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1. Introduction

Heegaard Floer homology is a kind of (3 + 1)-dimensional topological field

theory defined by the second author and Z. Szabó. More precisely, one vari-

ant of Heegaard Floer homology associates to each connected, oriented 3-

manifold Y an abelian group ̂HF (Y ) [46] (see also [16]), and to each smooth,

connected, 4-dimensional cobordism W from Y1 to Y2 a group homomor-

phism F̂ :̂HF (Y1)→̂HF (Y2) [50]. This assignment is functorial: composition

of cobordisms corresponds to composition of maps. As the name suggests,

the Heegaard Floer homology groups are the homologies of chain complexes
̂CF (Y ), defined via Lagrangian-intersection Floer homology1. The invariant

is also multiplicative: the chain complex ̂CF (Y1#Y2) associated to the con-

nected sum of Y1 and Y2 is the tensor product ̂CF (Y1)⊗̂CF (Y2) of the chain

complexes associated to Y1 and Y2. The other variants of Heegaard Floer

homology—HF+(Y ), HF−(Y ) and HF∞(Y )—are modules over Z[U ], but

otherwise behave fairly similarly to ̂HF (Y ) (but see point (4) below).

Heegaard Floer homology has received widespread attention largely be-

cause of its striking topological applications. Many of these applications draw

on the remarkable geometric content of the Heegaard Floer invariants:

1Strictly speaking, in the original definition the manifolds were only totally-real, not La-
grangian. It was shown in [54] that a Kähler form can be chosen making the relevant
submanifolds Lagrangian.
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(1) The group ̂HF (Y ) detects the Thurston norm of Y ; similarly, the

variant of Heegaard Floer homology ĤFK (Y,K) associated to a null-

homologous knot K, called knot Floer homology [44, 56], detects the

genus of K [43].

(2) The group ̂HF (Y ) detects whether and how Y fibers over S1; similarly,

ĤFK (Y,K) detects whether K is fibered [9, 41].

(3) The two previous properties are reminiscent of the Alexander polyno-

mial, which gives partial information in each case. There is a precise

relationship between ĤFK and the Alexander polynomial. Specifically,

if K is a knot in S3, then ĤFK (K) is endowed with an integral bi-

grading ĤFK (K) =
⊕

d,s∈Z ĤFK d(K,s), and

∑

d

(−1)dT s rank ĤFK d(K,s) =ΔK(T )

[44, 56].

(4) The Heegaard Floer homology groups of closed 3-manifolds are now

known to agree with the Seiberg-Witten Floer homology groups [6–

8, 19–23, 59–63]. Moreover, one can use Heegaard Floer homology to

define an invariant of smooth, closed 4-manifolds [50], with similar

properties to the Seiberg-Witten invariant [14, 47, 57]; it is expected

that the two invariants agree. Note, however, that to capture the ana-

logue of the Seiberg-Witten invariant one needs to work with the HF+

and HF− variants of Heegaard Floer homology.

As mentioned above, Heegaard Floer homology is defined using Lagrang-

ian-intersection Floer homology, i.e., by counting holomorphic curves. Con-

sequently, it is in general hard to compute—though there are now several

algorithms for doing so; see particularly [37–40, 58]. With the goal of com-

puting and better understanding Heegaard Floer homology in mind, we have

been developing bordered Heegaard Floer homology, a tool for understand-

ing the behavior of the Heegaard Floer homology group ̂HF (Y ) under cut-

ting and gluing of Y along surfaces. Roughly, bordered Floer homology is

a (2 + 1 + 1)-dimensional field theory. That is, roughly, it assigns to each

connected, oriented surface F a differential graded algebra A(F ) and to a

cobordism Y from F1 to F2 an (A(F1),A(F2))-bimodule ĈFDA(Y ). Compo-

sition of cobordisms corresponds to tensor product of bimodules.

More precisely, like in Heegaard Floer homology, in bordered Floer ho-

mology, the invariants are not associated directly to the topological objects



Notes on Bordered Floer Homology 277

of interest—manifolds of dimensions 2 through 4—but rather to certain com-

binatorial representations for these objects, which we describe next.

The combinatorial representations of oriented surfaces which appear in

bordered Floer homology, the pointed matched circles, which we denote by Z ,

consist essentially of a handle-decomposition of the surface. (See Defini-

tion 2.1 below for a more precise formulation.) We will let F (Z) denote the

surface underlying Z . Bordered Floer homology associates to such a pointed

matched circle a differential-graded (dg) algebra A(Z); the definition of A(Z)

is purely combinatorial.

The three-dimensional objects studied in the bordered theory are cobor-

disms, i.e., three-manifolds with parameterized boundary. More precisely,

a bordered 3-manifold consists of a compact, oriented 3-manifold-with-

boundary Y and a homeomorphism φ : F (Z)→ ∂Y , where Z is some pointed

matched circle.

Bordered Floer homology associates to a bordered 3-manifold (Y,φ :

F (Z)→ ∂Y ) a left dg A(−Z)-module, which we denote ĈFD(Y ). (The mi-

nus sign in front of Z denotes a reversal of orientation.) Explicitly, ĈFD(Y )

is a left module over the dg algebra A(−Z); and ĈFD(Y ) is equipped with

a differential which satisfies the Leibniz rule2 with respect to the action by

the algebra;

∂
ĈFD(Y )

(a · x) = dA(−Z)(a) · x+ a · ∂
ĈFD(Y )

(x).

Like the algebras, the modules ĈFD are also associated to combinatorial

representations of the underlying structure. In this case, the combinatorial

structure is called a bordered Heegaard diagram (Definition 2.5 below). Unlike

the algebras, the definition of ĈFD then depends on further analytic choices

(specifically, a family of complex structures on the underlying Heegaard sur-

face); but the quasi-isomorphism type of the module does not depend on

these further choices.

The modules ĈFD can be used to reconstruct the Heegaard Floer homol-

ogy ̂HF via pairing theorems, which come in several variants. For example,

recall that if M1 and M2 are two dg-modules over some algebra A, we can

consider their chain complex of morphisms MorA(M1,M2), which is to be

2The ground ring for bordered Floer homology is Z/2Z; hence the signs usually appearing
in the differential graded Leibniz rule become irrelevant.
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thought of as the space of A-linear maps φ : M1 → M2, equipped with a

differential

dMor(φ) = dM2
◦ φ+ φ ◦ dM1

.

Theorem 1.1. Let Y1 and Y2 be two Z-bordered three-manifolds. Then

there is an isomorphism between the homology of the morphism space

MorA(−Z)(ĈFD(Y1), ĈFD(Y2)) and the Heegaard Floer homology ̂HF (Y ) of

the three-manifold Y = −Y1 ∪F (Z) Y2 obtained by gluing −Y1 and Y2 along

their common boundary F (Z) (according to the identifications specified by

their borderings).

(This was not the original formulation of the pairing theorem; rather it

is a re-formulation appearing first in [1]; see also [32].)

The discussion above naturally raises the following questions:

(1) To what extent is the algebra of a pointed matched surface an invariant

of the underlying surface?

(2) In what way does the bordered invariant ĈFD(Y ) depend on the pa-

rameterization of the boundary of Y ?

Perhaps not too surprisingly, the answers to both of these questions are

governed by certain bimodules.

Given a homeomorphism ψ : F (−Z1) → F (−Z2), there is an A(Z1)-

A(Z2)-bimodule ĈFDD(ψ) which allows one to change the framing of a bor-

dered three-manifold. There is a mild technical point which becomes impor-

tant when discussing these bimodules: as we will see, F (Z) contains a distin-

guished disk, and the homeomorphism ψ is required to fix this disk pointwise.

We can now state the dependence of the modules on the parameterization

in terms of these bimodules. To state the dependence, recall that if A1 and

A2 are two dg algebras, B is an A1-A2-bimodule and M is a dg A1-module,

then the space MorA1
(B,M) is naturally a left dg A2-module.

Theorem 1.2. If (Y,φ : F (−Z2)→ ∂Y ) is a bordered three-manifold and ψ :

F (−Z1)→ F (−Z2) is a homeomorphism then there is a quasi-isomorphism:

ĈFD(Y,φ ◦ψ)�MorA(Z1)

(

ĈFDD(ψ), ĈFD(Y,φ)
)

.

Theorem 1.2 can be thought of as a kind of pairing theorem, as well.

The bimodule ĈFDD(ψ) appearing above is the invariant associated to a
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very simple bordered three-manifold with two boundary components: the

underlying three-manifold here is the product of an interval with the sur-

face F (Z2). It is best to think of this as the special case of a more general

construction, involving bordered three-manifolds with two boundary com-

ponents. It turns out that these three-manifolds need to be equipped with

some additional structure, giving the arced cobordisms of Definition 2.10 be-

low. Theorem 1.2 then becomes a special case of a pairing theorem for gluing

bordered three-manifolds to arced cobordisms (Theorem 2.23, below); see

Example 2.24.

Theorem 1.2 answers Question (2) above. The bimodules associated to

mapping classes also answer Question (1): while A(Z) is not an invariant of

F (Z), the (equivalence class of the) derived category of modules over A(Z) is

an invariant of (the homeomorphism type of) F (Z). For more details, see [29,

Theorem 1].

Arguably more excitingly, Theorems 1.1 and 1.2 are an effective tool for

computing Heegaard Floer homology. They can be used to give an algorithm

for computing ̂HF (Y ) for an arbitrary closed, oriented three-manifold Y [31];

the map F̂W associated to any smooth cobordism W [36]; and the spec-

tral sequence [49] from Khovanov homology to ̂HF of the branched double

cover [30, 35]. (We sketch the algorithm for computing ̂HF (Y ) in Section 6.)

In a different direction, the torus boundary case of bordered Floer homology

has been particularly useful for practical computations; see Section 5.

Bordered Floer homology also associates another kind of module, denoted

ĈFA(Y ), to a bordered 3-manifold (Y,φ : F (Z)→ ∂Y ). The module ĈFA(Y )

is a right A∞-module over A(Z). To avoid digressing into A∞-algebra, we

have suppressed ĈFA(Y ), and will continue to do so throughout these notes

to the extent possible. (Another drawback of ĈFA(Y ) is that its definition

requires counting more holomorphic curves than ĈFD(Y ), making ĈFA(Y )

typically harder to compute.) There is one place that ĈFA(Y ) seems unavoid-

able: in the proof of the pairing theorem, which we sketch in Section 4.4.

These notes are organized into five lectures. The first of these (Sec-

tion 2) focuses primarily on the combinatorial representations for manifolds

(pointed matched circles and Heegaard diagrams for bordered and arced

three-manifolds) which are used in the definitions of the modules. After a

sufficient amount of the background is laid out, we give a second, more de-

tailed overview of the theory during the middle of the first lecture. Finally,

Section 2 concludes by defining the algebra A(Z) associated to a pointed

matched circle Z .
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The second lecture is devoted to defining the module ĈFD(Y ) associated

to a bordered 3-manifold Y , as well as its generalization ĈFDD(Y ) to an

arced cobordism. That lecture starts by reviewing both the original definition

and the cylindrical reformulation of the invariant ̂HF (Y ) for a closed 3-

manifold. The lecture then turns to ĈFD(Y ) and the moduli spaces used to

define it, proves the surgery exact triangle for ̂HF (originally proved in [45])

and concludes by briefly defining the extension ĈFDD(Y ).

In the third lecture, we describe the analysis which underpins the theory.

This allows us to sketch the proof that the differential on ĈFD is, in fact,

a differential. It also allows us to sketch a proof of the pairing theorem; in

the process, the invariant ĈFA(Y ), elsewhere absent from these notes, arises

naturally.

The last two lectures are computational. The fourth lecture is devoted to

the torus-boundary case. After recalling some terminology about knot Floer

homology, it explains how one can recover the knot Floer homology group

ĤFK (Y,K) from the bordered Floer homology of Y \K; indeed, this process

also allows one to obtain, with a little more work, the knot Floer homology

of any satellite of K. The lecture then discusses the other direction: for a

knot K in S3, one can recover the bordered Floer homology S3 \K from

the knot Floer complex CFK−(K). Combining these results, one obtains a

theorem about the behavior of knot Floer homology under taking satellites.

Finally, the last lecture describes an algorithm coming from bordered

Floer homology for computing ̂HF (Y ) for closed three-manifolds Y .

There are a number of important aspects of the theory which are missing

from these notes. These include:

• Any discussion of the grading on bordered Floer homology. The grading

takes a somewhat complicated form—the algebras are graded by a non-

commutative group G(Z) and the modules by G(Z)-sets—and we refer

the reader to [27, Chapter 10] for this part of the story.

• A more thorough treatment of ĈFA. This would involve a lengthy alge-

braic digression which might distract from the underlying geometry in

the theory. Again, we refer the reader to [27] to fill in this omission.

• A discussion of the proof of invariance of the bordered modules (The-

orem 2.16). Most of the ideas in the proof of invariance, however, are

present in the proof that ∂2 = 0 on ĈFD and the proof of invariance in

the closed case [46].
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• A proof of the Mor versions of the pairing theorem (Theorems 2.21

and 2.23). We refer the reader to [32] for these proofs.

• The connection between bordered Floer homology and Juhász’s sutured

Floer homology [15]. This connection is given by Zarev’s bordered sutured

theory [64].

There are two other expository articles on bordered Heegaard Floer ho-

mology, with somewhat different focuses, in which the reader might be inter-

ested: [28, 33]. The paper [34] is also intended to be partly expository.

2. Combinatorial Representations of Surfaces and

3-Manifolds with Boundary. Formal Structure

of Bordered Floer Homology. The Algebra Associated

to a Surface

Much of this lecture lays out in detail the combinatorial representations of

the topological objects used in the definition of bordered Floer homology.

We start with surfaces (encoded by pointed matched circles), and then move

on to bordered three-manifolds (encoded by Heegaard diagrams). With this

material in place, we give a more detailed overview of the formal structure

of bordered Floer homology. The lecture concludes with the definition of the

algebra associated to a pointed matched circle.

2.1. Arc Diagrams and Surfaces

Definition 2.1. A pointed matched circle consists of an oriented circle Z,

a point z ∈ Z, a finite set of points a⊂ Z disjoint from z, and a fixed-point

free involution M : a→ a. The map M matches the points a in pairs; that

is, we can view a as a union of S0s. We require that the result Z ′ of doing
surgery on (Z,a) according to M be connected. See Figure 1.

A pointed matched circle specifies a surface. There are a few essentially

equivalent constructions; here is one:

Construction 2.2. Fix a pointed matched circle Z = (Z,a,M, z). Build

an oriented surface-with-boundary F ◦(Z) as follows. Start with [0,1] × Z.

Attach a strip (2-dimensional 1-handle) to each pair of matched points in

a× {0}. The result has boundary (Z × {1})	 Z ′. Fill in Z ′ with a copy of

D
2. The result is F ◦(Z). Again, see Figure 1.
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Fig. 1. Pointed matched circles and surfaces. Left: a pointed matched circle specifying a
once-punctured torus. Right: a pointed matched circle specifying a once-punctured genus

2 surface. In both cases, the involution M exchanges ai and a′
i

As a slight variant, we could fill in the boundary of F ◦(Z) with a

disk. This gives a surface F (Z) with a distinguished disk in it—the disk

F (Z) \ F ◦(Z)—and a distinguished basepoint on the boundary of this disk.

That is, F (Z) is a strongly based surface. (Papers in the subject sometimes

treat a pointed matched circle as specifying a surface with boundary, and

sometimes as specifying a closed, strongly based surface; it makes no essen-

tial difference.)

Remark 2.3. Pointed matched circles are a special case of Zarev’s arc dia-

grams ; any orientable surface with non-empty boundary can be represented

by an arc diagram, and there is an associated algebra similar to the one we

will describe in Section 2.4.3. Arc diagrams are, in turn, closely related to

fat graphs and chord diagrams.

2.2. Bordered Heegaard Diagrams for 3-Manifolds

We start with 3-manifolds with one boundary component:

Definition 2.4. A bordered 3-manifold consists of a compact, oriented 3-

manifold-with-boundary Y and a homeomorphism φ : F (Z)→ ∂Y for some

pointed matched circle Z .

Call two bordered 3-manifolds (Y1, φ1 : F (Z) → ∂Y1) and (Y2, φ2 :

F (Z) → ∂Y2) equivalent if there is a homeomorphism ψ : Y1 → Y2 so that
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φ2 = ψ ◦ φ1, i.e.,

Y1
ψ

∼=
Y2

F (Z)

φ1 φ2

commutes.

We often drop the parametrization φ from the notation, writing Y to

denote a bordered 3-manifold, i.e., Y = (Y,φ).

We can represent bordered 3-manifolds combinatorially, as follows:

Definition 2.5. Let Z be a pointed matched circle representing a surface

of genus k. A bordered Heegaard diagram with boundary Z is a tuple

H=
(

Σg,

α
︷ ︸︸ ︷

αa

︷ ︸︸ ︷

αa
1, . . . , α

a
2k,

αc

︷ ︸︸ ︷

αc
1, . . . , α

c
g−k,

β
︷ ︸︸ ︷

β1, . . . , βg, z
)

where

• Σg is a compact, oriented surface of genus g with one boundary com-

ponent.

• β is a g-tuple of pairwise disjoint circles in the interior of Σ.

• αc is a (g− k)-tuple of pairwise disjoint circles in the interior of Σ.

• αa is a (2k)-tuple of pairwise disjoint arcs in Σ with boundary in ∂Σ.

• z is a basepoint in ∂Σ \αa.

• αa ∩αc = ∅.

• Σ \ (αc ∪αa) and Σ \β are both connected.

• Z = (∂Σ,αa ∩ ∂Σ,M,z). Here, M matches (exchanges) the two end-

points of each αa
i .

Especially when we are considering holomorphic curves, we will abuse

notation and also use Σ to denote Σ \ ∂Σ; and similarly for the α-arcs.



284 R. Lipshitz et al.

Fig. 2. A bordered Heegaard diagram and the associated 3-manifold. The picture on the
left is a Heegaard diagram for the bordered solid torus shown on the right. (The labels A
indicate a handle between the corresponding circles.) The shaded part of the boundary

is F ◦(Z). This figure is adapted from [29, Figure 12]

Construction 2.6. Let H= (Σ,α,β, z) be a bordered Heegaard diagram

with boundary Z . There is a corresponding bordered 3-manifold Y (H) con-

structed as follows.

(1) Thicken Σ to Σ × [0,1].

(2) Attach three-dimensional two-handles along the α-circles in Σ × {0}.

(3) Attach three-dimensional two-handles along the β-circles in Σ × {1}.

A parameterization of the boundary is specified as follows. Consider the

graph
(

αa ∪
(

∂Σ \ nbd(z)
))

× {0} ⊂Σ × {0},

thought of as a subset of ∂Y . The closure F ◦ of a neighborhood of this graph

is naturally identified with F ◦(Z). The complement of F ◦ in ∂Y is a disk,

and is identified with F (Z) \ F ◦(Z). See Figure 2.

The orientations in Construction 2.6 are confusing; see [29, Construc-

tion 5.3] for a discussion of this point.

Example 2.7. Figure 2 shows a Heegaard diagram for a solid torus. This is

one of many Heegaard diagrams for bordered solid tori; see Section 3.4 for

more Heegaard diagrams for solid tori.

Example 2.8. Figure 26 (page 345) shows a Heegaard diagram for a genus

2 handlebody. Again, this is one among many.

Example 2.9. Fix an oriented surface Σ, equipped with a g-tuple of pair-

wise disjoint, homologically independent curves β and a (g−1)-tuple of pair-

wise disjoint, homologically independent curves αc = {αc
1, . . . , α

g−1
1 }. Then
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Fig. 3. A bordered Heegaard diagram for the trefoil complement. Left: a Heegaard
diagram for the complement of the trefoil. The circles labeled A (respectively B) denote a
handle attached to the plane. Right: a bordered Heegaard diagram, obtained by adding
the curves γ1 and γ2 and deleting a disk. It may be instructive to compare this diagram

with Figure 16

(Σ,αc,β) is a Heegaard diagram for a three-manifold with torus bound-

ary, and indeed any such three-manifold Y can be described by a Heegaard

diagram of this type. To turn such a diagram into a bordered Heegaard di-

agram, we proceed as follows. Fix an additional pair of circles γ1 and γ2 in

Σ so that:

• γ1 and γ2 are disjoint from αc
1, . . . , α

c
g−1,

• γ1 and γ2 intersect, transversally, in a single point p and

• both of the homology classes [γ1] and [γ2] are homologically independent

from [αc
1], . . . , [α

c
g−1].

Let D be a disk around p which is disjoint from all the above curves, except

for γ1 and γ2, each of which it meets in a single arc. Then, the complement of

D specifies a bordered Heegaard diagram for Y , for some parametrization of

∂Y . A bordered Heegaard diagram for the trefoil complement is illustrated

in Figure 3.

(This example is drawn from [27, Section 4.2]. See also the discussion

around [27, Figure 11.8].)

We also consider 3-dimensional cobordisms:

Definition 2.10. Fix pointed matched circles ZL = (ZL,aL,ML, zL) and

ZR = (ZR,aR,MR, zR). An arced cobordism from ZL to ZR consists of:

• A compact, oriented 3-manifold-with-boundary Y ,

• an injection φ : (−F ◦(ZL))	 F ◦(ZR)→ ∂Y (where − denotes orienta-

tion reversal) and
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• a path γ in ∂Y \ Im(φ)

such that Y \ (Im(φ)∪ nbd(γ)) is a disk.

There is a natural notion of equivalence for arced cobordisms, similar to

the notion of equivalence for bordered 3-manifolds; we leave it as an exercise.

As for bordered 3-manifolds, we will typically denote all of the data of

an arced cobordism simply by Y . Also as with bordered 3-manifolds, there

are several other essentially equivalent ways to formulate the notion of an

arced cobordism; see for instance [29, Section 5] and [32, Section 3].

Again, a combinatorial representation of arced cobordisms will be impor-

tant to us:

Definition 2.11. An arced Heegaard diagram is a tuple

H=
(

Σg,

α
︷ ︸︸ ︷

αa,L

︷ ︸︸ ︷

αa,L
1 , . . . , αa,L

2kL
,

αa,R

︷ ︸︸ ︷

αa,R
1 , . . . , αa,R

2kR
,

αc

︷ ︸︸ ︷

αc
1, . . . , α

c
g−kL−kR

,

β
︷ ︸︸ ︷

β1, . . . , βg,z
)

where

• Σg is a compact, oriented surface of genus g with two boundary com-

ponents, ∂LΣ and ∂RΣ;

• β is a g-tuple of pairwise disjoint curves in the interior of Σ;

• αa,L is a collection of pairwise-disjoint embedded arcs with boundary

on ∂LΣ;

• αa,R is a collection of pairwise-disjoint embedded arcs with boundary

on ∂RΣ;

• αc is a collection of pairwise-disjoint circles in the interior of Σ; and

• z is a path in Σ \ (αa,L ∪αa,R ∪αc ∪β) between ∂LΣ and ∂RΣ.

These are required to satisfy:

• αa,L, αa,R and α are all disjoint,

• Σ \α and Σ \β are connected and

• α intersects β transversely.

(Compare [29, Definition 5.4].)
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Fig. 4. Constructing a bordered 3-manifold with two boundary components from an
arced bordered Heegaard diagram. The Heegaard diagram on the left represents an

elementary cobordism from the genus two surface to the genus one surface. On the right
is a (somewhat schematic) depiction of the resulting 3-manifold. The inside part of the
boundary, which corresponds to Σ × {1}, is a cylinder, since the β-circles caused the

handles to be filled in. The outside part of the boundary, corresponding to Σ × {0}, is a
surface of genus 3 with two boundary components. The region F ◦

L (respectively F ◦
R) is

darkly (respectively lightly) shaded

Observe that each boundary component of an arced Heegaard diagram

is a pointed matched circle.

Construction 2.12. Fix an arced Heegaard diagram H= (Σg,α
a,L,αa,R,

αc,β,z) with boundary ZL 	 ZR. Build a 3-manifold-with-boundary Y as

follows:

(1) Thicken Σ to Σ × [0,1].

(2) Attach three-dimensional two-handles along the α-circles in Σ × {0}.
(3) Attach three-dimensional two-handles along the β-circles in Σ × {1}.

Consider the graphs

ΓL =
(

αa,L ∪
(

∂LΣ \ nbd(z)
))

× {0} ⊂Σ × {0}

ΓR =
(

αa,R ∪
(

∂RΣ \ nbd(z)
))

× {0} ⊂Σ × {0}

thought of as subsets of ∂Y . The closure F ◦
L (respectively F ◦

R) of a neighbor-

hood of ΓL (respectively ΓR) is naturally identified with F ◦(ZL) (respectively

F ◦(ZR)). Let φ denote this identification F ◦(ZL)	F ◦(ZR)→ F ◦
L	F ◦

R. The

arc γz = z×{0} connects F ◦
L and F ◦

R, and ∂Y \ (F ◦
L∪F ◦

R∪nbd(γz)) is a disk.
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The data (Y,φ, γz) is an arced cobordism; we call this cobordism the arced

cobordism associated to H and denote it by Y (H). See Figure 4.

Example 2.13. Let ψ : F (ZL)→ F (ZR) be a homeomorphism taking the

preferred disk to the preferred disk and the basepoint to the basepoint; that

is, ψ is a strongly based homeomorphism. The mapping cylinder of ψ, denoted

Mψ, is the arced cobordism from ZL to ZR given as follows. The underlying 3-

manifold is [0,1]×F ◦(ZR). The map φ :−F ◦(ZL)	F ◦(ZR)→ ∂Mψ is given

by the identity map I : F ◦(ZR)→{1} × F ◦(ZR) and the map ψ : F ◦(ZL)→
{0} × F ◦(ZR). The arc γ is [0,1]× {z}.

Some examples of Heegaard diagrams for mapping cylinders are shown

in Figure 9.

Gluing the mapping cylinder for ψ to a bordered 3-manifold (Y,φ) in the

sense of Exercise 2.2 gives (Y,φ ◦ψ).

As in the closed case, the key properties of bordered Heegaard diagrams

are that every bordered 3-manifold can be represented by a bordered Hee-

gaard diagram, and any two such diagrams can be related by certain elemen-

tary moves:

Theorem 2.14. Let (Y,φ : F (Z)→ ∂Y ) be a bordered 3-manifold. Then Y

is represented by some bordered Heegaard diagram H. Similarly, let (Y,φ :

F ◦(ZL) 	 F ◦(ZR)→ ∂Y,γ) be an arced cobordisms. Then Y is represented

by some arced Heegaard diagram H.

The case of bordered Heegaard diagrams is [27, Lemma 4.9] while the

arced Heegaard diagram case is [29, Proposition 5.10].

Theorem 2.15. Suppose that H and H′ are bordered Heegaard diagrams

representing equivalent bordered 3-manifolds Y (H)∼= Y (H′). Then H and H′

can be made diffeomorphic by a sequence of the following moves:

• Isotopies of the α- and/or β-curves.

• Handleslides or α-circles over α-circles, α-arcs over α-circles, and β-

circles over β-circles.

• Stabilizations and destabilizations of the diagram, i.e., taking connected

sums with the standard Heegaard diagram for S3.

(See Figure 5.)
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Fig. 5. Heegaard moves. (a) A genus 2 bordered Heegaard diagram for a solid torus.
(b) The result of applying some isotopies to the α- and β-curves. (c) The result of a

handleslide of αa
1 over αc

1. (d) The result of a stabilization

An exactly analogous statement holds for arced Heegaard diagrams and

arced cobordisms.

The case of bordered Heegaard diagrams is [27, Proposition 4.10] while

the arced Heegaard diagram case is [29, Proposition 5.11].

2.3. The Structure of Bordered Floer Homology

2.3.1. The Connected Boundary Case. For simplicity, we begin with

the connected boundary case. Bordered Floer homology assigns:

Pointed matched circle Z dg algebra A(Z)

Bordered 3-manifold Right A∞ A(Z)-module ĈFA(Y )

(Y,φ : F (Z)→ ∂Y ) Left dg A(−Z)-module ĈFD(Y ).

Actually, the modules ĈFA(Y ) and ĈFD(Y ) depend on a choice of bor-

dered Heegaard diagram H for Y , as well as another auxiliary choice—an

almost-complex structure. However:

Theorem 2.16 [27, Theorems 1.1 and 1.2]. Up to quasi-isomorphism, the

modules ̂CFA(Y ) and ĈFD(Y ) depend only on the equivalence class of bor-

dered 3-manifold Y .
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The utility of ĈFA and ĈFD comes from the fact that they can be

used to reconstruct the Heegaard Floer homology groups of closed three-

manifolds ̂HF (Y ), via what we call a pairing theorem. Recall that ̂HF (Y ) is

the homology of a chain complex ̂CF (Y ).

Theorem 2.17 [27, Theorem 1.3]. Suppose that (Y1, φ1 : F (Z)→ ∂Y ) and

(Y2, φ2 :−F (Z)→ ∂Y ) are bordered 3-manifolds with boundaries parameter-

ized by Z and −Z , respectively. Write Y1 ∪∂ Y2 to mean (Y1 	 Y2)/(φ1(x)∼
φ2(x)). Then

̂CF (Y )� ̂CFA(Y1) ˜⊗A(F ) ĈFD(Y2).

Here, ˜⊗ denotes the appropriate notion of tensor product given that ĈFA

may be an A∞-module. In the case that ĈFA is an ordinary module, this

reduces to the derived tensor product—which is good, since ĈFA is only well-

defined up to quasi-isomorphism. But this distinction is not so important:

the module ĈFD is projective, so the derived and ordinary tensor products

agree.

The modules ĈFA(Y ) and ĈFD(Y ) are defined using holomorphic curves

(though for certain kinds of diagrams the techniques of [58] can be used to

compute them combinatorially). By contrast, the algebras A(Z) are defined

combinatorially. A few further properties of the algebras:

• Each A(Z) is a finite-dimensional algebra over F2.

• The algebra A(Z) decomposes as a direct sum of subalgebras

A(Z) =

k
⊕

i=−k

A(Z, i).

Here, k is the genus of F (Z). The action of A(Z, i) on ĈFA(Y ) and

ĈFD(Y ) is trivial for i 
= 0, but the other summands come up for the

cobordism invariants below.

• The algebra A(Z,−k) is isomorphic to F2 (with trivial differential).

In particular, if Z is the (unique) pointed matched circle for S2 then

A(Z) = F2. The algebra A(Z, k) is quasi-isomorphic to F2.
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• If Z is the unique pointed matched circle for the torus then A(Z,0) has

no differential; in terms of generators and relations, A(Z,0) is given by

(2.1) ι0•
ρ1

ρ3

•ι1ρ2 /(ρ2ρ1 = ρ3ρ2 = 0).

This algebra is 8-dimensional over F2. It will appear frequently, so we

name the rest of the elements in its standard basis: let ρ12 = ρ1ρ2, ρ23 =

ρ2ρ3 and ρ123 = ρ1ρ2ρ3.

(Our notation for path algebras might be somewhat non-standard.

The vertices ι0 and ι1 are, of course, idempotents. The arrow ρ1 indicates

that ι0ρ1ι1 = ρ1.)

2.3.2. Invariants of Arced Cobordisms. To get a useful theory, we

need to generalize to three-manifolds with two boundary components. In

fact, the invariants which come up in this two-boundary-component case are

associated to three-manifolds equipped with some extra structure: the arced

cobordisms of Definition 2.10.

Suppose Y is an arced cobordism from Z1 to Z2. Then there are several

kinds of bimodules we can associate to Y : we can treat each boundary com-

ponent of Y in either a “type D” way or a “type A” way. (What this means

will be clearer after Sections 3 and 4.) This gives invariants ĈFDD(Y ) (both

boundaries viewed in a type D way), ĈFDA(Y ) (one boundary, say Z1,

viewed in a type D way and the other in a type A way), and ĈFAA(Y )

(both boundaries viewed in a type A way). The bimodule ĈFDD(Y ) is

an ordinary—indeed, bi-projective—dg bimodule; both of ĈFDA(Y ) and

ĈFAA(Y ) are typically A∞-bimodules.

As with the modules associated to bordered 3-manifolds, the bimodules

ĈFDD(Y ), ĈFDA(Y ) and ĈFAA(Y ) depend on the choices of Heegaard

diagrams and almost-complex structures. Again, up to quasi-isomorphism

they are invariants:

Theorem 2.18 [29, Theorem 8]. Up to quasi-isomorphism, the bimodules

ĈFDD(Y ), ĈFDA(Y ) and ĈFAA(Y ) depend only on the equivalence class of

arced cobordism Y .

By convention, we view ĈFDD(Y ) as having commuting left actions by

A(−Z1) and A(−Z2); ĈFDA(Y ) as having a left action by A(−Z1) and a
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right action by A(Z2); and ĈFAA(Y ) as having right actions by A(Z1) and

A(Z2). However, A(−Z) is the opposite algebra to A(Z) (Exercise 2.13) so

we can move actions from one side to the other at the cost of introducing /

deleting minus signs. In the literature, we often find it convenient to decorate

the invariants with the algebras they are over, writing

A(−Z1),A(−Z2)ĈFDD(Y ) A(−Z1)ĈFDA(Y )A(Z2) ĈFAA(Y )A(Z1),A(Z1).

The superscripts indicate that the module structure is projective, and sub-

scripts indicate the module structure may be A∞. This notation leads to

a kind of Einstein summation behavior for tensor products in the pairing

theorems:

Theorem 2.19 [29, Theorem 11]. Let Y1 be a bordered 3-manifold with

boundary Z1 and Y2 be an arced cobordism from Z1 to Z2. Let Y1 ∪F (Z) Y2
be the bordered 3-manifold obtained by gluing Y1 to Y2 (Exercise 2.2). Then

there are quasi-isomorphisms

̂CFA(Y1) ˜⊗A(Z1) ĈFDA(Y2)� ̂CFA(Y1 ∪F (Z1) Y2)

ĈFAA(Y2) ˜⊗A(−Z1) ĈFD(Y1)� ̂CFA(Y1 ∪F (Z1) Y2)

̂CFA(Y1) ˜⊗A(Z1) ĈFDD(Y2)� ĈFD(Y1 ∪F (Z1) Y2)

ĈFDA(Y2) ˜⊗A(−Z1) ĈFD(Y1)� ĈFD(Y1 ∪F (Z1) Y2).

Theorem 2.20 [29, Theorem 12]. Let Y1 be an arced cobordism from Z1

to Z2 and Y2 an arced cobordism from Z2 and Z3. Let Y1 ∪F (Z2) Y2 be the

result of gluing Y1 to Y2 along F (Z2) (Exercise 2.2). Then there are quasi-

isomorphisms of bimodules:

ĈFDA(Y1) ˜⊗A(Z2) ĈFDA(Y2)� ĈFDA(Y1 ∪F (Z2) Y2)

ĈFAA(Y1) ˜⊗A(Z2) ĈFDA(Y2)� ĈFAA(Y1 ∪F (Z2) Y2)

ĈFDA(Y1) ˜⊗A(Z2) ĈFDD(Y2)� ĈFDD(Y1 ∪F (Z2) Y2)

ĈFAA(Y1) ˜⊗A(Z2) ĈFDD(Y2)� ĈFDA(Y1 ∪F (Z2) Y2).

The compact way of stating Theorems 2.19 and 2.20 is that if you tensor

type A boundaries with type D boundaries then you get what you expect.

2.3.3. Pairing Theorems without A Modules. To avoid a long detour

into A∞ formalism, in most of these lectures we will avoid ĈFA. (The ex-

ception will be the discussion of the pairing theorem in Section 4.) So, it
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will be useful to have versions of the pairing theorems—Theorems 2.17, 2.19

and 2.20—making use only of type D modules. We can accomplish this using

certain dualities of bordered Floer invariants:

Theorem 2.21 [32, Theorem 2]. Let Y be a bordered 3-manifold with bound-

ary F (Z). Let −Y denote Y with its orientation reversed, which has boundary

F (−Z). Then there are quasi-isomorphisms:

MorA(−Z)

(

ĈFD(Y ),A(−Z)
)

� ̂CFA(−Y )(2.2)

MorA(Z)

(

̂CFA(Y ),A(Z)
)

� ĈFD(−Y ).(2.3)

In Formula (2.2), Mor denotes the chain complex of module homomor-

phisms from ĈFD(Y ) to A(−Z), with differential given by

∂(f) = f ◦ ∂
ĈFD(Y )

+ dA(−Z) ◦ f.

So, for instance, the cycles in the Mor complex are the dg module homo-

morphisms, i.e., chain maps which respect the module structure. In For-

mula (2.3), Mor denotes the chain complex of A∞-morphisms.

Corollary 2.22 [32, Theorem 1]. Suppose that Y1 and Y2 are bordered 3-

manifolds with boundary F (Z). Then

̂CF (−Y1 ∪F (Z) Y2)�MorA(−Z)

(

ĈFD(Y1), ĈFD(Y2)
)

�MorA(Z)

(

̂CFA(Y1), ̂CFA(Y2)
)

so

̂HF (−Y1 ∪F (Z) Y2)� ExtA(−Z)

(

ĈFD(Y1), ĈFD(Y2)
)

� ExtA(Z)

(

̂CFA(Y1), ̂CFA(Y2)
)

.

For bimodules the situation is somewhat more subtle: there are a few

natural notions of “dual”, and some versions introduce boundary Dehn twists

in the bimodules. The following result will be more than sufficient for these

lectures:

Theorem 2.23 [32, Corollary 8]. If Y1 is a bordered 3-manifold with bound-

ary F (Z1) and Y2 is an arced cobordism from −Z1 to −Z2 then

̂CFA
(

Y1 ∪F (Z1) (−Y2)
)

�MorA(−Z1)

(

ĈFDD(Y2), ĈFD(Y1)
)

ĈFD(−Y1 ∪F (Z1) Y2)�MorA(−Z1)

(

ĈFD(Y1), ĈFDD(Y2)
)

.
(2.4)
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Example 2.24. The bimodules ĈFDD(ψ) discussed in the introduction are

defined to be ĈFDD(Mψ) associated to the mapping cylinder of ψ (Exam-

ple 2.13). So, Theorem 1.2 from the introduction is a special case of Theo-

rem 2.23.

For further results like these, including some involving boundary Dehn

twists, see the introduction to [32].

2.4. The Algebra Associated to a Pointed Matched Circle

We will define the algebras associated to pointed matched circles in three

steps. We start with a warm-up in Section 2.4.1, discussing the group ring

of the symmetric group Sn and a deformation of it called the nilCoxeter

algebra. In Section 2.4.2 we define a family of algebras A(n,k) (n,k ∈ N),

which are a kind of directed, distributed version of the nilCoxeter algebra.

The algebra A(Z) associated to a pointed matched circle for a surface of

genus k is defined as a subalgebra of
⊕2k

i=0A(2k, i); the definition is given

in Section 2.4.3. (It is also possible to give a more direct definition of A(Z);

see, for instance, [31, Section 1.1].)

2.4.1. A Graphical Representation of Permutations. Consider the

symmetric group Sn on n = {1, . . . , n}. We can represent elements of Sn

graphically as homotopy classes of maps

(∐n
i=1[0,1],

∐n
i=1{0},

∐n
i=1{1}

) φ−→
(

[0,1]× [0, n],
∐n

i=1{0}×n,
∐n

i=1{1}×n
)

such that the restrictions φ|∐n
i=1{0} and φ|∐n

i=1{1} are injective. For example,

the permutation
(

1 2 3 4 5
3 1 2 5 4

)

∈ S5 is represented by the diagram

(2.5)

In the graphical notation, multiplication corresponds to juxtaposition.

So, the group ring Z[Sn] of Sn is given by formal linear combinations of dia-

grams as in (2.5), with product given by juxtaposition. Moreover, notice that

essential crossings in diagrams like Formula (2.5) correspond to inversions,

i.e., pairs i, j ∈ {1, . . . , n} such that i < j but σ(j)< σ(i).
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In Z[Sn], double-crossings can be undone via Reidemeister II-like moves:

(2.6) =

If we replace this relation by the relation that double-crossings are 0,

(2.7) = 0

we arrive at another algebra, the nilCoxeter algebra Nn; see, for instance [17].

Note that even though Nn 
∼= Z[Sn], Sn still gives a basis for Nn. Let Inv(σ)

denote the set of inversions of σ. An equivalent formulation is that we define

σ ·N τ =

{

τ ◦ σ if # Inv(τ ◦ σ) =#Inv(σ) +#Inv(τ)

0 else.

If we work over F2, as is our tendency, we can define a differential on Nn

by declaring that d(σ) is the sum of all ways of smoothing a crossing in σ.

More formally, let τi,j denote the transposition exchanging i and j. Then

define

(2.8) d(σ) =
∑

(i,j)∈Inv(σ)
#Inv(τi,jσ)=#Inv(σ)−1

τi,j ◦ σ.

It is straightforward to verify that this makes Nn into a differential algebra.

(If we want to define this differential with signs, we need an odd version of

the nilCoxeter algebra; see [18].)

2.4.2. The Algebra A(n,k). Now, instead of permutations of {1, . . . , n},
consider partial permutations, i.e., triples (S,T,σ) where S,T ⊂ n and σ :

S → T is a bijection. Call a partial permutation (S,T,σ) upward-veering if

σ(i)≥ i for all i ∈ S. Let A(n) denote the F2-vector space generated by all

upward-veering partial permutations. Define a product on A(n) by

(2.9)

(S,T,φ) · (U,V,ψ) =

⎧

⎪

⎨

⎪

⎩

0 if T 
= U

0 if #Inv(ψ ◦ φ) 
=#Inv(ψ) +#Inv(φ)

(S,V,ψ ◦ φ) otherwise.

Define a differential on A(n) by setting

d(S,T,φ) =
∑

(i,j)∈Inv(φ)
#Inv(τi,j◦φ)=#Inv(φ)−1

(S,T, τi,j ◦ φ).
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Graphically, we can still represent generators of A(n) as strand diagrams;

for example, in n = 5, we draw the partial permutation ({1,2,3},{3,4,5},
(1 �→ 5,2 �→ 4,3 �→ 3)) as

Multiplication is 0 if the endpoints do not match up (the first condition in

Equation (2.9)) or if the concatenation contains a double crossing (the second

condition in Equation (2.9)); otherwise, the product is just the concatenation.

The differential is gotten by summing over all ways of smoothing one crossing,

and then throwing away any diagrams involving double crossings.

Proposition 2.25 [27, Lemma 3.1]. These operations make A(n) into a

differential algebra.

Proposition 2.25 is not especially difficult, though keeping track of the

double-crossing condition adds some complication. The reader is invited to

prove it as an extra exercise.

Notice that A(n) decomposes as a direct sum

(2.10) A(n) =

n
⊕

l=0

A(n, i)

whereA(n, i) is generated by partial permutations (S,T,φ) with |S|= |T |= i.

The algebra A(n) has an obvious grading by the number of crossings.

This grading does not, however, descend in a nice way to the subalgebras

associated to pointed matched circles.

2.4.3. The Algebra Associated to a Pointed Matched Circle. Fix a

pointed matched circle Z = (Z,a,M, z) for a surface of genus k, so |a|= 4k.

The basepoint z and orientation of Z identify a with 4k = {1, . . . ,4k}. The
algebra A(Z) is a subalgebra of A(4k).

Call a generator (S,T,φ) of A(4k) M -admissible if S ∩ M(S) = T ∩
M(T ) = ∅. (This terminology is not used elsewhere in the literature.) Write

Fix(φ) = {i ∈ S | φ(i) = i}. Suppose that φ is M -admissible. Then, given

U ⊂ Fix(φ) we can define a new element (S \U ∪M(U), T \U ∪M(U), φU ) ∈
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A(n) by replacing the horizontal strands at U by horizontal strands at M(U).

That is, φU is characterized by φU |S\U = φ|S\U and φU |M(U) = I. Given an

M -admissible (S,T,φ) define

a(S,T,φ) =
∑

U⊂Fix(φ)

(

S \U ∪M(U), T \U ∪M(U), φU

)

.

For example,

Now, A(Z) is defined to be the subalgebra of A(4k) generated by

a(S,T,φ) for M -admissible generators (S,T,φ).

The decomposition of A(n) from Formula (2.10) gives a decomposition of

A(Z). It is convenient to change the indexing slightly: let A(Z, i) =A(Z)∩
A(4k, k+ i), so A(Z) =

⊕k
i=−kA(Z, i).

2.5. Exercises

Exercise 2.1. Let Y be a closed 3-manifold. How do you go from a pointed

Heegaard diagram for Y to a bordered Heegaard diagram for Y \D3? Vice-

versa? (Hint: both directions are easy.)

Exercise 2.2. Let Y1 be a bordered 3-manifold with boundary Z1 and Y2
an arced cobordism from Z1 to Z2. There is a natural way to glue Y1 and Y2
to get a bordered 3-manifold with boundary Z2; how?

Similarly, if Y1 is an arced cobordism from Z1 to Z2 and Y2 is an arced

cobordism from Z2 to Z3 then there is a natural way to glue Y1 to Y2 to

obtain an arced cobordism from Z1 to Z3; how?

(Both parts are a little awkward with our definition of arced cobordism;

the definitions in [29] and [32] make them more obvious.)
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Exercise 2.3. Let H be a bordered Heegaard diagram with no α circles.

What is the underlying three-manifold Y (H)?

Exercise 2.4. Formulate precisely the notion of equivalence for arced cobor-

disms.

Exercise 2.5. The bordered Heegaard diagram in Figure 3 represents the

trefoil complement with some particular framing. Which one (as an element

of Z)?

Exercise 2.6. Draw a bordered Heegaard diagram for the 0-framed com-

plement of the figure eight knot.

Exercise 2.7. Verify that the differential given in Formula (2.8) makes the

nilCoxeter algebra into a differential algebra, i.e., that it satisfies d2 = 0 and

the Leibniz rule.

Exercise 2.8. Give an example of an element (S,T,φ) ∈ A(n) and a pair

(i, j) ∈ Inv(φ) so that (S,T, τi,j ◦ φ) is not in d(S,T,φ).

Exercise 2.9. Verify the path algebra description (Equation (2.1)) for the

algebra A(T 2,0).

Exercise 2.10. Prove: There is a one-to-one correspondence between in-

decomposable idempotents in A(Z) and subsets of the set of matched pairs

of Z , i.e., subsets of a/M . (An idempotent I is called indecomposable if for

any idempotent J , either I · J = I or I · (1− J) = I .) (Hint: this should be

easy.)

Exercise 2.11. In this exercise we explain how to produce arced Heegaard

diagrams for mapping cylinders. This algorithm is explained in somewhat

more detail in [29, Section 5.3].

(1) Show that the arced Heegaard diagram on the left of Figure 6 repre-

sents the mapping cylinder of the identity map (of the pointed matched

circle for a torus). Generalize this to give a diagram for the iden-

tity map of any pointed matched circle. (See Figure 27 for the stan-

dard arced Heegaard diagram for the identity map of another pointed

matched circle.)

(2) Let φ : F (ZL)→ F (ZR) be a strongly based homeomorphism. Recall

from Construction 2.12 that a neighborhood F ◦
L of the graph ΓL is
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Fig. 6. Building Heegaard diagrams for mapping cylinders. Left: a Heegaard diagram for
the identity map of the torus. Center: the sub-surface F ◦(ZL) and a dashed curve γ on
F ◦(ZL). Right: a Heegaard diagram for a Dehn twist around γ. This figure is adapted

from [29, Figure 15]

identified with F ◦(ZL). Start with the identity Heegaard diagram for

F (ZL), and apply the homeomorphism φ to the αa,L
i ⊂ F ◦

L. (See Fig-

ure 6 for an example.) Prove: the result is an arced Heegaard diagram

for φ.

Exercise 2.12. There is a unique pointed matched circle representing the

once-punctured torus.

(1) List several different pointed matched circles representing the once-

punctured genus 2 surface.

(2) Show that the set of matched circles representing the once-punctured

genus k surface is in bijection with the set of gluing patterns for the

4k-gon giving the genus k surface.

Exercise 2.13. Prove that A(−Z) is the opposite algebra to A(Z).

Exercise 2.14. Let Z be the split pointed matched circle for a surface of

genus k, as illustrated in Figure 21 (page 341). Give a path algebra descrip-

tion of A(Z,−k+ 1), similar to Formula (2.1).

Similarly, let Z be the antipodal pointed matched circle for a surface of

genus k, i.e., the pointed matched circle in which ai is matched to ai+2k

(i = 1, . . . ,2k). Give a path algebra description of A(Z,−k + 1), similar to

Formula (2.1). (For a solution to this part, see [34, Example 2.4].)
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3. Modules Associated to Bordered 3-Manifolds

3.1. Brief Review of the Cylindrical Setting for Heegaard Floer

Homology

3.1.1. A Quick Review of the Original Formulation of Heegaard

Floer Homology. We start by recalling the definition of Heegaard Floer

homology in the closed setting [46], as well as a “cylindrical” reformulation of

the definition [26]; this reformulation will be useful for defining the bordered

Floer invariants.

Fix a pointed Heegaard diagram H= (Σ,α,β, z) (in the sense of [46]) for

a closed 3-manifold Y . Associated to H are various Heegaard Floer homology

groups; as noted in the previous lecture, bordered Floer homology (so far)

relates to the technically simplest of these, ̂HF (Y ). The group ̂HF (Y ) is

defined as follows. Suppose Σ has genus g. Choosing a complex structure jΣ
on Σ makes the symmetric product

Symg(Σ) =

g copies
︷ ︸︸ ︷

Σ × · · · ×Σ /Sg

into a smooth—in fact, Kähler—manifold. (This is not obvious.) Writing α=

{α1, . . . , αg} and β = {β1, . . . , βg}, the tori α1 × · · · ×αg, β1 × · · · × βg ⊂Σ×g

project to embedded tori Tα and Tβ in Symg(Σ). Each of Tα and Tβ is totally

real; in fact, it was shown in [54] that for an appropriate choice of Kähler

form the tori Tα and Tβ are Lagrangian. Then, ̂HF (Y ) is the Lagrangian

Floer homology of (Tα, Tβ) inside Symg(Σ \ {z}).

In a little more detail, ̂HF (Y ) is the homology of a chain complex

(̂CF (Y ), ∂). ̂CF (Y ) is the free F2-vector space generated by Tα ∩ Tβ . The

differential ∂ : ̂CF (Y ) → ̂CF (Y ) is defined by counting holomorphic disks

of the following kind. Given x,y ∈ Tα ∩ Tβ we consider the space of maps

D
2 → Symg(Σ \ {z}) such that:

• −i maps to x.

• +i maps to y.

• {p ∈ ∂D2 | �(p)> 0} maps to Tα.

• {p ∈ ∂D2 | �(p)< 0} maps to Tβ .

See Figure 7. Such disks are called Whitney disks. Let B(x,y) denote the

space of Whitney disks from x to y. Further:



Notes on Bordered Floer Homology 301

Fig. 7. Boundary conditions for Whitney disks

• Let π2(x,y) denote the set of homotopy classes of Whitney disks, i.e.,

the set of path components in B(x,y).

• Let ˜M(x,y)⊂B(x,y) denote the space of holomorphic Whitney disks.

The space ˜M(x,y) decomposes according to elements of π2(x,y):

˜M(x,y) =
∐

B∈π2(x,y)

˜MB(x,y).

If ˜M(x,y) is transversally cut-out, each space ˜MB(x,y) is a smooth man-

ifold whose dimension is given by a number μ(B) called the Maslov index

of B. There is an R-action on both B(x,y) and ˜M(x,y) by translation in

the source (thought of as an infinite strip). Let MB(x,y) = ˜MB(x,y)/R.

Finally, the differential on ̂CF (Y ) is given by

(3.1) ∂(x) =
∑

y∈Tα∩Tβ

∑

B∈π2(x,y)
μ(B)=1

(

#MB(x,y)
)

y.

(Here, # denotes the modulo-2 count of points.) Under certain assumptions

on H, called admissibility, this count is guaranteed to be finite, so ∂ is well-

defined. Moreover:

Theorem 3.1 [46]. For any suitably generic choice of almost-complex

structure, the map ∂ satisfies ∂2 = 0. Moreover, the homology ̂HF (Y ) =

H∗(̂CF (Y ), ∂) is an invariant of Y .

3.1.2. The Cylindrical Reformulation. Before proceeding to bordered

Floer homology, it will be helpful to have a mild reformulation of the defi-

nition of ̂HF . It is based on the tautological correspondence between maps
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from D
2 to Symg(Σ) and multi-valued functions from D

2 to Σ:

Holomorphic maps D2 → Symg(Σ)←→Diagrams

S
uΣ

uD

Σ

D
2

with uΣ , uD holomorphic,

uD a g-fold branched cover.

One direction is easy: given a diagram as on the right, consider the map

D
2 → Symg(Σ) given by mapping p to the g-tuple uΣ(u

−1
D

(p)). The other

direction is not hard, either; see, for instance, [26, Section 13].

In light of the tautological correspondence, we can reformulate ̂HF in

terms of maps to Σ ×D
2. It will be convenient later to view D

2 \ {±i} as a

strip [0,1]×R. Then:

• Generators of ̂CF (Y ) correspond to g-tuples of points x= {xi}gi=1 with

xi ∈ αi ∩ βσ(i) for some σ ∈ Sg. These generators can be thought of as

g-tuples of chords x× [0,1]⊂Σ× [0,1], connecting α×{1} and β×{0}.

• The differential counts embedded holomorphic maps

(3.2) u : (S,∂S)→
((

Σ\{z}
)

× [0,1]×R,
(

α×{1}×R
)

∪
(

β×{0}×R
))

modulo translation in R. Here, S is a Riemann surface with bound-

ary and punctures on its boundary. The punctures are divided into +

punctures and − punctures. Near the − punctures, u is asymptotic

to x × [0,1] × {−∞} and near the + punctures u is asymptotic to

y× [0,1]× {+∞}.

In the cylindrical setting, the set of homotopy classes π2(x,y) of Whitney

disks becomes the set of homology classes (in a suitable sense) of maps as

in Formula (3.2). (Philosophically, this is related to the Dold-Thom theorem

that πk(Sym
∞(X))∼=Hk(X).)

We have been suppressing almost-complex structures. In order to achieve

transversality, one typically perturbs the complex structure jΣ × jD on

Σ × [0,1]× R to a more generic almost-complex structure J . In this cylin-

drical setting, it is important to ensure that translation in R remains J -

holomorphic. Some other conditions which are necessary or convenient are

given in [26, Section 1].
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Remark 3.2. It would have been more consistent with conventions in con-

tact homology to consider R× [0,1]×Σ rather that Σ × [0,1]×R.

3.2. Holomorphic Curves and Reeb Chords

Now consider a bordered Heegaard diagram H = (Σ,αa,αc,β, z). Rather

than viewing Σ as a compact surface-with-boundary, attach a cylindrical

end R× S1 to ∂Σ; and extend the α-arcs αa in a translation-invariant way

to R×S1. (Topologically, this is the same as simply deleting ∂Σ; but if one is

paying attention to the symplectic form and almost-complex structure then

there is a difference.) We abuse notation, using the same notation Σ and

αa for the versions with cylindrical ends. We will still consider holomorphic

maps as in Formula (3.2); but now there is a third source of non-compactness,

∂Σ, and these maps can have asymptotics there as well.

We start with the asymptotics at ±∞. A term for the asymptotics at

±∞:

Definition 3.3. By a generator we mean a g-tuple x⊂α∩β which has one

point on each α-circle, one point on each β-circle, and at most one point on

each α-arc.

We consider holomorphic curves disjoint from a neighborhood of z. It fol-

lows from this and the fact that only the α-arcs touch ∂Σ that the asymp-

totics at ∂Σ are of the form ρi × (1, ti), where ρi is a chord in ∂Σ \ {z}
with boundary on αa. We collect these curves into moduli spaces. Let
˜M(x,y;ρ1, . . . , ρn) denote the moduli space of embedded holomorphic maps

as in Formula (3.2) where:

• S is a surface with boundary and punctures on its boundary. Of these

punctures, g are labeled −, g are labeled +, and the rest are labeled e.

• x and y are generators.

• at the punctures labeled −, u is asymptotic to x× [0,1]× {−∞}.
• at the punctures labeled +, u is asymptotic to y× [0,1]× {+∞}.
• at the punctures labeled e, u is asymptotic to the chords ρi × (1, ti) ∈

∂Σ × {1} ×R. Moreover, we require that t1 < t2 < · · ·< tn.

There is an R-action on ˜M(x,y;ρ1, . . . , ρn) by translation in the target; let

M(x,y;ρ1, . . . , ρn) = ˜M(x,y;ρ1, . . . , ρn)/R.



304 R. Lipshitz et al.

We call the chords ρ Reeb chords ; they are Reeb chords for the contact

structure on S1 = ∂Σ. This comes from thinking of the setup as related

to a Morse-Bott case of (relative) symplectic field theory. The asymptotic

boundary is then (∂Σ× [0,1]×R, ∂αa×{1}×R), and we are in the Levi-flat

case of, e.g., [5].

As in the closed case, the space of maps of the form just described natu-

rally decomposes into homology classes; see [27, Section 4.3]. To keep notation

consistent with the closed case, we let π2(x,y) denote the set of homology

classes of maps connecting x to y; note that we do not specify the Reeb

chords here. Then

M(x,y;ρ1, . . . , ρn) =
∐

B∈π2(x,y)

MB(x,y;ρ1, . . . , ρn).

As in the closed case, we have been suppressing the almost-complex structure

J from the discussion; the interested reader is referred to [27, Section 5.2].

For a generic choice of J , each of the spaces MB(x,y;ρ1, . . . , ρn) is a manifold

whose dimension is given by a number ind(B;ρ1, . . . , ρn)− 1. The notation

ind stands for index: as is usual for holomorphic curves, the dimension is

given by the index of the linearized ∂-operator. One can give an explicit

formula for ind(B;ρ1, . . . , ρn); see [27, Section 5.7].

The next natural thing to talk about, from an analytic perspective, is

what the compactifications of MB(x,y;ρ1, . . . , ρn) look like. We defer this

discussion to Section 4, and instead turn to the definition of the bordered

invariant ĈFD(Y ).

3.3. The Definition of ĈFD

3.3.1. Reeb Chords and Algebra Elements. Before defining ĈFD(H)

we need one more piece of notation. Let Z = (Z,a,M, z) be a pointed

matched circle and ρ a chord in Z \ {z} with boundary in a. Orienting ρ

according to the orientation of Z and identifying a= {1, . . . ,4k}, the chord

ρ has an initial point i and a terminal point j. Write

(3.3) a(ρ) =
∑

S⊂4k
i∈S

(

S,S \ {i} ∪ {j}, φS

)

where φS(i) = j and φS |S\i = I, and the sum is only over S’s so that S and

S \{i}∪{j} are M -admissible. That is, a(ρ) is the union of a strand from i to
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j and any admissible set of horizontal strands. A somewhat trivial example

is given by Exercise 2.9.

3.3.2. The Definition of ĈFD . Fix a bordered Heegaard diagram H=

(Σ,αa,αc,β, z) with boundary Z . We will define a left dg module ĈFD(H)

over A(−Z) (where, as usual, − denotes orientation reversal). The mod-

ule ĈFD(H) will lie over A(−Z,0), in the sense that the other summands

A(−Z, i), i 
= 0, of A(−Z) act trivially on ĈFD(H).

LetS(H) denote the set of generators forH. Given a generator x ∈S(H),

let I(S) denote the set of α-arcs which are disjoint from x.3 Then I(S)

corresponds to a set of matched pairs in −Z , and hence, by Exercise 2.10,

to an indecomposable idempotent of A(−Z). As a (left) module, define

ĈFD(H) =
⊕

x∈S(H)

A(−Z) · I(S).

It remains to define the differential on ĈFD(H). For x ∈S(H) define

(3.4)

∂(x) =
∑

y∈S(H)
n≥0

(ρ1,...,ρn)
B|ind(B,ρ1,...,ρn)=1

(

#MB(x,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)y.

Here, the minus signs are included because ĈFD is a module over A(−Z)

rather than A(Z); −ρ is the chord ρ but viewed as running in the opposite

direction (i.e., as a chord in −Z).

Extend the differential to the rest of ĈFD(Y ) by the Leibniz rule. This

completes the definition of ĈFD(Y ).

Example 3.4. Consider the bordered Heegaard diagram in Figure 8. We

have labeled the three length-1 Reeb chords; notice that we have ordered

them in the opposite of the order induced by the orientation of ∂H, because

we are thinking of the algebra A(−∂H). The module ĈFD(H) has three

generators, x, a and b. With notation as in Formula (2.1), the idempotents

are given by

I(x) = ι1 I(a) = ι0 I(b) = ι0.

3This I(S) was denoted ID(S) in [27], where I(S) was used for IA(S) introduced in Sec-
tion 4.4.
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Fig. 8. A Heegaard diagram for a solid torus, and some holomorphic curves in it. The
circles labeled A indicate a handle. The shaded regions in the second through fourth
figures indicate the domains giving a ∈ ∂(b), ρ3x ∈ ∂b, and ρ2a ∈ ∂x, respectively

The differentials are given by

∂(b) = a+ ρ3x

∂(x) = ρ2a

∂(a) = 0.

Each of these differentials comes from a disk mapped to Σ × [0,1]×R; the

projections of these disks to Σ (their domains—see Definition 3.5) are indi-

cated in the figure. Since ρ3ρ2 = 0, ∂2 = 0.

3.3.3. Finiteness Conditions. As in the closed case, the definition of

ĈFD (Formula (3.4)) only makes sense if the sums involved are finite. To

ensure finiteness, we add assumptions on the Heegaard diagram H, analogous

to admissibility in the closed case:

Definition 3.5. Given a homology class B ∈ π2(x,y), the projection of B

to Σ defines a cellular 2-chain with respect to the cellulation of Σ given by

α ∪ β. This 2-chain is called the domain of B, and determines B. A non-

trivial class B is called positive if its local multiplicities are all non-negative.

The domains of homology classes B ∈ π2(x,x) are called periodic domains.

The set of periodic domains does not depend on x.

The Heegaard diagram H is called provincially admissible if it has no

positive periodic domains which have multiplicity 0 everywhere along ∂Σ.

The Heegaard diagram H is called admissible if it has no positive periodic

domains.

Lemma 3.6 [27, Lemma 6.5]. If H is provincially admissible then the sums

in Formula (3.4) are finite. Moreover, if H is admissible then the opera-

tor ∂ is nilpotent in the following sense. Consider sequences of generators
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(x1,x2, . . . ,xn) such that xi+1 occurs in ∂xi with nonzero coefficient. If H is

admissible then there is a universal bound on the length of such sequences.

The proof of Lemma 3.6 is not hard; it is an adaptation of the proof of

the corresponding fact from the closed case [46, Lemma 4.14]. The nilpotency

condition in Lemma 3.6 guarantees that ĈFD(H) is projective (or rather, K-

projective in the sense of, e.g., [4]). It is not particularly relevant until we

start taking tensor products, e.g. in the statement of Theorem 2.17.

Theorem 3.7 [27, Proposition 6.7]. Let H be a provincially admissible

Heegaard diagram. Then ĈFD(H) is a differential module.

The only nontrivial thing to check is that ∂2 = 0. The proof involves

studying the boundaries of 1-dimensional moduli spaces; we will sketch it in

Section 4.

3.4. The Surgery Exact Triangle4

Recall that Heegaard Floer homology admits a surgery exact triangle [45].

Specifically, for a pair (M,K) of a 3-manifold M and a framed knot K in

M , there is an exact triangle

(3.5)

̂HF (M−1) ̂HF (M0)

̂HF (M∞)

where M−1, M0, and M∞ are −1, 0, and ∞ surgery on K, respectively. As

a simple application of bordered Floer theory, we reprove this result.

Consider the three diagrams

(3.6)

4The discussion in this section is taken from [27, Section 11.2].



308 R. Lipshitz et al.

(Opposite edges are identified, to give T 2 \ D2. Each diagram has two α-

arcs and one β-circle. The numbers indicate which chord, in the notation of

Formula (2.1), corresponds to which arc in ∂H•. Note again that the chords

are numbered in the opposite of the order induced by the orientation of ∂H•.)

A generator for ĈFD(H•) consists of a single intersection point between the

β-circle in H• and an α-arc. These intersections are labeled above.

The boundary operators on the ĈFD(H•) (and the relevant domains)

are given by

There is a short exact sequence

0−→ ĈFD(H∞)
ϕ−→ ĈFD(H−1)

ψ−→ ĈFD(H0)−→ 0

where the maps φ and ψ are given by

ϕ(r) = b+ ρ2a ψ(a) = n ψ(b) = ρ2n.

Now, the surgery exact triangle follows immediately from the pairing

theorem and properties of the derived tensor product.

3.5. The Definition of ĈFDD

Suppose ZL and ZR are pointed matched circles. We can form their connected

sum ZL#ZR. There are two natural choice of where to put a basepoint in

ZL#ZR; let z be a point in one of these places and w a point in the other.

Thinking of z as the basepoint, there is an associated algebra A(ZL#ZR).

Moreover, there is an algebra homomorphism

p :A(ZL#ZR)→A(ZL)⊗F2
A(ZR)

given by setting to zero any algebra element crossing the extra basepoint w.

Now, suppose that H is an arced Heegaard diagram. Performing surgery

on H along the arc z gives a bordered Heegaard diagram Hdr. (Again, there

are two choices of where to put the basepoint in Hdr; choose either.) If the

boundary of H was ZL 	ZR then the boundary of Hdr is ZL#ZR.

Associated to Hdr is a bordered module ĈFD(Hdr) over A(−(ZL#ZR)).



Notes on Bordered Floer Homology 309

Definition 3.8. With notation as above, let

ĈFDD(H) =
((

−A(ZL)
)

⊗F2

(

−A(ZR)
))

⊗A(−(ZL#ZR)) ĈFD(Hdr),

be the image of the bordered bimodule ĈFD(Hdr) under the induction func-

tor associated to the homomorphism p. Via the correspondence between

left-left (A(−ZL),A(−ZR))-bimodules and left ((−A(ZL))⊗F2
(−A(ZR)))-

modules, we view ĈFDD(H) as a left-left (A(−ZL),A(−ZR))-bimodules.

Of course, this definition can be unpacked to define ĈFDD(H) directly in

terms of intersection points and holomorphic curves; doing so is Exercise 3.8.

3.6. Exercises

Exercise 3.1. There is a unique almost-complex structure Symg(jΣ) on

Symg(Σ) so that the projection map (Σ×g, j×g
Σ )→ (Symg(Σ),Symg(jΣ)) is

holomorphic. In the tautological correspondence of Section 3.1.2, show that

if uΣ and uD are holomorphic then the map D
2 → Symg(Σ), p �→ uΣ(u

−1
D

(p))

is holomorphic with respect to Symg(jΣ).

Exercise 3.2. Consider the Heegaard diagrams of Section 3.4. Replacing

the blue (β) curve in the diagrams H• by a circle of slope p/q gives a bordered

Heegaard diagram Hp/q for a p/q-framed solid torus. It is fairly easy to

compute the invariants ĈFD(Hp/q) for these diagrams; compute some.

For any triple of rational numbers (p1/q1, p2/q2, p3/q3) (with pi, qi rela-

tively prime) such that p1+p2+p3 = q1+q2+q3 = 0 there is a corresponding

surgery triangle; check this for some other examples.

Exercise 3.3. Compute Mor(ĈFD(Hp/q), ĈFD(Hr/s)) for a few choices of

p, q, r, s. For example, Mor(ĈFD(H∞), ĈFD(H−1)) has generators (r �→ b),

(r �→ ρ23b) and (r �→ ρ2a). The differentials are given by

∂(r �→ b) = (r �→ ρ23b)

∂(r �→ ρ2a) = (r �→ ρ23b).

In particular, the homology of this Mor complex is 1-dimensional.

Recall that ̂HF (L(p, q)) ∼= (F2)
p, and ̂HF (S2 × S1) ∼= (F2)

2; check that

your answers are consistent with this.
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Exercise 3.4. We explain the type DD bimodule ĈFDD(I,0) associated to

the mapping cylinder for the identity map of F (Z). The notation is somewhat

cumbersome, as ĈFDD(I,0) has two commuting left actions by A(T 2,0). We

write one of these copies of A(T 2,0) in the notation of Formula (2.1), and

the other in the same way but with σ’s in place of ρ’s and η’s in place of ι’s.

Then, the bimodule ĈFDD(I,0) has two generators, x and y, with

ι0x= η0x= x ι1y = η1y = y

and differential given by

∂x= (ρ1σ3 + ρ3σ1 + ρ123σ123)⊗ y

∂y = (ρ2σ2)⊗ x.
(3.7)

(Compare [27, Section A.3.3].)

Verify that for the modules ĈFD(H•) of Section 3.4, Mor(ĈFDD(I,0), ·)
acts as the identity. That is, check that

MorA(T 2,0)

(

ĈFDD(I,0), ĈFD(H0)
)

� ĈFD(H0),

and similarly forH−1,H∞. (You will have to use the equivalence of categories

between left A(T 2,0)-modules and right A(T 2,0)-modules coming from the

fact that A(T 2,0) ∼= A(T 2,0)op. Note that this isomorphism exchanges ρ1
and ρ3.)

Remark 3.9. There are two non-equivalent notions of the Mor complex

above, depending on how one treats the other algebra action on ĈFDD(I,0).

The exercise will be true with either notion. See [32, Theorems 5 and 6] for

an example where this distinction matters.

Remark 3.10. It is sometimes convenient to encode the operations in For-

mula (3.7) by:

.

This way of encoding operations on DD bimodules will be used in Exer-

cise 3.6.
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Exercise 3.5. Note that the identity for Mor is the A-bimodule A. In spite

of the computations in Exercise 3.4, ĈFDD(I) 
� A(T 2,0). Check this two

ways:

• Directly. (Think about the rank of the homologies.)

• By finding a module M over A(T 2,0) so that ĈFDD(I)⊗A(T 2,0)M 
�M .

(Or, you can use Mor(ĈFDD(I),M) if you prefer.)

Exercise 3.6. Let τμ and τλ denote the Dehn twists of the torus along a

meridian and a longitude, respectively. Heegaard diagrams for the mapping

cylinders of τμ and τλ are shown in Figure 9. With notation as in Remark 3.10,

the type DD bimodules associated to these Dehn twists and their inverses

are given by

Convince yourself that these bimodules satisfy ∂2 = 0. Compute

Mor(ĈFDD(τμ),H0) and Mor(ĈFDD(τλ),H0). Compare the results with

the answers you computed in Exercise 3.2.
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Fig. 9. Heegaard diagrams for mapping class group elements. Genus 2 diagrams for τμ,
τ−1
μ , τλ and τ−1

λ are shown. In each of the four diagrams, there are three generators in
the i= 0 summand. (This figure is drawn from [28, Figure A.2])

Exercise 3.7. Up to Heegaard moves, there are some symmetries relating

the diagrams in Figure 9. How are these symmetries reflected in the bimod-

ules in Exercise 3.6?

Exercise 3.8. Unpack the definition of ĈFDD from Section 3.5 to give a

direct definition, avoiding the induction functor.

4. Analysis Underlying the Invariants and the Pairing

Theorem

4.1. Broken Flows in the Cylindrical Setting

As a warm-up, we begin this lecture by discussing the proof that ∂2 = 0

for the cylindrical picture for Heegaard Floer homology. We start with an

example. Consider the Heegaard diagram for S3 shown in Figure 10. There

are five generators, labeled a, b, c, d and e. The differentials are given by

∂(a) = b+ c ∂(b) = ∂(c) = d ∂(d) = 0 ∂(e) = b+ c.

(Remember that we are working with F2-coefficients.)
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Fig. 10. An unnecessarily complicated diagram for S3. In the two pictures on the bottom
we have indicated the image πΣ(u(∂D2)) for two typical elements of M(a, d). The thick

black segments indicate cuts

Consider the moduli space M(a, d) of curves connecting a to d. This

moduli space consists of holomorphic maps

u :
(

D
2 \ {±i}

)

→Σ × [0,1]×R.

Suppose we are working with the almost-complex structure jΣ × jD. Then

there are projection maps πΣ :Σ × [0,1]×R→Σ and πD :Σ × [0,1]×R→
[0,1]×R, and u being holomorphic is equivalent to πΣ ◦ u and πD ◦ u being

holomorphic.

The map πD ◦ u is a 1-fold branched cover, i.e., an isomorphism; up to

translation, there is a unique such isomorphism.

A short argument using the Riemann mapping theorem shows that the

map πΣ ◦u is determined by the image of ∂D2. Figure 10 shows two possibil-

ities for πΣ(u(∂D
2)). Note the branch point on α1 or β1. The whole moduli

space is determined by where the branch point lies; so, M(a, d) is an (open)

interval. The ends of M(a, d) occur when the branch point approaches b or c.

We want to describe the limiting objects. In the ordinary setting for

Morse theory, these would be broken flows. In this setting, they are multi-

story holomorphic buildings. We see this as follows.
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Consider a sequence of curves ui approaching the end of M(a, d) where

the branch point approaches c. Notice the points p1, p2 ∈ Σ shown in Fig-

ure 10. Consider the points q1 = (πΣ ◦ ui)
−1(p1) and q2 = (πΣ ◦ ui)

−1(p2)

in D
2. The points (πD◦ui)(q1) and (πD◦ui)(q2) in [0,1]×R are getting farther

and farther apart. Indeed, from the point of view of q1, half of the holomor-

phic curve is heading towards Σ× [0,1]×{+∞}, while from the point of view

of q2, half of the holomorphic curve is heading towards Σ × [0,1]× {−∞}.
So, the limiting object has two “stories”: the part of the limit containing q1
and the part of the limit containing q2. More formally:

Definition 4.1. An �-story holomorphic building connecting x to y consists

of a sequence of holomorphic curves ui ∈M(xi,xi+1), i= 1, . . . , �, with x1 =

x and x�+1 = y.

Each holomorphic building carries a homology class in π2(x,y), by adding

up (concatenating) the homology classes of its stories.

We should now give a topology on the space of holomorphic buildings,

to say precisely what it means for a sequence of one-story buildings, i.e.,

elements of M(a, d), to converge to a multi-story building. Instead, however,

we refer the reader to [5].

The main structural result is:

Theorem 4.2. Suppose that B ∈ π2(x,y) has μ(B) = 2. Let MB
(x,y) de-

note the space of 1- or 2-story holomorphic buildings connecting x to y in

the homology class B. Then for a generic choice of almost-complex structure,

MB
(x,y) is a compact 1-dimensional manifold-with-boundary. The boundary

of MB
(x,y) consists exactly of the 2-story holomorphic buildings connecting

x to y in the homology class B.

In the cylindrical formulation, this is [26, Corollary 7.2]; the analogous

result for Heegaard Floer homology in the non-cylindrical setting was proved

in [46]. (Both proofs are relatively modest adaptations of standard holomor-

phic curve techniques.)

To conclude the warm-up, we recall that ∂2 = 0 follows from Theorem 4.2

by a standard argument:

Corollary 4.3. Let H be an admissible Heegaard diagram for a closed 3-

manifold. Then the differential ∂ on ̂CF (H) satisfies ∂2 = 0.
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Proof. The proof involves the usual looking at ends of one-dimensional

moduli spaces, as is familiar in Floer homology:

∂(x) =
∑

y∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

(

#MB1(x,y)
)

y

∂2(x) =
∑

y∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

(

#MB1(x,y)
)

∂(y)

=
∑

y,z∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

∑

B2∈π2(y,z)
μ(B2)=1

(

#MB1(x,y)
)(

#MB2(y,z)
)

z

=
∑

z∈S(H)

∑

B∈π2(x,z)
μ(B)=2

(

#∂MB(x,z)
)

z

= 0.

Most of this is just manipulation of symbols; the key point is the fourth

equality, which uses Theorem 4.2. The last equality follows from the fact

that a 1-dimensional manifold-with-boundary has an even number of ends.

(The assumption about admissibility is used to ensure that the sums involved

at each stage are finite.) �

4.2. The Codimension-One Boundary: Statement

To prove that ∂2 = 0 for ĈFD we need to investigate the boundary of the

1-dimensional moduli spaces, analogously to Theorem 4.2. So, fix a bordered

Heegaard diagram H = (Σ,αc,αa,β). As above, we can have breaking at

±∞, giving multi-story holomorphic buildings; but now there are two other

sources of non-compactness:

(1) The manifold Σ has a cylindrical end, giving another direction in

which curves in Σ × [0,1]×R can break.

(2) In the moduli space MB(x,y;ρ1, . . . , ρn) we had Reeb chords ρi ×
(1, ti) where t1 < t2 < · · ·< tn. This can degenerate when ti+1− ti → 0.

(There is overlap between the two cases.)

Degenerations of type (1) lead to the analogue of 2-story holomorphic

buildings, but in the “horizontal”, i.e., Σ, direction. In principle, one can
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have degenerations in both the vertical (R) and horizontal (Σ) directions at

once. We called the resulting objects holomorphic combs [27, Definition 5.20].

In codimension 1, the kinds of combs that can appear are quite limited, so

rather than giving the general story we will simply explain these cases.

By east ∞ we mean R× (∂Σ)× [0,1]×R; this is the symplectic manifold

that one sees at the (“horizontal”) end of Σ. Note that there are projection

maps

πΣ :R× (∂Σ)× [0,1]×R→R× (∂Σ)

πD :R× (∂Σ)× [0,1]×R→ [0,1]×R

t :R× (∂Σ)× [0,1]×R→R,

where t is projection onto the second (last) R-factor. Degenerations of

type (1) lead to pairs (u, v) where u is a curve in Σ × [0,1]×R of the kind

we have been considering and v is a curve at east ∞, i.e., a holomorphic map

v : (S,∂S)→
(

R× (∂Σ)× [0,1]×R,R× (α∩ ∂Σ)× {1} ×R
)

.

Here, S is a surface with boundary and punctures on the boundary. Each

puncture is labeled either e or w. Near each e puncture, v is asymptotic to

some {∞}× ρi × (1, ti) where ρi is a chord in ∂Σ and ti ∈R. Similarly, near

each w puncture, v is asymptotic to some {−∞}× ρi × (1, ti).

It follows from the boundary conditions and asymptotics that for each

component of v, the map πD ◦ v is, in fact, constant. This makes describ-

ing holomorphic curves at east ∞ relatively straightforward. Three kinds of

curves will play special roles in studying ĈFD :

• A trivial component is a disk in R× (∂Σ)× [0,1]×R which is invariant

under translation in the first R-factor. It follows that a trivial component

has one w punctures and one e puncture, and is asymptotic to the same

chord ρ at both punctures.

• A join component is a disk in R× (∂Σ)× [0,1]×R with two w punctures

and one e puncture. At the two w punctures the curve is asymptotic

to chords ρ1 and ρ2 and at the e puncture the curve is asymptotic to a

chord ρ. With respect to the cyclic ordering of the punctures (ρ, ρ1, ρ2)

around the boundary of the disk (see Figure 11), the terminal endpoint

of ρ2 is the initial endpoint of ρ1; and ρ= ρ2 ∪ ρ1.

A join curve is the disjoint union of one join component and finitely

many trivial components.
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Fig. 11. Sources of curves at east ∞. Left: a trivial component. Center: a join
component. Right: a split component. This is [27, Figure 5.3]

Fig. 12. Examples of three kinds of codimension 1 degenerations. The large black dot
represents a boundary branch point of πΣ ◦ u. Left: degenerating into a two-story
building. Center: degenerating a join curve. Right: degenerating a split curve. The

diagrams show the projection of the curve in Σ × [0,1]×R to Σ. This figure is adapted
from [27, Figure 5.1]

• Roughly, a split component is the mirror of a join component. In more

detail, a split component is a disk in R × (∂Σ) × [0,1] × R with one

w punctures and two e puncture. At the two e punctures the curve

is asymptotic to chords ρ1 and ρ2 and at the w puncture the curve

is asymptotic to a chord ρ. With respect to the cyclic ordering of the

punctures (ρ, ρ1, ρ2) around the boundary of the disk (see Figure 11),

the terminal endpoint of ρ1 is the initial endpoint of ρ2; and ρ= ρ1∪ρ2.

For our purposes, a split curve is the disjoint union of one split com-

ponent and finitely many trivial components. (If we were also interested

in ĈFA, we would have to allow more than one split component in a

split curve.)

Figure 12 gives examples of degenerating a join curve and a split curve

at east ∞, as well as breaking into a two-story holomorphic building.
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Remark 4.4. In studying ĈFA, a third kind of curve at east ∞, called a

shuffle curve, is also important. See [27, Section 5.3] for a discussion of shuffle

curves.

Theorem 4.5. Suppose that ind(B;ρ1, . . . , ρn) = 2. Then the ends of the

moduli space MB(w,y;ρ1, . . . , ρn) consist exactly of the following configura-

tions:

(1) Two-story holomorphic buildings, i.e.,

n
⋃

i=0

⋃

x∈S(H)

⋃

B1∈π2(w,x)
B2∈π2(x,y)
B1∗B2=B

MB1(w,x;ρ1, . . . , ρi)×MB2(x,y;ρi+1, . . . , ρn).

(2) Collapses of levels, i.e., curves u as in the definition of MB(w,y;ρ1,

. . . , ρn) except that the t-coordinates of ρi and ρi+1 are equal. More-

over, either:

(2a) the set of (one or two) α-arcs containing ∂ρi must be disjoint

from the set of (one or two) α-arcs containing ∂ρi+1, or

(2b) the initial endpoint of ρi is the same as the final endpoint of ρi+1.

(3) Join curve degenerations, i.e., pairs (u, v) where u is a curve like those

in

MB
(

w,y;ρ1, . . . , ρ
′
i, ρ

′′
i , ρi+1, . . . , ρn

)

except that the t-coordinates of ρ′i and ρ′′i are equal; and v is a

join curve with w asymptotics ρ1, . . . , ρ
′
i, ρ

′′
i , . . . , ρn and e asymptotics

ρ1, . . . , ρi, . . . , ρn. In particular, ρi = ρ′′i ∪ ρ′i. Moreover:

• The α-arc containing the terminal end of ρ′′i is distinct from the

α-arcs containing the initial and terminal ends of ρi.

• The t-coordinates of the w asymptotics of v agree with the t-

coordinates of the e asymptotics of u.

(4) Split curve degenerations, i.e., pairs (u, v) where u ∈MB(w,y;ρ1, . . . ,

ρi∪ρi+1, . . . , ρn) and v is a split curve with w asymptotics ρ1, . . . , (ρi∪
ρi+1), . . . , ρn and e asymptotics ρ1, . . . , ρi, ρi+1, . . . , ρn. Moreover, the t-

coordinates of the w asymptotics of v agree with the t-coordinates of

the e asymptotics of u.

In particular, the space of such pairs (u, v) can be canonically iden-

tified with MB(w,y;ρ1, . . . , ρi ∪ ρi+1, . . . , ρn).
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This is a combination of [27, Theorem 5.55] and [27, Lemma 5.70].

As in most of holomorphic curve theory, the key ingredients in the proof

of Theorem 4.5 are:

• A transversality statement: for generic almost-complex structures, the

relevant moduli spaces are transversally cut out. For curves in Σ ×
[0,1] × R this is [27, Proposition 5.6]; for curves at east ∞, it is [27,

Proposition 5.16]. Because we are not able to perturb the complex struc-

ture at east ∞, less transversality holds for curves at east ∞ than one

might like. (Specifically, we can not always ensure that the evaluation

maps at the punctures are transverse to the diagonal.)

• A compactness statement: sequences of holomorphic curves in Σ ×
[0,1]×R converge to holomorphic combs. This is [27, Proposition 5.23].

• Various gluing statements. Because of the Morse-Bott nature of the

asymptotics at east ∞ and transversality issues for curves at east ∞,

these statements become somewhat intricate. See [27, Section 5.5].

• An analysis of which of the possible degenerations can occur in

codimension-1. See [27, Sections 5.6 and 5.7.3].

There is one more ingredient, because we are working with embedded curves:

• A computation of the index of the ∂ operator shows that sequences

of embedded curves converge to embedded curves. Philosophically, this

is related to the adjunction formula. See [27, Section 5.7] for further

discussion.

Remark 4.6. The fact that πD is constant on each component of a curve

at east ∞ suggests that we have lost some information in our formulation of

the limiting objects. One could recover this information by rescaling while

taking the limit. Specifically, suppose a sequence of holomorphic curves ui
converges to a pair (u, v), where v : T → R× (∂Σ)× [0,1]×R is a curve at

east ∞. Fix a marked point pi on each ui converging to a marked point p

on u. In taking the limit, rescale the map πD ◦ ui on a neighborhood of pi so

that dpi
(πD ◦ ui) has norm 1. With some work, one thus obtains a rescaled

version of πD ◦ v in the form of a map T →{x+ iy ∈C | x≤ 1}.

The moduli spaces at east ∞ are sufficiently simple that this refined

limiting procedure turns out not to be necessary to construct the bordered

invariants; but it seems more relevant to constructing a bordered version of

HF±.
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4.3. ∂2 = 0 on ĈFD

With the codimension-1 boundary in hand, we are now ready to prove that

ĈFD is a dg module.

Theorem 4.7 [27, Proposition 6.7]. Fix a provincially admissible bordered

Heegaard diagram H. Then for a generic choice of almost-complex structure,

the differential ∂ on ĈFD(H) satisfies ∂2 = 0.

Sketch of proof. It suffices to show that for each generator w ∈ S(H),

∂2(w) = 0. We have

∂2(w) = ∂

(

∑

y∈S(H)
(ρ1,...,ρn)
B∈π2(w,y)

(

#MB(w,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)y

)

=
∑

x∈S(H)
(ρ1,...,ρi)

B1∈π2(w,x)

∑

y∈S(H)
(ρi+1,...,ρn)
B2∈π2(w,x)

(

#MB1(w,x;ρ1, . . . , ρi)
)

×
(

#MB2(w,x;ρi+1, . . . , ρn)
)

× a(−ρ1) · · ·a(−ρi)a(−ρi+1) · · ·a(−ρn)y

+
∑

x∈S(H)
(ρ1,...,ρn)
B∈π2(w,x)

(

#MB(w,x;ρ1, . . . , ρn)
)

a(−ρ1) · · ·d(ai) · · ·a(−ρn)x.

(There is some possibly confusing re-indexing: in the second line we have

replaced n→ i, y→ x, and B →B1. In the last line we use the same notation

as in the first line, however.)

The sum in the second line corresponds exactly to the 2-story holomor-

phic buildings, degeneration (1) in Theorem 4.5. The sum in the last line cor-

responds to the split curve degenerations, degeneration (4) in Theorem 4.5.

It remains to see that the remaining ends of the 1-dimensional mod-

uli spaces cancel in pairs. Indeed, it is easy to see that Case (2a) ends of

MB(w,y;ρ1, . . . , ρn) correspond to Case (2a) ends of MB(w,y;ρ1, . . . , ρi+1,

ρi, . . . , ρn); and Case (2b) ends of MB(w,y;ρ1, . . . , ρn) correspond to

join curve ends of MB(w,y;ρ1, . . . , ρi ∪ ρi+1, . . . , ρn). This completes the

proof. �
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Fig. 13. Splitting a closed Heegaard diagram. The bordered Heegaard diagrams H1 and
H2 are glued along the circle Z ⊂H

4.4. Deforming the Diagonal, ĈFA and the Pairing Theorem

Our goals for the rest of the lecture are two-fold:

(1) Define the invariant ĈFA(Y ) associated to a bordered 3-manifold.

(2) Prove the pairing theorem, Theorem 2.17.

We will do this in the opposite order: we will start proving Theorem 2.17, and

ĈFA will appear naturally. The material in this section is drawn from [27,

Chapter 9], to which we refer the reader for further details.

So, fix bordered Heegaard diagrams H1, H2 with ∂H1 =Z =−∂H2 and

let H=H1 ∪∂ H2. (See Figure 13.) We want to understand ̂CF (H) in terms

of invariants of H1 and H2.

On the level of generators, this is trivial: a generator x ∈ ̂CF (H) cor-

responds to a pair of generators (x1,x2) for H1 and H2 so that the α-arcs

occupied by x1 are complementary to the α-arcs occupied by x2. So, if we

define IA(x1) to be the idempotent in A(Z) corresponding to the α-arcs oc-

cupied by x1—this is the opposite of I(x) as defined in Section 3.3.2—and

let

ĈFA(H1) = F2

〈

S(H1)
〉

,

with IA(x1)x1 = x1, so other indecomposable idempotents kill x1, then we

have

(4.1) ĈFA(H1)⊗A(Z) ĈFD(H2)

as F2-vector spaces. Note that we have not defined an A(Z1)-module struc-

ture on ĈFA(H1) yet: Equation (4.1) uses only the action of the idempotents

and the fact that ĈFD(H2) is a sum of elementary projective modules.
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Holomorphic curves are more complicated.

Let Z ⊂ H denote the circle ∂H1. Recall that to define ĈFD(H2) we

attached a cylindrical end to −Z = ∂Σ2. Correspondingly, to prove the pair-

ing theorem, we consider inserting a long neck into Σ along Z. That is, fix

a complex structure jΣ on Σ and choose a neighborhood U of Z which is

biholomorphic to [−ε, ε] × S1 for some ε > 0. Let jRΣ denote the result of

replacing U by [−R,R]× S1.

Let Ri ∈R be a sequence with Ri →∞, and suppose ui ∈MB(x,y) is a

sequence of holomorphic curves with respect to jRi

Σ × jD. We are interested

in the limit of the sequence {ui}. Modulo some technicalities, this is the

kind of limit studied in symplectic field theory; the limiting objects have the

following form:

Definition 4.8. A matched holomorphic curve is a pair of curves

(u1, u2) ∈MB1(x1,y1;ρ1, . . . , ρn)×MB2(x2,y2;ρ1, . . . , ρn)

so that for each i= 1, . . . , n, the t-coordinate at which u1 is asymptotic to ρi
is equal to the t-coordinate at which u2 is asymptotic to ρi.

Equivalently, there is an evaluation map

ev :MBi(xi,yi;ρ1, . . . , ρn)→R
n−1

which takes a curve asymptotic to ρ1 × (1, t1), . . . , ρn × (1, tn) to (t2 − t1,

t3 − t2, . . . , tn − tn−1). Then a matched holomorphic curve is a pair (u1, u2)

such that ev(u1) = ev(u2).

LetMB(x,y;∞) denote the moduli space of matched holomorphic curves

in the homology class B. That is,

(4.2)

MB(x,y;∞) =
⋃

(ρ1,...,ρn)

MB1(x1,y1;ρ1, . . . , ρn) ev×evMB2(x2,y2;ρ1, . . . , ρn).

Here, x (respectively y) corresponds to the pair of generators (x1,x2) (re-

spectively (y1,y2)) and Bi is the intersection of B with Hi.

Proposition 4.9. Let MB(x,y;R) denote the moduli space of holomorphic

curves (in Σ × [0,1]×R, in the homology class B) with respect to an appro-

priate perturbation5 of the almost-complex structure jRΣ × jD. Suppose that

5As usual, we will suppress the fact that one needs to perturb the almost-complex structure
in order to achieve transversality from the discussion.
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μ(B) = 1. Then
⋃

R>0MB(x,y;R) is a 1-manifold whose ends as R → ∞
are identified with MB(x,y;∞). More precisely, let

MB(x,y;≥R0) =MB(x,y;∞)∪
⋃

R≥R0

MB(x,y;R).

Then there is a there is a topology on MB(x,y;≥ R0) and an R0 so that

MB(x,y;≥R0) is a compact 1-manifold with boundary exactly

MB(x,y;∞)	MB(x,y;R0).

This follows from compactness and gluing arguments, in a fairly standard

way.

Corollary 4.10. Define ∂1 :̂CF (H)→̂CF (H) by

(4.3) ∂1(x) =
∑

y∈Tα∩Tβ

∑

B∈π2(x,y)
μ(B)=1

#MB(x,y;∞)y

(cf. Formula (3.1)). Then H∗(̂CF (H), ∂1)∼=̂HF (Y ).

Example 4.11. Consider the splitting in Figure 13. The complex ̂CF (H)

has two generators, x= {a, s} and y= {b, s}; in the notation above, x1 = {a},
x2 = {s}, y1 = {b} and y2 = {s}. The generator y occurs twice in ∂(x): once

from the small bigon region near the left of the diagram and once from the

annular region crossing through the circle Z. We focus on the second of

these contributions, the domain of which is shown in Figure 14. (It takes a

little work to show that this domain has a holomorphic representative; see

Exercise 4.5.)

Now, consider the result of stretching the neck along Z. There are two

cases, depending on whether the cut goes through Z or not (which in turn

depends on the complex structure on H). If the cut does not go through z,

the resulting matched curve (u1, u2) has u1 a disk with one Reeb chord and

u2 an annulus with one Reeb chord. (In fact, this case does not occur in the

limit; see Exercise 4.6.)

The more interesting case—and the one which actually occurs—is when

the cut does pass through Z. Then both u1 and u2 are disks with two Reeb

chords on each of their boundaries. The disk u2 is rigid, but the disk u1
comes in a 1-parameter family, depending on the length of the cut. There

is algebraically one length of cut for which the height difference of the two
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Fig. 14. Splitting an interesting domain. Depending on the complex structure, there are
two possible phenomena after splitting: either the cut stays entirely on the right side of
the diagram, as in the left picture, or the cut runs through the collapsed circle Z, as in
the right picture. We have drawn schematic illustrations of the matched holomorphic

curves below the two pictures

Reeb chords in u1 agrees with the height difference of the Reeb chords in u2
(Exercise 4.7).

Corollary 4.10 is a step in the direction of a pairing theorem: it gives

a definition of ̂HF in terms of holomorphic curves in Σ1 × [0,1] × R and

Σ2 × [0,1]× R. But as we saw in Example 4.11, the corollary still has two

(related) drawbacks:

(1) The moduli spaces we are considering in for H1 and H2 are typically

high-dimensional. Indeed, in Formula (4.3), we have

dimMB1(x1,y1;ρ1, . . . , ρn) + dimMB2(x2,y2;ρ1, . . . , ρn) = n− 1.

(2) Since we are taking a fiber product of moduli spaces, which curves

we want to consider in H1 depends on H2. So, it is not yet obvious

how to define independent invariants of H1 and H2 containing the

information needed to compute ∂1.

To address complaint (2) we could try to formulate an algebra which re-

members the chain ev∗[MB1(x1,y1;ρ1, . . . , ρn)] ∈ C∗(Rn−1). This is a nat-

ural way to try to define a bordered Heegaard Floer invariant, and with

enough effort it could probably be made to work. This approach would be

far from combinatorial, and is also unnecessarily complicated, as we will now

show.

The next step is to deform the fiber product in Formula (4.2):



Notes on Bordered Floer Homology 325

Definition 4.12. A T -matched holomorphic curve is a pair

(u1, u2) ∈MB1(x1,y1;ρ1, . . . , ρn)×MB2(x2,y2;ρ1, . . . , ρn)

such that T · ev(u1) = ev(u2). Let MB
T (x,y;∞) denote the moduli space of

T -matched holomorphic curves, i.e.,

MB
T (x,y;∞)

=
⋃

(ρ1,...,ρn)

MB1(x1,y1;ρ1, . . . , ρn) T ·ev×ev MB2(x2,y2;ρ1, . . . , ρn).

So, in particular, a 1-matched holomorphic curve is just a matched holo-

morphic curve.

A standard continuation-map argument shows:

Proposition 4.13. Let ∂T denote the map defined analogously to For-

mula (3.1) (or Formula (4.3)) but using the moduli spaces MB
T (x,y;∞).

Then H∗(̂CF (H), ∂T )∼=̂HF (Y ).

Now, of course, we send T → ∞. Consider a sequence of Ti-matched

curves (ui1, u
i
2) with Ti → ∞. Suppose that ui1 ∈ MB1(x1,y1; (ρ1, . . . , ρn)).

Let sij be the R-coordinate at which ui1 is asymptotic to ρj and let tij be

the R-coordinate at which ui2 is asymptotic to ρj . Then, after passing to a

subsequence, for each ρj , either:

• (sij+1 − sij) ∈ (0,∞) stays bounded away from 0 and (tij+1 − tij)→∞ as

i→∞; or

• (sij+1 − sij)→ 0 and (tij+1 − tij) stays bounded as i→∞.

So, in the limit:

• On the right we have an �-story holomorphic building (for some �)

U∞
2 = (v1, . . . , v�), where vj ∈ M(x1,j ,x1,j+1;ρnj

, . . . , ρnj+1
), x1,j = x1,

x1,�+1 = y1, 1 = n1 ≤ n2 ≤ · · · ≤ n�+1 = n.

• On the left we have a curve u∞1 asymptotic to some sets of Reeb chords

ρ1, . . . ,ρ� at t-coordinates t1 < · · ·< t� ∈R. Let

MB2(x2,y2;ρ1, . . . ,ρ�)

denote the moduli space of such curves.
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Importantly, there is no longer a matching condition between the curves u∞1
and U∞

2 .

Example 4.14. Continuing with Example 4.11 in the case that the cut goes

through the neck, as on the right of Figure 14, as T →∞ the R-coordinates

of the two Reeb chords in u1 come together. (This results in degenerating

a split curve at ∂Σ; we elided this point in the rest of this section.) This is

indicated schematically in Figure 14.

Now, suppose we turned the diagram 180◦. To avoid re-drawing the figure,

we can think of this as sending T → 0 instead of T →∞. In this case, the

two chords in Figure 14 are pushed farther and farther apart; in the limit,

the cut goes all the way through to the β-curve, giving a 2-story holomorphic

building. Again, this is indicated schematically in Figure 14.

Observe that in both cases, the relevant curves are completely deter-

mined, i.e., belong to rigid moduli spaces: there is no “cut” left.

Now, associated to a set of Reeb chords ρ is an algebra element a(ρ),

defined analogously to Equation (3.3); see Exercise 4.8 or [27, Definition 3.23].

Define maps

mi+1 : ĈFA(H1)⊗A(Z)⊗i → ĈFA(H1)

mi+1

(

x;a(ρ1), . . . , a(ρi)
)

=
∑

y∈S(H1)

∑

B∈π2(x,y)
ind(B,ρ1,...,ρi)=1

(

#MB(x,y;ρ1, . . . ,ρi)
)

y.

An argument similar to but in some ways easier than the proof of Theo-

rem 4.7 proves:

Theorem 4.15. For H1 a provincially-admissible Heegaard diagram and J

a generic almost-complex structure, the operations mi+1 make ̂CFA(H1) into

an A∞-module.

The argument above is a sketch of the pairing theorem, Theorem 2.17.

Specifically, it follows from the sketch above that

̂CF (H)� ĈFA(H1)� ĈFD(H2),

where � is the model for the tensor product of an A∞-module with a type

D structure described in [27, Section 2.4].
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4.5. Exercises

Exercise 4.1. In the setting of Section 4.1, use the Riemann mapping

theorem to show that the map πΣ ◦ u is determined by the position of the

branch point (as claimed), and that there are no other elements of M(a, d).

Exercise 4.2. Suppose that v : S → R× (∂Σ)× [0,1]×R is a holomorphic

curve at east ∞, as discussed in Section 4.2. Show that the restriction of

πD ◦ v to each component of S is constant.

Exercise 4.3. Prove: If x is a generator for ĈFD(Y ), where ∂Y = F (Z)

then I(x) ∈A(Z,0)⊂A(Z). (Hint: this is easy.) What is the corresponding

statement for the bimodules ĈFDD associated to arced cobordisms?

Exercise 4.4. The differential on the algebra A(T 2,0) associated to the

torus is trivial. This means that one of the cases in the proof of Theorem 4.7

does not arise if the boundary is a torus. Which one? Why?

Exercise 4.5. Show that the annular region in Figure 14 is the domain of

a holomorphic map S →Σ × [0,1]×R, in two ways:

(1) By adapting the argument from [46, Lemma 9.3].

(2) By using handleslide invariance of Heegaard Floer homology. (After

performing the right handleslide on Figure 13, it is easy to compute
̂HF .)

Exercise 4.6. Show that when one stretches the neck in Figure 13, as in

Example 4.11, the domain in Figure 14 must have a cut passing through the

neck.

Exercise 4.7. In Example 4.11 we claimed there is algebraically one length

of cut so that the height difference of the two Reeb chords in u1 agrees with

the height difference of the two Reeb chords in u2. (Since we are working

with F2-coefficients, probably we really meant that there are an odd num-

ber of such cut lengths.) Prove this. (Hint: what is the height difference

in u1 when the cut has length 0? When the cut goes all the way to the

β-circle?)

Exercise 4.8. Define a(ρ) ∈A(Z) when ρ is a set of chords in Z , no two of

which start (respectively end) at points from the same matched pair. (This
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Fig. 15. Degenerating the hexagon. A hexagon in the Heegaard diagram (giving a flow
from x= {x1, x2, x3} to y= {y1, y2, y3}) is divided into three pieces D1, D2, and D3,

grouped as D1 and D2 ∪D3. This is [27, Figure 9.3]

is a generalization of Formula (3.3), and should be straightforward. See [27,

Definition 3.23] for a solution.)

Exercise 4.9. Figure 15 shows a hexagonal domain connecting x =

{x1, x2, x3} to y = {y1, y2, y3}. Note that this domain always contributes a

term of y in ∂(x). Consider the result of degenerating this domain along

the dashed line, and then deforming the diagonal as in Section 4.4. (In the

notation of Section 4.4, consider both the case of sending T →∞ and the

case of sending T → 0.) What happens to the holomorphic representative for

this domain in the process? How is this encapsulated algebraically? (See [27,

Section 9.6] for a detailed discussion of this example.)

5. Computing with Bordered Floer Homology I: Knot

Complements

In this section we will discuss how the torus boundary case of bordered Floer

homology can be used to do certain kinds of computations. The main goal is a

technique for studying satellite knots, from [27, Chapter 11]. This technique

and extensions of it have been used in [12, 24, 25, 55].

We start with a review of knot Floer homology [44, 56], mainly to fix

notation (Section 5.1). We then discuss how the knot Floer homology of a

knotK in S3 determines the bordered Floer homology of S3\K (Section 5.2).

Finally, we turn this around to use our understanding of bordered Floer

homology to study the knot Floer homology of satellites (Section 5.3).
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Fig. 16. Doubly pointed Heegaard diagram for the trefoil

5.1. Review of Knot Floer Homology

Let K be a knot in S3, and let H= (Σ,α,β, z,w) be a doubly pointed Hee-

gaard diagram for K, in the sense of [44]. (For example, a doubly pointed

Heegaard diagram for the trefoil is shown in Figure 16.) Associated to H are

various knot Floer homology groups. The most general of these is CFK−(K),

which is a filtered chain complex over F2[U ]. The complex CFK−(K) is freely

generated (over F2[U ]) by Tα ∩Tβ , the same generators as ̂CF (Σ,α,β). The

differential is given by

∂−(x) =
∑

y

∑

B∈π̃2(x,y)
μ(B)=1

#
(

MB(x,y)
)

Unw(B) · y.

Here, unlike the discussion above, we allow disks to cross the basepoint z;

we have used the notation π̃2(x,y) rather than π2(x,y) to indicate this.

The complex CFK−(K) has an integral grading, called the Maslov grad-

ing, which is decreased by one by the differential. We will make no particular

reference to this additional structure in the present notes; but it will be con-

venient (for the purposes of taking Euler characteristic, cf. Equations (5.1)

and (5.2) below) to have its parity, as encoded in (−1)M(x). This parity is

given as the local intersection number of Tα and Tβ at x. (As defined, we

have specified a function S(H)→ {±1} which is well-defined up to overall

sign.) Now, the fact that ∂− respects this parity is equivalent to the state-

ment that if B ∈ π̃2(x,y) has ind(B) = 1, then the local intersection numbers

of Tα and Tβ at x and y are opposite.
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The complex CFK−(K) has an Alexander filtration which is uniquely

determined up to translation by

A(y)−A(x) = nw(B)− nz(B)

A(U · y) =A(y)− 1

where B ∈ π2(x,y). In other words, a term of the form Unw(B)y in ∂−(x)
has A(Unw(B)y) =A(x)− nz(B).

Let gCFK−(K) denote the associated graded complex to (CFK−(K),A).

Explicitly, the differential on gCFK−(K) is defined in the same way as the

differential on CFK−(K) except that we no longer allow holomorphic curves

to cross the z basepoint. Thus, the chain complex gCFK− splits as a direct

sum of complexes, determined by the Alexander grading:

gCFK−(K) =
⊕

s∈Z
gCFK−(K,s).

Finally, there is the complex ĈFK (K) obtained from gCFK−(K) by

setting U = 0. In other words, ĈFK (K) is generated over F2 by Tα∩Tβ , and

the differential counts holomorphic curves which do not cross z or w. Like

gCFK−, ĈFK has a direct sum splitting induced by the Alexander grading.

A key property of knot Floer homology is that its graded Euler charac-

teristic is the Alexander polynomial:

(5.1) ΔK(T ) =
∑

s∈Z
χ
(

ĈFK (K,s)
)

T s;

and similarly,

(5.2) ΔK(T )/(1− T ) =
∑

s∈Z
χ
(

CFK−(K,s)
)

T s.

(Note that the parity of the Maslov grading is used to compute the Euler

characteristic. Also, both sides of Formula (5.2) are formal power series.)

The translation indeterminacy in the Alexander grading can then be

removed by requiring the graded Euler characteristic of ĈFK to be the

Conway normalized Alexander polynomial (or equivalently χ(ĈFK (K,s)) =

χ(ĈFK (K,−s)) for all s ∈ Z); this normalization can also be used to remove

the overall indeterminacy in the parity of the Maslov grading.

There is a numerical invariant for knots derived from knot Floer homol-

ogy, τ(K), which will appear in Theorem 5.4 below. This is defined with
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Fig. 17. Doubly pointed Heegaard diagram for the figure eight knot

the help of the following observation. There are U -non-torsion elements in

H∗(gCFK
−(K,s)), i.e., elements h ∈ H∗(gCFK

−(K,s)) with the property

that for all positive integers m, Umh is homologically non-trivial. We can

consider the maximal s for which H∗(gCFK
−(K,s)) contains U -non-torsion

elements. Multiplying this s by −1 gives the invariant τ(K).

Example 5.1. Figure 16 shows a doubly-pointed Heegaard diagram for

the trefoil knot. The chain complex CFK−(H) is given by F2[U ]〈a, b, c〉. The
differential on CFK−(H) is given by

∂−(a) = b ∂−(b) = 0 ∂−(c) = Ub.

The Alexander filtration is given by A(a) = 1, A(b) = 0, A(c) =−1.

The differential on gCFK−(H) is given by

∂−
g (a) = 0 ∂−

g (b) = 0 ∂−
g (c) = Ub.

The complex ĈFK (H) is F2〈a, b, c〉, with trivial differential.

Another concrete example is furnished by the Figure 8 knot.

Example 5.2. Figure 17 shows a doubly-pointed Heegaard diagram for the

figure eight knot. The chain complex CFK−(H) is given by F2[U ]〈a, b, c, d, e〉.
The differential on CFK−(H) is given by

∂−(a) = Ub+ c ∂−(b) = d ∂−(c) = Ud ∂−(d) = 0

∂−(e) = Ub+ c.
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The Alexander filtration is given by A(a) = A(d) = A(e) = 0, A(b) = 1,

A(c) =−1.

The differential on gCFK−(H) is given by

∂−
g (a) = Ub ∂−

g (b) = 0 ∂−
g (c) = Ud ∂−

g (d) = 0 ∂−
g (e) = Ub.

The complex ĈFK (H) is F2〈a, b, c, d, e〉, with trivial differential.

We represent the chain complex CFK−(H) graphically by choosing a

basis {ξi} for CFK−(H) over F2[U ]—for instance, the standard basis whose

elements are points in Tα ∩ Tβ—and placing a generator of the form U−x ·
ξi with Alexander depth y on the plane at the position (x, y). Then the

differential of a generator at (x, y) can be represented graphically by arrows

connecting the point at (x, y) with the coordinates of other generators. These

arrows necessarily point (non-strictly) to the left and down.

Up to filtered homotopy equivalence, we can always ensure that the dif-

ferentials in the chain complex CFK−(H) change the Alexander grading or

the U power, or both; we call a chain complex reduced if it has this property.

Equivalently, CFK−(H) is reduced if every arrow changes the x-coordinate

or the y-coordinate or both. A reduced complex has two distinct kinds of

lowest-order terms: horizontal arrows and vertical arrows. We call the basis

{ξi} horizontally simplified (respectively vertically simplified) if every ele-

ment U jξi is the tail of at most one horizontal (respectively vertical) ar-

row and the head of at most one horizontal (respectively vertical) arrow. It

is reasonably straightforward to verify that a horizontally simplified basis

(respectively a vertically simplified basis) always exists; see [27, Proposi-

tion 11.52].

Abusing notation, we will say there is a length � horizontal arrow from

ξi to ξj if there is a horizontal arrow from ξi to U �ξj .

We can invert U , giving a complex U−1CFK−(K) = F2[U,U
−1] ⊗F2[U ]

CFK−(K). (This complex is also denoted CFK∞(K) in the literature.)

It still makes sense to talk about horizontal and vertical arrows on

U−1CFK−(K). The homology of U−1CFK−(K) with respect to the hor-

izontal (respectively vertical) differentials on U−1CFK−(K) is F2[U,U
−1].

If the basis {ξi} is horizontally (respectively vertically) simplified then this

means there is a single generator η0 (respectively ξ0) over F2[U,U
−1] with

no horizontal (vertical) arrows into or out of it (in U−1CFK−(K)).
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Example 5.3. Continuing with Example 5.1, we draw the complex

gCFK−(H) as

In particular:

• This basis is reduced and both horizontally and vertically simplified.

• There is a length 1 horizontal arrow from c to b and a length 1 vertical

arrow from a to b.

• The element η0 is a. The element ξ0 is c.

Knot Floer homology has been computed extensively. It is determined by

the Alexander polynomial for torus knots [48]; it is determined by the Alexan-

der polynomial and the signature for alternating knots [42]; and it has an

efficient combinatorial description for knots whose doubly-pointed Heegaard

diagram can be drawn on the torus (so that the relevant holomorphic disks

are in the torus, rather than some higher symmetric product) [10]. Finally,

it admits a purely combinatorial description using grid diagrams [38, 39],

which is amenable to computations by computer [2] or via a cube of resolu-

tions [52, 53].

5.2. From ĈFK to ĈFD : Statement and Example

For convenience, we recall our notation for the torus algebra, from For-

mula (2.1). It is given by:

A
(

T 2,0
)

= ι0•
ρ1

ρ3

•ι1ρ2 /(ρ2ρ1 = ρ3ρ2 = 0).

We have named ρ12 = ρ1ρ2, ρ23 = ρ2ρ3 and ρ123 = ρ1ρ2ρ3, so {ι0, ι1, ρ1, ρ2, ρ3,
ρ12, ρ23, ρ123} is an F2-basis for A(T 2,0).
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Theorem 5.4 [27, Theorem A.11]. Let K ⊂ S3 be a knot and let CFK−(K)

be a reduced model for the knot Floer complex of K. Suppose CFK−(K) has

a basis {ξi} which is both horizontally and vertically simplified.

Fix an integer n, and let Y = S3 \ nbd(K) with framing n. We will de-

scribe ĈFD(Y ).

The submodule ι0ĈFD(Y ) has one generator for each basis element ξi.

The submodule ι1ĈFD(Y ) has basis elements coming from the horizontal

and vertical arrows in CFK−(K). Specifically, for each length � vertical ar-

row from ξi to ξj here are � basis elements κij1 , . . . , κ
ij
� for ι1ĈFD(Y ); and

for each length � horizontal arrow from ξi to ξj there are � basis elements

λij
1 , . . . , λ

ij
� for ι1ĈFD(Y ). Finally, there are m = |2τ(K) − n| more basis

elements μ1, . . . , μm for ι1ĈFD(Y ).

The differential on ĈFD(Y ) is given as follows. From the vertical arrows

we get differentials

ξi
ρ1−→ κij1

ρ23←− · · · ρ23←− κijk
ρ23←− κijk+1

ρ23←− · · · ρ23←− κij�
ρ123←− ξj .

From the horizontal arrows we get differentials

ξi
ρ3−→ λij

1
ρ23−→ · · · ρ23−→ λij

k

ρ23−→ λij
k+1

ρ23−→ · · · ρ23−→ λij
�

ρ2−→ ξj .

Finally, we have the unstable chain:

• If n < 2τ the unstable chain has the form

ξ0
ρ1−→ μ1

ρ23←− μ2
ρ23←− · · · ρ23←− μm

ρ3←− η0.

• If n > 2τ the unstable chain has the form

ξ0
ρ123−→ μ1

ρ23−→ μ2 · · ·
ρ23−→ μm

ρ2−→ η0.

• If n= 2τ the unstable chain has the form

ξ0
ρ12−→ η0.

It is fairly straightforward to remove the condition that there be a basis

which is both horizontally and vertically simplified: one simply works with

two bases, one horizontally simplified and one vertically simplified, and keeps

track of the transition matrix. See [27, Theorem A.11]. There is also a basis-

free version of Theorem 5.4; see [27, Theorem 11.35].
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The proof of Theorem 5.4 has two parts. The first part is showing that

the theorem holds for large negative surgery coefficients. The argument is

somewhat similar to techniques in [11, 44, 51, 56], but is still quite involved.

The second part is deducing the result for general surgery coefficients. This

is done by changing the framing one step at a time, using the bimodules from

Exercise 3.6 (or their type DA analogues).

Example 5.5. Continuing with the trefoil example, recall that the trefoil

K has τ(K) =−1. (Compare Exercise 5.1.) The basis {a, b, c} is horizontally

and vertically simplified. So, ĈFD of S3 \K with framing 1, say, is given by

5.3. Studying Satellites

Suppose that H1 is a bordered Heegaard diagram for S3 \nbd(K) with the 0-

framing of the boundary. Let H2 be a bordered Heegaard diagram for D2×S1

with the ∞-framing. Place an extra basepoint w in H2, and let H′
2 denote the

result. Then H1 ∪∂ H′
2 is a doubly-pointed Heegaard diagram representing a

knot L in S3.

Construction 5.6. Fix a doubly-pointed bordered Heegaard diagram H=

(Σ,αa,αc,β, z,w) for D2 × S1. Consider the knot P in D
2 × S1 determined

as follows. Connect the basepoints z and w in H by an arc γ in Σ \ (αa∪αc)

and an arc η in Σ \ β. Viewing Σ as Σ × {1/2} inside Σ × [0,1] ⊂ Y (H)

(Construction 2.6), let γ′ be the result of pushing the interior of γ slightly into

Σ × [0,1/2) and let η′ be the result of pushing the interior of η slightly into

Σ × (1/2,1]. Then let P = γ′ ∪ η′. We will say that H induces (D2 × S1, P ).

Lemma 5.7. With notation as above, suppose that H′
2 induces (D2×S1, P ).

Then L is the satellite knot with companion K ⊂ S3 and pattern P ⊂D
2×S1.
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Fig. 18. Heegaard diagram for the (2,1)-cabling operation. This is a doubly-pointed
Heegaard diagram for the (2,1) cable (of the unknot), thought of as a knot in the solid

torus. The basepoint z lies in the region marked with a 0. This picture is adapted
from [27, Figure 11.14]

The proof is left as Exercise 5.7.

Example 5.8. Figure 18 shows a doubly-pointed bordered Heegaard dia-

gram inducing the (2,1)-cabling operation.

Given a doubly-pointed bordered Heegaard diagramH, let CFD−(H, z,w)

denote F2[U ]⊗F2
ĈFD(H) with differential given by

∂(x) =
∑

y∈S(H)
n≥0

(ρ1,...,ρn)
B|ind(B,ρ1,...,ρn)=1

(

#MB(x,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)U
nw(B)y.

That is, we count curves as before except that we weight the curves which

cross w n times by Un.

Corollary 5.9. With notation as above,

gCFK−(L)∼=Mor
(

ĈFD(−H1),CFD
−(H2, z,w)

)

.

By Theorem 5.4, ĈFD(H1) is determined by CFK−(K). Thus, if we can

compute CFD−(H2, z,w) we obtain a formula for the knot Floer homology

gCFK−(L) in terms of CFK−(K) (for arbitrary K).

Example 5.10. In [27, Section 11.9] we use these techniques to compute

the (2,−3) cable of the left-handed trefoil. However, the computation there

uses the type A invariant of the pattern. In the spirit of continuing to avoid



Notes on Bordered Floer Homology 337

ĈFA, we give a similar computation using the Mor version of the pairing

theorem.

Let H2 denote the doubly-pointed bordered Heegaard diagram shown in

Figure 18. The module CFD−(H2, z,w) has generators x, y1 and y2 with

ι1x= x ι0y1 = y1 ι0y2 = y2.

The differentials are given by

∂(x) = U2ρ23x

∂(y1) = Uy2 + ρ1x

∂(y2) = Uρ123x.

By Theorem 5.4, the invariant ĈFD(Y ) of the 2-framed left-handed tre-

foil complement Y is given by

ĈFD(Y ) =

a

κ

b λ c.

ρ1

ρ123

ρ3ρ2

ρ12

As in Corollary 5.9, Mor(ĈFD(Y ),CFD−(H2, z,w)) is gCFK− of some

cable of the left-handed trefoil. Computing this morphism space, a basis over

F2[U ] is given by:

a �→ y1 a �→ ρ12y1 a �→ y2 a �→ ρ12y2

a �→ ρ1x a �→ ρ3x a �→ ρ123x

b �→ y1 b �→ ρ12y1 b �→ y2 b �→ ρ12y2

b �→ ρ1x b �→ ρ3x b �→ ρ123x

c �→ y1 c �→ ρ12y1 c �→ y2 c �→ ρ12y2

c �→ ρ1x c �→ ρ3x c �→ ρ123x

λ �→ x λ �→ ρ23x λ �→ ρ2y1 λ �→ ρ2y2

κ �→ x κ �→ ρ23x κ �→ ρ2y1 κ �→ ρ2y2.

(Nobody said this was quick. The complex is smaller if one uses

ĈFA(H2, z,w).) The differentials are shown in Figure 19. Cancelling as many
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Fig. 19. The complex from Example 5.10

Fig. 20. Result of cancelling differentials in Figure 19

differentials not involving U as possible gives Figure 20. In particular, the

homology gHFK−(K) is given by F2[U ]⊕ (F2[U ]/U2)⊕ F2; and ĤFK (K) is

given by F
5
2.

In some sense, this strategy works in general:

Lemma 5.11. Given any pattern P in D
2 × S1 there is a doubly-pointed

Heegaard diagram inducing P .

The proof is left as Exercise 5.8.
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Corollary 5.12. Let P be a knot in D
2 × S1. Given a knot K in S3

let KP denote the satellite of K with pattern P . Then CFK−(K) deter-

mines gCFK−(KP ) in the following sense: if K1 and K2 are knots with

CFK−(K1)∼=CFK−(K2) then gCFK−(KP
1 )

∼= gCFK−(KP
2 ).

Remark 5.13. The diagram H′
2 specifies more than just a knot in D

2×S1;

see Exercise 5.10. Probably the best way to think of H′
2 is as representing a

bordered-sutured manifold (in the sense of [64]).

5.4. Exercises

Exercise 5.1. For K the trefoil and the figure eight, compute the F2[U ]

module structure onH∗(gCFK
−(K)), using the descriptions of the complexes

given in Examples 5.1 and 5.2 respectively. Use this to compute τ(K) for

these knots.

Exercise 5.2. Find a basis for CFK−(K) when K is the figure eight knot

which is both horizontally and vertically simplified.

Exercise 5.3. Let Y be the complement of the unknot in S3. Compute

ĈFD(Y ) in two ways:

(1) Using Theorem 5.4.

(2) Directly from a bordered Heegaard diagram.

(This exercise is courtesy of J. Hom.)

Exercise 5.4. Using Theorem 5.4, write down ĈFD of the trefoil comple-

ment with framings 1 and −2.

Exercise 5.5. Figure 3 gives a bordered Heegaard diagram for the trefoil

complement. Compute ĈFD of that diagram directly, and compare the an-

swer with that given by Theorem 5.4. (This is a fairly challenging computa-

tion, after which you are guaranteed to appreciated Theorem 5.4.)

Exercise 5.6. Verify that the modules ĈFD(Y ) given by Theorem 5.4 sat-

isfy ∂2 = 0.

Exercise 5.7. Prove Lemma 5.7.
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Exercise 5.8. Prove Lemma 5.11.

Exercise 5.9. Use the bimodules of Exercise 3.6 to show that if Theorem 5.4

holds for surgery coefficient n then it holds for surgery coefficient n±1. (This

is somewhat messy.)

Exercise 5.10. Find doubly-pointed bordered Heegaard diagrams H, H′

for D2 × S1 so that:

• The singly-pointed Heegaard diagrams obtained from H, H′ by forget-

ting the w basepoint both specify the same framing for D2 × S1.

• The diagrams H and H′ represent the same satellite operation in the

sense of Construction 5.6.

• The invariants CFD−(H, z,w) and CFD−(H′, z′,w′) are not homotopy

equivalent.

In particular, it is not true that any two diagrams representing the same

pattern P are related by a sequence of Heegaard moves in the complement

of the basepoints.

Exercise 5.11. We computed gCFK− of some cable of the trefoil in Exam-

ple 5.10. Which one?

6. Computing with Bordered Floer Homology II:

Factoring Mapping Classes

The goal of this lecture is to discuss an algorithm, coming from bor-

dered Floer homology, for computing the invariant ̂HF (Y ) for any closed

3-manifold Y . This is not the first algorithm for computing ̂HF (Y ), which is

due to Sarkar-Wang [58]; but it is independent of the Sarkar-Wang algorithm

and conceptually fairly satisfying.

6.1. Overview of the Algorithm

Fix a closed 3-manifold Y and a Heegaard splitting

Y =H1 ∪ψ H2
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Fig. 21. The pointed matched circles Z0
k . The cases k = 1, k = 2 and k = 3 are shown

for Y . That is, H1 and H2 are handlebodies of some genus k and ψ : ∂H1 →
∂H2 is an orientation-reversing homeomorphism.

Without loss of generality, we can assume that each Hi is a particular

standard bordered handlebody (Hk, φ0 : F (Z0
k)→ ∂Hk). Here, Z0

k is a partic-

ular pointed matched circle—we will take it to be the k-fold connect sum of

the genus 1 pointed matched circle (i.e., the split matching); see Figure 21.

Then the map ψ is specified by a map ˜ψ = φ0 ◦ψ ◦φ−1
0 : F (Z0

k)→ F (Z0
k). To

specify Y up to homeomorphism we need only specify ψ up to isotopy; so,

it is natural to view ˜ψ as an element of the mapping class group of F (Z0
k).

Up to isotopy, we can assume that ˜ψ fixes the preferred disk in F (Z0
k), and

regard it as an element of the mapping class group of F ◦(Z0
k). (Of course,

the lift to the strongly based mapping class group depends on a choice.)

Let M
˜ψ
denote the mapping cylinder of ˜ψ, as in Example 2.13. Then by

the relevant pairing theorems, Corollary 2.22 and Theorem 2.23, we have

̂CF (Y )�Mor
(

ĈFD(Hk, φ0),Mor
(

ĈFDD(−M
˜ψ
), ĈFD(Hk, φ0)

))

.

So, we have “reduced” the problem to computing the invariants of (Hk, φ0)

and M
˜ψ
.

This is not yet useful: there are about as many mapping classes as 3-

manifolds. On the other hand, the mapping classes form a group. Suppose

that ψ1, . . . , ψN are generators for the mapping class group of F ◦(Z0
k) as

a monoid—that is, we include inverses in our list of generators. Then we

can write ˜ψ = ψin ◦ · · · ◦ ψi1 for some sequence of generators ψi1 , . . . , ψin ∈
{ψ1, . . . , ψN}. Repeatedly using Theorem 2.23, we have

̂CF (Y )�Mor
(

ĈFD(−Hk, φ0),Mor
(

ĈFDD(−Mψin
),Mor

(

· · ·

. . . ,Mor
(

ĈFDD(−Mψi1
), ĈFD(Hk, φ0)

)

. . .
)))

.

Now we really have reduced the problem: we only need to compute the in-

variants ĈFD(Hk, φ0) and ĈFDD(Mψi
) for our preferred set of generators

ψ1, . . . , ψN .
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Fig. 22. Arc-slides. Two examples of arc-slides connecting pointed matched circles for
genus 2 surfaces. In both cases, the foot b1 is sliding over the matched pair C = {c1, c2}

(indicated by the darker dotted matching) at c1. This figure is [31, Figure 2]

6.1.1. Arc-Slides as Generators of the Mapping Class Groupoid.

Generalizing the mapping class group to a groupoid leads to a particularly

convenient set of generators.

Definition 6.1. The genus k mapping class groupoid is the category whose

objects are the pointed matched circles representing genus g surfaces, and

with Hom(Z1,Z2) the set of isotopy classes of strongly-based homeomor-

phisms F (Z1)→ F (Z2).

In particular, Aut(Z) = Hom(Z,Z) is the strongly-based mapping class

group.

Definition 6.2. Let Z be a pointed matched circle, and fix two matched

pairs C = {c1, c2} and B = {b1, b2} in Z . Suppose moreover that b1 and c1 are

adjacent, in the sense that there is an arc σ connecting b1 and c1 which does

not contain the basepoint z or any other point pi ∈ a. Then we can form

a new pointed matched circle Z ′ which agrees everywhere with Z , except

that b1 is replaced by a new distinguished point b′1, which now is adjacent

to c2 and b′1 is positioned so that the orientation on the arc from b1 to c1
is opposite to the orientation of the arc from b′1 to c2. In this case, we say

that Z ′ and Z differ by an arc-slide of b1 over c1. (See Figure 22 for two

examples.)

In this situation, there is a canonical element in Hom(Z,Z ′), which we

refer to as the arc-slide diffeomorphism; see Figure 23.

The diagrams in Figure 22 are shorthand for bordered Heegaard dia-

grams for the mapping cylinders of the arc-slides. Such a bordered Heegaard

diagram for the second arc-slide in Figure 22 is given in Figure 24.
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Fig. 23. The local case of an arc-slide diffeomorphism. Left: a pair of pants with boundary
components labeled P , Q, and R, and two distinguished curves B and C. Right: another
pair of pants with boundary components P ′, Q′, R′ and distinguished curves B′ and C.
The arc-slide diffeomorphism carries B to the dotted curve on the right, the curve labeled
C on the left to the curve labeled C on the right, and boundary components P , Q, and R
to P ′, Q′ and R′ respectively. This diffeomorphism can be extended to a diffeomorphism
between surfaces associated to pointed matched circles: in such a surface there are further
handles attached along the four dark intervals; however, our diffeomorphism carries the

four dark intervals on the left to the four dark intervals on the right and hence extends to
a diffeomorphism as stated. (This is only one of several possible configurations of B and

C: they could also be nested or linked.) This figure is [31, Figure 3]

Fig. 24. Heegaard diagram for an arc-slide. This diagram corresponds to the schematic
on the right of Figure 22

Lemma 6.3. The arc-slides generate the mapping class groupoid.

A proof can be found in [3]. It is perhaps a more familiar fact that the

mapping class group is generated by some finite, preferred set of Dehn twists;

see for example [13]. Lemma 6.3 can be deduced from this more familiar fact

by explicitly factoring that particular collection of Dehn twists into arcslides

(see Example 6.4).
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Fig. 25. Factoring a Dehn twist into arc-slides. Left: a genus 2 surface specified by a
pointed matched circle, and a curve γ (drawn in thick green) in it. Right: a sequence of

arc-slides whose composition is a Dehn twist around γ. This is [31, Figure 7]

Example 6.4. Figure 25 shows a factorization of a (particular) Dehn twist

as a product of arc-slides.

So, two steps remain to compute ̂CF :

• Compute ĈFD(Hk) for some Heegaard diagram Hk representing the

genus k handlebody.

• Compute ĈFDD(Mψ) for any arc-slide ψ.

We give these computations in Sections 6.2 and 6.4, respectively. (As a warm-

up before computing the invariant of arc-slides we compute the type DD

module associated to the identity cobordism.)

Remark 6.5. The relations among the arc-slides are also relatively easy to

state; see [3].

6.2. The Invariant of a Particular Handlebody

Let Z1 denote the (unique) pointed matched circle for the torus, and let Zk

denote the k-fold connect sum of Z1 with itself, i.e., the genus k split pointed

matched circle. Label the marked points in Zk as a1, . . . , a4k. So, in Zk the

matched pairs are {a4i−3, a4i−1} and {a4i, a4i−2}.

The 0-framed solid torus H1 = (H1, φ1
0) is the solid torus with bound-

ary −F (Z1) in which the handle determined by {a1, a3} bounds a disk. Let

φ1
0 denote the preferred diffeomorphism −F (Z1)→ ∂H1. The 0-framed han-

dlebody of genus k Hk = (Hk, φk
0) is a boundary connect sum of k copies

of H1. Our conventions are illustrated by the bordered Heegaard diagram in

Figure 26.
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Fig. 26. Heegaard diagram for the 0-framed genus two handlebody. The lighter
(respectively darker) shaded pair of circles indicates a handle attached to the diagram.

This is [31, Figure 5]

Proposition 6.6. Let s = {a4i−3, a4i−1}ki=1. The module ĈFD(Hk) is gen-

erated over the algebra by a single element x with I(s)x= x, and is equipped

with the differential determined by

∂(x) =

k
∑

i=1

a(ξi)x,

where ξi is the arc in Zk connecting a4i−3 and a4i−1.

Proof. This is a simple computation from the definitions. Note that the

domains of holomorphic curves contributing to the differential on ĈFD(Hk)

must be connected. It follows that the curves appearing here are simply copies

of the curves occurring in the differential on ĈFD(H1). These, in turn, were

already studied in Section 3.4. �

6.3. The DD Identity

Let I denote the identity arced cobordism of F (Z). As a warm-up to com-

puting the bimodules associated to arc-slides we compute the bimodule

ĈFDD(I). The standard bordered Heegaard diagram H(I) for the identity
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Fig. 27. Heegaard diagram for the identity map. This is a Heegaard diagram for the
identity cobordism of the genus two surface with antipodal matching, as indicated by the
arcs to the left of the diagram. To the left and the right of the diagram, we have also

indicated a pair of complementary idempotents, along with its unique extension into the
diagram as a generator for the complex. This figure is [31, Figure 13]

cobordism (for a particular choice of Z) is illustrated in Figure 27. Inspecting

the diagram, one has two immediate observations:

(1) Recall that indecomposable idempotents of A(Z) correspond to sub-

sets of the matched pairs in Z . There is an obvious bijection be-

tween matched pairs in Z and matched pairs in −Z . With respect

to this bijection, the generators of ĈFDD(I) correspond one-to-one

with pairs of indecomposable idempotents I(s)⊗I(t) ∈A(Z)⊗A(−Z)

with s ∩ t = ∅. We call such pairs complementary idempotents. (The

set of complementary idempotents is also in bijection with the set of

idempotents of A(Z), of course.)

Given a pair of complementary idempotents I ⊗ I ′ let xI,I′ denote

the corresponding generator of ĈFDD(I).

(2) Any domain in H(I) has the same multiplicities at the two bound-

aries of H(I). Any basic element of A(Z) has an associated support

in H1(Z \ {z},a); let [ξ] denote the support of ξ. It follows that if

(ξ⊗ ξ′)⊗xJ,J ′ occurs in ∂(xI,I′) then [ξ] = [ξ′] (in the obvious sense).

Formalizing the above, let the diagonal subalgebra of A(Z) ⊗ A(−Z)

denote the subalgebra with basis
{

(I · ξ · J)⊗
(

I ′ · ξ′ · J ′) | [ξ] = [ξ′],
(

I, I ′
)

complementary,
(

J,J ′) complementary
}

.
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Proposition 6.7. The diagonal subalgebra has a Z-grading gr with the

following properties:

(1) The grading gr respects the differential algebra structure, i.e., for ho-

mogeneous elements a and b, gr(ab) = gr(a) + gr(b) and gr(d(a)) =

gr(a)− 1.

(2) The differential on ĈFDD(I) is homogeneous of degree −1 with respect

to gr.

(3) The standard basis elements for the diagonal subalgebra are homoge-

neous with respect to gr.

(4) If a ∈A is homogeneous then gr(a)≤ 0.

(5) If gr(a) = 0 then a is an idempotent.

(6) If gr(a) =−1 then a is a linear combination of chords, i.e., elements

of the form a(ρ)⊗ a′(ρ) where ρ is a single chord in Z . (Here, a′(ρ)

denotes the element of A(−Z) associated to the chord ρ.)

Sketch of proof. There are at least two ways to go about this proof.

One is to show that any element of the diagonal algebra can be factored

as a product of chords, and the length of the factorization is unique. (This

is the approach taken in [31, Section 3].) Another approach is to observe

that there is a dg algebra with properties (1) and (2) associated to any type

DD bimodule (or type D module); we call this the coefficient algebra [31,

Sections 2.3.4 and 2.4.3]. In the case of ĈFDD(I), the coefficient algebra is

exactly the diagonal subalgebra. Verifying the remaining properties above is

then a fairly simple computation. (This is the approach taken for arc-slide

bimodules in [31, Section 4].) �

Corollary 6.8. If (a⊗ b)⊗ xJ,J ′ occurs in ∂(xI,I′) then a⊗ b is a linear

combination of chords a(ρi)⊗ a(ρ′i).

Let Chord(Z) denote the set of all chords for Z .

Theorem 6.9. As a bimodule, ĈFDD(I) is given by

ĈFDD(I) =
⊕

(I⊗I′) complementary

(

A(Z) · I
)

⊗F2

(

A(−Z) · I ′
)

⊗ xI,I′ .



348 R. Lipshitz et al.

Fig. 28. Illustration of the inductive step in the proof of Theorem 6.9. We want to show

the term on the left occurs in ∂ on ĈFDD(I). The term on the far right occurs in ∂2, by
induction on the length of the chords involved. The only other contribution to ∂2 which
could cancel it is the differential of the term on the left. (The differential of the term on

the left also has other terms, not shown)

The differential of xI,I′ is given by

∂(xI,I′) =
∑

(J,J ′)

∑

ρ∈Chord(Z)

[(

I · a(ρ) · J
)

⊗
(

I ′ · a′(ρ) · J ′)]⊗ xJ,J ′ .

In other word, every term permitted by Corollary 6.8 to occur in ∂(xI,I′) does

occur.

Sketch of proof. All that remains is to show that every term of the form

[(I · a(ρ) · J)⊗ (I ′ · a′(ρ) · J ′)]⊗ xJ,J ′ does occur in ∂xI,I′ . The argument is

by induction on the support to ρ. The base case is when ρ has length 1.

In this case, the corresponding domain in H(I) is a hexagon, so it follows

from the Riemann mapping theorem that there is a holomorphic representa-

tive.

The rest of the induction argument is illustrated in Figure 28. In words,

suppose ρ has length bigger than 1, and suppose there is a position a ∈ a so

that:

• a lies in the interior of ρ and

• the matched pair containing a is in the idempotent I .

Let ρ1 be the chord from the start of ρ to the point a and let ρ2 be the

chord from a to the end of ρ. By induction, ∂2(xI,I′) contains a term of the

form [(I · a(ρ2)a(ρ1)J) ⊗ (I ′ · a′(ρ) · J ′)] ⊗ xJ,J ′ ; this term comes from the
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sequence

xI,I′
∂−→

[(

I · a(ρ2)
)

⊗
(

I ′ · a′(ρ2)
)]

⊗ xK,K′

∂−→
[(

I · a(ρ2)a(ρ1)
)

⊗
(

I ′ · a′(ρ2)a′(ρ1)
)]

⊗ xJ,J ′

=
[(

I · a(ρ2)a(ρ1)
)

⊗
(

I ′ · a′(ρ)
)]

⊗ xJ,J ′ .

The only term in ∂2(xI,I′) which could cancel this one is [(I · ∂a(ρ) · J) ⊗
(I · a′(ρ) · J ′)]⊗ xJ,J ′ . Thus, since ∂2 = 0, the term [(I · a(ρ) · J)⊗ (I · a′(ρ) ·
J ′)]⊗ xJ,J ′ must occur in ∂(xI,I′).

If there is a position a in the interior of ρ occupied in the idempotent

I ′ then a similar argument, with the left and right sides reversed, gives the

result. The only other case is that of length three chords in which both of

the interior positions are matched to the endpoints. We call such chords

special length 3 chords in [31]. There are various ways to handle this case.

A somewhat indirect argument is given in the proof of [31, Theorem 1]. One

can also prove the result in this case by a direct computation, as in the proof

of [29, Proposition 10.1]. �

Remark 6.10. The bimodule ĈFDD(I) exhibits a kind of duality between

the algebras A(Z) and A(−Z), called Koszul duality. See, for instance, [32,

Section 8].

6.4. Underslides

To explain the bimodule ĈFDD associated to an arc-slide we first divide

the arc-slides into two classes: underslides and overslides. Specifically, with

notation as in Definition 6.2, Z \C has two connected components. One of

these components contains the basepoint z; call that component Zz . Then

an arc-slide is an overslide if b1 ∈ Zz , and is an underslide if b1 
∈ Zz . So, in

Figure 22, the example on the left is an overslide while the example on the

right is an underslide.

It turns out that the bimodules for underslides are a little simpler, so we

will focus on this case, referring the reader to [31, Section 4.5] for the overslide

case. So, let ψ : Z → Z ′ be an underslide and Mψ the associated mapping

cylinder. To describe ĈFDD(Mψ) we need two more pieces of terminology:

Definition 6.11. There is an obvious bijection between matched pairs of Z
(i.e., 1-handles of F (Z)) and matched pairs of Z ′ (i.e., 1-handles of F (Z)).
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Fig. 29. Near-chords for under-slides

With notation as in Definition 6.2, a pair of indecomposable idempotents

I(s)⊗ I(s′) ∈A(Z)⊗A(−Z ′) are called near-complementary if either:

• s is complementary to s′ or

• s ∩ t consists of the matched pair of the feet of C, while s ∪ t contains

all the matched pairs except for the pair of feet of B.

Definition 6.12. A near-chord for the underslide ψ is an algebra element

of the form a(ξ)⊗ a′(ξ′) where ξ (respectively ξ′) is a collection of chords in

Z (respectively −Z ′) of one of the forms (U-1)–(U-6) shown in Figure 29.

Let NChord(ψ) denote the set of near-chords for ψ.

(See [31, Definition 4.17] for a more detailed description of the types

(U-1)–(U-6) of near-chords.)

Theorem 6.13. The bimodule ĈFDD(Mψ) has one generator xI,I′ for each

near-complementary pair of idempotents I⊗ I ′; and xI,I′ = (I⊗ I ′) ·xI,I′ . (In

other words, as a module ĈFDD(Mψ)∼=
⊕

I⊗I′ near complementary(A(Z) · I)⊗
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(A(−Z ′) · I ′).) The differential on ĈFDD(Mψ) is given by

∂(xI,I′)

=
∑

(J,J ′)
near-complementary

∑

(ξ,ξ′)∈NChord(ψ)

[(

I · a(ξ) · J
)

⊗
(

I ′ · a′
(

ξ′
)

· J ′)]⊗ xJ,J ′ .

Sketch of proof. The proof is similar to, though more involved than, the

proof of Theorem 6.9. There is an analogue of the diagonal algebra, called

the near-diagonal algebra, admitting a Z-grading satisfying analogous prop-

erties to Proposition 6.7. In particular, the near-chords are exactly the basic

elements in grading −1. So, it only remains to show that every near-chord

occurs in the differential. This follows from an inductive argument similar to

the proof of Theorem 6.9. For short near-chords—near chords of type (U-2)

and minimal-length near-chords of types (U-1) and (U-4)—it follows from

the Riemann mapping theorem that the chords occur in the differential. The

existence of other near-chords follows by a (somewhat complicated) induction

on the support, using only the fact that ∂2 = 0. �

We do not discuss the case of overslides, which are more complicated

than underslides. At the heart of the complication is the fact that, for over-

slides, the coefficient algebra contains non-idempotent elements in grading 0

(whereas in the underslide case, all non-idempotent elements have negative

grading). While in the underslide case, every element in grading −1 appears

as a coefficient in the differential, in the overslide case which grading −1 ele-

ments appear depends on a choice. Nonetheless, the index zero elements can

be used to induce maps between bimodules associated to the various choices,

and a somewhat weaker analogue of Theorem 6.13 holds: the overslide bimod-

ule can be computed explicitly after some combinatorial choices are made,

and the homotopy type of the answer is independent of those combinatorial

choices. The interested reader is referred to [32, Proposition 4.35].

6.5. Exercises

Exercise 6.1. Verify the type DD bimodule for the identity cobordism of

the torus given in Exercise 3.4 agrees with the answer given by Theorem 6.9.

Exercise 6.2. Verify that the bimodules from Exercise 3.6 agree with the

bimodules given by Theorem 6.13. (Note that one can view each of these

Dehn twists as an underslide.)
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Exercise 6.3. Extend the algorithm above to compute ĈFD(Y ) for any

bordered 3-manifold Y .
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