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1. Lagrangian Floer (Co)homology

1.1. Motivation

Lagrangian Floer homology was introduced by Floer in the late 1980s in or-

der to study the intersection properties of compact Lagrangian submanifolds

in symplectic manifolds and prove an important case of Arnold’s conjecture

concerning intersections between Hamiltonian isotopic Lagrangian subman-

ifolds [12].

Specifically, let (M,ω) be a symplectic manifold (compact, or satisfying a

“bounded geometry” assumption), and let L be a compact Lagrangian sub-

manifold of M . Let ψ ∈Ham(M,ω) be a Hamiltonian diffeomorphism. (Re-

call that a time-dependent Hamiltonian H ∈ C∞(M × [0,1],R) determines

a family of Hamiltonian vector fields Xt via the equation ω(·,Xt) = dHt,

where Ht = H(·, t); integrating these vector fields over t ∈ [0,1] yields the

Hamiltonian diffeomorphism ψ generated by H .)

Theorem 1.1 (Floer [17]). Assume that the symplectic area of any topo-

logical disc in M with boundary in L vanishes. Assume moreover that ψ(L)

and L intersect transversely. Then the number of intersection points of L

and ψ(L) satisfies the lower bound |ψ(L)∩L| ≥
∑

i dimH i(L;Z2).

Note that, by Stokes’ theorem, since ω|L = 0, the symplectic area of a

disc with boundary on L only depends on its class in the relative homotopy

group π2(M,L).

The bound given by Theorem 1.1 is stronger than what one could expect

from purely topological considerations. The assumptions that the diffeomor-

phism ψ is Hamiltonian, and that L does not bound discs of positive sym-

plectic area, are both essential (though the latter can be slightly relaxed in

various ways).

Example 1.2. Consider the cylinder M = R× S1, with the standard area

form, and a simple closed curve L that goes around the cylinder once: then

ψ(L) is also a simple closed curve going around the cylinder once, and the

assumption that ψ ∈Ham(M) means that the total signed area of the 2-chain

bounded by L and ψ(L) is zero. It is then an elementary fact that |ψ(L)∩L| ≥
2, as claimed by Theorem 1.1; see Figure 1 left. On the other hand, the result

becomes false if we only assume that ψ is a symplectomorphism (a large

vertical translation of the cylinder is area-preserving and eventually displaces
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Fig. 1. Arnold’s conjecture on the cylinder R× S1: an example (left) and a non-example
(right)

L away from itself); or if we take L to be a homotopically trivial simple closed

curve, which bounds a disc of positive area (see Figure 1 right).

Floer’s approach is to associate to the pair of Lagrangians (L0,L1) =

(L,ψ(L)) a chain complex CF (L0,L1), freely generated by the intersec-

tion points of L0 and L1, equipped with a differential ∂ : CF (L0,L1) →
CF (L0,L1), with the following properties:

(1) ∂2 = 0, so the Floer cohomology HF (L0,L1) = Ker∂/Im∂ is well-

defined;

(2) if L1 and L′
1 are Hamiltonian isotopic then HF (L0,L1)�HF (L0,L

′
1);

(3) if L1 is Hamiltonian isotopic to L0, then HF (L0,L1)�H∗(L0) (with

suitable coefficients).

Theorem 1.1 then follows immediately, since the rank of HF (L,ψ(L)) �
H∗(L) is bounded by that of the Floer complex CF (L,ψ(L)), which equals

|ψ(L)∩L|.

Formally, Lagrangian Floer (co)homology can be viewed as an infinite-

dimensional analogue of Morse (co)homology for the action functional on

(the universal cover of) the path space P(L0,L1) = {γ : [0,1]→M | γ(0) ∈ L0,

γ(1) ∈ L1},

A
(
γ, [Γ ]

)
=−

∫

Γ
ω,

where (γ, [Γ ]) ∈ P̃(L0,L1) consists of a path γ ∈ P(L0,L1) and an equivalence

class [Γ ] of a homotopy Γ : [0,1]× [0,1]→M between γ and a fixed base point

in the connected component of P(L0,L1) containing γ. The critical points

of A are (lifts of) constant paths at intersection points, and its gradient flow

lines (with respect to the natural L2-metric induced by ω and a compati-
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ble almost-complex structure) are pseudo-holomorphic strips bounded by L0

and L1.

However, the analytic difficulties posed by Morse theory in the infinite-

dimensional setting are such that the actual definition of Floer (co)homology

does not rely on this interpretation: instead, the Floer differential is defined

in terms of moduli spaces of pseudo-holomorphic strips.

1.2. The Floer Differential

Let L0,L1 be compact Lagrangian submanifolds of a symplectic manifold

(M,ω), and assume for now that L0 and L1 intersect transversely, hence at

a finite set of points.

Before we introduce the Floer complex and the Floer differential, a brief

discussion of coefficients is in order. In general, Floer cohomology is defined

with Novikov coefficients (over some base field K, for example K = Q, or

K= Z2).

Definition 1.3. The Novikov ring over a base field K is

Λ0 =

{ ∞∑

i=0

aiT
λi

∣
∣
∣
∣ ai ∈K, λi ∈R≥0, lim

i→∞
λi =+∞

}

.

The Novikov field Λ is the field of fractions of Λ0, i.e.

Λ=

{ ∞∑

i=0

aiT
λi

∣
∣
∣
∣ ai ∈K, λi ∈R, lim

i→∞
λi =+∞

}

.

The Floer complex is then the free Λ-module generated by intersection

points: we denote by X (L0,L1) = L0 ∩L1 the set of generators, and set

CF (L0,L1) =
⊕

p∈X (L0,L1)

Λ · p.

Equip M with an ω-compatible almost-complex structure J . (By a classical

result, the space of ω-compatible almost-complex structures J (M,ω) = {J ∈
End(TM) | J2 =−1 and gJ = ω(·, J ·) is a Riemannian metric} is non-empty

and contractible [28].)

The Floer differential ∂ : CF (L0,L1)→ CF (L0,L1) is defined by count-

ing pseudo-holomorphic strips in M with boundary in L0 and L1: namely,
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given intersection points p, q ∈ X (L0,L1), the coefficient of q in ∂p is ob-

tained by considering the space of maps u : R× [0,1]→M which solve the

Cauchy-Riemann equation ∂̄Ju= 0, i.e.

(1.1)
∂u

∂s
+ J(u)

∂u

∂t
= 0,

subject to the boundary conditions

(1.2)

⎧
⎨

⎩

u(s,0) ∈ L0 and u(s,1) ∈ L1 ∀s ∈R,

lim
s→+∞

u(s, t) = p, lim
s→−∞

u(s, t) = q,

and the finite energy condition

(1.3) E(u) =

∫

u∗ω =

∫∫ ∣
∣
∣
∣
∂u

∂s

∣
∣
∣
∣

2

dsdt <∞.

(Note that, by the Riemann mapping theorem, the strip R× [0,1] is biholo-

morphic to D2 \{±1}, the closed unit disc minus two points on its boundary;

the map u then extends to the closed disc, with the boundary marked points

±1 mapping to p and q.)

Given a homotopy class [u] ∈ π2(M,L0∪L1), we denote by M̂(p, q; [u], J)

the space of solutions of (1.1)–(1.3) representing the class [u], and by

M(p, q; [u], J) its quotient by the action of R by reparametrization (i.e., a ∈R

acts by u 
→ ua(s, t) := u(s− a, t)).

The boundary value problem (1.1)–(1.3) is a Fredholm problem, i.e.

the linearization D∂̄J ,u of ∂̄J at a given solution u is a Fredholm op-

erator. Specifically, D∂̄J ,u is a ∂̄-type first-order differential operator,

whose domain is a suitable space of sections of the pullback bundle

u∗TM (with Lagrangian boundary conditions), for example W 1,p(R ×
[0,1],R×{0,1};u∗TM,u∗|t=0TL0, u

∗
|t=1TL1). The Fredholm index ind([u]) :=

indR(D∂̄J ,u) = dimKerD∂̄J ,u − dimCokerD∂̄J ,u can be computed in terms of

an invariant of the class [u] called the Maslov index, which we discuss below.

The space of solutions M̂(p, q; [u], J) is then a smooth manifold of dimen-

sion ind([u]), provided that all solutions to (1.1)–(1.3) are regular, i.e. the

linearized operator D∂̄J ,u is surjective at each point of M̂(p, q; [u], J). This

transversality property is one of three fundamental technical issues that need

to be addressed for Floer (co)homology to be defined, the other two being the

compactness of the moduli space M(p, q; [u], J), and its orientability (unless

one is content to work over K= Z2).
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Transversality and compactness will be briefly discussed in Section 1.4

below. On the issue of orientations, we will only consider the case where

L0 and L1 are oriented and spin. It is then known that the choice of spin

structures on L0 and L1 determines a canonical orientation of the moduli

spaces of J -holomorphic strips; the construction of this orientation is fairly

technical, so we refer the reader to [19, 42] for details.

Assuming that all these issues have been taken care of, we observe that

when ind([u]) = 1 the moduli space M(p, q; [u], J) is a compact oriented 0-

manifold, i.e. a finite set of points which can be counted with signs. We can

then provisionally define:

Definition 1.4. The Floer differential ∂ :CF (L0,L1)→CF (L0,L1) is the

Λ-linear map defined by

(1.4) ∂(p) =
∑

q∈X (L0,L1)
[u]: ind([u])=1

(
#M

(
p, q; [u], J

))
Tω([u]) q,

where #M(p, q; [u], J) ∈ Z (or Z2) is the signed (or unsigned) count of points

in the moduli space of pseudo-holomorphic strips connecting p to q in the

class [u], and ω([u]) =
∫
u∗ω is the symplectic area of those strips.

In general, the definition needs to be modified by introducing a pertur-

bation term into the Cauchy-Riemann equation in order to achieve transver-

sality (see Section 1.4 below). Thus, the Floer differential actually counts

perturbed pseudo-holomorphic strips connecting perturbed intersection points

of L0 and L1.

The following result is due to Floer for K= Z2:

Theorem 1.5. Assume that [ω] · π2(M,L0) = 0 and [ω] · π2(M,L1) = 0.

Moreover, when char(K) �= 2 assume that L0,L1 are oriented and equipped

with spin structures. Then the Floer differential ∂ is well-defined, satisfies

∂2 = 0, and the Floer cohomology HF (L0,L1) = H∗(CF (L0,L1), ∂) is, up

to isomorphism, independent of the chosen almost-complex structure J and

invariant under Hamiltonian isotopies of L0 or L1.

Remark 1.6. In this text we discuss the chain complex and differential for

Floer cohomology, which is dual to Floer’s original construction. Namely, in

Floer homology, the strip shown on Figure 2 would be considered a trajectory

from q to p rather than from p to q, and the grading conventions are reversed.
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Fig. 2. A pseudo-holomorphic strip contributing to the Floer differential on CF (L0,L1)

Remark 1.7. In general, the sum in the right-hand side of (1.4) can be

infinite. However, Gromov’s compactness theorem ensures that, given any

energy bound E0, there are only finitely many homotopy classes [u] with

ω([u])≤E0 for which the moduli spaces M(p, q; [u], J) are non-empty. Thus,

using Novikov coefficients and weighing counts of strips by area ensures that

the sum in the right-hand side of (1.4) is well-defined.

However, it is sometimes possible to work over smaller coefficient fields.

One such setting is that of exact Lagrangian submanifolds in an exact sym-

plectic manifold. Namely, assume that ω = dθ for some 1-form θ on M , and

there exist functions fi ∈C∞(Li,R) such that θ|Li
= dfi (for i= 0,1). Then,

by Stokes’ theorem, any strip connecting intersection points p and q satisfies∫
u∗ω = (f1(q)− f0(q))− (f1(p)− f0(p)). Thus, rescaling each generator by

p 
→ T f1(p)−f0(p)p, we can eliminate the weights Tω([u]) from (1.4), and work

directly over the coefficient field K instead of Λ.

Floer’s construction [17] was subsequently extended to more general set-

tings, beginning with Oh’s result on monotone Lagrangians [32], and culmi-

nating with the sophisticated methods introduced by Fukaya, Oh, Ohta and

Ono for the general case [19]; however as we will see below, Theorem 1.5 does

not hold in full generality, as pseudo-holomorphic discs with boundary in L0

or L1 “obstruct” Floer cohomology.

1.3. Maslov Index and Grading

The Maslov index plays a similar role in the index formula for pseudo-

holomorphic discs to that played by the first Chern class in that for closed

pseudo-holomorphic curves; in fact it can be viewed as a relative version of

the Chern class.

Denote by LGr(n) the Grassmannian of Lagrangian n-planes in the

symplectic vector space (R2n, ω0). It is a classical fact that the unitary
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group U(n) acts transitively on LGr(n), so that LGr(n)� U(n)/O(n), from

which it follows by an easy calculation that π1(LGr(n))� Z (see e.g. [28]).

This can be understood concretely by using the square of the determinant

map, det2 : U(n)/O(n)→ S1, which induces an isomorphism on fundamental

groups; the Maslov index of a loop in LGr(n) is simply the winding number

of its image under this map.

In a similar vein, consider two paths �0, �1 : [0,1]→ LGr(n) of Lagrangian

subspaces in R
2n, such that �0(0) is transverse to �1(0) and �0(1) is transverse

to �1(1). The Maslov index of the path �1 relative to �0 is then the number

of times (counting with signs and multiplicities) at which �0(t) and �1(t) are

not transverse to each other. (More precisely, it is the intersection number of

the path (�0(t), �1(t)) with the hypersurface in LGr(n)× LGr(n) consisting

of non-transverse pairs of subspaces.)

We now return to our main discussion, and consider a map u :R× [0,1]→
M satisfying the boundary conditions (1.2). Since R× [0,1] is contractible,

the pullback u∗TM is a trivial symplectic vector bundle; fixing a trivializa-

tion, we can view �0 = u∗|R×{0}TL0 and �1 = u∗|R×{1}TL1 as paths (oriented

with s going from +∞ to −∞) in LGr(n), one connecting TpL0 to TqL0 and

the other connecting TpL1 to TqL1. The index of u can then be defined as

the Maslov index of the path �1 relative to �0.

An equivalent definition, which generalizes more readily to the discs

that appear in the definition of product operations, is as follows. Given a

pair of transverse subspaces λ0, λ1 ∈ LGr(n), and identifying R
2n with C

n,

there exists an element A ∈ Sp(2n,R) which maps λ0 to R
n ⊂C

n and λ1 to

(iR)n ⊂ C
n. The subspaces λt = A−1((e−iπt/2

R)n), t ∈ [0,1] then provide a

distinguished homotopy class of path connecting λ0 to λ1 in LGr(n), which

we call the canonical short path.

Definition 1.8. Given p, q ∈ L0 ∩ L1, denote by λp the canonical short

path from TpL0 to TpL1 and by λq that from TqL0 to TqL1. Given a strip

u : R × [0,1] → M connecting p to q, for i ∈ {0,1}, denote by �i the path

u∗|R×{i}TLi oriented with s going from +∞ to −∞, from TpLi to TqLi. View

all these as paths in LGr(n) by fixing a trivialization of u∗TM . The index

of the strip u is then the Maslov index of the closed loop in LGr(n) (based

at TqL0) obtained by concatenating the paths −�0 (i.e. �0 backwards), λp,

�1, and finally −λq.

Example 1.9. Let M = R
2, and consider the strip u depicted in Figure 2:

then it is an easy exercise to check, using either definition, that ind(u) = 1.
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We now discuss the related issue of equipping Floer complexes with a

grading. In order to obtain a Z-grading on CF (L0,L1), one needs to make

sure that the index of a strip depends only on the difference between the

degrees of the two generators it connects, rather than on its homotopy class.

This is ensured by the following two requirements:

(1) The first Chern class of M must be 2-torsion: 2c1(TM) = 0. This

allows one to lift the Grassmannian LGr(TM) of Lagrangian planes

in TM (an LGr(n)-bundle over M ) to a fiberwise universal cover

L̃Gr(TM), the Grassmannian of graded Lagrangian planes in TM (an

L̃Gr(n)-bundle over M ).

Concretely, given a nowhere vanishing section Θ of (Λn
C
T ∗M)⊗2, the

argument of Θ associates to any Lagrangian plane � a phase ϕ(�) =

arg(Θ|�) ∈ S1 =R/2πZ; a graded lift of � is the choice of a real lift of

ϕ̃(�) ∈R of ϕ(�).

(2) The Maslov class of L, μL ∈Hom(π1(L),Z) =H1(L,Z), vanishes. The

Maslov class is by definition the obstruction to consistently choos-

ing graded lifts of the tangent planes to L, i.e. lifting the section of

LGr(TM) over L given by p 
→ TpL to a section of the infinite cyclic

cover L̃Gr(TM). The Lagrangian submanifold L together with the

choice of such a lift is called a graded Lagrangian submanifold of M .

Equivalently, given a nowhere vanishing section of (Λn
C
T ∗M)⊗2, we

can associate to L its phase function ϕL : L→ S1, which maps p ∈ L

to ϕ(TpL) ∈ S1; the Maslov class is then the homotopy class [ϕL] ∈
[L,S1] =H1(L,Z), and a graded lift of L is the choice of a lift ϕ̃L :

L→R.

When these two assumptions are satisfied, fixing graded lifts L̃0, L̃1 of

the Lagrangian submanifolds L0,L1 ⊂M determines a natural Z-grading on

the Floer complex CF (L0,L1) as follows. For all p ∈ L0 ∩ L1, we obtain a

preferred homotopy class of path connecting TpL0 to TpL1 in LGr(TpM) by

connecting the chosen graded lifts of the tangent spaces at p via a path in

L̃Gr(TpM). Combining this path with −λp (the canonical short path from

TpL0 to TpL1, backwards), we obtain a closed loop in LGr(TpM); the degree

of p is by definition the Maslov index of this loop. It is then easy to check

that any strip connecting p to q satisfies

(1.5) ind(u) = deg(q)− deg(p).

In particular the Floer differential (1.4) has degree 1.
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In general, if we do not restrict ourselves to symplectic manifolds with

torsion c1(TM) and Lagrangian submanifolds with vanishing Maslov class,

the natural grading on Floer cohomology is only by a finite cyclic group.

As an important special case, if we simply assume that the Lagrangian sub-

manifolds L0,L1 are oriented, then we have a Z/2-grading, where the degree

of a generator p of CF (L0,L1) is determined by the sign of the intersec-

tion between L0 and L1 at p: namely deg(p) = 0 if the canonical short path

from TpL0 to TpL1 maps the given orientation of TpL0 to that of TpL1, and

deg(p) = 1 otherwise.

(Another approach, which we won’t discuss further, is to enlarge the

coefficient field by a formal variable of non-zero degree to keep track of the

Maslov indices of different homotopy classes. In the monotone case, where

index is proportional to symplectic area, it suffices to give a non-zero degree

to the Novikov parameter T .)

1.4. Transversality and Compactness

We now discuss very briefly the fundamental technical issues of transversality

and compactness.

Transversality of the moduli spaces of pseudo-holomorphic strips, i.e.

the surjectivity of the linearized ∂̄ operator at all solutions, is needed in

order to ensure that the spaces M̂(p, q; [u], J) (and other moduli spaces we

will introduce below) are smooth manifolds of the expected dimension. Still

assuming that L0 and L1 intersect transversely, transversality for strips can

be achieved by replacing the fixed almost-complex structure J in the Cauchy-

Riemann equation (1.1) by a generic family of ω-compatible almost-complex

structures which depend on the coordinate t in the strip R× [0,1].

A more basic issue is that of defining Floer cohomology for Lagrangian

submanifolds which do not intersect transversely (in particular, one would

like to be able to define the Floer cohomology of a Lagrangian with itself, i.e.

the case L0 = L1). In view of the requirement of Hamiltonian isotopy invari-

ance of the construction, the simplest approach is to introduce an inhomoge-

neous Hamiltonian perturbation term into the holomorphic curve equation:

we fix a generic Hamiltonian H ∈C∞([0,1]×M,R), and consider the modi-

fied equation (du−XH ⊗ dt)0,1 = 0, i.e.

(1.6)
∂u

∂s
+ J(t, u)

(
∂u

∂t
−XH(t, u)

)

= 0,
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still subject to the boundary conditions u(s,0) ∈ L0 and u(s,1) ∈ L1 and

a finite energy condition. For s→±∞, the strip u converges no longer to

intersection points but rather to trajectories of the flow of XH which start on

L0 and end on L1: thus the generators of the Floer complex CF (L0,L1) are in

fact defined to be flow lines γ : [0,1]→M , γ̇(t) =XH(t, γ(t)), such that γ(0) ∈
L0 and γ(1) ∈ L1. Equivalently, by considering γ(0), we set X (L0,L1) =

L0 ∩ (φ1
H)−1(L1), where φ1

H ∈Ham(M,ω) is the time 1 flow generated by H .

In this sense, the generators are perturbed intersection points of L0 with L1,

where the perturbation is given by the Hamiltonian diffeomorphism φ1
H .

Remark 1.10. The perturbed equation (1.6) can be recast as a plain

Cauchy-Riemann equation by the following trick: consider ũ(s, t) =

(φt
H)−1(u(s, t)), where φt

H is the flow of XH over the interval [0, t]. Then

∂ũ

∂t
=
(
φt
H

)−1

∗

(
∂u

∂t
−XH

)

,

so Floer’s equation (1.6) becomes

∂ũ

∂s
+ J̃(t, ũ)

∂ũ

∂t
= 0,

where J̃(t) = (φt
H)−1

∗ (J(t)). Hence solutions to Floer’s equation correspond

to honest J̃ -holomorphic strips with boundaries on L0 and (φ1
H)−1(L1).

Compactness of the moduli spaces is governed by Gromov’s compact-

ness theorem, according to which any sequence of J -holomorphic curves

with uniformly bounded energy admits a subsequence which converges, up to

reparametrization, to a nodal tree of J -holomorphic curves. The components

of the limit curve are obtained as limits of different reparametrizations of the

given sequence of curves, focusing on the different regions of the domain in

which a non-zero amount of energy concentrates (“bubbling”). In the case

of a sequence of J -holomorphic strips un :R× [0,1]→M with boundary on

Lagrangian submanifolds L0 and L1, there are three types of phenomena to

consider:

(1) strip breaking : energy concentrates at either end s→±∞, i.e. there

is a sequence an →±∞ such that the translated strips un(s− an, t)

converge to a non-constant limit strip (Figure 3 left);

(2) disc bubbling : energy concentrates at a point on the boundary of the

strip (t ∈ {0,1}), where suitable rescalings of un converge to a J -
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Fig. 3. Possible limits of pseudo-holomorphic strips: a broken strip (left) and a disc
bubble (right)

holomorphic disc in M with boundary entirely contained in either L0

or L1 (Figure 3 right);

(3) sphere bubbling : energy concentrates at an interior point of the strip,

where suitable rescalings of un converge to a J -holomorphic sphere

in M .

As we will see below, strip breaking is the key geometric ingredient in the

proof that the Floer differential squares to zero, provided that disc bubbling

can be excluded. This is not simply a technical issue—in general the Floer

differential does not square to zero, as illustrated by Example 1.11 below.

Another issue posed by disc and sphere bubbling is that of transversality:

the perturbation techniques we have outlined above are in general not suf-

ficient to achieve transversality for limit curves that include disc or sphere

bubble components. More sophisticated techniques, such as those proposed

by Fukaya et al. [19]1, or the polyfolds developed by Hofer-Wysocki-Zehnder

[23], are needed to extend Lagrangian Floer theory to the greatest possible

level of generality.

In our case, the absence of disc and sphere bubbles is ensured by the

assumption that [ω] ·π2(M,Li) = 0 in the statement of Theorem 1.5. A more

general context in which the theory still works is when bubbling can be ex-

cluded for dimension reasons, for instance when all bubbles are guaranteed

to have Maslov index greater than 2. (The important limit case where the

minimal Maslov index is equal to 2 can also be handled by elementary meth-

ods; however, in that case disc bubbling can occur and the Floer differential

does not automatically square to zero.) A common setting where an a priori

lower bound on the Maslov index can be guaranteed is that of monotone

Lagrangian submanifolds in monotone symplectic manifolds, i.e. when the

1The cautious reader should be aware that, as of this writing, the analytic foundations of
this approach are still the subject of some controversy.
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symplectic area of discs and their Maslov index are proportional to each

other [32].

1.5. Sketch of Proof of Theorem 1.5

The proof that the Floer differential squares to zero (under the assumption

that disc and sphere bubbling cannot occur) is conceptually similar to that

for Morse (co)homology.

Fix Lagrangian submanifolds L0 and L1 as in Theorem 1.5, a generic

almost-complex structure J and a Hamiltonian perturbation H so as to en-

sure transversality. Given two generators p, q of the Floer complex, and a

homotopy class [u] with ind([u]) = 2, the moduli space M(p, q; [u], J) is a 1-

dimensional manifold. Since our assumptions exclude the possibilities of disc

or sphere bubbling, Gromov compactness implies that this moduli space can

be compactified to a space M(p, q; [u], J) whose elements are broken strips

connecting p to q and representing the total class [u].

Two-component broken strips of the sort depicted in Figure 3 (left) cor-

respond to products of moduli spaces M(p, r; [u′], J)×M(r, q; [u′′], J), where

r is any generator of the Floer complex and [u′] + [u′′] = [u]. Observe that

the index is additive under such decompositions; moreover, transversality

implies that any non-constant strip must have index at least 1. Thus, the

only possibility is ind([u′]) = ind([u′′]) = 1, and broken configurations with

more than two components cannot occur.

Conversely, a gluing theorem states that every broken strip is locally the

limit of a unique family of index 2 strips, andM(p, q; [u], J) is a 1-dimensional

manifold with boundary, with

(1.7)

∂M
(
p, q; [u], J

)
=

∐

r∈X (L0,L1)
[u′]+[u′′]=[u]

ind([u′])=ind([u′′])=1

(
M

(
p, r;

[
u′
]
, J

)
×M

(
r, q;

[
u′′

]
, J

))

Moreover, the choice of orientations and spin structures on L0 and L1 equips

all these moduli spaces with natural orientations, and (1.7) is compatible with

these orientations (up to an overall sign). Since the total (signed) number of

boundary points of a compact 1-manifold with boundary is always zero, we
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Fig. 4. A counterexample to ∂2 = 0

conclude that

(1.8) ∑

r∈X (L0,L1)
[u′]+[u′′]=[u]

ind([u′])=ind([u′′])=1

(
#M

(
p, r;

[
u′
]
, J

)) (
#M

(
r, q;

[
u′′

]
, J

))
Tω([u′])+ω([u′′]) = 0.

Summing over all possible [u], the left-hand side is precisely the coefficient

of q in ∂2(p); therefore ∂2 = 0.

When L0 and/or L1 bound J -holomorphic discs, the sum (1.8) no

longer cancels, because the boundary of the 1-dimensional moduli space

M(p, q; [u], J) also contains configurations with disc bubbles. The following

example shows that this is an issue even in the monotone case.

Example 1.11. Consider again the cylinder M = R× S1, and let L0 be a

simple closed curve that goes around the cylinder once, and L1 a homotopi-

cally trivial curve intersecting L0 in two points p and q, as shown in Figure 4

left. Then L0 and L1 bound precisely two holomorphic strips of index 1,

denoted by u and v in Figure 4. (There are other holomorphic discs with

boundary on L0 and L1 but those have higher index.) Comparing with the

convention depicted in Figure 2, u is a trajectory from p to q, while v is a

trajectory from q to p: thus we have

∂p=±Tω(u)q and ∂q =±Tω(v)p,

and ∂2 �= 0. To understand why ∂2(p) �= 0, consider the moduli space of index

2 holomorphic strips connecting p to itself. The images of these strips exactly

cover the disc bounded by L1, with a slit along L0, as shown in Figure 4 right.

We can give an explicit description using local coordinates in which L0

corresponds to the real axis and L1 to the unit circle: using the upper half-disc
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minus the points ±1 as domain of our maps instead of the usual R× [0,1] (to

which it is biholomorphic), one easily checks that any index 2 strip connecting

p to itself can be parametrized as

uα(z) =
z2 + α

1 + αz2

for some α ∈ (−1,1) (corresponding to the end point of the slit).

The two ends of this moduli space are different: when α→−1, energy

concentrates at z =±1, and the index 2 strips uα converge to a broken strip

whose nonconstant components are the index 1 strips u and v; whereas for

α→ 1 the maps uα exhibit disc bubbling at z = i, the limit being a constant

strip at p together with a disc bubble whose image is the disc bounded by L1.

Thus, broken strips do not cancel in pairs in the manner needed for ∂2 = 0

to hold.

Once the Floer differential is shown to square to zero, it remains to

prove that Floer cohomology does not depend on the choice of almost-

complex structure and Hamiltonian perturbation. Recall that the spaces of

such choices are contractible. Thus, given two choices (H,J) and (H ′, J ′) (for
which we assume transversality holds), let (H(τ), J(τ)), τ ∈ [0,1] be a (gener-

ically chosen) smooth family which agrees with (H,J) for τ = 0 and (H ′, J ′)
for τ = 1. One can then construct a continuation map F :CF (L0,L1;H,J)→
CF (L0,L1;H

′, J ′) by counting solutions to the equation

(1.9)
∂u

∂s
+ J

(
τ(s), t, u

)
(
∂u

∂t
−XH

(
τ(s), t, u

)
)

= 0,

where τ(s) is a smooth function of s which equals 1 for s � 0 and 0 for

s� 0. Unlike (1.6), the Equation (1.9) is not invariant under translations in

the s direction. Given generators p ∈ X (L0,L1;H) and p′ ∈ X (L0,L1;H
′) of

the respective Floer complexes, the coefficient of p′ in F (p) is defined as a

count of index 0 solutions to (1.9) which converge to p at s→+∞ and to p′

at s→−∞ (weighted by energy as usual).

The proof that F is a chain map, i.e. satisfies ∂′ ◦ F = F ◦ ∂ (again

assuming the absence of bubbling), comes from studying spaces of index

1 solutions to (1.9). These spaces are 1-dimensional manifolds, whose end

points correspond to broken trajectories where the main component is an

index 0 solution to (1.9), either preceded by an index 1 J -holomorphic strip

with perturbation data H (if energy concentrates at s→+∞), or followed

by an index 1 J ′-holomorphic strip with perturbation data H ′ (if energy
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concentrates at s → −∞). The composition F ◦ ∂ counts the first type of

limit configuration, while ∂′ ◦F counts the second type of limit configuration,

and the equality between these two maps follows again from the statement

that the total (signed) number of end points of a compact 1-manifold with

boundary is zero.

Using the reverse homotopy, i.e., considering (1.9) with τ(s) = 0 for s� 0

and 1 for s� 0, one similarly defines a chain map F ′ :CF (L0,L1;H
′, J ′)→

CF (L0,L1;H,J). The chain maps F and F ′ are quasi-inverses, i.e. F ′ ◦F is

homotopic to identity (and similarly for F ◦ F ′). An explicit homotopy can

be obtained by counting index −1 solutions to a one-parameter family of

equations similar to (1.9) but where τ(s) is 0 near ±∞ and is nonzero over

an interval of values of s of varying width.

1.6. The Floer Cohomology HF (L,L)

The Floer cohomology of a Lagrangian submanifold with itself is of particular

interest in the context of Arnold’s conjecture. By Weinstein’s Lagrangian

neighborhood theorem, a neighborhood of a Lagrangian submanifold L in

(M,ω) is symplectomorphic to a neighborhood of the zero section of the

cotangent bundle T ∗L with its standard symplectic form. In light of this, we

first consider the model case of the cotangent bundle.

Example 1.12. Let N be a compact real n-dimensional manifold, and

consider the cotangent bundle T ∗N , with its standard exact symplectic form

(given locally by ω =
∑

dqi ∧ dpi, where qi are local coordinates on N and pi
are the dual coordinates on the fibers of the cotangent bundle). Let L0 be the

zero section, and given a Morse function f :N →R and a small ε > 0, denote

by L1 the graph of the exact 1-form ε df . Then L0,L1 are exact Lagrangian

submanifolds of T ∗N , Hamiltonian isotopic to each other (the Hamiltonian

isotopy is generated by H = ε f ◦ π where π : T ∗N →N is the bundle map);

L0 and L1 intersect transversely at the critical points of f .

Choosing a graded lift of L0, and transporting it through the Hamiltonian

isotopy to define a graded lift of L1, we obtain a grading on the Floer complex

CF (L0,L1); by an explicit calculation, a critical point p of f of Morse index

i(p) defines a generator of the Floer complex of degree deg(p) = n − i(p).

Thus, the grading on the Floer complex agrees with that on the complex

CM∗(f) which defines the Morse cohomology of f .

The Morse differential counts index 1 trajectories of the gradient flow be-

tween critical points of f , and depends on the choice of a Riemannian metric
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g on N , which we assume to satisfy the Morse-Smale transversality condi-

tion. A result of Floer [18] is that, for a suitable choice of (time-dependent)

almost-complex structure J on T ∗N , solutions of Floer’s equation

∂u

∂s
+ J(t, u)

∂u

∂t
= 0

with boundary on L0 and L1 are regular and in one-to-one correspondence

with gradient flow trajectories

γ̇(s) = ε∇f
(
γ(s)

)

on N , the correspondence being given by γ(s) = u(s,0). (Note: an ascending

gradient flow line with γ(s) converging to p as s→ +∞ and q as s→−∞
counts as a trajectory from p to q in the Morse differential.)

To understand this correspondence between moduli spaces, observe that,

at any point x of the zero section, the natural almost-complex structure on

T ∗N induced by the metric g maps the horizontal vector ε∇f(x) ∈ TxN ⊂
Tx(T

∗N) to the vertical vector XH(x) = ε df(x) ∈ T ∗
xN ⊂ Tx(T

∗N). This al-

lows us to construct particularly simple solutions of (1.6) for this almost-

complex structure and the Hamiltonian perturbation −H , with both bound-

aries of the strip mapping to L0: for any gradient flow line γ of f , we obtain a

solution of (1.6) by setting u(s, t) = γ(s). Floer’s construction of strips with

boundary on L0 and L1 is equivalent to this via Remark 1.10.

Thus, for specific choices of perturbation data, after a rescaling of the

generators by p 
→ T εf(p)p, the Floer complex of (L0,L1) is isomorphic to

the Morse complex of f , and the Floer cohomology HF ∗(L0,L1) is iso-

morphic to the Morse cohomology of f (with coefficients in Λ). Using the

independence of Floer cohomology under Hamiltonian isotopies and the

isomorphism between Morse and ordinary cohomology, we conclude that

HF ∗(L0,L0)�HF ∗(L0,L1)�H∗(L0;Λ).

(Since we are in the exact case, by Remark 1.7 one could actually work

directly over K rather than over Novikov coefficients.)

Now we consider the general case of a compact Lagrangian submanifold L

in a symplectic manifold (M,ω), under the assumption that [ω] ·π2(M,L) = 0.

Energy estimates then imply that, for a sufficiently small Hamiltonian pertur-

bation, the pseudo-holomorphic strips that determine the Floer cohomology

HF ∗(L,L) must all be contained in a small tubular neighborhood of L, so

that the calculation of Floer cohomology reduces to Example 1.12, and we

get the following result (due to Floer in the exact case and for K= Z2):



102 D. Auroux

Proposition 1.13. If [ω] · π2(M,L) = 0, then HF ∗(L,L)�H∗(L;Λ).

Together with Theorem 1.5, this implies Arnold’s conjecture (Theo-

rem 1.1).

Example 1.14. Let L be the zero section in T ∗S1 = R× S1 (see Figure 1

left), and consider the Hamiltonian perturbation depicted in the figure, which

comes from a Morse function on L= S1 with a maximum at p and a mini-

mum at q. Then L and ψ(L) bound two index 1 holomorphic strips (shaded

on the figure), both connecting p to q, and with equal areas. However, the

contributions of these two strips to the Floer differential cancel out (this is ob-

vious over K= Z2; when char(K) �= 2 a verification of signs is needed). Thus,

∂p= 0, and HF ∗(L,ψ(L))�H∗(S1), as expected from Proposition 1.13.

Things are different when L bounds pseudo-holomorphic discs, and the

Floer cohomology HF ∗(L,L) (when it is defined) is in general smaller than

H∗(L;Λ). For example, let L be a monotone Lagrangian submanifold in a

monotone symplectic manifold, with minimal Maslov index at least 2; this

is a setting where HF ∗(L,L) is well defined (though no longer Z-graded),

as disc bubbles either do not occur at all or occur in cancelling pairs. Us-

ing again a small multiple εf of a Morse function f on L as Hamiltonian

perturbation, the Floer complex differs from the Morse complex CM∗(f) by

the presence of additional terms in the differential; namely there are index 1

Floer trajectories representing a class in π2(M,L) of Maslov index k and

connecting a critical point p of Morse index i(p) to a critical point q of index

i(q) = i(p) + k − 1. This situation was studied by Oh [32, 33], who showed

that the Floer complex is filtered by index (or equivalently energy), and

there is a spectral sequence starting with the Morse cohomology HM∗(f) (or

equivalently the ordinary cohomology of L), whose successive differentials

account for classes of increasing Maslov index in π2(M,L), and converging

to the Floer cohomology HF ∗(L,L).

It is often easier to study honest pseudo-holomorphic discs with boundary

on L, rather than solutions of Floer’s equation with a Hamiltonian pertur-

bation, or strips with boundary on L and its image under a small isotopy.

This has led to the development of alternative constructions of HF ∗(L,L).

For instance, another model for the Floer cohomology of a monotone La-

grangian submanifold is the pearl complex first introduced in [34] (see also

[15]). In this model, the generators of the Floer complex are again the crit-

ical points of a Morse function f on L, but the differential counts “pearly



A Beginner’s Introduction to Fukaya Categories 103

trajectories”, which arise as limits of Floer trajectories of the sort considered

above as ε → 0. Namely, a pearly trajectory between critical points p and

q of f consists of r ≥ 0 pseudo-holomorphic discs in M with boundary in

L, connected to each other and to p and q by r + 1 gradient flow lines of

f in L. (When there are no discs, a pearly trajectory is simply a gradient

flow line between p and q.) Yet another model, proposed by Fukaya-Oh-

Ohta-Ono [19], uses a chain complex where CF (L,L) = C∗(L) consists of

chains in L, and the differential is the sum of the classical boundary map

and a map defined in terms of moduli spaces of pseudo-holomorphic discs

with boundary on L. This model is computationally convenient, but requires

great care in its construction to address questions such as exactly what sort

of chains are considered and, in the general (non-monotone) case, how to

achieve transversality of the evaluation maps.

2. Product Operations

2.1. The Product

Let L0,L1,L2 be three Lagrangian submanifolds of (M,ω), which we assume

intersect each other transversely and do not bound any pseudo-holomorphic

discs. We now define a product operation on their Floer complexes, i.e. a

map

CF (L1,L2)⊗CF (L0,L1)−→CF (L0,L2).

Given intersection points p1 ∈ X (L0,L1), p2 ∈ X (L1,L2), and q ∈ X (L0,L2),

the coefficient of q in p2 · p1 is a weighted count of pseudo-holomorphic discs

in M with boundary on L0 ∪ L1 ∪ L2 and with corners at p1, p2, q. More

precisely, let D be the closed unit disc minus three boundary points, say for

instance z0 =−1, z1 = e−iπ/3, z2 = eiπ/3, and observe that a neighborhood of

each puncture in D is conformally equivalent to a strip (i.e., the product of

an infinite interval with [0,1]).

Given an almost-complex structure J on M and a homotopy class [u],

we denote by M(p1, p2, q; [u], J) the space of finite energy J -holomorphic

maps u :D→M which extend continuously to the closed disc, mapping the

boundary arcs from z0 to z1, z1 to z2, z2 to z0 to L0,L1,L2 respectively,

and the boundary punctures z1, z2, z0 to p1, p2, q respectively, in the given

homotopy class [u] (see Figure 5).

As in the case of strips, the expected dimension of M(p1, p2, q; [u], J) is

given by the index of the linearized Cauchy-Riemann operator D∂̄J ,u. This



104 D. Auroux

Fig. 5. A pseudo-holomorphic disc contributing to the product map

index can be expressed in terms of the Maslov index, exactly as in Defi-

nition 1.8: we now concatenate the paths given by the tangent spaces to

L0,L1,L2 going counterclockwise along the boundary of u, together with

the appropriate canonical short paths at p1, p2, q, to obtain a closed loop in

LGr(n) whose Maslov index is equal to ind(u). If c1(TM) is 2-torsion and

the Maslov classes of L0,L1,L2 vanish, then after choosing graded lifts of

the Lagrangians we have Z-gradings on the Floer complexes, and one checks

that

(2.1) ind(u) = deg(q)− deg(p1)− deg(p2).

Remark 2.1. The apparent lack of symmetry in the index formula (2.1) is

due to the difference between the gradings on CF (L0,L2) and CF (L2,L0).

Namely, the given intersection point q ∈ L0 ∩ L2 defines generators of both

complexes, whose degrees sum to n (the dimension of Li). In fact, the Floer

complexes CF (L0,L2) and CF (L2,L0) and the differentials on them are dual

to each other, provided that the almost-complex structures and perturbations

are chosen suitably. For instance, the strip depicted in Figure 2 is a trajectory

from p to q in the Floer complex CF (L0,L1), and from q to p in CF (L1,L0).

Assume that transversality holds, so that the moduli spaces M(p1, p2, q;

[u], J) are smooth manifolds; if char(K) �= 2, assume moreover that orienta-

tions and spin structures on L0,L1,L2 have been chosen, so as to determine

orientations of the moduli spaces. Then we define:

Definition 2.2. The Floer product is the Λ-linear map CF (L1,L2) ⊗
CF (L0,L1)→CF (L0,L2) defined by

(2.2) p2 · p1 =
∑

q∈X (L0,L2)
[u]:ind([u])=0

(
#M

(
p1, p2, q; [u], J

))
Tω([u])q.
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As in the previous section, in general this construction needs to be modi-

fied by introducing domain-dependent almost-complex structures and Hamil-

tonian perturbations to achieve transversality. We discuss this below, but for

now we assume transversality holds without further perturbations and ex-

amine the properties of the Floer product.

Proposition 2.3. If [ω] · π2(M,Li) = 0 for all i, then the Floer product

satisfies the Leibniz rule (with suitable signs) with respect to the Floer differ-

entials,

(2.3) ∂(p2 · p1) =±(∂p2) · p1 ± p2 · (∂p1),

and hence induces a well-defined product HF (L1,L2) ⊗ HF (L0,L1) →
HF (L0,L2). Moreover, this induced product on Floer cohomology groups is

independent of the chosen almost-complex structure (and Hamiltonian per-

turbations) and associative.

(However, the chain-level product on Floer complexes is not associative,

as we will see below.)

We now sketch the geometric argument behind the Leibniz rule, which

relies on an examination of index 1 moduli spaces of J -holomorphic discs

and their compactification. Namely, consider a triple of generators p1, p2, q as

above, and let [u] be a homotopy class with ind([u]) = 1. Then (still assuming

transversality) M(p1, p2, q; [u], J) is a smooth 1-dimensional manifold, and by

Gromov compactness admits a compactification M(p1, p2, q; [u], J) obtained

by adding nodal trees of J -holomorphic curves.

Since our assumptions exclude bubbling of discs or spheres, the only

phenomenon that can occur is strip-breaking (when energy concentrates at

one of the three ends of the punctured disc D). Since transversality excludes

the presence of discs of index less than 0 and nonconstant strips of index

less than 1, and since the sum of the indices of the limit components must

be 1, there are only three types of limit configurations to be considered, all

consisting of an index 0 disc with boundary on L0,L1,L2 and an index 1

strip with boundary on two of these three submanifolds; see Figure 6.

The three types of configurations contribute to the coefficient of Tω([u])q

in ∂(p2 · p1) (Figure 6 left), (∂p2) · p1 (middle), and p2 · (∂p1) (right) re-

spectively. On the other hand, a gluing theorem states that every such con-

figuration arises as an end of M(p1, p2, q; [u], J), and that the compactified

moduli space is a 1-dimensional compact manifold with boundary. Moreover,
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Fig. 6. The ends of a 1-dimensional moduli space M(p1, p2, q; [u], J)

the orientations agree up to overall sign factors depending only on the de-

grees of p1 and p2. Since the (signed) total number of boundary points of

M(p1, p2, q; [u], J) is zero, the Leibniz rule (2.3) follows.

Before moving on to higher products, we briefly discuss the issue of

transversality and compatibility in the choice of perturbations. As in the

case of strips, even without assuming that L0,L1,L2 intersect transversely, we

can ensure transversality by introducing domain-dependent almost-complex

structures and Hamiltonian perturbations; however, for the Leibniz rule to

hold, these need to be chosen suitably near the punctures z0, z1, z2. Fix once

and for all “strip-like ends” near the punctures, i.e. biholomorphisms from

R+ × [0,1] (resp. R− × [0,1]) to neighborhoods of the punctures z1 and z2
(resp. z0) in D; we denote by s + it the natural complex coordinate in

each strip-like end. Also fix a 1-form β ∈ Ω1(D), such that β|∂D = 0 and

β = dt in each strip-like end. Now, given L0,L1,L2, we choose a family of

ω-compatible almost-complex structures depending smoothly on z ∈D, i.e.

J ∈C∞(D,J (M,ω)), and a family of HamiltoniansH ∈C∞(D×M,R), with

the property that in each strip-like end J(z) and H(z) depend only on the

coordinate t ∈ [0,1]. We then perturb the Cauchy-Riemann equation to

(2.4) (du−XH ⊗ β)0,1J = 0,

which in each strip-like end reduces to (1.6).

For 0≤ i < j ≤ 2, denote by Hij ∈C∞([0,1]×M,R) and Jij ∈C∞([0,1],

J (M,ω)) the time-dependent Hamiltonians and almost-complex structures

on the strip-like end whose boundaries map to Li and Lj . The solutions of

(2.4) converge no longer to intersection points of Li ∩Lj , but to trajectories

of the time 1 flow generated by Hij which begin on Li and end on Lj , i.e.

generators of the perturbed Floer complex of (Li,Lj) with respect to the

Hamiltonian perturbation Hij . Moreover, when strip breaking occurs, the
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main component remains a solution of (2.4), while the strip component that

breaks off is a solution of (1.6) with respect to Hij and Jij .

Thus, by considering the moduli spaces of solutions to the perturbed

equation (2.4) and proceeding as in Definition 2.2, we obtain a product map

CF (L1,L2;H12, J12)⊗CF (L0,L1;H01, J01)−→CF (L0,L2;H02, J02)

on the perturbed Floer complexes, and Proposition 2.3 still holds (with re-

spect to the perturbed Floer differentials).

2.2. Higher Operations

Given k + 1 Lagrangian submanifolds L0, . . . ,Lk, a construction similar to

those above allows us to define an operation

μk :CF (Lk−1,Lk)⊗ · · · ⊗CF (L1,L2)⊗CF (L0,L1)−→CF (L0,Lk)

(of degree 2 − k in the situation where the Floer complexes are graded),

where μ1 is the Floer differential and μ2 is the product.

Given generators pi ∈ X (Li−1,Li) (i = 1, . . . , k) and q ∈ X (L0,Lk), the

coefficient of q in μk(pk, . . . , p1) is a count (weighted by area) of (perturbed)

pseudo-holomorphic discs in M with boundary on L0 ∪ · · · ∪Lk and corners

at p1, . . . , pk, q.

Specifically, one considers maps u :D→M whose domain D is the closed

unit disc minus k+1 boundary points z0, z1, . . . , zk ∈ S1, lying in that order

along the unit circle. The positions of these marked points are not fixed, and

the moduli space M0,k+1 of conformal structures on the domain D, i.e., the

quotient of the space of ordered (k+1)-tuples of points on S1 by the action

of Aut(D2), is a contractible (k− 2)-dimensional manifold.

Given an almost-complex structure J on M and a homotopy class [u], we

denote by M(p1, . . . , pk, q; [u], J) the space of J -holomorphic maps u :D →
M (where the positions of z0, . . . , zk are not fixed a priori) which extend

continuously to the closed disc, mapping the boundary arcs from zi to zi+1 (or

z0 for i= k) to Li, and the boundary punctures z1, . . . , zk, z0 to p1, . . . , pk, q

respectively, in the given homotopy class [u], up to the action of Aut(D2) by

reparametrization. (Or, equivalently, one can avoid quotienting and instead

take a slice for the reparametrization action by fixing the positions of three

of the zi.)
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For a fixed conformal structure on D, the index of the linearized Cauchy-

Riemann operator is again given by the Maslov index, as previously. Thus,

accounting for deformations of the conformal structure on D, assuming

transversality, the expected dimension of the moduli space is

(2.5)

dimM
(
p1, . . . , pk, q; [u], J

)
= k− 2 + ind

(
[u]

)
= k− 2 + deg(q)−

k∑

i=1

deg(pi).

Thus, assuming transversality, and choosing orientations and spin struc-

tures on L0, . . . ,Lk if char(K) �= 2, we define:

Definition 2.4. The operation μk : CF (Lk−1,Lk) ⊗ · · · ⊗ CF (L0,L1) →
CF (L0,Lk) is the Λ-linear map defined by

(2.6) μk(pk, . . . , p1) =
∑

q∈X (L0,Lk)
[u]:ind([u])=2−k

(
#M

(
p1, . . . , pk, q; [u], J

))
Tω([u]) q.

Remark 2.5. As before, in general this construction needs to be modified by

introducing domain-dependent almost-complex structures and Hamiltonian

perturbations to achieve transversality. Thus, we actually count solutions of

a perturbed Cauchy-Riemann equation similar to (2.4), involving a domain-

dependent almost-complex structure J ∈C∞(D,J (M,ω)) and Hamiltonian

H ∈ C∞(D × M,R). As before, compatibility with strip-breaking requires

that, in each of the k+1 strip-like ends near the punctures of D, the chosen

J and H depend only on the coordinate t ∈ [0,1] and agree with the almost-

complex structures and Hamiltonians used to construct the Floer complexes

CF (Li,Li+1) and CF (L0,Lk). An additional compatibility condition comes

from the possible degenerations of the domain D to unions of discs with

fewer punctures, as discussed below: we need to require that, when D de-

generates in such a way, H and J are translation-invariant in the strip-like

regions connecting the components and agree with the choices made in the

construction of the Floer complexes CF (Li,Lj), while in each component H

and J agree with the choices made for that moduli space of discs with fewer

punctures. This forces the choices of H and J to further depend on the con-

formal structure of D. We refer the reader to [42] for a detailed construction

(and proof of existence) of compatible and consistent choices of perturbation

data (H,J).

The algebraic properties of μk follow from the study of the limit con-

figurations that arise in compactifications of 1-dimensional moduli spaces
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Fig. 7. The 1-dimensional associahedron M0,4

of (perturbed) pseudo-holomorphic discs; besides strip breaking, there are

now other possibilities, corresponding to cases where the domain D degen-

erates. The moduli space of conformal structures M0,k+1 admits a natural

compactification to a (k− 2)-dimensional polytope M0,k+1, the Stasheff as-

sociahedron, whose top-dimensional facets correspond to nodal degenerations

of D to a pair of discs D1 ∪D2, with each component carrying at least two

of the marked points z0, . . . , zk; and the higher codimension faces correspond

to nodal degenerations with more components.

Example 2.6. M0,4 is homeomorphic to a closed interval, whose end points

correspond to configurations where two adjacent marked points come to-

gether (Figure 7). For example, fixing the positions of z0, z1, z2 on the unit

circle and letting z3 vary along the arc from z2 to z0, the right end point

corresponds to the case where z3 approaches z2; the “main” component of

the limit configuration carries the marked points z0 and z1, while the com-

ponent carrying z2 and z3 arises from rescaling by suitable automorphisms

of the disc. Equivalently up to automorphisms of the disc, one could instead

fix the positions of z1, z2, z3, and let z0 vary along the arc from z3 to z1; the

right end point then corresponds to the case where z0 approaches z1.

Proposition 2.7. If [ω] · π2(M,Li) = 0 for all i, then the operations μk

satisfy the A∞-relations

(2.7)

k∑

�=1

k−�∑

j=0

(−1)∗μk+1−�
(
pk, . . . , pj+�+1, μ

�(pj+�, . . . , pj+1), pj , . . . , p1
)
= 0,

where ∗= j +deg(p1) + · · ·+deg(pj).

The case k = 1 of (2.7) is the identity ∂2 = 0, while k = 2 corresponds to

the Leibniz rule (2.3). For k = 3, it expresses the fact that the Floer product
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μ2 is associative up to an explicit homotopy given by μ3:

(2.8)
± (p3 · p2) · p1 ± p3 · (p2 · p1)

=±∂μ3(p3, p2, p1)± μ3(∂p3, p2, p1)± μ3(p3, ∂p2, p1)± μ3(p3, p2, ∂p1).

More generally, each operation μk gives an explicit homotopy for a certain

compatibility property among the preceding ones.

The proof of Proposition 2.7 again relies on an analysis of 1-dimensional

moduli spaces of (perturbed) J -holomorphic discs and their compactifica-

tion. Fix generators p1, . . . , pk, q and a homotopy class [u] with ind([u]) =

3 − k, and assume that J and H are chosen generically (so as to achieve

transversality) and compatibly (see Remark 2.5). Then the moduli space

M(p1, . . . , pk, q; [u], J) compactifies to a 1-dimensional manifold with bound-

ary, whose boundary points correspond either to an index 1 (perturbed)

J -holomorphic strip breaking off at one of the k + 1 marked points, or to a

degeneration of the domain to the boundary of M0,k+1, i.e. to a pair of discs

with each component carrying at least two of the marked points. The first

case corresponds to the terms involving μ1 in (2.7), while the second case

corresponds to the other terms.

Example 2.8. For k = 3, limit configurations consisting of an index 1 strip

together with an index −1 disc with 4 marked points account for the right-

hand side in (2.8), while those consisting of a pair of index 0 discs with 3

marked points (when the domain degenerates to one of the two end points

of M0,4, see Figure 7) account for the two terms in the left-hand side.

2.3. The Fukaya Category

There are several variants of the Fukaya category of a symplectic manifold,

depending on the desired level of generality and a number of implemen-

tation details. The common features are the following. The objects of the

Fukaya category are suitable Lagrangian submanifolds, equipped with extra

data, and morphism spaces are given by Floer complexes, endowed with the

Floer differential. Composition of morphisms is given by the Floer product,

which is only associative up to homotopy, and the Fukaya category is an A∞-

category, i.e. the differential and composition are the first two in a sequence

of operations

μk : hom(Lk−1,Lk)⊗ · · · ⊗ hom(L0,L1)→ hom(L0,Lk)
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(of degree 2− k when a Z-grading is available), satisfying the A∞-relations

(2.7).

Given the setting in which we have developed Floer theory in the pre-

ceding sections, the most natural definition is the following:

Definition 2.9. Let (M,ω) be a symplectic manifold with 2c1(TM) = 0.

The objects of the (compact) Fukaya category F(M,ω) are compact closed,

oriented, spin Lagrangian submanifolds L⊂M such that [ω] · π2(M,L) = 0

and with vanishing Maslov class μL = 0 ∈H1(L,Z), together with extra data,

namely the choice of a spin structure and a graded lift of L. (We will usually

omit those from the notation and simply denote the object by L.)

For every pair of objects (L,L′) (not necessarily distinct), we choose

perturbation data HL,L′ ∈C∞([0,1]×M,R) and JL,L′ ∈C∞([0,1],J (M,ω));

and for all tuples of objects (L0, . . . ,Lk) and all moduli spaces of discs, we

choose consistent perturbation data (H,J) compatible with the choices made

for the pairs of objects (Li,Lj), so as to achieve transversality for all moduli

spaces of perturbed J -holomorphic discs. (See [42, §9] for the existence of

such perturbation data.)

Given this, we set hom(L,L′) = CF (L,L′;HL,L′ , JL,L′); and the differ-

ential μ1, composition μ2, and higher operations μk are given by counts of

perturbed pseudo-holomorphic discs as in Definition 2.4. By Proposition 2.7,

this makes F(M,ω) a Λ-linear, Z-graded, non-unital (but cohomologically

unital [42]) A∞-category.

One can also consider other settings: for example, we can drop the re-

quirement that 2c1(TM) = 0 and the assumption of vanishing of the Maslov

class if we are content with a Z/2-grading; spin structures can be ignored if

we work over a field of characteristic 2; and Novikov coefficients are unnec-

essary if we restrict ourselves to exact Lagrangian submanifolds in an exact

symplectic manifold.

As is obvious from the definition, the actual chain-level details of the

Fukaya category depend very much on the choice of perturbation data;

however, the A∞-categories obtained from various choices of perturbation

data are quasi-equivalent (i.e., they are related by A∞-functors which in-

duce equivalences, in fact in this case isomorphisms, at the level of cohomol-

ogy) [42].

We finish this section with a few remarks.



112 D. Auroux

Remark 2.10. One can recover an honest category from an A∞-category

by taking the cohomology of morphism spaces with respect to the differen-

tial μ1; the A∞-relations imply that μ2 descends to an associative composi-

tion operation on cohomology. The cohomology category of F(M,ω), where

hom(L,L′) = HF (L,L′) and composition is given by the cohomology-level

Floer product, is sometimes called the Donaldson-Fukaya category. However,

the higher operations contain important information that gets lost when pass-

ing to the cohomology category, and it is usually much better to work with

the chain-level A∞-category (see for instance the next section).

Remark 2.11. In the context of homological mirror symmetry, one is nat-

urally led to consider a slightly richer version of the Fukaya category, whose

objects are Lagrangian submanifolds equipped with local systems, i.e. flat

vector bundles E → L with unitary holonomy (over the Novikov field over

K=C). In this situation, we define

CF
(
(L0,E0), (L1,E1)

)
=

⊕

p∈X (L0,L1)

hom(E0|p,E1|p),

and modify the definition of μk as follows. Fix objects (L0,E0), . . . , (Lk,Ek),
intersections p1, . . . , pk, q, and a homotopy class [u]. Set p0 = pk+1 = q for

simplicity. Parallel transport along the portion of the boundary of [u] that

lies on Li yields an isomorphism γi ∈ hom(Ei|pi
,Ei|pi+1

) for each i= 0, . . . , k.

Now, given elements ρi ∈ hom(Ei−1|pi
,Ei|pi

) (i= 1, . . . , k), the composition of

all these linear maps defines an element η[u],ρk,...,ρ1
= γk · ρk · · · · · γ1 · ρ1 · γ0 ∈

hom(E0|q,Ek|q). Then we set

μk(ρk, . . . , ρ1) =
∑

q∈X (L0,Lk)
[u]:ind([u])=2−k

(
#M

(
p1, . . . , pk, q; [u], J

))
Tω([u]) η[u],ρk,...,ρ1

.

Remark 2.12. It is in principle possible to lift the assumption [ω] ·
π2(M,L) = 0 we have made throughout, at the expense of considerable ana-

lytic and algebraic difficulties in situations where disc bubbling occurs. Ana-

lytically, disc bubbles pose transversality problems that cannot be solved with

the techniques we have described above. Algebraically, they lead to a curved

A∞-category, i.e. for each object L we have an element μ0
L ∈ hom(L,L) which

encodes a weighted count of J -holomorphic discs bounded by L. The A∞-

relations (2.7) are then modified by allowing the case �= 0 in the sum. For

example, the relation for k = 1 becomes

μ1
(
μ1(p)

)
+ (−1)deg pμ2

(
μ0
L1
, p
)
+ μ2

(
p,μ0

L0

)
= 0,
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where the last two terms correspond to disc bubbling along either edge of

an index 2 strip. To regain some sanity, one usually considers not arbitrary

objects, but weakly unobstructed objects, i.e. those for which μ0
L is a scalar

multiple of the (cohomological) unit of hom(L,L) (this multiple is some-

times called “central charge” or “superpotential” in the context of mirror

symmetry); this happens for instance when the minimal Maslov index of a

holomorphic disc with boundary on L is equal to two and Maslov index 2

discs are regular. Weakly unobstructed objects of fixed central charge then

form an honest A∞-category. The curious reader is referred to [19].

3. Exact Triangles and Generators

While it is usually impossible to classify all Lagrangian submanifolds of a

given symplectic manifold, or even to directly compute Floer cohomology for

all those we can find, it is often possible to understand the whole Fukaya cat-

egory in terms of a small subset of generating objects—provided that we un-

derstand not only differentials and products but also higher operations among

those generators. To understand how this comes about, a healthy dose of ho-

mological algebra is necessary; in this section we give a very brief and informal

overview of exact triangles, twisted complexes and generators, in general and

as they pertain to Fukaya categories in particular. The first part of [42] fills

in the many details that we omit here, and more.

3.1. Exact Triangles and Mapping Cones

An exact triangle

A B

C

f

h

[1] g

in an A∞-category A consists of a triple of objects A,B,C and closed mor-

phisms f ∈ hom0(A,B), g ∈ hom0(B,C), h ∈ hom1(C,A) such that C is (up

to quasi-isomorphism) a mapping cone of f :A→B, with g and h the natu-

ral maps to and from it. We will clarify the meaning of this definition in the

next section; for now, we simply mention some key features and motivate the

concept.
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Exactness means that the compositions μ2(g, f), μ2(h, g) and μ2(f,h)

are exact, i.e. in the cohomology category H(A) the maps compose to zero.

(However, their triple Massey product is typically nontrivial.) An exact tri-

angle induces long exact sequences on morphism spaces in the cohomology

category: for every test object T , we have a long exact sequence

(3.1) · · · →H i hom(T,A)
f−→H i hom(T,B)

g−→H i hom(T,C)

h−→H i+1 hom(T,A)
f→ · · ·

where H i hom(T,A) is the cohomology of hom(T,A) with respect to the

differential μ1, and the maps are given by composition (in the cohomology

category) with f , g, and h; and similarly (in the contravariant direction)

for morphisms from A,B,C to T . Moreover, as T varies these long exact

sequences fit together naturally with respect to the multiplicative action of

the groups H∗ hom(T ′, T ), i.e. (3.1) fits into an exact sequence of modules

over H(A).

Exact triangles can also be characterized as images under A∞-functors

of a “universal” abstract exact triangle living in an A∞-category with three

objects [42, §3g].

The A∞-category A is said to be triangulated if every closed morphism

f : A→ B can be completed to an exact triangle (and the shift functor [1]

acting on A by change of gradings is a quasi-equivalence); or, in other terms,

if all morphisms in A have mapping cones. Here it is important to point out a

key difference with the case of ordinary triangulated categories, where the tri-

angles are an additional piece of structure on the category: the A∞-structure

is rich enough to “know” about triangles, and triangles automatically satisfy

an analogue of the usual axioms. In the same vein, A∞-functors are always

exact, i.e. map exact triangles to exact triangles.

Before saying more about mapping cones in A∞-categories, let us discuss

some classical motivating examples.

Example 3.1. The mapping cone of a continuous map f :X → Y between

topological spaces is, by definition, the space obtained from X × [0,1] by

attaching Y to X × {1} via the map f and collapsing X × {0} to a point:

Cone(f) =
((
X × [0,1]

)
� Y

)
/(x,0)∼

(
x′,0

)
, (x,1)∼ f(x) ∀x,x′ ∈X.

We then have a sequence of maps

X
f−→ Y

i−→Cone(f)
p−→ΣX

Σf−→ΣY → · · · ,
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where i is the inclusion of Y into the mapping cone, and p is the projection

to the suspension of X obtained by collapsing Y . The composition of any

two of these maps is nullhomotopic, and the induced maps on (co)homology

form a long exact sequence.

Example 3.2. The notion of mapping cone in the category of chain com-

plexes is directly modelled on the previous example: let A= (
⊕

Ai, dA) and

B = (
⊕

Bi, dB) be two chain complexes, and let f :A→B be a chain map

(i.e., a collection of maps f i : Ai → Bi satisfying dBf
i + f i+1dA = 0). Then

the mapping cone of f is, by definition, the chain complex C =A[1]⊕B (i.e.,

Ci =Ai+1 ⊕Bi), equipped with the differential

dC =

(
dA 0

f dB

)

.

The map f , the inclusion of B into C as a subcomplex, and the projection

of C onto the quotient complex A[1] then fit into an exact sequence.

Example 3.3. Let A be an algebra (resp. differential graded algebra or A∞-

algebra), and consider the category of differential graded modules (resp. A∞-

modules) over A. Recall that such a module M is a chain complex equipped

with a degree 1 differential dM and a multiplication map A ⊗ M → M ,

(a,m) 
→ a ·m, satisfying the Leibniz rule and associative (up to homotopies

given by higher structure maps μk|1
M :A⊗k ⊗M →M [1− k], in the case of

A∞-modules). The mapping cone of a module homomorphism f : M → N

can then be defined essentially as in the previous example. In the differen-

tial graded case, f is a chain map compatible with the multiplication, and

the mapping cone of f as a chain complex inherits a natural module struc-

ture. For A∞-modules, recalling that an A∞-homomorphism is a collection

of maps fk|1 :A⊗k ⊗M →N [−k] (where the linear term f0|1 is a chain map

compatible with the product μ1|1 up to a homotopy given by f1|1, and so

on), the structure maps μ
k|1
K : A⊗k ⊗K →K[1− k] (k ≥ 0) of the mapping

cone K =M [1]⊕N are given by

μ
k|1
K

(
a1, . . . , ak, (m,n)

)

=
(
μ
k|1
M (a1, . . . , ak,m), fk|1(a1, . . . , ak,m) + μ

k|1
N (a1, . . . , ak, n)

)
.

3.2. Twisted Complexes

When an A∞-category A is not known to be triangulated, it is often ad-

vantageous to embed it into a larger category in which mapping cones are
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guaranteed to exist. For example, one can always do so by using the Yoneda

embedding construction into the category of A∞-modules over A (in which

mapping cones always exist, cf. Example 3.3); see e.g. [42, §1]. A milder con-

struction, which retains more features of the original category A, involves

twisted complexes. We give a brief outline, and refer the reader to [42, §3] for
details.

Definition 3.4. A twisted complex (E,δE) consists of:

• a formal direct sum E =
⊕N

i=1Ei[ki] of shifted objects of A (i.e., a finite

collection of pairs (Ei, ki) where Ei ∈ obA and ki ∈ Z);

• a strictly lower triangular differential δE ∈ End1(E), i.e. a collection of

maps δEij ∈Homkj−ki+1(Ei,Ej), 1≤ i < j ≤N , satisfying the equation

(3.2)
∑

k≥1

μk
(
δE , . . . , δE

)
= 0,

i.e.,
∑

k≥1

∑
i=i0<i1<···<ik=j μ

k(δEik−1ik
, . . . , δEi0i1) = 0 for all 1≤ i < j ≤N .

A degree d morphism of twisted complexes is simply a degree d map between

the underlying formal direct sums, i.e. if E =
⊕

Ei[ki] and E′ =
⊕

E′
j [k

′
j ]

then an element of Homd(E,E′) is by definition a collection of morphisms

aij ∈Homd+k′
j−ki(Ei,E

′
j).

Finally, given twisted complexes (E0, δ
0), . . . , (Ek, δ

k), k ≥ 1, and mor-

phisms ai ∈Hom(Ei−1,Ei), we set

μk
Tw(ak, . . . , a1)

=
∑

j0,...,jk≥0

μk+j0+···+jk
(
δk, . . . , δk
︸ ︷︷ ︸

jk

, ak, . . . , δ
1, . . . , δ1
︸ ︷︷ ︸

j1

, a1, δ
0, . . . , δ0
︸ ︷︷ ︸

j0

)
.

(The sum is finite since each δi is strictly lower triangular.)

Proposition 3.5. The above construction defines a triangulated A∞-

category which we denote by TwA, and into which A embeds fully faithfully.

It is instructive to see how twisted complexes relate to ordinary chain

complexes:

Example 3.6. Given objects A,B,C of A and f ∈ hom0(A,B), g ∈
hom0(A,C), we can consider (A[2] ⊕ B[1] ⊕ C,δ = f + g), conventionally



A Beginner’s Introduction to Fukaya Categories 117

denoted by

{A f−→B
g−→C}.

This forms a twisted complex if and only if μ1(f) = μ1(g) = 0 and μ2(g, f) =

0, i.e. f and g are closed morphisms and their composition is zero. However,

we can also introduce an extra term h ∈ hom−1(A,C) into the differential

δ, in which case the last condition becomes μ2(g, f) + μ1(h) = 0: thus it is

sufficient for the composition of f and g to be exact, with a homotopy given

by h.

Definition 3.7. Given twisted complexes (E,δ), (E′, δ′) ∈TwA and a closed

morphism f ∈ hom0(E,E′) (i.e., such that μ1
Tw(f) = 0), the abstract mapping

cone of f is the twisted complex

Cone(f) =

(

E[1]⊕E′,

(
δ 0

f δ′

))

.

Given objects A,B,C of A and a closed morphism f ∈ hom0(A,B), we say

that C is a mapping cone of f if, in the category of twisted complexes TwA,

the object C is quasi-isomorphic to the abstract mapping cone of f , {A f−→
B}= (A[1]⊕B,f).

When C is a mapping cone of f :A→B, by composing the inclusion of B

into the abstract mapping cone (resp. the projection to A[1]) with the given

quasi-isomorphism from the abstract mapping cone to C (resp. its quasi-

inverse) we obtain morphisms i :B → C and p : C → A[1], which sit with f

in an exact triangle.

3.3. Exact Triangles in the Fukaya Category

The reader may legitimately wonder about the relevance of the above discus-

sion to Fukaya categories. It turns out that at least some mapping cones in

the Fukaya category of a symplectic manifold can be understood geometri-

cally. There are two well-known sources of these: Dehn twists, and Lagrangian

connected sums.

3.3.1. Dehn Twists. The symplectic geometry of Dehn twists was first

considered by Arnold, and later studied extensively by Seidel [41, 42]. The

local model is as follows. In the cotangent bundle T ∗Sn equipped with
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Fig. 8. The generating Hamiltonian on the complement of the zero section in T ∗Sn, and
the action of the Dehn twist on a cotangent fiber

its canonical symplectic form, a Hamiltonian of the form H(p, q) = h(‖p‖)
(where p is the fiber coordinate and ‖ · ‖ is the standard metric) generates a

rescaled version of geodesic flow. Choosing h : [0,∞)→ R so that h′(0) = π,

h′′ ≤ 0, and h is constant outside of a neighborhood of zero, we obtain a

Hamiltonian diffeomorphism of the complement of the zero section T ∗Sn\Sn,

which can be extended across the zero section by the antipodal map on Sn

to obtain a symplectomorphism of T ∗Sn (see Figure 8).

Now, given a Lagrangian sphere S in a symplectic manifold (M,ω), by

Weinstein’s theorem a neighborhood of S in M is symplectomorphic to a

neighborhood of the zero section in T ∗Sn; thus, performing the above con-

struction inside the standard neighborhood of S, we obtain a symplectomor-

phism τS , the Dehn twist about S, which is supported in a neighborhood of

S and maps S to itself antipodally. (Note: τS depends on the choices made

in the construction, but its isotopy class doesn’t.)

Theorem 3.8 (Seidel [41, 42]). Given a Lagrangian sphere S and any object

L of F(M,ω), there is an exact triangle in TwF(M,ω),

(3.3)

HF ∗(S,L)⊗ S L

τS(L)

ev

[1]

In other terms, the object τS(L) of F(M,ω) is quasi-isomorphic in

TwF(M,ω) to the abstract mapping cone of ev.

In (3.3), HF ∗(S,L)⊗ S is a direct sum of shifted copies of S, with one

summand for each generator ofHF ∗(S,L), and ev is a tautological evaluation
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map, mapping each summand to L by a closed morphism representing the

given generator of HF ∗(S,L) =H∗Hom(S,L).

Given a test object T , the corresponding long exact sequence (3.1) is

Seidel’s long exact sequence in Floer cohomology [41] associated to the Dehn

twist τS for all T,L:

· · · →HF ∗(S,L)⊗HF ∗(T,S)
μ2

−→HF ∗(T,L)−→HF ∗(T, τS(L)
) [1]−→ · · ·

3.3.2. Lagrangian Connected Sums. Given two Lagrangian submani-

folds L1,L2 which intersect transversely in a single point p, we can form the

Lagrangian connected sum (or surgery in the terminology of [38] and [21])

L1#L2. One possible construction is as follows. For ε > 0, the graph of the 1-

form ε d log ‖x‖ on R
n, given by the equations yi = εxi/‖x‖2, is a Lagrangian

submanifold of T ∗
R
n � C

n which is asymptotic to the zero section (i.e.,

R
n ⊂C

n) as ‖x‖→∞ and to the cotangent fiber over zero (i.e., (iR)n ⊂C
n)

as ‖y‖→∞; using suitable cut-off functions, we can modify this Lagrangian

so that it agrees with R
n ∪ (iR)n outside of a small neighborhood of the ori-

gin. Pasting this local model into a suitable Darboux chart centered at the

intersection point p and chosen so that TpL1 = R
n and TpL2 = (iR)n yields

L1#L2. (Note that, for a single connected sum operation, the end result is

independent of the size parameter ε and other choices up to Hamiltonian

isotopy; not so when summing at multiple points. Also note that L2#L1 is

not isotopic to L1#L2.)

Remark 3.9. When L2 is a sphere, L1#L2 is Hamiltonian isotopic to

τL2
(L1); this provides the basis for an alternative description of the con-

nected sum operation.

Given some other Lagrangian submanifold T (in generic position rela-

tively to L1 and L2), choosing ε small enough in the above construction en-

sures that the intersections of T with L1#L2 are the same as with L1 ∪L2.

Fukaya-Oh-Ohta-Ono [21] have studied the moduli spaces of J -holomorphic

discs bounded by L1#L2 and T . Their main result is that, for suitable J

and small enough ε, J -holomorphic strips with boundary on T and L1#L2

connecting an intersection in T ∩L2 to one in T ∩L1 are in bijection with J -

holomorphic triangles bounded by T , L2 and L1 with a corner at p, whereas

the counts of rigid strips in the other direction vanish. This is elementary in

dimension 1, as illustrated by Figure 9, but much harder in higher dimen-

sions.
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Fig. 9. The Lagrangian connected sum L1#L2 vs. L1 ∪L2

The outcome is that, as a chain complex, CF (T,L1#L2) is the mapping

cone of the map μ2(p, ·) :CF (T,L2)→CF (T,L1) given by multiplication by

the generator p of CF (L2,L1). Hence, the short exact sequence

0→CF (T,L1)→CF (T,L1#L2)→CF (T,L2)→ 0

induces a long exact sequence

· · · →HF (T,L1)−→HF (T,L1#L2)−→HF (T,L2)

μ2([p],·)−−−−−→HF (T,L1)→ · · ·

By an analogous argument for higher structure maps, one expects that

this long exact sequence can be upgraded to an exact triangle in the Fukaya

category,

(3.4)

L2 L1

L1#L2

p

[1]

i.e., L1#L2 is quasi-isomorphic to the twisted complex Cone(p) = {L2
p→ L1}.

(If L2 is a sphere, this is Seidel’s exact triangle for the Dehn twist of L1

about L2.)

Remark 3.10. Recall that, by definition, the differential μ1
Tw on

hom(T,Cone(p)) involves not only the original Floer differential μ1, but also

multiplication by the differential of the twisted complex, i.e. μ2(p, ·). This is
exactly consistent with the above description of J -holomorphic strips with

boundary on T and L1#L2. Thus, replacing Lagrangian submanifolds by
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quasi-isomorphic twisted complexes built out of simpler Lagrangians, while

computationally powerful, comes at the expense of having to consider higher

operations on their Floer complexes (in this case, the expression for μ1
Tw

involves μ2, and similarly that for μ2
Tw involves μ3).

3.4. Generation and Yoneda Embedding

3.4.1. Generators and Split-Generators.

Definition 3.11. The objects G1, . . . ,Gr are said to generate the A∞-

category A if, in TwA, every object of A is quasi-isomorphic to a twisted

complex built from copies of G1, . . . ,Gr. (In other terms, every object of A
can be obtained from G1, . . . ,Gr by taking iterated mapping cones.)

The objects G1, . . . ,Gr are said to split-generate A if every object of A is

quasi-isomorphic to a direct summand in a twisted complex built from copies

of G1, . . . ,Gr.

Example 3.12. Consider the Fukaya category of the torus T 2 with its stan-

dard area form. Starting from the standard curves α and β along the two

factors of the torus, by taking iterated mapping cones we can obtain simple

closed curves representing all nontrivial primitive elements in π1(T
2) = Z

2.

For instance, the loop τα(β) � β#α (Figure 10 left) is quasi-isomorphic to

the mapping cone of p ∈Hom(α,β); further applications of the Dehn twists

τα and τβ (which generate the mapping class group of T 2) eventually yield

simple closed curves in all primitive homotopy classes. However, the objects

obtained in this manner all satisfy a certain “balancing” condition: given a

1-form θ ∈ Ω1(T 2 \ {pt}) with dθ = ω and such that
∫
α θ =

∫
β θ = 0, θ also

integrates to zero on all iterated mapping cones built from α and β. For

instance, all the simple closed curves that can be obtained in a given homo-

topy class are Hamiltonian isotopic to each other. Thus, α and β generate

the subcategory of F(T 2) consisting of Lagrangians which are balanced with

respect to θ, but not all of F(T 2).

On the other hand, given the two loops β and γ shown on Figure 10

right, the mapping cone of T a1q1 + T a2q2 ∈ Hom(γ,β) can be interpreted

geometrically as the connected sum of β and γ at their two intersection

points q1 and q2, with different gluing parameters. This mapping cone is

therefore quasi-isomorphic to the direct sum of two simple closed curves in

the homotopy class of α, but whose Hamiltonian isotopy classes depend on
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Fig. 10. Split-generating the Fukaya category of T 2

a1 and a2. Thus, by considering direct summands in mapping cones we can

obtain all nontrivial simple closed curves up to Hamiltonian isotopy, rather

than only those that are balanced: α and β split-generate F(T 2).

3.4.2. Yoneda Embedding. Let G1, . . . ,Gr be split-generators of the

A∞-category A. Then the endomorphism algebra of G1 ⊕ · · · ⊕Gr,

G =

r⊕

i,j=1

hom(Gi,Gj)

is an A∞-algebra (with structure maps given by the operations μk of A).

Next, given any object L of A,

Y(L) =

r⊕

i=1

hom(Gi,L)

is a (right) A∞-module over G, with differential given by μ1, multiplication

μ1|1 given by the operations

hom(Gj ,L)⊗ hom(Gi,Gj)
μ2

−→ hom(Gi,L),

and so on (the structure map μ1|k of Y(L) is given by μk+1).

Moreover, to a morphism a ∈ hom(L,L′) we can associate an A∞-

homomorphism Y(a) ∈ hommod-G(Y(L),Y(L′)), whose linear term is given

by composition with a.

The assignment L 
→ Y(L), a 
→ Y(a) is in turn the linear term of an

A∞-functor Y , which is the restriction to the given set of objects G1, . . . ,Gr

of the A∞ Yoneda embedding A→mod-A (see e.g. [42, §1]):
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Proposition 3.13. The above construction extends to an A∞-functor Y
from A to mod-G. Moreover, if G1, . . . ,Gr split-generate A then this A∞-

functor is a fully faithful quasi-embedding.

4. The Wrapped Fukaya Category, Examples and

Applications

In this section we assume that (M,ω) is a Liouville manifold, i.e. an exact

symplectic manifold such that the Liouville vector field Z associated to the

chosen primitive θ ∈ Ω1(M) of the symplectic form (i.e., the conformally

symplectic vector field defined by ιZω = θ) is complete and outward pointing

at infinity. More precisely, we require thatM contains a compact domainM in

with boundary a smooth hypersurface ∂M on which α = θ|∂M is a contact

form, and Z is positively transverse to ∂M and has no zeroes outside of

M in. The flow of Z can then be used to identify M \M in with the positive

symplectization (1,∞)× ∂M equipped with the exact symplectic form ω =

d(rα) and the Liouville field Z = r ∂
∂r .

In this setting it is natural to consider not only compact exact Lagrangian

submanifolds as we have done above, but also some noncompact ones with

suitable behavior at infinity. There are two different types of such noncom-

pact Fukaya categories, depending on the manner in which perturbations

at infinity are used to define Floer complexes. One possibility is to perform

“small” perturbations at infinity, restricting oneself to a smaller set of “ad-

missible” objects which go to infinity along well-controlled directions. Two

constructions that follow this philosophy are the “infinitesimal” Fukaya cat-

egory first defined by Nadler and Zaslow for cotangent bundles [31] and later

extended to Liouville manifolds equipped with a choice of Lagrangian skele-

ton; and Fukaya categories of Lefschetz fibrations as constructed by Seidel

[42, 44], and their putative generalization to Landau-Ginzburg models, in

which the behavior at infinity is controlled by a projection to the complex

plane. Here we focus on the other approach, which is to consider large pertur-

bations at infinity, leading to the wrapped Fukaya category of Abouzaid and

Seidel [3, 9]. For completeness we mention the nascent subject of partially

wrapped Fukaya categories, which attempt to interpolate between these two

approaches (cf. e.g. [13]).
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Fig. 11. Wrapping by a quadratic Hamiltonian

4.1. The Wrapped Fukaya Category

The objects of the wrapped Fukaya category W(M) of a Liouville manifold

(M,ω = dθ) are exact Lagrangian submanifolds L⊂M which are conical at

infinity, i.e. invariant under the flow of the Liouville vector field outside of

a compact subset, and such that the exact 1-form θ|L vanishes outside of

a compact set. In other terms, if L is noncompact then at infinity it must

coincide with the cone (1,∞)× ∂L over some Legendrian submanifold ∂L of

∂M .

The Hamiltonian perturbations used to define Floer complexes in the

wrapped setting are very specific: namely, we only consider Hamiltonians

H :M → R which, outside of a compact subset of M , satisfy H = r2 where

r ∈ (1,∞) is the radial coordinate of the symplectization (1,∞)×∂M . Thus,

outside of a compact set the Hamiltonian vector field XH is equal to 2r times

the Reeb vector field Rα of the contact form α on ∂M .

Given two objects L0,L1, the generating set X (L0,L1) of the wrapped

Floer complex CW (L0,L1) = CW (L0,L1;H) consists of time 1 trajectories

of the flow of XH which start on L0 and end on L1, i.e. points of φ
1
H(L0)∩L1.

More concretely, these consist of (perturbed) intersections between L0 and

L1 in the interior M in on one hand, and Reeb chords (of arbitrary length)

from ∂L0 to ∂L1 on the other hand (see Figure 11). Thus, wrapped Floer

cohomology is closely related to Legendrian contact homology. (Of course,

we need to assume that φ1
H(L0) intersects L1 transversely, and in particular

that the Reeb chords from ∂L0 to ∂L1 are non-degenerate; otherwise a small

modification of H is required.)

The differential on the wrapped Floer complex counts solutions to Floer’s

equation (1.6), i.e. perturbed J -holomorphic strips with boundary on L0 and
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L1, as in Section 1. (Note: due to exactness we can work directly over the

field K, without resorting to Novikov coefficients.) As in Remark 1.10, these

can equivalently be viewed as (φ1−t
H )∗J -holomorphic strips with boundary on

φ1
H(L0) and L1. The assumptions made on the objects of W(M) and on the

Hamiltonian H ensure that, for suitably chosen J , perturbed J -holomorphic

strips are well-behaved: an a priori energy estimate ensures that all solutions

of (1.6) which converge to a given generator p ∈ X (L0,L1) as s→ +∞ re-

main within a bounded subset of M (see e.g. [3]). Thus, ∂p is a finite linear

combination of generators of the wrapped Floer complex.

A subtlety comes up when we attempt to define the product operation

on wrapped Floer complexes,

(4.1) CW (L1,L2;H)⊗CW (L0,L1;H)→CW (L0,L2;H).

For the perturbed Cauchy-Riemann equation (2.4) to be well-behaved and

satisfy a priori energy estimates in spite of the non-compactness of M , one

needs the 1-form β that appears in the perturbation term XH ⊗ β to sat-

isfy dβ ≤ 0 (cf. [3, 9]). In other terms, the naturally defined product map

would take values in CW (L0,L2; 2H), and the usual continuation map from

this complex to CW (L0,L2;H) fails to be well-defined. This can be reme-

died using the following rescaling trick alluded to in [20] and systematically

developed in [3].

Recall that the flow of the Liouville vector field is conformally symplectic

and, in the symplectization (1,∞)× ∂M where Z = r ∂
∂r , simply amounts to

rescaling in the r direction. For ρ > 1, denote by ψρ the time logρ flow of Z,

which rescales r by a factor of ρ. Then there is a natural isomorphism

(4.2) CW (L0,L1;H,J)∼=CW
(
ψρ(L0),ψ

ρ(L1);ρ
−1H ◦ψρ,ψρ

∗J
)
.

Moreover, our assumptions imply that ψρ(Li) is exact Lagrangian isotopic

to Li by a compactly supported isotopy, and ρ−1H ◦ ψρ coincides with ρH

at infinity. Abouzaid shows that these properties ensure the existence of a

well-defined product map

(4.3) CW (L1,L2;H,J)⊗CW (L0,L1;H,J)

→CW

(

ψ2(L0),ψ
2(L2);

1

2
H ◦ψ2,ψ2

∗J

)

,

determined by counts of index 0 finite energy maps u :D →M from a disc

with three strip-like ends to M , mapping the three components of ∂D to the
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images of the respective Lagrangians under suitable Liouville rescalings, and

solving the perturbed Cauchy-Riemann equation

(du−XH̃ ⊗ β)0,1
J̃

= 0,

where β is a closed 1-form on D with β|∂D = 0 which is standard in the

strip-like ends (modelled on dt for the input ends, 2dt for the output end),

and H̃ and J̃ are obtained from H and J by suitable rescalings (H̃ = H

and J̃ = J near the input punctures; H̃ = 1
4H ◦ ψ2 and J̃ = ψ2

∗J near the

output puncture; see [3]). The map (4.3), composed with the isomorphism

(4.2), yields the desired product map (4.1). The higher products

μk :CW (Lk−1,Lk;H)⊗ · · · ⊗CW (L0,L1;H)→CW (L0,Lk;H)

are constructed in the same manner [3]. These structure maps make W(M)

an A∞-category, the wrapped Fukaya category of the Liouville manifold M .

Remark 4.1. The rescaling trick can be informally understood as fol-

lows. As mentioned above, the naturally defined product map on wrapped

Floer complexes takes values in CW (L0,L2; 2H); while the usual con-

struction of a continuation map cannot be used to map this complex to

CW (L0,L2;H), the fact that 1
2H ◦ ψ2 = 2H at infinity and the assump-

tions made on L0 and L2 imply that there is a well-defined continua-

tion map to CW (ψ2(L0),ψ
2(L2);

1
2H ◦ ψ2), which by (4.2) is isomorphic to

CW (L0,L2;H). (Note: while this is a slightly simpler way to describe the

cohomology-level product, it lacks the compatibility and consistency features

needed to construct the chain-level A∞-structure, hence the slightly more

complicated construction in [3]).

Remark 4.2. Since compact exact Lagrangian submanifolds of M in are not

affected by the wrapping at infinity, W(M) contains the ordinary Fukaya cat-

egory (of compact exact Lagrangian submanifolds) as a full A∞-subcategory.

4.2. An Example

Let M = T ∗S1 = R × S1, equipped with the standard Liouville form r dθ

and the wrapping Hamiltonian H = r2, and consider the exact Lagrangian

submanifold L = R × {pt}. We can label the intersection points of φ1
H(L)

with L by integers, X (L,L) = {xi, i ∈ Z}, in increasing order along the real

axis, where x0 is the intersection occurring at the minimum of H ; in other

terms, x0 is an interior intersection of L with a small pushoff of it, while the



A Beginner’s Introduction to Fukaya Categories 127

Fig. 12. The wrapped Floer cohomology of L=R× {pt} in R× S1

other generators correspond to Reeb chords from ∂L= {pt} � {pt} to itself

in the contact manifold ∂M = S1 � S1 (see Figure 12).

Recall that the differential on CW (L,L) counts rigid pseudo-holomorphic

strips (for a t-dependent almost-complex structure) with boundary on L and

φ1
H(L). Since there are no such strips (see Figure 12), the Floer differential

on CW (L,L) vanishes identically, and HW (L,L) � CW (L,L) = span{xi,
i ∈ Z}. (This can also be seen by observing that all generators of CW (L,L)

have degree 0 for the natural Z-grading.)

The product structure on CW (L,L) counts perturbed pseudo-holomorph-

ic discs with three strip-like ends, as explained above; in the present

case, L is invariant under the Liouville flow ψρ : (r, θ) 
→ (ρr, θ), while

H ◦ ψρ = ρ2H . Thus, the rescaling trick only affects the almost-complex

structure (i.e., ψ2 intertwines CW (L,L;H,J) and CW (L,L; 2H,ψ2
∗J)), and

otherwise simply amounts to identifying X (L,L; 2H) = φ2
H(L) ∩ L with

X (L,L;H) = φ1
H(L)∩L via the radial rescaling r 
→ 2r.

Proceeding as in Remark 1.10, the perturbed pseudo-holomorphic discs

with boundary on L which determine the product on CW (L,L) can then be

reinterpreted as genuine pseudo-holomorphic discs (with respect to a modi-

fied family of almost-complex structures) with boundaries on φ2
H(L), φ1

H(L)

and L. Specifically, the coefficient of a generator q ∈ X (L,L) in the prod-

uct p2 · p1 of two generators p1, p2 ∈ X (L,L) is given by a count of index 0

pseudo-holomorphic discs with boundaries on φ2
H(L), φ1

H(L) and L, and with

strip-like ends converging to the intersection points φ1
H(p1) ∈ φ2

H(L)∩φ1
H(L),

p2 ∈ φ1
H(L) ∩ L, and q̃ ∈ φ2

H(L) ∩ L, where q̃ corresponds to q ∈ φ1
H(L) ∩ L

under the Liouville rescaling.

With this understood, the product structure can be determined directly

by looking at Figure 12. Observe that any two input intersections φ1
H(xi) ∈

φ2
H(L) ∩ φ1

H(L) and xj ∈ φ1
H(L) ∩ L are the vertices of a unique immersed

triangle, whose third vertex is x̃i+j ∈ φ2
H(L) ∩ L. (This is easiest to see by

lifting the diagram of Figure 12 to the universal cover of M .) These triangles
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are all regular, and we conclude that

xj · xi = xi+j .

(Recall that thanks to exactness we are working over K and not keeping track

of symplectic areas.) For example, the triangle shaded in Figure 12 illustrates

the identity x0 ·x1 = x1. In other terms, renaming the generator xi to xi, we

have a ring isomorphism

(4.4) CW (L,L)�K
[
x,x−1

]
.

Furthermore, the higher products on CW (L,L) are all identically zero, as can

be checked either by drawing the successive images of L under the wrapping

flow and looking for rigid holomorphic polygons (there are none), or more

directly by recalling that deg(xi) = 0 for all i ∈ Z whereas deg(μk) = 2− k.

Thus (4.4) is in fact an isomorphism of A∞-algebras.

4.3. Cotangent Bundles

The previous example is the simplest case of a general result about cotangent

bundles. Let N be a compact spin manifold, and let M = T ∗N equipped with

its standard Liouville form pdq and the wrapping Hamiltonian H = ‖p‖2 (for
some choice of Riemannian metric on N ). Then we have:

Theorem 4.3 (Abouzaid [6]). Let L = T ∗
q N , the cotangent fiber at some

point q ∈N . Then there is a quasi-isomorphism of A∞-algebras

(4.5) CW ∗(L,L)�C−∗(ΩqN)

between the wrapped Floer complex of L = T ∗
q N and chains on the based

loop space ΩqN equipped with (an A∞-refinement of) the usual Pontryagin

product.

(The corresponding statement for cohomology is an earlier result of Ab-

bondandolo and Schwarz [2].)

For instance, in the case of N = S1, the based loop space ΩqS
1 has

countably many components, each of which is contractible, thus ΩqS
1 ∼ Z,

and (4.5) reduces to (4.4). In fact, the assumption that N is spin can be

removed; in that case, CW ∗(L,L) is related to chains on ΩqN twisted by

the Z-local system determined by w2(N) [6].
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Furthermore, Abouzaid has shown that the fiber L= T ∗
q N generates the

wrapped Fukaya category W(T ∗N) [4]. Using Yoneda embedding (cf. Sec-

tion 3.4.2), we conclude:

Corollary 4.4 (Abouzaid). The wrapped Fukaya category W(T ∗N) quasi-

embeds fully faithfully into the category of A∞-modules over C−∗(ΩqN).

(Here again, when N is not spin a twist by a suitable local system is

required.)

This and other related results can be viewed as the culmination of over

a decade of investigations of the deep connections between the symplectic

topology of T ∗N and the algebraic topology of the loop space of N , as previ-

ously studied by Viterbo [48], Salamon-Weber [39], Abbondandolo-Schwarz

[1, 2], Cieliebak-Latschev [16], etc.

At the same time, studying Fukaya categories of cotangent bundles has

led to much progress on Arnold’s conjecture on exact Lagrangian submani-

folds:

Conjecture 4.5 (Arnold). Let N be a compact closed manifold: then any

compact closed exact Lagrangian submanifold of T ∗N (with its standard Li-

ouville form) is Hamiltonian isotopic to the zero section.

Theorem 4.6 (Fukaya-Seidel-Smith [20], Nadler-Zaslow [31], Abouzaid [7],

Kragh [26]). Let L be a compact connected exact Lagrangian submanifold of

T ∗N . Then as an object of W(T ∗N), L is quasi-isomorphic to the zero sec-

tion, and the restriction of the bundle projection π|L : L→N is a homotopy

equivalence.

Abouzaid has further shown that Floer theory detects more than purely

topological information about exact Lagrangians in cotangent bundles: cer-

tain exotic spheres (in dimensions ≥ 9) do not admit Lagrangian embeddings

into T ∗S4k+1 [8].

However, in spite of all the recent progress, Conjecture 4.5 appears to

remain out of reach of current technology.

4.4. Homological Mirror Symmetry

Kontsevich’s homological mirror symmetry conjecture [24] asserts that the

main manifestation of the phenomenon of mirror symmetry is as a derived
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equivalence between the Fukaya category of a symplectic manifold and the

category of coherent sheaves of its mirror. While this conjecture was initially

stated for compact Calabi-Yau manifolds (and recently proved for the quintic

3-fold by Sheridan [46]), it also holds (and is often easier to prove) for non-

compact manifolds (in which case one should consider the wrapped Fukaya

category), and outside of the Calabi-Yau case (in which case the mirror

is a Landau-Ginzburg model, for which one should consider Orlov’s derived

category of singularities [35, 36] rather than the ordinary derived category

of coherent sheaves).

The calculation we have performed in Section 4.2, together with

Abouzaid’s generation statement, essentially proves homological mirror sym-

metry for the cylinder C∗ = T ∗S1, and its mirror C∗ = SpecC[x±1]. Namely,

coherent sheaves over C
∗ are the same thing as finite rank C[x±1]-modules.

However, since the object L considered in Section 4.2 generates the wrapped

Fukaya category, W(T ∗S1) quasi-embeds into the category of modules over

CW (L,L) � C[x±1], and the image can be characterized explicitly enough

to prove the desired equivalence between W(T ∗S1) and DbCoh(C∗).

This general approach extends to other examples, with the caveat that in

general there are infinitely many non-trivial higher A∞-operations; one then

needs to rely on an algebraic classification result in order to determine which

structure coefficients need to be computed in order to fully determine the

A∞-structure up to homotopy. Symplectic manifolds whose Fukaya categories

have been determined in this manner include (but are not limited to) pairs

of pants [10], genus 2 curves [43], and Calabi-Yau hypersurfaces in projective

space [46].

4.5. An Application to Heegaard-Floer Homology

Heegaard-Floer homology associates to a closed 3-manifold Y a graded

abelian group ĤF (Y ). This invariant is constructed by considering a Hee-

gaard splitting Y = Y1 ∪Σ̄ Y2 of Y into two genus g handlebodies Yi, each

of which determines a product torus Ti in the g-fold symmetric product of

the Heegaard surface Σ̄ = ∂Y1 =−∂Y2. Deleting a marked point z from Σ̄ to

obtain an open surface Σ, ĤF (Y ) is then defined as the Floer cohomology

of the Lagrangian tori T1, T2 in the symplectic manifold Symg(Σ), see [37].

In this context it is natural to study the Fukaya category (ordinary or

wrapped) of Symg(Σ) (equipped with a Kähler form which agrees with the

product one away from the diagonal). It turns out that the wrapped category
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Fig. 13. Generating W(Symg(Σ))

has a particularly nice set of generators. Namely, consider a collection of 2g

disjoint properly embedded arcs α1, . . . , α2g in Σ such that Σ \(α1∪· · ·∪α2g)

is homeomorphic to a disc, see e.g. Figure 13. Given a g-element subset

s⊆ {1, . . . ,2g}, the productDs =
∏

i∈sαi is an exact Lagrangian submanifold

of Symg(Σ), and we have:

Theorem 4.7 [13, 14]. The Lagrangian submanifolds Ds =
∏

i∈sαi, s ⊆
{1, . . . ,2g}, |s|= g generate W(Symg(Σ)).

Thus, by Yoneda embedding, Lagrangian submanifolds of Symg(Σ) can

be viewed as modules over the A∞-algebra
⊕

s,s′ hom(Ds,Ds′).

Determining this A∞-algebra is not completely hopeless, as the wrapping

Hamiltonian H on Symg(Σ) can be chosen in a manner compatible with the

product structure so that φ1
H(Ds) =

∏
i∈s φ

1
h(αi), where h is a Hamiltonian on

Σ that grows quadratically in the cylindrical end, and pseudo-holomorphic

discs in the symmetric product can be viewed by projecting them to Σ as is

customary in Heegaard-Floer theory; nonetheless, things are complicated by

the presence of many nontrivial A∞-products.

It is easier to study a partially wrapped version of the Fukaya category,

in which the wrapping “stops” along a ray {z} × (1,∞) in the cylindrical

end of Σ; i.e., the Hamiltonian is again chosen to be compatible with the

product structure away from the diagonal, but the effect on each component

is to push the ends of the arc αi in the positive direction towards the ray

{z} × (1,∞), without ever crossing it: see [13]. Theorem 4.7 continues to

hold in this setting: the product Lagrangians Ds also generate the partially

wrapped Fukaya category. Furthermore, in the partially wrapped case the

A∞-algebra A=
⊕

s,s′ hom(Ds,Ds′) turns out to be a finite-dimensional dg-

algebra (i.e., μk = 0 for k ≥ 3) which admits a simple explicit combinatorial

description [13]; in fact, A is precisely the strands algebra first introduced by

Lipshitz, Ozsváth and Thurston [27].
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By Yoneda embedding, Lagrangian submanifolds of Symg(Σ), such as

the product tori associated to genus g handlebodies in Heegaard-Floer the-

ory, can be viewed as A∞-modules over the strands algebra. Moreover, the

same holds true for generalized Lagrangian submanifolds of Symg(Σ) (i.e.,

formal images of Lagrangian submanifolds under sequences of Lagrangian

correspondences, cf. [49]), such as those associated to arbitrary 3-manifolds

with boundary Σ̄ (not just handlebodies) according to ongoing work of Lekili

and Perutz. This provides a symplectic geometry interpretation of Lipshitz-

Ozsváth-Thurston’s bordered Heegaard-Floer homology [27], which associates

to a 3-manifold Y with boundary ∂Y = Σ̄ an A∞-module ĈFA(Y ) over the

strands algebra. Namely, Lekili and Perutz’s construction associates to such

a 3-manifold a generalized Lagrangian submanifold of Symg(Σ), whose im-

age under Yoneda embedding (as in Section 3.4.2, but using quilted Floer

cohomology of Lagrangian correspondences) is the A∞-module ĈFA(Y ); see

[13, 14].

4.6. A Closing Remark

The methods available to calculate Floer cohomology and Fukaya categories

are still evolving rapidly. Besides the use of algebraic generation statements

such as those in [3] and [42] to reduce to a simpler set of Lagrangian subman-

ifolds, there are at least two key ideas that have made calculations possible.

On one hand, it is often possible to find holomorphic projection maps

(to the complex plane or to other Riemann surfaces) under which the given

Lagrangians project to arcs or curves, in which case holomorphic discs can

be studied by looking at their projections to the base and by reducing to the

symplectic geometry of the fiber; this is e.g. the guiding principle of Seidel’s

work on Lefschetz fibrations [42, 44] and the various calculations done using

that framework.

At the same time, since such holomorphic projections are easier to come

by on open manifolds, another idea that nicely complements this one is to

carry out calculations for an exact open subdomain M0 of the given sym-

plectic manifold M obtained by deleting some complex hypersurface, and

then use abstract deformation theory to view the Fukaya category of M as

an A∞-deformation of that of M0 (cf. [40]). The Hochschild cohomology

class that determines the deformation is then often determined by symmetry

considerations and/or by studying specific A∞-structure maps (i.e., certain

counts of holomorphic discs in M ). See e.g. [43, 46] for an illustration of this
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approach. (One guiding principle which might explain why this approach is

so successful is that algebraic deformations of Fukaya categories are often

geometric: natural “closed-open” maps from the quantum or symplectic co-

homology of M to the Hochschild cohomology of its ordinary or wrapped

Fukaya category often turn out to be isomorphisms [11, 22].)

Going forward, there is hope that sheaf-theoretic methods will lead to

completely new methods of computation of Fukaya categories (at least for

Liouville manifolds) in terms of the topology of a Lagrangian “skeleton”.

This is an idea that to our knowledge originated with Kontsevich [25], and

was subsequently developed by various other authors (see e.g. [5, 30, 45, 47]);

the ultimate goal being to bypass the analysis of pseudo-holomorphic curves

in favor of algebraic and topological methods. It is too early to tell how

successful these approaches will be, but it is entirely possible that they will

ultimately supplant the techniques we have described in this text.
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