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Stein Structures: Existence and

Flexibility

KAI CIELIEBAK and YAKOV ELIASHBERG

1. The Topology of Stein Manifolds

Throughout this article, (V,J) denotes a smooth manifold (without bound-

ary) of real dimension 2n equipped with an almost complex structure J ,

i.e., an endomorphism J : TV → TV satisfying J2 = −id. The pair (V,J)

is called an almost complex manifold. It is called a complex manifold if the

almost complex structure J is integrable, i.e., J is induced by complex coordi-

nates on V . By the theorem of Newlander and Nirenberg [24], a (sufficiently

smooth) almost complex structure J is integrable if and only if its Nijenhuis

tensor

N(X,Y ) := [JX,JY ]− [X,Y ]− J [X,JY ]− J [JX,Y ], X,Y ∈ TV,

vanishes identically. An integrable almost complex structure is called a com-

plex structure. A complex manifold (V,J) is called Stein if it admits a proper

holomorphic embedding into some CN . Note that, due to the maximum prin-

ciple, every Stein manifold is open, i.e., it has no compact components.

By a theorem of Grauert, Bishop and Narasimhan [2, 13, 23], a complex

manifold (V,J) is Stein if and only if it admits a smooth function φ : V →R

which is

• exhausting, i.e., proper and bounded from below, and

• J -convex (or strictly plurisubharmonic), i.e., −ddCφ(v,Jv) > 0 for all

0 �= v ∈ TV , where dCφ := dφ ◦ J .
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Note that the second condition means that ωφ :=−ddCφ is a symplectic form

compatible with J . Note also that the “only if” follows simply by restrict-

ing the i-convex function φ(z) = |z|2 on CN (where i denotes the standard

complex structure) to a properly embedded complex submanifold. Here are

some examples of Stein manifolds.

(1) (Cn, i) is Stein, and properly embedded complex submanifolds of Stein

manifolds are Stein.

(2) If X is a closed complex submanifold of some projective space CPN

and H ⊂CPN is a hyperplane, then X \H is Stein.

(3) All open Riemann surfaces are Stein.

(4) If φ : V →R is J -convex, then so is f ◦ φ for any smooth function f :

R→R with f ′ > 0 and f ′′ ≥ 0 (such f will be called a convex increasing

function). Given an exhausting J -convex function φ : V →R and any

c ∈R, we can pick a diffeomorphism f : (−∞, c)→R with f ′ > 0 and

f ′′ ≥ 0; then f ◦ φ is an exhausting J -convex function {φ < c} → R,

hence the sublevel set {φ < c} is Stein.

(5) Any strictly convex smooth function φ : Cn → R is i-convex. As a

consequence, using (4), all convex open subsets of Cn are Stein.

(6) Let L ⊂ V be a properly embedded totally real submanifold, i.e., L

has real dimension n and TxL ∩ J(TxL) = {0} for all x ∈ L. Then

the squared distance function dist2L : V → R from L with respect to

any Hermitian metric on V is J -convex on a neighbourhood of L. As

a consequence, L has arbitrarily small Stein tubular neighbourhoods

in V (which by (4) can be taken as sublevel sets {dist2L < ε} if L is

compact, but are more difficult to construct if L is noncompact).

Problem 1.1. 1 Prove (1), (2), and the first statements in (4), (5), (6).

Problem 1.2. A quadratic function φ(z1, . . . , zn) =
∑n

j=1(ajx
2
j + bjy

2
j ) on

Cn with coordinates zj = xj + iyj is i-convex if and only if aj + bj > 0 for

all j = 1, . . . , n. A smooth function φ :C→R is i-convex iff Δφ> 0, i.e., φ is

strictly subharmonic.

Problem 1.3. For an almost complex manifold (V,J) define ωφ :=−d(dφ ◦
J) as in the integrable case. Then ωφ(·, J ·) is symmetric for every function

φ : V →R if and only if J is integrable.

1“Problems” in this survey are meant to be reasonably hard exercises for the reader.
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Let us now turn to the following question: Which smooth manifolds V

admit the structure of a Stein manifold?

Clearly, one necessary condition is the existence of a (not necessarily

integrable) almost complex structure on V . This is a topological condition

on the tangent bundle of V which can be understood in terms of obstruction

theory. For example, the odd Stiefel-Whitney classes of TV must vanish and

the even ones must have integral lifts.

A second necessary condition arises from Morse theory. Recall that a

smooth function φ : V → R is called Morse if all its critical points are non-

degenerate, and the Morse index ind(p) of a critical point p is the maximal

dimension of a subspace of TpV on which the Hessian of φ is negative definite.

The following simple observation, due to Milnor and others, is fundamental

for the topology of Stein manifolds.

Lemma 1.4. The Morse index of each nondegenerate critical point p of a

J-convex function φ : V →R satisfies

ind(p)≤ n= dimC V.

Proof. 2 Suppose ind(p)> n. Then there exists a complex line L⊂ TpV on

which the Hessian of φ is negative definite. Pick a small embedded complex

curve C ⊂ V through p in direction L. Then φ|C has a local maximum at p,

which contradicts the maximum principle because Δ(φ|C)> 0. �

This lemma imposes strong restrictions on the topology of Stein man-

ifolds: Consider a Stein manifold (V,J) with exhausting J -convex function

φ : V → R. After a C2-small perturbation (which preserves J -convexity) we

may assume that φ is Morse. Thus, by Lemma 1.4 and Morse theory, V is

obtained from a union of balls by attaching handles Dk ×D2n−k
ε of indices

k ≤ n. In particular, all homology groups Hi(V ;Z) with i > n vanish. Sur-

prisingly, for n > 2 these two necessary conditions are also sufficient for the

existence of a Stein structure:

Theorem 1.5 ([10]). A smooth manifold V of real dimension 2n > 4 admits

a Stein structure if and only if it admits an almost complex structure J and

an exhausting Morse function φ without critical points of index > n. More

2“Proofs” in this survey are only sketches of proofs; for details see [7].
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precisely, J is homotopic through almost complex structures to a complex

structure J ′ such that φ is J ′-convex.

The idea of the proof is the following: Pick a sequence r0 < r1 < r2 < · · ·
of regular values of φ with r0 <minφ, ri →∞, and such that each interval

(ri, ri+1) contains at most one critical value of φ. By Morse theory, each sub-

level set Wi := {φ≤ ri} is obtained from Wi−1 by attaching a finite number

of disjoint handles of index ≤ n. Proceeding by induction over i, suppose

that on Wi−1, J is already integrable and φ is J -convex. Then for each k ≤ n

we need to

(i) extend J to a complex structure over a k-handle, and

(ii) extend φ to a J -convex function over a k-handle.

The first step is based on h-principles and will be explained in Section 3. The

second step requires the construction of certain J -convex model functions on

a standard handle and will be explained in Section 2.

2. Constructions of J-Convex Functions

The goal of this section it to construct the J -convex model functions needed

for the proof of Theorem 1.5. We begin with some preparations.

J -Convex Hypersurfaces. Consider a smooth hypersurface (of real

codimension one) Σ in a complex manifold (V,J). Each tangent space

TpΣ ⊂ TpV , p ∈ Σ, contains the unique maximal complex subspace ξp =

TpΣ ∩ J(TpΣ)⊂ TpΣ. These subspaces form a codimension one distribution

ξ ⊂ TΣ, the field of complex tangencies. Suppose that Σ is cooriented by a

transverse vector field ν to Σ in V such that Jν is tangent to Σ. The hyper-

plane field ξ can be defined by a Pfaffian equation {α= 0}, where the sign

of the 1-form α is fixed by the condition α(Jν)> 0. The 2-form ωΣ := dα|ξ ,
called the Levi form of Σ, is then defined uniquely up to multiplication by

a positive function. The cooriented hypersurface Σ is called J -convex (or

strictly Levi pseudoconvex) if ωΣ(v,Jv)> 0 for each nonzero v ∈ ξ.

Problem 2.1. Each regular level set of a J -convex function is J -convex

(where we always coorient level sets of a function by its gradient). Conversely,

if φ : V → R is a smooth function without critical points all of whose level
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sets are compact and J -convex, then there exists a convex increasing function

f :R→R such that f ◦ φ is J -convex.

Thus, up to composition with a convex increasing function, proper J -

convex functions are the same as J -lc functions (“lc” stands for “level con-

vex”), i.e., functions that are J -convex near the critical points and have

compact J -convex level sets outside a neighbourhood of the critical points.

Problem 2.2. Let φ : V → R be an exhausting J -convex function. Then

for every convex increasing function f : R→ R with limy→∞ f ′(y) =∞ the

gradient vector field ∇f◦φ(f ◦ φ) is complete, i.e., its flow exists for all time.

Continuous J -Convex Functions. We will need the notion of J -convex-

ity also for continuous functions. To derive this, recall that i-convexity of a

function φ : U →R on an open subset U ⊂C is equivalent to Δφ> 0.

Problem 2.3. A smooth function φ : U →R on an open subset U ⊂C sat-

isfies Δφ(z) ≥ ε > 0 at z ∈ U if and only if it satisfies for each sufficiently

small r > 0 the mean value inequality

(1) φ(z) +
εr2

4
≤ 1

2π

∫ 2π

0
φ
(
z + reiθ

)
dθ.

Since inequality (1) does not involve derivatives of φ, we can take it as

the definition of i-convexity for a continuous function φ : C ⊃ U → R, and

hence via local coordinates for a continuous function on a complex curve

(note however that the value ε depends on the local coordinate). Finally, we

call a continuous function φ : V → R on a complex manifold J -convex if its

restriction to every embedded complex curve C ⊂ V is J -convex. With this

definition, we have

Lemma 2.4. The maximum max(φ,ψ) of two continuous J-convex func-

tions is again J-convex.

Proof. After restriction to complex curves it suffices to consider the case

φ,ψ :C⊃ U →R. Then the mean value inequalities for φ and ψ,

φ(z) +
εφr

2

4
≤ 1

2π

∫ 2π

0
φ
(
z + reiθ

)
dθ ≤ 1

2π

∫ 2π

0
max(φ,ψ)

(
z + reiθ

)
dθ,

ψ(z) +
εψr

2

4
≤ 1

2π

∫ 2π

0
ψ
(
z + reiθ

)
dθ ≤ 1

2π

∫ 2π

0
max(φ,ψ)

(
z + reiθ

)
dθ
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combine to the mean value inequality for max(φ,ψ),

max(φ,ψ)(z) +
min(εφ, εψ)r

2

4
≤ 1

2π

∫ 2π

0
max(φ,ψ)

(
z + reiθ

)
dθ. �

Smoothing of J -Convex Functions. Continuous J -convex functions are

useful for our purposes because of

Proposition 2.5 (Richberg [25]). Every continuous J-convex function on

a complex manifold can be C0-approximated by smooth J-convex functions.

Proof. The proof is based on an explicit smoothing procedure for functions

on Cn. Fix a smooth nonnegative function ρ : Cn → R with support in the

unit ball and
∫
Cn ρ= 1. For δ > 0 set ρδ(x) := δ−2nρ(x/δ). For a continuous

function φ :Cn →R define the “mollified” function φδ :C
n →R,

(2) φδ(x) :=

∫

Cn

φ(x− y)ρδ(y)d
2ny =

∫

Cn

φ(y)ρδ(x− y)d2ny.

The last expression shows that the functions φδ are smooth for every δ > 0,

and the first expression shows that φδ → φ as δ → 0 uniformly on compact

subsets. Moreover, if φ is i-convex, then the mean value inequality for φ

yields for all x,w ∈C with |w| sufficiently small

φδ(x) +
1

4
ε|w|2 =

∫

Cn

(

φ(x− y) +
1

4
ε|w|2

)

ρδ(y)d
2ny

≤
∫

Cn

1

2π

∫ 2π

0
φ
(
x− y+weiθ

)
dθρδ(y)d

2ny

=
1

2π

∫ 2π

0
φδ

(
x+weiθ

)
dθ,

so φδ is i-convex. This proves the proposition on Cn. The manifold case

follows from this by a patching argument. �

We will need four corollaries of Proposition 2.5. The first one is just

combining it with Lemma 2.4:

Corollary 2.6 (maximum construction for functions). The maximum

max(φ,ψ) of two smooth J-convex functions can be C0-approximated by

smooth J-convex functions. �
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Fig. 1. Construction of the function ϑ3

We will denote a smooth approximation of max(φ,ψ) by

smoothmax(φ,ψ). This is a slight abuse of notation because such an ap-

proximation is not unique; it is somewhat justified by the fact that the

approximation can be chosen smoothly in families.

Corollary 2.7 (interpolation near a totally real submanifold). Let L be a

compact totally real submanifold of a complex manifold (V,J). Let φ,ψ : V →
R be two smooth J-convex functions such that φ(x) = ψ(x) and dφ(x) =

dψ(x) for all x ∈ L. Then, given any neighborhood U of L, there exists a

smooth J-convex function ϑ : V → R which coincides with φ outside U and

with ψ in a smaller neighborhood of L.

Proof. For the construction, see Figure 1. Shrink U so that ρ := dist2L :

U →R is smooth and J -convex and U = {ρ < ε}. Since φ and ψ agree to first

order along L, we find an a > 0 such that φ+ aρ > ψ on U \ L. An explicit

computation shows that we can find a J -convex function φ̄= φ+ f(ρ) which

agrees with φ outside U and with φ+aρ on {ρ < δ} for some δ < ε. Perturb φ̄

inside {ρ < δ} to a J -convex function φ̂ with φ̂ < ψ near L. Then the desired

function ϑ is given by smoothmax(ψ, φ̂) on {ρ < δ}, and φ̂ outside. �

Corollary 2.8 (minimum construction for hypersurfaces). Let Σ,Σ′ be two

compact J-convex hypersurfaces in a complex manifold (V =M ×R, J) that

are given as graphs of smooth functions f, g : M → R and cooriented from

below. Then there exists a C0-close smooth approximation of min(f, g) whose

graph Σ′′ is J-convex.

3This figure, and all further figures of this Chapter have been taken from our book [7] with
the permission of the American Mathematical Society.
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Proof. The functions φ(x, y) := y − f(x) and ψ(x, y) := y − g(x) have J -

convex zero sets Σ = φ−1(0) and Σ′ = ψ−1(0). Note that the zero set of

max(φ,ψ) = y − min(f, g)(x) is the graph of the function min(f, g). Now

pick a convex increasing function h : R → R with h(0) = 0 such that h ◦ φ
and h ◦ ψ are J -convex near Σ resp. Σ′, and define Σ′′ as the zero set of

smoothmax(h ◦ φ,h ◦ψ). �

Corollary 2.9 (from families of hypersurfaces to foliations). Let (M ×
[0,1], J) be a compact complex manifold. Suppose there exists a smooth family

of J-convex graphs (cooriented from below) Σλ = {y = fλ(x)}, λ ∈ [0,1], with

Σ0 =M × {0} and Σ1 =M × {1}. Then there exists a smooth foliation of

M × [0,1] by J-convex graphs Σ̃λ = {y = f̃λ(x)} λ ∈ [0,1], with Σ̃0 =M ×{0}
and Σ̃1 =M × {1}.

Proof. By a family version of Corollary 2.8, the continuous functions

f̄λ := minμ≥λ fμ can be C0-approximated by smooth functions gλ :M → [0,1]

whose graphs {y = gλ(x)} are J -convex. Since f̄λ ≤ f̄λ′ for λ≤ λ′, this can be

done in such a way that gλ ≤ gλ′ for λ≤ λ′. So the graphs of gλ almost form

a foliation, and stretching them slightly in the y-direction yields the desired

foliation. �

Open Question. Does an analogue of Proposition 2.5, or at least of Corol-

lary 2.6, hold for non-integrable J? If this were true, then a lot of the theory

in these notes would work in the non-integrable case.

J -Convex Model Functions. Let us fix integers 1≤ k ≤ n. Consider Cn

with complex coordinates zj = xj + iyj , j = 1, . . . , n, and set

R :=

√
√
√
√

k∑

j=1

x2j , r :=

√
√
√
√

n∑

j=k+1

x2j +

n∑

j=1

y2j .

Fix some a > 1 and define the standard i-convex function

Ψst(r,R) := ar2 −R2.

For small γ > 0, we will use

Hγ := {r ≤ γ, R≤ 1 + γ}

as a model for a complex k-handle. Its core disk is the totally real k-disk

{r = 0, R≤ 1+γ} and it will be attached to the boundary of a Stein domain
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Fig. 2. The function Ψ

along the set {r ≤ γ, R = 1 + γ}. The following theorem will allow us to

extend a J -convex function over the handle.

Theorem 2.10. For each 0< γ < 1< a there exists an i-lc function Ψ(r,R)

on Hγ with the following properties (see Figure 2):

(i) Ψ = Ψst near ∂Hγ ;

(ii) Ψ has a unique index k critical point at the origin;

(iii) the level set Σ = {Ψ =−1} surrounds the core disk in the sense that

{r = 0, R≤ 1 + γ} ⊂ {Ψ <−1}.

Proof. Step 1. The first task is the construction of the hypersurface Σ.

Let us write Σ as a graph R = φ(r), which we allow to become vertical

at r = δ. One can work out the condition for i-convexity of Σ (cooriented

from above), which becomes a rather complicated system of second order

differential inequalities for φ. However, it turns out that if φ > 0, φ′ > 0, and

φ′′ ≤ 0, the following simpler condition is sufficient for i-convexity:

(3) φ′′ +
φ′3

r
− 1

φ

(
1 + φ′2)> 0.
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Fig. 3. A solution of Struwe’s differential equation

Step 2. To construct solutions of (3), we follow a suggestion by

M. Struwe. We will find the function φ as a solution of Struwe’s equation

(4) φ′′ +
φ′3

2r
= 0,

with φ′ > 0 and hence φ′′ < 0. Then (3) reduces to

(5)
φ′3

2r
− 1

φ

(
1 + φ′2)> 0.

Now Struwe’s equation can be solved explicitly: It is equivalent to

(
1

φ′2

)′
=−2φ′′

φ′3 =
1

r
,

thus 1/φ′2 = ln(r/δ) for some constant δ > 0, or equivalently, φ′(r) =
1/
√

ln(r/δ). By integration, this yields a solution φ(r) for r ≥ δ which is

strictly increasing and concave and satisfies φ′(δ) = +∞. Choosing the re-

maining integration constant appropriately, we find a solution φ : [δ,Kδ]→R

which satisfies (5) and looks as shown in Figure 3. Here d > 0 can be chosen

arbitrarily and Kδ can be made arbitrarily small.

Step 3. Smoothing the maximum of the function φ from Step 2 and

the linear function L(r) = 1+ dr yields an i-convex hypersurface which sur-

rounds the core disk and agrees with {R = L(r)} for r ≥Kδ. To finish the

construction of the hypersurface Σ in Theorem 2.10, we still need to interpo-

late between L(r) and the function S(r) =
√
1 + ar2 whose graph is the level
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set {Ψst(r,R) = ar2 −R2 =−1}. Unfortunately, this cannot be done directly

with the maximum construction because the graph of L ceases to define an

i-convex hypersurface before it intersects the graph of S. The solution is to

interpolate from L to a quadratic function Q(r) = 1 + br + cr2/2 and from

there to S. The details are rather involved due to the fact that the simple

sufficient condition (3) fails and one needs to invoke the full necessary and

sufficient condition to ensure i-convexity during this interpolation.

Step 4. In Step 3 we constructed the level set Σ as a graph {R= φ(r)}.
To construct the i-lc function Ψ :Hγ →R, in view of Corollary 2.9 it suffices

to connect Σ on both sides to level sets of Ψst by a smooth family of i-

convex graphs. Towards larger R this is a simple application of the maximum

construction, whereas towards smaller R it requires 1-parametric versions of

the constructions in Steps 1–3. This proves Theorem 2.10. �

3. Existence of Stein Structures

In this section we prove the Existence Theorem 1.5.

Step 1: Extension of complex structures over handles. Consider an

almost complex cobordism (W,J) of complex dimension n ≥ 1 such that

J is integrable near ∂−W , and ∂−W is J -convex when cooriented by an in-

ward pointing vector field. For k ≤ n consider an embedding f : (Dk, ∂Dk) ↪→
(W,∂−W ), where Dk ⊂Rk ⊂Cn is the closed unit disk.

Proposition 3.1. The almost complex structure J is homotopic rel

Op(∂−W ) to one which is integrable near f(Dk).

Proof. After trivializing the relevant bundles, the differential of f defines

a map

df :
(
Dk, ∂Dk

)
→ (V2n,k, V2n−1,k−1),

where Vm,� is the Stiefel manifold of �-frames in Rm. Let V C

m,� ⊂ V2m,� be the

Stiefel manifold of complex �-frames in Cm, or equivalently, of totally real

�-frames in R2m.

Problem 3.2. For each n≥ 1 and k ≤ n, the map

πk
(
V C

n,k, V
C

n−1,k−1

)
→ πk(V2n,k, V2n−1,k−1)

induced by the obvious inclusions is surjective.
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Thus there exists a homotopy Ft : (D
k, ∂Dk) → (V2n,k, V2n−1,k−1) from

F0 = df to some F1 : (D
k, ∂Dk) → (V C

n,k, V
C

n−1,k−1). Now a relative version

of Gromov’s h-principle for totally real embeddings [11, 15] yields an iso-

topy of embeddings ft : (D
k, ∂Dk) ↪→ (W,∂−W ) from f0 = f to a totally real

embedding f1.

By a further isotopy we can achieve that f1|∂Dk is real analytic. We

complexify f1|∂Dk to a holomorphic embedding from a neighbourhood of

∂Dk in Cn into a slight extension W̃ of W past ∂−W , and then extend it to

an embedding f̃1 :D
k ×D2n−k

ε ↪→ W̃ which agrees with f1 on Dk =Dk × 0

and whose differential is complex linear along Dk. The push-forward (f̃1)∗i

of the standard complex structure i on Dk ×D2n−k
ε ⊂Cn agrees with J on a

neighbourhood of f1(∂D
k) (since f̃1 is holomorphic there) and at points of

f1(D
k). Thus we can extend (f̃1)∗i to an almost complex structure J̃ on W

which coincides with J near ∂−W and outside a neighbourhood of f1(D
k) and

is integrable near f1(D
k). An application of the isotopy extension theorem

now yields the desired almost complex structure which coincides with J near

∂−W and is integrable near the original disk f(Dk). �

By induction over the handles, Proposition 3.1 yields the following special

case of the Gromov–Landweber theorem:

Corollary 3.3 (Gromov [14], Landweber [18]). Let (V,J) be an almost com-

plex manifold of complex dimension n≥ 1 which admits an exhausting Morse

function φ : V →R without critical points of index > n. Then J is homotopic

to an integrable complex structure.

Step 2: Extension of J -convex functions over handles. Consider again

(W,J) and f : (Dk, ∂Dk) ↪→ (W,∂−W ) as in Step 1. After applying Propo-

sition 3.1 we may assume that J is integrable near Δ := f(Dk). After real

analytic approximation and complexification, we may assume that f extends

to a holomorphic embedding F :Hγ ↪→ W̃ , where Hγ is the standard handle

Dk
1+γ ×D2n−k

γ ⊂Cn and W̃ is a slight extension of W past ∂−W .

Let φ be a given J -convex function near ∂−W = {φ=−1}. To finish the

proof of Theorem 1.5, we need to extend φ to a J -convex function φ̃ on a

neighbourhood of Δ whose level set {φ̃=−1} coincides with ∂−W outside a

neighbourhood of ∂Δ and surrounds f(Dk) in W as shown in Figure 4.

Equivalently, we need to extend F ∗φ to an i-convex function Ψ on Hγ

whose level set {Ψ =−1} coincides with {F ∗φ=−1} near ∂Hγ and surrounds
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Fig. 4. Surrounding a J -orthogonally attached totally real disk

Dk in Hγ . According to Theorem 2.10 in the previous section, this can be

done if we can arrange that F ∗φ equals the standard function Ψst(r,R) =

ar2 −R2 near ∂Dk.

To analyze the last condition, note that the n-disk Dn meets the level set

{Ψst =−1} i-orthogonally along ∂Dn in the sense that i(TxD
n)⊂ TxΣ for all

x ∈ ∂Dn. Conversely, suppose that Dn is i-orthogonal to the level set {F ∗φ=

−1} along ∂Dk. Then F ∗φ and Ψst have the same kernel Tx∂D
n ⊕ i(TxD

n)

at x ∈ ∂Dk. After rescaling we may assume that F ∗φ agrees with Ψst to first

order along ∂Dk, so by Corollary 2.7 we can deform F ∗φ to make it coincide

with Ψst near ∂D
k.

The preceding discussion shows that it suffices to arrange that F (Dn ∩
Hγ) is J -orthogonal to ∂−W along ∂Δ= f(∂Dk). This can be arranged by

appropriate choice of the extension F provided that Δ is J -orthogonal to

∂−W along ∂Δ. Note that a necessary condition for this is JTx∂Δ⊂ Tx∂−W

for x ∈ ∂Δ, which means that ∂Δ is isotropic for the contact structure ξ =

T∂−W ∩J(T∂−W ) on ∂−W . Conversely, if this condition holds it is not hard

to arrange J -orthogonality. So we have reduced the proof of Theorem 1.5 to

Proposition 3.4. Consider an almost complex cobordism (W,J) of complex

dimension n such that J is integrable near ∂−W , and ∂−W is J-convex when

cooriented by an inward pointing vector field. If n > 2, then any embedding

f : (Dk, ∂Dk) ↪→ (W,∂−W ), k ≤ n, is isotopic to one which is totally real on

Dk and isotropic on ∂Dk.
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The remainder of this section is devoted to the proof of this proposition.

The subcritical case. Recall from Step 1 that there exists a homotopy

Ft : (D
k, ∂Dk) → (V2n,k, V2n−1,k−1) from F0 = df to some F1 : (D

k, ∂Dk) →
(V C

n,k, V
C

n−1,k−1). Restricting it to the boundary provides a homotopy Gt =

Ft|∂Dk : ∂Dk → V2n−1,k−1 from G0 = df |∂Dk to some G1 : ∂D
k → V C

n−1,k−1.

Now Gromov’s h-principle for isotropic immersions [11, 15] yields a homo-

topy of immersions gt : ∂D
k → ∂−W from g0 = f |∂Dk to an isotropic immer-

sion g1 together with a 2-parameter family of maps Gs
t : ∂D

k → V2n−1,k−1

satisfying G0
t = dgt, G1

t = Gt, Gs
0 = dg0, and Gs

1 : ∂Dk → V C

n−1,k−1 for all

s, t ∈ [0,1].

If the gt can be chosen to be embeddings rather than immersions, then

the h-principle for totally real embeddings allows us to extend the gt to em-

beddings ft :D
k ↪→W with f1 totally real and the proposition follows. In the

subcritical case k < n, this can be achieved simply by a generic perturbation

of the gt (keeping g1 isotropic).

Remark 3.5. The existence of the 2-parameter family Gs
t is crucial for the

application of the h-principle for totally real embeddings. Indeed, we can

always connect g0 = f |∂Dk by embeddings gt to some isotropic embedding

g1, so if we could extend these gt to totally real embeddings Dk ↪→W we

would prove Proposition 3.4 also in the case k = n= 2 where, as we shall see

below, it is false in general.

The critical case. In the critical case k = n, we can still perturb g1 to a

Legendrian embedding, but the gt need not all be embeddings. To understand

the obstruction to this, consider the immersion

Γ : Sn−1 × [0,1]→ ∂−W × [0,1], (x, t) �→
(
gt(x), t

)
.

After a generic perturbation, we may assume that Γ has finitely many trans-

verse self-intersections and define its self-intersection index

IΓ :=
∑

p

IΓ (p) ∈
{
Z if n is even,

Z2 if n is odd

as the sum over the indices of all self-intersection points p. Here the index

IΓ (p) =±1 is defined by comparing the orientations of the two intersecting

branches of Γ to the orientation of ∂−W × [0,1]. For n even this does not de-

pend on the order of the branches and thus gives a well-defined integer, while
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Fig. 5. Stabilization of a Legendrian submanifold

for n odd it is only well-defined mod 2. By a theorem of Whitney [27], for

n > 2, the regular homotopy gt can be deformed through regular homotopies

fixed at t= 0,1 to an isotopy if and only if IΓ = 0.

So if the family gt satisfies IΓ = 0 we are done. If IΓ �= 0 we will connect

g1 to another Legendrian embedding g2 by a Legendrian regular homotopy

gt, t ∈ [1,2], whose self-intersection index equals −IΓ . The extended family

gt, t ∈ [0,2], then has self-intersection index zero, so applying the previous

argument to this family will conclude the proof.

Stabilization of Legendrian submanifolds. Consider a Legendrian sub-

manifold Λ0 in a contact manifold (M,ξ) of dimension 2n − 1. Near a

point of Λ0 pick Darboux coordinates (q1, p1, . . . , qn−1, pn−1, z) in which

ξ = ker(dz −
∑

j pjdqj) and the front projection of Λ0 is a standard cusp

z2 = q31 . Deform the two branches of the front to make them parallel over

some open ball Bn−1 ⊂Rn−1. After rescaling, we may thus assume that the

front of Λ0 has two parallel branches {z = 0} and {z = 1} over Bn−1, see

Figure 5.

Pick a non-negative function f : Bn−1 → R with compact support and

1 as a regular value, so N := {f ≥ 1} ⊂ Bn−1 is a compact manifold with

boundary. Replacing for each t ∈ [0,1] the lower branch {z = 0} by the graph

{z = tf(q)} of the function tf yields the fronts of a path of Legendrian

immersions Λt ⊂ M connecting Λ0 to a new Legendrian submanifold Λ1.

Note that Λt has a self-intersection for each critical point of tf on level 1.

Problem 3.6. The Legendrian regular homotopy Λt, t ∈ [0,1], has self-

intersection index (−1)(n−1)(n−2)/2χ(N).



372 K. Cieliebak and Y. Eliashberg

Problem 3.7. For n > 2 there exist compact submanifolds N ⊂Rn−1 of ar-

bitrary Euler characteristic χ(N) ∈ Z, while for n= 2 the Euler characteristic

is always positive.

These two problems show that for n > 2 the stabilization construction

allows us find a Legendrian regular homotopy Λt, t ∈ [0,1], with arbitrary

self-intersection index. In view of the discussion above, this concludes the

proof of Proposition 3.4 and hence of Theorem 1.5.

Remark 3.8. The condition n > 2 was used twice in the proof of Proposi-

tion 3.4: for the application of Whitney’s theorem, and to arbitrarily modify

the self-intersection index by stabilization.

To illustrate the failure of Theorem 1.5 for n= 2, let us analyze for which

oriented plane bundles V → S2 the total space admits a Stein structure. Here

V is oriented by minus the orientation of the base followed by that of the

fibre. Such bundles are classified by their Euler class e(V ), which equals

minus the self-intersection number S · S ∈ Z of the zero section S ⊂ V .

We can construct each such bundle by attaching a 2-handle to the 4-ball

B4 along a topologically trivial Legendrian knot Λ⊂ (S3, ξst). Let Δ⊂B4 be

an embedded 2-disk meeting ∂B4 transversely along ∂Δ=Λ. It fits together

with the core disk D of the handle to an embedded 2-sphere S ⊂ V giving

the zero section in V . Recall that the Thurston-Bennequin invariant tb(Λ)

is defined as the linking number of Λ with a push-off Λ′ in the direction of a

Reeb vector field on (S3, ξst).

Problem 3.9. The complex structure on B4 ⊂ C2 extends to a complex

structure on V for which the core disk D is totally real (and hence by Theo-

rem 1.5 to a Stein structure on V ) if and only if −e(V ) = S · S = tb(Λ)− 1.

In view of Bennequin’s inequality tb(Λ)≤−1, this shows that the con-

struction of Theorem 1.5 works to provide a Stein structure on V if and

only if e(V ) ≥ 2. A much deeper theorem of Lisca and Matič [19] (proved

via Seiberg-Witten theory) asserts that S · S ≤ −2 for every homologically

nontrivial embedded 2-sphere S in a Stein surface, hence V admits a Stein

structure if and only if e(V ) ≥ 2. For example, the manifold S2 × R2 does

not admit any Stein structure.
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4. Morse-Smale Theory for J -Convex Functions

Morse-Smale theory deals with the problem of simplification of a Morse func-

tion, trying to remove as many critical points as the topology allows. One con-

sequence is the h-cobordism theorem and the proof of the higher-dimensional

Poincaré conjecture. In this section we study Morse-Smale theory for J -

convex Morse functions, resulting in a Stein version of the h-cobordism the-

orem.

The h-Cobordism Theorem. Let us begin by recalling the celebrated

Theorem 4.1 (h-cobordism theorem, Smale [26]). Let W be an h-

cobordism, i.e., a compact cobordism such that W and ∂±W are simply

connected and H∗(W,∂−W ;Z) = 0. Suppose that dimW ≥ 6. Then W car-

ries a function without critical points and constant on ∂±W .

For the proof, one considers a compact cobordism W with a Morse func-

tion φ :W → R having ∂±W as regular level sets and a gradient-like vector

field X for φ. We will refer to such (W,X,φ) as a Smale cobordism. It is

called elementary if W−
p ∩W+

q = ∅ for all critical points p �= q, where W−
p

and W+
p denotes the stable resp. unstable manifold of p with respect to X .

The key geometric ingredients in the proof of the h-cobordism theorem

are the following four geometric lemmas about modifications of Smale cobor-

disms (see [21]). The first three of them are rather simple, while the fourth

one is more difficult.

Lemma 4.2 (moving critical levels). Let (W,X,φ0) be an elementary Smale

cobordism. Then there exists a homotopy (W,X,φt) of elementary Smale

cobordisms which arbitrarily changes the ordering of the values of the critical

points.

Lemma 4.3 (moving attaching spheres). Let (W,X0, φ) be a Smale cobor-

dism and p ∈W a critical point whose stable manifold W−
p (X0) with respect

to X0 intersects ∂−W along a sphere S0 ⊂ ∂−W . Then given any isotopy

St ⊂ ∂−W , t ∈ [0,1], there exists a homotopy of Smale cobordisms (W,Xt, φ)

such that the stable manifold W−
p (Xt) intersects ∂−W along St.

Lemma 4.4 (creation of critical points). Let (W,X0, φ0) be a Smale cobor-

dism without critical points. Then for any 1≤ k ≤ dimW and any p ∈ IntW
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there exists a Smale homotopy (W,Xt, φt), t ∈ [0,1], fixed outside a neigh-

bourhood of p, which creates a pair of critical points of index k − 1 and k

connected by a unique trajectory of X1 along which the stable and unstable

manifolds intersect transversely.

Lemma 4.5 (cancellation of critical points). Suppose that a Smale cobor-

dism (W,X0, φ0) contains exactly two critical points of index k − 1 and k

which are connected by a unique trajectory of X along which the stable and

unstable manifolds intersect transversely. Then there exists a Smale homo-

topy (W,Xt, φt), t ∈ [0,1], which kills the critical points, so the cobordism

(W,X1, φ1) has no critical points.

Here all the homotopies will be fixed on a neighbourhood of ∂±W . The

functions φt in Lemmas 4.4 and 4.5 will be Morse except for one value t0 ∈
(0,1) where they have a birth-death type critical point. Here a birth-death

type critical point of index k− 1 at t0 is described by the local model

φt(x) = x31 ∓ (t− t0)x1 − x22 − · · · − x2k + x2k+1 + · · ·+ x2m.

Problem 4.6. Prove Lemmas 4.2, 4.3 and 4.4.

Modifications of J -Convex Morse Functions. Let us now state the

analogues of the four lemmas for J -convex functions. By a Stein cobordism

(W,J,φ) we will mean a complex cobordism (W,J) with a J -convex Morse

function φ :W →R having ∂±W as regular level sets. We will always use the

gradient vector field ∇φφ of φ with respect to the metric gφ =−ddCφ(·, J ·)
to obtain a Smale cobordism (W,∇φφ,φ). Note that in the following four

propositions the complex structure J is always fixed.

Proposition 4.7 (moving critical levels). Let (W,J,φ0) be an elementary

Stein cobordism. Then there exists a homotopy (W,J,φt) of elementary Stein

cobordisms which arbitrarily changes the ordering of the values of the critical

points.

Proposition 4.8 (moving attaching spheres). Let (W,J,φ0) be a Stein

cobordism and p ∈ W a critical point whose stable manifold W−
p (φ0) with

respect to ∇φ0
φ0 intersects ∂−W along an isotropic sphere S0 ⊂ ∂−W . Then

given any isotropic isotopy St ⊂ ∂−W , t ∈ [0,1], there exists a homotopy of

Stein cobordisms (W,J,φt) with fixed critical point p such that the stable

manifold W−
p (φt) intersects ∂−W along St.
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Proposition 4.9 (creation of critical points). Let (W,J,φ0) be a Stein

cobordism without critical points. Then for any 1 ≤ k ≤ dimCW and any

p ∈ IntW there exists a Stein homotopy (W,J,φt), t ∈ [0,1], fixed outside

a neighbourhood of p, which creates a pair of critical points of index k − 1

and k connected by a unique trajectory of ∇φ1
φ1 along which the stable and

unstable manifolds intersect transversely.

Proposition 4.10 (cancellation of critical points). Suppose that a Stein

cobordism (W,J,φ0) contains exactly two critical points of index k− 1 and k

which are connected by a unique trajectory of ∇φ0
φ0 along which the stable

and unstable manifolds intersect transversely. Then there exists a Stein ho-

motopy (W,J,φt), t ∈ [0,1], which kills the critical points, so the cobordism

(W,J,φ1) has no critical points.

Again, all the homotopies will be fixed on a neighbourhood of ∂±W , up to

composition of the J -convex functions with some convex increasing function

R→ R. The statements are precise analogues of those in the smooth case,

with one notable difference: in Proposition 4.8 we require the isotopy St

to be isotropic. This difference, and the lack of a 1-parametric h-principle

for Legendrian embeddings, is largely responsible for all symplectic rigidity

phenomena on Stein manifolds. However, in the subcritical case ind(p) =

k < n we have an h-principle stating that any smooth isotopy St starting at

an isotropic embedding S0 can be C0-approximated by an isotropic isotopy

starting at S0. With this, the proof of the h-cobordism theorem goes through

for J -convex functions and we obtain

Theorem 4.11 (Stein h-cobordism theorem). Let (W,J,φ) be a subcritical

Stein h-cobordism. Suppose that dimCW ≥ 3. Then W carries a J-convex

function without critical points and constant on ∂±W .

Further implications of these results will be discussed in Section 5. The

remainder of this section is devoted to the proofs of Propositions 4.7 to 4.10.

Proof of Proposition 4.7. This is an immediate consequence of the J -

convex model functions constructed in Section 3: Since the cobordism is

elementary, the stable manifolds of the critical points are disjoint embedded

disks. For each critical point p, Theorem 2.10 allows us to deform φ0 near

W−
p such that for the new J -lc function the level set containing p is connected

to a level set of φ0 slightly above ∂−W . Now we perform this operation for
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Fig. 6. Moving attaching spheres by isotropic isotopies

each critical point and choose the level sets near ∂−W to achieve any given

ordering. �

Proof of Proposition 4.8. Let k := ind(p)≤ n. We identify level sets of

φ0 near ∂−W via Gray’s theorem. Then we construct an isotopy of embedded

k-disks Dt ⊂W such that D0 =W−
p , Dt agrees with W−

p near p, ∂Dt = St,

and Dt intersects all level sets of φ below c := φ(p) transversely in isotropic

(k−1)-spheres; see Figure 6. The last condition implies thatDt is totally real.

If k < n we can further extend Dt to a totally real embedding of Dk ×Dn−k
ε

intersecting level sets transversely in isotropic submanifolds, so it suffices to

consider the case k = n. To conclude the proof, we will construct J -convex

functions φt which agree with φ0 near p and whose gradient ∇φt
φt is tangent

to Dt. This is done in two steps.

In the first step we construct J -convex functions ψt whose level sets

below c are J -orthogonal to Dt. To do this, consider some level set Σ of φ0

intersecting Dt in the isotropic submanifold Λt. Let ξ be the induced contact

structure on Σ. We deform Σ near Λt to a new hypersurface Σ′ which agrees

with Σ outside a neighbourhood of Λt, intersects Dt J -orthogonally in Λt,

and satisfies ξ ⊂ TΣ′ along Λt (so we “turn Σ around ξ along Λt”); see

Figure 7. A careful estimate of the Levi form shows that Σ′ can be made

J -convex. Deforming all level sets in this way leads to a family of J -convex

hypersurfaces, which by Corollary 2.9 can be turned into a foliation and thus

into level sets of a J -lc function.

For the second step, consider the J -convex functions ψt from the first

step whose level sets below c are J -orthogonal to Dt. It is not hard to write

down in a local model a J -convex function ϑt near Dt which agrees with ψt

on Dt, whose level sets are J -orthogonal to Dt, and whose gradient ∇ϑt
ϑt

is tangent to Dt. Now Corollary 2.7 provides the desired function φt which
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Fig. 7. Turning a J -convex hypersurface along an isotropic submanifold

Fig. 8. The half-disk Δ

coincides with ψt outside a neighbourhood of Dt and with ϑt in a smaller

neighborhood of Dt. �

Proof of Proposition 4.10. Let (W,J,φ0) be a Stein cobordism with

exactly two critical points p, q of index k, k − 1 connected by a unique

trajectory of ∇φ0
φ0 along which the stable and unstable manifolds intersect

transversely. Set a := φ0|∂−W , b := φ0(q) and c := φ0(p).

Problem 4.12. In the situation above, suppose that φ0 is quadratic in some

holomorphic coordinates near p and q. Then the closure of W−
p is an embed-

ded k-dimensional half-disk Δ ⊂W with lower boundary ∂−Δ =Δ ∩ ∂−W

and upper boundary ∂+Δ=W−
q ; see Figure 8.
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Fig. 9. The first surrounding hypersurface Σ1 and the disk D

We will now deform the function φ0 in 4 steps. The first 3 steps modify

φ0 outside Δ, without affecting its critical points, to make some level set

closely surround Δ; the actual cancellation happens in the last step.

First surrounding. First we apply Theorem 2.10 to the (k − 1)-disk

∂+Δ to deform φ0 to a J -lc function φ1 such that some level set Σ1 = {φ1 =

c1} closely surrounds ∂+Δ as shown in Figure 9.

Second surrounding. Next we apply Theorem 2.10 to the k-disk D :=

Δ∩{φ1 ≥ c1} to deform φ1 to a J -lc function φ2 such that some level set Σ2 =

{φ2 = c2} closely surrounds Δ as shown in Figure 9. Note that a cross-section

of Σ2 will have a dumbell-like shape as in Figure 10, where x= (x1, . . . , xk)

and u= (xk+1, . . . , xn, y1, . . . , yn).

Third surrounding. On the other hand, we can construct another hy-

persurface Σ3 surrounding Δ as follows: Restrict a very thin model hypersur-

face Σ provided by Theorem 2.10 to a neighbourhood of the lower half-disk

{r = 0,R ≤ 1, yk ≤ 0} in Cn, implant it onto a neighbourhood of Δ in W ,

and apply the minimum construction in Corollary 2.8 to this hypersurface

and Σ2. The resulting J -convex hypersurface Σ3 is shown in Figure 11. The

most difficult part is now to connect Σ3 to Σ2 by a family of J -convex hy-

persurfaces. Once this is done, we can apply Corollary 2.9 to deform φ2 to a

J -lc function φ3 having Σ3 as a level set.

The cancellation. Let us extend Δ across ∂+Δ to a slightly larger

half-disk Δ′, still surrounded by Σ3, so that the critical points p, q lie in
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Fig. 10. The dumbell-shaped cross-section of the second surrounding hypersurface Σ2

Fig. 11. The third surrounding hypersurface Σ3
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the interior of Δ′, and ∇φ3
φ3 is inward pointing along ∂−Δ′ and outward

pointing along ∂+Δ
′. By Lemma 4.5 there exists a family of smooth functions

βt : Δ
′ → R, t ∈ [3,4], fixed near ∂Δ′, such that β3 = φ3|Δ′ and β4 has no

critical points. Identifying Δ′ with the lower half-disk in the standard handle,

we can pick a large constant B > 0 such that the functions ψt := βt +Br2

near Δ′ are J -convex for all t ∈ [3,4].

After an application of Corollary 2.7, we may assume that ψ3 = φ3 near

Δ′. We can choose convex increasing functions ft : R→R with f3 = id such

that for t ∈ [3,4] the J -convex function φt := smoothmax(ψt, ft ◦ φ3) agrees

with ft ◦ φ3 in the region outside of Σ3 and with ψt near Δ′. In particular,

φ4 has no critical points (for this one needs to check that the maximum

constructon does not create new critical points outside Δ′). Hence (W,J,φ4t),

t ∈ [0,1], is the desired Stein homotopy and Proposition 4.10 is proved. �

Proof of Proposition 4.9. The proof is similar to that of Proposition 4.10

but much simpler. Set a := φ0|∂−W and c := φ0(p). Pick an isotropic embed-

ded (k− 1)-sphere S through p in the level set φ−1
0 (c) and let Z ⊂W be the

totally real cylinder swept out by S under the backward gradient flow of φ0.

We identify Z with the cylinder {r = 0,1/2≤R≤ 1} in the standard handle.

A slight modification of Theorem 2.10 yields a family of J -convex functions

φt :W →R, t ∈ [0,1], such that some level set Σ1 of φ1 surrounds Z in W .

By Lemma 4.4 there exists a family of smooth functions βt : Z → R,

t ∈ [1,2], fixed near ∂Z, such that β1 = φ1|Z and β2 has exactly two critical

points of index k− 1 and k connected by a unique gradient trajectory along

which the stable and unstable manifolds intersect transversely. As above, we

can pick a large constant B > 0 such that the functions ψt := βt+Br2 near Z

are J -convex for all t ∈ [1,2] and set φt := smoothmax(ψt, ft ◦ φ1), t ∈ [1,2],

to obtain the desired family φ2t, t ∈ [0,1]. �

5. Flexibility of Stein Structures

In this section we study the question when two Stein structures on the same

manifold can be connected by a Stein homotopy.

Stein Homotopies. Let us first carefully define the notion of a Stein ho-

motopy. Consider first a smooth family (with respect to the C∞
loc-topology) of

exhausting functions φt : V →R, t ∈ [0,1], on a manifold V . We call it a sim-

ple Morse homotopy if there exists a family of smooth functions c1 < c2 < · · ·
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on the interval [0,1] such that for each t ∈ [0,1], ci(t) is a regular value of the

function φt and
⋃

k{φt ≤ ck(t)}= V . Then a Morse homotopy is a composi-

tion of finitely many simple Morse homotopies, and a Stein homotopy is a

family of Stein structures (V,Jt, φt) such that the functions φt form a Morse

homotopy.

The role of the regular levels ci(t) is to prevent critical points from “es-

caping to infinity”. The following three problems motivate why this is the

correct definition. The first one shows that, without this condition, the notion

of “homotopy” would become rather trivial:

Problem 5.1. Any two Stein structures (J0, φ0) and (J1, φ1) on Cn can be

connected by a smooth family of Stein structures (Jt, φt) on Cn, allowing

critical points to escape to infinity.

The second one shows that the question whether two Stein structures are

homotopic does not depend on the chosen J -convex functions:

Problem 5.2. If φ0, φ1 : V →R are two exhausting J -convex functions for

the same complex structure J , then (J,φ0) and (J,φ1) can be connected by

a Stein homotopy (J,φt).

The third one makes the question of Stein homotopies accessible to sym-

plectic techniques. Let us call a Stein structure (J,φ) complete if the gradient

vector field∇φφ is complete; by Problem 2.2, any Stein structure can be made

complete by composing φ with a convex increasing function f :R→R.

Problem 5.3. If two complete Stein structures (J0, φ0) and (J1, φ1) on a

manifold V are Stein homotopic, then the associated symplectic manifolds

(V,−ddCφ0) and (V,−ddCφ1) are symplectomorphic.

From now on, when we talk about individual Stein structures (J,φ) we

will always assume that the function φ is Morse, while for Stein homotopies

we allow birth-death type singularities.

The 2-Index Theorem. Before studying Stein homotopies, let us first

consider the situation in smooth topology. It follows from Problem 5.2 (sim-

ply ignoring J -convexity) that any two Morse functions on the same manifold

can be connected by a Morse homotopy. In addition, we will need some con-

trol over the indices of critical points. This is provided by following immediate
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consequence of the two-index theorem of Hatcher and Wagoner ([16], see also

[17]):

Theorem 5.4. Let φ0, φ1 : W → [0,1] be two Morse functions on an m-

dimensional cobordism W with ∂±W as regular level sets. For some k ≥ 3,

suppose that φ0, φ1 have no critical points of index > k. Then φ0 and φ1 can

be connected by a Morse homotopy φt (all having ∂±W as regular level sets)

without critical points of index > k.

We will apply this theorem in the following two cases with m= 2n:

• the subcritical case k+ 1= n≥ 4;

• the critical case k = n≥ 3.

Uniqueness of Subcritical Stein Structures. After these preparations,

we can prove our first uniqueness theorem.

Theorem 5.5 (uniqueness of subcritical Stein structures). Let (J0, φ0) and

(J1, φ1) be two subcritical Stein structures on the same manifold V of com-

plex dimension n > 3. If J0 and J1 are homotopic as almost complex struc-

tures, then (J0, φ0) and (J1, φ1) are Stein homotopic.

Proof. By Theorem 5.4 with k+1= n≥ 4, the functions φ0 and φ1 can be

connected a Morse homotopy φt without critical points of index ≥ n. We cut

the homotopy into a finite number of simple Morse homotopies, and we cut

each simple homotopy at the regular levels ci into countably many compact

cobordisms. Let us pick gradient-like vector fields Xt for φt. After further

decomposition of these cobordisms, we may assume that on each cobordism

W only one of the following two cases occurs:

(i) all the Smale cobordisms (W,Xt, φt) are elementary;

(ii) a pair of critical points is created or cancelled.

In the first case, only the levels of the critical points vary and the attaching

spheres move by smooth isotopies. By the h-principle for subcritical isotropic

embeddings, these isotopies can be C0-approximated by isotropic isotopies.

So we can apply Propositions 4.7 and 4.8 to realize the same moves by J -

convex functions. The second case is treated by Propositions 4.9 and 4.10.

Applying the four propositions inductively over the simple homotopies, and
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within each simple homotopy over increasing levels, we hence construct a

family of J0-convex functions (all for the same J0!) ψt : V → R such that

ψt = φt ◦ ht for a smooth family of diffeomorphisms ht : V → V with h0 = id.

Note that ((ht)∗J0, φt) provides a Stein homotopy from (J0, φ0) to (J2 :=

(h1)∗J0, φ1). So the theorem is proved if we can connect (J2, φ1) to (J1, φ1)

by a Stein homotopy (Jt, φ1), t ∈ [1,2] (with fixed function φ1!). For this, we

decompose V into elementary cobordisms containing only one critical level,

and we pick a family Xt of gradient-like vector fields for φ1 connecting the

gradients with respect to J1 and J2. Then for each critical point p on such

a cobordism W the attaching spheres with respect to Xt form a smooth

isotopy St, t ∈ [1,2], connecting the isotropic spheres S1 and S2. Again by

the h-principle for subcritical isotropic embeddings, we can make the isotopy

St isotropic. Now by a 1-parametric version of the Existence Theorem 1.5, we

can connect J1 and J2 by a smooth family of integrable complex structures

Jt on W such that φ1 is Jt-convex for all t ∈ [1,2]. �

Problem 5.6. Find the major gap in the preceding proof, and consult [7]

on how it can be filled.

Exotic Stein Structures. In the critical case, uniqueness fails dramat-

ically. In 2009, McLean [20] constructed infinitely many pairwise non-

homotopic Stein structures on Cn for any n≥ 4. Extending McLean’s result

to n= 3 (see [1]) and combining it with the surgery exact sequence from [3],

one obtains

Theorem 5.7. Let (V,J) be an almost complex manifold of real dimension

2n≥ 6 which admits an exhausting Morse function with finitely many critical

points all of which have index ≤ n. Then V carries infinitely many finite type

Stein structures (Jk, φk), k ∈N, such that the Jk are homotopic to J as almost

complex structures and (Jk, φk), (J�, φ�) are not Stein homotopic for k �= �.

Here a Stein structure (J,φ) is said to be of finite type if φ has only

finitely many critical points. The Stein structures (Jk, φk) are distinguished

up to homotopy by showing that the symplectic manifolds (V,−ddCφk) are

pairwise non-symplectomorphic, distinguished by their symplectic homology.

Despite this wealth of exotic Stein structures, it has recently turned out that

there is still some flexibility in the critical case, which we will describe next.

Murphy’s h-Principle for Loose Legendrian Knots. It is well-known

that the 1-parametric h-principle fails for Legendrian embeddings. More pre-
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cisely, a formal Legendrian isotopy (ft, F
s
t ) between two Legendrian embed-

dings f0, f1 : Λ ↪→ (M,ξ) consists of a smooth isotopy ft : Λ ↪→M , t ∈ [0,1],

together with a 2-parameter family of injective bundle homomorphisms

F s
t : TΛ→ TM covering ft, s, t ∈ [0,1], such that F s

0 = df0, F
s
1 = df1, F

0
t = dft,

and F 1
t : TΛ→ ξ is isotropic for all s, t. By the h-principle for Legendrian im-

mersions, this implies that f0 and f1 are connected by a Legendrian regular

homotopy. On the other hand, there are many examples of pairs of Legen-

drian embeddings that are formally Legendrian isotopic but not Legendrian

isotopic (see e.g. [5] in dimension 3, and [9] in higher dimensions).

Despite the failure of the h-principle, there are two partial flexibility

results for Legendrian knots in dimension 3: Any two formally isotopic Leg-

endrian knots in (R3, ξst) become Legendrian isotopic after sufficiently many

stabilizations [12], and any two formally isotopic Legendrian knots in the

complement of an overtwisted disk are Legendrian isotopic [8]. E. Murphy

recently discovered a remarkable class of Legendrian embeddings in dimen-

sions ≥ 5 which satisfy the 1-parametric h-principle:

Theorem 5.8 (Murphy’s h-principle for loose Legendrian embeddings [22]).

In contact manifolds (M,ξ) of dimension ≥ 5 there exists a class of loose

Legendrian embeddings with the following properties:

(a) The stabilization construction described in Section 3 with χ(N) = 0

turns any Legendrian embedding f0 into a loose Legendrian embedding

f1 formally isotopic to f0.

(b) Let (ft, F
s
t ), s, t ∈ [0,1], be a formal Legendrian isotopy connecting

two loose Legendrian embeddings f0, f1 : Λ ↪→M . Then there exists a

Legendrian isotopy f̃t connecting f̃0 = f0 and f̃1 = f1 which is C0-close

to ft and is homotopic to the formal isotopy (ft, F
s
t ) through formal

isotopies with fixed endpoints.

Note that, in contrast to the 3-dimensional case, Legendrian embeddings

in dimension ≥ 5 become loose after just one stabilization, and the stabiliza-

tion of a loose Legendrian embedding is Legendrian isotopic to the original

one.

Existence and Uniqueness of Flexible Stein Structures. Let us call

a Stein manifold (V,J,φ) of complex dimension ≥ 3 flexible if all attaching

spheres on all regular level sets are either subcritical or loose Legendrian. In

view of Theorem 5.8(a), we can perform a stabilization in each inductional

step of the proof of the Existence Theorem 1.5 to obtain
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Theorem 5.9 (existence of flexible Stein structures). Any smooth manifold

V of dimension 2n > 4 which admits a Stein structure also admits a flexible

one (in a given homotopy class of almost complex structures).

Now we can repeat the proof of Theorem 5.5, using Theorem 5.4 in

the critical case k = n≥ 3 and Theorem 5.8(b) for the Legendrian attaching

spheres (always keeping the Stein structures flexible in the process), to obtain

Theorem 5.10 (uniqueness of flexible Stein structures). Let (J0, φ0) and

(J1, φ1) be two flexible Stein structures on the same manifold V of complex

dimension n > 2. If J0 and J1 are homotopic as almost complex structures,

then (J0, φ0) and (J1, φ1) are Stein homotopic.

Remark 5.11. (a) Since subcritical Stein manifolds are flexible, Theo-

rem 5.10 allows us to weaken the hypothesis on the dimension in Theorem 5.5

from n > 3 to n > 2.

(b) Combining the result in [6] with the surgery exact sequence in [3]

implies that flexible Stein manifolds have vanishing symplectic homology.

Applications to Symplectomorphisms and Pseudo-isotopies. The-

orem 5.10 has the following consequence for symplectomorphisms of flexible

Stein manifolds.

Theorem 5.12. Let (V,J,φ) be a complete flexible Stein manifold of com-

plex dimension n > 2, and f : V → V be a diffeomorphism such that f∗J is

homotopic to J as almost complex structures. Then there exists diffeotopy

(i.e., a smooth family of diffeomorphisms) ft : V → V , t ∈ [0,1], such that

f0 = f , and f1 is a symplectomorphism of (V,ωφ).

Proof. By Theorem 5.10, there exists a Stein homotopy (Jt, φt) connecting

the flexible Stein structures (J0, φ0) = (J,φ) and (J1, φ1) = (f∗J, f∗φ). By

Problem 5.3, there exists a diffeotopy ht : V → V such that h0 = id and

h∗tωφt
= ωφ. In particular, (f ◦ h1)

∗ωφ = h∗1ωφ1
= ωφ, so ft = f ◦ ht is the

desired diffeotopy. �

Remark 5.13. Even if (J,φ) is of finite type and f = id outside a compact

set, the diffeotopy ft provided by Theorem 5.12 will in general not equal the

identity outside a compact set.
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For our last application, consider a closed manifold M . A pseudo-isotopy

of M is a smooth function φ :M × [0,1]→ R without critical points which

is constant on M × 0 and M × 1 with f |M×0 < f |M×1. We denote by E(M)

the space of pseudo-isotopies equipped with the C∞-topology. The homotopy

group π0E(M) is trivial if dimM ≥ 5 and M is simply connected [4], while in

the non-simply connected case for dimM ≥ 6 it is often nontrivial [16, 17].

Problem 5.14. Show that E(M) is homotopy equivalent to the space P(M)

of diffeomorphisms of M × [0,1] that restrict as the identity to M × 0.

(The map P(M) → E(M) assigns to f the pullback f∗φst of the function

φst(x, t) = t, and a homotopy inverse is obtained by following trajectories of

a gradient-like vector field). This explains the name “pseudo-isotopy” because

any isotopy ft :M →M with f0 = id defines an element f(x, t) = (ft(x), t) in

P(M).

Now consider a topologically trivial Stein cobordism (M × [0,1], J,φ)

and denote by E(M × [0,1], J) the space of J -convex functions M × [0,1]→
R without critical points which are constant on M × 0 and M × 1 with

f |M×0 < f |M×1.

Theorem 5.15. For any topologically trivial flexible Stein cobordism (M ×
[0,1], J,φ) of dimension 2n > 4 the canonical inclusion I : E(M × [0,1], J) ↪→
E(M) induces a surjection

I∗ : π0E
(
M × [0,1], J

)
→ π0E(M).

Proof. Let ψ ∈ E(M) be given. By Theorem 5.4 with k = n≥ 3, there exists

a Morse homotopy φt :M × [0,1]→ R without critical points of index > n

connecting the J -convex function φ0 = φ to φ1 = ψ. Arguing as in the proof

of Theorem 5.5, always keeping the Stein structures flexible, we construct a

diffeotopy ht :M × [0,1]→M × [0,1] with h0 = id such that the functions

ψt = φt ◦ ht are J -convex for all t ∈ [0,1]. Then the J -convex function ψ1 =

ψ◦h1 is connected to ψ by the path ψ◦ht of functions without critical points,
so ψ1 and ψ belong to the same path connected component of E(M). �

We conjecture that I∗ in Theorem 5.15 is an isomorphism.
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