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Contact Invariants in Floer Homology

GORDANA MATIĆ

1. Heegaard Floer Homology—A Very Quick

Introduction

In a pair of seminal papers [24, 25] Peter Ozsváth and Zoltan Szabó defined

a collection of homology groups they named Heegaard-Floer homologies. To

define these groups, they first associate to a 3-manifold M a Heegaard dia-

gram, use it to define a chain complex, and then show that the associated

homology groups do not depend on choices made.

A Heegaard decomposition of a 3-manifold is a decomposition M =H1 ∪
H2 into two handlebodies with Σg = ∂H1 =−∂H2 =H1∩H2. We can define a

genus g handlebody as a 3-manifold obtained by gluing g “handles”D2× [0,1]

to B3 by attaching D2× 0 and D2× 1 along disjoint pairs of discs in S2 and

smoothing. Every 3-manifold has a Heegaard decomposition. The easiest way

to “visualize” one is to take a triangulation of M and take the neighborhood

of the 1-skeleton as H1 and the complement as H2, It is clear that H1 is

a handlebody—if we take a maximal tree T in the 1-skeleton and cut the

neighborhood along the discs perpendicular to the edges not in T , we have

a ball. The complement is a neighborhood of the dual 1-skeleton, so is a

handlebody by the same argument.

Another way to obtain a Heegaard decomposition is to look at Morse

functions on M . Assume that a Morse function f :M → [0,3] is self-indexing,

i.e. that it has critical points of index i at critical values i= 0, . . . ,3. When

there are g critical points of index 1 and 2, the mid-level surface Σ = f−1(3/2)
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Fig. 1. Self-indexing Morse function f :M → [0,3] with critical points of index 1 and
their ascending discs in red, and critical points of index 2 and their descending discs in

blue tracing the Heegaard diagram on Σ = f−1( 3
2
)

has genus g. The descending discs Dpi
of the index 2 critical points {pi|i=

1, . . . , g} and the ascending discs Dqi of the index 1 critical points {qi|i =
1, . . . , g} cut the handlebodies H1 = f−1[3/2,3] and H2 = f−1[0,3/2] into

3-balls (see Figure 1).

Collections of their boundary curves {αi|αi = ∂Dpi
} (correspondingly

{βi|βi = ∂Dqi}) cut the Heegaard surface Σg into a 2g-times punctured

sphere. The Heegaard diagram (Σ,{αi},{βi}) determines M—it can be ob-

tained from Σ × [−1,1] by gluing compressing discs along αi × {−1} and

along βi × {1}, thickening the discs and then finally gluing in two copies

of B3. It is a theorem of Reidemeister and Singer [28, 31] that any two Hee-

gaard diagrams for the same 3-manifold can be related to each other by three

moves: (1) stabilization, in which genus of Σ is increased by adding a one

handle and a pair of dual curves α0, β0 is added to {αi}, {βi} (and destabi-

lization), (2) isotopy of multicurves {αi}, {βi} and (3) handle slides, where

{α1, α2, . . .} is replaced by {α1 + α2, α2 . . .}.

Heegaard Floer homology is a variant of Lagrangian Floer homology

applied to the two Lagrangian submanifolds Tα = α1 × · · · × αg and Tβ =

β1 × · · · × βg in the singular symplectic manifold Symg(Σg), the symmetric

product of g copies of Σg. In [24, 25] Ozsváth and Szabó define several

versions of this invariant. To describe the simplest of them, ĤF (M) with Z/2

coefficients, we define the chain group ̂CF (Σ,α,β) = SpanZ/2{x|x ∈ Tα∩Tβ}
to be the free Z/2-module generated by the points x= (x1, . . . , xg) in Tα∩Tβ .

Note that such a g-tuple x= (x1, . . . , xg) contains one point on each αi and

one point on each βi curve.
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Grading and the boundary maps are defined by considering pseudoholo-

morphic discs in Symg(Σg) with boundary on Tα and Tβ . More precisely, we

look at maps φ from the unit disc D2 ⊂ C to Symg(Σ) that map −i �→ x,

i �→ y, S1∩{Re z ≥ 0} to Tα and S1∩{Re z ≤ 0} to Tβ . We denote the set of

homotopy classes of such maps by π2(x,y). With a generic choice of almost

complex structure on Symg(Σg), the space of pseudoholomorphic discs in

the homotopy class of φ ∈ π2(x,y) is a smooth manifold M(φ). These spaces

carry a free R action by translation. To see this translation action we think

of a biholomorphism between D2 \ {i,−i} and [−1,1]×R taking ±i to ±∞
and translate in the R direction. The dimension of the space M(φ) of holo-

morphic maps in the homotopy class of φ is calculated via the Maslov index

μ(φ), which defines a relative grading on ̂CF (Σ,α,β). When the dimension

of M(φ) is one, compactness arguments give finiteness of ̂Mφ =M(φ)/R,

and we define the boundary operator on ̂CF (Σ,α,β) by counting (mod 2)

the number of points in the 0-dimensional space ̂Mφ. If we fix a marked point

z in the complement of the α and β curves, the function nz(φ) on π2(x,y) is

given by the intersection number of φ(D2) with z×Symg−1(Σ). If the image

of φ misses z × Symg−1(Σ) then nz(φ) = 0. The differential

∂x=
∑

y

∑

φ∈π2(x,y)
μ(φ)=1,nz(φ)=0

#(̂Mφ)y

has grading −1 and satisfies ∂ ◦ ∂ = 0.

To understand better what we are summing over, note that the map

φ :D2 → Symg(Σ) corresponds to a map ˜φ : ˜D→Σ from a g-fold branched

cover ˜D of D2 to Σ (branching is over the preimage of the intersection of

φ(D2) with the diagonal in Symg(Σ)). The two marked points i and −i on

the boundary of D2 lift to 2g marked points on the boundary of ˜D, and

under ˜φ these are mapped in alternating fashion to the coordinates xi and yi
of x and y. The segments on the boundary of ˜D between these 2g points are

mapped in alternating fashion to segments on α and β curves connecting xi
and yj . The image of the map ˜φ is a union of domains Di in the complement

of the α and β curves in Σ, and the Maslov index can be computed from

this picture according to a combinatorial formula of Lipshitz [20]. Analysis

of the moduli spaces corresponding to Maslov index 2 maps shows that the

boundary map satisfies ∂2 = 0. The resulting homology is shown in [24] to be

independent of the choice of a marked Heegaard diagram (Σ,αi, βi, z) for M ,

and therefore an invariant of the 3-manifold M .

Given a marked point z, each intersection point x = (x1, . . . , xg) in

Tα ∩ Tβ defines a spinc structure s(x) on the 3-manifold M determined by
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Fig. 2. A bigon and a rectangular domain

the Heegaard diagram. If there is a topological disc from x= (x1, . . . , xg) to

y = (y1, . . . , yg) with boundary contained in the union of two tori Tα and

Tβ the two spinc structures s(x) and s(y) agree. Therefore ̂CF (Σ,α,β, z)

splits as the sum of ̂CF ((Σ,α,β, z), s) and, as is clear from the definition, the

boundary map preserves this splitting. Hence the complex, and the homology

of the complex as well, split according to spinc structures:

̂HF (M) =
∑

s∈Spinc(M)

̂HF (M, s)

Other versions of Heegaard Floer homology, HF∞ and HF+, are defined by

considering the free Z/2[U,U−1] or Z/2[U ] modules, respectively, generated

by points in Tα ∩ Tβ and counting also the pseudoholomorphic curves that

cross the marked point z in the differential, by recording nz(φ):

∂x=
∑

y

∑

φ∈π2(x,y)
μ(φ)=1

#(̂Mφ)U
nz(φ)y

Defining orientations on the moduli spaces ̂Mφ makes it possible to count

the number of points in the 0-dimensional moduli spaces ̂Mφ/R with sign in

order to work over Z.

It is highly nontrivial to count the number of points in the moduli spaces
̂Mφ for a general φ, as that count depends on the choice of almost complex

structure on Symg(Σ). However, if the image of ˜φ is a topological disc con-

necting two intersection points x= (x1, x2, x3 . . . xg) and y= (y1, x2, x3 . . . xg)

that differ in just one coordinate, called a bigon domain (see Figure 2), or be-

tween two intersection points x= (x1, x2, x3 . . . xg) and y = (y1, y2, x3 . . . xg)

that differ in exactly two coordinates, called a rectangular domain (and con-

stant maps on other components of the cover), there is a unique holomorphic

disc in that homotopy class.

This makes it possible to have a combinatorial calculation of the chain

complex and the homology. Sarkar and Wang [30] described a method to
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Fig. 3. A neighborhood of the binding in an open book decomposition

produce “nice Heegaard diagrams”, i.e. diagrams for which all but one dis-

tinguished domain are bigons and rectangles and when the base point z

is placed in that distinguished domain, the count involved in calculating
̂HF (M) becomes combinatorial. There are other combinatorial approaches

to calculating the Heegaard Floer homology and a variant associated to a

knot K ⊂M , the knot Floer homology H̃FK(M,K), notably the gird dia-

grams and convenient diagrams ([22, 27] and many other sources).

2. Open Book Decompositions, Contact Structures and

Convex Surfaces

Let S be a surface with boundary and let Aut(S,∂S) = {h ∈Diff(S,∂S)|h|∂S =

id}. Moding S× [0,1] out by the equivalence relation (x,1)∼h (h(x),0) pro-

duces a manifold M(S,h) with a torus boundary component for each compo-

nent of ∂S. Moding out the boundary by further identifying (x, t)∼h (x, t
′)

for all t, t′ ∈ [0,1] and x ∈ ∂S reduces each torus boundary component to a

knot in a closed 3 manifold M(S,h) = S × [0,1]/ ∼h (Figure 3). Denote by

B(S,h) ⊂M(S,h) the image of ∂S × [0,1] under the quotient projection. The

complement of a small neighborhood of B(S,h) in M(S,h) is diffeomorphic to

M(S,h) and fibers over S1 = [0,1]/0∼ 1. The link B(S,h) is called the binding

of the open book and the image of each S×{t} under the quotient projection

is a page. The projection π : Int(S)× [0,1]/∼h→ [0,1]/0∼1 induces a bundle

structure on the complement of the binding with the preimage of a point in

t ∈ S1 = [0,1]/0∼1 being the interior of the page St.

An open book decomposition for a 3-manifold M with page S, binding B

and monodromy h ∈Aut(S,∂S) is a projection p :M \B → S1 and a home-

omorphism Φ : (M,B)→ (M(S,h),B(S,h)) that commutes with projections p
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and π. We say in this case that (S,h) is a formal open book decomposition

for (M,B,p).

It is a theorem of Alexander that every 3-manifold has an open book de-

composition. Different open book decompositions of the same manifold are

related by sequences of positive/negative stabilizations, where stabilization

changes S by adding a 1-handle to S and changes h by composing it with

a positive/negative Dehn twist about a curve γ dual to the handle. More

precisely, we attach a handle H = [0,1]× [−ε, ε] to S along {0,1}× [−ε, ε] to

obtain S′ and let h ∪ id be extension of h by identity on [0,1]× [−ε, ε]. Let

γ be any simple closed curve in S′ that intersects the co-core 1/2× [−ε, ε] of

the handle H once, and let Rγ (R−1
γ ) be the right (left) handed Dehn twist.

If h′ =R±1
γ ◦ (h∪ id) we say that (S′, h′) is a positive (negative) stabilization

of (S,h). It is not hard to see that if (S′, h′) is a positive (negative) stabiliza-

tion of (S,h), and (S,h) is a formal open book decomposition of (M,B,p),

then (S′, h′) gives a formal open book decomposition of (M,B′, p′) where the
binding B′ is obtained by a Murasugi sum along γ of the binding B with a

positive (negative) Hopf link. For a nice description see [29].

Open book decompositions of 3-manifolds are intimately related to con-

tact topology. A contact structure ξ on a 3-manifold M is a 2-plane filed

which is the kernel of a nondegenerate 1-form α, the contact form. (Nonde-

generacy means that α ∧ dα = d vol .) The contact structure ξ is said to be

supported by the open book decomposition (M,B,p) if:

1. B is transverse to ξ,

2. there is a contact 1-form α for which dα induces a symplectic form on

each fiber St = p−1(t) of p :M \B → S1,

3. the orientation on B given by α is the same as the boundary orientation

induced from St oriented by the symplectic structure induced by dα.

Thurston and Winkelnkemper [32] showed that any open book decomposition

(S,h) of M supports a contact structure ξ by constructing a contact form

ξ(S,h) on M(S,h) with these properties. Torisu [33] and Giroux [10] proved that

the converse is true, namely that every contact manifold is supported by (has

a compatible) open book decomposition. Giroux established the following

correspondence:

Theorem 2.1 (Giroux). Any contact structure (M,ξ) on a closed 3-

manifold M is supported by an open book decomposition (S,h). Moreover,

any two open book decompositions (S,h) and (S′, h′) which support the same
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Fig. 4. Convex surface and its characteristic foliation and dividing set

contact structure (M,ξ) are equivalent under a sequence of positive stabiliza-

tions/destabilizations.

To give an indication of how a compatible open book decomposition can

be found for a given a contact manifold (M,ξ), we need to first talk about

convex decomposition methods in contact topology. In the early 90’s Emanuel

Giroux introduced an important tool in contact topology—convex surfaces.

A vector field −→v in a contact manifold (M,ξ) is called contact if its flow

preserves ξ. A surface S ⊂M is called convex if there exists a contact vector

field −→v transverse to S. Note that a convex surface S can be transverse to

many different contact vector fields. To a convex surface S and a contact

vector field −→v transverse to S one can associate

ΓS =
{

x ∈ S|−→v (x) ∈ ξ(x)
}

its dividing set (see Figure 4). It is not hard to show that ΓS is a smooth

multicurve, and that the isotopy class of ΓS is independent of −→v .

If g( , ) is a Riemannian metric on M and we denote by −→n ξ a normal

vector field to ξ, the dividing set on a convex surface S ⊂M determined by a

contact vector field −→v (p) can be described as ΓS = {p ∈ S | g(−→v (p),−→n ξ(p)) =

0}. The dividing set Γ clearly divides the convex surface S into two regions

R+(S) and R−(S) where R+ = {p ∈ S | g(−→v (p),−→n ξ(p))≥ 0} and R− = {p ∈
S | g(−→v (p),−→n ξ(p)) ≤ 0}. It is not hard to see that, if S is a closed convex

surface in the contact manifold (M,ξ), the contact class of ξ evaluates on S

as χ(ξ)[S] = χ(R+(S))− χ(R−(S)).

A knot is Legendrian if it is everywhere tangent to contact planes. Con-

tact planes (cooriented by −→n ξ) induce, on a surface S oriented by −→v , an

oriented singular foliation F by Legendrian curves called the characteristic

foliation. The regions R± correspond to “source” and “sink” regions in this

picture. Legendrian curves of the foliation intersect the dividing set transver-

sally as in Figure 4. If a convex surface S has Legendrian boundary, then the

dividing set intersects the boundary in an even number of points 2n, and n

describes the number of twists that the contact plane makes relative to the

framing for the Legendrian boundary curve coming from the convex surface.
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Fig. 5. Standard neighborhood of a Legendrian curve at the intersection of two
perpendicular convex surfaces

Fig. 6. Smoothing of the dividing set after cutting along convex surface Σ and rounding
corners

We can decompose a contact manifold (M,ξ) by cutting it along properly

embedded convex surfaces Σ. For a gentler introduction see [12]. When (M,ξ)

is a contact manifold with boundary we assume that the boundary ∂M is

convex, and that the convex cutting surface Σ has Legendrian boundary

L= ∂Σ ⊂ S. A standard neighborhood theorem says that if L intersects the

dividing set ΓΣ geometrically 2n times, there is a neighborhood Nε(L) of L

in M and local coordinates (x, y, z) on it so that Nε(L) = {(x, y, z)|x2+ y2 <

ε,x≤ 0} in R
2 × (R/Z) (see Figure 5).

Here L lies on the z axis, the set of points with x= 0 corresponds to an

annular neighborhood of L in Σ, the set of points with y = 0 corresponds to

a neighborhood of L in S, and the contact structure ξ is given as the kernel

of α = sin(2πnz)dx + cos(2πnz)dy, n �= 0. If we choose the contact vector

fields for S and Σ to be vS = ∂
∂x and vΣ = ∂

∂y it is not hard to calculate that

the dividing sets are ΓS = {(0, y, k
2n)|0≤ k < 2n} and ΓΣ = {(x,0, 1+2k

4n )|0≤
k < 2n}.

After cutting M along Σ and rounding corners to obtain M ′, transverse

contact vector fields on the new boundary components of ∂M ′ = S′ can be

chosen to be vS = a ∂
∂x + b ∂

∂y so that they rotate between ∂
∂x and ∂

∂y . A simple
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Fig. 7. Adding a bypass

calculation shows that the new dividing set on ∂M ′ is obtained by the “turn

to the right” method illustrated in Figure 6.

Giroux and Honda showed that isotoping a convex surface S through a

contact manifold preserves the isotopy class of the dividing set except for

at finitely many levels of the isotopy. Honda described how at these levels

the product contact structure changes by adding a “bypass” to the product

structure on S × I , i.e. engulfing a “half overtwisted disc” B bounded by a

Legendrian arc α in S connecting three dividing curves (possibly not globally

different), and an Legendrian arc β along which the contact planes coincide

with the tangent planes of B. Thickening the bypass disc to B × [−ε, ε]

attached along α× [−ε, ε], looking at the dividing set and rounding to obtain

S′ we see that the change in the dividing set after adding a bypass is as

pictured in Figure 7.

To describe briefly how to find an open book compatible with a given

contact structure ξ on M we start with a triangulation of M that is fine

enough so that each 3-simplex is contained in a standard contact chart for ξ.

The 1-skeleton can then be perturbed to be Legendrian in such a way that

the relative twisting of the contact planes along the boundaries of the discs

in the 2-skeleton is such that these discs can be made convex with the given

Legendrian boundary. By adding extra pieces to the 1-skeleton to divide the

discs in the 2-skeleton in such a way that each contains exactly one arc in

its dividing set we can achieve the following:

(1) There is a handlebody decomposition of the 3-manifold into H1 =

ν(M (1)), the neighborhood of the 1-skeleton, and the complementary

handlebody H2 = ν(M̄ (1)) which is the nighbourhood of the dual 1-

skeleton.

(2) The common boundary Σ is a convex surface.

(3) The contact handlebodies H1 and H2 with convex boundary are disc

decomposable, i.e. there is a family of compressing discs with Legen-

drian boundary such that the boundary of each disc intersects the

dividing set in exactly two points.
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Fig. 8. Cutting a genus one handlebody along a convex compressing disc

Fig. 9. Gluing disc decomposable contact structures on H1 and H2

Note that the convex discs in (3) are just small discs transverse to the 1-

cells of the 1-skeleton in H1 and the 2-cells of the subdivided complex for H2.

By cutting along the compressing discs until we obtain B3, we can see that

contact handlebodies Hi are contactomorphic to product contact manifolds

R× I where R is homeomorphic to Σ+ (and Σ−), as we think of obtaining

Hi by gluing contact 1-handles onto a standard ball with convex boundary

S2 and dividing set S1. The simplest case, of a genus one surface with two

parallel longitudinal dividing curves, is shown in Figure 8.

Note that when we consider Σ as the boundary of H2 the roles of Σ+

and Σ− are reversed in comparison to what they are when we consider Σ

as the boundary of H1 (due to the change of orientation on Σ). We identify

H1 with R× [0,1/2] in such a way that Σ− corresponds to R×{0} and Σ+

corresponds to R× {1/2}, and identify H2 with R× [1/2,1] in such a way

that Σ− corresponds to R×{1/2} and Σ+ to R×{1}. Then the identification

of R×{0} and R×{1} coming form the way H1 and H2 are glued inside M

defines the monodromy map h : R→ R which realizes M as corresponding

to the open book (R,h), and the open book inside M is compatible with ξ

(see Figure 9).

We say that a contact structure ξ on a 3-manifold M is overtwisted if

there is an embedded D2 in M such that the tangent plane TPD
2 and the

contact plane ξP agree at all points P ∈ ∂D2. If ξ is not overtwisted we say

it is tight. There are familiar examples of tight contact structures. It is a
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theorem of Bennequin [4] that the standard contact structure on R
3 is tight.

Giroux showed that a product neighborhood of a convex surface is tight if

and only if it has no contractible dividing curve, or is S2 with Γ = S1.

A theorem of Eliashberg [5] says that overtwisted contact structures are

classified up to isotopy through contactomorphisms (contact isotopy) by the

homotopy class of their plane fields, i.e. two overtwisted contact structures

that are homotopic as plane fields are isotopic through a family of contact

structures. This is not true in the case of tight contact structures, which are

more closely related to the finer topology of the manifold. A central question

in contact topology on 3-manifolds is to construct, recognize and classify

tight contact structures on a given M3.

There is a rich source of tight examples; the fillable contact structures.

A contact manifold (M,ξ) is Stein fillable if there is a compact complex Stein

manifold W with convex boundary such that M = ∂W and contact planes

are complex lines in TM . (M,ξ) is strongly symplectically fillable if M is the

boundary of a symplectic manifold (W,ω) which looks like a Stein manifold

near the boundary. Finally, (M,ξ) is weakly symplectically fillable if M is

boundary of a symplectic manifold (W,ω) and ω|ξ ≥ 0. It is a theorem of

Gromov and Eliashberg that fillable contact structures are tight [7, 11].

To describe tightness in the framework of open book decompositions

we use the notion of “right-veering” homeomorphisms [13]. We say that a

homeomorphism h ∈Aut(S,∂S) is right-veering if every properly embedded

oriented arc α in S is mapped “to the right” of α as in Figure 10. For

two properly embedded arcs α and β with the same initial point α(0) =

β(0) which are isotoped rel boundary to intersect transversally in a minimal

number of points, we say that β is to the right of α if the tangent vectors

{β′(0), α′(0)} define the orientation of S.

Fig. 10. The image arc h(α) is to the right of α
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Theorem 2.2 (Honda-Kazez-Matić). A contact 3-manifold (M,ξ) is tight

if and only if all of its adapted open book decompositions have right-veering

monodromy.

Right-veering diffeomorphisms of S form a monoid Veer(S,∂S) in

Aut(S,∂S). Monodromies in the submonoid Dehn+(S,∂S) ⊂ Veer(S,∂S)

consisting of diffeomorphisms that are products of positive Dehn twists give

rise to Stein fillable structures by the work of Eliashberg [6]. That every

Stein fillable structure has a monodromy in Dehn+(S,∂S) is a theorem by

Loi-Piergallini and Akbulut-Ozbagci [1, 21]. John Baldwin [3] and Baker,

Etnyre and Van-Horn Morris [2] have shown that there are open books

for Stein fillable contact structures that are not in Dehn+(S,∂S). They

have also shown that the open book monodromies corresponding to Stein,

strongly and weekly fillable contact structures form monoids. The natural

inclusions Dehn+(S,∂S) � Stein(S,∂S) � Strong(S,∂S) � Week(S,∂S) �

Tight(S,∂S) � Veer(S,∂S) are all proper according to work of, in order,

Baker-Etnyre-VanHorn Morris and independently Wand, Ghiggini, Eliash-

berg, Ghiggini and Honda-Kazez-Matić and Goodman. However, it is not

clear that Tight(S,∂S) is a monoid, or how to describe the tightness in

terms of one open book. It is easy to show that any open book can be stabi-

lized to be right veering, hence there are right veering open books supporting

overtwisted contact structures. Even if we know that an open book has right

veering monodromy and that it is not the result of a stabilization, this does

not guarantee tightness, as first shown by Lekili [19].

3. From Open Books to Contact Invariants

Ozsváth and Szabó [26] used the one-to-one correspondence between equiv-

alence classes of open books for M under positive stabilization and isotopy

classes of contact structures on M to define an invariant c(ξ) of contact

structures that lives in the Heegaard Floer homology of −M . To do this

they associated to an open book decomposition (M,B,p) compatible with ξ

the fibered manifold M0(B) obtained by performing 0-framed surgery with

respect to the page framing on the binding B. Heegaard Floer homology for a

fibered 3-manifold is special—it is one dimensional in the spinc structure cor-

responding to the fibration. Ozsváth and Szabó defined c(ξ) to be the image

of the generator of this group under the map induced by the cobordism de-

fined by the 0-handle attachment from ̂HF (−M0(B)) to ̂HF (−M). It has the

property that c(ξ) = 0 if ξ is overtwisted, and that c(ξ) �= 0 when ξ is fillable.
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Fig. 11. The Heegaard decomposition and the diagram determined by a basis of arcs for
the page of an open book decomposition

To see a concrete generator of c(ξ) we will use the open book decom-

position to construct a Heegaard diagram in which this generator sits in a

distinguished way. An open book decomposition adapted to ξ gives rise to

a Heegaard decomposition into two handlebodies H1 = S × [0,1/2]/∼h
and

H2 = S × [1/2,1]/∼h
.

A basis of arcs for the surface with boundary S is a collection of properly

embedded arcs {ai|i= 1, . . . , r} that cuts the surface into a disc, S \ (
⋃

ai) =

D2. Given a basis of arcs we can construct the family of compressing discs

Dai
= ai× [0,1/2] for H1 which cut H1 into a ball. We perturb the ai slightly

to obtain a basis of arcs bi such that each bi intersects ai transversely at

exactly one point (positively) and consider discs Dbi = bi× [1/2,1] which are

a set of compressing discs that cut H2 down to a ball.

Taking the boundary curves of these discs αi = ∂(Dai
) and βi = ∂(Dbi)

and looking at them as curves in the separating surface Σ = S×{1/2}∪−S×
{0}= S×{1/2}∪−S×{1} (here Σ is the common boundary of H1 and H2,

and S × {1} is identified with S × {0} via the monodromy h), we obtain

a Heegaard diagram (Σ,αi, βi, z) (see Figure 11). There is a distinguished

generator x = (x1, . . . , xi, . . .) for ̂CF (Σ,αi, βi, z) that is contained in Σ =

S × {1/2} where xi = αi ∩ βi. If we choose the marked point z to lie in

Σ = S × {1/2} and outside the thin strips bounded by αi and βi curves, it

is easy to see that x is a cycle, and in fact:
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Fig. 12. The Heegaard diagram determined by a basis of arcs and the contact element
x= (x1, x2)

Theorem 3.1 [14]. The generator x = (x1, x2, . . . , xr) is a cycle in
̂CF (Σ,βi, α1, z) and its homology class is the Ozsváth-Szabó contact class,

x= c(ξ) ∈ ̂HF (−M).

In particular, for a different open book decomposition compatible with

the same contact structure ξ, we get the same class c(ξ) ∈ ̂HF (−M). Note

that we needed to switch the role of α and β curves, hence the orientation

of M in order for x to be a cycle.

From this description it is easy to see that for an overtwisted contact

structure c(ξ) = 0. Specifically, an overtwisted contact structure has a com-

patible open book decomposition and a basis of arcs such that the holon-

omy takes at least one of the arcs, we can name it α1, to the left of itself.

Then in the corresponding Heegaard diagram, there is a bigon connecting

y = (y1, x2, . . . , xr) to x = (x1, x2, . . . , xr), which gives ∂y = x, hence x = 0

in homology. When looking at the Figure 12, it might seem that α1 is in

fact mapped to the right, but that is an artifact of reversal of orientation on

−S × {0}.

Given that c(ξ) = 0 for overtwisted contact structure, and that c(ξ) �= 0

when ξ is fillable (by a theorem of Gromov and Eliashberg [7, 11]), it was a

natural question to ask whether c(ξ) �= 0 is a characterization of tightness.

Ghiggini [8] showed that there are tight contact manifolds with c(ξ) = 0. The

examples he found contain Giroux torsion, i.e. a contact embedding of T 2 ×
[0,1] =R

2/Z2× [0,1] with contact structure given by ξtor = ker(cos(2πz)dx−
sin(2πz)dy).

The question then was reformulated to ask if c(ξ) = 0 is equivalent to the

requirement that ξ contains Giroux torsion. The answer was obtained with
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the use of a contact invariant defined for contact manifolds with boundary,

the sutured contact invariant, which we will discuss in the next section. On

one hand, the invariant is used in [9] to prove that any contact manifold

containing Giroux torsion has c(ξ) = 0. On the other hand, it is used in [16]

to show that for a general surface with boundary S there are S1-invariant

contact structures on S×S1 generalizing Giroux torsion that have the prop-

erty that any contact manifold that contains them has c(ξ) = 0, and is hence

not fillable.

4. Sutured Manifolds and Partial Open Books

When a 3-manifold M has nonempty boundary, we will study contact struc-

tures on M for which the boundary ∂M is a convex surface with a prescribed

dividing set Γ ⊂ ∂M dividing ∂M into R+ and R− regions. A pair (M,Γ )

of a manifold and a dividing set Γ on the boundary (which divides every

boundary component) is called a sutured manifold. Sutured manifolds were

first defined by Gabai for use in the study of foliations. When χ(R+) = χ(R−)

we call the sutured manifold (M,Γ ) balanced (Figure 13).

We say that the balanced sutured manifold (M,Γ ) carries a compatible

contact structure ξ with convex boundary if the suture Γ agrees with the

dividing set Γξ on the boundary. Recall that on a closed convex surface Σ in a

contact manifold (M,ξ) the contact class evaluates as c(ξ)[Σ] = χ(R+(Σ))−
χ(R−(Σ)). Since ∂M =Σ is zero in homology, c(ξ)[Σ] = 0 and χ(R+(Σ)) =

χ(R−(Σ)). Hence a sutured manifold that supports a contact structure with

convex boundary is balanced.

We want to define an analogue of a Heegaard diagram in the case of a

manifold with boundary, and sutured manifolds provide the right framework.

A sutured Heegaard diagram consists of a surface with boundary Σ of genus

g and two families of attaching curves {αi|i= 1, . . . , k} and {βi|i= 1, . . . , l}
with k, l ≤ g. When we attach 2-handles to Σ × [0,1] along those curves

Fig. 13. A balanced sutured manifold
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Fig. 14. A Morse function picture of a balanced sutured manifold

we will build a 3-manifold with boundary. It will have a suture Γ = ∂Σ ×
{1
2} which divides the boundary into two regions: R+ which is obtained by

compressing Σ ×{1} along αi curves (cutting open along α and filling in by

attaching pairs of discs), and R− obtained by compressing Σ ×{0} along βi
curves. On the 3-manifold with boundary we obtain this way there is clearly

a Morse function picture, analogous to the closed case, that has the centers

of the attached 2-handles as critical points (see Figure 14). Note that in the

case of a closed manifold and a classical Heegaard diagram of genus g and α

and β curves cutting it to a 2g times punctured sphere, adding 2-handles to

the Heegaard surface along the α and β curves produces first a manifold with

two S2 boundary components to which, in the end, we add two 3-handles.

A way to build a closed manifold from the sutured manifold is to attach

enough handles until we obtain a union of sutured spheres on the boundary,

one for each of the boundary components of the Heegaard surface, and then

add 3-balls. It is easy to see that in the sutured Heegaard diagram where

k = l, i.e. when we attach the same number of compressing discs to Σ ×{1}
as to Σ × {0}, the sutured manifold we build is balanced.

Andras Juhasz [17] defined Sutured Floer Homology for a balanced su-

tured manifold in analogy to the Heegaard Floer Homology ̂HF . As is done

in the case of a closed manifold, he associated to a balanced Heegaard dia-

gram (Σ,αi, βi) a chain complex generated by the intersection points of the

two tori Tα = α1 × · · · × αk and Tβ = β1 × · · · × βk in Symk(Σ) and defined

the boundary operator by counting holomorphic disc. The role played by the

base-point z in the closed case is played by the boundary ∂Σ, namely we

consider only domains that do not go out to the boundary. The homology

of this complex is denoted by SFH (M,Γ ) and Juhasz proved it does not

depend on the choice of the sutured Heegaard diagram for (M,Γ ).
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Fig. 15. Gluing to obtain a partial open book

We want to associate to a contact structure ξ with convex boundary

supported by (M,Γ ) an element in the Sutured Heegaard Floer homol-

ogy SFH (−M,−Γ ). The change of orientation is parallel to the fact that

contact invariant in the closed case lives in ̂HF (−M). In order to define

c(ξ) ∈ SFH (−M,−Γ ), we first need to define an analogue of open book de-

compositions for manifolds with sutured boundary.

Definition 4.1. A partial open book (S,P,h) consists of the following data:

a compact, oriented surface S with nonempty boundary, and a “partial”

monodromy map h : P → S defined on a subset P ⊂ S such that ∂P ∩∂S �= 0

and h|∂P∩∂S = id .

To obtain a sutured manifold associated to a partial open book de-

composition (S,P,h) define an equivalence relation ∼h on S × [0,1] by set-

ting (x,1) ∼h (h(x),0) for x ∈ P , and (x, t) ∼h (x, t′) for t, t′ ∈ [0,1] x ∈ ∂S

(see Figure 15). It is not difficult to see that the glued-up space can be

smoothed out to a manifold with boundary, where R+ = (S \ P )× {1} and

R− = (S \ h(P ))× {0} and the dividing set is Γ = ∂(S \ int P ).

To motivate this definition let us think about the construction of the

open book compatible with a contact structure ξ in the closed case that

we described in Section 2. We will adapt this construction to the case of

balanced sutured (M,Γ ). We again take a cell decomposition of M by cells

small enough so that the contact structure on them is standard, make the

1-skeleton Legendrian and 2-cells convex (keeping the boundary fixed), and

this time consider a Legendrian 1-complex L that consists of the portion of

the Legendrian 1-skeleton that is in the interior of the manifold together with

enough of the Legendrian 1-simplices that come out and meet the boundary

in points on the dividing set to meet every component of it in at least 2

points. If we take the cell decomposition to be fine enough, we can ensure that

the neighborhood of L is a disc-decomposable contact handlebody H2 with
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Fig. 16. Neighborhood of the Legendrian skeleton L near the boundary

convex boundary, and that its complement H1 is also a disc-decomposable

handlebody [15].

The boundary of H2 = ν(L) consists of a “tube region” P and some

discs that are part of the boundary and intersect the dividing set Γ in one

segment each (see Figure 16). The tube P is divided by its dividing set

into two regions P± and the boundary of the complement H1 consists of

S+ =R+ ∪P+ and S− =R− ∪P− (we are being a bit sloppy and identifying

R± with R± \ ∂(ν(L)). The choice of a fine enough decomposition ensures

that the two contact handlebodies H1 and H2 are disc-decomposable and we

can identify H1 = S × [0,1/2] and H2 = P × [1/2,1], where S = R+ ∪ P+ =

R− ∪P− (see Figure 17). For simplicity of notation we ignore in this picture

the fact that in the product handlebodies we mod out by (x, t)∼ (x, t′) to get

to the real disc decomposable handlebody picture. By looking at the gluing

of H2 to H1 inside M we see that we can think of M as obtained first by

gluing along P− to obtain the glued up S × [0,1/2] ∪P×{1/2} P × [1/2,1] as

homeomorphic to S× [0,1], and of the final gluing along P+ as gluing by the

partial monodromy (after we identify S × [0,1/2] ∪P×{1/2} P × [1/2,1] with

S × [0,1] in an obvious way).

We now want to associate a sutured Heegaard diagram to this decom-

position. Define a basis of arcs in P to be a collection {ai|i = 1, . . . , k} of

disjoint properly embedded arcs in P with boundary on ∂P ∩ ∂S such that

S \
⋃

{ai}i=1,...,k deformation retracts onto R+ = S − P . In our example in

Figures 17 and 18, the basis consists of just one arc a1. Let bi, i= 1, . . . , k, be

pushoffs of ai in the direction of ∂S so that ai and bi intersect exactly once

at a point xi. It is not hard to see that if we set Σ = (S × {0})∪ (P × {1
2}),
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Fig. 17. The partial open book and the handlebody decomposition

Fig. 18. The partial open book and the Heegaard diagram

αi = ∂(ai× [0, 12 ]) and βi = (bi×{1
2})∪ (h(bi)×{0}), then (Σ,β,α) is a Hee-

gaard diagram for (−M,−Γ ). See Figure 19.

We can again look at the special generator x = (x1, . . . , xi, . . .) for

SFH (Σ,β,α) and, as in the case of the closed manifold, x = [(x1, . . . , xk)]

is a cycle. It is shown in [15] that it defines a contact invariant.

Fig. 19. The Heegaard diagram determined by a basis of arcs a1 and the contact element
x= (x1)
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Fig. 20. A partial open book decomposition and a Heegaard diagram for a neighborhood
of an overtwisted disc

Theorem 4.2. The point x= [(x1, . . . , xk)] is independent of choices up to

±1 and generates the sutured contact invariant c(ξ) ∈ SFH (−M,−Γ ).

A concrete example we will look at here is a partial open book decompo-

sition for a neighborhood of an overtwisted disc. The corresponding sutured

manifold is (B3, Γ ) with the dividing set consisting of 3 parallel curves. It is

enough to take just one segment connecting two nonadjacent components of

the dividing set for the Legendrian 1-complex L, to get the complement to

be a disc-decomposable handlebody. The segment comprising L is the core

of the cylinder in Figure 20, while P± are two halves of the cylinder, and

the basis of arcs consists of a single arc a on P . In the left-hand diagram of

Figure 20 arc a is shown on P × {1/2} ⊂ S × {1/2} (thus might more prop-

erly be denoted by a × {1/2}). Isotoping a (rel endpoints) through N(L)

where we use the homeomorphism N(L) = P × [1/2,1] produces, by the def-

inition of the monodromy h, the arc h(a)× {0} ⊂ S × {0}. Finally pushing

h(a) × {0} (rel endpoints) through the fibration M − N(L) that identifies

M − N(L) = S × [0,1/2] results in h(a) × {1/2} ⊂ S × {1/2}, and this is

denoted simply by h(a). The right side of the figure shows a and h(a) in

S = S × {1/2}.

5. Gluing Theorem for Sutured Manifolds

In [13] we work to understand the effect of cutting and gluing of contact

manifolds along convex surfaces in sutured manifolds in the context of the

contact invariant. We say that one balanced sutured manifold (M ′, Γ ′) is a

sutured submanifold of another balanced sutured manifold (M,Γ ) if M ′ is a
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submanifold with boundary of M and M ′ ⊂ int(M). A contact structure ξ

defined on M ⊂ int(M ′) is compatible with the sutured manifold structures

of M and M ′ if the dividing set of ξ on the boundary of M − int(M ′) is

Γ ∪ −Γ ′. In this section we will define a map on sutured Floer homology

induced by the inclusion of (M ′, Γ ′) into (M,Γ ) in the presence of a com-

patible contact structure in the complement. We will see how triviality of

the contact invariant on a sutured submanifold implies the triviality of the

contact invariant of the manifold itself. In the next section we will use the

gluing theorem to calculate the contact invariant in some examples, and ob-

tain some interesting obstructions to fillability. For simplicity, we can think

of all constructions as done over Z/2Z, so we do not have to worry about the

sign ambiguity.

If a connected component N of M \ int(M ′) contains no components of

∂M we say that N is isolated. When M \ int(M ′) has no isolated components

we have the following:

Theorem 5.1 [13]. Let (M ′, Γ ′) be a sutured submanifold of (M,Γ ), and let

ξ be a compatible contact structure on M \ int(M ′). Assume that M− int(M ′)

has no isolated components. Then ξ induces a natural map:

Φξ : SFH
(

−M ′,−Γ ′)→ SFH (−M,−Γ )

Moreover, if ξ′ is any contact structure on M ′ compatible with Γ ′ then

Φξ

(

c
(

M ′, Γ ′, ξ′
))

= c
(

M,Γ, ξ′ ∪ ξ
)

where ξ′ ∪ ξ is a contact structure on M that restricts to ξ on M \ int(M ′)

and to ξ′ on M ′.

There is a more complicated statement in the case of existence of isolated

components which involves considering multi-pointed Heegaard diagrams and

tensoring with ̂HF (S1 × S2), see [13].

Brief description of Φξ. To define this map we have to carefully extend a

sutured Heegaard diagram for (M ′, Γ ′) to a diagram for (M,Γ ). For details

of this construction look at [13]. Here is just a very quick idea. We use, in an

essential way, the contact structure ξ on M \ int(M ′) compatible with the

sutures Γ and Γ ′ to define the map. We start from a Heegaard surface for M ′.

If we are given ξ′ on M ′ take (Σ′, β′, α′) to be defined by a partial open book

compatible with ξ′. If we are not given a ξ′, let (Σ′, β′, α′) be a Heegaard
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diagram arising from a partial open book decomposition of some contact

structure ζ which has dividing set Γ ′ on ∂M ′. We would like to join this

Heegaard diagram to one generated by ξ on M \ int(M ′). However, that is in

general not precise enough, as it does not provide enough compressing discs

for the union. To connect the two sides, we need to start with N , a contact

product neigbourhood of ∂M ′ in M \ int(M ′), and let M ′′ =M \ int(M ′∪N).

We carefully choose a Heegaard surface ΣN which is compatible with the

[0,1]-invariant contact structure ξ|N , as well as a basis of arcs {aNi } for it. We

then extend ΣN to a Heegaard surface ΣM ′′ and denote a basis of arcs on the

union extending {aNi } in a way necessary to obtain sutured Heegaard diagram

for (M \ intM ′, Γ ∪Γ ′) by {α′′
i }. This needs to be done in a way compatible

with ξ∪ζ, i.e. so that after {a′′i } and their perturbations {b′′i } are chosen, and

we look at boundaries {α′′
i } and {β′′

i } of corresponding compressing discs,

the special point x′′ = (. . . ,x′′
i , . . . ), consisting of x′′i = a′′i ∩ b′′i , is the contact

class of ξ ∪ ζ. After gluing we get a Heegaard diagram for (M,Γ ) by taking

α= α′ ∪ α′′ and β′ = β′ ∪ β′′. We then define

Φξ :CF
(

Σ′, β′, α′)→CF
(

Σ,β′ ∪ β′′, α′ ∪ α′′),

y �→
(

y,x′′). �
Above theorem has as an immediate consequence:

Theorem 5.2 [13]. Let i : (M ′, Γ ′, ξ′)→ (M,Γ, ξ) be an inclusion such that

ξ|M ′ = ξ′. If c(M,Γ, ξ) �= 0, then c(M ′, Γ ′, ξ′) �= 0.

Juhász [17] showed that we can recover the Heegaard Floer Homology of a

closed manifold M by calculating the sutured Floer homology of the manifold

with sutured boundary (M \B3, Γ ) obtained by removing a solid ball B3 from

M and letting the suture Γ be S1 ⊂ S2 on the boundary S2 = ∂(M \B3).

This isomorphism is one to one on generators when we consider the sutured

Heegaard diagram on M \B3 and the corresponding Heegaard diagram on M

obtained by closing the Heegaard surface by adding a disc along its boundary

and making its center a marked point. This isomorphism takes in a natural

way the sutured contact invariant of (M \B3, S1) to the contact invariant of

the closed manifold. Since fillable structures have nonzero contact invariants

we have:

Theorem 5.3 [13]. If c(M,Γ, ξ) = 0, then (M,Γ, ξ) does not embed into any

fillable contact structure.
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It is clear from the construction, as we had remarked after defining the

contact invariant generator in the closed case, that an arc that is taken

to the left by the monodromy produces a holomorphic disc that kills the

contact invariant. The partial open book we constructed in Figure 20 shows

that c(ξ) = 0 for the sutured manifold which is the neighborhood of the

overtwisted disc (there is a disc from y to x making ∂y = x). From this,

coupled with the embedding theorem, we see another proof that c(ξ) = 0 for

any overtwisted contact structure.

6. A TQFT Aspect of c(ξ) and Fillability Obstructions

In this section we study S1 invariant contact structures ξ on Σ × S1, such

that Σ × {t} is convex surface with Legendrian boundary, and for all the

components of ∂Σ there is twisting of ξ with respect to the framing deter-

mined by Σ. These contact structures are classified by their dividing sets Γξ

which are properly embedded multicurves (disjoint union of curves and arcs)

that intersect every component of the boundary of Σ in an even number of

points, and divide Σ and hence ∂Σ into positive and negative regions. We

say that a properly embedded multicurve K ⊂Σ is isolating if Σ \K con-

tains a component that does not intersect ∂Σ (see Figure 21). Examples of

contact structures with c(M,Γ, ξ) = 0 can now be obtained quite easily from:

Theorem 6.1 [13]. Let ξK be the S1 invariant contact structures on Σ×S1,

such that Σ ×{t} is convex with dividing set ΓΣ =K. If K is isolating then

c(Σ × S1, ξK) = 0.

To prove this theorem we use some TQFT-like properties of contact in-

variants for S1 invariant contact structures on Σ×S1. Consider a “bordered”

Fig. 21. An isolating dividing set on a punctured torus
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surface with boundary (Σ,F ), i.e. a surface Σ with a finite subset F ⊂ ∂Σ

consisting of 2n points that divide the boundary γ = ∂Σ into alternating pos-

itive and negative regions γ±, with γ \F = γ− � γ+. We say that a union K

of closed curves and properly embedded arcs in Σ with ∂K = F is a dividing

set on (Σ,F ), or that K divides Σ, if Σ \K is a disjoint union of positive and

negative regions R±, and ∂R± =K ∪ γ±. Denote by D(Σ,F ) the family of

all dividing sets for (Σ,F ). We will use Sutured Floer Homology and sutured

contact invariants to define a map that assigns a vector space V (Σ,F ) to

each (Σ,F ) and an element in that vector space to each K ∈ D(Σ,F ) with

following TQFT-like properties:

1. If Σ is connected, then

V (Σ,F ) = F
2 ⊗ · · · ⊗ F

2,

where F= Z/2Z, the number of copies of F2 is r = n−χ(Σ), and F
2 =

F ⊕ F is a graded F-module whose first summand has grading 1 and

the second summand has grading −1. If (Σ,F ) is the disjoint union of

(Σ1, F1) and (Σ2, F2), then

V (Σ1 �Σ2, F1 � F2)� V (Σ1, F1)⊗ V (Σ2, F2).

2. To each K ∈D(Σ,F ) it assigns c(K) ∈ V (Σ,F ). If K has a homotopi-

cally trivial closed component, then c(K) = 0.

3. Given (Σ,F ), possibly disconnected, let δ, δ′ ⊂ ∂Σ be mutually disjoint

submanifolds of ∂Σ, such that their endpoints do not lie in F , and let

τ be a diffeomorphism τ : δ
∼→ δ′ which identifies δ ∩ F

∼→ δ′ ∩ F and

preserves the ± labeling and reverses the orientation on δ, δ′ inherited
from ∂Σ. Denote by (Σ′, F ′) the result of identifying γ and γ′ via τ .

For every K ∈D(Σ,F ) denote by K the dividing set obtained from K

by gluing K|γ and K|γ′ . Then there exists a map

Φτ : V (Σ,F )→ V
(

Σ′, F ′),

which satisfies

c(K) �→ c(K).

Figure 22 shows the case when Σ is a union of disjoint surfaces Σ′′ and Σ′′′,
and hence Σ′ is obtained by gluing Σ′′ and Σ′′′.

To define this assignment for every (Σ,F,γ±), we first perturb F by mov-

ing it slightly in the direction opposite to the one defined by the orientation
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Fig. 22. Gluing (Σ′′,K′′) and (Σ′′′,K′′′)

on γ = ∂Σ to obtain F 0, and shifting γ± in the same way to obtain γ0±.
We then consider the sutured 3-manifold (Σ × S1, Γ ) where Γ = F 0 × S1

and R± = γ0± × S1. Denote by V (Σ,F ) the sutured Floer homology of

(−Σ × S1,−Γ ). A dividing set K ∈D(Σ,F ) defines an S1-invariant contact

structure ξK on (Σ × S1, Γ ), and hence the corresponding contact invariant

c(K) = c(ξ) ∈ V (Σ,F ). We use F 0 instead of F since the two convex surfaces

Σ×{t} and ∂(Σ×S1) are transverse, so the two dividing sets have to mark

“interlocking points” along the Legendrian intersection curve, i.e. points in

F 0 = Γ ∩ ∂Σ must lie between the endpoints F of K (see Figure 5).

To prove that V (Σ,F ) = F
2⊗· · ·⊗F

2 with appropriate number of factors,

we first need to calculate SFH (D2 × S1, Γ2) for a solid torus with dividing

set Γ2 made up of 4 longitudinal curves. It is shown in [13, Section 5, Ex-

ample 3] that the result is SFH (D2 × S1, Γ2) = F
2 = F(1) ⊕ F(−1). There are

exactly two S1 invariant contact structures compatible with these sutures,

each determined by one of the two dividing sets on D2 consisting of two arcs,

and each generating one of the F(±1). We cut the surface Σ repeatedly by

properly embedded arcs that connect + and − regions of ∂Σ until we get a

disc. Every time we do a cut, each of the two new arcs in the boundary that

correspond to the cut gets one marked point in F , thus each cut adds two

points to the boundary, increasing n by one. A tensor product formula by

Juhász [18, Proposition 8.10] that holds for splitting sutured manifolds along

product annuli applies. The annulus here is product of a cutting arc with S1.

The number of summands, r = n−χ(Σ) corresponds to the number of discs,

each with 4 marked points on the boundary, that Σ is finally cut into, and

the F
2 factor corresponds to the contribution of each such disc to SFH.

If K has a homotopically trivial closed component, then ξK is overtwisted

and hence c(K) = 0 since we defined c(K) ∈ V (Σ,F ) to be the value of the

contact invariant for the S1-invariant contact structure ξK determined by K.
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Fig. 23. The dividing set K0 on Σ′ \Σ is given in red

Fig. 24. Dividing sets on Σ =D2 for |F |= 6

The Gluing Theorem 5.1 applied to Σ×S1 ⊂Σ′×S1 gives us the map Φτ .

We think of Σ as a subset of Σ′ as in Figure 23, where Σ = Σ′′ �Σ′′′ and
Σ′′ and Σ′′′ are identified with slightly shrunk copies inside σ′.

The contact structure on Σ′ × S1 \Σ × S1 is the S1 invariant structure

determined by the dividing set Kτ on Σ′ \Σ determined by F ′′, F ′′′ and the

identification τ .

By studying what we have in the case of Σ = D2 and |F | = 6 we

see in [16] that for dividing sets K1,K2,K3 as in Figure 24 we have that

the corresponding c(K1), c(K2), c(K3) are nonzero and distinct, and satisfy

c(K1) = c(K2) + c(K3). Note that these three configurations are related by

bypass addition. In fact, K2 is obtained by adding a bypass to the front of

K1 along an arc connecting the three dividing curves, and K3 is obtained by

adding a bypass from the back of K1 (digging a bypass).

When we combine this with the gluing theorem, we obtain the same

relationship for any three dividing sets {Ki, i = 1,2,3} related by bypass

addition on a general Σ. We will quickly argue that c(ξK) = 0 for our example

in Figure 21.

It is not hard to see that by adding and digging bypasses along the bypass

arc δ given in blue in K1 in Figure 25, we obtain dividing curves as in K2
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Fig. 25. Bypass adition in the proof of c(ξK) = 0 for an isolating dividin set

and K3. Cutting Σ along the green curve τ and looking at the dividing

sets K ′
2 and K ′

3 resulting from K2 and K3 on the resulting annulus, we see

that c(K ′
2) = c(K ′

3). Juházs’ annulus theorem says gluing along τ induces an

isomorphism, so that we get c(K2) = c(K3). This completes the proof that

c(ξK1
) = 0 since c(K1) = c(K2)+c(K3) = 0 as we are working over F= Z/2Z.

More general isolating dividing sets on surfaces of higher genus can be

dealt with by similar methods or reduced to this case, thus proving Theo-

rem 6.1. For full explanation see [16]. The fact that the contact invariant

vanishes for isolating dividing sets was proved over Z coefficients by Patrick

Massot [23].

Theorem 6.1 together with Theorem 5.3 shows that (Σ × S1, ξK) with

contact structures corresponding to an isolating K form a vast family of

universally tight contact structures that do not embed into fillable structures

and are thus generalizing Giroux torsion. Similar results were obtained by

looking at holomorphic curves and contact homology by Chris Wendl [34].
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[26] P. Ozsváth, Z. Szabó, Heegaard Floer homology and contact structures. Duke Math.
J. 129, 39–61 (2005)
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