
Chapter 11
Non-Spherical Voids: the Best Alternative
to Dark Energy?

Roberto A Sussman

Abstract The constraints from current cosmological observations strongly support
the ΛCDM model in which late time cosmic dynamics is dominated by a nonzero
cosmological constant or by an exotic and elusive source like “dark energy”. How-
ever, these constraints can also be met if we assume a non-perturbative treatment of
cosmological inhomogeneities and that our location lies within an under–dense or
“void” region of at least 300 Mpc characteristic length. Since fitting observational
data severely constrains our position to be very near the void center in spherical
void models, we propose in this article a toy model of a less idealized non-spherical
configuration that may fit this data without the limitations associated with spheri-
cal symmetry. In particular, the class of quasi–spherical Szekeres models provides
sufficient degrees of freedom to describe the evolution of non-spherical inhomo-
geneities, including a configuration consisting of several elongated supercluster-like
overdense filaments with large underdense regions between them. We summarize a
recently published example of such configuration, showing that it yields a reasonable
coarse-grained description of realistic observd structures. While the density distribu-
tion is not spherically symmetric, its proper volume average yields a spherical density
void profile of 250 Mpc that may be further improved to agree with observations.
Also, once we consider our location to lie within a non-spherical void, the definition
of a “center” location becomes more nuanced, and thus the constraints placed by
the fitting of observations on our position with respect to this location become less
restrictive.

11.1 Introduction

Inhomogeneous cosmological models have become a valuable tool to analyze
cosmological observations without introducing an elusive dark energy source (a com-
prehensive review on this is found in [1]). The currently preferred inhomogeneous
configurations are Gpc-scale under–densities (“voids”) based on the spherically sym-
metric Lemaître-Tolman (LT) models [2, 3], under the assumption that we live close
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to a center of a cosmic density depression of radius around 1–3 Gpc [4, 5, 6].
Criticism has been voiced on these void models on the grounds that they violate
the Copernican principle, since compliance with the cosmic microwave background
(CMB) constraints allows for only one such Gpc structure and the observer location
cannot be further away from the origin than ∼ 50 Mpc [7] (see also [6]). However,
as suggested by more recent work [8, 9], a void of radius 250 Mpc may be sufficient
to explain the supernova observations, the power spectrum of the CMB and is also
consistent with Big Bang Nucleosynthesis, or Baryon Acoustic Oscillations. By con-
sidering void structures of this size the Copernican Principle is not violated, as our
Universe may consist of many such structures (the upper size to violate CMB con-
strains is 300 Mpc [10, 11]). Evidently, restricting our position to be within 50 Mpc
from the center origin of a 250 Mpc void is a less stringent limitation. Notice that
these voids are not the smaller voids (30–50 Mpc) seen in the filamentary structure
of our Local Universe that roughly correspond to numerical simulations, but would
form a structure a larger voids containing the smaller ones yet to be detected by
observations.

In a recent article [12] we examined the possibility of using non–spherical void
models to describe cosmic inhomogeneities. For this purpose, we considered the
class of non–spherical Szekeres solutions of Einstein’s equations [13, 14, 15, 16]. By
fixing the free parameters of these solutions by means of a thin-shell approximation
[10, 11, 17, 18], we obtained a specific model that yields a reasonable coarse-grained
description of realistic cosmic structures. Since we define initial conditions at the last
scattering surfaces, this model evolves from small early universe initial fluctuations
and is consistent with current structure formation scenarios. The model presented in
[12] yields an averaged spherically symmetric density distribution with a radial void
profile qualitatively analogous to the spherical void models (as those of [8]), hence
suggesting that the latter models may be approximate configurations that should
emerge after coarse-graining and averaging of under–dense regions of a realistic
lumpy non–spherical Universe. Also, the lack of spherical symmetry in the Szekeres
model removes the unique invariant nature of the center location of models with this
symmetry. Since our being sufficiently near this center is a strong constraint that the
fitting of observations place on spherical LT models, this constraint becomes much
less restrictive in a non-spherical Szekeres model.

11.2 Setting up the Szekeres Model

The metric of Szekeres models takes the following form [13]

ds2 = dt2 − (Φ′ −ΦE ′/E)2

ε − k dr2 − Φ2

E (dx2 + dy2), (11.1)

where Φ = Φ(t , r) and Φ′ = ∂Φ/∂r , with:

E = S

2

[(
x − P
S

)2

+
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S

)2

+ ε
]

, (11.2)
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while k(r), S(r),P (r),Q(r) are arbitrary functions; ε is a constant: the values
ε = 1, 0, −1 are respectively known as the quasi–spherical, quasi–plane and
quasi-hyperbolic Szekeres models (for a detailed discussion on these models see
[14, 15, 16]). We consider only the quasispherical case, in which the surfaces marked
by r and t constant can be mapped to 2–spheres by a stereographic projection.

Einstein’s equations for a dust source associated with (11.1)–(11.2) reduce to

Φ̇
2 = −k(r) + 2M(r)

Φ
, (11.3)

8πGρ = 2M ′ − 6ME ′/E
Φ2(Φ′ −ΦE ′/E)

, (11.4)

whereM(r) is an arbitrary function and we assume thatΦ′ �= ΦE ′/E holds whenever
M ′ �= 3ME ′/E , in order to avoid a shell crossing singularity [16, 26]. The solution
of (11.3) is given by the quadrature

Φ∫

0

dΦ̃√
−k + 2M/Φ̃

= t − tB(r). (11.5)

where tB(r) marks the locus of the big bang (which is, in general, non–simultaneous).
We remark that this model has no isometries (it does not admit Killing vectors), but by
specializing the free functions we obtain axially and spherically symmetric models
as particular cases.

By choosing the r coordinate such that r̄ = Φ(ti , r), where t = ti marks the last
scattering surface (and dropping the bar to simplify notation), we can eliminates one
of the six independent functions of r appearing above. Thus, in order to achieve
with a Szekeres model the most realistic possible description of cosmic structures
and structure formation, we must prescribe five free functions as initial conditions to
specify a unique model. In particular, we will specify the functions S,P ,Q, tB and
M . The algorithm that we use in the calculations can be defined as follows:

1. The chosen asymptotic cosmic background is an open Friedman model1, i.e.
Ωm = 0.3 and Λ = 0. The background density is then given by

ρb = Ωm × ρcr = 0.3 × 3H 2
0

8πG
(1 + z)3, (11.6)

where the Hubble constant is H0 = 70 km s−1 Mpc−1.
2. We choose tB = 0, hence the age of the Universe (given by (11.5)) is everywhere

the same (as in the homogeneous background Friedmann model) and is equal to
ti = 471, 509.5 years (see [20] for details).

1 Asymptotic spatial flatness is no longer required if homogeneity is relaxed [6, 19].
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3. The functionM(r) is given by

M(r) = 4π
G

c2

∫ r

0
ρb(1 + δρ̄) r̄2 dr̄ ,

where δρ̄ = −0.005e−(#/100)2 + 0.0008e−[(#−50)/35]2 + 0.0005e−[(#−115)/60]2 +
0.0002e−[(#−140)/55]2

, and # ≡ r/1 kpc.
4. The function k(r) can be calculated from (11.5).
5. The functions Q,P , and S are prescribed in order to provide the best possi-

ble coarse–grained description of the density distribution of our observed local
Cosmography by means of a thin shell approximation (see [12]).

6. Once the model is specified, its evolution is calculated from Eq. (11.3) and the
density distribution at the current instant is evaluated from (11.4).

11.3 How Realistic this Model Can be?

The density distribution for our model (depicted in Fig. 11.1 in intuitive Cartesian
coordinates [21, 22]) follows from our choice of the functions {M , tB ,Q,P , S}. If
new data would arise showing a different density pattern, we can always adjust it
appropriately by selecting different functions that would change the position, size,
and the amplitude of the overdensities (see [21, 22] for a detailed discussion).

As shown in Fig. 11.1, the model under consideration contains structures such as
voids and elongated supercluster–like overdensities. It has large overdensities around
∼ 200 Mpc (towards the left of the) that compensate the underdense regions and
allow the model to be practically homogeneous at r > 300 Mpc. Actual observations
reveal very massive matter concentrations – the Shapley Concentration roughly at
the distance of 200 Mpc, or the Great Sloan Wall at the distance of 250–300 Mpc.
In the opposite direction on the sky we find the Pisces–Cetus and Horologium–
Reticulum, which are massive matter concentrations located at a similar distance.
We refer the reader to Fig. 44 of Ref. [24], which provides a density map of the
Local Universe reconstructed from the 2dF Galaxy Redshift Survey Survey using
Delaunay Tessellation Field Estimator2. Also, the inner void seen in Fig. 11.1 is
consistent with what is observed in the Local Universe – it appears that our Local
Group is not located in a very dense region of the Universe, rather it is located in a
less dense region surrounded by large overdensities like the Great Attractor on one
side and the Perseus–Piscis supercluster on the other side. Both are located at around
50 Mpc—see Fig. 19 of [25] that provides the density reconstruction of the Local
Universe using the POTENT analysis.

While still far from a perfect “realistic” description, the density pattern displayed
in Fig. 11.1 exhibits the main features of our local Universe. It should be therefore
treated as a “coarse-grained” approximation to study local cosmic dynamics by means
of a suitable exact solution of Einstein’s equations. Such approximation is, evidently,

2 This figure is also available at http://en.wikipedia.org/wiki/File:2dfdtfe.gif
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Fig. 11.1 The present-day
color-coded density
distribution ρ/ρ0 (where ρ0 is
density of the homogeneous
background model). Brighter
colors indicate a high-density
region, darker low-density
region 11.3
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far less idealized than the gross one that follows from spherically symmetric LT
models.

11.4 Position of the “Center”

As a consequence of the lack of spherical symmetry, the model under consideration
lacks an invariant and unique characterization of a center worldline. Instead, for
every 2–sphere corresponding to a fixed value of r at an instant t = constant, we
have (at least) two locations that can be considered appropriate generalizations of
the spherically symmetric center: the worldline marked by the coordinate “origin”
r = 0 where the shear tensor vanishes, which defines a locally isotropic observer (cf.
eq (16.29) of Ref. [26]), and the “geometric” center of the 2–sphere whose surface
area is 4πΦ2.

As shown in Fig. 11.2, the fact that the 2–spheres of constant r in a quasi-spherical
Szekeres model are non-concentric implies that the geometric center of these spheres
and r = 0 do not coincide. As a consequence, the distance from this origin to the
surface of the sphere depends on the direction marked by the angles (θ ,φ) of the
stereographic projection (see Eq. (3) of Ref. [12]):

δ(r , θ ,φ) =
∫ r

0
dr̃
Φ′ −ΦE ′/E√

1 − k . (11.7)

Hence, the displacement � between the origin and the geometric center of a sphere
of radius r is

� = δmax − δmin

2
,
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Fig. 11.2 Schematic
representation of locations
that can be considered
“centers” in a quasi–spherical
Szekeres model: the local
isotropic observer at the
origin r = 0 (denoted by a
black dot) where shear
vanishes and the geometric
center of the larger sphere
depicted by a cross. The
distance between these
locations is denoted by �.

δ min

δ max

+

∆

φ

where δmax = max(δ), δmin = min(δ). As can be seen from Eq. (3) of [12], the
maximal and minimal value of E ′/E for our model (where S ′ = 0) corresponds to
θ = π/2. The distance, δ, as a function of φ for voids of various radii is depicted by
Fig. 3 of [12], showing that a sphere whose present-day area radius isΦ = 100 Mpc
the model under consideration yields a displacement of � = 36 Mpc towards φ ≈
80◦ direction. While for Φ = 250 Mpc we have � = 62 Mpc towards ϕ ≈ 120◦.

Fitting observations in spherically symmetric models restricts our cosmic location
to be within a given maximal separation from a location that is both, the geometric
center of the void and the locally isotropic observer (� = 0). It is reasonable to
expect that similar distance restrictions with respect to the local isotropic observer
should emerge in fitting observations with a Szekeres model, but in the latter models
this observer is not the only center and may be far away from the geometric center
of the void, and thus our location would be less special and improbable than in
spherically symmetric models where both locations coincide.

11.5 Averaging

As shown in Ref. [23], the proper 3–dimensional volume in space slices orthogonal
to the 4–velocity (t = constant) in a Szekeres model is

VD =
rD∫

0

dr

∞∫

−∞
dx

∞∫

−∞
dy

√−g = 4π

rD∫

0

dr
Φ2Φ′

√
1 − k ≡ 4πRD, (11.8)

and thus, the proper volume averaged density is spherically symmetric (i.e.
independent of x and y), even if the density itself is far from a spherical distribution:
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Fig. 11.3 Radial profile of
the spherically symmetric
averaged distribution
(normalized by the
background density ρ0)
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0
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2M ′

√
1 − k . (11.9)

The radial profile of this spherical volume–averaged density distribution evaluated
as a function of rD, is displayed by Fig. 11.3. The spherical symmetry of the av-
eraged density distribution implies that the the averaging process has smoothed out
the “angular” (i.e. x, y) dependence of a highly non–spherical coarse grained den-
sity distribution. Since the resulting averaged distribution 〈ρ〉(rD) is equivalent to
a spherical cosmic void whose radius is approximately 250 Mpc (as in Ref. [8]),
the latter type of void models can be thought of as rough averages of more realistic
non–spherical configurations. As a consequence, the use of a Szekeres model seems
to suggest that results obtained by means of spherical LT models may be robust:
while local non–spherical information could still provide important refinements, and
is needed for computations involving null geodesics (specially when fitting CMB
constraints), it is likely that basic bottom line information is already contained in the
spherical voids constructed with LT models.

11.6 Conclusions

The model we have presented is one among the first attempts in using the Szek-
eres solution as a theoretical and empiric tool to study and interpret cosmological
observations [28, 29, 9, 30]. This opens new possibilities for inhomogeneous cos-
mologies, as this is the most general available cosmological exact inhomogeneous
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and anisotropic solution of Einstein’s equations. The model provides a more nuanced
and much less restrictive description of the need to constrain our location with re-
spect to a center location. It is also a concrete example that illustrates the possibility
that a mildly increasing void profile (required by observations) can emerge if local
structures are coarse-grained and then averaged. Of course, notwithstanding these
appealing features, the model and its assumptions must be subjected to hard testing
by data from the galaxy redshift surveys, and evidently the more comprehensive this
data can be the better it can be used for this purpose. Unfortunately current surveys
like 2 dF of SDSS do not cover the whole sky and only focus on small angular regions
of it. However in the near future this limitation may be overcome – for example, Sky
Mapper3 aims to cover the whole southern sky which will provide sufficient data to
test possibilities suggested and elaborated in this work. A more comprehensive and
detailed article on the model proposed here is currently under elaboration and will
be submitted soon for publication.
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