduced 
order system is full, as it is typically small enough to be solved with direct solvers 
(the reduced dimension Nr is typically in the range 10 - 102). 

In fact, the optimal test spaces are precisely equivalent to the method of suprem­
izers used in [106, 109] to stabilize ROMs for the Stokes equations. Unfortunately, 
in the parametrized setting one has to face the fact that the optimal test spaces (and 
also the supremizers) usually depend explicitly on the parameters and thus suitable 
strategies to recover the Offiine/Online splitting must be devised. 

9.4 Model Reduction of Unsteady Viscous Flows 

In this section we provide an overview of some reduction techniques available for 
unsteady viscous flows. We do not restrict ourselves to parametrized problems and 
RB methods; rather, we provide a quick survey of more general ROM techniques 
based on the study of the stability of the underlying dynamical system - arising 
for instance from model order reduction for ODEs - addressed in the following 
chapters of the book. We start by recalling that current approaches for constructing 
reduced basis approximations of time-dependent parametrized PDEs exploit a com­
bined POD-greedy procedure - POD in time to capture the causality associated with 
the evolution equation, greedy procedure for sampling the parameter space and treat 
more efficiently extensive ranges of parameter variation [93]. 

Certified RB methods have been applied to parametrized (moderate Reynolds) 
unsteady viscous flows in [70], where a nonisothermal viscous flow is modelled 
by Boussinesq equations describing natural convection. Parameters are the Grashof 
number and the gravity direction. In [ 48] an improved h-p adaptive certified method 
is introduced to address the same natural convection problem, which has also been 
applied to a multiscale Stokes Fokker-Planck system modelling liquid crystals in 
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[71]. More recent contributions in the field adopt a space-time Petrov-Galerkin vari­
ational approach to improve the control of the exponentially growing energy es­
timates in the linear case [123] dealing with convection-conduction problems, for 
Burgers' equations [ 131 ], Boussinesq equations for moderate Grashof number flows 
exhibiting steady periodic responses [129] and even addressing interesting hydrody­
namic stability problems for moderate Reynolds number flows in an eddy-promoted 
channel [130]. The chapter by Chen et al. in this monograph is focused on reduced 
approximations for the Parareal method. 

9.4.1 Model reduction of linearized time-invariant systems 

The POD modes discussed in Sect. 9.2.2 only represent the statistical information 
content of the set of snapshots without taking into account the underlying dynamical 
system. Many examples of fluid dynamics where a POD-Galerkin ROM described 
exactly the limit cycle of the system exist, however they completely miss the long­
time dynamical behavior of its trajectories. 

An example of a dynamical system whose POD-modes are able to exactly 
represent the stable limit cycle, but for which a Galerkin ROM gives incotTect 
dynam ics was described in [95) . The quadratically nonlinear ODE system 

{ 

zi1 (t ) = J.LUt (t ) - u2(t ) - u1 (t )u3(t) 

zi2 (t ) = J.Lu2(t ) + u1 (t )- u2(t )u3(t ), 

u3 (t ) = - u3(t ) + zli (t ) + ifi (t ) 

has one fixed point at u = (0 0, 0), which is unstable, and an asymptotically 
stable limit cycle uLs (t ) = ( ..;µ cos(t ), ..fii sin (t ), J.L ). All trajectories tend to­
wards the limit cycle. Since 

I 

t - to 
u(i-) di-

'o 
(0,0 µ ), 

the POD basis of dimension 2 is given by 

u:= (o,o,µ ), lfi = ( 1,0,0) '11 = (o l ,o) 

and is able to exactly represent the stable limit cycle: 

ULs (t ) = u + ..fticos(t) '¥1 + ..ftisin (t )'¥2. 

However, Galerkin projection on the POD basis of dimension 2 using the Eu­
clidean inner product leads to 
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The coefficients of the ROM are given by the dynamical system 

{ a1 (t) = - a2 (t) 
a2(t ) = a, (t ) ' 

which is only marginally stable and whose trajectories remain on a circle of 
radius r = (af(to) + c?i(to)) 112 for al l time without converging asymptotically 
towards the correct limit cycle. 

In order to capture the correct temporal dynamics, the characteristics of the dy­
namical system (fixed points, periodic solutions, and their (in)stability) should be 
preserved by the ROM - such ROMs are built based on analyzing the stability of the 
underlying dynamical system. In this section we discuss some, namely, linearized 
time-invariant flows, which exhibit asymptotically stable periodic steady-states. 

For linear time-invariant systems (L Tis), system-theoretical reduction methods 
such as balanced truncation [7, 91] are more effective, in the sense that they provide 
a ROM that has nearly the best possible approximation error. A linearized input­
output system in state-space form is 

{ 

dV 
dt(t) = AV(t) + BS(t) 

Y(t) = CV(t) 

V(to) = Vo 

fort E (to, tr ) 

fort E (to, tr ) 
(9.44) 

with inputs (controls) Sand outputs (observations) Y. If the system (9.44) is stable, 
the controllability and observability Gramians are the matrices defined respectively 
as 

'J * 
We= ri4"BB*e4 "d'r , (9.45) 

lo lo 

which can be computed from the Lyapunov equations: 

AWe + WeA* + BB* = 0, A*Wo + WaA + C*C = O; 

see e.g. [105] for further details. The controllability Gramian We measures to what 
degree each state of the system (9.44) is excited by an input; in particular, We is pos­
itive definite if and only if all states are reachable with some input S(t). Instead, the 
observability Gramian W0 measures to what degree each state excites future outputs; 
in particular, W0 is positive definite if and only if any initial state V (to) = V o can be 
uniquely determined from Y(t) on (to,tr ). 

A balancing transformation 11' is sought to transform the state variables of the L TI 
into equivalent "balanced state variables", U = 'II'V , in a way that the transformed 
Gramians become equal and diagonal : 

(9.46) 
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In the balanced coordinates, the states that are least influenced by the input also have 
the least influence on the output, and such a balancing transformation exists as long 
as the system is both controllable and observable (i.e., both We and W0 are positive 
definite). The { &i} are called the Hankel singular values; when sorted in descending 
order, we can split the balanced L TI system into two parts: 

:i [Z~J (t) = [t~ t~J [Z~J (t) + [~~] s 

Y(t) = [C1 C2] [Z~] (t) 

U(to) = 'IT'Uo, 

fort E (to,t1) 

fort E (to,t1) 
(9.47) 

where dim(U1) =rand dim(U2) = N -r. A balanced truncation ROM is then ob­
tained by retaining only the balanced state variables related to the first r Hankel 
singular values: 

{ :iv~(t) =~11~U1 +B1S 

Y(t) =C1U1(t) 

U1(to)='IT'1Uo 

fort E (to,t1) 

fort E (to,t1) · (9.48) 

In other words, balanced truncation involves first changing the coordinates according 
to (9.46), and then truncating the least controllable/observable states, which have 
little effect on the input-output behavior. 

When the exact transfer function G( s) = C ( sl - A )-1 B of the L TI system is com­
pared with the one obtained after balanced truncation, G(s) = C1 (sl -A11)-1 B1, we 
have the following results [7]: 

• any ROM with r states and transfer function Gr(s) has operator norm error at 
least llG- Grll= >fir+!, where fir+! is the (r+ 1 )st Hankel singular value; 

• the balanced truncation ROM with r states and transfer function Gr(s) has oper­
ator norm error bounded by 11 G - Gr 11 = < 2L~r+1 &i; 

• if the full-order system (9.44) is stable, so is the balanced truncation ROM (9.48). 

The Hankel singular values { &i} characterize also the Kohnogorov n-width dis­
cussed in Sect. 9.2.1 of the range space of the Hankel operator, see [45]. As already 
discussed in Sect. 9.2.1, the main requirement for constructing efficient ROMs is 
that the associated singular values decay reasonably fast. Previously, we used the 
decay of the empirical POD singular values to measure this, whereas in the balanced 
truncation method one looks at the Hankel singular values. In fact, there exists an 
interesting connection between the Hankel singular values and the empirical POD 
singular values - it was pointed out in [105] that the POD modes are equivalent to 
the modes obtained by balanced truncation provided that the snapshots Ui are taken 
as the impulse responses of the system and the inner product equal to the one induced 
by the observability Gramian. 
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Balanced truncation methods based on explicitly computing the Gramians in 
(9.45) by solving Lyapunov equations are generally too expensive to apply to large 
linear systems with millions of state variables. A possible remedy is the balanced 
truncation POD method [74, 128], in which the exact Gramians (9.45) are approxi­
mated using a method of snapshots: 

(9.49) 

Here the empirical trajectories Sk(t) and empirical outputs Sk(t) are computed by 
solving the system (9.44) using generalized impulse controls Sk(t) = wkQkeko(t), 
where wk > 0 are positive weights, Qk E JRPxP are orthogonal matrices, ek E JRP are 
Euclidean unit vectors, and o(t) is the one-dimensional Dirac delta distribution: 

{ 
d;k (t) = Ask(t) + BSk(t) 

sk(t) = cc;k(t) 

S(to)=Uo 

fort E (to,t1) 

fort E (to,t1) (9.50) 

for each k = 1, ... ,K. In the case of LTI systems, the empirical Gramians (9.49) 
coincide with the exact Gramians (9.45) provided that K 2: P empirical impulse re­
sponses are computed. It was proposed in [75] to use the same balanced truncation 
POD method for dealing also with nonlinear flows. In this case the empirical Grami­
ans (9 .49) - which are (approximate) finite Gramians - are obtained by solving the 
nonlinear system and taking snapshots of the trajectory. By using these finite Grami­
ans to perform the balancing we obtain the following, empirical balancing transfor­
mation 11' e = [ 11' e, 1 11' e,2]: 

(9.51) 

The balanced POD modes were applied in [105] to a linearized flow in a plane 
channel and a comparison was made between POD, balanced truncation, and bal­
anced POD methods. The conclusion was that the balanced POD modes produced 
nearly identical results with the balanced truncation modes, and both methods sig­
nificantly outperformed the standard POD modes. Another comparison on a problem 
of designing closed-loop controllers for flow over a cavity was done in [13], where 
again the balanced POD modes achieved a stable closed-loop controller with fewer 
ROM degrees-of-freedom. A difficulty related to balanced truncation is that the lin­
earized system must be stable. An extension to unstable linear systems was proposed 
in [132] by decoupling the dynamics on the stable and unstable subspaces, and then 
truncating the relatively uncontrollable and unobservable modal representations on 
each subspace (see e.g. [132] for further details). This strategy was used to propose 
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reduced-order controllers around linearly unstable steady states for flow around a 
cylinder in [122] and for flow past a flat plate in [1]. 

9.4.2 Stabilization of ROMs for Unsteady Navier-Stokes Equations 

As mentioned before, usually a standard Galerkin projection-based ROM does not 
produce satisfactory results when applied to nonlinear unsteady N avier-Stokes equa­
tions. There do exist exceptions - for nonautonomous problems with strong external 
sources, such as periodically driven inflow, long-time drifting from asymptotically 
stable states was not observed in [84, 113]. The drifting of ROM trajectories in the 
general case is however a well-known problem and many attempts have been made 
to remedy it. 

First works on stabilization experimented in adding artificial viscosity [9] to the 
reduced equations. The idea was further developed by extending the spectral van­
ishing viscosity method ofTadmor [115] to the Navier-Stokes equations in [111]. In 
long-time simulation of convection dominated flows some type of closure model that 
takes into account the energy transfer between the ROM modes is needed. In [29] a 
driven cavity problem at Re = 20,000 was successfully stabilized by adding a linear 
damping term in the Galerkin ROM. The computation of correct limit cycles was 
done in [2] by applying a shooting method. For a review of various stabilization 
methods for Galerkin ROMS we refer to [16]. 

9.4.3 Dynamic Mean-Field Representations and Shift-Modes 

In many fluid dynamics systems, the Reynolds decomposition (9.2) together with 
Galerkin projection leads to unstable ROMs because the interaction between the 
time-averaged mean flow u and the oscillating part of the flow field represented 
by the POD modes is neglected. In [95] this problem was analyzed and identified 
moving from the consideration that a Galerkin model without dynamic mean-field 
correction is unable to represent correctly the unstable fixed point of the dynamical 
system, which leads to structurally unstable RO Ms (small perturbations in the model 
can cause divergent trajectories). This was found to occur even in problems where 
theoretically the POD-Galerkin ROM was able to capture the stable attractor exactly. 
As a result the periodic limit cycle was correctly captured, but transient dynamics of 
the ROM were off by orders of magnitude. 

The simplest method proposed in [95] to correct the mean-field approximation 
error of POD is the inclusion of a shift-mode lf'Li, which is added to the POD basis in 
order to represent the correct unstable fixed point of the full-order system, resulting 
in the extended POD ansatz 

N, 

u(x,t) R::Ur(x,t) :=u(x)+ao(t)lf'Li(x)+ L,,a;(t)P;(x). 
i=l 

(9.52) 

For instance, in the case of the unsteady cylinder wake flow, the unstable fixed point 
corresponds to the solution Us of the steady Navier-Stokes flow. The shift-mode is 
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obtained by applying a Gram-Schmidt process to the correction term u.1 :=ii- u8 : 

Nr 

'I',1 := U.1 - L,(u.1, 'P;)'P;, 
i=l 

'I'* 'I', . Li 
Li.= ll'I'llla (9.53) 

and applying the Galerkin ROM to the expanded POD basis of dimension Nr + 1. 
This allows the ROM to represent exactly the unstable fixed point of the system. A 
comprehensive discussion of the various other types of mean-field corrections and 
their effects on the ROM predictions can be found in [116]. 

9.4.4 Model Reduction of Periodic Steady-State Solutions 

In Sect. 9.4.3 we have discussed the difficulties of building ROMs that are capable 
of accurately representing the transient dynamics of unsteady flows. In many ap­
plications of fluid dynamics, for example in turbomachinery or in large "straight" 
arteries in the human circulatory system, the behavior of the flow is such that all tra­
jectories approach a single stable periodic solution. One option is then to disregard 
the simulation of the transient, and concentrate only on approximating the periodic 
steady-state solution. 

For linearized flows the frequency-domain POD technique was introduced in [ 69]. 
It replaces the time-domain representation of the Galerkin-projected equations with 
a Fourier-domain representation for each individual harmonic. For fully nonlinear 
flows the individual harmonics are coupled by the nonlinear terms and no term-by­
term analysis of the harmonics can be performed. To solve this problem, the Har­
monic Balance (HB) method used for the study of harmonic ODEs was adapted for 
the efficient solution of time-periodic flows in [57, 89, 90]. After suitable spatial dis­
cretization of (9 .1) the system 

[uh] =-[-(uh·V)uh-VPh+v6uh+f(t)] =-[Si(U)] =-S(U), (9.54) 
0 - v . Uh S2 (U) 

is obtained, where the spatial operator S(U) depends nonlinearly on the solution 

U := (uh,Ph) E JRNJ:+Nf, NJ:: and N% being the number of degrees of freedom of the 
discrete velocity and pressure fields, respectively. 

The method starts from the assumption that this system admits a periodic steady­
state solution U=(t) with known period T, so that U=(t) = U=(t + T) for all t. Ifin 
addition the spatial operator is time periodic with the same period T, they can both 
be represented using Fourier series expansions as 

where each Uk and Sk(U=) is a (discrete representation ofa) complex-valued vector 
field over Q; by expressing sk = Sk(U=) we mean that each coefficient in the expan­
sion of S = S(U=) depends on (potentially all of) the spatial coefficients {Ukh of 
U=(t). Since the periodic steady-state solution satisfies equation (9.54), its complex 
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Fourier coefficients Uk E cNJ:+Nf: must satisfy 

2nik~ ~ 
Tuk+sk(U=) = o, for all k E z. 

265 

(9.56) 

The harmonic balance (HB) method starts by truncating the Fourier series to 
2N + 1 terms and matching only those terms in (9.56), i.e. 

2nik~ ~ 
Tuk+sk(U=) =0, forallk= -N, ... ,N. (9.57) 

For real-valued fields U_k =Uh so that only N + 1 equations need to be solved. 
If the flow is linear, all the harmonics decouple and we only need to solve N + 1 

uncoupled steady equations. For nonlinear flows, each Sk(U=) depends on all the 
Uk fork= -N, ... ,N and thus the system (9.57) is a fully coupled nonlinear sys­
tem of (N + 1) x (NJ;+ NJ:) complex-valued equations. Due to the nonlinearity of 
the spatial operator its Fourier series coefficients cannot be computed directly. This 
problem is solved either using the alternating frequency/time domain method, as 
was done in [57, 90], or by the asymptotic numerical method, as was done in [34]. 
Once the Fourier coefficients are known, the periodic steady state solution can be 

reconstructed with arbitrary temporary precision. 
An advantage of HB compared to POD is that no full-order transient simula­

tions need to be performed until the periodic steady-state is reached, nor is the ROM 
dependent on the initial condition of these simulations. For a comparison between 
POD and HB we refer to [82]. We remark that the HB method is very efficient 
in reducing the temporal complexity, as typically only N < 10 terms are needed to 
accurately represent the solution. However, it has no effect on the spatial complex­
ity of the problem. Like many space-time formulations it requires the solution of a 
system that is several times larger than the one solved when using the more stan­
dard method of lines. So far the HB method has been applied mainly to industrial 
problems, such as the design and simulation ofturbomachinery [57] and problems 
in aeroelasticity [120]. 

9.5 Conclusions 

In this chapter we have presented an overview of model reduction methods for in­
compressible fluid dynamics, both in the steady and unsteady flow cases. The main 
focus was on Galerkin-projection based ROMs, and the main strategies for con­
structing the low-order projection basis have been discussed. Theoretical properties 
ofROMs for fluid problems are related to, e.g.: the possibility to reduce the dynam­
ics of a fluid system to a low-dimensional submanifold, measured for instance by the 
very fast exponential convergence of empirical POD singular values or of the Kol­
mogorov n-width; the lack of long-time stability of Galerkin ROMs and the need 
for stabilization; the error estimation of the ROM in the case of steady flow prob­
lems; the gain of computational efficiency thanks to the online/offline paradigm that 
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allows fast real-time ROM simulations as well as to the use of hyperreduction for 
treating the nonlinear terms in an efficient way. 

Ad hoc reduced order modelling techniques have recently been proposed for op­
timal flow control problems [104, 108, 121], optimal shape design of devices related 
with fluid flows [6, 23, 58, 88], and the treatment of fluid-structure interaction prob­
lems [76, 78]. 

Far from having covered the subject exhaustively, we hope nonetheless that this 
chapter could offer the reader a contribution for understanding which type of ROM 
may be the best for his or her particular fluid dynamics application, having made 
extensive reference to available results in the literature. 
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Window Proper Orthogonal Decomposition: 
Application to Continuum and Atomistic Data 

Leopold Grinberg, Mingge Deng, Alexander Yakhot and George Em 
Karniadakis 

10.1 Introduction 

Proper Orthogonal Decomposition (POD) is a powerful tool for analyzing multi­
dimensional data, especially of vector fields in large-scale simulations. In this article 
we review the Window Proper Orthogonal Decomposition (WPOD) proposed in [7] 
for analysis of continuum data and in [ 5] for analysis of atomistic fields. 

WPOD seeks for correlation of data obtained over certain time intervals (win­
dows). In that sense it can be compared to the window Fourier analysis or the wavelet 
decomposition. However, WPOD imposes no requirement for the data to exhibit pe­
riodicity and does not require use of predefined spatial modes. 

Here we are not seeking for data and dimensionality reduction only, but rather 
we attempt to partition the data with respect to different physical events reflected by 
changes in the POD eigenspectra. For example, in application ofWPOD to atomistic 
fields, the ensemble solution can be effectively separated from the thermal fluctua­
tions. Our basic measure for partitioning the POD expansion is the rate of conver­
gence of POD eigenvalues, while in most implementations of POD in low-dimen­
sional modeling the basic metric is the total energy associated with the low POD 
modes. 
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Several visualization packages such as VMD [21] exist for visualizing data from 
particle based simulations, however, these packages do not incorporate quantitative 
analyzis of the particle motion. In visualizations of multiscale atomistic data, often 
represented by millions or even billions of discrete particles, the large-scale features 
can be depicted by projecting the atomistic field on a continuum involving also a 
substantial data compression. The correlated motion of the media is then visualized 
using the continuum fields, while the motion of a small collection of particles (e.g., 
modeling polymers, red blood cells) can be described by tracking their trajectories 
and superimposing it onto the continuum data images. 

In this chapter we provide the formulation of WPOD and present its utility in sev­
eral disciplines. We start with a brief motivation and a mathematical formulation of 
POD and WPOD for continuum and atomistic data. Then, we present an application 
of WPOD for quantitative analysis of intermittent laminar-turbulent flow. We con­
tinue with application of WPOD for analysis of atomistic data, specifically, comput­
ing the ensemble solution and the PDF of thermal fluctuations. We discuss coupled 
atomistic-continuum multiscale simulations where WPOD is applied to co-process 
interface data. We demonstrate the utility of WPOD for multiscale visualization and 
conclude with a summary. 

10.2 Motivation 

There are several reasons for developing windowed spectral analysis tools as a post­
and co-processing procedure. In the following, we name a few areas where WPOD 
can be successfully implemented. 

i) Molecular dynamics simulations generate information at the microscopic level, 
e.g., positions and velocities of particles. The conversion of this microscopic in­
formation to macroscopic observables requires statistical averaging, i.e., computing 
ensemble averages. An ensemble is defined as a collection of all possible systems, 
which have different microscopic states but have an identical macroscopic or ther­
modynamic state. Traditional statistical averaging requires an extremely large num­
ber of samplings of microscopic information, which is often a major computational 
expense. Even with very high sampling rate, it is typical that the accuracy of the final 
results may still be quite low, which makes physical interpretations difficult. 

In stationary flow simulations, the average solution u(x) is typically computed 
by sampling and averaging the trajectories of the particles over a subdomain QP and 
over a very large time interval, i.e., u(Xp) =JP Ln,j u(tn,Xj ), where Xp corresponds 

to the centerof QP and Np is the total number of particles x1 E QP at any given time­
step tn. To obtain an accurate approximation to u(x), it is required that both the time 
and space intervals be sufficiently large. With respect to time, this can be achieved 
by integrating over thousands of time steps. 

In non-equilibrium atomistic simulations, however, such as in simulations of un­
steady flows, propagation of cracks in materials, simulations of polymers and red 
blood cells, etc., the standard statistical tools employed are even more problematic. 
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In non-stationary flow simulations, an ensemble average u(t,x) is required, but it is 
not obvious how to define a time interval T » L1t (where L1t is the time step) over 
which the solution can be averaged. It is possible to perform phase averaging, if the 
flow exhibits a limit cycle and integrate the solution over a large number of cycles, 
but for general cases phase averaging may not be a suitable technique. In some sim­
ulations, constructing the ensemble based on many realizations is the only choice, 
but even then the accuracy can be improved only proportionally to VJ'{,., where Nr is 
the number of realizations. For simulation of small problems on a moderate number 
of computer processors, increasing Nr is a reasonable approach. However, in sim­
ulations requiring over 0(105 ) computer processors, increasing Nr by an order of 
magnitude is very inefficient giving the limited accuracy gain. 

The dynamics of deformable vesicles and cells subject to stresses and thermal 
noise is characterized by a variety of phenomena as shown in recent biologically 
motivated experiments [2, 9, 10, 16, 20]. The vesicles and cells are typically simu­
lated using particles linked by non-rigid bonds, e.g., polymers can be represented as 
a chain of particles, a membrane of blood cell can be represented as a network of 
particles with fixed connectivity. As an example of dynamically deformable object 
let us consider a vesicle which has three quasi-steady dynamical states in shear flow, 
namely, tank treading, tumbling and trembling. These dynamical states can be de­
scribed in a framework of low-dimensional modes (or the dynamical process can be 
described by one or two degrees of freedom) [11, 12]. However, in relative strong 
flows where the stresses acting on the soft objects might be extremely big, the cell 
dynamics is much more complicated due to the nonlinear response to the stress and 
stochastic noise. The response to thermal noise becomes a central issue for such dy­
namic system, in a sense that it may mask the deterministic component of time-space 
fluctuations. Wrinkling patterns of membranes and semi-flexible polymer appear in 
elongational flow and shear flow [2, 9, 10, 16, 20]. To capture the mechanisms behind 
the nonlinear dynamics, one has to analyze the wrinkling patterns which are related 
to the excitement of high-order deformation modes. Since the wrinkles during the 
vesicle dynamics are not stationary and are excited only for a limited time, the often­
used Fourier decomposition and spherical harmonics decomposition [2, 10, 16, 20] 
are actually not suitable because of the boundaries and unknown nonuniform ten­
sions on the vesicle surface along the polymer chain. Instead, the Euler-Lagrange 
equation of the energy functional with respect to its configuration and nonuniform 
tension defines a set of orthogonal eigenfunctions (and eigenvalues) with satisfyied 
boundary conditions [9]. However, it is impossible, even numerically, to obtain the 
eigenfunctions when the tension function is unknown and unsteady. Thus, WPOD 
may become an enabling tool for analysis of the time-space nonlinear dynamical 
modes and their evolution process by constructing orthogonal eigenfunctions from 
dynamical trajactories and decoupling the correlated motion of particles from ther­
mal fluctuations. 

ii) Coupled atomistic-continuum simulations [22] is another area where robust 
techniques for computing the ensemble average are crucial for establishing inter­
face conditions. In Fig. 10.1 we present a coupled atomistic-continuum simulation 
of platelet aggregation in an aneurysm [6]. The unsteady flow in the domain of brain 
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Fig. 10.1. Multiscale atomistic-continuum coupled simulation ofa brain blood flow. Shown on 
the left is the computational domain of major brain arteries with an aneurysm (macrodomain) 
where the Navier-Stokes equations are solved; different colors correspond to different do­
main patches. Shown in the inset (right) is the microdomain (3.93mm3 ) where dissipative 
particle dynamics is applied. The WPOD method is applied in this microdomain. Inside the 
microdomain: streamlines show instantaneous flow directions; red objects represent a frac­
tion of red blood cells; dots represent a fraction of plasma particles; colors correspond to 
the ensemble average velocity. Courtesy of Argonne National Laboratory. Visualization by 
J. Insley 

arteries was computed using a continuum approach, while the interactions between 
blood cells, plasma and arterial walls were simulated using the dissipative parti­
cle dynamics (DPD) method. The flow was simulated on up to 294,912 computer 
processors, with over 90% of computing power dedicated to the atomistic solver. 
Continuity in the continuum and atomistic fields were achieved by imposing proper 
interface conditions [ 6]. The interface conditions required extracting large-scale flow 
features from the atomistic simulations, i.e., filtering out thermal fluctuations from 
the atomistic data. The WPOD method was applied to compute the ensemble aver­
age of the stochastic fields. We note that an alternative approach based on concurrent 
multiple realizations would require millions of computer processors. 

Coupled atomistic-continuum algorithms become more efficient and conservative 
if fluxes instead of state variables are exchanged in the coupled scheme [13]. This, 
in turn, requires smooth representations of interface fluxes for faster convergence 
and for preventing erroneous propagation of numerical artifacts into the domain. As 
we will demonstrate in Sect. 10.5, the gradients of the state variables - obtained in 
atomistic simulations of unsteady flow and processed in the standard way- are far 
from smooth and hence inappropriate for such multiscale simulations. The smoother 
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Fig. 10.2. Turbulent flow simulations: POD eigenspectra. Left - flow around a wall-mounted 
hemi-sphere (reproduction from [17]); right- flow around a wall-mounted cube (unpublished) 

velocity field reconstructed with the WPOD allows better accuracy in predicting the 
field gradients. 

iii) WPOD for continuum data was first applied for quantification of transitional 
blood flow, i.e., capturing the spatio-temporal transition from laminar to turbulent 
flow regimes [7]. Laminar flows exhibit a high degree of spatio-temporal correlation 
while turbulent flows show significantly lower. This is reflected in the dimensionality 
of the flow field data and correspondingly in the POD eigenvalue spectrum, where 
high order ("turbulent") modes converge slow and often at a constant rate. If the 
region of turbulent flow is very small compared to the size of the entire domain, 
analysis of POD spectrum or inspection of temporal modes performed on the entire 
domain is insufficient. To this end, WPOD can quantify precisely the distribution of 
the kinetic energy at different spatio-temporal windows. 

Manhart [ 17] applied POD analysis of high-Reynolds number turbulent flows 
to analyze flow around a wall-mounted hemisphere; Yak.hot et. al. (unpublished) 
applied POD to analyze turbulent flow around a wall-mounted cube. Both studies 
clearly showed the power law decay rate Ak '""k-3/ 4 of the POD high eigenvalues 
(see Fig. 10.2). The fact that the same power law was obtained in two different POD 
studies is intriguing. To the best of our knowledge, it has not been shown that the 
value of the exponent is universal. Fourier analysis applied to turbulent fields shows 
that the energy spectrum follows a power law Ak ,.__, k-s with 1 < s < 3 depending on 
the turbulence nature. For homogeneous isotropic turbulence, the POD eigenmodes 
are simply the Fourier modes. 

Flow in complex geometries is neither homogeneous nor isotropic but a power 
law energy decay provides additional evidence for the quatitative characterization 
of turbulence. In [7] a study of flow in a stenosed carotid artery was performed and 
high-frequency oscillations were detected downstream of the stenosed region. The 
presence of fluctuations is not sufficient evidence for the presence of turbulence, 
which is characterized by specific statistical properties, and hence the distribution of 



280 L. Grinberg et al. 

energy between different scales is a commonly used criterion. The spatio-temporal 
WPOD analysis of flow in the stenosed carotid artery presented in [7] reveals that 
during the systolic peak of the cardiac cycle the exponents is in the range of s = 0.8 to 
s = 1.1 ; this result was later confirmed in experiments by Kefayati & Poepping [ 14]. 

iv) Multiscale visualizations of atomistic data. The number of particles in MD or 
DPD simulations can be extremely large; this taxes not only the computational cost 
of simulations but also adversely affects data post-processing including visualiza­
tion. In particle-based simulations, data for every lOOM particles require about 5.2 
GB of disk space for one snapshot, even by saving only the particle IDs, coordinates 
and velocity vector. 

Typical particle-based simulations (MD or DPD) include solvent particles, e.g., 
particles representing the blood plasma, and non-solvent particles, e.g., proteins, red 
blood cells (RBCs), platelets, glycocalyx, etc. Proteins and blood cells are repre­
sented by a collection of bonded particles with fixed connectivity. Fortunately, the 
majority of the particles (at least in simulations considered here) represent the sol­
vent, and visualization of discrete particle data can be substituted by presenting their 
average properties projected on a fixed grid. When the projection is combined with 
WPOD, the data also represents the collective and correlated in time and in space 
solution field. Representing the data for the plasma particles by its continuum ana­
log typically reduces the storage requirements by 80 to 95 percent. The output data 
can be written on the disk or passed directly to the visualization software allow­
ing real-time visualization. This real-time data compression and fast data commute 
from simulation to visualization also opens up new possibilities for effective com­
putational steering. 

10.3 Methodology 

10.3.1 Proper Orthogonal Decomposition (POD) 

Proper Orthogonal Decomposition is a spectral analysis tool often employed for data 
compression and low-dimensional modeling. The method is also known as princi­
pal component analysis (PCA), singular value decomposition (SYD) and Karhunen 
Loeve decomposition. Our formulation of WPOD is based on the method of snap­
shots, introduced by Sirovich [18] who applied POD in fluid dynamics for identifi­
cation of coherent structures in a turbulent velocity field. 

POD decomposes the time-space field u(t,x) into an expansion of orthogonal 
temporal and spatial modes, i.e., 

Npod 

u(t,x) = L ak(t)c!>k(x). 
k=l 

(10.1) 

The basis </Jk(x) is sought so that the approximation onto the first K functions: 
u(x,t) = I.f=1 ak(t)<Pk(x), K:::; Npod has the largest mean square projection. 
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To compute the space- time- POD modes over a time interval T and space x E Q, a 
temporal auto-correlation covariance matrix C is constructed from the inner products 
between pairs of fields (snapshots) collected at times t; and ti, i,j = 1, ... ,Npad: 

C;,J = u(t;,x)u(ti,x)d.Q. (10.2) 

The temporal modes ak(t) are the eigenvectors ofC. Using orthogonality, the POD 
spatial modes </Jk(x) are calculated from 

</Jk(x) = ak(t)u(t,x)dt. (10.3) 
T 

The eigenvalues Ak,Al > A-2 > ... > ANpod' Vk = 1, ... ,Npad of the autocorrelation 
matrix C represent the energy level associated with the POD mode k. 

10.3.2 Window Proper Orthogonal Decomposition (WPOD) 

In WPOD we consider splitting the time interval T into overlapping or non-over­
lapping sub-intervals (windows) !J.Tm E T,m = 1,2, ... ,i.e., the POD analysis is per­
formed over a sub-set of snapshots. Such approach is more adequate for analysis 
of fields where certain events exist over a relatively short (finite) time. Also, such 
window approach may be the only choice for data co-processing, where computer 
memory is sufficient for storing only a certain number of the most resent snapshots. 
Eigenspectrum analysis of C(!J.T) constructed over shorter time intervals leads to 
better capturing of transitional phenomena, as will be illustrated in Sect. 10.4 where 
POD analysis of intermittent laminar-turbulent flow is presented. Implementation 
of POD as a co-processing tool naturally leads to performing the analysis over time 
windows, where the autocorrelation matrix is computed from the most recent Npod 

snapshots. 
The concept oflocal reduced-order bases (ROB) developed in [1] uses POD ap­

plied on the snapshots of the system taken at various locations of the state space. 
As in WPOD, the solution space is partitioned into subdomains, when a local ROB 
is constructed and assigned to each subdomain. The difference is that the ROB ap­
proach uses for nonlinear system model order reduction, while the WPOD employs 
for analysis of nonlinear system evolving data. 

POD requires spatial integration of fields represented at fixed grid (mapping from 
moving frame to fixed can be also considered). In atomistic simulations, field data is 
associated with Lagrangian particles moving in the computational domain and even 
exiting and entering the domain. Accordingly, WPOD in the atomistic simulations is 
performed in two steps. At the first step, a spatio-temporal averaging over relatively 
short time intervals is applied to project atomistic data on a set of fixed in time grid 
points Xp. In our simulations the size of these time intervals is typically in the range 
of 50 to 500 time steps (N1s = [50 500]): 
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At the second step, the method of snapshots is applied to a subset of u( T', x), simi-

II 2 3 4 
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Fig. 10.3. Illustration of POD windows in processing molecular dynamics data. Each POD 
window is composed of Npod = 4 snapshots. Each snapshot is obtained by spatio-temporal 
averaging of data over N1s = 50 timesteps. Three POD windows are shown 

larly to WPOD for continuum data. In Fig. 10.3 we provide a schematic illustration 
of the WPOD method for atomistic fields. WPOD is performed on data computed 
within a time interval Tpod = NpodN18'1t. The correlation matrix C is based on the 
Npod most recent snapshots; it is updated every N 1s time steps and its eigenvalues 
and corresponding eigenmodes are computed. 

The WPOD method we present here transforms the velocity field to orthogonal 
modes, which can then be employed to approximate the ensemble solution ii(t, x) and 
thermal fluctuations ut(t,x). Unlike the simple spatio-temporal averaging, WPOD 
is effective in capturing the correlations in atomistic properties (e.g. velocity filed) 
over time intervals, and not just to smear off any temporal fluctuations in the solution. 
In addition, WPOD allows for a fast construction of the probability density function 
(PDF) of the fluctuating part (higher order modes) ut(t, x), which can be utilized to 
gain better physical insight. 

To separate the velocity field into u(t, x) and ut(t, x), e.g., into the ensemble av­
erage solution and thermal fluctuations, several criteria based on adaptive analysis 
of the POD eigenvalues and eigenvectors can be employed. We denote the WPOD 
method as "adaptive" since the POD eigenproperties and the criteria for selecting the 
proper number of POD modes to compute u(t, x) and ut(t, x) are re-examined every 
Ms time steps. To this end, the first criterion is based on the rate of convergence 
of POD eigenvalues. The second criterion is based on the level of noise present in 
temporal modes. The third criterion is based on the analysis of standard deviation of 
POD eigenvectors (the temporal modes). 

To illustrate the two distinct rates of convergence of POD eigenspactra, we plot in 
Fig. 10.4 the POD eigenvalues and selected temporal eigenmodes obtained by a DPD 
simulation ofpulsatile flow in a pipe; this will be discussed further the Sect. I 0.5. The 
eigenvalues can be separated into two clearly distinct subsets according to the rate 
of convergence. The POD modes corresponding to Ak with very small rate of con­
vergence (k ~ 3 in Fig. 10.4 (left) represent data with very short correlation length 
(i.e., thermal fluctuations), while the low POD modes represent fields characterized 
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Fig. 10.4. DPD-simulation: 3D pipe flow driven by a time-periodic force. Left: Eigenspectra 
of velocity inx- (stream-wise velocity component, black dots) andy-direction (red crosses), 
and three POD temporal modes. The first two eigenvalues of the WPOD analysis of analytical 
solution performed over the same time-window as in computation are log10 (A1) = 2.208 and 
log1o(A2) = 0.525. Top right corner: velocity profile (streamwise component) reconstructed 
with the first two POD modes at t = 360. Right: velocity trace at the center line (r = 0) and 
close to the wall (r = 0.9Ro; here Ro is the pipe radius). (Adapted from [5]) 

by a long correlation length, i.e., the ensemble average. The WPOD analysis of the 
simulation data agrees very well with the WPOD analysis of the analytical solution 
performed over the same time-window as in computation. The first two POD eigen­
values obtained from the analytical solution are log1o(A1) = 2.208 and log1o(A2) = 
0.525, while fork> 2 we have log1o(Ak) = 0. The first two POD eigenvalues of the 
DPD simulation are log1o(AJ) = 2.217 and log1o(A2) = 0.54, while fork> 2 we 
have log1o(Ak) < -0.6. Considering the very small deviation between the eigenval­
ues of the analytical solution and numerical solution with DPD, we can expect that 
the error in evaluating ii will be of the same order. In fact, the error in simulation 
results processed with WPOD and compared to the analytical solution was of order 
10-2 , which is about two orders of magnitude smaller that the mean velocity. 

To employ the first criterion to separate the velocity field into u(t, x) and ut(t, x ), 
we investigate the rate of convergence of the POD eigenvalues Ak as a function 
of mode number k. The high modes represent small-scale features with very short 
correlation time, i.e., the thermal fluctuations. In contrast to the Ak for the low modes, 
the convergence of Ak associated with the higher modes is very slow. We can then 
compute the ensemble average from the low, most energetic modes, characterized 
by the fast convergence rate of Ak, while the fluctuations (ut(t, x)) are computed from 
the high slowly decaying modes. 

The first criterion is based on fitting the curve l ogJ o ( Ak) = f ( k) with piecewise c0 

continuous linear function; the method is illystrated in Fig. 10.5. Two least-s_quare 
app!oximations are performed for a r~nge o~ k values to obtain coefficients CJ (k) and 

~2 (k) of log(Ak) - log(k;) = CJ (k- k), k :;_ kand log(Az) - log( Ak) = _c2 (k- k), k?. 

k. Second, the residual of the least-square approximations for each k is computed 
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Fig. 10.5. MD simulation with DPD thermostatting of unsteady cylinder flow between two 
plates: eigenvalue analysis of v~locity in x- direction. (a)-(c )- POD eigenspectra and piece­
wise linear approximation with k_ = 2, 6 and 10. (d)-root mean square (rms) of the piecewise 

approximation error, red dot at k = 6 marks the smallest rms. (e) - five POD modes (high­
lighted in red) are selected to reconstruct the flow inx- direction. Nr = 3, N1, = 250, Npod = 80. 
(Adapted from [ 5]) 

and we set k = k - 1, where k corresponds to the minimum residuals over all k. 
The ensemble average and the thermal fluctuations are then computed as ii( -r, x) = 
I.%;::;1 ak( -r)c/Jk(x) and ut( -r, x) = u( -r, x) - ii( -r, x). In flow simulations where the en­
semble average does not depend on time, the number of modes required to compute 
ii(x) is strictly one. Moreover, k = 0 corresponds to the field consisting of thermal 
fluctuations only; an example for such a field is presented in Fig. 10.4, where all 
eigenvalues corresponding to the cross-flow velocity (in y-direction) have practi­
cally the same rate of convergence. In general, k increases with the complexity of a 
flow as we will see in the following examples. 

To employ the second criterion to separate the velocity field into u(t,x) and 
ut(t, x) we take into account the smoothness of temporal modes. For example, in 
Fig. 10.4 we observe that the first two temporal modes can be accurately approx­
imated with a smooth function, e.g., high-order polynomials. The L2-norm of the 
error in approximating the temporal modes a1 (t) and a2 (t) with fourth-order poly­
nomial through a least squares method is about three orders of magnitude less than 
its maximum value, which means that the presence of noise in the first and second 
modes is negligible. This finding is also consistent with the accuracy in computing 
the A1 and A2. The high-frequency oscillations present in the third POD mode which, 
according to the first criterion was attributed to the thermal fluctuations, suggest that 
it cannot be accurately approximated with a relatively smooth function and accord-
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ing to the second criterion it should not be used to reconstruct u(t,x). To adaptively 
select the POD modes representing u(t,x), one needs to define a threshold relating 
theL2-error in approximating Gk( r) with respect to (for example) L=-norm of Gk( r). 
A good approximation to the energy of noise present in the low-order "smooth" POD 
modes can be derived by measuring the energy of oscillations present in high-order 
modes representing the thermal fluctuations. 

Although the sample problem used to illustrate the behavior of the POD eigen­
spectra in atomistic simulations considers unsteady flow, the task of separating the 
eigemodes by the rate of convergence was relatively simple. It can be seen that the 
curve y(k) = log1o(Ak) can be approximated very well by a cO piecewise linear 
function, however, in more general cases, e.g., considering complex geometry or 
different types of particles, the transition from the very fast to very slow converging 
Ak can be smoother. In Fig. 10.5 we plot the eigenspectra obtained by MD simula­
tion of unsteady flow past two cylinders [5]. It is clearly seen that the eigenvalues 
in the range of k = 2 to 6 smoothly change the rate of convergence from very fast 
to very slow. However, even for this case the method of finding k and consequently 
separating the velocity fields into u(t, x) and ut(t, x) using the first criterion only was 
quite robust. 

In most of our particle-based simulations of complex fluids the transition from 
fast convergence (k 0(1)) to steady slow convergence (k» 1) is not sharp, and ac­
cordingly, approximating the curve of A-(k) with piece-wise polynomial function 
defined on two elements may not result in approximation of that curve with close to 
zero error. However, such approximation still serves its goal very well, as the only 
purpose of it is to detect (even approximately) the range of POD modes associated 
with slow (and fixed-rate) converging eigenvalues. The sensitivity ofu(t,x) to er­

rors ink is very low and can be estimated from comparing the value of Ak+ 1 to L,f Ak 
(see Fig. 10.5e). 

The third criterion for detecting whether a certain POD mode should be used to 
reconstruct u(t,x) or ut(t,x) is based on the analysis of the temporal modes Gk(t), 
specifically, their mean value< Gk> or standard deviation STD( Gk): 

L~pod (Gk( ri)- < Gk > )2 

Npad-1 

Npod 

<Gk >=N;0~ L Gk(ri). 

Assuming that the flow simulated with the atomistic solver is not turbulent, the en­
ergy associated with higher POD modes will converge very fast, which means that 
only the fluctuating component resulting from the thermal fluctuations contributes 
to the slow converging modes. The random force introduced as a DPD thermostat 
is a function of independent identically distributed random variable with zero mean, 
hence it is expected that the thermal fluctuations due to the added random force 
will also have zero mean. Consequently, the temporal POD modes representing the 
thermal fluctuations will also have zero mean, which implies that their standard de­
viation will be STD( Gk) = 1 / ( JNpad - 1), since Gk· Gk = 1. The effects of applying 
the third criterion in simulations of complex flows will be discussed in Sect. 10.5, 
where the WPOD is applied to DPD simulation of complex flow including red blood 
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cells and plasma. The three criteria presented above can be also combined to eval­
uate the optimal k. In our simulations we search fork by combining either the first 
and the second or the first and the third criteria. 

10.4 WPOD for Quantative Analysis of Intermittent 
Laminar-Turbulent Flow 

We have already discussed in Sect. 10.2 the application of POD to turbulent flow. A 
POD eigenspectrum showing the peculiar power law decay rate s = - 3 / 4 obtained 
in two independent studies has been presented. Here we apply WPOD for analysis 
of intermittent laminar-turbulent flow in a complex geometry domain. Specifically, 
high-resolution three-dimensional simulations were employed to study transient tur­
bulent flow in a carotid arterial bifurcation with a stenosed Internal Carotid artery 
(ICA). The detailed description of the problem set-up and simulation can be found 
in [7]; here we only briefly describe the procedure and methodology and focus on 
the outcome of the WPOD analysis. 

The geometrical model of the arteries was reconstructed from MRI images, and 
in vivo velocity measurements were incorporated in the simulations to provide time­
varying inlet and outlet boundary conditions (see Fig. I 0.6). Due to high degree of 
the ICA occlusion and variable flowrate, a transitional and intermittent flow between 
laminar and turbulent states is established. 

The complex geometry, specifically the curvature of the ICA in the downstream 
region with respect to the stenosis, facilitates a Coanda-type jet formation and tur­
bulent transition exhibiting hysteretic behavior with respect to changes in Reynolds 
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Fig. 10.6. Intermittent laminar-turbulent flow simulations in stenosed carotid artery. Left -
waveform flow rates imposed in the inlet of the common carotid artery (solid), and outlets 
of the internal (dash) and external (dash - dot) carotid arteries and Time-Windows selected 
for WPOD data analysis. Right - flow patterns: iso-surfaces in a high-speed region (jet, red), 
blue iso-surfaces - back-flow regions; and instantaneous path-lines of swirling flow and cross­
stream secondary flows. (Adapted from [7]) 



I 0 Window Proper Orthogonal Decomposition 287 

t • 0.085sec t • 0.1 sec t • 0.106 sec t • 0.109 sec t • 0 .112 sec 

c .g 
s 

\l 

Fig. 10.7. (in color) Unsteady flow in carotid artery: transition to turbulence. (a-e) cross­
flow vorticity contours Dy extracted along y = -1.2 in ICA. (f) region of ICA where flow 
becomes unstable, colors represent iso-surfaces of w-velocity (stream wise, along z-direction), 
Re= 350, Ws = 4.375. (Adapted from [7]) 

number. The main global flow features of the flow are presented in Fig. 10.6; while 
in common and external carotid arteries (CCA and ECA) pathlines are quite orga­
nized, those in ICA exhibit disorder in the poststenotic region featuring a swirling 
pattern. The blood flow along the curved wall is accompanied with decrease of the 
pressure on the wall, dropping below the surrounding pressure and resulting in the 
attachment of the fluid flow to the wall. The wall jet consists of an inner region, 
which is similar to a boundary layer, and an outer region wherein the flow resembles 
a free shear layer. These layers interact strongly and form a complex flow pattern. 

Figure 10.7 demonstrates the jet-like effect created by the stenosis as predicted 
in our simulation. In Fig. 10.7 we show the contours of the Qy-vorticity (transverse) 
that can be linked to the rolling up along the wall (see coordinate axes in Fig. 10.7f), 
for different stages of transition that show the wall jet breakdown. These results 
illustrate the onset of turbulence due to shear layer type instabilities of the Coanda 
wall jet in the post-stenotic region. Specifically, in Fig. 10.7a, the laminar state of the 
incoming flow is confirmed by the straight path traces. The jet outer region (marked 
by a blue trace) and the adjacent recirculation back-flow region (marked by a light­
blue trace) form a free shear layer. In Fig. 10.7b, the jet moved downstream along 
the wall showing the early stage of interaction with the adjacent recirculation region. 
Figure 10.7c shows the perturbed shear layer at the leading edge of the jet. The tilted 
vorticity trace in Fig. 10. 7 d provides evidence of the stage of vortices coalescence in 
the outer region and the rolling up of the inner shear layer. The tilted wall jet rapidly 
breaks down leading to dispersion of the organized flow pattern (Figs. 10.7d,e). It 
should be noted that the breakdown gradually propagates upstream, a phenomenon 
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that was predicted by Sherwin & Blackburn [19] using DNS in a simplified geo­
metry. 

The waveform curves consist of a brief systolic phase (acceleration and decel­
eration) and a longer diastolic phase with some increase in flow rate around t=0.55 
(see Fig. 10.6). The early turbulent activity in the post-stenotic region begins at the 
mid-acceleration phase of the cardiac cycle. In the early part of deceleration there 
is intense turbulent activity; past the mid-deceleration phase, the intensities die out 
and the flow begins to re-laminarize. 

The spatial variations in the geometry and temporal unsteadiness lead to intermit­
tent behavior of the flow creating a jet, pockets of stable backflow regions and high 
shear regions, and localized in time and space transitional and turbulent flows. As 
we previously stated, we consider the power-law decay of the energy spectrum as 
a clear indication of turbulence. Hence, the goal of WPOD analysis here is to cap­
ture time- space intervals where convergence of high order POD eigenvalues can be 
approximated by a power-law. 

To perform WPOD analysis we divide the cardiac cycle into eight time-window 
intervals denoted by a-';- h as illustrated in Fig. 10.6 (left); the time-windows have 
been chosen to represent different stages of the transient regime. We will refer to the 
time-windows as TWa7 TWh. In Fig. 10.8 we plot the POD eigenspectra computed 
over six consecutive time-windows; the eigenvalue spectrum slope provides an in­
dication of a turbulent or laminar regime. The eigenvalue spectra distinguish clearly 
the presence of transition from laminar to turbulent regime shown in Fig. 10.8a and 
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Fig. 10.8. WPOD: Eigenspectra obtained over different time-windows (see Fig. 10.6). The ar­
rows denote the spectrum evolution in time: transition to turbulence is denoted by an upward­
directed arrow, the downward-directed arrow refers to re-laminarization. (Adapted from [7]) 
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followed by re-laminarization in Fig. 10.8b. The spectra obtained over the TWc 
and TWd time-windows, covering the transitional regime, display a slow and steady 
decay. 

Time-window POD may not be sufficient for detection of spatially intermittent 
distribution of kinetic (turbulent) energy. Visualization of solution reconstructed 
from higher-order POD modes only does lead to capturing regions with high tur­
bulent energy, however, it is not sufficient to quantifY turbulence in each region. To 
this end, a space-window POD to detect regions with high kinetic energy can be 
employed. We analyze the eigenspectrum in two sub-domains of the ICA shown in 
Fig. 10.9: 1) the stenosis throat (sub-domain AB); 2) the post-stenotic region, from 
12 to 22 mm downstream of the stenosis throat (sub domain CD). 
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Fig. 10.9. POD eigenspectra obtained over different time-windows in sub-domains AB and 
CD (right): (a,c,e) - time-windows TWa, TWb and TWc (flow acceleration and transition to 
turbulence); (b,d,t) - time-windows TW d, TWe and TWf (flow deceleration and laminariza­
tion); (arrows show the time growth, color represents the w-iso-surface reconstructed from 
POD modes 20 to 50 at t = 0.13. (Adapted from [7]) 
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Figure 10.9a,b shows fast decay of the POD eigenspectra computed in sub-domain 
AB where no turbulence was detected. In Fig. 10.9c,d we plot the spectra computed 
in sub-domain CD. The energy spectra in Fig. 10.9c reveal onset of turbulence and 
subsequent flow re-laminarization. The spectra obtained over TWc and TWd depict 
slow decay, typical for turbulent flow. The POD spectra in Fig. 10.9e,f show the 
same scenario of transition/re-laminarization although the turbulence here is very 
weak because it experiences a decay and eventually re-laminarization downstream 
of the stenosis (compare TWc and TWd curves in plots (e,f) with those in plots (c,d)). 

Processing 3D data sets to determine if the energy spectra of a flow exhibits a 
power law decay may still carry excessive computational cost, particularly when 
simulation data is analyzed at the run time. In the next example we show that a 
2D space-time WPOD can also be successfully employed for that purpose. To this 
end, the velocity field computed in TCA is extracted along 2-dimensional (2D) slices 
(space-windows), and then time-window POD analysis is performed. In Fig. 10.10 
we show spectra computed over different time-windows using velocity fields ob­
tained from a transverse to the main flow 2D slice at z = 60. Similarly to 3D POD 
analysis (see Figs. 10.9c,d), these POD spectra reveal transient flow regimes shown 
by arrows. POD spectra were also computed along longitudinal cross-sections pro­
vides the same information 
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Fig. 10.10. 2D POD: eigenspectra obtained over different time intervals (see Fig. 10.6); ve­
locity field is extracted at z = 60; (a) time-windows TWa, TWb and TWc (flow acceleration, 
and transition to turbulence); (b) time-windows TWd, TWe and TWf(fiow deceleration, and 
laminarization); (c) time-windows TWg and TWh (diastole phase); arrows show the time 
growth 
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To quantify the quasi-instantaneous decay of the POD eigenvalues the following 
procedure can be implemented. Recall that turbulence is associated with existence 
of the high POD modes that exhibit a power law energy decay, namely 

(10.4) 

Let us extract flow field data from different planes, as shown in Fig. 10.10. For each 
time instant t over the cardiac cycle, the POD analysis is performed over a relatively 
short time-window t - !J.t' /2 < t < t + !J.t' /2, where !J.t' is approximately 0.01 sec­
ond at the systolic peak and approximately 0.1 second during the diastolic phase. 
Taking advantage of the high time resolution of simulations, each time interval !J.t' 
here is covered by 80 snapshots. The exponent s(t) is then computed by approxi­
mating the convergence rate of modes k = [2 20] with the power-law. In Fig. 10.11 
we plot the exponent s(t) of the POD eigenvalues. The double hump curves clearly 
indicate the transient nature of the flow. The low values of the slope (0.8 < s < 1.1) 
correspond to the turbulent regime that occurs during the systolic phase. The sec­
ondary turbulence regime at t ~ 0.55 mentioned above is also captured by the low 
slope values in Fig. 10.11. The eigenspectra decay rate 0.8 < s < 1.1 obtained in the 
simulation setup has been later confirmed in experimental setting by Kefayati and 
Poepping [14]. 
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Fig. 10.11. 2D POD: decay rate of POD eigenspectra. Data are extracted along: slice z = 50 
(2D slice A) and slice z = 60 (2D slice B) depicted in Fig. 10.10 (right); longitudinal slice with 
x = canst and located between z = 50 and z = 60. s(t) is computed for the modes k = 2-;- 10 
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10.5 WPOD in Atomistic Simulations 

In this section we focus on applications of WPOD in particle-based simulations. 
While the method is suitable for processing molecular dynamics and coarse-grained 
molecular dynamics data, we limit our discussion on the latter. Specifically, we con­
sider application of WPOD to the data generated in dissipative particle dymanics 
simulations (DPD). Our focus is on the accuracy and computational efficiency in 
separating the ensemble solution from the thermal fluctuations. To exemplify the 
strength of the WPOD, particularly in analysis of non-stationary data, we selected 
two classes of problems: 1) simulation of unsteady flow where DPD particles have 
the same properties; and 2) simulation with four types ofDPD particles representing 
healthy and diseased red blood cells, blood plasma and walls. The various particle 
types may have distinct cutoff radius, strength of dissipative force or other parame­
ters defining the pairwise interactions as described in the following brief overview 
of the DPD method. 

DPD is a mesoscopic particle method with each particle representing a molecular 
cluster rather than an individual molecule [3, 8, 15]. The DPD system consists of N 
point particles interacting through conservative, dissipative and random forces, i.e., 
F 1 = FJ +Ff + F~ and all forces are truncated beyond the cutoff radius r c, which 
defines the length scale in the DPD system. The motion ofDPD particles is governed 
by the second Newton's law: 

dr; 
--u­dt - l 

The forces between particles i and j are computed from: 

(10.5) 

where u;1 = u; - u1, L1t is the time step, and re is the cutoff radius beyond which all 
forces vanish. The coefficients a;1, y, and <J define the strength of conservative, dissi­
pative, and random forces, respectively; wD and <fl?-(r;1) = (1-:;; )k with the expo­
nent k are weight functions, and !;;1 = !;1; is a normally distributed random variable. 
The random and dissipative forces form a thermostat and must satisfy the fluctuation­
dissipation theorem [3] leading to the two conditions: wD (r;1) = [ u?-(r;1)] 2 and <J2 = 

2ykBT with T being the equilibrium temperature. The velocity fluctuations due to 
FR dominate in regions, where the ensemble velocity is expected to be small, for ex­
ample next to the walls, which makes accurate extraction of u(t, x) and its gradients 
a very difficult task. 

Our first example is a DPD simulation of pipe flow driven by a time-periodic 
force, for which an analytical expression (Womersley velocity profile) for the en­
semble average is known: 

( ) [iL1P (l Jo(rJ-iw/v ) iwt] u t r = -Im - - exp 
' wp J0 (D/2J-iw/v) ' 

(10.6) 
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Fig. 10.12. (in color) Computational domain for an unsteady pipe flow problem. WPOD is 
performed over points Xp - vertices of the cross-sectional plane. The walls are represented 
by static particles located between the surfaces marked by green and blue edges. Red spheres 
centered at the vertices represent sampling region Dp 

where L1 Pis the predefined pressure gradient, ro is the wave number, p is the density, 
D is the pipe diameter and i = A. The expected mean flow is one-dimensional. 

The snapshots are collected on a set of grid points Xp distributed along cross­
sectional plane in the middle of the computational domain, as presented in Fig. 10 .12. 
The main flow characteristics are: Womersley and peak Reynolds numbers: W s = 
RJOJIV = 3.81, Repeak = Umax2R/v = 97.1. Here R = 10 is the pipe radius, ro = 

2n0.0125, v = 0.54 is the kinematic viscosity and Umax is the maximum velocity at 
the centerline. The DPD coefficients employed in this study are: a = 25, y = 4.5, 
er= 3.0, re= 1.0, k = 0.25. The flow is due to the force acting in the direction of 
the centerline: Fx = L1Psin(mt), L1P = 0.5. 

In Fig. 10.13a-fwe plot the instantaneous ensemble average velocity profile along 
the streamwise (x-)direction and its derivative taken in the radial direction. The re­
sults are compared to those obtained with the standard spatio-temporal averaging 
technique (i.e., Npod = 1), and to the exact analytical solution. In Fig. 10.13g,h we 
plot the PDF of the thermal fluctuations computed with the WPOD method for the 
streamwise and one of the cross-flow velocity components. In both cases a Gaus­
sian PDF seems to be the best fit, consistent with the fact that the random force 
term in the DPD governing equations depends on a random Gaussian variable. The 
data in Fig. 10.13 show instantaneous solutions, however, the accuracy over the en­
tire simulation remains about the same. In Fig. I 0.14 (left) we show that WPOD 
provides significant computational savings: same accuracy can be achieved by aver­
aging results of24 simulations or by employing the WPOD method within a single 
simulation. The POD eigenspectra have been presented in Fig. 10.4 in Sect. 10.3.2. 
The accuracy in predicting the low-order eigenvalues, also discussed in Sect. 10.3.2, 
is also comparable to the data ofFig. 10.14 (left). 

To achieve a certain accuracy, the WPOD approach allows balancing the number 
of POD modes and the length of time interval M.1L1t for obtaining a single snapshot. 
Figure 10.14 (right) shows that for NpodMs =canst practically identical accuracy in 
reconstruction of the deterministic component of an unsteady flow can be achieved. 
We have observed that increasing the WPOD time interval Tpod = NpodNts also in-
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Fig. 10.13. (in color) DPD-simulation: 3D non-stationary pipe flow driven by a time-periodic 
pressure gradient. Ensemble average velocity (a-c) and its derivatives ( d-t); z-axis and colors 
represent the velocity (derivative) magnitude. In all three cases the derivatives have been com­
puted numericaly on first-order finite element grid. (g,h) - a histogram of probability density 
function (PDF) (y-axis) of thermal fluctuations. N,. = I, Ms= 50, Npod = I and Npod = 160, 
k = 2. Velocity and derivative profile correspond to simulation time t = 340 (see Fig. 10.4 
(right) for reference). (Adapted from [5]) 

creases the accuracy; however, we note that parameter N1s cannot be very large if 
the process is expected to be non-stationary. 

The WPOD time interval in this analysis spans exactly one cycle; the alterna­
tives for the WPOD method for evaluation of timevarying ensemble solution are 
either performing phase averaging or averaging data over short time intervals across 
numerous realizations. Both alternative methods are computationally demanding. 
Moreover, for solutions with non-periodic in time manifolds phase averaging can­
not be performed. 

Our second example is blood flow simulation with healthy and malaria-infected 
red blood cells (RBC). The RBCs, solvent and walls are modeled by DPD parti­
cles. The properties ofDPD particles of the red blood cells and plasma can be found 
in [4]. The total number ofred blood cells is 42, and the membrane of each red blood 
cell is modeled by 500 DPD particles. The hematocrit level is: 30%. The total num­
ber ofDPD particles including the solvent, the RBC particles and the wall particles 
is 60,067. The main characteristics of the flow simulations are: Reynolds number 
Re= DUmean/v = 0.24; here D = 20 is the pipe diameter, Umean = 0.27 is the aver­
age velocity in the streamwise direction and v = 22.33 is the kinematic viscosity (all 
in DPD units). The computational domain is a pipe with length L = 40 and radius 
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Fig. 10.14. (in color) Computational efficiency: DPD-simulation of 3D non-stationary pipe 
flow driven by a time-periodic pressure gradient. X-axis - time; Y-axis - L2-error. Left: Com­
parable improvement in accuracy accuracy is achieved by either increasing the computational 
cost by a factor of24 or by employing the WPOD method requiring negligible computational 
overhead. Right: The time window (NpadNts = 4000) over which the data is processed is 
kept constant. Data is averaged over four concurrent realizations (N,. = 4); blue dash curve -
N1s = 50.Npod = 80; red dot-dash curve -N1s = 100. Npod = 40; black solid curve -N1s = 200, 
Npod = 20. (Adapted from [5]) 

R = 10. The no-slip boundary condition on the wall is imposed by fixed particles. 
The points Xp are spread almost uniformly in the entire volume of the computa­
tional domain. In all three cases no assumptions of periodicity or axi-symmetry in 
sampling the data at the Xp points have been imposed, and the radius of spherical 
region QP was rp = 0.75. The flow is driven by a constant force, however, due to 
RBCs interactions, weak secondary flows are expected to develop. As a result of 
these secondary flows, a non-stationary, non-periodic and asymmetric (with respect 
to the pipe central axis) ensemble solution is expected. 

Results of this simulation are presented in Fig. 10.15. As expected, considerably 
smoother ensemble average flow profiles correspond to simulation with WPOD. The 
POD eigenspectra of the three velocity components point to the dominance of the 
streamwise flow, which has about four orders of magnitude higher kinetic energy 
than the cross-flow components. The fast convergence of the first six eigenvalues 
of the crossflow velocity components suggests developing secondary flows due to 
interactions among the blood cells and between the blood cells and the plasma. 

WPOD was applied at simulation run-time, and the number of POD modes re­
quired for ensemble solution reconstruction was computed dynamically according 
to the criteria discussed in Sect. 10.3.2. To select the number of POD modes (k) 
for reconstruction of u(t, x) we first applied the first criterion (simulation I), e.g., k 
was computed by minimizing the error in the piecewise linear approximation of the 
eigenspectrum for each velocity component separately. Second (simulation II), we 
repeated the simulation and applied the first and the third criteria for selecting the 
number of modes composing u(t,x) in the following manner: The number of POD 
modes (k) were selected adaptively for each velocity component using the first cri-
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Fig. 10.15. (in color) DPD simulation of suspension of RBCs in a pipe flow, driven by a 
constant force. Upper: instantaneous position and deformation of the RBCs superimposed 
on the solvent flow processed with the WPOD method, and streamwise velocity profile (left 
inset) reconstructed with WPOD and standard averaging (Npod = I); PDF of the streamwise 
velocity fluctuations, the red curve depicts the fitted normal Gaussian PDF. Lower: eigenvalue 
spectra for three velocity components (only the first 30 eigenvalues are shown). Nr = 1, N1s = 

250, Npod = 160. (Adapted from [5].Visualization with help of J. Insley Argonne National 
Laboratory, USA) 

teria. Then, starting from the second mode we compared the standard deviation of 
temporal modes to (I/ j(Npod - 1 ); once standard deviation of (ak) was within 1 % 
of the reference value the procedure was terminated and all lower order modes have 
been kept. In simulation I the average number of POD modes forming u(t,x) was 
about 6 to 7 for the streamwise velocity and 8 to 9 for the cross-flow components, 
while in simulation II only the first POD mode was selected for the stream wise com­
ponent and 3 to 5 modes for the cross-flow components. Although, the difference in 
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parameter kin simulations I and II may appear significant, the energy associated with 
the POD modes rejected by the third criterion is very low comparing to the energy 
contained in the preserved modes. 

10.5.1 Analysis of Deformability in Cells 

Here we apply the POD to analyze red blood cells (RBC) deformations. The data 
is obtained by DPD simulations. Each RBC is represented by a cluster of 500 
DPD particles, as illustrated in Fig. 10.16, for a detailed description on the RBC 
modeling we refer to [ 4]. The particles have fixed connectivity, and their posi­
tion can be described as a function of two variables - time and particle index PID: 
X =X(t,PID), Y = Y(t,PID), Z = Z(t,PID). The correlation matrix required for 
POD analysis is constructed from: 

To illustrate the POD eigenspectra of deformation of object represented by a collec­
tion of bonded particles, we present here POD analysis of three different types of 
a single red blood cell (RBC) dynamics: (i) RBC suspended in a solvent, (ii) RBC 
drifting in a weak tube flow resulting in a small cell deformation (bullet shape), and 
(iii) RBC rotating in a strong shear flow with large unsteady deformation. In all sim­
ulations the surrounding fluid (blood plasma) is represented by non-bonded DPD 
particles. The goal of POD is to separate the correlated motion of the cell membrane 
from thermal fluctuations. 

The POD eigenspectra for different dynamics are shown in Fig. 10.17. We ob­
serve a typical power-law decay of high-order POD eigenvalues in all simulations. 

-. . . .. . . . . . L 
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Fig. 10.16. DPD simulation of red blood cell. The cell membrane is constructed from 500 
DPD particles, linked by non-rigid bonds 
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Fig. 10.17. POD analysis of red blood cell (RBC): eigenvalue spectra. Top - RBC fluctuates 
due to DPD thermostating; middle - RBC drifts in weak tube flow; bottom - RBC in strong 
shear flow 
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Fig. 10.18. POD analysis of red blood cell (RBC): probability density function of RBC con­
formation fluctuations (ldrl). Same is in Fig. 10.17. Left- RBC fluctuates due to DPD ther­
mostating; middle - RBC drifts in weak tube flow; right- RBC in strong shear flow 

As expected the number of POD modes characterizing the correlated motion of the 
cell is increasing with the complexity of the flow. The probability density function 
(PDF) of thermal fluctuations is computed by analysis of positions ofRBC's vertices 
reconstructed from high-order POD modes whose eigenvalues converge according 
to the power-low. 

To remove the thermal fluctuation from the data, we can reconstruct the posi­
tion of RBC membrane particles from the low-order modes, while truncating all the 
modes for which convergence of eigenvalues can be approximated with the power­
low: 

k 
X(t,PID) =I, ak(t)c/>k(PID), X = [X Y Z]. 

k=I 

To analyze the fluctuating component we subtract the reconstructed with low-order 
modes data from the original data: 

dr1(t,PID) = X(t,PID) - X(t, PID), 

where dr denotes deformation due to thermal fuctuations. 
As can be seen in Fig. 10.17, there are only one and two modes dominating the 

RBC dynamics in case (i) and (ii), respectively. As shown in Fig. 10.18, the con­
formation fluctuations in simulations (i) and (ii) are small and almost close to ther­
mostat input stochastic noise, i.e., Gaussian random noise in our DPD simulation. 



300 L. Grinberg et al. 

However, in strong shear flow the RBC dynamics is accompanied by the excite­
ment of high-order membrane deformation modes, and more degrees of freedom are 
needed to describe such motions. The eigenspectrum decays much slower than in 
the first two cases, and it asymptotically converges to power-law decay. The con­
formation fluctuation is much bigger and deviates from Gaussian distribution (with 
kurtosis higher than 3.0) due to the interaction between the nonlinearity and thermal 
nmse. 

10.6 WPOD in Multiscale Visualization 

Here we consider DPD simulations of RBCs in blood plasma. The particle data is 
projected on a fixed grid composing vertices of tetrahedral elements. The projection 
is performed by time-space sampling of particle velocities over short time intervals 
(50 to 500 time steps each), and WPOD is then applied for extracting the correlated 
motion of the flow while removing thermal fluctuations. The data is processed at 
the run-time and the number of POD modes for reconstructing the velocity field 
is computed adaptively using the criteria described in Sect. 10.3.2. As a result, the 
large-scale flow patterns are visualized using the projected and filtered with WPOD 
data, while the small scales are visualized using a small subset of particle data. 

In Fig. 10.15 multiscale data from aDPD simulation ofblood flow are visualized. 
The large-scale flow features are presented using continuum data computed by a pro­
jection of atomistic data onto a specified grid Xp. The small scale features, such as 
RBC location, their interactions and membrane folding are visualized by presenting 
the DPD particles forming the blood cells membrane. In Fig. 10.19 we plot a snap­
shot from multiscale visualization of flow around an RBC adhering to the wall. The 
RBC also flips and deforms while it sporadically moves in the flow direction. The 
configuration of RBC is presented by plotting instantaneous position of 500 DPD 
particles representing the cell membrane, while the global flow field is presented by 
data projected onto a 3D grid and separated from the thermal fluctuations with the 
WPOD. Simultaneous animation of the RBC motion and the flow helps to better un­
derstand the interactions between the RBC motion and deformations and developing 
secondary flows. 

10.7 Summary and Outlook 

High performance computing has already exceeded the petaflop barrier and it now is 
soaring into the exascale, hence allowing great advances in biomedical simulations. 
Consequently, increasing the size and volume of such simulations leads inevitably 
to generation of massive volumes of multiscale data which must be analyzed, stored 
and visualized. Hence, it is clear that future research will focus not only on how to 
analyze existing vast volumes of data, but also how to move this data analysis into 
run-time in simulations as co-processing. This is particularly true for cardiovascular 
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Fig. 10.19. Multi scale visualization of a flow around an adhesion cite. The membrane of the 
RBC is represented by 500 DPD bonded particles with a fixed connectivity. Blood plasma is 
also simulated with DPD particles. The atomistic data is projected on a 3D grid with WPOD 
forming a continuum data. The RBC is visualized by tracing the DPD particles while the 
global flow features are visualized using the continuum 3D data. Courtesy of Argonne Na­
tional Laboratory. Visualization created by J. Insley 

flows which are pulsatile with data over many cardiac cycles required for detailed 
analysis. Such shift will, in fact, allow users to reduce the cost of data processing and 
also to obtain more accurate conclusions based on substantially larger data samples 
than analyzing fields stored only sporadically. 

Multiscale biological flow modeling involves both continuum and atomistic based 
methods. Computational methods for processing data at the continuum level are quite 
mature, although, there is still a need for exploring scalable approaches for run-time 
data compression and analysis, and, in particular, for quantitative analysis of and 
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transitional and turbulent fields. At the same time, quantitative analysis and visu­
alization tools for data of mesoscale and molecular simulations are non-existent! 
Quantifying deviations from equilibrium, computing ensemble solution and perform­
ing fluctuation analysis is one of the most important but expensive part of many 
particle-based simulations. 

In this chapter we described our first attempts to develop data analysis tool based 
on window proper orthogonal decomposition (WPOD) with focus on cardiovascular 
flows for large arteries but also at the capillary level. First, WPOD was applied to 
analyze intermittent laminar-turbulent flow in a carotid bifurcation to capture the on­
set of turbulence and subsequent re-laminarization within one cardiac cycle. Subse­
quently, WPOD was applied for analysis of molecular and coarse grained molecular 
dynamics (DPD) simulation data in smaller arterioles and capillaries, including an 
analysis of deformability and fluctuations of a single red blood cell. 

We have demonstrated that unlike the often-used energy based criterion in low­
dimensional modeling, in WPOD analysis of multidimensional dynamic field, such 
as cardiovascular flows, it is the rate of convergence of the POD eigenvalues that 
reflects the underlying physical process. 

A wider use ofWPOD in diverse multiscale biological phenomena, from protein 
and cell dynamics, to flow-structure interactions in large arteries but also in arteri­
oles and capillaries will help to further enhance its effectiveness while at the same 
time will provide new quantitative information of the dynamic multiscale processes 
analyzed. Specific new advances are required on developing sharper criteria for par­
titioning data based on POD eigenspectra, especially in cases where there is no clear 
separation of the eigenvalues. In a broader context, developing similar tools like 
WPOD would greatly facilitate effective analysis ofmultiscale biological phenom­
ena involving heterogeneous but coupled continuum-atomistic simulations. Finally, 
such specialized computational methods for interactively exploring spatio-temporal 
correlations ofmultiscale phenomena should found their way into open source visu­
alization software. 
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Abstract We review a few applications of reduced-order modeling in aeronautics 
and medicine. The common idea is to determine an empirical approximation space 
for a model described by partial differential equations. The empirical approximation 
space is usually spanned by a small number of global modes. In case of time-periodic 
or mainly diffusive phenomena it is shown that this approach can lead to accurate 
fast simulations of complex problems. In other cases, models based on definition of 
transport modes significantly improve the accuracy of the reduced model. 
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11.1 Introduction 

Progress in numerical simulation of partial differential equations (PDEs) allows ac­
curate and reliable predictions of some complex phenomena in solid and fluid me­
chanics, solid state physics, geophysics, etc., at the price of significant code devel­
opments, difficult computational set ups and large high-performance computing in­
frastructures. Using reduced-order models (ROMs) one trades accuracy for speed 
and scalability, and counteracts the curse of dimension by significantly reducing the 
computational complexity. Thus RO Ms represent an ideal building block of systems 
with real-time requirements, like interactive decision support systems that offer the 
possibility to explore various alternatives. In complex cases, the real-time require­
ments would not be met by standard numerical methods. 

The construction ofROMs for design, optimization, control and data-driven sys­
tems is a non-trivial task and various alternative ways can be followed often without 
any guarantee that the ROM will effectively model the physical phenomenon in the 
application. Focusing for example on flows or environmental phenomena, different 
states can often be characterized by the presence or absence of qualitative flow fea­
tures, by the structure of feature patterns and by the strength of such features. Proper 
orthogonal decomposition (POD) [7, 11] is a mean to extract such features from ex­
isting solution snapshots under the form of global modes. However, RO Ms based on 
such POD modes are numerically unstable in unsteady, advection dominated models. 
Stabilization can be obtained by various ad hoc techniques (see [2, 5, 14] for exam­
ple), but a general framework to determine accurate and robust unsteady ROMs is 
still lacking. Still, ROMs can be useful to model far-field conditions coupled to a 
complete model, or to regularize the solution of an inverse problem. We give in the 
following two examples in these directions. 

Another central issue for ROMs is the quality of the approximation obtained 
thanks to a reduced number of empirical modes. These modes are determined from a 
set of snapshots that are relative to a particular configuration: geometry, physical pa­
rameters, boundary conditions. When the configuration varies there is no guarantee 
that the reduced basis will adequately approximate the solution. On the other hand, 
ifthe snapshot set from which the basis is obtained includes a large number of differ­
ent configurations, by construction the reduced basis will enjoy better approximation 
properties when the configuration varies. Given the computational costs relative to a 
systematic exploration of the configuration space, optimal sampling strategies must 
be introduced. In the following, we present one strategy based on an estimation of 
the approximation error of the reduced base. 

Nevertheless, there is a fundamental difficulty in approximating with global (for 
example POD) modes the displacement of, say, a flow feature in time or across the 
parameter space. Global modes are not optimal for advection. In particular, POD 
modes reduce to Fourier modes for translation invariant signals. An alternative idea 
is to define advection modes as the solution of an optimal transportation problem. An 
application to interpolate the solution of a PDE system across the parameter space 
based on the definition of advection modes is presented in the following. 
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11.2 Systematic sampling for ROM 

We have considered an oscillating NACA0012 airfoil in a compressible flow as in 
the CTI test case from AGARD-R702 report. This case corresponds to a Mach 0.6 
flow at infinity past an oscillating NACAOO 12 airfoil. In the following the compu­
tations are inviscid; in the actual experiments the Reynolds number is 4.8 x 106 . 

The parameter space is two dimensional: the oscillating frequency varies between 
/ 1 =30Hz and / 2 =70Hz (CTI case: 50Hz) whereas the amplitude of the oscillation 
varies between aJ=1.6deg and aJ=3.6deg (CTI: 2.5deg) with an average pitch of 
am=3.0deg. We have implemented an algorithm to sample the parameter space in 
order to emich the database of the POD basis functions. The objective of this pro­
cedure is to determine a set of POD modes that minimizes the approximation error 
across the parameter space S = [ aJ , aj] x I/\ .f] . 

The main idea is to build a recursive Voronoi diagram and the corresponding 
Delaunay triangulation based on the projection error of the POD representation. 
This is an extension of what it was proposed in a one-dimensional setting in [10]. 
Let 9 n be the set of points P1 , · · · , Pn in the parameter space corresponding to ac­
tual high-fidelity simulations and 3"n the corresponding Delaunay triangulation. For 
given number M of POD modes (the size of the basis) we build a set of POD ba­
sis functions </>;, i = 1, · · · , Musing the high-fidelity simulations corresponding to 
points P1, · · · , Pn. The number of POD modes M is arbitrary fixed and is kept con­
stant during the sampling process. Then we determine the representation error E (Pk), 
k = 1, · · · ,n, corresponding to the residual in the L2 norm of the projection of high 
fidelity solutions at Pk on</>;, i = 1,- · · ,M. Let us denote V(Ts) the set of vertexes 
of Ts E ,'Yrz. We select the triangle Tmax E 3"n for which the product of its area and 
the sum of E(Pk), Pk E V(Ts), is maximum. The next point of the triangulation is the 
barycenter of Tmax. This new point is used to compute a new Delaunay triangulation. 
A Delaunay triangulation has thus to be performed at each sampling iteration. 

As an example consider Fig. 11.1. The parameter space S = [aJ, aJ] x 1/\/2] is 
mapped to the unit square ( ao = [ aJ, aJ] f--+ A= [O, l] and f = lf1 ,f2] f--+ F = [O, 1]) 
and is partitioned in 8 triangles relative to 7 simulation points that were obtained by 
iterating the method starting from points P1, P2, P3, P4. Both Delaunay triangulation 
(red) and Voronoi tessellation (blue) are presented. The new high-fidelity simulation 
point Ps is added at the barycenter of the triangle relative to points P2, P4, P5 . For 
this triangle the product of the area times the sum of the representation errors at the 
vertexes is the highest. 

The procedure implies the computation of n space correlations of high-fidelity so­
lutions for each new simulation point Pn+ 1. These operations are particularly efficient 
in the hybrid domain-decomposition ROM as the spatial extension of the snapshots 
and of the POD modes is reduced to a region close to the airfoil. The same procedure 
can be extended to higher-dimensional parameter spaces. 
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Fig. 11.1. Example of one iteration of the Voronoi tessellation algorithm. The parameter space 
subset S is represented. ao is on the ordinates and f on the abscissa. (a) typical iteration 
(iteration 3); (b) next point is added (PS) and the triangulation updated 



We start with a POD basis, called Binitial, computed from snapshots taken at 4 points 
P1, P2, P3 and P4 (see Fig. 11.2). 20 time snapshots are uniformly taken over one 
period for each point Pi, I :::; i :::; 4. Starting from these points in parameter space, 
4 additional points, denoted by P5 , P6, P7 and Ps are determined using the method 
described above (Voronoi tessellation). A suboptimal POD basis, called Bsuhopt is 
then computed from these 8 points: P1 to Ps. We want to compare the suboptimal 
basis performance to another basis composed with the same number of sampling 
points, but chosen without any specific critria. For instance, we consider an uniform­
like basis, Buniform, computed using from P1 to P4 and P9 to P12. The points P9 to 
P12 are relative to already existing simulations that we exploit now for building a 
basis. No special criteria were used to specify these points. However, Mis the same 
for Buniform and Bsuhopt·. A summary of the high-fidelity simulation employed for 
each POD basis is represented in Table 11.1. 

Table 11.1. POD basis summary 

POD basis P1 P2 P.1 P4 Ps p6 P7 Ps P9 Pio Pu P12 

B1nilial uniform x x x x 
Buniform uniform x x x x x x x x 
Bsuhopt suboptimal x x x x x x x x 

11.2.1 Results



310 M. Bergmann et al. 

Table 11.2. POD Basis L2 projection errors x 104 . PT denotes the average error over the 12 
points P;. Buniform and Bsubopt are computed with 160 snapshots and Ps the standard devia­
tion. B1nitial is computed with 80 snapshots 

B1nitial 3.71 3.75 7.36 4.80 6.20 5.25 5.58 3.80 4.69 4.53 3.75 4.63 4.82 1.12 
Buniform 3.85 4.07 6.70 5.29 4.91 4.20 4.87 4.18 4.38 4.29 3.89 4.45 4.60 0.79 
Bsubopt 3.24 3.23 5.42 5.41 5.11 4.62 4.99 4.20 3.74 3.37 3.01 3.06 4.08 0.95 

The accuracy of the 3 POD basis is evaluated by computing the L2 projection error 
of the whole snapshot setP1 toP12 onto each POD basis, see Table 11.2. In particular, 
we consider the average L2 norm of the error on each variable: density, velocity 
components and speed of sound. This error norm can be biased by the normalization 
of the different physical quantities. However, in our case, the normalizations are 
such that all the variables have comparable absolute values and hence the average 
error over the different physical quantities is a reasonable measure of accuracy. The 
error PT denotes the average error evaluated over the whole set of points P1 to P12. 
The basis Bsubopt shows the best average errors of about 15% compared to Buniform. 

Even for the extra uniform sampling points P9 to P12 that are not included in the 
Bsubopt database, the errors obtained with Bsubopt are close to those obtained with 
Buniform· 

11.3 ROM by Domain Decomposition 

Let Q 0 (t) denote the two-dimensional region enclosed by the airfoil at time t and let 
Q be such that Q 0 (t) c Q c JR2 . The compressible Euler equations are defined on 
the domain Qc(t) := Q\Q0 (t). Let us also define two rectangles &t'e and a'; such that 
Q 0 (t) ca'; c &t'e c Q. The inner rectangle a'; always includes the airfoil during its 
oscillation about a point of the chord (see Fig. 11.3). 

In Qc(t), we solve the unsteady compressible Euler equations on a fixed cartesian 
mesh to second order accuracy in space and time, as explained in [6]. We collect an 
appropriate solution database of N flow snapshots. 

Let u(k) be one solution snapshot in Qc(tk), 1 :::; k:::; N, restricted to &t'e \a'; and 
defined in terms of primitive flow variables. We compute a Galerkin base of the 
form </>; = I.f=1 b;k(u(k) - U), with 1 :::; i:::; M, U = l/N''i,f=1 u(k) and where the 
coefficients b;k are found as in [8], [ 1]. This decomposition is performed individually 
for each primitive variable, i.e. the flow velocity, the pressure and the speed of sound. 
Consequently each expansion gives an optimal representation of the original dataset 
relative to each physical variable. 

Let us define D = U + 'i,~ 1 a;<f>;. The number of global global modes Mis very 
small compared to the size of the computational grid in Qc(t). 
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Fig. 11.3. Illustration of computational domain and subdomain definitions 

The hybrid computational model is obtained by coupling the cartesian grid solver 
in f4!e \Qa(t) and the Galerkin representation defined in f4!e \f4!i. To this end, we 
follow the steps below: 

• integrate the governing equations in f4!e \Qa(t) by the cartesian solver, with given 
initial conditions u(n) in ae \Qa(t) and boundary conditions on df4!e; 

• project the restriction to f4!e \f4!i of the updated solution u(n+l) on the subspace 
spanned by the POD modes </>i and hence determine i](n+ll; 

• recover the boundary conditions to be imposed at the next time step on Jae as 
the trace ofiJ(n+l) on ()f4!e; 

• goto ( 1) until convergence is attained. 

This algorithm is fully detailed in [3] for several idealized internal flows. The ratio 
between the computational cost to solve this hybrid scheme and the cost to solve the 
flow on the full domain is of the order of the ratio between the area of f4!e \Qa(t) and 
that of Qc(t). 
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11.3.1 Oscillating Airfoil in Transonic Flow 

We consider a two-dimensional flow past an oscillating NACAOO 12 airfoil. The air­
foil oscillates about a point fixed at 25% of its chord according to a sinusoidal law. 
The average angle of attack is 2.89, the amplitude of the angular excursion is 2.41 
and the frequency of oscillation is of 50Hz. The Mach number at infinity is 0.6. 

The computational domain is Q = 30c x 20c, where c is the chord, and the profile 
is positioned so that the computational domain extends for 1 Oc upwards and down­
wards, lOc upwind and 20c downwind. The computational grid is ( 4.8 x 103)2. The 
simulation has been carried out starting from a uniform initial condition correspond­
ing to the unperturbed flow. Time integration is pursued until the hysteresis cycle is 
periodic, i.e., after about two cycles of oscillation. 

We present in Fig. 11.4 typical snapshots of the Mach field where the coales­
cence of the characteristics forms a transient shock on the suction side of the airfoil. 
The hysteresis cycle is shown in Fig. 11.5 where the computational results are con­
trasted to the experimental ones. The computational results are in good agreement 
with experimental data reported in AGARD R-702. 

A collection of 65 snapshots of the flow primitive variables is taken over one 
period of oscillation once the flow is completely established. The size of the rectan­
gle including the oscillating airfoil!%; is I. I 5c x 0.2c, that of :!4:e is 2.5c x I .Ge.The 

(a)± T (bl ~r 

(d) ~ T 

Fig. 11.4. Typical Mach number snapshots 
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Fig. 11.7. First four POD modes. Left column pressure, right column vertical velocity 
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ratio between the grid points of the full computational domain and those of the hy­
brid ROM is approximately 260. This ratio corresponds to the CPU time reduction 
observed between the full computation and the hybrid ROM. 

The eigenvalues of the snapshot correlation matrix are shown in Fig. 11.6. The 
first four eigenvalues account for about 99% of the database energy for each of the 
quantities considered. In Fig. 11. 7 the first four POD modes for pressure and vertical 
velocity are shown. The third and fourth mode, whose energetic contribution is of 
less than 1 % on average, show higher spatial frequencies. 

In Fig. 11.8 we present the normal force coefficient of the actual hybrid simula­
tion for the CTI test case at 50Hz and at 70Hz. The 50Hz case corresponds to the 
snapshots used to build the POD modes. Therefore, this test case is designed to check 
to what extent the hybrid ROM is able to recover the original solution in the optimal 
situation. In Fig. 8a we show the comparison between the hysteresis curves obtained 
via the hybrid ROM and that relative to the full computation. The match is perfect. 
This means that the non-local boundary condition on aae (that corresponds to the 
trace projection operator) is indeed a very good approximation of the transmission 
conditions between o!3?!e and ()Qc(t). 

However, the most promising result is that for 70Hz shown in Fig. 8b. Here the 
hybrid ROM solution, with a boundary operator derived for the 50Hz case, is con­
trasted to the full simulation at 70Hz. The hybrid ROM starts from an arbitrary initial 
condition and after a short transient matches ahnost perfectly the full computation at 
70Hz. This case represents a remarkable situation where the ROM leads to a reliable 
prediction for a case which was not previously included in the database used to build 
the POD modes. 

In Fig. 11.9 the time history of the coefficients of the pressure modes are depicted. 
The coefficients pertinent to the Full Order Model are obtained by projecting the 
snapshots on the POD basis. The coefficients of the hybrid model are those obtained 
by the above method. An excellent match can be noticed for the first mode, both 
for 50Hz and 70Hz. For the higher modes still the comparision is very good but 
slight differences in amplitudes are present. Consequently the presented method is 
capable to determine the optimal coefficients also for cases which are not included in 
the database. The error in the force coefficent hysterisis may be decreased by using 
a more representative database. 

11.3.2 Discussion 

The hybrid ROM implementation here described has limited impact on existing full 
CFD codes: it is easy to implement since it reduces to a non-local boundary condi­
tion. The only addition operation to perform is a projection of the interior domain 
iterative solution in the space spanned by the POD modes. The validation results that 
we present show that this method is accurate also for flow conditions that were not 
included in the database used to build the POD modes. This is due to the fact that 
the ROM takes care of flow features that are in principle weakly dependent on the 
specific geometry inside 13£;. Hence, a case not encompassed in the flow database is 
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Fig. 11.9. Coefficients of the first four pressure POD modes. Comparison between full order 
and hybrid model for 50Hz (left) and 70Hz (right) 
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likely to be better approximated by the reduced basis. The whole procedure can be 
seen as the computation of an empirical Green function of the far field. 

11.4 ROM by Optimal Transport 

Here we describe a non-linear interpolation of the snapshots so that the POD modes 
may more accurately represent solutions for points in the parameter space that were 
not included in the database from which they where derived. For a complete survey 
of this field, see [12, 13]. For an efficient method to numerically solve this problem 
without obstacles see [9] and references therein. 

In order to fix ideas, we consider the case of an oscillating airfoil as in the CTI 
test case, for given oscillation amplitude (am= 2.5deg, ao = 4.deg) but for several 
oscillation frequencies. For given phase of the oscillation, i.e. for given pitch of the 
airfoil our plan is to map the solution for f = 30Hz into that off= 70Hz. Thanks to 
this mapping we can determine a non-linear estimate for the solutions at given pitch 
for 30Hz < f < 70Hz. 

11.4.1 Transport 

In Fig. 11.10 a conceptual description of transport is shown. Given a point SE Qo, 
where Q 0 c JR.d is a reference configuration, transport at time t is described by a 
mappingX( s ,t). The point x = X( s ,t) belongs to the actual physical configuration 
Q c IR.d. Let us consider a point x in the actual physical configuration. The inverse 
mapping, denoted by Y (x, t) (called otherwise backward characteristics), identifies 
the point in the reference configuration that has been transported by the direct map 

Fig. 11.10. Lagrangian description of transport: the reference configuration is Qo, points 
~ E Qo are transported by the direct mapping in X ( ~, t). Given the actual configuration Q, 
a point x E Q is sent back to its counterimage in the reference configuration by backward 
characteristics, i.e., the inverse mapping Y(x, t) 
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in x at time t. The following relations hold: 

x =X(s,t), s = Y(x,t), 

Y=X- 1, [V~X][VxY] =I, 

319 

(11.1) 

where [V ~X] is the jacobian of the transformationX( s, t) and [VxY] its inverse, i.e., 
the jacobian of the inverse mapping. Also, we have: 

J1Y+v·VxY=O, Y(x,O)=x 

v(x,t) = GliX, X(s,O) = S, 
where v is the velocity field. 

Let us consider, as an example, the inviscid Burgers equation: 

(11.2) 

(11.3) 

This equation describes a pressure-less Euler flow. Since no force is acting on the 
medium, each component of the velocity field is purely advected. In lagrangian co­
ordinates we have: 

a?x(s,t) = o ===}x(s,t) = s +v(s,o)t. (11.4) 

The solution consists of particles moving on straight lines (no acceleration). 
In order to determine the mapping, we define a suitable optimal transport problem. 

Let us associate a scalar density function p(u) 2: 0 to the solution u(x,t), in such a 
way that: 

!2 
p(x,t)dx=l,\ftElR+ (11.5) 

so that the non-negative density is normalized to 1 for all times. The choice of the 
density function is for the moment arbitrary. If u is a non-negative scalar and satisfies 
this normalization, it may be directly used as a density function. 

Let Pi, i = 1, 2 be the snapshots of the density function. The optimal transportation 
problem relative to this density pair is defined as: 

X*(p1,p2)=Arg~f{ 0 pi(s)IX(s)-sl2 ds }, subjectto 

P1(S) =p2(X(s))det(V~X). 
(11.6) 

The optimal mapping X* minimizes the cost of the L 2 transport (Monge) problem, 
among all the changes of coordinates X( s) locally keeping constant mass between 
the densities 1 and 2. The solution to this problem exists and is unique and stipulates 
that the lagrangian velocity is the gradient of a (almost everywhere) convex potential 
lfl( s). 

In particular the same problem can be rewritten in the Eulerian frame of reference. 
The optimal conditions for the minimum are the familiar conservation law for the 
density and the previously introduced inviscid Burgers equation. The main difficulty 
of the problem is that this system is equipped with initial and final condition for the 
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density but no initial condition for velocity. We therefore introduce an approximate 
Monge mapping as follows: 

(11.7) 

so that V' lJI = v(x, 0) and the inviscid Burgers equation 11.3 can be used to propagate 
in time the solution. 

11.4.2 Results 

In order to illustrate the method, we have considered the pressure distribution at 
maximum pitch of the NACA0012 at Mach=0.6 corresponding to a set up similar 
to the CTI test case. The densities P1 (x) and P2(x) correspond to the pressure dis­
tributions. Given two sets of snapshots corresponding to two different frequencies 
of oscillation, we define Pl (x) and P2 (x) as the pressure corresponding to 30Hz and 
70Hz, respectively. This can be done for each phase angle of the oscillation. The 
numerical scheme employed to determine the Monge approximate mapping (lJI) is 
a simple finite-difference second-order method. This initial mapping velocity (V'lJI) 
is used then as the initial condition for the transport problem. The initial pressure 
distribution Pl (x) corresponds tot= 0 and p2(x) to a final time arbitrarily set to 
1. The solution at any pseudo time t between 0 and 1 corresponds to a non-linear 
interpolation of the solution at a frequency of oscillation of 30 + (70 - 30) t. See 
Fig. 11.11. In this picture the actual solutions at 30Hz, 50Hz and 70Hz are shown in 
terms of pressure isolines. It should be remarked that the solution at 50Hz is not a 
linear interpolation of the solution at 30Hz and 70Hz, see Fig. 11.12. The pressure 
distribution at 50Hz, see Fig. 11.13, is found thanks to the non-linear interpolation. 
One-dimensional plots corresponding to a segment in a smooth region and in a re­
gion where the shock is present are shown. These results show that the non-linear 
interpolation method presented here can be used to determine overall reasonable 
estimates of intermediate snapshots of high-fidelity simulations not present in the 
database. 

11.5 System Identification Using ROM in Tumor Growth 
Modeling 

In this section ROMs are applied to system identification in tumor growth modeling. 
A complete description of the method is presented in [4]. 

In this work reduced order modeling is applied to the solution of an inverse prob­
lem as tool of solution regularization. In particular a set of semi-empirical eigen­
functions is built for each patient, exploiting the organ geometry retrieved from the 
first clinical exam. So the method is "patient specific". The eigenfunctions are then 
used in order to estimate parameters when new data are available from subsequent 
exams. 
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(a) 

(b) 

Fig. 11.11. (a) !so-pressure lines of the solution at 30Hz (white), 50Hz (red), 70Hz (green) 
in the region of definition of POD; the white isolines correspond to the initial condition of 
the Monge problem. (b) Results of the Monge interpolation: estimated pressure snapshot at 
50Hz. Estimated solution in white, actual solution in red. Green: actual solution at 70Hz 
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Fig. 11.12. Initial condition for the Monge problem (30Hz) and actual high-fidelity solutions 
(50Hz and 70Hz). (a) curves on a segment parallel to the abscissa where the pressure shows a 
shock wave; (b) solution on segment where the pressure is regular. The intermediate solution 
(50Hz) is not a linear interpolation of the initial condition (30Hz) and final condition (70Hz). 
"Monge" denotes here the initial condition of the Monge problem corresponding to the high­
fidelity model at 30Hz 
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the field 
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The macroscopic models for tumor growth are represented by a set of PDEs ac­
counting for the phenomenological aspects of the pathology. For the present case, 
the system reduces to a set of non-linear parametric coupled PDEs that describes 
the evolution of a three-specie saturated reacting flow in a porous, isotropic, non­
uniform medium. 

The tumoral tissue is composed by two different phases, denoted by P and Q. The 
density P represents the number of dividing cells per unit volume, Q is that of the 
necrotic cells. The healthy tissue is the phase denoted by S. Equations for P, Q and 
Sread: 

()p 
Ji+ V · (vP) = (2y- l)P, (11.8) 

dQ at+ V · (vQ) = (l -y)P, (11.9) 

as 
at+ V · (vS) = 0. (11.10) 

where the velocity v models the tissue deformation and r (called the hypoxia thresh­
old) is a scalar function of the nutrient concentration. If enough nutrients are avail­
able then r = 1 and the tumor cells proliferate, otherwise they die. The healthy tissue 
evolves through an homogeneous conservation equation. 

Assuming that P + Q + S = 1 in every point of the domain, a condition for the 
divergence of the velocity field is derived. This condition, coupled with a Darcy law, 
allows to describe the mechanics of the system: 

V·v= yP, 
v = -k(P, Q)VII. 

(11.11) 

(11.12) 

The scalar function II plays the role of a pressure (or potential), and k is a perme­
ability field, satisfying: 

(11.13) 

where ki represents the constant porosity of the healthy tissue and k1 is the porosity 
of the tumor tissue. 

The equation describing the nutrients has the following form: 

-V · (D(P,Q)VC) = -aPC-AC, (11.14) 

where a is the oxygen consumption rate for the proliferating cells, A is the oxygen 
consumption coefficient of healthy tissue and D(P, Q) is the diffusivity. Boundary 
conditions and sources are set up according to the nature of the organs considered 
and will be detailed later on. The diffusivity may be written as: 

(11.15) 

The link between the nutrients concentration and the population dynamics is pro­
vided by: 

1 +tanh(R(C-Chyp)) 
r= 2 , (11.16) 
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where R is a coefficient and Chyp is called the hypoxia threshold. The resulting hy­
poxia function thus satisfies 0 ::::: r::::: 1. 

For this simple model the state variable set may be defined as X = { P, Q, C, 11}. 
The observable is defined to be Y = P + Q, as result from discussions with medical 
doctors about what is measured by CT scans in the case oflung metastases. One can 
not distinguish on images the cell species composing the tumor, but only the tumor 
mass. The control set consists in all the undetermined scalar parameters describing 
tissue properties (such as ki ,k2,Dmax, K), the tumor activities (nutrient consumptions 
a, A, and Chyp), and the fields describing the initial non-observed conditions needed 
to integrate the system (P(x, 0)). 

11.5.1 Regularized Inverse Problem 

The observable evolution is governed by: 

Y + V · (Yv) = y(C)P. (11.17) 

the divergence of the velocity field obeys: 

IarPdQ 
V ·v = y(C)P- fa(l -Y) dQ (l -Y), (11.18) 

where the expression relative to Neumann boundary condition for the pressure field 
was retained. In the case of Dirichlet boundary conditions the second term of the 
right hand side of this equation vanishes. The curl of the Darcy law reads: 

k(Y)V /\ v = Vk(Y) /\ v. (11.19) 

and the equation for the oxygen concentration field is written: 

v. (D(Y)VC) = aPC+.A.c. (11.20) 

The definition of the hypoxia function, y, is unchanged. 
The repeated index summation convention is used from now on. The non-observ-

able variables are expressed as combination of POD modes: 

P=af <f>i i= 1, ... ,Np; 

C=af<f>f i= 1, ... ,Nc; 

yP =at <Pt i= 1, .. . ,Nyp; 

v=ar<f>t i= 1, ... ,Nv, 

(11.21) 

where aP = aP (t) are scalar functions of time,</>;(-)=</>;(-) (x) are functions of spatial 
coordinates. 

The dimension of the empirical functional space, i.e., the number of POD modes 
used to reconstruct the solution, is chosen such that if additional POD modes are 
included, the reconstruction of a given field does not vary up to a certain error value 
that, in this work, was fixed at 10-4 in L2 norm. 
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Substituting these expressions in the system Eqs. (11.17) and (11.20) we obtain: 

y + a~v)y-. (Y <P/v)) = a~rP) <P/rP)' (11.22) 

r (yP) (yP) 
a(v)V. <f>·(v) = a(rP) <f>.(rP) - JQ ai <Pi dQ (1 -Y) 

I I I I IQ l -Y dQ ' 

a~v) k(Y)V A </>/v) = a~Vk(Y) A <f>/vl, 

a(C)y- · (D(Y)V,i.(C)) = aa(P) a(C) ,i.(P) ,i.(C) + Aa(C) ,i.(C) 
I '1'1 J I 'I'; '1'1 I '1'1 ' 

(11.23) 

(11.24) 

(11.25) 

The hypoxia function y, Equation (11.16), is multiplied by P, in such a way that the 
product yP is: 

(C) (C) 
a(rP),i.(rP) = a(P),i.(P) 1 +tanh(R(ai <Pi -Chyp)) 

I '1'1 J 'I'; 2 (11.26) 

The system Eqs. (11.22-11.25) was finally solved by a least square approach under 
certain constraints that are introduced below. At a given time (say to), the snapshot 
Y(to) and a subsequent snapshot Y(t1) are used to perform the computation of the 
time derivative. Let the residual of the 1-th equation be R1• We write F = 2.,1Ry and 

(11.27) 

where aP are the expansion coefficients for the variables P,C, v, yP and 7fj are the 
parameters to be identified. 

The first constraint is linked to the fact that Eq. (11.25) is an homogeneous equa­
tion with respect to the coefficients afl. If Chyp < 0 the trivial solution is a solution 
for the whole system Eqs. (11.22) and (11.26). In order to prevent the identification 
of a system with unphysical solutions we get one scalar constraint from the bound­
ary. In the case of Dirichlet boundary conditions C =Co on JQc where Qc is a blood 
vessel domain, one scalar equation is obtained of the form: 

(11.28) 

where b1 and 'A1 are the eigenvalues and the eigenfunctions of the autocorrelation 
matrix used to build the modes for the variable C, respectively. 

The second constraint to be imposed results from the observation that, since in 
the inverse problem the equation for the variable P is not solved, the latter does not 
automatically satisfy: 0:::; P:::; 1 and therefore this is a constraint (fundamental for 
the population dynamics) to be imposed. To this end the residuals are penalized as 
follows: 

(11.29) 

where c1, c2 are positive constants, set in such a way that penalization does not affect 
the stability of the procedure (in the present work (c1,c2) E [l.0,2.5]e-2). 
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In order to decrease the computational cost of the procedure a third constraint 
is imposed to define a feasible set of solutions. The solution is sought so that the 
admissible values of the POD coefficients are sought in an interval h that is obtained 
from !fb, the interval to which POD coefficients of the simulated solutions belong, by 
a stretching factor 1 + o where o is a suitable positive constant. In all the following 
simulations the value o = 0.1 was adopted. 

The hypothesis that two subsequent snapshots are close in time, or, in other words, 
that the time between two snapshots is small if it is compared with the characteristic 
evolution time of the phenomenon, is very optimistic. In order to relax this hypoth­
esis, instead of using first order finite differences, that is equivalent to perform a 
linear interpolation between the snapshots, a different kind of interpolation is used. 
However, an higher order finite difference scheme, equivalent to a polynomial inter­
polation, would require a large number of snapshots. As an alternative, still assuming 
that only two images are available, an additional hypothesis about the growth rate 
could be retained. Here, two cases are considered. In the case of exponential growth 
we write: 

Y ~ Aexp{ st}+ Bexp{ -st}= f( S), (11.30) 

where A, Bare chosen in such a way that the two available snapshots are interpolated. 
One parameter, s, is free and enters the residual minimization process. The first 
equation of the system (11.17-11.20) becomes: 

(11.31) 

In the case of a logistic-type growth we proceed in a similar way. We take 

Y ~AG( w, CY)+ BG(-w, -CY) (11.32) 

where 
wewt 

G( w, CY) = wt (11.33) 
W - CYe 

As before A and B are adjusted such that the snapshots are interpolated. In this case, 
however, we are left with two free parameters (ro and CY) that are found within the 
residual minimization process. The inverse problem finally takes the form of a non­
linear algebraic optimization problem, that is solved using a Newton trust region 
method. 

11.5.2 Realistic Case Application: A Comparison with a Standard 
Sensitivity Approach 

In Fig. 11.14 four scans covering an evolution over 45 months are presented of some 
lung metastases of a primary tumor affecting the thyroid (Courtesy Institut Bergonie). 
Even though this patient is affected by several metastases, only the study of the one 
marked in Fig. ll.14(a) will be presented. It is a quasi-steady metastasis, which 
grows very slowly and thus need only to be monitored. The results obtained by means 
of a sensitivity technique are presented, when only the first two scans were used in 
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(a) (b) 

(c) (d) 

Fig. 11.14. Scans: (a) November 2005; (b) October 2007; (c) July 2008; d) April 2009 

order to identify the system. This means that the first two images were used as data 
set to solve the inverse problem and find the set of control. Then, the direct simula­
tion were performed covering the entire evolution and the result has been compared 
to the data of the subsequent exams. 

The control set consists in the parameters and in the initial distribution for the 
proliferating cell density. In this particular test the initial density distribution for 
proliferating cells is taken: 

P(x, 0) =A exp { -8<P2
}, (11.34) 

where <P is the level set for the tumor, A the amplitude and 8 the steepness. 
This system is solved at t = 0, taking the second image at t = 0.3. The time 

derivative is approximated by a logistic interpolation. In this particular case it is 
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Table 11.3. Data set and results for realistic case, fitted with the parameters identified by 
ROM: 6 volumes measures are taken from 2D scans, resolution l.25mm 

Month 0 21.0 24.5 36.0 40.5 45.0 

Area 4.2e-3 6.5e-3 8.le-3 9.7e-3 l.03e-3 1.lOe-3 

<&"sens(%) 0.0 1.8 2.47 2.02 1.94 1.36 

8°RoM(%) 0.0 1.9 2.50 2.80 8.67 6.12 

llY - Imllsens 0.0 0.22 0.24 0.35 0.31 0.24 

llY-ImllROM 0.0 0.23 0.26 0.38 0.36 0.32 

equivalent to solve the reduced order model for the elliptic equations and to couple 
them with the residual approximation for the observable. The system is cheap from 
the computational stand point, its solution taking only few minutes on a standard 
laptop. The system was initialized with several initial conditions in order to check 
the stability and the presence of local minima. 

The database used for the present case consists of768 direct simulations, realized 
by sampling the parameters values appearing in the model as well as the parameters 
introduced to represent the initial distribution of proliferating cells (namely A and o). 
A set of20 time snapshots was retained from each of the simulations. 

In Table 11.3 the errors are compared between the sensitivity approach (when two 
images are taken into account) and the reduced order model. The ROM performs 
quite well in terms of volume in the first part of the growth. For what concerns 
L2 norms and in the second part of the growth sensitivity has substantially better 
results. The most relevant fact is that the two approaches show similar behavior in 
the very beginning (ROM is solved at t = O). It is interesting that the reduced order 
model allows to get a correct solution on a time scale that is sufficiently large, i.e. 
on a scale comparable with the interval between two subsequent medical exams. 
In Fig. 11.15 the fitting curves are shown, confirming essentially what commented 
about the errors. Let us remark that the two methods starts with exactly the same 
trend, so that the Reduced Order Model approach results in an approximation of 
the Sensitivity one int = 0. The Error contours for the third image (i.e. the first 
prediction) are shown for the two methods in Fig. 11.17. On the left, the result of 
the sensitivity is shown, the reduced order model is on the right. The differences 
between the two residuals are minimal, showing the ability of the reduced approach 
to mimic sensitivity. 

11.5.3 A Fast Rate Tumor Growth 

In order to see ifthe method is robust enough to perform the identification in a very 
aggressive case, an exponential fast growth is studied. In Fig. 11.18 the evolution 
of a metastatic nodule is shown; the evolution takes about six months, the scans are 
taken at approximately constant rate. The problem is the following one: given the 



330 

x 10-3 

13 
--ROM 

12 --Sensitivity 
0 Data 

11 
D Predictions 

10 ... . 

9 · · ··.· 
(1) 

~ 
<( 

8 

5 10 15 20 25 
months 

30 35 

M. Bergmann et al. 

40 45 50 

Fig. 11.15. Area as function of time, for the Reduced Order odel (black line) and for the 
ensitiv ity approach (blue li ne) 

2.5 

0.5 

0 

100 150 200 
days 

(a) (b) 

Fig. 11.16. Results: (a) superposition of simulation and geometry; b) volume curve with re­
spect to days 

first two scans, we try to recover the third one, after having performed the parameters 
identification. 

A database was build varying all the parameters in uniform intervals. The database 
consists in 128 simulations. For each one, 20 time frames are taken. The minimiza­
tion takes about 20 minutes on one standard CPU. In Fig. 1I.I6(a) the superposition 
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Fig. 11.17. Zoom on the tumor: difference (signed absolute error) between the third scan and 
the solution when the identification is performed by (a) sensitivity; (b) ROM 

(a) (b) (c) 

Fig. 11.18. Fast growing tumor: scan at (a) June 2008; (b) September 2008; (c) December 
2008 

of the simulation to the realistic geometry is shown, at the time corresponding to the 
third scan. The result is satisfactory, the volume not being too far from the measured 
one. The error is essentially a shape error. The model tends to regularize the shape, 
so that the simulated tumor is closer to a spheroid with respect to the real tumor. In 
order to prevent this error to arise two strategies are possible: the first one consists in 
modifying the model such that its dynamics is less regularizing and the second one 
consists in changing the control set. 

In Fig. 11.16(b) the volume curve is plotted with respect to days. There is a certain 
error in volume at the time corresponding to the third scan, but, in terms of time, it 
is about 15 days on a time interval of 6 months. For such a growth, featured by a 
high rate and a large final volume, not enough mechanics have been accounted for. 
As a matter of fact, tumor expansion causes some compression in the tissues and the 
constraints imposed by the thorax are not negligible. 
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11.6 Conclusions 

We have presented a set of methods where ROMs have been used to solve problems 
in applications. ROMs where not directly used for simulation, but instead as an aux­
iliary numerical expidient in conjunction with full model simulations or available 
data observations. Future investigations will need to improve model accuracy and 
robustness with respect to parameter variations, with the objective of accurate and 
robust predictive ROMs. 
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