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1. Introduction

In ’85 Gromov published his article on pseudo-holomorphic curves [17] that

made symplectic topology as we know it today only possible. Using these

techniques, Gromov presented in his initial paper many spectacular results,

and soon many other people started using these methods to settle questions

that before had been out of reach [1, 9, 10, 18, 22, 23] and many others; for

more recent results in this vein we refer to [31, 36].

While the references above rely on studying the topology of the moduli

space itself, Gromov’s J -holomorphic methods have also been used to develop

powerful algebraic theories like Floer Homology, Gromov-Witten Theory,

Symplectic Field Theory, Fukaya Theory etc. that basically rely on counting

rigid holomorphic curves (that means holomorphic curves that are isolated).

Note though that we will completely ignore such algebraic techniques in these

notes.

Gromov’s approach for studying a symplectic manifold (W,ω) consists in

choosing an auxiliary almost complex structure J on W that is compatible

with ω in a certain way. This auxiliary structure allows us to study so called

J -holomorphic curves, that means, equivalence classes of maps

u : (Σ,j)→ (W,J)
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from a Riemann surface (Σ,j) to W whose differential at every point x ∈Σ

is a (j, J)-complex map

Dux : TxΣ → Tu(x)W.

Conceivable generalizations of such a theory based on studying J -holo-

morphic surfaces or even higher dimensional J -complex manifolds only work

for integrable complex structures; otherwise generically such submanifolds

do not exist. A different approach has been developed by Donaldson [7, 8],

and consists in studying approximately holomorphic sections in a line bundle

over W . This theory yields many important results, but has a very different

flavor than the one discussed here by Gromov.

The J -holomorphic curves are relatively rare and usually come in finite

dimensional families. Technical problems aside, one tries to understand the

symplectic manifold (W,ω) by studying how these curves move through W .

Let us illustrate this strategy with the well-known example of CPn. We

know that there is exactly one complex line through any two points of CPn.

We fix a point z0 ∈CPn, and study the space of all holomorphic lines going

through z0. It follows directly that CPn\{z0} is foliated by these holomorphic

lines, and every line with z0 removed is a disk. Using that the lines are

parametrized by the corresponding complex line in Tz0CP
n that is tangent to

them, we see that the space of holomorphic lines is diffeomorphic to CPn−1,

and that CPn \ {z0} will be a disk bundle over CPn−1.

In this example, we have used an ambient manifold that we understand

rather well, CPn, to compute the topology of the space of complex lines.

So far, it might seem unclear how one could obtain information about the

topology of the space of complex lines in an ambient space that we do not

understand equally well, to then extract in a second step missing information

about the ambient manifold.

The common strategy is to assume that the almost complex manifold

we want to study already contains a family of holomorphic curves. We then

observe how this family evolves, hoping that it will eventually “fill up” the

entire symplectic manifold (or produce other interesting effects).

To briefly sketch the type of arguments used in general, consider now

a symplectic manifold W with a compatible almost complex structure, and

suppose that it contains an open subset U diffeomorphic to a neighborhood

of CP 1 × {0} in CP 1 × C (see [22]). In this neighborhood we find a family

of holomorphic spheres CP 1 × {z} parametrized by the points z. We can
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explicitly write down the holomorphic spheres that lie completely inside U ,

but Gromov compactness tells us that as the holomorphic curves approach

the boundary of U , they cannot just cease to exist but instead there is a well

understood way in which they can degenerate, which is called bubbling. Bub-

bling means that a family of holomorphic curves decomposes in the limit into

several smaller ones. Sometimes bubbling can be controlled or even excluded

by imposing technical conditions, and in this case, the limit curve will just

be a regular holomorphic curve.

In the example we were sketching above, this means that if no bubbling

can happen, there will be regular holomorphic spheres (partially) outside U

that are obtained by pushing the given ones towards the boundary of U . This

limit curve is also part of the 2-parameter space of spheres, and thus it will

be surrounded by other holomorphic spheres of the same family. As long as

we do not have any bubbling, we can thus extend the family by pushing the

spheres to the limit and then obtain a new regular sphere, which again is

surrounded by other holomorphic spheres. This way, we can eventually show

that the whole symplectic manifold is filled up by a 2-dimensional family of

holomorphic spheres. Furthermore the holomorphic spheres do not intersect

each other (in dimension 4), and this way we obtain a 2-sphere fibration of

the symplectic manifold.

In conclusion, we obtain in this example just from the existence of the

chart U , and the conditions that exclude bubbling that the symplectic man-

ifold needs to be a 2-sphere bundle over a compact surface (the space of

spheres).

Note that many arguments in the example above (in particular the idea

that the moduli spaces foliate the ambient manifold) do not hold in general,

that means for generic almost complex structures in manifolds of dimension

more than 4. Either one needs to weaken the desired statements or find

suitable work arounds. The principle that is universal is the use of a well

understood local model in which we can detect a family of holomorphic

curves. If bubbling can be excluded, this family extends into the unknown

parts of the symplectic manifold, and can be used to understand certain

topological properties of this manifold.

These notes are based on a course that took place at the Université de

Nantes in June 2011 during the Trimester on Contact and Symplectic Topol-

ogy. We will explain how holomorphic curves can be used to study symplectic

fillings of a given contact manifold. Our main goal consists in showing that

certain contact manifolds do not admit any symplectic filling at all. Since
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closed symplectic manifolds are usually studied using closed holomorphic

curves, it is natural to study symplectic fillings by using holomorphic curves

with boundary. We will explain how the existence of so called Legendrian open

books (Lobs) and bordered Legendrian open books (bLobs) controls the behav-

ior of holomorphic disks, and what properties we can deduce from families

of such disks. The notions are direct generalizations of the overtwisted disk

[9, 17] and standardly embedded 2-spheres in a contact 3-manifold [4, 17, 18].

For completeness, we would like to mention that symplectic fillings have

also been studied successfully via punctured holomorphic curves whose be-

havior is linked to Reeb orbit dynamics, and via closed holomorphic curves by

first capping off the symplectic filling to create a closed symplectic manifold.

1.1. Outline of the Notes

In the first part of these notes we will talk about Legendrian foliations, and

in particular about Lobs and bLobs. We will not consider any holomorphic

curves here, but the main aim will be instead to illustrate examples where

these objects can be localized. In Section 3, we study the properties of holo-

morphic disks imposed by Legendrian foliations and convex boundaries. In

the last section, we use this information to understand moduli spaces of holo-

morphic disks obtained from a Lob or a bLob, and we prove some basic results

about symplectic fillings.

The content of these notes are based on an unfinished manuscript of [28].

1.2. Notation

We assume throughout a certain working knowledge on contact topology

(for a reference see for example [24, Chapter 3.4] and [12]) and on holomor-

phic curves [3, 25]. The contact structures we consider in this text are al-

ways cooriented. Remember that by choice of a coorientation, (M,ξ) always

obtains a natural orientation and its contact structure ξ carries a natural

conformal symplectic structure. For both, it suffices to choose a positive

contact form α, that means, a 1-form with ξ = kerα that evaluates posi-

tively on vectors that are positively transverse to the contact structure. The

orientation on M is then given by the volume form

α∧ dαn,
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where dimM = 2n + 1, while the conformal symplectic structure is repre-

sented by dα|ξ .

One can easily check that these notions are well-defined by choosing

any other positive contact form α′ so that there exists a smooth function

f : M →R such that α′ = efα.

Further Conventions. Note that D2 denotes in this text the closed unit

disk.

I owe it to Patrick Massot to have been converted to the following jargon.

Definition. The term regular equation can refer in this text to any of the

following objects:

(1) When Σ is a cooriented hypersurface in a manifold M , then we call

a smooth function h : M → R a regular equation for Σ, if 0 is a

regular value of h and h−1(0) =Σ.

(2) When D ≤ TM is a singular codimension 1 distribution, then we say

that a 1-form β is a regular equation for D, if D = kerβ and if

dβ �= 0 at singular points of D.

According to this definition, an equation of a contact structure is just a

contact form.

2. Lobs & bLobs: Legendrian Open Books and Bordered

Legendrian Open Books

2.1. Legendrian Foliations

2.1.1. General Facts about Legendrian Foliations. Let (M,ξ) be a

contact manifold that contains a submanifold N . Generically, if we look at

any point p ∈N the intersection between ξp and the tangent space TpN will

be a codimension 1 hyperplane. Globally though, the distribution D = ξ∩TN

may be singular, because there can be points p ∈ N where TpN ⊂ ξp, and

equally important the distribution D will only be in very rare cases a foliation.

In fact, if we choose a contact form α for ξ, then we obtain by the Frobenius

theorem that D will only be a (singular) foliation if

(α∧ dα)|TN ≡ 0.
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Another way to state this condition is to say that we have dα|Dp
= 0 at every

regular point p ∈ N of D, so that Dp has to be an isotropic subspace of

(ξp, dαp). In particular, this shows that the induced distribution D can never

be integrable if dimD > 1
2 dim ξ.

We will usually denote the distribution ξ∩TN by F whenever it is a sin-

gular foliation. Furthermore, we will call such an F a Legendrian foliation

if dimF = 1
2 dim ξ, which implies that N has to be a submanifold of dimen-

sion n+ 1 if the dimension of the ambient contact manifold is 2n+ 1. For

reasons that we will briefly sketch below, but that will be treated extensively

from Section 3 on, we will be mostly interested in submanifolds carrying such

a Legendrian foliation. Note in particular that in a contact 3-manifold every

hypersurface N carries automatically a Legendrian foliation.

Denote the set of points p ∈N where F is singular by Sing(F). One of the

basic properties of a Legendrian foliation is that for any contact form α, the

restriction dα|TN does not vanish on Sing(F), because otherwise TpN ⊂ ξp
would be an isotropic subspace of (ξp, dαp) which is impossible for dimen-

sional reasons. Since dα|TN does not vanish on Sing(F), we deduce in par-

ticular that N \ Sing(F) is a dense and open subset of N .

The main reason, why we are interested in submanifolds that

have a Legendrian foliation is that they often allow us to success-

fully use J-holomorphic curve techniques. On one side, such submani-

folds will be automatically totally real for any suitable almost complex struc-

ture on a symplectic filling, thus posing a good boundary condition for the

Cauchy-Riemann equation: The solution space of a Cauchy-Riemann equa-

tion with totally real boundary condition is often a finite dimensional smooth

manifold, so that it follows that the moduli spaces of J -holomorphic curves

whose boundaries lie in a submanifold with a Legendrian foliation will have

a nice local structure. A second important property is that the topology of

the Legendrian foliation controls the behavior of J -holomorphic curves, and

will allow us to obtain many results in contact and symplectic topology. El-

liptic codimension 2 singularities of the Legendrian foliation “emit” families

of holomorphic disks; suitable codimension 1 singularities form “walls” that

cannot be crossed by holomorphic disks.

In the rest of this section, we will state some general properties of Leg-

endrian foliations. Theorem 2.2 shows that a manifold with a Legendrian

foliation determines the germ of the contact structure on its neighborhood.

This allows us to describe small deformations of the Legendrian foliation,

and study almost complex structures more explicitly (see Section 3.2). Theo-
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Fig. 1. The singularities of a Legendrian foliation look locally like the product of Rn−1

with a foliation in the plane

rem 2.3 gives a precise characterization of the foliations that can be realized

as Legendrian ones.

2.1.2. Singular Codimension 1 Foliations. The principal aim of this

section will be to explain the following result due to Kupka [20] that tells

us that the behavior of a Legendrian foliation close to a singular point can

always be reduced to the 2-dimensional situation (see Figure 1).

Theorem 2.1. Let N be a manifold with a singular foliation F that admits

a regular equation β. Then we find around any p ∈ Sing(F) a chart with

coordinates (s, t, x1, . . . , xn−1), such that β is represented by the 1-form

a(s, t)ds+ b(s, t)dt

for smooth functions a and b.

We will call any chart of N of the form described in the theorem a

Kupka chart. Note that the foliation in a Kupka chart restricts on every

2-dimensional slice {(x1, . . . , xn−1) = const} to one that does not have any

isochore singularities (a term introduced in [15]).

Proof. From the Frobenius condition β∧dβ ≡ 0, it follows that dβ2 = 0, so

that if dimN > 2, there is a non-vanishing vector field X on a neighborhood

of p with dβ(X, ·) = 0. We can also easily see that X ∈ kerβ and LXβ = 0,

because

0 = ιX(β ∧ dβ) = β(X)dβ − β ∧ (ιXdβ) = β(X)dβ,

and dβ does not vanish on a neighborhood of p.
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Let ΦX
t be the flow of X , and choose a small hypersurface Σ transverse

to X . Using the diffeomorphism

Ψ : Σ × (−ε, ε)→N, (p, t) 
→ ΦX
t (p)

we can pull back the 1-form β to Σ × (−ε, ε) and we see it reduces to β|TΣ .

By repeating this construction the necessary number of times we obtain the

desired statement. �

2.1.3. Local Behavior of Legendrian Foliations. We state the follow-

ing two theorems without proof, and point the interested reader to [28] for

more details. The situation in Section 2.2.2 is treated in these notes in full

completeness to illustrate the flavor of the necessary methods. The first re-

sult tells us that a Legendrian foliation determines the germ of the contact

structure in its neighborhood.

Theorem 2.2. Let N be a compact manifold (possibly with boundary) and

let (M1, ξ1) and (M2, ξ2) be contact manifolds. Assume that two embeddings

ι1 : N ↪→M1 and ι2 : N ↪→M2 are given such that ξ1 and ξ2 induce on N the

same cooriented Legendrian foliation F . Then we find neighborhoods U1 ⊂M1

of ι1(N) and U2 ⊂M2 of ι2(N) together with a contactomorphism

Φ : (U1, ξ1)→ (U2, ξ2)

that preserves N , that means, Φ ◦ ι1 = ι2.

Another useful fact is the following theorem that tells us that the singular

foliations that can be realized as Legendrian ones are exactly those that admit

a regular equation (using the convention from the introduction). This result

generalizes the 3-dimensional situation [15], where this property was called

a foliation without “isochore singularities”.

Theorem 2.3. Let N be a manifold with a singular codimension-1 folia-

tion F given by a regular equation β. Then we can find an (open) cooriented

contact manifold (M,ξ) that contains N as a submanifold such that ξ induces

F as Legendrian foliation on N .
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2.2. Singularities of the Legendrian Foliation

The singular set of a Legendrian foliation F can be extremely complicated.

We will only discuss briefly a few general properties of such points, before

we specialize all considerations to two simple situations.

Let N have a singular foliation F given by a regular equation β, and

let p ∈ Sing(F) be a singular point of F . Choose a Kupka chart U with

coordinates (s, t, x1, . . . , xn−1) centered at p. In this chart β is represented by

a(s, t)ds+ b(s, t)dt

with two smooth functions a, b : U → R that only depend on the s- and t-

coordinates, and that vanish at the origin.

To understand the shape of the foliation depending on the functions a

and b, we might study trajectories of the vector field

X = b(s, t)
∂

∂s
− a(s, t)

∂

∂t

that spans the intersection of the foliation with the (s, t)-slices. Its divergence

divX = ∂b/∂s − ∂a/∂t does not vanish, since dβ �= 0. Up to a genericity

condition, we know by the Grobman-Hartman theorem that the flow of X is

C0-equivalent to the flow of its linearization (see [32]). In dimension 2, the

Grobman-Hartman theorem even yields a C1-equivalence, but this does not

suffice for our purposes. For one, we would like to stick to a smooth model

for all singularities, but in fact it even suffices for our goals to only look at

singularities whose leaves are all radial, so we will use below a more hands-on

approach.

2.2.1. Elliptic Singularities. The first type of singularities we allow

for the foliation F on N are called elliptic: In this case, the point p ∈
Sing(F) admits a Kupka chart diffeomorphic to R2 × Rn with coordinates

{(s, t, x1, . . . , xn)} in which the foliation is given as the kernel of the 1-form

sdt− t ds

that means, the leaves are just the radial rays in each (s, t)-slice.

We will always assume that the elliptic singularities of a foliation F
are closed isolated codimension 2 submanifolds S in the interior of N with

trivial normal bundle, so that the tubular neighborhood of S is diffeomor-

phic to D2
ε × S. We assume additionally that the foliation F in this model
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Fig. 2. In dimension 3 it is well-known that we can get rid of 1-dimensional singular sets
of a Legendrian foliation by slightly tilting the surface along the singular set. The picture
represents how to produce an overtwisted disk whose boundary is a regular compact leaf

of the foliation

neighborhood is given by the points with constant angular coordinate on the

D2
ε-factor.

2.2.2. Singularities of Codimension 1. Singular sets of codimension 1

are extremely ungeneric, but can be often found through explicit construc-

tions (as in Example 2.7). We will show in this section that by slightly de-

forming the foliated submanifold one can sometimes modify the foliation in

a controlled way so that the singular set turns into a regular compact leaf

(see Figure 2).

We will treat this situation in detail to illustrate what type of methods

are needed for the proofs in this section.

Lemma 2.4. Let N be a compact manifold with a singular codimension 1 fo-

liation F given by a regular equation β. Assume that the singular set Sing(F)

of the foliation contains a closed codimension 1 submanifold S ↪→N that is

cooriented.

Then we can find a tubular neighborhood of S diffeomorphic to (−ε, ε)×S

such that β pulls back to

s · ˜β,

where s denotes the coordinate on (−ε, ε), and ˜β is a non-vanishing 1-form

on S that defines a regular codimension 1 foliation on S.

Proof. Choose a coorientation for S. We first find a vector field X on a

neighborhood of S that is transverse to S and lies in the kernel of β. Study

the local situation in a Kupka chart U around a point p ∈ S with coordinates
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(s, t, x1, . . . , xn−1). Assume that β restricts to

a(s, t)ds+ b(s, t)dt,

such that S ∩U corresponds to the subset {s= 0}, and such that s increases

in direction of the chosen coorientation.

Since a and b vanish along S ∩U , we may write this form also as

sas(s, t)ds+ s bs(s, t)dt= s
(

as(s, t)ds+ bs(s, t)dt
)

with smooth functions as and bs that satisfy the conditions

as(0, t) =
∂a

∂s
(0, t) and bs(0, t) =

∂b

∂s
(0, t).

The function bs does not vanish in a small neighborhood of S∩U , because

0 �= dβ = ∂sbds ∧ dt. Choose then on the Kupka chart U the smooth vector

field

XU (s, t, x1, . . . , xn−1) = ∂s −
a(s, t)

b(s, t)
∂t = ∂s −

as(s, t)

bs(s, t)
∂t.

This field lies in F , and is positively transverse to S ∩U .

Cover the singular set S with a finite number of Kupka charts U1, . . . ,UN ,

construct vector fields XUj
according to the method described above, and

glue them together to obtain the desired vector field X by using a partition

of unity subordinate to the cover. We can use the flow of X to obtain a

tubular neighborhood of S that is diffeomorphic to (−ε, ε)×S, where {0}×S

corresponds to the submanifold S, and X corresponds to the field ∂s, where

s is the coordinate on the interval (−ε, ε), and since β(X)≡ 0, it follows that

β does not contain any ds-terms.

Let γ be the 1-form given by ιXdβ. This form does not vanish on a

neighborhood of the singular set S, because dβ �= 0 while β|TS ≡ 0, and so

we can write

0≡ ιX(β ∧ dβ) = β(X)dβ − β ∧ (ιXdβ) =−β ∧ γ.

This means that there is a smooth function F : (−ε, ε)×S →R with F |S = 0

such that β = Fγ. Furthermore, we get that

γ = ιXdβ = dF (X)γ + FιXdγ

does not vanish along S, but F does, so we obtain on S that dF (X) = 1, and

it follows that S is a regular zero level set of the function F . In fact, we can
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also easily see from

0≡ β ∧ dβ = F 2γ ∧ dγ

that γ ∧ dγ vanishes everywhere so that kerγ defines a regular foliation ˜F
that agrees with the initial foliation outside Sing(F).

Finally, we have ιXγ ≡ 0, and using a similar argument as before, we see

0≡ ιX(γ ∧ dγ) =−γ ∧ ιXdγ

so that there is a smooth function f : (−ε, ε) × S → R such that LXγ =

ιXdγ = fγ. The flow in s-direction possibly rescales the 1-form γ, but it

leaves its kernel invariant, thus the foliation ˜F is tangent to the s-direction

and s-invariant. We can hence represent ˜F on (−ε, ε)× S as the kernel of

the 1-form ˜β = γ|TS that does not depend on the s-coordinate, and does not

have any ds-terms. It follows that γ is equal to ˜Fγ|TS for a function ˜F that

restricts on S to 1.

For the initial 1-form β this means that β = (F ˜F )˜β, and F ˜F is a smooth

function and {0} × S is the (regular) level set of 0. We can redefine the

model (−ε, ε)×S by using the flow of a vector field G−1∂s with G= ∂s(F ˜F )

to achieve that β reduces on this new model to s˜β. �

Suppose from now on that the singular foliation is of the form described

in Lemma 2.4, that means, we have a closed manifold S with a regular

codimension 1 foliation FS given as the kernel of a 1-form ˜β, and N is

diffeomorphic to (−ε, ε)× S with a singular foliation F given as the kernel

of the 1-form s˜β.

Remember that a 1-form σ on S defines a section in T ∗S with the prop-

erty that σ∗λcan = σ. We may realize F as a Legendrian foliation, by embed-

ding (−ε, ε)× S into the 1-jet space (R× T ∗S,dz + λcan) via the map

(s, p) 
→ (0, s˜β).

The foliations agree, and according to Theorem 2.2 this model describes a

small neighborhood of (N,s˜β) embedded into an arbitrary contact manifold.

Assume from now on additionally that ˜β is a closed 1-form on S (by a

result of Tischler, S fibers over the circle [34]). Choose a smooth odd function

f : (−ε, ε)→ R with compact support such that the derivative f ′(0) = −1.

The section

(−ε, ε)× S ↪→R× T ∗S, (s, p) 
→
(

δf(s), s˜β
)
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describes for small δ > 0 a C∞-small deformation of N that agrees away from

S with N . The perturbed submanifold N ′ also carries a Legendrian foliation

induced by ker(ds+ λcan), because the pull-back form β′ = f ′ ds+ s˜β gives

β′ ∧ dβ′ =
(

f ′ ds+ s˜β
)

∧ (ds∧ ˜β + sd˜β) = s
(

f ′ ds+ s˜β
)

∧ d˜β = sf ′ ds∧ d˜β,

which vanishes, so that β′ satisfies the Frobenius condition. Furthermore,

since β′ itself does not vanish anywhere, it is easy to check that kerβ′ defines
a regular foliation F ′, and that {0} × S is a closed leaf of F ′.

As a conclusion, we obtain

Corollary 2.5. Let (M,ξ) be a contact manifold containing a submani-

fold N with an induced Legendrian foliation F . Assume that the singular

set of F contains a cooriented closed codimension 1-submanifold S ⊂N , and

that there is a regular foliation F that agrees outside N with F , and that

corresponds on S with a fibration over the circle. Using an arbitrary small

C∞ perturbation of N close to S, we obtain a new Legendrian foliation for

which S has become a regular closed leaf.

2.3. Examples of Legendrian Foliations

The following example relates Legendrian foliations to Lagrangian subman-

ifolds. It is not important by itself, but it may help understanding the con-

struction of the bLobs in blown down Giroux domains given in [21], and

I believe that it might pave the way to other applications.

Example 2.6. Let P be a principal circle bundle over a base manifold B,

and suppose that ξ is a contact structure on P that is transverse to the

S1-fibers and invariant under the action. It is well-known that by averaging,

we can choose an S1-invariant contact form α for ξ and that there exists

a symplectic form ω on B such that π∗ω = dα, where π is the bundle pro-

jection π : P →B. The symplectic form ω represents the image of the Euler

class e(P ) in H2(B,R), and hence P cannot be a trivial bundle (see [5]). The

manifold (PL, α) is usually called the pre-quantization of the symplectic

manifold (B,ω) (or the Boothby-Wang manifold).

Let L be a Lagrangian submanifold in (B,ω), and let PL := π−1(L) be

the fibration over L. Note first that in this situation, we have ω|TL = 0, so

that e(PL) = e(P )|L will automatically either vanish or be a torsion class.

We assume that e(PL) = 0, so that the fibration PL will be trivial, and we

can find a section σ : L→ PL.
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We have (α∧dα)|TPL
= (α∧π∗ω)|TPL

≡ 0, so that ξ induces a Legendrian

foliation F on PL. Furthermore, since the infinitesimal generator Xϕ of the

circle action satisfies α(Xϕ) ≡ 1, it follows that F is everywhere regular.

Using the section σ, we can identify PL with S1 ×L, and write α|TPL
as

dϕ+ β,

where ϕ is the coordinate on the circle and β is a closed 1-form on L. The

leaves of the foliation F are local sections, but they need not be global ones,

and usually these leaves will not even be compact. Instead the proper way

to think of them is as the horizontal lift of the flat connection 1-form α|TPL
.

Choose any loop γ ⊂ L based at a point p0 ∈ L. We want to lift γ(t) to a

path γ̃(t) = (eiϕ(t), γ(t)) in PL
∼= S1×L that is always tangent to a leaf of F ,

so that

γ̃′(t) =
(

−β
(

γ′(t)
)

, γ′(t)
)

.

In particular start and end point of γ̃ are related by the monodromy

Cγ :=−
∫

γ
β,

that means, if γ̃ starts at (eiϕ0 , p0) ∈ S1 × L, then its end point will be

(ei(ϕ0+Cγ), p0).

Note that since the connection is flat, that means, β is closed, two ho-

mologous paths from p0 to p1 will lift the end point in the same way. Thus

we have a well-defined map

H1(L,Z)→ S
1.

The leaves of the Legendrian foliation will only be compact, if the image of

this map is discrete.

Note that the embedding of H1(L,Q) → H1(L,R) is dense, and so we

find a 1-form β′ arbitrarily close to β such that the monodromy for every

loop in L will be a rational number. Clearly, we can extend δ = β′ − β to

a 1-form defined on the whole bundle P , and suppose that δ is sufficiently

small so that α′ = α + δ determines a contact structure that is isotopic to

the initial one. We may hence suppose that after a small perturbation of α

that the Legendrian foliation on PL is given by dφ+ β′.

In fact, since H1(L,Z) is finitely generated, we find a number c ∈Q such

that all possible values of the monodromy are a multiple of c, and by slightly
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perturbing α we obtain a regular Legendrian foliation on PL, with compact

leaves.

The second example gives a Legendrian foliation with a codimension 1

singular set.

Example 2.7. Let L be any smooth (n+ 1)-dimensional manifold with a

Riemannian metric g. It is well-known that the unit cotangent bundle S(T ∗L)
carries a contact structure given as the kernel of the canonical 1-form λcan.

The fibers of this bundle are Legendrian spheres, hence if we choose any

smooth regular loop γ : S1 → L, and if we study the fibers lying over this

path, we obtain the submanifold Nγ := π−1(γ) that has a singular Legendrian

foliation.

In fact, we can naturally decompose T ∗L|γ into the two subsets U+ and

U− defined as

U± =
{

ν ∈Nγ

∣

∣±ν
(

γ′
)

≥ 0
}

.

These sets correspond in each fiber of Nγ to opposite hemispheres. The sin-

gular set of the Legendrian foliation on Nγ is U+ ∩U−, and that the regular

leaves correspond to the intersection of each fiber of Nγ with the interior

of U+ and U−. In particular, if Nγ is orientable, we obtain that it can be

written as
(

S
1 × S

n, x0 dϕ
)

,

where ϕ is the coordinate on S1, and (x0, . . . , xn) are the coordinates on Sn.

Using the results of Section 2.2.2, we can perturb Nγ to a submanifold

with a regular Legendrian foliation composed of two Reeb components.

2.4. Legendrian Open Books

Even though we discussed Legendrian foliations quite generally, we will only

be interested in two special types: Legendrian open books introduced in [29]

and bordered Legendrian open books introduced in [21]. Both objects were de-

fined with the aim of generalizings results from 3-dimensional contact topol-

ogy that hold for the 2-sphere with standard foliation and the overtwisted

disk respectively [4, 9, 17, 18].

Definition. Let N be a closed manifold. An open book on N is a

pair (B,ϑ) where:
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• The binding B is a nonempty codimension 2 submanifold in the interior

of N with trivial normal bundle.

• ϑ : N \B → S1 is a fibration, which coincides in a neighborhood B×D2

of B =B × {0} with the normal angular coordinate.

Definition. If N is a compact manifold with nonempty boundary, then a

relative open book on N is a pair (B,ϑ) where:

• The binding B is a nonempty codimension 2 submanifold in the interior

of N with trivial normal bundle.

• ϑ : N \ B → S1 is a fibration whose fibers are transverse to ∂N , and

which coincides in a neighborhood B × D2 of B = B × {0} with the

normal angular coordinate.

We are interested in studying contact manifolds with submanifolds with

a Legendrian foliation that either define an open book or a relative open

book.

Definition. A closed submanifold N carrying a Legendrian foliation F in

a contact manifold (M,ξ) is a Legendrian open book (abbreviated Lob),

if N admits an open book (B,ϑ), whose fibers are the regular leaves of the

Legendrian foliation (the binding is the singular set of F).

Definition. A compact submanifold N with boundary in a contact man-

ifold (M,ξ) is called a bordered Legendrian open book (abbreviated

bLob), if N carries a Legendrian foliation F and if it has a relative open

book (B,ϑ) such that:

(i) the regular leaves of F lie in the fibers of θ,

(ii) Sing(F) = ∂N ∪B.

A contact manifold that contains a bLob is called PS-overtwisted.

Example 2.8.

(i) Every Lob in a contact 3-manifold is diffeomorphic to a 2-sphere

with the binding consisting of the north and south poles, and the

fibers being the longitudes. This special type of Lob has been stud-

ied extensively and has given several important applications, see for
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example [4, 9, 17, 18]. It is easy to find such Lobs locally, for ex-

ample, the unit sphere in R3 with the standard contact structure

ξ = ker(dz + xdy− y dx).

(ii) A bLob in a 3-dimensional contact manifold is an overtwisted disk

(with singular boundary).

(iii) In higher dimensions, the plastikstufe had been introduced as a filling

obstruction [27], but note that a plastikstufe is just a specific bLob

that is diffeomorphic to D2 ×B, where the fibration is the one of an

overtwisted disk (with singular boundary) on the D2-factor, extended

by a product with a closed manifold B. Topologically a bLob might

be much more general than the initial definition of the plastikstufe.

For example, a plastikstufe in dimension 5 is always diffeomorphic to

a solid torus D2 × S1 while a 3-manifold admits a relative open book

if and only if its boundary is a nonempty union of tori.

The importance of the previous definitions lie in the following two theo-

rems, which will be proved in Section 4.

Theorem A ([21, 27]). Let (M,ξ) be a contact manifold that contains a

bLob N , then M does not admit any semi-positive weak symplectic filling

(W,ω) for which ω|TN is exact.

The statement above is a generalization of the analogous statement found

first for the overtwisted disk in [9, 17].

Remark 2.9. A bLob obstructs always (semi-positive) strong symplectic

filling, because in that case the restriction of ω to N is exact.

Remark 2.10. In dimension 4 and 6, every symplectic manifold is auto-

matically semi-positive.

Theorem B ([29]). Let (M,ξ) be a contact manifold of dimension (2n+1)

that contains a Lob N . If M has a weak symplectic filling (W,ω) that is

symplectically aspherical, and for which ω|TN is exact, then it follows that

N represents a trivial class in Hn+1(W,Z2). If the first and second Stiefel-

Whitney classes w1(N) and w2(N) vanish, then we obtain that N must be a

trivial class in Hn+1(W,Z).

Remark 2.11. The methods from [18] can be generalized for Theorem A,

see [2], and for Theorem B, see [29], to find closed contractible Reeb orbits.
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2.5. Examples of bLobs

The most important result of these notes is the construction of non-fillable

manifolds in higher dimensions. The first such manifolds were obtained by

Presas in [33], and modifying his examples it was soon possible to show that

every contact structure can be converted into one that is PS-overtwisted [35].

This result was reproved and generalized in [11], where it was shown that

we may modify a contact structure into one that is PS-overtwisted without

changing the homotopy class of the underlying almost contact structure.

A very nice explicit construction in dimension 5 that is similar to the

3-dimensional Lutz twist was given in [26]. In [21] the construction was ex-

tended and produced examples that are not PS-overtwisted but share many

properties with 3-manifold that have positive Giroux torsion.

The following unpublished construction is due to Francisco Presas who

explained it to me during a stay in Madrid. It is probably the easiest way to

produce a closed PS-overtwisted manifolds of arbitrary dimensions.

Theorem 2.12 (Fran Presas). Let (M1, ξ1) and (M2, ξ2) be contact man-

ifolds of dimension 2n + 1 that both contain a PS-overtwisted submani-

fold (N,ξN ) of codimension 2 with trivial normal bundle. The fiber sum

of M1 and M2 along N is a PS-overtwisted (2n+ 1)-manifold.

Proof. Let αN be a contact form for ξN . The manifold N has neighbor-

hoods U1 ⊂M1 and U2 ⊂M2 that are contactomorphic to

D
2√
ε ×N

with contact structure given as the kernel of the 1-form αN + r2 dϕ [12,

Theorem 2.5.15].

We can remove the submanifold {0} × N in this model, and do a

reparametrization of the r-coordinate by s = r2 to bring the neighborhood

into the form

(0, ε)× S
1 ×N

with contact form αN +sdϕ. We extend M1 \N and M2 \N by attaching the

negative s-direction to the model collar, so that we obtain a neighborhood

(

(−ε, ε)× S
1 ×N, αN + sdϕ

)

.
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Denote these extended manifolds by (˜M1, ˜ξ1) and (˜M2, ˜ξ2), and glue them

together using the contactomorphism

(−ε, ε)× S
1 ×N → (−ε, ε)× S

1 ×N

(s,ϕ, p) 
→ (−s,−ϕ,p).

We call the contact manifold (M ′, ξ′) that we have obtained this way the

fiber sum of M1 and M2 along N .

If S is a bLob in N , then it is easy to see that {0} × S1 × S is a bLob in

the model neighborhood (−ε, ε)× S1 ×N . �

With this proposition, we can now construct non-fillable contact mani-

folds of arbitrary dimension. Every oriented 3-manifold admits an overtwisted

contact structure in every homotopy class of almost contact structures.

Let (M,ξ) be a compact manifold, let αM be a contact form for ξ. A fun-

damental result due to Emmanuel Giroux gives the existence of a compatible

open book decomposition for M [16]. Using this open book decomposition,

it is easy to find functions f, g : M →R such that

(

M ×T
2,ker(αM + f dx+ g dy)

)

is a contact structure, see [6], where (x, y) denotes the coordinates on the

2-torus. The fibers M × {z} are contact submanifold with trivial normal

bundle, so that in particular if (M,ξ) is PS-overtwisted, we can apply the

construction above to glue two copies of M ×T2 along a fiber M ×{z}. This
way, we obtain a PS-overtwisted contact structure on M ×Σ2, where Σ2 is

a genus 2 surface.

Using this process inductively, we find closed PS-overtwisted contact

manifolds of any dimension ≥ 3.

Note that in dimension 5, we can find more easily examples to which we

can apply Theorem 2.12, so that it is not necessary to rely on [6]. Let (M,ξ)

be an overtwisted 3-manifold with contact form α. After normalizing α with

respect to a Riemannian metric, it describes a section

σα : M → S
(

T ∗M
)

in the unit cotangent bundle. It satisfies the fundamental relation σ∗
αλcan = α,

hence it gives a contact embedding of (M,ξ) into (S(T ∗M),kerλcan).

For trivial normal bundle, this allows us to glue with Theorem 2.12 two

copies together and obtain a PS-overtwisted 5-manifold.
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3. Behavior of J-Holomorphic Disks Imposed by Convexity

The following section only fixes notation, and explains some well-known facts

about J -convexity. With some basic knowledge on J -holomorphic curves, one

can safely skip it and continue directly to Section 3.2, which describes the

local models around the binding and the boundary of the Lobs and bLobs and

the behavior of holomorphic disks that lie nearby. The next two sections in-

clude a description about moduli spaces and their basic properties, but most

results are only explained in an intuitive way without giving any proofs. The

fifth section deals with the Gromov compactness of the considered moduli

spaces, and the chapter finishes proving the two applications that relate a

Lob or a bLob to the topology of a symplectic filling.

3.1. Almost Complex Structures and Maximally Foliated

Submanifolds

3.1.1. Preliminaries: J-Convexity.

The Maximum Principle. One of the basic ingredients in the theory

of J -holomorphic curves with boundary is the maximum principle, which

we will now briefly describe in the special case of Riemann surfaces. We

assume in this section that (Σ,j) is a Riemann surface that does not need to

be compact and may or may not have boundary. We define the differential

operator dj that associates to every smooth function f : Σ → R a 1-form

given by
(

djf
)

(v) :=−df(jv)

for v ∈ TΣ.

Definition. We say that a function f : (Σ,j)→R is

(a) harmonic if the 2-form ddjf vanishes everywhere,

(b) it is subharmonic if the 2-form ddjf is a positive volume form with

respect to the orientation defined by (v, jv) for any non-vanishing

vector v ∈ TΣ.

(c) If f only satisfies

ddjf(v, jv)≥ 0

then we call it weakly subharmonic.
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In particular, if we choose a complex chart (U ⊂C, φ) for Σ with coordi-

nate z = x+iy, we can represent f by fU := f ◦φ−1 : U →R. The 2-form ddjf

simplifies on this chart to ddifU , because φ is holomorphic with respect to j

and i, and we can write ddifU in the form (�fU )dx∧dy, where the Laplacian

is defined as

�fU =
∂2fU
∂x2

+
∂2fU
∂y2

.

Note that fU is subharmonic, if and only if ddifU (∂x, ∂y) > 0, that means,

�fU > 0.

For strictly subharmonic functions, it is obvious that they may not have

any interior maxima, because the Hessian needs to be negative definite at any

such point. We really need to consider both weakly subharmonic functions

and the behavior at boundary points. To prove the maximum principle in

this more general setup, we use the following technical result.

Lemma 3.1. Let f : D2 ⊂C→R be a function that is C1 on the closed unit

disk, and both C2 and weakly subharmonic on the interior of the disk. Assume

that f takes its maximum at a boundary point z0 ∈ ∂D2 and is everywhere

else strictly smaller than f(z0). Choose an arbitrary vector X ∈ Tz0C at z0

pointing transversely out of D
2
.

Then the derivative LXf(z0) in X-direction needs to be strictly positive.

Proof. We will perturb f to a strictly subharmonic function making use

of the auxiliary function g : D
2 →R defined by (see Figure 3)

g(r) = r4 − 9

4
r2 +

5

4
.

The function g vanishes along the boundary ∂D2, and its derivative in

any direction v that is positively transverse to the boundary ∂D2 is strictly

negative, because ∂ϕg = 0 and because

r∂rg =
1

2
r2
(

8r2 − 9
)

.

Finally, we also see that g is strictly subharmonic on the open annulus A=

{z ∈C | 3/4< |z|< 1} as

�g =
∂2g

∂x2
+

∂2g

∂y2
= 16r2 − 9.
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Fig. 3. The function g(r) is subharmonic, vanishes on the boundary, and has negative
radial derivative

We slightly perturb f by setting fε = f + εg for small ε > 0, and we

additionally restrict fε to the closure of the annulus A. Note in particular

that fε must take its maximum on ∂A, because fε is strictly subharmonic on

the interior of A so that one of ∂2fε
∂x2 or ∂2fε

∂y2 must be strictly positive. This

contradicts existence of possible interior maximum points. The functions fε
are equal to f along the outer boundary of A so that the maximum of fε will

either lie in z0 or on the inner boundary of A.

The initial function f is by assumption strictly smaller than f(z0) on the

inner boundary of the annulus and by choosing ε sufficiently small, it follows

that the perturbed function fε will still be strictly smaller than fε(z0) =

f(z0). Thus z0 will also be the maximum of fε. Let X be a vector at z0 that

points transversely out of D
2
. The derivative LXfε at z0 cannot be strictly

negative, because z0 is a maximum, and so since

0≤LXfε = LXf + εLXg,

the derivative of f in X-direction has to be strictly positive, yielding the

desired result. �

Now we are prepared to state and prove the maximum principle.

Theorem 3.2 (Weak maximum principle). Let (Σ,j) be a connected com-

pact Riemann surface. A weakly subharmonic function f : Σ →R that attains

its maximum at an interior point z0 ∈Σ \ ∂Σ must be constant.
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Fig. 4. Constructing a disk that has a single maximum on its boundary

Proof. The proof is classical and holds in much greater generality (see for

example [14]). Nonetheless we will explain it in the special case needed by us

to show that it only uses elementary techniques. The strategy is simply to

find a closed disk in the interior of the Riemann surface with the properties

required by Lemma 3.1. Then the function f increases in radial direction

further, so that the maximum point was not really a maximum.

More precisely, assume f not to be constant, and to have a maximum at

an interior point z+ ∈Σ \∂Σ with C+ := f(z+). The subset K := f−1(C+)∩
Σ̊ is closed in Σ̊. For every point z ∈K, we find an Rz > 0 such that the

open disk DRz
(z) is contained in some complex chart. There must be a point

z0 ∈K for which the half sized disk DRz0/2
(z0) intersects Σ̊ \K, for otherwise

K would be open and hence as Σ̊ is connected, K = Σ̊.

Let p be a point in DRz0/2
(z0) \K (see Figure 4). It lies so close to z0

that the entire closed disk of radius |p− z0| lies in the chart U , and then we

can choose first a disk DR(p) centered at p, where R is the largest number

for which the open disk does not intersect f−1(C+). We are interested in

finding a closed disk that intersects f−1(C+) at a single boundary point: For

this let q be the mid point between p and one of the boundary points in

∂D2
R(p)∩ f−1(C+). The disk D2

R/2(q) touches f
−1(C+) at exactly one point.

This smaller disk satisfies the conditions of Lemma 3.1, and so it follows

that the derivative of f at the maximum is strictly positive in radial direction.

But since this point lies in the interior of Σ, it follows that f still increases

in that direction and hence this point cannot be the maximum. Of course,

the whole existence of the disk was based on the assumption that f was not

constant, so we obtain the statement of the theorem. �

If Σ has boundary, we also get the following refinement.
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Theorem 3.3 (Boundary point lemma). Let f : Σ →R be a weakly subhar-

monic function on a connected compact Riemann surface (Σ,j) with bound-

ary. Assume f takes its maximum at a point z+ ∈ ∂Σ, then f will either be

constant or the derivative at z+

LXf(z+)> 0

in any outward direction X ∈ Tz+Σ has to be strictly positive.

Proof. Denote the maximum f(z+) by C+. By the maximum principle,

Theorem 3.2, we know that f will be constant if there is a point z ∈Σ \ ∂Σ
for which f(z) = C+. We can thus assume that for all z /∈ ∂Σ, we have

f < C+. Using a chart U around the point z+, that represents an open set in

H := {z ∈C| Imz ≥ 0}, such that z+ corresponds to the origin, we can easily

find a small disk in H that touches ∂H only in 0, and hence allows us to

directly apply Lemma 3.1 to complete the proof. �

Plurisubharmonic Functions. We will now explain the connection be-

tween the previous section and contact topology.

Let (W,J) be an almost complex manifold, that means that J is a section

of the endomorphism bundle End(TM) with J2 =−1. Define the differential

dJf of a smooth function f : W →R as before by

(

dJf
)

(v) :=−df(J · v)

for any vector v ∈ TW .

Definition. We say that a function h : W →R is J-plurisubharmonic, if

the 2-form

ωh := ddJh

evaluates positively on J -complex lines, that means that ωh(v,Jv) is strictly

positive for every non-vanishing vector v ∈ TW .

If ωh vanishes, then we say that h is J-harmonic.

Remark 3.4.

(1) If h is J -plurisubharmonic, then ωh is an exact symplectic form that

tames J .
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(2) If ωh is only non-negative, then we say that h is weakly J-

plurisubharmonic. This notion might be for example interesting

in the context of confoliations.

Let (Σ,j) be a Riemann surface that does not need to be compact, and

may or may not have boundary. We say that a smooth map u : Σ →W is J-

holomorphic, if its differential commutes with the pair (j, J), that means,

at every z ∈Σ we have

J ·Du=Du · j.

Using the commutation relation, we easily check for every J -holomorphic

map u and every smooth function f : U →R the formula

(3.1) u∗dJf =−df ·J ·Du=−df ·Du · j =−d(f ◦u) · j = dj(f ◦u) = dju∗f.

Corollary 3.5. If u : (Σ,j)→ (W,J) is J-holomorphic and h : W →R is a

J-plurisubharmonic function, then h ◦ u will be weakly subharmonic, because

ddj(h ◦ u) = du∗dJh= u∗ddJh

and because the differential Du commutes with the complex structures, so

that

ddj(h ◦ u)(v, jv) = ddJh(Du · v,J ·Du · v)≥ 0

for every vector v ∈ TΣ. The function is strictly positive precisely at points

z ∈ U , where Duz does not vanish.

The maximum principle restricts severely the behavior of holomorphic

maps:

Corollary 3.6. Let u : (Σ,j) → (W,J) be a J-holomorphic map and

h : W → R be a J-plurisubharmonic function. If u is not a constant map

then h ◦ u : Σ →R will never take its maximum on the interior of Σ.

Proof. Since h ◦ u is weakly subharmonic, it follows immediately from the

maximum principle (Theorem 3.2) that h ◦ u must be constant if it takes its

maximum in the interior of Σ, and hence d(h ◦ u) = 0. On the other hand,

we know that if there were a point z ∈Σ with Dzu �= 0, then ωh(Du · v,Du ·
jv) would need to be strictly positive for non-vanishing vectors. This is not

possible though, because u∗ωh = ddj(h ◦ u) = 0. �



198 K. Niederkrüger

Corollary 3.7. Let (Σ,j) be a Riemann surface with boundary, u : (Σ,j)→
(W,J) a J-holomorphic map and h : W → R be a J-plurisubharmonic func-

tion. If h ◦ u : Σ → R takes its maximum at z0 ∈ ∂Σ then it follows either

that d(h◦u)(v)> 0 for every vector v ∈ Tz0Σ pointing transversely out of the

surface, or u will be constant.

Proof. The proof is analogous to the previous one, but uses the boundary

point lemma (Theorem 3.3) instead of the simple maximum principle. �

Remark 3.8. Note that if h is only weakly plurisubharmonic, then we can

only deduce in the two corollaries above that u has to lie in a level set of h,

and not that u itself must be constant.

Contact Structures as Convex Boundaries. Now we will finally ex-

plain the relation between plurisubharmonic functions and contact manifolds.

Definition. Let (W,J) be an almost complex manifold with boundary. We

say that W has J-convex boundary, if there exists a smooth function

h : W → (−∞,0] with the properties

• h is J -plurisubharmonic on a neighborhood of ∂W ,

• h is a regular equation for ∂W , that means, 0 is a regular value of h

and ∂W = h−1(0).

Note that the function h in the definition takes its maximum on ∂W , so

that it must be strictly increasing in outward direction.

We will show that the boundary of an almost complex manifold is J -

convex if and only if it carries a natural cooriented contact structure (whose

conformal symplectic structure tames J). Remember that we are always as-

suming our contact manifolds to be cooriented. Hence the manifold is ori-

ented, and its contact structure will have a natural conformal symplectic

structure.

Definition. Let M be a codimension 1 submanifold in an almost complex

manifold (W,J). The subbundle of complex tangencies of M is the J -

complex subbundle

ξ := TM ∩ (J · TM).
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Proposition 3.9. Let (W,J) be an almost complex manifold with bound-

ary M := ∂W and let ξ be the subbundle of complex tangencies of M . We

have the following equivalence:

(1) The boundary M is J-convex.

(2) The subbundle ξ is a cooriented contact structure whose natural ori-

entation is compatible with the boundary orientation of M , and whose

natural conformal symplectic structure tames J |ξ .

Proof. To prove the direction “(1)⇒ (2)”, let h be the J -plurisubharmonic

equation of M that exists by assumption. A straight forward calculation

shows that the kernel of the 1-form α := dJh|TM is precisely ξ, and in par-

ticular that α does not vanish. Furthermore dα|TM = ωh|TM is a symplectic

structure on ξ that tames J |ξ , so that α is a contact form. To check that

α ∧ dαn−1 is a positive volume form with respect to the boundary orien-

tation induced on M by (W,J), let Rα be the Reeb field of α, and define

a vector field Y = −JRα. The field Y is positively transverse to ∂W , be-

cause LY h = dh(Y ) = dJh(Rα) = α(Rα) = 1 is positive. Choosing a basis

(v1, . . . , v2n−2) for ξ at a point p ∈M , we compute

α∧ dαn−1(Rα, v1, . . . , v2n−2) = dαn−1(v1, . . . , v2n−2) = ωn−1
h (v1, . . . , v2n−2).

Similarly, we obtain

ωn
h(Y,Rα, v1, . . . , v2n−2) = nωh(Y,Rα) · ωn−1

h (v1, . . . , v2n−2)

= nωh(Rα, JRα) · ωn−1
h (v1, . . . , v2n−2),

where we have used that ωh(Rα, vj) = dα(Rα, vj) = 0 for all j ∈ {1, . . . , n−1}.
The first term ωh(Rα, JRα) is positive, and hence α∧dαn−1 and ιY ω

n
h induce

identical orientations on M .

To prove the direction “(2) ⇒ (1)”, choose any collar neighborhood

(−ε,0] × M for the boundary, and let t be the coordinate on (−ε,0].

First note that α = dJ t|TM is a non-vanishing 1-form with kernel ξ, so

in particular it will be contact. Let Rα be the Reeb field of α, and set

Y := −JRα. As before, the field Y is positively transverse to M , because

of LY t=−dt(JRα) = α(Rα) = 1.

Let C be a large constant, whose size will be determined below, and set

h(t, p) := eCt − 1. Clearly, h is a regular equation for M , and we claim that

for sufficiently large C, h will be a J -plurisubharmonic function.



200 K. Niederkrüger

Let v ∈ TpW be any non-vanishing vector at p ∈M and represent it as

v = aY + bRα + cZ,

where Y and Rα were defined above, and Z ∈ ξ is a vector in the contact

structure that has been normalized such that dα(Z,JZ) = ωt(Z,JZ) = 1.

Note that the 1-form αC = dJh|TM =CeCtα is a contact form that represents

the same coorientation as α.

We compute ωh = ddJh=CeCt(ωt+C dt∧dJ t), which simplifies for t= 0

further to ωh =C(ωt +C dt∧ dJ t) and so we have

ωh(Rα, ·) =C
(

ωt(Rα, ·)−C dt
)

and ωh(Y, ·) =C
(

ωt(·, JRα) +C dJ t
)

.

This implies ωh(Rα,Z) = ωh(Rα, JZ) = 0 for all Z ∈ ξ, and ωh(Y,Rα) =C2+

Cωt(Rα, JRα) can be made arbitrarily large by increasing the size of C. With

these relations we obtain

ωh(v,Jv)

= ωh(aY + bRα + cZ,aRα − bY + cJZ)

=
(

a2 + b2
)

ωh(Y,Rα) + c2ωh(Z,JZ) + acωh(Y,JZ) + bcωh(Y,Z)

=
(

a2 + b2
)(

C2 +O(C)
)

+C
(

c2ωt(Z,JZ) + acωt(Y,JZ) + bcωt(Y,Z)
)

and setting Aa = ωt(Y,JZ) and Ab = ωt(Y,Z) and using that ωt(Z,JZ) = 1

=
(

a2 + b2
)(

C2 +O(C)
)

+C
(

c2 +Aaac+Abbc
)

=
(

a2 + b2
)(

C2 +O(C)
)

+
C

2

(

(c+ aAa)
2 − a2A2

a + (c+ bAb)
2 − b2A2

b

)

= a2
(

C2 +O(C)
)

+ b2
(

C2 +O(C)
)

+
C

2

(

(c+ aAa)
2 + (c+ bAb)

2
)

.

By choosing C large enough, we can ensure that the a2- and b2-coefficients

are both positive. Then it is obvious from the computation above that ωh

tames J , and hence h is J -plurisubharmonic. �

Legendrian Foliations in Convex Boundaries.

Definition. A totally real submanifold N of an almost complex man-

ifold (W,J) is a submanifold of dimension dimN = 1
2 dimW that is not

tangent to any J -complex line, that means, TN ∩ (J TN) = {0}, which is

equivalent to requiring

TW |N = TN ⊕ (J TN).
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Proposition 3.10. Let (W,J) be an almost complex manifold with J-convex

boundary (M,ξ). Assume N is a submanifold of M for which the complex

tangencies ξ induce the Legendrian foliation F = TN ∩ ξ. Then it is easy to

check that N \ Sing(F) is totally real.

Proof. If X ∈ TN is a non-vanishing vector with JX also in TN , then in

particular

X ∈ TN ∩ (JTN)⊂ TM ∩ (JTM) = ξ,

so that X and JX have to lie in F . The 2-form dα tames J |ξ so that

dα(X,JX) > 0, but dα|F vanishes at regular points of the foliation, and

hence X must be 0. �

We will next study the restrictions imposed by a Legendrian foliation

on J -holomorphic curves. Let (Σ,j) be a compact Riemann surface with

boundary, and let A be a subset of an almost complex manifold (W,J). We

introduce for J -holomorphic maps u : Σ →W with u(∂Σ)⊂A the notation

u : (Σ,∂Σ, j)→ (W,A,J).

Note that we are always supposing that u is at least C1 along the boundary.

Corollary 3.11. Let (W,J) be an almost complex manifold with convex

boundary (M,ξ). Let N ↪→M be a submanifold with an induced Legendrian

foliation F , and let u be a J-holomorphic map

u : (Σ,∂Σ, j)→
(

W,N \ Sing(F), J
)

.

If there is an interior point z0 ∈Σ \ ∂Σ at which u touches M , or if ∂u is

not positively transverse to F , then u is a constant map.

Proof. Choose a J -plurisubharmonic function h : W →R that is a regular

equation for M . The first implication follows directly from Corollary 3.6,

because z0 would be an interior maximum for h ◦ u.

For the second implication note first that h ◦ u takes its maximum on

∂Σ so that if u is not constant, we have by Corollary 3.7 that the derivative

Lv(h◦u) is strictly positive for every point z1 ∈ ∂Σ and every vector v ∈ Tz1Σ

pointing out of Σ. Now if w ∈ TΣ is a vector that is tangent to ∂Σ such that

jw points inward (so that w corresponds to the boundary orientation of ∂Σ,

because (−jw,w) is a positive basis of TΣ), we obtain

α(Du ·w) =−dh(JDu ·w) =−dh(Du · jw) =−d(h ◦ u)(jw)> 0.



202 K. Niederkrüger

The boundary of ∂u has thus to be positively transverse to ξ, and so it is in

particular positively transverse to the Legendrian foliation F . �

Note that the result above applies only for holomorphic maps that are

C1 along the boundary.

3.1.2. Preliminaries: ω-Convexity. Above we have explained the notion

of J -convexity, and the relevant relationship between contact and almost

complex structures. In this section, we want to discuss the notion of ω-

convexity, that means the relationship between an (almost) symplectic and

a contact structure.

In fact, we are not interested in studying almost complex manifolds

for their own sake, but we would like to use the almost complex struc-

ture to understand instead a symplectic manifold (W,ω). As initiated by

Gromov, we introduce an auxiliary almost complex structure to be able to

study J -holomorphic curves in the hope that even though the J -holomorphic

curves depend very strongly on the almost complex structure chosen, we’ll

be able to extract interesting information about the initial symplectic struc-

ture.

For this strategy to work, we need the almost complex structure to be

tamed by ω, that means, we want

ω(X,JX)> 0

for every non-vanishing vector X ∈ TW . This tameness condition is impor-

tant, because it allows us to control the limit behavior of sequences of holo-

morphic curves (see Section 4.3).

As explained in the previous section, J -convexity is a property that

greatly helps us in understanding holomorphic curves in ambient manifolds

that have boundary. When (W,ω) is a symplectic manifold with bound-

ary M = ∂W , we would thus like to chose an almost complex structure J

that is

• tamed by ω, and

• that makes the boundary J -convex.

In particular, if such a J exists, we know that the boundary admits an

induced contact structure

ξ = TM ∩ (J · TM).
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From the symplectic or contact topological view point, the opposite setup

would be more natural though: given a symplectic manifold (W,ω) with

contact boundary (M,ξ), can we choose an almost complex structure J that

is tamed by ω, and that makes the boundary J -convex such that ξ is the

bundle of J -complex tangencies?

The general answer to that question was given in [21].

Definition. Let (M,ξ) be a cooriented contact manifold of dimension 2n−1,

and let (W,ω) be a symplectic manifold whose boundary is M . Let α be a

positive contact form for ξ, and assume that the orientation induced by

α ∧ dαn−1 on M agrees with the boundary orientation of (W,ω). We call

(W,ω) a weak symplectic filling of (M,ξ), if

α∧ (T dα+ ω)n−1 > 0

for every T ∈ [0,∞).

The proofs of the following statements are very lengthy, hence we will

omit the proofs referring instead to the Appendix of [21] for more details.

Theorem 3.12. Let (M,ξ) be a cooriented contact manifold, and let (W,ω)

be a symplectic manifold with boundary M = ∂W . The following two state-

ments are equivalent

• (W,ω) is a weak symplectic filling of (M,ξ).

• There exists an almost complex structure J on W that is tamed by ω

and that makes M a J-convex boundary whose J-complex tangencies

are ξ.

Furthermore the space of all almost complex structures that satisfy these

conditions is contractible (if non-empty).

A weak filling is a notion that is relatively recent in higher dimensions;

traditionally it is the concept of a strong symplectic filling that has been

studied for a much longer time. Let (W,ω) be a symplectic manifold. A vector

field XL is called a Liouville vector field, if it satisfies the equation

LXL
ω = ω.

Definition. Let (M,ξ) be a cooriented contact manifold, and let (W,ω)

be a symplectic manifold whose boundary is M . We call (W,ω) a strong
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symplectic filling of (M,ξ), if there exists a Liouville vector field XL on

a neighborhood of M such that λ := (ιXL
ω)|TM is a positive contact form

for ξ.

It is easy to see that a strong filling is in particular a weak filling. Note

that the symplectic form of a strong filling becomes always exact when re-

stricted to the boundary, but that this needs not be true for a weak filling;

if it is then it will usually still not be a strong symplectic filling, but by

Corollary 3.15 it can deformed into one.

Lemma 3.13. Let (W,ω) be a symplectic manifold and let M be a hyper-

surface (possibly a boundary component of W ) together with a non-vanishing

1-form λ. Assume that the restriction of ω to kerλ is symplectic.

Then there is a tubular neighborhood of M in W that is symplectomorphic

to the model
(

(−ε, ε)×M,d(tλ) + ω|TM

)

,

where t is the coordinate on the interval (−ε, ε). The 0-slice {0} ×M cor-

responds in this identification to the hypersurface M . If M is a boundary

component of W then of course we need to replace the model by (−ε,0]×M

or by [0, ε)×M depending on whether λ∧ ωn−1 is oriented as the boundary

of (W,ω) or not.

For the proof see [21, Lemma 2.6].

Proposition 3.14. Let (W,ω) be a weak filling of a contact manifold (M,ξ),

and let Ω be a 2-form on M that is cohomologous to ω|TM . Choose a positive

contact form α for (M,ξ). Then if we allow C > 0 to be sufficiently large, we

can attach a collar [0,C]×M to W with a symplectic form ωC that agrees

close to {C}×M with d(tα) +Ω, and such that the new manifold is a weak

filling of ({t0} ×M,ξ) for every t0 ∈ [0,C].

The proof can be found in [21, Lemma 2.10].

Corollary 3.15. Let (W,ω) be a weak symplectic filling of (M,ξ) and as-

sume that ω restricted to a neighborhood of M is an exact symplectic form.

Then we may deform ω on a small neighborhood of M such it becomes a

strong symplectic filling.
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Proof. Since ω|TM is exact, we can apply the proposition above with Ω = 0.

Afterwards we can isotope the collar back into the neighborhood of the

boundary of W . �

Note that two contact structures that are strongly filled by the same sym-

plectic manifold are isotopic, while a symplectic manifold may be a weak fill-

ing of two different contact manifolds. This is true even when the restriction

of the symplectic structure to the boundary is exact, see [21, Remark 2.11].

3.2. Holomorphic Curves and Legendrian Foliations

Let (W,J) be an almost complex manifold with J -convex boundary (M,ξ),

and let N ⊂M be a submanifold carrying a Legendrian foliation F . The aim

of this section will be to better understand the behavior of J -holomorphic

maps

u : (Σ,∂Σ, j)→ (W,N,J),

that lie close to a singular point p ∈ Sing(F) of the Legendrian foliation. For

this we will assume that J is of a very specific form in a neighborhood of the

point p.

3.2.1. Existence of J-Convex Functions Close to Totally Real Sub-

manifolds. As a preliminary tool, we will need the following result.

Proposition 3.16. Let (W,J) be an almost complex structure that con-

tains a closed totally real submanifold L. Then there exists a smooth function

f : W → [0,∞) with L = f−1(0) that is J-plurisubharmonic on a neighbor-

hood of L. In particular, it follows that dfp = 0 at every point p ∈ L.

Proof. We will first show that we find around every point p ∈ L a chart

U with coordinates {(x1, . . . , xn;y1, . . . , yn)} ⊂ R2n such that L ∩ U = {y1 =
· · ·= yn = 0} and

J
∂

∂xj

∣

∣

∣

∣

L∩U
=

∂

∂yj

∣

∣

∣

∣

L∩U
.

For this, start by choosing coordinates {(x1, . . . , xn)} ⊂Rn for the submani-

fold L around the point p, and consider the associated vector fields

Y1 = J
∂

∂x1
, . . . , Yn = J

∂

∂xn
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along L. These vector fields are everywhere linearly independent and trans-

verse to L, hence, we can define a smooth map from a small ball around 0

in R2n = {(x1, . . . , xn;y1, . . . , yn)} to W by

y1Y1(x1, . . . , xn) + · · ·+ ynY1(x1, . . . , xn) 
→ exp(y1Y1 + · · ·+ ynY1),

where exp is the exponential map for an arbitrary Riemannian metric on W .

If the ball is chosen sufficiently small, the map will be a chart with the desired

properties.

For such a chart U , we will choose a function

fU : U → [0,∞), (x1, . . . , xn;y1, . . . , yn) 
→
1

2

(

y21 + · · ·+ y2n
)

.

It is obvious that both the function itself, and its differential vanish along

L∩U . Furthermore f is plurisubharmonic close to L∩U , because

ddJfU = d
(

y1 d
Jy1 + · · ·+ yn d

Jyn
)

= dy1 ∧ dJy1 + · · ·+ dyn ∧ dJyn + y1 dd
Jy1 + · · ·+ yn dd

Jyn

simplifies at L∩U to

ddJfU
∣

∣

L∩U = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn,

where we have used that all yj vanish, and that J ∂
∂xj

= ∂
∂yj

and J ∂
∂yj

=

J2 ∂
∂xj

= − ∂
∂xj

. It is easy to check that this 2-form evaluates positively on

complex lines along L∩U , and hence also in a small neighborhood of p.

Now to obtain a global plurisubharmonic function as stated in the propo-

sition, cover L with finitely many charts U1, . . . ,UN , each with a function

f1, . . . , fN according to the construction given above. Choose a subordinate

partition of unity ρ1, . . . , ρN , and define

f =

N
∑

j=1

ρj · fj .

The function f and its differential df =
∑N

j=1(ρj dfj + fj dρj) vanish along L

so that the only term in

ddJf = d

N
∑

j=1

(

ρj d
Jfj + fj d

Jρj
)

=

N
∑

j=1

(

ρj dd
Jfj + dρj ∧ dJfj + fj dd

Jρj + dfj ∧ dJρj
)
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that survives along L is the first one, giving us along L

ddJf =

N
∑

j=1

ρj dd
Jfj .

This 2-form is positive on J -complex lines, and hence there is a small neigh-

borhood of L on which f is plurisubharmonic. Finally, we modify f to be

positive outside this small neighborhood so that we have L= f−1(0) as re-

quired. �

Corollary 3.17. Let (W,J) be an almost complex structure that contains

a closed totally real submanifold L. Then we find a small neighborhood U of

L for which every J-holomorphic map

u : (Σ,∂Σ, j)→ (W,L,J)

from a compact Riemann surface needs to be constant if u(Σ)⊂ U .

Proof. Let f : W → [0,∞) be the function constructed in Proposition 3.16,

and let U ⊂ (W,J) be the neighborhood of L, where f is J -plurisubharmonic.

Because u(Σ) ⊂ U , we obtain from Corollary 3.6 that f ◦ u must take its

maximum on the boundary of Σ, but because f ◦ u is zero on all of ∂Σ, it

follows that f ◦ u will vanish on the whole surface Σ. The image u(Σ) lies

then in the totally real submanifold L, and this implies that the differential

of u vanishes everywhere. Hence there is a q0 ∈ L with u(z) = q0 for all

z ∈Σ. �

3.2.2. J-Holomorphic Curves Close to Elliptic Singularities of a

Legendrian Foliation. The aim of this section will be to show that for a

suitable choice of an almost complex structure, elliptic singularities give birth

to a family of holomorphic disks, and that apart from these disks and their

branched covers, no other holomorphic disks may get close to the elliptic

singularities.

Before studying the higher dimensional case, we will construct a model

situation for a 4-dimensional almost complex manifold with convex boundary.

Dimension 4. Consider C2 with its standard complex structure i. Then it

is easy to check that h(z1, z2) =
1
2(|z1|

2+ |z2|2) is a plurisubharmonic function

whose regular level sets are the concentric spheres around the origin. We

choose the level set M = h−1(1/2), that is, the boundary of the closed unit
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ball W := h−1((−∞,1/2]) that is i-convex and has the induced contact form

α0 = dih
∣

∣

TM
= x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2.

We only want to study a neighborhood U of (0,1) in W . Embed a small

disk by the map

Φ : z 
→
(

z,

√

1− |z|2
)

into M ∩ U , and denote the image of Φ by N0. This submanifold is the

intersection of M = S3 with a hyperplane whose z2-coordinate is purely real.

The restriction of α0 to N0 reduces to

(3.2) α0|TN0
= Φ∗α0 = xdy− y dx,

so that the Legendrian foliation has at the origin an elliptic singularity (of

the type described in Section 2.2.1).

Let U be the subset

U =
{

(z1, z2) ∈C
2
∣

∣Re(z2)> 1− δ
}

∩ h−1
(

(−∞,1/2]
)

for small δ > 0, that means, we take the unit ball and cut off all points under

a certain x2-height.

The following propositions explain that there is essentially a unique holo-

morphic disk with boundary in N0 passing through a given point (z1, z2) ∈
N0∩U . All other holomorphic curves with the same boundary condition will

either be constant or will be (branched) covers of that disk.

Proposition 3.18. Denote the intersection of U with the complex plane

C × {x} for x ∈ (1 − δ,1) by Lx. For every x2 ∈ (1 − δ,1), there exists a

unique injective holomorphic map

ux2
:
(

D
2, ∂D2

)

→ (Lx2
, ∂Lx2

)

that satisfies ux2
(0) = (0, x2) and ux2

(1) ∈ {(x1, x2) ∈ U |x1 > 0}.

The last two conditions only serve to fix a parametrization of a given

geometric disk.

Proof. The desired map ux2
can be explicitly written down as

ux2
(z) = (Cz,x2)

with C =
√

1− x22.
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To prove uniqueness assume that there were a second holomorphic map

ũx2
:
(

D
2, ∂D2

)

→ (Lx2
, ∂Lx2

)

with the required properties. It is clear that Lx2
= {(x+ iy, x2) ∈ C2 | x2 +

y2 ≤ 1− x22} is a round disk.

By Corollary 3.11, the restriction ux2
|∂D2 of the map to the boundary

has non-vanishing derivative, and it is by assumption injective, hence it is

a diffeomorphism onto ∂Lx2
. This proves that ux2

has to be for topological

reasons surjective on Lx2
(otherwise we could construct a retract of the disk

onto its boundary). Note also that the germ of a holomorphic map around

the origin in C is always biholomorphic to z 
→ zk for some integer k ∈ N0,

so that the differential of ux2
may not vanish anywhere, because otherwise

ux2
could not be injective.

Together this allows us to define a biholomorphism

ϕ := u−1
x2

◦ ũx2
:
(

D
2, ∂D2

)

→
(

D
2, ∂D2

)

with ϕ(0) = 0 and ϕ(1) = 1, but the only automorphism of the disk with

these properties is the identity, thus showing that ux2
= ũx2

. �

Proposition 3.19. Let

u : (Σ,∂Σ; j)→ (U,N0; i)

be any holomorphic map from a connected compact Riemann surface (Σ,j)

to U with u(∂Σ)⊂N0.

Either u is constant or its image is one of the slices Lx2
= U ∩ (C×{x2}).

If u is injective at one of its boundary points, then Σ will be a disk, and after a

reparametrization by a Möbius transformation, u will be equal to the map ux2

given in Proposition 3.18.

Proof. Note that we are supposing that u is at least C1 on the boundary

so that by Corollary 3.11 the map u will be constant if it touches the elliptic

singularity in N .

The proof of the proposition will be based on the harmonicity of the

coordinate functions x1, y1, x2, and y2. Let f : U → R be the function

(z1, z2) 
→ y2 = Im(z2). Since Σ is a compact domain, the function f ◦ u

attains somewhere on Σ its maximum and its minimum, and applying the

maximum principle, Corollary 3.6, to f ◦ u itself and also to −f ◦ u, we



210 K. Niederkrüger

obtain that both the maximum and the minimum have to lie on ∂Σ. But

since u(∂Σ)⊂N0 has vanishing imaginary z2-part, it follows that f ◦ u≡ 0

on the whole surface. Using now the Cauchy-Riemann equations, it immedi-

ately follows that the real part of the z2-coordinate of u has to be constant

everywhere. We can deduce that the image of u has to lie in one of the

slices Lx2
=C×{x2}, and in particular the boundary u(∂Σ) lies in the circle

∂Lx2
= {(x+ iy, x2) ∈C2 | x2 + y2 = 1− x22}.

Assume that u is not constant. Since u lies in Lx2
, we can use the map

ux2
from Proposition 3.18, to define a holomorphic map

ϕ := u−1
x2

◦ u : (Σ,∂Σ)→
(

D
2, ∂D2

)

.

If u were not surjective on Lx2
, we could suppose (after a Möbius transfor-

mation on the target space) that the image of ϕ does not contain 0. The

function h(z) =− ln |z| on D2 \ {0} is harmonic, because it is locally the real

part of a holomorphic function, and because h ◦ ϕ would have its maximum

on the interior of Σ, we obtain that h ◦ ϕ is constant, so that the image of

ϕ lies in ∂D2. The image of a non-constant holomorphic map is open, and

hence u must be constant.

Assume now that u is injective at one of its boundary points. As we

have shown in Proposition 3.18 the restriction u|∂Σ : ∂Σ → ∂Lx2
will be a

diffeomorphism for each component of ∂Σ so that ∂Σ must be connected.

Furthermore, it follows that u will also be injective on a small neighborhood

of ∂Lx2
, because if we find two sequences (zk)k and (z̃k)k coming arbitrarily

close to ∂Σ with u(zk) = u(z̃k) for every k, then after assuming that they

both converge (reducing if necessary to subsequences), we see by continuity

that limu(zk) = limu(z̃k) and lim zk, lim z̃k ∈ ∂Σ, so that we can conclude

that lim zk = lim z̃k. Using that the differential of u in lim zk is not singular,

we obtain that for k sufficiently large, we will always have zk = z̃k showing

that u is indeed injective on a small neighborhood of ∂Σ.

Assume z0 ∈ Σ is a point at which the differential Dϕ vanishes. Then

we know that ϕ can be represented in suitable charts as z 
→ zk for some

k ∈ N, but if k > 1 this yields a contradiction, because we know that ϕ is a

biholomorphism on a neighborhood of ∂Σ, and hence its degree must be 1.

Since ϕ is holomorphic, it preserves orientations, so that on the other hand,

we would have that the degree would need to be at least k, if there were such

a critical point.

We obtain that ϕ has nowhere vanishing differential, and hence it must

be a regular cover, but since it is of degree 1, it is in fact a biholomorphism,

and Σ must be a disk. �
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The Higher Dimensional Situation. In this section, L will always be a

closed manifold, and we will choose for T ∗L an almost complex structure JL
for which the 0-section L is totally real, so that there is by Proposition 3.16

a function fL : T
∗L→ [0,∞) that vanishes on L (and only on L) and that is

plurisubharmonic on a small neighborhood of L.

As before, we will first describe a very explicit manifold that will serve as

a model for the neighborhood of an elliptic singularity. Let C2 × T ∗L be the

almost complex manifold with almost complex structure J = i⊕ JL, where i

is the standard complex structure on C2. We define a function f : C2×T ∗L→
[0,∞) by

f(z1, z2,q,p) =
1

2

(

|z1|2 + |z2|2
)

+ fL(q,p).

If we stay in a sufficiently small neighborhood of the 0-section of T ∗L, this

function is clearly J -plurisubharmonic and we denote its regular level set

f−1(1/2) by M ; its contact form is given by

α := dJf
∣

∣

TM
=
(

x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2 + dJLfL
)∣

∣

TM
.

Now we define a submanifold N in M as the image of the map

Φ : D2 ×L ↪→M ⊂C
2 × T ∗L

given by Φ(z;q) = (z,
√

1− |z|2;q,0), that means, the image of Φ is the

product of the 0-section in T ∗L and the submanifold N0 given in the previous

section. The submanifold has a Legendrian foliation F induced by

α|TN = Φ∗dJf = xdy− y dx.

In particular, the leaves of the foliation are parallel to the L-factor in D2×L

and F has an elliptic singularity in {0} ×L.

Note that both the almost complex structure as well as the submani-

fold N split as a product, thus if we consider a holomorphic map

u : (Σ,∂Σ; j)→
(

C
2 × T ∗L,N ;J

)

,

we can decompose it into u= (u1, u2) with

u1 : (Σ,∂Σ; j)→
(

C
2,N0; i

)

u2 : (Σ,∂Σ; j)→
(

T ∗L,L;JL
)

.
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This allows us to treat each factor independently from the other one, and we

will easily be able to obtain similar results as in the previous section.

Since we are interested in finding a local model, we will first restrict our

situation to the following subset

(3.3) U :=
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

that is, for δ sufficiently small, a compact neighborhood of N in f−1([0,1/2]),

because the points (z1, z2;q,p) in U satisfy

0≤ 1

2
|z1|2 + fL(q,p)≤

1

2

(

1− |z2|2
)

≤ δ− 1

2
δ2 ≤ δ

so that all coordinates are bounded. Note in particular, that this bound on

the p-coordinates guarantees that f will be J -plurisubharmonic on U .

The submanifold N ∩U can also be written in the following easy form

{

(z,x2;q,0) | x2 ≥ 1− δ and |z|2 = 1− x22
}

×L.

Corollary 3.20. Let

u : (Σ,∂Σ, j)→ (U,N ∩U ;J)

be any holomorphic map from a connected compact Riemann surface (Σ,j)

to U with u(∂Σ)⊂N .

Either u is constant or its image is one of the slices Lx2,q0
= (C×{x2}×

{q0})∩U with x2 ∈ [1− δ,1) and q0 a point on the 0-section of T ∗L. If u is

injective at one of its boundary points, then Σ will be a disk, and u is equal

to

u(z) =
(

ux2
◦ϕ(z);q0,0

)

,

where ux2
is the map given in Proposition 3.18, and ϕ is a Möbius transfor-

mation of the unit disk.

Proof. Let u be a J -holomorphic map as in the statement. We will study

u by decomposing it into u= (uC2 , uT ∗L) with

uC2 : (Σ,∂Σ, j)→
(

C
2,N, i

)

uT ∗L : (Σ,∂Σ, j)→
(

T ∗L,L,JL
)

.
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Using that fL is JL-plurisubharmonic on the considered neighborhood

of the 0-section contained in U , it follows from Corollary 3.17 that uT ∗L is

constant.

Once we know that uT ∗L is constant, the situation for uC2 is identical to

the one in Proposition 3.19, so that we obtain the desired result. �

The results obtained so far only explain the behavior of holomorphic

curves that are completely contained in the model neighborhood U . Next we

will extend this result to show that a holomorphic curve is either disjoint

from the subset U or is lies completely inside U .

Assume (W,J) is a compact almost complex manifold with convex bound-

ary M = ∂W . Let N be a submanifold of M , and assume that there is a

compact subset U in W such that U is diffeomorphic to the model above,

with M ∩U , N ∩U and J |U all being equal to the corresponding objects in

our model neighborhood.

Proposition 3.21. Let

u : (Σ,∂Σ; j)→ (W,N ;J)

be a holomorphic map, and let U be a compact subset of W that agrees with

the model described above.

If u(Σ) intersects U , then it has to lie entirely in U , and it will be con-

sequently of the form given by Corollary 3.20.

Proof. Assume u to be a holomorphic map whose image lies partially in

U . The set U is a compact manifold with corners, and we write ∂U = ∂MU ∪
∂WU (see Figure 5), where

∂MU = U ∩M

∂WU =
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

.

We will show that the real part of the z2-coordinate of u needs to be constant.

This then proves the proposition, because it prevents u from leaving U .

Thus assume instead that the real part of z2 does vary on u. Slightly

decreasing the cut-off level δ in (3.3) using Sard’s theorem, the holomor-

phic map u will intersect ∂WU transversely, so that u−1(∂WU) will be a

properly embedded submanifold of Σ. We will restrict u to the compact

subset G = u−1(U), and denote the boundary components of this domain
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Fig. 5. Sketch of the symplectic model neighborhood of an elliptic singularity.
A holomorphic curve lying only partially in this neighborhood would have two types of
boundary, one part u(∂MG) that lies in N ∩U , and a second one u(∂WG) where the

curve leaves the model neighborhood

by ∂MG= u−1(N ∩U) and ∂WG= u−1(∂WU). We thus have a holomorphic

map

u|G : (G,∂G; j)→ (U,∂U ;J)

with u(∂MG)⊂N ∩U and u(∂WG)⊂ ∂WU .

The coordinate maps hx : (z1, z2;q,p) 
→ Re(z2) and hy : (z1, z2;q,p) 
→
Im(z2) are harmonic, and it follows by the maximum principle that the max-

imum of hx ◦ u|G will lie for each component of G on the boundary of that

component.

Furthermore the maximum of hx ◦ u|G cannot lie on ∂WG, because by

our assumption u|G is transverse to ∂WU . It follows that the maximum of

hx ◦ u|G will be a point z0 ∈ ∂MG; in particular z0 does not lie on one of the

edges of G. By the boundary point lemma, either hx ◦ u|G is constant or the

outward derivative of this function at z0 must be strictly positive. On the

other hand, the function hy ◦ u|G is equal to 0 all along the boundary ∂MG

so that the derivatives of hx ◦ u|G and hy ◦ u|G vanish at z0 in directions

that are tangent to the boundary. Using the Cauchy-Riemann equation we

see that this implies that the derivatives of these two functions at z0 vanish

in every direction, in particular this implies that the function hx ◦ u|G needs

to be constant.

In either case, we have proved that the image of u lies completely in-

side U . �
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The conclusion of the results in this section is that every curve that

intersects a certain neighborhood of the elliptic singularities lies completely

in this neighborhood and can be explicitly determined.

3.2.3. J-Holomorphic Curves Close to Codimension 1 Singulari-

ties. Let (N,F) be a submanifold with Legendrian foliation and with non-

empty boundary. We will show in this section that a boundary component of

N lying in the singular set of F can sometimes exclude that any holomorphic

curve gets close to this component. This way, the boundary may block any

holomorphic disks from escaping the submanifold N .

The argument is similar to that of the previous section, where we con-

structed an almost complex manifold that served as a model for the neigh-

borhood of the singular set.

Remark 3.22. We will only be dealing here with the easiest type of singular

sets: Products of a closed manifold with S1. A more general situation has been

considered in [21], where the singular set is allowed to be a fiber bundle over

the circle.

Let T ∗F be the cotangent bundle of a closed manifold F , choose an

almost complex structure JF on T ∗F for which F is a totally real sub-

manifold, and let fF : T ∗F → [0,∞) be the function constructed in Propo-

sition 3.16 that only vanishes along the 0-section of T ∗F and that is JF -

plurisubharmonic close to the 0-section F .

Define (W,J) as

W :=C× T ∗
S
1 × T ∗F =

{

(x+ iy;ϕ, r;q,p)
}

,

and let J be the almost complex structure i ⊕ i ⊕ JF , where the complex

structure on T ∗S1 is the one induced from the identification of T ∗S1 and

C/(2πZ) with ϕ+ ir ∼ ϕ+ 2π+ ir. The function

f : W → [0,∞), (x+ iy;ϕ, r;q,p) 
→ 1

2

(

x2 + y2
)

+
1

2
r2 + fF (q,p)

is J -plurisubharmonic on a neighborhood where the values of p are small.

We denote the level set f−1(1/2) by M , and note that for small values of p,

it is a smooth contact manifold with contact form

αM :=
(

xdy− y dx− r dϕ+ dJF fF
)∣

∣

TM
.
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Let N be the submanifold of M given as the image of the map

Φ : S1 × [0, ε)× F, (ϕ, r;q) 
→
(

√

1− r2;ϕ, r;q,0
)

.

It has a Legendrian foliation F , because Φ∗αM =−r dϕ that becomes singu-

lar exactly at the boundary ∂N = {1} × S1 × F .

Our local model will be the subset

U =
{

(x+ iy;ϕ, r;q,p) | x≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

for sufficiently small δ > 0. Clearly U contains ∂N = Sing(ker(−r dϕ)).

Furthermore U is compact, because all coordinates are bounded: Points

(x+ iy;ϕ, r;q,p) in U satisfy

0≤ 1

2
y2 +

1

2
r2 + fF (q,p) = f(x+ iy;ϕ, r;q,p)− 1

2
x2 ≤ 1/2

(

1− x2
)

≤ δ.

We also obtain that if δ has been chosen small enough, f is everywhere

J -plurisubharmonic on U .

Remark 3.23. Note that the construction of the local model also applies in

the case of contact 3-manifolds, because F may be just a point.

We will first exclude existence of holomorphic curves that are entirely

contained in U .

Proposition 3.24. A J-holomorphic map

u : (Σ,∂Σ, j)→ (U,N ∩U,J)

from a compact Riemann surface into U , whose boundary is mapped into

N ∩U , must be constant.

Proof. As in the previous section, we can decompose u as (uC×T ∗S1 , uT ∗F )

with

uC×T ∗S1 : (Σ,∂Σ, j)→
(

C× T ∗
S
1,
{(

√

1− r2;ϕ, r
) ∣

∣ ϕ ∈ S
1, r ∈ [0, ε)

}

, i⊕ i
)

uT ∗F : (Σ,∂Σ, j)→
(

T ∗F,F,JF
)

.

Note in particular that the boundary conditions also split in this decompo-

sition, so that we obtain two completely uncoupled problems. Furthermore,

using Corollary 3.17, it follows that the second map is constant, because fF
is a JF plurisubharmonic function on the considered neighborhood.
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To show that uC×T ∗S1 is constant, use the harmonic function g(z;ϕ, r) =

Im(z). Since g ◦uC×T ∗S1 vanishes along ∂Σ, it follows that g ◦uC×T ∗S1 has to

be zero on the whole Riemann surface, and combining this with the Cauchy-

Riemann equation, it follows that the real part of the z-coordinate of uC×T ∗S1

is equal to a constant C ∈ [1− δ,1]. Now that we know that the first coordi-

nate of uC×T ∗S1 is constant, we see that the boundary of uC×T ∗S1 has to lie

in the circle {(C;ϕ,+
√
1−C2) | ϕ ∈ S1} ⊂C× T ∗S1.

This allows us to study only the second coordinate of uC×T ∗S1 reducing

our map to the form

uT ∗S1 : (Σ,∂Σ, j)→
(

T ∗
S
1, S, i

)

,

where S = {r = +
√
1−C2}. Using that the map (r,ϕ) 
→ r is harmonic,

and that it is constant along the boundary of Σ, we obtain that the whole

image of the surface has to lie in the corresponding circle, implying with the

Cauchy-Riemann equation that uT ∗S1 needs to be constant. �

Next we will show that holomorphic curves may not enter the domain U

even partially. Let (W,J) be now a compact almost complex manifold with

convex boundary M = ∂W , and let N be a submanifold of M with ∂N �= ∅.
Assume that W contains a compact subset U that is identical to the model

neighborhood constructed above such that M ∩U , N ∩U and J |U all agree

with the corresponding objects in the model.

Proposition 3.25. If the image of a J-holomorphic map

u : (Σ,∂Σ, j)→ (W,N,J)

intersects the neighborhood U , then it will be constant.

Proof. It suffices to show that the image of u lies inside U , because we

can then apply Proposition 3.24. Following the same line of arguments as in

the proof of Proposition 3.21, one can show that the real part of the first

coordinate of u needs to be constant. We recommend the reader to work out

the details as an exercise. �

Remark 3.26. Note that when the codimension 1 singular set lies in the

interior of the maximally foliated submanifold, one can find under additional

conditions a family of holomorphic annuli with one boundary component

on each side of the singular set (see [30]). The reason why these curves do
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not appear in the results of this section are that we are assuming that all

boundary components of the holomorphic curves lie locally on one side of

the singular set.

4. Moduli Spaces of Disks and Filling Obstructions

4.1. The Moduli Space of Holomorphic Disks

Let us assume again that (W,J) is an almost complex manifold, and that

N ⊂W is a totally real submanifold. We want to study the space of maps

u :
(

D
2, ∂D2

)

→ (W,N ;J)

that are J -holomorphic (strictly speaking they are (i, J)-holomorphic), mean-

ing that we want the differential of u to be complex linear, so that it satisfies

at every z ∈Σ the equation

Duz · i= J
(

u(z)
)

·Duz.

Note that J depends on the point u(z)!

A different way to state this equation is by introducing the Cauchy-

Riemann operator

∂̄Ju= J(u) ·Du−Du · i,

and writing ∂̄Ju= 0, so that the space of J -holomorphic maps, we are inter-

ested in then becomes

˜M
(

D
2,N ;J

)

=
{

u : D2 →W
∣

∣ ∂̄Ju= 0 and u
(

∂D2
)

⊂N
}

.

Remark 4.1. The situation of holomorphic disks is a bit special compared

to the one of general holomorphic maps, because all complex structures on

the disk are equivalent. If Σ were a smooth compact surface of higher genus,

we would usually need to study the space of pairs (u, j), where j is a complex

structure on Σ, and u is a map u : (Σ,∂Σ)→ (W,N) that should be (j, J)-

holomorphic, that means, J(u) ·Du−Du · j = 0.

To be a bit more precise, we do not choose pairs (u, j) with arbitrary

complex structures j on Σ, but we only allow for j a single element in each

equivalence class of complex structures: If ϕ : Σ →Σ is a diffeomorphism, and

j is some complex structure, then of course ϕ∗j will generally be a complex

structure different from j, but we usually identify all complex structures up
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to isotopy, and use that the space of equivalence classes of complex structures

can be represented as a smooth finite dimensional manifold (see [19] for a

nice introduction to this theory).

Fortunately, these complications are not necessary for holomorphic disks

(or spheres), and it is sufficient for us to work with the standard complex

structure i on D2.

In this section, we want to explain the topological structure of the space
˜M(D2,N ;J) without entering into too many technical details. Instead of

starting directly with our particular case, we will try to argue on an intuitive

level by considering a finite dimensional situation that has strong analogies

with the problem we are dealing with.

Let us consider a vector bundle E of rank r over a smooth n-manifold B.

Choose a section σ : B → E, and let M = σ−1(0) be the set of points at

which σ intersects the 0-section. We would “expect” M to be a smooth

submanifold of dimension dimM = n− r (if n− r < 0, we could hope not to

have any intersections at all); unfortunately, this intuitive expectation might

very well be false. A sufficient condition under which it holds, is when σ is

transverse to the 0-section, that means, for every x ∈M , the tangent space to

the 0-section TxB in TxE spans together with the image Dσ ·TxB the whole

tangent space TxE. It is well-known that when the transversality condition

is initially not true, it can be achieved by slightly perturbing the section σ.

Let us now come again to the Cauchy-Riemann problem. The role of B

will be taken by the space of all maps u : (D2, ∂D2)→ (W,N), which we will

denote by B(D2;N). We do not want to spend any time thinking about the

regularity of the maps and point instead to [25] as reference. It is sufficient

for us to observe that the space B(D2;N) is a Banach manifold, that means,

an infinite dimensional manifold modeled on a Banach space.

The section σ will be replaced by the Cauchy-Riemann operator ∂̄J , and

before pursuing this analogy further, we want first to specify the target space

of this operator. In fact, ∂̄J associates to every map u ∈ B(D2;N) a 1-form

on Σ with values in TW . The formal way to state this is that we have for

every map u a vector bundle u∗TW over D2, which allows us to construct

Hom
(

TD2, u∗TW
)

.

The sections in Hom(TD2, u∗TW ) form a vector space, and if we look at all

sections for all maps u, we obtain a vector bundle over B(D2;N), whose fiber
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over a point u are all sections in Hom(TD2, u∗TW ). We denote this bundle

by E(D2;N).

The operator ∂̄J associates to every u, that means, to every point of

B(D2;N) an element in E(D2;N) so that we can think of ∂̄J as a section in

the bundle E(D2;N). The J -holomorphic maps are the points of B(D2;N)

where the section ∂̄J intersects the 0-section. In fact, ∂̄Ju is always anti-

holomorphic, because

J(u) · ∂̄Ju=−Du− J(u) ·Du · i=
(

Du · i− J(u) ·Du
)

· i=−(∂̄Ju) · i,

and for analytical reasons we will only consider sections in Hom(TΣ,u∗TW )

taking values in the subbundle HomC(TΣ,u∗TW ) of anti-holomorphic

homomorphisms. We denote the subbundle of sections taking values in

HomC(TΣ,u∗TW ) by ĒC(D2;N).

4.1.1. The Expected Dimension of ˜M(D2,N ;J). The rank of

ĒC(D2;N) and the dimension of B(D2;N) are both infinite, hence we cannot

compute the expected dimension of the solution space ˜M(D2,N ;J) as in the

finite dimensional case, where it was just the difference dimM − rankE.

Nonetheless we can associate a so called Fredholm index to a Cauchy-

Riemann problem. We will later give some more details about how the index

is actually defined, for now we just note that it is an integer that determines

the expected dimension of the space ˜M(D2,N ;J).

For a Cauchy-Riemann problem with totally real boundary condition the

index has an easy explicit formula (see for example [25, Theorem C.1.10])

that simplifies in our specific case of holomorphic disks to

(4.1) indu ∂̄J =
1

2
dimW + μ

(

u∗TW,u∗TN
)

,

where we have used that the Euler characteristic of a disk is χ(D2) = 1.

Remark 4.2. We would like to warn the reader that the dimension of a

moduli space of holomorphic disks or holomorphic spheres tends to increase,

if we increase the dimension of the symplectic ambient manifold. Unfortu-

nately, the opposite is true for a higher genus curve Σ: The formula above

becomes

indu ∂̄J =
1

2
χ(Σ)dimW + μ

(

u∗TW,u∗TN
)

,

and since the Euler characteristic is negative, and it is harder to find curves

with genus in high dimensional spaces than in lower dimensional ones.
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The Maslov index μ is an integer that classifies loops of totally real

subspaces up to homotopy:

Definition. Let EC be a complex vector bundle over the closed 2-disk D2

and let ER be a totally real subbundle of EC|∂D2 defined only over the

boundary of the disk. The Maslov index μ(EC,ER) is an integer that is

computed by trivializing EC over the disk, and choosing a continuous frame

A(eiφ) ∈GL(n,C) over the boundary ∂D2 representing ER. We then set

μ(EC,ER) := deg
detA2

det(A∗A)
,

where deg(f) is the degree of a continuous map f : S1 → S1.

In these notes, we will compute the Maslov index only once, in Sec-

tion 4.1.3, but note that the index indu ∂̄J depends on the holomorphic disk u

in ˜M(D2,N ;J), we are considering; this should not confuse us however, be-

cause it only means that the space of disks may have different components

and the expected dimensions of the different components do not need to

agree.

We will now briefly explain how the index of ∂̄J is defined. We have a map

∂̄J : B(D2;N)→ ĒC(D2;N), and we need to compute the linearization of ∂̄J
at a point of u ∈ B(D2;N), that means, we have to compute the differential

D̄J(u) : TuB
(

D
2;N

)

→ T∂̄JuĒC
(

D
2;N

)

.

To find D̄J(u), choose a smooth path ut of maps in B(D2;N) with u0 = u,

then we can regard the image ∂̄Jut, and take its derivative with respect to t in

t= 0. If we set u̇0 =
d
dt |t=0ut, this allows us to obtain a linear operator D̄J(u)

by

D̄J(u) · u̇0 =
d

dt

∣

∣

∣

∣

t=0

∂̄Jut.

It is a good exercise to determine the domain and target space of this oper-

ator, and find a way to describe them.

The index of ∂̄J at u is defined as

indu ∂̄J := dimker D̄J(u)− dimcoker D̄J(u).

It is a remarkable fact that the index is finite and determined by formula (4.1)

above. Also note that the index is constant on each connected component of

B(D2;N).
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4.1.2. Transversality of the Cauchy-Riemann Problem. Just as in

the finite dimensional analogue, it may happen that the formal dimension

we have computed does not correspond to the dimension we are observing

in an actual situation. In fact, if the section σ (or in our infinite dimensional

case, ∂̄J ) are not transverse to the 0-section, there is no reason why M or
˜M(D2,N ;J) would need to be smooth manifolds at all.

On the other hand, if σ is transverse to the 0-section, then M = σ−1(0)

is a smooth submanifold of dimension dimM − rankE, and the analogue

result is also true for the Cauchy-Riemann problem: If ∂̄J is at every point

of ˜M(D2,N ;J) transverse to 0 (or said equivalently, if the cokernel of the

linearized operator is trivial for every holomorphic disk), then ˜M(D2,N ;J)

will be a smooth manifold whose dimension is given by the index of ∂̄J .

In the finite dimensional situation, we can often achieve transversality by

a small perturbation of σ, but of course, this might require a subtle analysis

of the situation, when we want to perturb σ only within a space of sections

satisfying certain prescribed properties.

Definition. Let u : Σ →W be a holomorphic map from a Riemann surface

with or without boundary. We call u somewhere injective, if there exists

a point z ∈Σ with duz �= 0, and such that z is the only point that is mapped

by u to u(z), that means,

u−1
(

u(z)
)

= {z}.

We call a holomorphic curve that is not the multiple cover of any other

holomorphic curve a simple holomorphic curve. Closed simple holomor-

phic curves are somewhere injective, [25, Proposition 2.5.1].

It is a non-trivial result that by perturbing the almost complex struc-

ture J , we can achieve transversality of the Cauchy-Riemann operator for

every disk in W whose boundary is injective in a totally real submanifold N .

We could hope that this theoretical result would be sufficient for us, because

the considered disks are injective along their boundaries, but we have chosen

a very specific almost complex structure in Section 3.2, and perturbing this

J would destroy the results obtained in that section. Below, we will prove

by hand that ∂̄J is transverse to 0 for the holomorphic disks in our model

neighborhood.

Remark 4.3. Note that often it is not possible to work only with some-

where injective holomorphic curves, and perturbing J will in that case not
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be sufficient to obtain transversality for holomorphic curves. Sometimes one

can work around this problem by requiring that W is semi-positive, see Sec-

tion 4.3. Unfortunately, there are many situations where this approach won’t

work either, as is the case of SFT, where transversality has been one of the

most important outstanding technical problems.

4.1.3. The Bishop Family. In this section, we will show that the disks

that we have found in Section 3.2.2, lying in the model neighborhood are

regular solutions of the Cauchy-Riemann problem.

Before starting the actual proof of our claim, we will briefly recapitulate

the situation described in Section 3.2.2. Let (W,J) be an almost complex

manifold of dimension 2n with boundary that contains a model neighbor-

hood U of the desired form. Remember that U was a subset of C2×T ∗L with

almost complex structure i⊕JL, that we had a function f : C2×T ∗L→ [0,∞)

given by

f(z1, z2,q,p) =
1

2

(

|z1|2 + |z2|2
)

+ fL(q,p),

and that the model neighborhood U was the subset

U :=
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

.

The totally real manifold N is the image of the map

(z;q) ∈D
2
ε ×L 
→

(

z,

√

1− |z|2;q,0
)

⊂ ∂U.

For every pair (s,q) ∈ [1− δ,1)×L, we find a holomorphic map of the form

us,q :
(

D
2, ∂D2

)

→ U

z 
→ (Csz, s;q,0)

with Cs =
√
1− s2. We call this map a (parametrized) Bishop disk, and

we call the collection of these disks, the Bishop family. Sometimes we will

not be precise about whether the disks are parametrized or not, and whether

we speak about disks with or without a marked point (see Section 4.2), but

we hope that in each situation it will be clear what is meant.

To check that a given Bishop disk us,q is regular, we will first compute the

index of the linearized Cauchy-Riemann operator that gives us the expected

dimension for the space of holomorphic disks containing the Bishop family.

Note that the observed dimension is 1 + dimL+3= 1+ (n− 2) + 3 = n+2.
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The first part, 1 + dimL corresponds to the s- and q-parameters of the

family; the three corresponds to the dimension of the group of Möbius trans-

formations acting on the complex unit disk: If us,q is a Bishop disk, and if

ϕ : D2 → D2 is a Möbius transformation, then of course us,q ◦ ϕ will also be

a holomorphic map with admissible boundary condition. On the other hand

we showed in Corollary 3.20 that every holomorphic disk that lies in U is up

to a Möbius transformation one of the Bishop disks.

For the index computations, it suffices by Section 4.1.1 to trivialize the

bundle EC := u∗s,qTW over D2, and study the topology of the totally real

subbundle ER = u∗s,qTN over ∂D2.

Before starting any concrete computations, we will significantly simplify

the setup by choosing a particular chart: Note that the T ∗L-part of a Bishop

disk us,q is constant, we can hence choose a chart diffeomorphic to R2n−4 =

{(x1, . . . , xn−2;y1, . . . , yn−2)} for T ∗L with the properties

• the point (q,0) corresponds to the origin,

• the almost complex structure JL is represented at the origin by the

standard i,

• the intersections of the 0-section L with the chart corresponds to the

subspace (x1, . . . , xn−2; 0, . . . ,0).

In the chosen chart, we write us,q as

us,q(z) = (Csz, s; 0, . . . ,0) ∈C
2 ×R

2n−4

with Cs =
√
1− s2. By our assumption, the complex structure on the second

factor is at the origin of R2n−4 equal to i, and there is then a direct identi-

fication of u∗s,qTW with C2 ×Cn−2. The submanifold N corresponds in the

chart to

{

(z1, z2;x1, . . . , xn−2,0, . . . ,0) ∈C
2 ×R

2n−4
∣

∣ Imz2 = 0, |z1|2 + |z2|2 = 1
}

.

The boundary of us,q is given by eiϕ 
→ (
√
1− s2eiϕ, s; 0, . . . ,0), and the tan-

gent space of TN over this loop is spanned over R by the vector fields

(

ieiϕ,0; 0, . . . ,0
)

,

(

− s√
1− s2

eiϕ,1; 0, . . . ,0

)

, (0,0; 1,0, . . . ,0), . . . ,

(0,0; 0, . . . ,0,1,0, . . . ,0).
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We can now easily compute the Maslov index μ(EC,ER) as

deg
detA2

det(A∗A)
= deg

−e2iϕ

1
= 2,

where A is the matrix composed by the vector fields given above. Hence we

obtain for the index

indu ∂̄J =
1

2
dimW + μ

(

u∗s,qTW,u∗s.qTN
)

= n+ 2,

which corresponds to the observed dimension computed above.

We will now show that the linearized operator D̄J is surjective. We do

not do this directly, but we compute instead the dimension of its kernel, and

show that it is equal (and not larger than) the Fredholm index. From the

definition of the index

indu ∂̄J := ker D̄J(u)− coker D̄J(u),

we see that the cokernel needs to be trivial, and this way the surjectivity

result follows.

We now compute the linearized Cauchy-Riemann operator at a Bishop

disk us,q. Let vt be a smooth family of maps

vt :
(

D
2, ∂D2

)

→ (U,N)

with v0 = us,q (think of each vt as a smooth map, but for an analytically

correct study, we would need to allow here for Sobolev maps).

In this chart, we can write the family vt as

vt(z) =
(

z1(z, t), z2(z, t);x(z, t),y(z, t)
)

∈C
2 ×R

2n−4,

where we have set x(z, t) = (x1(z, t), . . . , xn−2(z, t)) and y(z, t) = (y1(z, t), . . . ,

yn−2(z, t)), and we require that the boundary of each of the vt has to lie in N .

When we now take the derivative of vt with respect to t at t= 0, we obtain

a vector in Tus,q
B that is represented by a map

v̇0 : D
2 →C

2 ×R
2(n−2), z 
→

(

ż1(z), ż2(z); ẋ(z), ẏ(z)
)

with boundary conditions ẏ(z) = 0 and Im ż2(z) = 0 for every z ∈ ∂D2. Fur-

thermore taking the derivative of |z1(z, t)|2+ |z2(z, t)|2 = 1 for every z ∈ ∂D2

with respect to t, we obtain the condition

z̄1(z,0) · ż1(z) + z1(z,0) · ˙̄z1(z) + z̄2(z,0) · ż2(z) + z2(z,0) · ˙̄z2(z) = 0,
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which simplifies by using the explicit form of (z1(z,0), z2(z,0)) to

Csz̄ · ż1(z) +Csz · ˙̄z1(z) + sż2(z) + s ˙̄z2(z) = 0

for every z ∈ ∂D2.

The linearization of the Cauchy-Riemann operator ∂̄J at us,q given by

D̄J · v̇0 :=
d

dt

∣

∣

∣

∣

t=0

∂̄Jvs

decomposes into the C2-part

(idż1 − dż1i, idż2 − dż2i)

and the R2(n−2)-part

d

dt

∣

∣

∣

∣

t=0

(

JL
(

x(z, t),y(z, t)
)

·
(

dx(z, t), dy(z, t)
)

−
(

dx(z, t) · i, dy(z, t) · i
))

.

The second part can be significantly simplified by using first the product

rule, and applying then that x(z,0) = 0 and y(z,0) = 0 are constant so that

their differentials vanish. We obtain then

JL(0,0) · (dẋ, dẏ)− (dẋ · i, dẏ · i),

and using that JL(0,0) = i, it finally reduces to

(dẏ− dẋ · i,−dẋ− dẏ · i).

We have shown that linearized Cauchy-Riemann operator simplifies for all

coordinates to the standard Cauchy-Riemann operator, so that if v̇0(z) =

(ż1(z), ż2(z); ẋ(z), ẏ(z)) lies in the kernel of D̄J then the coordinate functions

ż1(z), ż2(z) and ẋ(z)+ iẏ(z) need all to be holomorphic in the classical sense.

Now using the boundary conditions, we easily deduce that ẏ(z) needs to

vanish, because it is a harmonic function, and it takes both maximum and

minimum on ∂D2. A direct consequence of ẏ ≡ 0 and the Cauchy-Riemann

equation is that ẋ(z) will be everywhere constant. We get the analogous

result for the function ż2(z), so that we can write

v̇0(z) =
(

ż1(z), ṡ; q̇0,0
)

,

where ṡ is a real constant, and q̇0 is a fixed vector in R2(n−2), and we only

need to still understand the holomorphic function ż1(z).
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The boundary condition for ż1(z) is z̄ · ż1(z) + z · ˙̄z1(z) =−2sṡ
Cs

for every

z ∈ ∂D2. Using that the function ż1(z) is holomorphic, we can write it as

power series in the form

ż1(z) =

∞
∑

k=0

akz
k

and we get at eiϕ ∈ ∂D2

ż1
(

eiϕ
)

=

∞
∑

k=0

ak e
ikϕ.

Plugging these series into the equation of the boundary condition, we find

e−iϕ ·
∞
∑

k=0

ak e
ikϕ + eiϕ ·

∞
∑

k=0

āk e
−ikϕ =−2sṡ

Cs

so that
∞
∑

k=0

(

ak e
(k−1) iϕ + āk e

−(k−1) iϕ
)

=−2sṡ

Cs

and by comparing coefficients we see that

a1 + ā1 =−2sṡ

Cs
, a0 + ā2 = 0, ak = 0 for all k ≥ 3.

This means that the three (real) parameters we can choose freely are z0 and

Imz1.

Concluding, we have found that the dimension of the kernel of D̄J is

equal to 3 + 1 + n− 2 = n+ 2 which corresponds to the Fredholm index of

our problem. Thus there is no need to perturb J on the neighborhood of the

Bishop family to obtain regularity.

Corollary 4.4. Let (W,ω) be a compact symplectic manifold that is a weak

symplectic filling of a contact manifold (M,ξ). Suppose that N is either a Lob

or a bLob in M , then we can choose close to the binding and to the boundary

of N the almost complex structure described in the previous sections, and

extend it to an almost complex structure J that is tamed by ω, whose bundle

of complex tangencies along M is ξ and that makes M J-convex. By a generic

perturbation away from the binding and the boundary of N , we can achieve

that all somewhere injective holomorphic curves become regular.

We call a J with these properties an almost complex structure

adapted to N .
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The argument in the proof of the corollary above is that the Bishop disks

are already regular, and that all other simple holomorphic curves have to lie

outside the neighborhood where we require an explicit form for J . Thus it

suffices to perturb outside these domains to obtain regularity for every other

simple curve.

4.2. The Moduli Space of Holomorphic Disks with a Marked

Point

Until now, we only have studied the space of certain J -holomorphic maps

˜M
(

D
2,N ;J

)

=
{

u : D2 →W | ∂̄Ju= 0 and u
(

∂D2
)

⊂N
}

,

but many maps correspond to different parametrizations of the same geo-

metric disk. To get rid of this ambiguity (and to obtain compactness), we

quotient the space of maps by the biholomorphic reparametrizations of the

unit disk, that means, by the Möbius transformations, but we will also add

a marked point z0 ∈ D2 to preserve the structure of the geometric disk. To

simplify the notation, we will also omit the almost complex structure J in
˜M(D2,N).

From now on let

˜M
(

D
2,N ;z0

)

=
{

(u, z0) | z0 ∈D
2, ∂̄Ju= 0 and u

(

∂D2
)

⊂N
}

= ˜M
(

D
2,N

)

×D
2

be the space of holomorphic maps together with a special point z0 ∈D2 that

will be called the marked point. The moduli space we are interested in

is the space of equivalence classes

M
(

D
2,N ;z0

)

= ˜M
(

D
2,N ;z0

)

/∼

where we identify two elements (u, z0) and (u′, z′0), if and only if there is a

biholomorphism ϕ : D2 →D2 such that u= u′ ◦ϕ−1 and z0 = ϕ(z′0). The map

(u, z) 
→ u(z) descends to a well defined map

ev : M
(

D
2,N ;z0

)

→W

[u, z0] 
→ u(z0)

on the moduli space, which we call the evaluation map.
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Let N be a Lob or a bLob, and assume that B0 is one of the components

of the binding of N . Since this is the only situation, we are really inter-

ested in these notes, we introduce the notation ˜M0(D
2,N) for the connected

component in ˜M(D2,N) that contains the Bishop family around B0. When

adding a marked point, we write ˜M0(D
2,N ;z0) and M0(D

2,N ;z0) for the

corresponding subspaces.

It is easy to see that M0(D
2,N ;z0) is a smooth (non-compact) man-

ifold with boundary. Note first that ˜M0(D
2,N ;z0) is also a smooth and

non-compact manifold with boundary: If J is regular, we know that
˜M0(D

2,N) is a smooth manifold, and so the boundary of the product man-

ifold ˜M0(D
2,N ;z0) is

∂ ˜M0

(

D
2,N ;z0

)

= ˜M0

(

D
2,N

)

× ∂D2.

Passing to the quotient preserves this structure, because the boundary

of the maps in ˜M0(D
2,N) intersects each of the pages of the open book

exactly once (this is a consequence of Corollary 3.11 and Section 3.2.2), and

hence each of the disks is injective along its boundary. The only Möbius

transformation that preserves the boundary pointwise is the identity, hence

it follows that the group of Möbius transformations acts smoothly, freely and

properly on ˜M0(D
2,N ;z0), and hence the quotient will be a smooth manifold

of dimension

dimM0

(

D
2,N ;z0

)

= dim ˜M0

(

D
2,N ;z0

)

− 3 = indu ∂̄J + 2− 3 = n+ 1.

As before the points on the boundary of M0(D
2,N ;z0) are the classes [u, z]

with z ∈ ∂D2. It is also clear that the evaluation map evz0 : M0(D
2,N ;z0)→

W is smooth.

Remember that the Bishop disks contract to points as they approach

the binding B0. We will show that we incorporate B0 into the moduli

space M0(D
2,N ;z0) and that the resulting space carries a natural smooth

structure that corresponds to the intuitive picture of disks collapsing to one

point.

The neighborhood of the binding B0 in W is diffeomorphic to the model

U =
{

(z1, z2;q,p) ∈C
2 × T ∗B0 |Re(z2)> 1− δ

}

∩ h−1
(

(−∞,1/2]
)

for small δ > 0 with the function

h(z1, z2) =
1

2

(

|z1|2 + |z2|2
)

+ fB0
(q,p),

see Section 3.2.2.
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The content of Proposition 3.21 and of Corollary 3.20 is that for every

point

(z, s;q0,0) ∈ U

with s ∈ (1− δ,1) and q0 in the 0-section of T ∗B0,

• there is up to a Möbius transformation a unique holomorphic map u ∈
˜M0(D

2,N) containing that point in its image, and

• ˜M(D2,N) does not contain any holomorphic maps whose image is not

entirely contained in U ∩ (C×R×B0).

As a result, it follows that V = ev−1
z0 (U) is an open subset of

M0(D
2,N ;z0), and that the restriction of the evaluation map

evz0 |V : V → U

is a diffeomorphism onto U ∩ (C× (1− δ,1)×B0). The closure of this subset

is the smooth submanifold

U ∩ (C×R×B0),

which we obtain by including the binding {0} × {1} ×B0 of N .

Using the evaluation map, we can identify V with its image in U , and

this way glue B0 to the moduli space M0(D
2,N ;z0). The new space is also a

smooth manifold with boundary, and the evaluation map extends to it, and

is a diffeomorphism onto its image in U so that we can effectively identify

U with a subset of the moduli space. In particular, it follows that B0 is a

submanifold that is of codimension 2 in the boundary of the moduli space.

The aim of the next section will consist in studying the Gromov com-

pactification of M0(D
2,N ;z0).

4.3. Compactness

Gromov compactness is a result that describes the possible limits of a se-

quence of holomorphic curves, and ensures under certain conditions that

every such sequence contains a converging subsequence. In the limit, a given

sequence of holomorphic curves may break into several components, called

bubbles, each of which is again a holomorphic curve. We will not describe

in detail what “convergence” in this sense really means, but we only sketch
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the idea: The holomorphic curves in a moduli space can be represented by

holomorphic maps, and in the optimal case, one could hope that by choosing

for each curve in the given sequence a suitable representative, we might have

uniform convergence of the maps, and this way we would find the limit of

the sequence as a proper holomorphic curve. Unfortunately, this is usually

wrong, but it might be true that for the correct choice of parametrization we

have convergence on subdomains. Choosing different reparametrizations, we

then obtain convergence on different domains, and each such domain gives

then rise to a bubble, that means, a holomorphic curve that represents one

component of the Gromov limit.

Theorem 4.5 (Gromov compactness). Let (W,J) be a compact almost com-

plex manifold (with or without boundary), and assume that J is tamed by a

symplectic form ω. Let L be a compact totally real submanifold. Choose a

sequence of J-holomorphic maps uk : (D
2, ∂D2)→ (W,L) whose ω-energy

E(uk) :=

∫

D2

u∗kω

is bounded by a constant C > 0.

Then there is a subsequence of (ukl
)l that converges in the Gromov sense

to a bubble tree composed of a finite family of non-constant holomorphic disks

u
(1)
∞ , . . . , u

(K)
∞ whose boundary lies in L, and a finite family of non-constant

holomorphic spheres v
(1)
∞ , . . . , v

(K′)
∞ . The total energy is preserved so that

lim
l→∞

E(ukl
) =

K
∑

j=1

E
(

u(j)∞
)

+

K′
∑

j=1

E
(

v(j)∞
)

.

If each of the disks uk is equipped with a marked point zk ∈D2, then after

possibly reducing to a another subsequence, there is a marked point z∞ on

one of the components of the bubble tree such that limk zk = z∞ in a suitable

sense.

The ω-energy is fundamental in the proof of the compactness theorem to

limit the number of possible bubbles: By [25, Proposition 4.1.4], there exists

in the situation of Theorem 4.5 a constant �> 0 that bounds the energy of

every holomorphic sphere or every holomorphic disk uk : (D
2, ∂D2)→ (W,L)

from below. Since every bubble needs to have at least an �-quantum of energy,

and since the total energy of the curves in the sequence is bounded by C, the

limit curve will never break into more than C/� bubbles (the upper bound of

the energy is also used to make sure that each bubble is a compact surface).



232 K. Niederkrüger

We will show in the rest of this section that we can apply Gromov

compactness to sequences of holomorphic disks lying in the moduli space

M0(D
2,N) studied in the previous section, and how we can incorporate these

limits into M0(D
2,N ;z0) to construct the compactification M0(D

2,N ;z0).

Proposition 4.6. Let N be a Lob or a bLob in the contact boundary (M,ξ)

of a symplectic filling (W,ω), and assume that we find a contact form α for

ξ such that ω|TN = dα|TN .

There is a global energy bound C > 0 for all holomorphic disks in
˜M0(D

2,N).

Proof. There is a slight complication in our proof, because we may not

assume that ω is globally exact, which would allow us to obtain the energy

of a holomorphic disk by integrating over the boundary of the disk. To prove

the desired statement, proceed as follows: Let u : (D2, ∂D2)→ (W,N) be any

element in ˜M0(D
2,N). By our assumption, there exists a smooth path of

maps ut that starts at the constant map u0(z)≡ b0 ∈B0 in the binding and

ends at the chosen map u1 = u. This family of disks may be interpreted as a

map from the 3-ball into W . The boundary consists of the image of u1, and

the union of the boundary of all disks ut|∂D2 .

Using Stokes’ theorem, we get

0 =

∫

[0,1]×D2

u∗tdω =

∫

D2

u∗1ω+

∫

[0,1]×∂D2

u∗tω

so that E(u) =−
∫

[0,1]×∂D2 u
∗
tω.

By our assumption, we have a contact form on the contact boundary M

for which ω|TN = dα|TN , so that using Stokes’ theorem a second time (and

that u0(z) = b0) we get

E(u) =

∫

∂D2

u∗α.

The Legendrian foliation on N is an open book whose pages are fibers

of a fibration ϑ : N \B → S1. Hence the 1-form dϑ and α|TN have the same

kernel, and it follows that there exists a smooth function f : N → [0,∞) such

that

α|TN = f dϑ.

The function f vanishes on the binding and on the boundary of a bLob, and

f is hence bounded on N so that we define C := 2πmaxx∈N |f(x)|.
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Using that the boundary of u intersects every leaf of the open book

exactly once, we obtain for the energy of u the estimate

E(u) =

∫

∂D2

u∗α≤max
x∈N

∣

∣f(x)
∣

∣

∫

∂D2

u∗dϑ≤ 2πmax
x∈N

∣

∣f(x)
∣

∣=C. �

With the given energy bound, we obtain now Gromov compactness in

form of the following corollary.

Corollary 4.7. Let N be a Lob or a bLob in the contact boundary (M,ξ)

of a symplectic filling (W,ω), and assume that we find a contact form α for

ξ such that ω|TN = dα|TN . Let (uk)k be a sequence of holomorphic maps in
˜M0(D

2,N).

There exists a subsequence (ukl
)l that converges either

• uniformly up to reparametrizations of the domain to a J-holomorphic

map u∞ ∈ ˜M0(D
2,N),

• to a constant disk u∞(z)≡ b0 lying in the binding of N ,

• or to a bubble tree composed of a single holomorphic disk u∞ :

(D2, ∂D2) → (W,N) and a finite family of non-constant holomorphic

spheres v1, . . . , vj with j ≥ 1.

Proof. We will apply Theorem 4.5. The submanifold N is not totally real

along the binding B and ∂N , but we simply remove a small open neighbor-

hood of both sets. By Proposition 3.24, none of the holomorphic disks uk
may get close to ∂N , and by Proposition 3.21 we know precisely how the

curves look like that intersect a neighborhood of B. If we find disks in (uk)k
that get arbitrarily close to the binding of N , then using that B is compact,

we may choose a subsequence that converges to a single point in the binding.

If (uk)k stays at finite distance from B, we may assume that the neighbor-

hood, we have removed from N is so small that the holomorphic disks we

are studying all lie inside.

If the sequence (uk)k does not contain any subsequence that can be

reparametrized in such a way that it converges to a single non-constant disk

u∞, we use Gromov compactness to obtain a subsequence that splits into a

finite collection of holomorphic spheres and disks. But as a consequence from

Corollary 3.11, we see that non-constant holomorphic disks attached to N

need to intersect the pages of the open book transversely in positive direc-

tion. A sequence of holomorphic disks that intersects every page of the open

book exactly once, cannot split into several disks intersecting pages several
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times. In particular possible bubble trees contain by this argument a single

disk in its limit. �

Above, we have obtained compactness for a sequence of disks, but we

would like to understand how these limits can be incorporated into the moduli

space. Adding the bubble trees to the space of parametrized maps does not

give rise to a valid topology, because the bubbling phenomenon can only be

understood by using different reparametrizations of the disk to recover all

components of the bubble tree.

We will denote the compactification of M0(D
2,N ;z0) by M0(D

2,N ;z0).

For us, it is not necessary to understand the topology of M0(D
2,N ;z0) in

detail, but it will be sufficient to see that bubbling is a “codimension 2 phe-

nomenon”. In fact, it is not the topology of the moduli space itself we are

interested in, but our aim is to obtain information about the symplectic

manifold. For this we want to make sure that the image under the eval-

uation map of all bubble trees that appear in the limit, that means, of

M0(D
2,N ;z0) \M0(D

2,N ;z0) is contained in the image of a smooth map

defined on a finite union of manifolds each of dimension at most

dimM0

(

D
2,N ;z0

)

− 2.

For this to be true, we need to impose additional conditions for (W,ω).

Definition. A 2n-dimensional symplectic manifold (M,ω) is called

• symplectically aspherical, if ω([A]) vanishes for every A ∈ π2(M).

• It is called semipositive if every A ∈ π2(M) with ω([A]) > 0 and

c1(A)≥ 3− n has non-negative Chern number.

Note that every symplectic 4- or 6-manifold is obviously semipositive.

In a symplectically aspherical manifold no J -holomorphic spheres exist,

because their energy would be zero. So in particular they may not appear

in any bubble tree and Corollary 4.7 implies in our situation that every

sequence of holomorphic disks contains a subsequence that either collapses

into the binding or that converges to a single disk in M0(D
2,N ;z0). Using

the results of Section 4.2, we obtain the following corollary.

Corollary 4.8. Let (W,ω) be a compact symplectically aspherical manifold

that is a weak filling of a contact manifold (M,ξ). Let N be a Lob or a
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bLob in M , and assume that we find a contact form for ξ such that ω|TN =

dα|TN . Choose an almost complex structure J that is adapted to N (as in

Corollary 4.4).

Then the compactification of the moduli space M0(D
2,N ;z0) is a smooth

compact manifold

M0

(

D
2,N ;z0

)

=M0

(

D
2,N ;z0

)

∪ (binding of N)

with boundary. The binding of N is a submanifold of codimension 2 in the

boundary ∂M0(D
2,N ;z0).

The condition of asphericity is very strong, and we will obtain more gen-

eral results by studying instead semipositive manifolds. The important point

here is that a generic almost complex structure only ensure transversality

for somewhere injective holomorphic curves, see Section 4.1.2. Even though

the holomorphic disks in M0(D
2,N ;z0) are simple, it could happen that once

the disks bubble, there appear spheres that are multiple covers. For these, we

cannot guarantee transversality, and hence we cannot directly predict if the

compactification of M0(D
2,N ;z0) consists of adding “codimension 2 strata”

or if we will be forced to include too many bubble trees.

Still, we know that every sphere that is not simple is the multiple cover

of a simple one (by the Riemann-Hurwitz formula a sphere can only multiply

cover a sphere), we can hence compute the dimension of the moduli space of

the underlying simple spheres, and use this information as an upper bound

for the dimension of the spheres that appear in the bubble tree.

Let v : S2 → W be a holomorphic sphere that is a k-fold cover of a

sphere ṽ representing a homology class [v] and [ṽ] ∈H2(W,Z) respectively

with [v] = k[ṽ] and with ω([ṽ])> 0. The expected dimension of the space of

maps containing v is by an index formula

indv ∂̄J = 2n+ 2c1
(

[v]
)

= 2n+ 2kc1
(

[ṽ]
)

.

The space of biholomorphisms of S2 has dimension 6, and hence the expected

dimension of the moduli space of unparametrized spheres that contain [v] is

indv ∂̄J − 6 = 2(n− 3) + 2kc1([ṽ]).

As we explained above and in Section 4.1.2, this expected dimension

does not correspond in general to the observed dimension of the bubble

trees, instead we study the expected dimension of the underlying simple

spheres. The dimension of the space containing ṽ is given by indṽ ∂̄J − 6 =
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2(n − 3) + 2c1([ṽ]). If c1([ṽ]) < n − 3, then the expected dimension will be

negative, and since we obtain regularity of all simple holomorphic curves by

choosing a generic almost complex structure, it follows that the moduli space

containing ṽ is generically empty. As a consequence bubble trees appearing

as limits do not contain any component that is the k-fold cover of a simple

sphere representing the homology class [ṽ].

If c1([ṽ])≥ n− 3, the definition of semipositivity implies that c1([ṽ])≥ 0.

When we compare the expected dimension of the moduli space containing v

with the one of the underlying disk ṽ, we observe that indv ∂̄J − 6 = 2(n−
3) + 2kc1([ṽ])≥ 2(n− 3) + 2c1([ṽ]) = indṽ ∂̄J − 6.

Consider now the image in W of all spheres in the moduli space of v that

are k-fold multiple covers of some simple sphere. Their image is contained

in the image of the simple spheres lying in the same moduli space as ṽ.

The dimension of this second moduli space is smaller or equal than the

expected dimension of the initial moduli space containing v, and even though

we cannot ensure regularity for v, we have an estimate on the dimension of

the subset containing all singular spheres.

The following result allows us to find the desired bound for the dimension

of the image of complete bubble trees.

Proposition 4.9. Assume that (W,ω) is semipositive. To compactify the

moduli space M0(W,N,z0), one has to add bubbled curves. We find a fi-

nite set of manifolds X1, . . . ,XN with dimXj ≤ dimM0(W,N,z0) − 2 and

smooth maps fj : Xj →W such that the image of the bubbled curves under

the evaluation map evz0 is contained in
⋃

fj(Xj).

When we consider instead the compactification of the boundary

∂M0(W,N,z0), that means the space of holomorphic disks with a marked

point on the boundary of the disk only, then we obtain the analogue result,

only that the manifolds X1, . . . ,XN have dimension dimXj ≤
dim∂M0(W,N,z0)− 2 = dimM0(W,N,z0)− 3.

Proof. The standard way to treat bubbled curves consists in consider-

ing them as elements in a bubble tree: Here such a tree is composed by

a simple holomorphic disk u0 : (D
2,S1)→ (W,N) and holomorphic spheres

u1, . . . , uk′ : S2 →W . These holomorphic curves are connected to each other

in a certain way. We formalize this relation by saying that the holomorphic
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curves are vertices in a tree, i.e. in a connected graph without cycles. We

denote the edges of this graph by {ui, uj}, 0≤ i < j ≤ k′.

Now we assign to any edge two nodal points zij and zji, the first one

in the domain of the bubble ui, the other one in the domain of uj , and

we require that evzij (ui) = evzji(uj). For technical reasons, we also require

nodal points on each holomorphic curve to be pairwise distinct. To include

into the theory, trees with more than one bubble connected at the same

point to a holomorphic curve, we add “ghost bubbles”. These are constant

holomorphic spheres inserted at the point where several bubbles are joined to

a single curve. Now all the links at that point are opened and reattached at

the ghost bubble. Ghost bubbles are the only constant holomorphic spheres

we allow in a bubble tree.

The aim is to give a manifold structure to these bubble trees, but unfor-

tunately this is not always possible, when multiply covered spheres appear

in the bubble tree.

Instead, we note that the image of every bubble tree is equal to the image

of a simple bubble tree, that means, to a tree, where every holomorphic

sphere is simple and any two spheres have different image. Since we are only

interested in the image of the evaluation map on the bubble trees, it is for

our purposes equivalent to consider the simple bubble tree instead of the

original one. The disk u0 is always simple, and does not need to be replaced

by another simple curve.

Let u0, u1, . . . , uk′ be the holomorphic curves composing the original bub-

ble tree, and let Ai ∈H2(W ) be the homology class represented by the holo-

morphic sphere ui. The simple tree is composed by u0, v1, . . . , vk such that

for every uj there is a bubble sphere vij with equal image

uj
(

S
2
)

= vij
(

S
2
)

and in particular Aj =mjBij , where Bij = [vij ] ∈H2(W ) and mj ≥ 1 is an

integer. Write also A for the sum
∑k′

j=1Aj and B for the sum
∑k

i=1Bi. Below

we will compute the dimension of this simple bubble tree.

The initial bubble tree u0, u1, . . . , uk′ is the limit of a sequence in the

moduli space M0(W,N,z0). Hence the connected sum u∞ := u0# · · ·#uk′ is,

as element of π2(W,N), homotopic to a disk u in the bishop family, and the

Maslov indeces

μ(u) := μ
(

u∗TW,u∗TN
)

and μ(u∞) := μ
(

u∗∞TW,u∗∞TN
)
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have to be equal. With the standard rules for the Maslov index (see for

example [25, Appendix C.3]), we obtain

2 = μ(u) = μ(u∞) = μ(u0) +

k′
∑

j=1

2c1
(

[uj ]
)

= μ(u0) + 2c1(A).

The dimension of the unconnected set of holomorphic curves
˜M[u0](W,N,z0)×

∏k
j=1

˜MBj
(W ) for the simple bubble tree is

(

n+ μ(u0)
)

+

k
∑

j=1

2
(

n+ c1(Bj)
)

= n+ 2− 2c1(A) + 2nk+

k
∑

j=1

2c1(Bj)

= n+ 2+ 2nk+ 2
(

c1(B)− c1(A)
)

.

In the next step, we want to consider the subset of connected bubbles, i.e.

we choose a total of k pairs of nodal points, which then have to be pairwise

equal under the evaluation map. The nodal points span a manifold

Z(2k)⊂
{

(1, . . . ,2k)→D
2 � S

2 � · · · � S
2
}

of dimension 4k. The dimension reduction comes from requiring that the

evaluation map

ev : ˜M[u0](W,N,z0)×
k
∏

j=1

˜MBj
(W )×Z(2k)→W 2k

sends pairs of nodal points to the same image in the symplectic manifold.

By regularity and transversality of the evaluation map to the diagonal sub-

manifold �(k) ↪→W 2k, the dimension of the space of holomorphic curves is

reduced by the codimension of �(k), which is 2nk.

As a last step, we have to add the marked point z0 used for the evalu-

ation map evz0 , this way increasing the dimension by 2, and then we take

the quotient by the automorphism group to obtain the moduli space. The

dimension of the automorphism group is 6k+3. Hence the dimension of the

total moduli space is

n+ 2+ 2nk+ 2
(

c1(B)− c1(A)
)

+ 4k− 2nk+ 2− (6k+ 3)

= n+ 1− 2k+ 2
(

c1(B)− c1(A)
)

≤ n+ 1− 2k.

The inequality holds because by the assumption of semipositivity, all the

Chern classes are non-negative on holomorphic spheres, and all coefficients nj
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in the difference c1(B) − c1(A) =
∑

j c1(Bj) −
∑

i c1(Ai) =
∑

j c1(Bj) −
∑

imic1(Bji) =
∑

j njc1(Bj) are non-positive integers.

The computations for the disks in ∂M0(D
2,N ;z0) only differs by the

requirement that the marked point needs to lie on the boundary of the disk u0
instead of moving freely on the bubble tree. Instead of having two degrees of

freedom for this choice, we thus only add one extra dimension. �

4.4. Proof of the Non-fillability Theorem A

Theorem A. Let (M,ξ) be a contact manifold that contains a bLob N , then

M does not admit any semi-positive weak symplectic filling (W,ω) for which

ω|TN is exact.

Assume there were a semi-positive symplectic filling (W,ω) for which

ω|TN is exact. Let α be a positive contact form for ξ. By Proposition 3.14,

we can extend (W,ω) with a collar in such a way that we have ω|TN = dα|TN ,

which will allow us to use the energy estimates of the previous section. Now

we choose an almost complex structure that is adapted to the bLob N as in

Corollary 4.4, and we will study the moduli space M0(D
2,N ;z0) defined in

Section 4.2 of holomorphic disks with one marked point lying in the same

component as the Bishop family around a chosen component B0 of the bind-

ing of N .

Trace a smooth path γ : [0,1] → N that starts at γ(0) ∈ B0 and ends

on the boundary ∂N . Assume further that γ is a regular curve, and that it

intersects the binding and ∂N only on the endpoints of [0,1]. We want to

select a 1-dimensional moduli space in M0(D
2,N ;z0) by only considering

Mγ := ev−1
z0

(

γ(I)
)

.

It will be important for us that γ(I) does not intersect the image of any

bubble trees in M0(D
2,N ;z0) \M0(D

2,N ;z0).

By Proposition 4.9, we have that the bubble trees in ∂M0(D
2,N ;z0) lie in

the image of a finite union of smooth maps defined on manifolds of dimension

dim∂M0(D
2,N ;z0) − 2 = dimN − 2. The subset N \ evz0(bubble trees) is

connected and we can deform γ keeping the endpoints fixed so that it does

not intersect any of the bubble trees.

For a small perturbation of J (away from the binding and the boundary

of N ), we can make sure that the evaluation map evz0 is transverse to the
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path γ(I). If the perturbed J lies sufficiently close to the old one, then γ will

also not intersect any bubble trees for this new J , for otherwise we could

choose a sequence of almost complex structures Jk converging to the unper-

turbed J such that for everyone there existed a bubble tree vk intersecting γ.

We would find a converging subsequence of vk yielding a bubble tree v∞ for

the unperturbed almost complex structure intersecting γ, which contradicts

our assumption.

It follows that Mγ is a collection of compact 1-dimensional submanifolds

of ∂M0(D
2,N ;z0). There is one component in Mγ , which we will denote by

Mγ
0 that contains the Bishop disks that intersect γ([0, ε)). We know that the

Bishop disks are the only disks close to the binding, and hence it follows that

Mγ
0 cannot be a loop that closes, but must be instead a closed interval.

The first endpoint of Mγ
0 is the constant disk with image γ(0) ∈B0, and

we will deduce a contradiction by showing that no holomorphic disk can be

the second endpoint of Mγ
0 .

By Proposition 3.24, there is a small neighborhood of ∂N that cannot be

entered by any holomorphic disk. By our construction the endpoint of Mγ
0

cannot be any bubble tree either. It follows that the endpoint needs to be

a regular disk [u, z0] ∈ ∂M0(D
2,N ;z0) for which the boundary of u lies in

N \ (∂N ∪B) and whose interior points cannot touch ∂W either, because we

are assuming that the boundary of W is convex.

It follows that this regular disk cannot really be the endpoint of Mγ
0 ,

because the evaluation map evz0 will also be transverse to γ at [u, z0] so that

we can extend Mγ
0 further.

This leads to a contradiction that shows that the assumption that the

boundary of W is everywhere convex cannot hold.

4.5. Proof of Theorem B

For the proof, we first recall the definition of the degree of a map.

Definition. Let X and Y be closed oriented n-manifolds. The degree of a

map f : X → Y is the integer d= deg(f) such that

f#[X] = d · [Y ],

where [X] ∈Hn(X,Z) and [Y ] ∈Hn(Y,Z) are the fundamental classes of the

corresponding manifolds. When the manifolds X and Y are not orientable,
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we define the degree to be an element of Z2 using the same formula, where

the fundamental classes are elements in Hn(X,Z2) and Hn(Y,Z2).

Note that we can easily compute the degree of a smooth map f between

smooth manifolds by considering a regular value y0 ∈ Y of f (which by Sard’s

theorem exist in abundance), and adding

deg f =
∑

x∈f−1(y0)

signDfx,

where the point x contributes to the sum with +1, whenever Dfx is orien-

tation preserving, and contributes with −1 otherwise. In case the manifolds

are not orientable, we can always add +1 in the above formula, but need to

take sum over Z2.

Theorem B. Let (M,ξ) be a contact manifold of dimension (2n+ 1) that

contains a Lob N . If M has a weak symplectic filling (W,ω) that is symplec-

tically aspherical, and for which ω|TN is exact, then it follows that N repre-

sents a trivial class in Hn+1(W,Z2). If the first and second Stiefel-Whitney

classes w1(N) and w2(N) vanish, then we obtain that [N ] must be a trivial

class in Hn+1(W,Z).

Using Proposition 3.14 we can assume that ω|TN = dα|TN for a chosen

contact form α. Choose an almost complex structure J on W that is adapted

to the Lob N , and letM0(D
2,N ;z0) be the moduli space of holomorphic disks

with one marked point lying in the same component as the Bishop family

around a chosen component of the binding of N .

Since W is symplectically aspherical, we obtain by Corollary 4.8 that

M0(D
2,N ;z0) is a compact smooth manifold with boundary. It was shown

in [13] that M0(D
2,N ;z0) is orientable if the first and second Stiefel-Whitney

classes of N \ B vanish. With our assumptions this is the case, because

wj(N \B) =wj(N)|(N\B). If M0(D
2,N ;z0) is orientable then M0(D

2,N ;z0)

will also be orientable: If there were an orientation reversing loop γ in the

compactified moduli space (which is obtained from M0(D
2,N ;z0) by gluing

in B as codimension 3 submanifold), then due to the large codimension we

could easily push γ completely into the regular part of the moduli space,

where it would still need to be orientation reversing.

It follows that the boundary ∂M0(D
2,N ;z0) is also homologically a

boundary (either with Z- or Z2-coefficients depending on the orientability

of the considered spaces).
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Denote the restriction of the evaluation map

evz0 |∂M0(D2,N ;z0)
: ∂M0

(

D
2,N ;z0

)

→N,

by f . We know that close to the binding every point is covered by a unique

Bishop disk, this implies by the remarks made above that the degree deg(f)

needs to be ±1.

We have the following obvious equation

evz0 ◦ι∂M = ιN ◦ f,

where ι∂M denotes the embedding of ∂M0(D
2,N ;z0) in M0(D

2,N ;z0) and

ιN the embedding of N in W . The homomorphism induced by ι∂M is the

trivial map on the (n + 1)-st homology group, so that the left side of the

equation gives rise to the 0-map

Hn+1

(

∂M0

(

D
2,N ;z0

)

,R
)

→Hn+1(W,R)

with R being either Z or Z2. Since f# is ± identity, it follows that ιN has to

induce the trivial map on homology, which implies that N is homologically

trivial in W .
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