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1. Introduction

This article is intended to serve as a general introduction to the subject of

knot contact homology. There are two related sides to the theory: a geomet-

ric side devoted to the contact geometry of conormal bundles and explicit

calculation of holomorphic curves, and an algebraic, combinatorial side em-

phasizing ties to knot theory and topology. We will focus on the latter side

and only treat the former side lightly. The present notes grew out of lectures

given at the Contact and Symplectic Topology Summer School in Budapest

in July 2012.

The strategy of studying the smooth topology of a smooth manifold via

the symplectic topology of its cotangent bundle is an idea that was advo-

cated by V.I. Arnold and has been extensively studied in symplectic geom-

etry in recent years. It is well-known that if M is smooth then T ∗M car-

ries a natural symplectic structure, with symplectic form ω =−dλcan, where

λcan ∈Ω1(T ∗M) is the Liouville form; the idea then is to analyze T ∗M as a

symplectic manifold to recover topological data about M .

In recent years this strategy has been executed quite successfully by ex-

amining Gromov-type moduli spaces of holomorphic curves on T ∗M . For

instance, one can show that the symplectic structure on T ∗M recovers ho-

motopic information about M , as shown in various guises by Viterbo [41],

Salamon–Weber [40], and Abbondandolo–Schwarz [1], who each prove some
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version of the following result (where technical restrictions have been omitted

for simplicity):

Theorem 1.1 ([1, 40, 41]). The Hamiltonian Floer homology of T ∗M is

isomorphic to the singular homology of the free loop space of M .

Subsequent work has related certain additional Floer-theoretic construc-

tions on T ∗M to the Chas–Sullivan loop product and string topology; see for

example [2, 9].

In a slightly different direction, M. Abouzaid has used holomorphic curves

to show that the symplectic structure on T ∗M can contain more than topo-

logical information about M :

Theorem 1.2 ([3]). If Σ is an exotic (4k+1)-sphere that does not bound a

parallelizable manifold, then T ∗Σ is not symplectomorphic to T ∗S4k+1.

At the time of this writing, it is still possible that the smooth type of

a closed smooth manifold M (up to diffeomorphism) is determined by the

symplectic type of T ∗M (up to symplectomorphism), which would be a very

strong endorsement of Arnold’s idea. (See however [26] for counterexamples

when M is not closed.) For a nice discussion of this and related problems,

see [39].

In this survey article, we discuss a relative version of Arnold’s strategy.

The setting is as follows. Let K ⊂M be an embedded submanifold (or an

immersed submanifold with transverse self-intersections). Then one can con-

struct the conormal bundle of K:

LK =
{
(q, p) | q ∈K, 〈p, v〉= 0 for all v ∈ TqK

}
⊂ T ∗M.

It is a standard exercise to check that LK is a Lagrangian submanifold

of T ∗M .

One can work in one dimension lower by considering the cosphere (unit

cotangent) bundle ST ∗M of unit covectors in T ∗M with respect to some

metric; then ST ∗M is a contact manifold with contact form α = λcan, and

it can be shown that the contact structure on ST ∗M is independent of the

metric. The unit conormal bundle of K,

ΛK = LK ∩ ST ∗M ⊂ ST ∗M,

is then a Legendrian submanifold of ST ∗M , with α|ΛK
= 0. See Figure 1.
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Fig. 1. A schematic depiction of cotangent and conormal bundles. Only the disk bundle
portion DT ∗M of T ∗M is shown, with boundary ST ∗M . Note that both LK and the

zero section M are Lagrangian in T ∗M , and their intersection is K

By construction, if K changes by smooth isotopy in M , then ΛK changes

by Legendrian isotopy (isotopy within the class of Legendrian submanifolds)

in ST ∗M . One can then ask what the Legendrian isotopy type of ΛK re-

members about the smooth isotopy type of K; see Question 1.3 below.

For the remainder of the section and article, we restrict our focus by

assuming that M = R
3 and K ⊂ R

3 is a knot or link. In this case, ST ∗M
is contactomorphic to the 1-jet space J1(S2) = T ∗S2 ×R equipped with the

contact form dz − λcan, where z is the coordinate on R and λcan is the

Liouville form on S2, via the diffeomorphism ST ∗
R
3 → J1(S2) sending (q, p)

to ((p, q− 〈q, p〉p), 〈q, p〉) where 〈·, ·〉 is the standard metric on R
3.

In the 5-manifold ST ∗
R
3, the unit conormal bundle ΛK is topologically

a 2-torus (or a disjoint union of tori if K has multiple components). This

can for instance be seen in the dual picture in TR3, where the unit normal

bundle can be viewed as the boundary of a tubular neighborhood of K. The

topological type of ΛK
∼= T 2 ⊂ S2 × R

3 contains no information: if K1,K2

are arbitrary knots, then ΛK1
and ΛK2

are smoothly isotopic. (Choose a

one-parameter family of possibly singular knots Kt joining K1 to K2, and

perturb ΛKt
slightly when Kt is singular to eliminate double points.)

However, there is no reason for ΛK1
and ΛK2

to be Legendrian isotopic.

This suggests the following question.

Question 1.3. How much of the topology of K ⊂R
3 is encoded in the Leg-

endrian structure of ΛK ⊂ ST ∗
R
3? If ΛK1

and ΛK2
are Legendrian isotopic,

are K1 and K2 necessarily smoothly isotopic knots?

At the present, the answer to the second part of this question is unknown

but could possibly be “yes”. The answer is known to be “yes” if either knot

is the unknot; see below.

In order to tackle Question 1.3, it is useful to have invariants of Leg-

endrian submanifolds under Legendrian isotopy. One particularly powerful



488 L. Ng

invariant is Legendrian contact homology, which is a Floer-theoretic count of

holomorphic curves associated to a Legendrian submanifold and is discussed

in more detail in Section 2.

Definition 1.4. Let K ⊂ R
3 be a knot or link. The knot contact homology

of K, written HC∗(K), is the Legendrian contact homology of ΛK .

Knot contact homology is the homology of a differential graded algebra

associated to a knot, the knot DGA (A, ∂). By the general invariance result

for Legendrian contact homology, the knot DGA and knot contact homology

are topological invariants of knots and links.

This article is a discussion of knot contact homology and its properties.

Despite the fact that the original definition of knot contact homology in-

volves holomorphic curves, there is a purely combinatorial formulation of

knot contact homology. The article [15], which does most of the heavy lifting

for the results presented here, derives this combinatorial formula and can be

viewed as the first reasonably involved computation of Legendrian contact

homology in high dimensions.

Viewed from a purely knot theoretic perspective, knot contact homology

is a reasonably strong knot invariant. For instance, it detects the unknot (see

Corollaries 4.10 and 5.10): if K is a knot such that HC∗(K)∼=HC∗(O) where

O is the unknot, then K =O. This implies in particular that the answer to

Question 1.3 is yes if one of the knots is unknotted. It is currently an open

question whether knot contact homology is a complete knot invariant.

Connections between knot contact homology and other knot invariants

are gradually beginning to appear. It is known that HC∗(K) determines the

Alexander polynomial (Theorem 3.18). A portion of the homology also has a

natural topological interpretation, via an object called the cord algebra that

is closely related to string topology. In addition, one can use HC∗(K) to

define a three-variable knot invariant, the augmentation polynomial, which is

closely related to the A-polynomial and conjecturally determines a special-

ization of the HOMFLY-PT polynomial. Very recently, a connection between

knot contact homology and string theory has been discovered, and this sug-

gests that the augmentation polynomial may in fact determine many known

knot invariants, including the HOMFLY-PT polynomial and certain knot

homologies, and may also be determined by a recursion relation for colored

HOMFLY-PT polynomials.

Knot contact homology also produces a strong invariant of transverse

knots, which are knots that are transverse to the standard contact structure
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conormal bundle
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3
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Fig. 2. The knot invariants and interconnections described in this article

on R
3. For a transverse knot, the knot contact homology of the underlying

topological knot contains an additional filtered structure, transverse homol-

ogy, which is invariant under transverse isotopy. This has been shown to be

an effective transverse invariant (Theorem 6.9), one of two that are currently

known (the other comes from Heegaard Floer theory).

In the rest of the article, we expand on the properties of knot contact ho-

mology mentioned above; see Figure 2 for a schematic chart. In Section 2, we

review the general definition of Legendrian contact homology. We apply this

to knots and conormal bundles in Section 3 to give a combinatorial definition

of knot contact homology and present a few of its properties. In Section 4,

we discuss the cord algebra, which gives a topological interpretation of knot

contact homology in degree 0. Section 5 defines the augmentation polynomial

and relates it to other knot invariants; this includes a speculative discussion

of the relation to string theory. In Section 6, we present transverse homol-

ogy and consider its effectiveness as an invariant of transverse knots. Some

technical details (a definition of the “fully noncommutative” version of knot

contact homology, and a comparison of the conventions used in this article

to conventions in the literature) are included in the Appendix.

As this is a survey article, many details will be omitted in favor of what

we hope is an accessible exposition of the subject. (For more introductory ma-
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terial on knot contact homology, the reader is referred to two papers [12, 32];

note however that these do not contain recent developments.) There are ex-

ercises scattered through the text as a concrete, hands-on complement to the

main discussion. There is not much new mathematical content in this article

beyond what has already appeared in the literature, particularly [15, 16] on

the geometric side and [30, 31, 33, 34] on the combinatorial/topological side.

One exception is a representation-theoretic interpretation of some factors of

the augmentation polynomial that do not appear in the A-polynomial; see

Theorem 5.11. We have also introduced a number of conventions for com-

binatorial knot contact homology in this article that are new and, in the

author’s opinion, more natural than previous conventions.

2. Legendrian Contact Homology

In this section, we give a cursory introduction to Legendrian contact homol-

ogy and augmentations, essentially the minimum necessary to motivate the

construction of knot contact homology in Section 3. The reader interested in

further details is referred to the various references given in this section.

Legendrian contact homology (LCH), introduced by Eliashberg and Hofer

in [17], is an invariant of Legendrian submanifolds in suitable contact mani-

folds. This invariant is defined by counting certain holomorphic curves in the

symplectization of the contact manifold, and is a part of the (much larger)

Symplectic Field Theory package of Eliashberg, Givental, and Hofer [18].

LCH is the homology of a differential graded algebra (DGA) that we now

describe, and in some sense the DGA (up to an appropriate equivalence re-

lation), rather than the homology, is the “true” invariant of the Legendrian

submanifold.

In this section, we will work exclusively in a contact manifold of the form

V = J1(M) = T ∗M ×R with the standard contact form α= dz− λcan. LCH

can be defined for much more general contact manifolds, but the proof of

invariance in general has not been fully carried out, and even the definition

is more complicated than the one given below when the contact manifold

has closed Reeb orbits. Note that for V = J1(M), the Reeb vector field Rα

is ∂/∂z and thus J1(M) has no closed Reeb orbits.

Let Λ⊂ V be a Legendrian submanifold. We assume for simplicity that Λ

has trivial Maslov class (e.g., for Legendrian knots in R
3 = J1(R), this means

that Λ has rotation number 0), and that Λ has finitely many Reeb chords,

integral curves for the Reeb field Rα with endpoints on Λ. We label the Reeb
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chords formally as a1, . . . , an. Finally, let R denote (here and throughout the

article) the coefficient ring R = Z[H2(V,Λ)], the group ring of the relative

homology group H2(V,Λ).

Definition 2.1. The LCH differential graded algebra associated to Λ is

(A, ∂), defined as follows:

1. Algebra: A=R〈a1, . . . , an〉 is the free noncommutative unital algebra

over R generated by a1, . . . , an. As an R-module, A is generated by all

words ai1 · · ·aik for k ≥ 0 (where k = 0 gives the empty word 1).

2. Grading: Define |ai|=CZ(ai)−1, where CZ denotes Conley–Zehnder

index (see [14] for the definition in this context) and |r|= 0 for r ∈R.

Extend the grading to all of A in the usual way: |xy|= |x|+ |y|.
3. Differential: Define ∂(r) = 0 for r ∈R and

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(
sgn(Δ)

)
e[Δ]aj1 · · ·ajk

where M(ai;aj1 , . . . , ajk) is the moduli space defined below, sgn(Δ) is

an orientation sign associated to Δ, and [Δ] is the homology class1 of

Δ in H2(V,Λ).

Extend the differential to all of A via the signed Leibniz rule: ∂(xy) =

(∂x)y+ (−1)|x|x(∂y).

The key to Definition 2.1 is the moduli spaceM(ai;aj1 , . . . , ajk). To define

this, let J be a (suitably generic) almost complex structure on the symplec-

tization (R× V,d(etα)) of V (where α is the contact form on V and t is the

R coordinate) that is compatible with the symplectization in the following

sense: J is R-invariant, J(∂/∂t) =Rα, and J maps ξ = kerα to itself. With

respect to this almost complex structure, R× ai is a holomorphic strip for

any Reeb chord ai of Λ.

Let D2
k =D2 \ {p+, p−1 , . . . , p−k } be a closed disk with k+ 1 punctures on

its boundary, labeled p+, p−1 , . . . , p
−
k in counterclockwise order around ∂D2.

For (not necessarily distinct) Reeb chords ai and aj1 , . . . , ajk for some k ≥ 0,

let M(ai;aj1 , . . . , ajk) be the moduli space of J -holomorphic maps

Δ :
(
D2

k, ∂D
2
k

)
→ (R× V,R×Λ)

1To define this homology class, we assume that “capping half-disks” have been chosen in
V for each Reeb chord ai, with boundary given by ai along with a path in Λ joining the
endpoints of ai. Some additional care must be taken if Λ has multiple components.
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Fig. 3. A holomorphic disk Δ : (D2
k, ∂D

2
k)→ (R× V,R×Λ) contributing to

M(ai;aj1,...,ajk
) and the differential ∂(ai)

up to domain reparametrization, such that:

• near p+, Δ is asymptotic to a neighborhood of the Reeb strip R× ai
near t=+∞;

• near p−l for 1≤ l≤ k, Δ is asymptotic to a neighborhood of R×ajl near

t=−∞.

See Figure 3.

When everything is suitably generic, M(ai;aj1 , . . . , ajk) is a manifold of

dimension |ai| −
∑

l |ajl |. The moduli space also has an R action given by

translation in the R direction, and the differential ∂(ai) counts moduli spaces

M(ai;aj1 , . . . , ajk) that are rigid after quotienting by this R action.

Remark 2.2. If H2(V,Λ)∼=H2(V )⊕H1(Λ), as is true in the case that we

will consider, one can “improve” the DGA (A, ∂) to a DGA that we might

call the fully noncommutative DGA (Ã, ∂), defined as follows. For simplicity,

assume that Λ is connected; there is a similar but slightly more involved

construction otherwise. The algebra Ã is the tensor algebra over the group

ring Z[H2(V )], generated by the Reeb chords a1, . . . , an along with elements

of π1(Λ), with no relations except for the ones inherited from π1(Λ). Thus Ã
is generated as a Z[H2(V )]-module by words of the form

γ0ai1γ1ai2γ2 · · ·γk−1aikγk

where ai1 , . . . , aik are Reeb chords of Λ, γ0, . . . , γk ∈ π1(Λ), and k ≥ 0. Note

that A is a quotient of Ã: just abelianize π1(Λ) to H1(Λ), and allow Reeb

chords ai to commute with homology classes γ ∈H1(Λ).

To define the differential, let Δ be a disk in M(ai;aj1 , . . . , ajk). The pro-

jection map π :H2(V,Λ)→H2(V ) gives a class π([Δ]) ∈H2(V ). The bound-
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ary of the image of Δ consists of an ordered collection of k + 1 paths in Λ

joining endpoints of Reeb chords. By fixing paths in Λ joining each Reeb

chord endpoint to a fixed point on Λ, one can close these k + 1 paths into

k+ 1 loops in Λ. Let γ0(Δ), . . . , γk(Δ) denote the homotopy classes of these

loops in π1(Λ), where the loops are ordered in the order that they appear

in the image of ∂D2, traversed counterclockwise. Finally, define ∂(γ) = 0 for

γ ∈ π1(Λ) and

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(
sgn(Δ)

)
eπ([Δ])

× γ0(Δ)aj1γ1(Δ) · · ·ajkγk(Δ),

and extend the differential to Ã by the Leibniz rule.

Note that the quotient that sends Ã to A also sends the differential on Ã
to the differential on A. The fully noncommutative DGA (Ã, ∂) satisfies the

same properties as (A, ∂) (Theorem 2.3 below), with a suitable alteration of

the definition of stable tame isomorphism. For the majority of this article, we

will stick to the usual LCH DGA (A, ∂), which is enough for most purposes,

because it simplifies notation; see however the discussion after Theorem 4.8,

as well as the Appendix.

We now state some fundamental properties of the LCH DGA (A, ∂).

These began with the work of Eliashberg–Hofer [17]; Chekanov [7] wrote

down the precise statement and gave a combinatorial proof for the case V =

R
3 (see also [19]). The formulation given here is due to, and proven by,

Ekholm–Etnyre–Sullivan [14].

Theorem 2.3 ([7, 14, 17]). Given suitable genericity assumptions:

1. ∂ decreases degree by 1;

2. ∂2 = 0;

3. up to stable tame isomorphism, (A, ∂) is independent of all choices

(of contact form for the contact structure on V , and of J), and is an

invariant of Λ up to Legendrian isotopy;

4. up to isomorphism, H∗(A, ∂) =:HC∗(V,Λ) is also an invariant of Λ up

to Legendrian isotopy.

Here “stable tame isomorphism” is an equivalence relation between DGAs

defined in Definition 2.4 below, which is a special case of quasi-isomorphism;
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thus item 3 in Theorem 2.3 directly implies item 4. The homology HC∗(V,Λ)
is called the Legendrian contact homology of Λ.

Definition 2.4 ([7], see also [19]).

1. Let A=R〈a1, . . . , an〉. An elementary automorphism of A is an algebra

map φ : A → A of the form: for some i, φ(aj) = aj for all j 
= i, and

φ(ai) = ai + v for some v ∈R〈a1, . . . , ai−1, ai+1, . . . , an〉.

2. A tame automorphism of A is a composition of elementary automor-

phisms.

3. DGAs (A = R〈a1, . . . , an〉, ∂) and (A′ = R〈a′1, . . . , a′n〉, ∂′) are tamely

isomorphic if there is an algebra isomorphism ψ = φ2 ◦ φ1 such that

φ1 : A → A is a tame automorphism and φ2 : A → A′ is given by

φ2(ai) = a′i for all i, and ψ intertwines the differentials: ψ ◦ ∂ = ∂′ ◦ψ.

4. A stabilization of (A = R〈a1, . . . , an〉, ∂) is (S(A), ∂), where S(A) =

R〈a1, . . . , an, e1, e2〉 with grading inherited from A along with |e1| =
|e2|+ 1, and ∂ is induced on S(A) by ∂ on A along with ∂(e1) = e2,

∂(e2) = 0.

5. DGAs (A, ∂) and (A′, ∂′) are stable tame isomorphic if they are tamely

isomorphic after stabilizing each of them some (possibly different) num-

ber of times.

Exercise 2.5.

1. Prove that H(S(A), ∂) ∼= H(A, ∂) and thus stable tame isomorphism

implies quasi-isomorphism.

2. Prove that if (A, ∂) is a DGA with a generator a satisfying |a|= 1 and

∂(a) = 1, then H(A, ∂) = 0. Conclude that quasi-isomorphism does not

necessarily imply stable tame isomorphism.

3. If all generators of A are in degree ≥ 0, and S is a unital ring, show that

there is a one-to-one correspondence between augmentations of (A, ∂)

to S (see Definition 2.6 below) and ring homomorphisms H0(A, ∂)→ S.

Find an example to show that this is not true in general without the

degree condition.

4. Find the stable tame isomorphism in Example 3.13 below.

We conclude this section by introducing the notion of an augmentation,

which is an important algebraic tool for studying DGAs.
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Definition 2.6. Let (A, ∂) be a DGA over R, and let S be a unital ring.

An augmentation of (A, ∂) to S is a graded ring homomorphism

ε :A→ S

sending ∂ to 0; that is, ε ◦ ∂ = 0, ε(1) = 1, and ε(a) = 0 unless |a|= 0.

Note that augmentations use the multiplicative structure on the DGA

(A, ∂). An augmentation allows one to construct a linearized version of the

homology of (A, ∂).

Exercise 2.7. Let (A, ∂) be the LCH DGA for a Legendrian Λ, and let ε

an augmentation of (A, ∂) to S.

1. Write A=R〈a1, . . . , an〉. The augmentation ε induces an augmentation

εS : S〈a1, . . . , an〉 → S that acts as the identity on S and as ε on the ai’s.

Prove that (ker εS)/(ker εS)
2 is a finitely generated, graded S-module.

2. Prove that ∂ descends to a map here: then

HC lin
∗ (Λ, ε) :=H∗

(
(ker ε)/(ker ε)2, ∂

)

is a graded S-module, the linearized Legendrian contact homology of Λ

with respect to the augmentation ε.

Remark 2.8. Here is a less concise, but possibly more illuminating, de-

scription of linearized contact homology. We can define a differential ∂S
on AS := S〈a1, . . . , an〉 by composing ∂ by the map R → S induced by ε

(this map fixes all ai’s). Define an S-algebra automorphism φε :AS →AS by

φε(ai) = ai + ε(ai) for all i and φε(s) = s for all s ∈ S. Then the map

∂S,ε := φε ◦ ∂S ◦ φ−1
ε

is a differential on AS . Furthermore, if we define A+
S to be the subalgebra

of AS generated by a1, . . . , an, so that AS
∼= S ⊕A+

S as S-modules, then ∂S,ε
restricts to a map from A+

S to itself, and so it induces a differential from

A+
S /(A

+
S )

2 to itself. The homology of the complex (A+
S /(A

+
S )

2, ∂S,ε) is the

linearized contact homology of Λ with respect to ε.

Remark 2.9. Let Λ⊂ V have LCH DGA (A, ∂), and write R= Z[H2(V,Λ)]

as usual. Any augmentation ε of (A, ∂) to a ring S induces a map ε|R :R→ S,

since R⊂A. This motivates the following definition: define the augmentation
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variety of Λ to S to be

Aug(Λ,S) =
{
ϕ :R→ S |ϕ= ε|R for some augmentation ε from (A, ∂) to S

}

⊂Hom(R,S).

It follows from Theorem 2.3 that Aug(Λ,S) is an invariant of Λ under Leg-

endrian isotopy.

In the simplest case, when V =R
3 and Λ is a Legendrian knot, one can

consider the augmentation variety

Aug(Λ,S)⊂Hom
(
Z[Z], S

)∼= S×

where S× is the multiplicative group of units in S. It can then be shown

(by upcoming work of Caitlin Leverson) that Aug(Λ,S) is either {−1} if Λ

has a (graded) ruling, or ∅ otherwise; the augmentation variety contains fairly

minimal information about Λ. However, in the main case of interest in this

article, where V = J1(S2) and Λ=ΛK , the augmentation variety contains a

great deal of information about ΛK . See Section 5.

Remark 2.10. A geometric motivation for augmentations comes from exact

Lagrangian fillings. Here is a somewhat imprecise description. Suppose that

the contact manifold V is a convex end of an open exact symplectic manifold

(W,ω); for instance, W could be the symplectization of V , or an exact sym-

plectic filling of V . Let L⊂W be an oriented exact Lagrangian submanifold

whose boundary is the Legendrian Λ⊂ V . Then L induces an augmentation

ε of the LCH DGA of Λ, to the ring S = Z[H2(W,L)], which restricts on the

coefficient ring to the usual map Z[H2(V,Λ)]→ Z[H2(W,L)]. This augmen-

tation is defined as follows: ε(ai) is the sum of all rigid holomorphic disks in

W with boundary on L and positive boundary puncture limiting to the Reeb

chord ai of Λ, where each holomorphic disk contributes its homology class

in H2(W,L). The fact that ε is an augmentation is established by an argu-

ment similar to the proof that ∂2 = 0 in Theorem 2.3 above, which involves

two-story holomorphic buildings.

3. Knot Contact Homology

In this section, we present a combinatorial calculation of knot contact homol-

ogy, which is Legendrian contact homology in the particular case where the

contact manifold is ST ∗
R
3 ∼= J1(S2) and the Legendrian submanifold is the

unit conormal bundle ΛK to some link K ⊂R
3. The version of knot contact
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homology we give here is a theory over the coefficient ring Z[λ±1, μ±1,U±1],

and has appeared in the literature in several places and guises,2 up to vari-

ous changes of variables (see the Appendix). Our presentation corresponds to

what is called the “infinity” version of transverse homology in [16, 34], and is

the most general (as of now) version of knot contact homology for topological

knots and links. Setting U = 1, one obtains an invariant called “framed knot

contact homology” in [33] and simply “knot contact homology” in [15]. If

we set U = λ= 1 and μ=−1, we obtain the original version of knot contact

homology from [30, 31].

For simplicity, we assume thatK ⊂R
3 is an oriented knot; see Remark 3.2

below for the case of a multi-component link. The unit conormal bundle

ΛK ⊂ J1(S2) is a Legendrian T 2. As discussed in the previous section, the

LCH DGA of ΛK is a topological link invariant. The coefficient ring for this

DGA is

R= Z
[
H2

(
J1

(
S2

)
,ΛK

)]∼= Z
[
λ±1, μ±1,U±1

]
,

where λ,μ correspond to the longitude and meridian generators of H1(ΛK)

and U corresponds to the generator of H2(J
1(S2)) =H2(S

2). Note that the

choice of λ,μ relies on a choice of (orientation and) framing for K; we choose

the Seifert framing for definiteness.

Definition 3.1. K ⊂ R
3 knot. The knot DGA of K is the LCH dif-

ferential graded algebra of ΛK ⊂ J1(S2), an algebra over the ring R =

Z[λ±1, μ±1,U±1]. The homology of this DGA is the knot contact homology

of K, HC∗(K) =HC∗(ST ∗
R
3,ΛK).

Remark 3.2. If K is an oriented r-component link, one can similarly define

the “knot DGA”, now an algebra over

Z
[
H2

(
J1

(
S2

)
,ΛK

)]∼= Z
[
λ±1
1 , . . . , λ±1

r , μ±1
1 , . . . , μ±1

r ,U±1
]
.

Here, as in the knot case, we choose the 0-framing on each link component

to fix the above isomorphism. The combinatorial description for the DGA in

the link case is a bit more involved than for the knot case; see the Appendix

for details.

We now return to the case where K is a knot. It follows directly from

Theorem 2.3 that knot contact homology HC∗(K) is an invariant up to R-

2The profusion of terms and specializations is an unfortunate byproduct of the way that
the subject evolved over a decade.
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algebra isomorphism, as is the knot DGA up to stable tame isomorphism.

What we describe next is a combinatorial form for the knot DGA, given

a braid presentation of K; this follows the papers [16, 34], which build on

previous work [15, 30, 31, 33]. The fact that the combinatorial DGA agrees

with the holomorphic-curve DGA described in Section 2 is a rather intricate

calculation and the subject of [15].

Let Bn be the braid group on n strands. Define An to be the free non-

commutative unital algebra over Z generated by n(n−1) generators aij with

1 ≤ i, j ≤ n and i 
= j. We consider the following representation of Bn as

a group of automorphisms of An, which was first introduced (in a slightly

different form) in [29].

Definition 3.3. The braid homomorphism φ :Bn →AutAn is the map de-

fined on generators σk (1≤ k ≤ n− 1) of Bn by:

φσk
:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij �→ aij , i, j 
= k, k+ 1

ak+1,i �→ aki, i 
= k, k+ 1

ai,k+1 �→ aik, i 
= k, k+ 1

ak,k+1 �→ −ak+1,k

ak+1,k �→ −ak,k+1

aki �→ ak+1,i − ak+1,kaki, i 
= k, k+ 1

aik �→ ai,k+1 − aikak,k+1, i 
= k, k+ 1.

This extends to a map on Bn (see the following exercise).

Exercise 3.4.

1. Check that φσk
is invertible.

2. Check that φ respects the braid relations: φσk
φσk+1

φσk
= φσk+1

φσk
φσk+1

and φσi
φσj

= φσj
φσi

for |i− j| ≥ 2.

3. For the braid B = (σ1 · · ·σn−1)
m ∈ Bn for m ≥ 1, calculate φB . (The

answer is quite simple.)

Remark 3.5. As a special case of Exercise 3.4(3), when B is a full twist

(σ1 · · ·σn−1)
n, φB is the identity map; thus φ : Bn → AutAn is not a faith-

ful representation. However, one can create a faithful representation of Bn

from φ, as follows. Embed Bn into Bn+1 by adding an extra (noninteracting)

strand to any braid in Bn; then the composition

Bn ↪→Bn+1
φ→AutAn+1
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is a faithful representation of Bn as a group of algebra automorphisms of

An+1. See [31].

Before we proceed with the combinatorial definition of the knot DGA, we

present a possibly illustrative reinterpretation of φ that begins by viewing

Bn as the mapping class group of D2 \ {p1, . . . , pn}; this will be useful in

Section 4. To this end, let p1, . . . , pn be a collection of n points in D2, which

we arrange in order in a horizontal line.

Definition 3.6. An arc is a continuous path γ : [0,1] → D2 such that

γ−1({p1, . . . , pn}) = {0,1}; that is, the path begins at some pi, ends at some

pj (possibly the same point), and otherwise does not pass through any of

the p’s. We consider arcs up to endpoint-fixing homotopy through arcs:

two arcs are identified if, except at their endpoints, they are homotopic in

D2 \ {p1, . . . , pn}. Let Ã denote the tensor algebra over Z generated by arcs,

modulo the (two-sided ideal generated by the) relations:

1.

where each of these dots indicates the same point pi;

2. any contractible arc with both endpoints at some pi is equal to 0.

Remark 3.7. There is a notion of a framed arc that generalizes Defini-

tion 3.6, and a corresponding version of Ã in which 0 is replaced by 1− μ.

Framed arcs are used to relate knot contact homology to the cord algebra

(see Section 4), but we omit their definition here in the interest of simplicity.

See [33] for more details.

One can now relate the homomorphism φ with the algebra Ã generated

by arcs.

Theorem 3.8 ([31]).

1. For i 
= j, let γij denote the arc depicted below (left diagram for i < j,

right for i > j):

Then the map sending aij to γij for i < j and −γij for i > j induces an

algebra isomorphism Φ :An
∼=→Ã.



500 L. Ng

2. For any B ∈Bn and any i, j, we have

Φ
(
φB(aij)

)
=B ·Φ(aij),

where B acts on Ã by the mapping class group action: if a is an arc,

then B · a is the arc obtained by applying to a the diffeomorphism of

D2 \ {p1, . . . , pn} given by B.

As an illustration of Theorem 3.8(2), the braid B = σk sends the arc γki
for i > k+ 1 to

where the equality is in Ã and uses the skein relation in Definition 3.6; the

right hand side is the image under Φ of ak+1,i − ak+1,kaki = φσk
(aki).

We now proceed with the definition of the knot DGA. We will need

two n× n matrices ΦL
B,Φ

R
B that arise from the representation φ (or, more

precisely, its extension as described in Remark 3.5).

Definition 3.9 ([30]). Let B ∈Bn ↪→Bn+1, and label the additional strand

in Bn+1 by ∗. Define ΦL
B,Φ

R
B ∈Matn×n(An) by:

φB(ai∗) =
n∑

j=1

(
ΦL

B

)
ij
aj∗

φB(a∗i) =
n∑

i=1

a∗j
(
ΦR

B

)
ji

for 1≤ i≤ n.

Exercise 3.10.

1. For B = σ3
1 ∈B3, use arcs and Theorem 3.8 to check that

φB(a13) =−2a21a13 + a21a12a21a13 + a23 − a21a12a23.

2. Now view B = σ3
1 as living in B2. Verify:

ΦL
B =

(
−2a21 + a21a12a21 1− a21a12

1− a12a21 a12

)
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ΦR
B =

(
−2a12 + a12a21a12 1− a12a21

1− a21a12 a21

)
.

3. For general B, ΦL
B and ΦR

B can be thought of as “square roots” of φB ,

in the following sense. Let A and φB(A) be the n×n matrices defined

in Definition 3.11 below; roughly speaking, A is the matrix of the aij ’s

and φB(A) is the matrix of the φB(aij)’s. Then we have

(1) φB(A) =ΦL
B ·A ·ΦR

B;

see [33, 34] for the proof. Verify (1) for B = σ3
1 .

Definition 3.11 ([15, 34]3). Let K be a knot given by the closure of a braid

B ∈ Bn. The (combinatorial) knot DGA for K is the differential graded

algebra (A, ∂) over R= Z[λ±1, μ±1,U±1] given as follows.

1. Generators: A=R〈aij , bij , cij , dij , eij , fij〉 with generators

• aij , where 1≤ i, j ≤ n and i 
= j, of degree 0 (n(n− 1) of these)

• bij , where 1≤ i, j ≤ n and i 
= j, of degree 1 (n(n− 1) of these)

• cij and dij , where 1≤ i, j ≤ n, of degree 1 (n2 of each)

• eij and fij , where 1≤ i, j ≤ n, of degree 2 (n2 of each).

2. Differential: assemble the generators into n×n matrices A, Â,B, B̂,C,

D,E,F, defined as follows. For 1≤ i, j ≤ n, the ij entry of the matrices

C,D,E,F is cij , dij , eij , fij , respectively. The other matrices A, Â,B, B̂

are given by:

Aij =

⎧
⎪⎨

⎪⎩

aij i < j

−μaij i > j

1− μ i= j

Bij =

⎧
⎪⎨

⎪⎩

bij i < j

−μbij i > j

0 i= j

(Â)ij =

⎧
⎪⎨

⎪⎩

Uaij i < j

−μaij i > j

U − μ i= j

(B̂)ij =

⎧
⎪⎨

⎪⎩

Ubij i < j

−μbij i > j

0 i= j.

Also define a matrix Λ as the diagonal matrix

Λ= diag
(
λμwU−(w−n+1)/2,1, . . . ,1

)
,

3See the Appendix for differences in convention between our definition and the ones from
[34] and [15].
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where w is the writhe of B (the sum of the exponents in the braid

word).

The differential is given in matrix form by:

∂(A) = 0

∂(B) =A−Λ · φB(A) ·Λ−1

∂(C) = Â−Λ ·ΦL
B ·A

∂(D) =A− Â ·ΦR
B ·Λ−1

∂(E) = B̂−C−Λ ·ΦL
B ·D

∂(F) =B−D−C ·ΦR
B ·Λ−1.

Here ∂(A) is the matrix whose ij entry is ∂(Aij), φB(A) is the matrix

whose ij entry is φB(Aij), and similarly for ∂(B), etc. (For U = 1 as

in the setting of [33], we can omit the hats.)

The homology of (A, ∂) is the (combinatorial) knot contact homology

HC∗(K).

Remark 3.12. Combinatorial knot DGAs and related invariants are readily

calculable by computer. There are a number of Mathematica packages to this

end available at http://www.math.duke.edu/∼ng/math/programs.html.

Example 3.13. For the unknot, the knot DGA is the algebra over Z[λ±1,

μ±1,U±1] generated by four generators, c, d in degree 1 and e, f in degree 2,

with differential:

∂c= U − λ− μ+ λμ

∂d= 1− μ− λ−1U + λ−1μ

∂e=−c− λd

∂f =−d− λ−1c.

Up to stable tame isomorphism, this is the same as the DGA generated by c

and e with differential ∂c= U − λ− μ+ λμ, ∂e= 0. See Exercise 2.5(4).

The main result of [15] is that the combinatorial knot DGA of K, de-

scribed above, agrees with the LCH DGA of ΛK , after one changes ΛK by

Legendrian isotopy in J1(S2) in a particular way and makes other choices

that do not affect LCH. The proof of this result is far outside the scope of

http://www.math.duke.edu/~ng/math/programs.html
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this article, but we will try to indicate the strategy; see also [12] for a nice

summary with a bit more detail.

Theorem 3.14 ([15, 16]). The combinatorial knot DGA of K in the sense

of Definition 3.11 is the LCH DGA of ΛK in the sense of Definition 3.1.

Idea of proof. Braid K around an unknot U . Then ΛK is contained in a

neighborhood of ΛU
∼= T 2, and so we can view

ΛK ⊂ J1
(
T 2

)
⊂ J1

(
S2

)

by the Legendrian neighborhood theorem. Reeb chords for ΛK split into

two categories: “small” chords lying in J1(T 2), corresponding to the aij ’s

and bij ’s, and “big” chords that lie outside of J1(T 2), corresponding to the

cij , dij , eij , fij generators (which themselves correspond to four Reeb chords

for ΛU ). Holomorphic disks similarly split into small disks lying in J1(T 2),

and big disks that lie outside of J1(T 2). The small disks produce the sub-

algebra of the knot DGA generated by the aij ’s and bij ’s. The big disks

produce the rest of the differential, and can be computed in the limit degen-

eration when K approaches U . These disk counts use gradient flow trees in

the manner of [11]. �

It follows from Theorem 3.14 that the combinatorial knot DGA, up to

stable tame isomorphism, is a knot invariant, as is its homology HC∗(K). Al-

ternatively, one can prove this directly without counting holomorphic curves,

just by using algebraic properties of the representation φ and the matrices

ΦL
B,Φ

R
B .

Theorem 3.15 ([33] for U = 1, [34] in general). For the combinatorial knot

DGA:

1. ∂2 = 0 (see Exercise 3.16);

2. (A, ∂) is a knot invariant: up to stable tame isomorphism, it is invariant

under Markov moves.

Exercise 3.16.

1. Use (1) from Exercise 3.10 to prove that ∂2 = 0 for the combinatorial

knot DGA.
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2. Show that the two-sided ideal inA generated by the entries of any two of

the three matrices A−Λ ·φB(A) ·Λ−1, Â−Λ ·ΦL
B ·A, A−Â ·ΦR

B ·Λ−1

contains the entries of the third. (Note that these three matrices are

the matrices of differentials ∂(B), ∂(C), ∂(D) in the knot DGA.) This

fact will appear later; see Remark 4.2.

It is natural to ask how effective the knot DGA is as a knot invariant.

In order to answer this, one needs to find practical ways of distinguishing

between stable tame isomorphism classes of DGAs. One way, outlined in

the following exercise, is by linearizing, as in Exercise 2.7; another, which

we will employ and discuss extensively later, is by considering the space of

augmentations, as in Remark 2.9.

Exercise 3.17.

1. Show that the knot DGA has an augmentation to Z[λ±1] that sends

μ,U to 1, and another augmentation to Z[μ±1] that sends λ,U to 1. (In

general there are many more augmentations, but these are “canonical”

in some sense.) Hint: this is easiest to do using the cord algebra (see

Section 4) rather than the knot DGA directly.

2. Consider the right-handed trefoil K, expressed as the closure of σ3
1 ∈

B2. If we further compose the second augmentation from the previous

part with the map Z[μ±1]→ Z that sends μ to −1, then we obtain an

augmentation of the knot DGA of K to Z. This is explicitly given as the

map ε :A→ Z with ε(λ) = 1, ε(μ) =−1, ε(U) = 1, ε(a12) = ε(a21) =−2.

For this augmentation, show that the linearized contact homology

(see Exercise 2.7) HC lin
∗ (ΛK , ε) is given as follows:

HC lin
∗

∼=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z3 ∗= 0

Z⊕ (Z3)
3 ∗= 1

Z ∗= 2

0 otherwise.

3. By contrast, check that for the unknot (whose DGA is given at the

end of Example 3.13), there is a unique augmentation to Z with ε(λ) =

1, ε(μ) = −1, ε(U) = 1, with respect to which HC lin
0

∼= 0, HC lin
1

∼= Z,

HC lin
2

∼= Z. It can be shown (see [7]) that the collection of all linearized

homologies over all possible augmentations is an invariant of the stable

tame isomorphism class of a DGA. Thus the knot DGAs for the unknot

and right-handed trefoil are not stable tame isomorphic.
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We close this section by discussing some properties of the knot DGA,

which are proved using the combinatorial formulation from Definition 3.11.

Theorem 3.18 ([33]).

1. Knot contact homology encodes the Alexander polynomial: there is a

canonical augmentation of the knot DGA (A, ∂) to Z[μ±1] (see Ex-

ercise 3.17), with respect to which the linearized contact homology

HC lin
∗ (K), as a module over Z[μ±1], is such that HC lin

1 (K) determines

the Alexander module of K (see [33] for the precise statement).

2. Knot contact homology detects mirrors and mutants: counting augmen-

tations to Z3 shows that the knot DGAs for the right-handed and left-

handed trefoils and the Kinoshita–Terasaka and Conway mutants are

all distinct.

Remark 3.19. Since the knot DGA (A, ∂) is supported in nonnegative de-

gree, augmentations to Z3 (or arbitrary rings) are the same as ring homo-

morphisms from HC0(K) to Z3; see Exercise 2.5. Thus the number of such

augmentations is a knot invariant. Counting augmentations to finite fields is

easy to do by computer.

Remark 3.20. It is not known if there are nonisotopic knots K1,K2 whose

knot contact homologies are the same. Thus at present it is conceivable that

any of the following are complete knot invariants, in decreasing order of

strength of the invariant (except possibly for the last two items, which do

not determine each other in any obvious way):

• the Legendrian isotopy class of ΛK ⊂ ST ∗
R
3;

• the knot DGA (A, ∂) up to stable tame isomorphism;

• degree 0 knot contact homology HC0(K) over R= Z[λ±1, μ±1,U±1];

• the cord algebra (see Section 4);

• the augmentation polynomial AugK(λ,μ,U) (see Section 5).

Even if these are not complete invariants, they are rather strong. For in-

stance, physics arguments suggest that the augmentation polynomial may

be at least as strong as the HOMFLY-PT polynomial and possibly some

knot homologies; see Section 5.
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4. Cord Algebra

In the previous section, we introduced the (combinatorial) knot DGA. The

fact that the knot DGA is a topological invariant can be shown in two ways:

computation of holomorphic disks and an appeal to the general theory of

Legendrian contact homology as in Section 2 [15], or combinatorial verifica-

tion of invariance under the Markov moves [34]. The first approach is natural

but difficult, while the second is technically easier but somewhat opaque from

a topological viewpoint, a bit like the usual proofs that the Jones polynomial

is a knot invariant.

In this section, we present a direct topological interpretation for a signif-

icant part (though not the entirety) of knot contact homology, namely the

degree 0 homology HC0(K) with U = 1, in terms of a construction called

the “cord algebra”. Our aim is to give some topological intuition for what

knot contact homology measures as a knot invariant. It is currently an open

problem to extend this interpretation to all of knot contact homology.

We begin with the observation that HC∗(K) is supported in degree ∗ ≥ 0,

and that for ∗= 0 it can be written fairly explicitly:

Theorem 4.1. Let R= Z[λ±1, μ±1,U±1]. Then

HC0(K)∼= (An ⊗R)/
(
entries of A−Λ · φB(A) ·Λ−1, Â−Λ ·ΦL

B ·A,

A− Â ·ΦR
B ·Λ−1

)
.

Proof. Since the knot DGA (A, ∂) is supported in degree ≥ 0, all degree

0 elements of A, i.e., elements of An ⊗ R, are cycles. The ideal of An ⊗ R

consisting of boundaries is precisely the ideal generated by the entries of the

three matrices. �

Remark 4.2. In fact, one can drop any single one of the matrices A−Λ ·
φB(A) ·Λ−1, Â−Λ ·ΦL

B ·A,A−Â ·ΦR
B ·Λ−1 in the statement of Theorem 4.1.

See Exercise 3.16(2).

Remark 4.3. It does not appear to be an easy task to find an analogue of

Theorem 4.1 for HC∗(K) with ∗ ≥ 1, in part because not all elements of A
of the appropriate degree are cycles.

Although the expression for HC0(K) from Theorem 4.1 is computable

in examples, it has a particularly nice interpretation if we set U = 1, as we
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will do for the rest of this section. With U = 1, the coefficient ring for the

knot DGA becomes R0 = Z[λ±1, μ±1], and we can express HC0(K)|U=1 as

an algebra over R0 generated by “cords”.

Definition 4.4 ([31, 33]).

1. Let (K,∗)⊂ S3 be an oriented knot with a basepoint. A cord of (K,∗) is
a continuous path γ : [0,1]→ S3 with γ−1(K) = {0,1} and γ−1({∗}) =
∅.

2. Define AK to be the tensor algebra over R0 freely generated by homo-

topy classes of cords (note: the endpoints of the cord can move along

the knot, as long as they avoid the basepoint ∗).

3. The cord algebra of K is the algebra AK modulo the relations:

(a)

(b)

(c)

The “skein relations” in Definition 4.4 are understood to be depictions

of relations in R
3, and not just relations as planar diagrams. For instance,

relation (c) is equivalent to:

It is then evident that the cord algebra is a topological knot invariant.

Exercise 4.5. One can heuristically think of cords as corresponding to Reeb

chords of ΛK . More precisely:

1. Let K ⊂ R
3 be a smooth knot. A binormal chord of K is an oriented

(nontrivial) line segment with endpoints on K that is orthogonal to K

at both endpoints. Show that binormal chords are exactly the same as

Reeb chords of ΛK .

2. For generic K, all binormal chords are cords in the sense of Defini-

tion 4.4. Show that any element of the cord algebra of K can be ex-
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pressed in terms of just binormal chords, i.e., in terms of Reeb chords

of ΛK .

3. Prove that the cord algebra of a m-bridge knot has a presentation with

(at most) m(m− 1) generators. (It is currently unknown whether this

also holds for HC0 if we do not set U = 1.)

4. Prove that the cord algebra of the torus knot T (m,n) has a presentation

with at most min(m,n)− 1 generators, as indeed does HC0(T (m,n))

without setting U = 1. (For this last statement, see Exercise 3.4(3).)

Exercise 4.6. Here we calculate the cord algebra in two simple examples.

1. Prove that the cord algebra of the unknot is R0/((λ− 1)(μ− 1)).

2. Next consider the right-handed trefoil K, shown below with five cords

labeled:

In the cord algebra of K, denote γ1 by x. Show that γ2 = γ5 = x,

γ4 = λx, and γ3 = 1− μ. Conclude the relation

λx2 − x+ μ− μ2 = 0.

3. Use the skein relations in another way to derive another relation in the

cord algebra of K:

λx2 + λμx+ μ− 1 = 0.

4. Prove that the cord algebra of K is generated by x.

5. It can be shown that the above two relations generate all relations: the

cord algebra of the right-handed trefoil is

R0[x]/
(
λx2 − x+ μ− μ2, λx2 + λμx+ μ− 1

)
.
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Suppose that there is a ring homomorphism from the cord algebra of

K to C, mapping λ to λ0 and μ to μ0. Show that

(λ0 − 1)(μ0 − 1)
(
λ0μ

3
0 + 1

)
= 0.

The left hand side is the two-variable augmentation polynomial for the

right-handed trefoil (see Section 5 and Example 5.8).

We now present the relation between the cord algebra and knot contact

homology.

Theorem 4.7 ([31, 33]). The cord algebra of K is isomorphic as an R0-

algebra to HC0(K)|U=1.

Idea of proof. Let K be the closure of a braid B ∈Bn, and embed B in

S3 with braid axis L. A page of the resulting open book decomposition of S3

is D2 with ∂D2 = L, and D2 intersects B in n points p1, . . . , pn. Any arc in

D2 ⊂ S3 in the sense of Definition 3.6 is a cord ofK. Under this identification,

skein relations (c) and (a) from Definition 4.4 become relations 1 and 2 from

Definition 3.6 (at least when μ= 1; for general μ, one needs to use a variant

of Definition 3.6 involving framed cords, cf. Remark 3.7).

Any cord of K is homotopic to a cord lying in the D2 slice of S3. It

then follows from Theorem 3.8 that there is a surjective R0-algebra map

from An ⊗R0 to the cord algebra. Thus the cord algebra is the quotient of

An⊗R0 by relations that arise from considering homotopies between arcs in

D2 given by one-parameter families of cords that do not lie in the D2 slice. If

this family avoids intersecting L, we obtain the relations given by the entries

of ∂(B) = A − Λ · φB(A) · Λ−1. Considering families that pass through L

once gives the entries of ∂(C) = Â−Λ ·ΦL
B ·A and ∂(D) =A− Â ·ΦR

B ·Λ−1

as relations in the cord algebra. �

For various purposes, it is useful to reformulate the cord algebra of a

knot K in terms of homotopy-group information. In particular, this gives a

proof that knot contact homology detects the unknot (Corollary 4.10); in

Section 5, we will also use this to relate the augmentation polynomial to the

A-polynomial. Here we give a brief description of this perspective and refer

the reader to [33] for more details.

We can view cords of K as elements of the knot group π1(S
3 \K) by

pushing the endpoints slightly off of K and joining them via a curve parallel
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to K. One can then present the cord algebra entirely in terms of the knot

group π and the peripheral subgroup π̂ = π1(∂(nbd(K))) ∼= Z
2. Write l,m

for the longitude, meridian generators of π̂.

Theorem 4.8 ([33]). The cord algebra of K is isomorphic to the tensor

algebra over R0 freely generated by elements of π1(S
3 \ K) (denoted with

brackets), quotiented by the relations:

1. [e] = 1− μ, where e is the identity element;

2. [γl] = [lγ] = λ[γ] and [γm] = [mγ] = μ[γ] for γ ∈ π1(S
3 \K);

3. [γ1γ2]− [γ1mγ2]− [γ1][γ2] = 0 for any γ1, γ2 ∈ π1(S
3 \K).

If (A, ∂) is the knot DGA of K, then Theorem 4.8 (along with The-

orem 4.7) gives an expression for HC0(K)|U=1 = H0(A|U=1, ∂) as an R0-

algebra. One can readily “improve” this result to give an analogous expres-

sion for the degree 0 homology of the fully noncommutative knot DGA (Ã, ∂)

of K (see Remark 2.2 and the Appendix), which we write as

H̃C0(K)|U=1 =H0(Ã|U=1, ∂);

note that this is a Z-algebra rather than a R0-algebra, but contains R0 as a

subalgebra. Details are contained in joint work in progress with K. Cieliebak,

T. Ekholm, and J. Latschev, which is also the reference for Theorem 4.9 and

Corollary 4.10 below.

Theorem 4.9. Write π = π1(S
3 \ K) and π̂ = π1(∂(nbd(K))) = 〈m, l〉.

There is an injective ring homomorphism

H̃C0(K)|U=1 ↪→ Z
[
π1

(
S3 \K

)]

under which H̃C0(K)|U=1 maps isomorphically to the subring of Z[π] gener-

ated by π̂ and elements of the form γ −mγ for γ ∈ π. This map sends λ to

l and μ to m.

Idea of proof. The homomorphism is induced by the map sending λ to l,

μ to m, and [γ] to γ −mγ for γ ∈ π. �

Corollary 4.10. Knot contact homology, in its fully noncommutative form,

detects the unknot.
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Idea of proof. Use the Loop Theorem and consider the action of multi-

plication by λ on the cord algebra. �

For a proof that ordinary (not fully noncommutative) knot contact ho-

mology detects the unknot, see the next section.

5. Augmentation Polynomial

In this section, we describe how knot contact homology can be used to pro-

duce a three-variable knot invariant, the augmentation polynomial. We then

discuss the relation of a two-variable version of the augmentation polyno-

mial to the A-polynomial, and of the full augmentation polynomial to the

HOMFLY-PT polynomial and to mirror symmetry and physics.

The starting point is the space of augmentations from the knot DGA

(A, ∂) to C, as in Remark 2.9.

Definition 5.1 ([33, 34]). Let (A, ∂) be the knot DGA of a knot K, with

the usual coefficient ring Z[λ±1, μ±1,U±1]. The augmentation variety of K

is

VK =
{(

ε(λ), ε(μ), ε(U)
)
| ε an augmentation from (A, ∂) to C

}
⊂
(
C
∗)3.

When the maximal-dimension part of the Zariski closure of VK is a codi-

mension 1 subvariety of (C∗)3, this variety is the vanishing set of a reduced

polynomial4 AugK(λ,μ,U), the augmentation polynomial5 of K.

Remark 5.2. The augmentation polynomial is well-defined only up to

units in C[λ±1, μ±1,U±1]. However, because the differential on the knot

DGA involves only integer coefficients, we can choose AugK(λ,μ,U) to

have integer coefficients with overall gcd equal to 1. We can further stip-

ulate that AugK(λ,μ,U) contains no negative powers of λ,μ,U , and that

it is divisible by none of λ,μ,U . The result is an augmentation polynomial

AugK(λ,μ,U) ∈ Z[λ,μ,U ], well-defined up to an overall ± sign.

Conjecture 5.3. The condition about the Zariski closure in Definition 5.1

holds for all knots K; the augmentation polynomial is always defined.

4I.e., no repeated factors.
5Caution: the polynomial described here differs from the augmentation polynomial from
[34] by a change of variables μ �→ −1/μ. See the Appendix.
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A fair number of augmentation polynomials for knots have been

computed and are available at http://www.math.duke.edu/�ng/math/

programs.html; see also Exercise 5.5 below. We note in passing some sym-

metries of the augmentation polynomial:

Theorem 5.4. Let K be a knot and m(K) its mirror. Then

AugK(λ,μ,U)
.
=AugK

(
λ−1U,μ−1U,U

)

and

Augm(K)(λ,μ,U)
.
=AugK

(
λU−1, μ−1,U−1

)
,

where
.
= denotes equality up to units in Z[λ±1, μ±1,U±1].

The first equation in Theorem 5.4 follows from [34, Propositions 4.2, 4.3],

while the second can be proved using the results from [34, §4].

Exercise 5.5. Here are a couple of computations of augmentation polyno-

mials.

1. Show that the augmentation polynomial for the unknot is

AugO(λ,μ,U) = U − λ− μ+ λμ.

2. The cord algebra HC0|U=1 for the right-handed trefoil was computed

in Exercise 4.6. It can be checked directly from the definition of the

knot DGA that the full degree 0 knot contact homology is

HC0(RH trefoil)∼=R[a12]/
(
Ua212 − μUa12 + λμ3(1− μ),

Ua212 + λμ2a12 + λμ2(μ−U)
)
.

Use resultants to deduce the augmentation polynomial:

AugRH trefoil(λ,μ,U) =
(
U3 − μU2

)
+
(
−U3 + μU2 − 2μ2U + 2μ2U2

+ μ3U − μ4U
)
λ+

(
−μ3 + μ4

)
λ2.

From Theorem 5.4, we can then also deduce the polynomial for the

left-handed trefoil:

AugLH trefoil(λ,μ,U) =
(
μ3U2 − μ4U

)
+
(
U2 − μU2 − 2μ2U + 2μ2U2

− μ3U + μ4
)
λ+

(
−U2 + μU2

)
λ2.

http://www.math.duke.edu/~ng/math/programs.html
http://www.math.duke.edu/~ng/math/programs.html
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We next turn to the two-variable augmentation polynomial.

Definition 5.6 ([33]). If the U = 1 slice of the augmentation variety,

VK ∩ {U = 1} ⊂ (C∗)2, is such that the maximal-dimensional part of its

Zariski closure is a (co)dimension 1 subvariety of (C∗)2, then this subvariety

is the vanishing set of a reduced polynomial AugK(λ,μ), the two-variable

augmentation polynomial of K. As in Remark 5.2, AugK(λ,μ) can be chosen

to lie in Z[λ,μ].

Conjecture 5.7. The two-variable augmentation polynomial AugK(λ,μ) is

always defined, and the two augmentation polynomials are related in the ob-

vious way:

AugK(λ,μ) = AugK(λ,μ,U = 1).

The two-variable augmentation polynomial has a number of interesting

factors. For instance, it follows from Exercise 3.17 that

(λ− 1)(μ− 1) | AugK(λ,μ)

for all knots K.

Example 5.8. For the unknot and trefoils, the two-variable augmentation

polynomials are

AugO(λ,μ) = (λ− 1)(μ− 1)

AugRH trefoil(λ,μ) = (λ− 1)(μ− 1)
(
λμ3 + 1

)

AugLH trefoil(λ,μ) = (λ− 1)(μ− 1)
(
λ+ μ3

)
.

The polynomial for the right-handed trefoil follows from Exercise 4.6, while

the polynomial for the left-handed trefoil follows from the behavior of the

polynomial (and knot contact homology generally) under mirroring, cf. The-

orem 5.4.

The observant reader may notice that the two-variable augmentation

polynomials for the unknot and trefoils are essentially the same as another

knot polynomial, the A-polynomial. Recall that the A-polynomial is defined

as follows. Given an SL2C representation of the knot group

ρ : π1
(
S3 \K

)
→ SL2C,
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simultaneously diagonalize ρ(l), ρ(m) to get ρ(l) = ( λ ∗
0 λ−1 ), ρ(m) = (

μ ∗
0 μ−1 ).

The (maximal-dimensional part of the Zariski closure of the) collection of

(λ,μ) over all SL2C representations is the zero set of the A-polynomial of

K, AK(λ,μ).

Theorem 5.9 ([33]). (μ2 − 1)AK(λ,μ) divides AugK(λ,μ2).

We outline the proof of Theorem 5.9 in Exercise 5.12 below.

Corollary 5.10. The cord algebra detects the unknot.

Proof. By a result of Dunfield and Garoufalidis [10], based on gauge-

theoretic work of Kronheimer and Mrowka [27], the A-polynomial detects

the unknot. It follows that when K is knotted, either AugK(λ,μ) is not de-

fined (if the augmentation variety is 2-dimensional), or AugK(λ,μ2) has a

factor besides (λ− 1)(μ− 1). In either case, the augmentation variety for K

is distinct from the variety for the unknot, which is {λ= 1} ∪ {μ= 1} (see

Example 5.8). �

Note that the statement of unknot detection in Corollary 5.10 differs

from, and is slightly stronger than, the statement from Corollary 4.10, be-

cause of the issue of commutativity. However, the proof of Corollary 4.10

uses only the Loop Theorem, rather than the deep Kronheimer–Mrowka re-

sult that leads to Corollary 5.10.

To expand on Theorem 5.9, it is sometimes, but not always, the case that

AugK
(
λ,μ2

)
=
(
μ2 − 1

)
AK(λ,μ).

In general, the left hand side can contain factors that do not appear in the

right hand side. For example,

AT (3,4)(λ,μ) = (λ− 1)
(
λμ12 + 1

)(
λμ12 − 1

)

AugT (3,4)(λ,μ) = (λ− 1)(μ− 1)
(
λμ6 + 1

)(
λμ6 − 1

)(
λμ8 − 1

)
,

and the last factor in AugT (3,4) has no corresponding factor in AT (3,4).

An explanation for (at least some of the) extra factors in the augmenta-

tion polynomial is given by the following result, which shows that represen-

tations of the knot group besides SU2 representations can contribute to the

augmentation polynomial.
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Theorem 5.11. Suppose that ρ : π1(S
3 \K)→GLmC is a representation

of the knot group of K for some m≥ 2, such that ρ sends the meridian and

longitude to the diagonal matrices

ρ(m) = diag(μ0,1,1, . . . ,1)

ρ(l) = diag(λ0,∗,∗, . . . ,∗)

where the asterisks indicate arbitrary complex numbers. Then there is an

augmentation of the knot DGA of K sending (λ,μ,U) to (λ0, μ0,1).

This result, which has not previously appeared in the literature, is proven

in the following exercise, and also implies Theorem 5.9.

Exercise 5.12. Here we give a proof of Theorems 5.9 and 5.11.

1. Suppose ρ : π1(S
3 \K)→GLmC is a representation as in Theorem 5.11.

Define a C-valued map ε by

• ε(μ) = μ0;

• ε(λ) = λ0;

• ε([γ]) = (1−μ0)(ρ(γ))11, where M11 is the (1,1) entry of a matrix

M , for all γ ∈ π1(S
3 \K).

Show that ε extends to an augmentation of the cord algebra of K, where

we use the description of the cord algebra from Theorem 4.8. Deduce

Theorem 5.11.

2. If ρ is an SU2 representation of π1(S
3 \K) with ρ(m) = (

μ 0
0 μ−1 ) and

ρ(l) = ( λ 0
0 λ−1 ), then show that

ρ̃(γ) = μlk(K,γ)ρ(γ)

for γ ∈ π1(S
3 \K) defines a GL2(C) representation satisfying the con-

dition of Theorem 5.11 with μ0 = μ2 and λ0 = λ. (Here lk(K,γ) is the

linking number of K with γ, i.e., the image of γ in H1(S
3 \K) ∼= Z.)

Deduce Theorem 5.9.

3. For K = T (3,4) and λ0 = μ−8
0 with arbitrary μ0 ∈ C

∗, find a GL3(C)

representation of π1(S
3 \K) ∼= 〈x, y |x3 = y4〉 satisfying the condition

of Theorem 5.11. (Note that in this presentation, m = xy−1 and l =

x3m−12.) This shows that λμ8 − 1 is a factor of AugT (3,4)(λ,μ); as

discussed above, this factor does not appear in the A-polynomial of

T (3,4).
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We now turn to some recent developments linking the augmentation poly-

nomial to physics. Our discussion is very sketchy and imprecise; see [4, 5] for

more details. Recently the (three-variable) augmentation polynomial has ap-

peared in various string theory papers [4, 20], in the context of studying

topological strings for SUN Chern–Simons theory on S3. A very sketchy de-

scription of the idea, whose origins in the physics literature include [23, 36],

is as follows.

Start with a knot K ⊂ S3, with conormal bundle LK ⊂ T ∗S3. (Note

that this differs slightly from our usual setting of K ⊂ R
3, though not in a

substantial way, either topologically or contact-geometrically.) Collapse the

zero section of T ∗S3 to a point, resulting in a conifold singularity; we can

then resolve the singularity to a CP
1 to obtain the “resolved conifold” given

as the total space of the bundle

O(−1)⊕O(−1)→CP
1.

(In physics language, this conifold transition is motivated by placing N

branes on the zero section of T ∗S3 and taking the N → ∞ limit.) One

would like to follow LK through this conifold transition to obtain a spe-

cial Lagrangian L̃K ⊂O(−1)⊕O(−1). In [4], Aganagic and Vafa propose a

generalized SYZ conjecture by which L̃K produces a mirror Calabi–Yau of

O(−1)⊕O(−1) given by a variety of the form

uv =AK

(
ex, ep,Q

)

where (u, v,x, p)⊂C
4, Q is a parameter measuring the complexified Kähler

class of CP1, and AK is a three-variable polynomial that Aganagic and Vafa

[4] refers to as the “Q-deformed A-polynomial”.6

Surprisingly, we can make the following conjecture, for which there is

strong circumstantial evidence [5]:

Conjecture 5.13 ([4, 5]). The three-variable augmentation polynomial and

the Q-deformed A-polynomial agree for all K:

AK

(
ex, ep,Q

)
=AugK

(
λ= ex, μ= ep,U =Q

)
.

Although Conjecture 5.13 has yet to be rigorously proven, it would have

significant implications for the augmentation polynomial. By physical ar-

6In a related vein, Fuji, Gukov, and Sulkowski [20] have proposed a four-variable “super-
A-polynomial” that specializes to the Q-deformed A-polynomial.
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guments (see in particular [24] and [4]), AK satisfies a number of inter-

esting properties. In particular, AK encodes a large amount of information

about the knot K, possibly including the HOMFLY-PT polynomial as well as

Khovanov–Rozansky HOMFLY-PT homology [25] and other knot homologies

(or some portion thereof). The knot homologies appear in studying Nekrasov

deformation of topological strings and refined Chern–Simons theory [24].

Thus, assuming Conjecture 5.13, one can make purely mathematical pre-

dictions about the augmentation polynomial. One such prediction begins

with the observation (whose proof we omit here) that for any knot K,

AugK(λ= 0, μ= U,U) = 0

for all U . It appears that the first-order behavior of the augmentation variety

near the curve {(0,U,U)} ⊂ (C∗)3 determines a certain specialization of the

HOMFLY-PT polynomial:

Conjecture 5.14. Let K be any knot in S3. Let f(U) be the polynomial

such that near (λ,μ,U) = (0,U,U), the zeroes of the augmentation polynomial

AugK satisfy

μ= U + f(U)λ+O
(
λ2

)

(f(U) can be explicitly written in terms of the λ1 and λ0 coefficients of

AugK). Then

f(U)

U − 1
= PK

(
U−1/2,1

)
,

where PK(a, q) is the HOMFLY-PT polynomial of K (sometimes written as

PK(a, z = q− q−1)).

Conjecture 5.14 has been checked for all knots where the augmentation

polynomial is currently known, including many where the Q-deformed A-

polynomial has not been computed.

Exercise 5.15. Verify Conjecture 5.14 for the unknot and the right-handed

and left-handed trefoils, using the augmentation polynomials computed in

Exercise 5.5. Note that the HOMFLY-PT polynomials for the unknot and

the RH trefoil are 1 and −a−4 + a−2q−2 + a−2q2, respectively.

In a different direction, the physics discussion of AK in [4] also predicts

that the augmentation polynomial is determined by the recurrence relation

for the colored HOMFLY-PT polynomials:
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Conjecture 5.16. Let {PK;n(a, q)} denote the colored HOMFLY-PT poly-

nomials of K, colored by the n-th symmetric power of the fundamental rep-

resentation. Define operations L, M by L(PK;n(a, q)) = PK;n+1(a, q) and

M(PK;n(a, q)) = qnPK;n(a, q). These polynomials satisfy a minimal recur-

rence relation of the form

ÂK(a, q,M,L)PK;n(a, q) = 0,

where ÂK is a polynomial in noncommuting variables L, M and commut-

ing parameters a, q; see [22]. Then sending q→ 1 and applying an appropri-

ate change of variables sends ÂK(a, q,M,L) to the augmentation polynomial

AugK(λ,μ,U).

The precise change of variables depends on the conventions used for

PK;n(a, q). In the conventions of [20] (where their x, y are our M,L), a more

exact statement is that AugK(λ,μ,U) and

ÂK

(
a= U,q = 1,M = μ−1,L=

μ− 1

μ−U
λ

)

agree up to trivial factors.

Conjecture 5.16 is a direct analogue of the AJ conjecture [21] (quantum

volume conjecture, in the physics literature) relating colored Jones polynomi-

als to the A-polynomial, with colored HOMFLY-PT replacing colored Jones,

and the augmentation polynomial replacing the A-polynomial. See also [20]

for an extended discussion of this topic.

6. Transverse Homology

In this section, we discuss a concrete application of knot contact homology

to contact topology, and in particular to transverse knots. Here one obtains

additional filtrations on the knot DGA that produce effective invariants of

transverse knots. So far our construction of knot contact homology begins

with a smooth knot in R
3; we now explore what happens if the knot is

assumed to be transverse to a contact structure on R
3 (note that this is

independent of the canonical contact structure on ST ∗
R
3!).

Definition 6.1. Let ξ = ker(α= dz + r2dθ) be the standard contact struc-

ture on R
3. An oriented knot T ⊂R

3 is transverse if α> 0 along T .
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One usually studies transverse knots up to transverse isotopy : isotopy

through transverse knots. There is a standard transverse unknot in R
3 given

by the unit circle in the xy plane. By work of Bennequin [6], any braid pro-

duces a transverse knot by gluing the closure of the braid into a neighborhood

of the standard unknot. Conversely, all transverse knots are obtained in this

way, up to transverse isotopy: the map from braids to transverse knots is

surjective. The following theorem precisely characterizes failure of injectiv-

ity.

Theorem 6.2 (Transverse Markov Theorem [37, 42]). Two braids produce

transverse knots that are transversely isotopic if and only if they are related

by:

• conjugation in the braid groups

• positive Markov stabilization and destabilization: (B ∈Bn)←→ (Bσn ∈
Bn+1).

Transverse knots have two “classical” invariants of transverse knots:

• underlying topological knot type

• self-linking number (for a braid, sl=w− n).

It is of considerable interest to find other, “effective” transverse invariants,

which can distinguish between transverse knots with the same classical invari-

ants. One such invariant is the transverse invariant in knot Floer homology

[28, 38]. This (more precisely, one version of it) associates, to a transverse

knot T of topological type K, an element θ̂(T ) ∈ ĤFK(m(K)). The HFK

invariant has been shown to be effective at distinguishing transverse knots;

see e.g. [35].

The purpose of this section is to discuss how one can refine knot contact

homology to produce another effective transverse invariant. Geometrically,

the idea is as follows (see [16] for details). Given a transverse knot T ⊂
(R3, ξ), one constructs the conormal bundle ΛT ⊂ ST ∗R3 as usual. Now the

cooriented contact plane field ξ on R
3 also has a conormal lift ξ̃ ⊂ ST ∗

R
3:

concretely, this is the section of ST ∗
R
3 given by α/|α| where α is the contact

form. Since T is transverse to ξ, ΛT ∩ ξ̃ = ∅.

One can choose an almost complex structure on the symplectization R×
ST ∗

R
3 (and change the metric on R

3 that determines ST ∗
R
3) so that R× ξ̃

is holomorphic. Given a holomorphic disk with boundary on R× ΛT as in
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the LCH of ΛT , one can then count intersections with R× ξ̃, and all of these

intersections are positive. Thus we can filter the LCH differential of ΛT :

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(sgn)U#(Δ∩(R×ξ̃))e[∂Δ]aj1 · · ·ajk .

Here [∂Δ] is the homology class of ∂Δ in H1(ΛT ) and #(Δ ∩ (R × ξ̃)) is

always nonnegative. This gives a filtered version for the knot DGA for T ,

which is now a DGA over R0[U ] (recall that R0 = Z[λ±1, μ±1]).

Definition 6.3. The transverse DGA (A−, ∂−) associated to a transverse

knot T ⊂R
3 is the resulting DGA over R0[U ].

The minus signs in the notation (A−, ∂−) are by analogy with Heegaard

Floer homology.

When the transverse knot T is the closure of a braid B, there is a straight-

forward combinatorial description for the transverse DGA:

Definition 6.4. Let B be a braid. The combinatorial transverse DGA

for B is the DGA over R0[U ] with the same generators and differen-

tial as in Definition 3.11, but with Λ = diag(λμw,1, . . . ,1) rather than

diag(λμwU−(w−n+1)/2,1, . . . ,1).

With this new definition of Λ, the differential in Definition 3.11 contains

only nonnegative powers of U , and we indeed obtain a DGA over R0[U ]

(versus R0[U
±1] in Definition 3.11).

Theorem 6.5 ([16]). The transverse DGA and the combinatorial transverse

DGA agree.

We now have the following invariance result.

Theorem 6.6 ([16, 34]). Given a braid B, the DGA (A−, ∂−) over R0[U ],

up to stable tame isomorphism, is an invariant of the transverse knot corre-

sponding to B.

Theorem 6.6 follows from the general theory of Legendrian contact ho-

mology (and a few details that we omit here). Alternatively, one can prove

directly that the combinatorial transverse DGA is a transverse invariant by
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checking invariance under braid conjugation and positive braid stabilization,

and invoking the Transverse Markov Theorem; this approach is carried out

in [34]. In any case, the homology of (A−, ∂−) is also a transverse invariant

and is called transverse homology.

Remark 6.7. In fact, a transverse knot gives two filtrations on the knot

DGA, given by U and another parameter V ; what we have presented is the

specialization V = 1. One can extend this to a DGA over R0[U,V ] that, like

(A−, ∂−), has a combinatorial description. The generators of the DGA are

the usual ones from Definition 3.11, while the differential is given by:

∂(A) = 0

∂(B) =A−Λ · φB(A) ·Λ−1

∂(C) = Â−Λ ·ΦL
B · Ǎ

∂(D) = Ǎ− Â ·ΦR
B ·Λ−1

∂(E) = B̂−C−Λ ·ΦL
B ·D

∂(F) = B̌−D−C ·ΦR
B ·Λ−1.

Here Λ= diag(λμw,1, . . . ,1); A, Â,B, B̂,C,D,E,F are as in Definition 3.11;

and Ǎ, B̌ are defined by:

(Ǎ)ij =

⎧
⎪⎨

⎪⎩

aij i < j

−μV aij i > j

1− μV i= j

(B̌)ij =

⎧
⎪⎨

⎪⎩

bij i < j

−μV bij i > j

0 i= j.

Geometrically, the powers of V count intersections with the “negative” lift

of ξ to ST ∗
R
3, given by −α/|α|. The full DGA over R0[U,V ] has some nice

formal properties, such as its behavior under transverse stabilization, but for

known applications it suffices to set V = 1 and thus ignore V .

We now return to the transverse DGA (A−, ∂−) over R0[U ]. In a manner

familiar from Heegaard Floer theory, one can obtain several other flavors of

transverse homology from (A−, ∂−). Two particularly interesting ones are:

• The “hat version”: (Â, ∂̂), a DGA over R0 = Z[λ±1, μ±1], by setting

U = 0. This is a transverse invariant.

• The “infinity version”: (A, ∂), the usual knot DGA over R = R0[U
±1],

by tensoring (A−, ∂−) with R0[U
±1] and replacing λ by λU−(w−n+1)/2.

This is an invariant of the underlying topological knot, as usual.



522 L. Ng

Fig. 4. Two braids B1,B2 whose closure is the knot m(76). To see that they produce the
same knot, note that their closures are related by a negative flype (the shaded regions)

Remark 6.8. Independent of the fact that the infinity version is the usual

knot DGA, we can see geometrically that the infinity version is a topological

knot invariant, as follows. If we disregard positivity of intersection, then

powers of U in the differential ∂ merely encode homological data about the

holomorphic disk Δ; a bit of thought shows that #(Δ∩ (R× ξ̃)) is equal to

the class of Δ in H2(S
2) ∼= Z. Thus this indeed reduces to the usual LCH

DGA of ΛK .

We now have the following result.

Theorem 6.9 ([16, 34]). The hat version of the transverse DGA, (Â, ∂̂), is

an effective invariant of transverse knots.

As one example, consider the transverse knots given by the closures of the

braids B1,B2 given in Figure 4, both of which are of topological type m(76)

and have self-linking number −1. For each braid, one can count the number

of augmentations of (Â, ∂̂) to Z3; this augmentation number is a transverse

invariant. A computer calculation shows that the augmentation number is 0

for B1 and 5 for B2. It follows that the transverse knots corresponding to B1

and B2 are not transversely isotopic.

One can heuristically gauge the relative effectiveness of various transverse

invariants by using the Legendrian knot atlas [8], which provides a conjec-

turally complete list of all Legendrian knots representing topological knots

of arc index ≤ 9. The atlas proposes 13 knots with arc index ≤ 9 that have
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at least two transverse representatives with the same self-linking number. Of

these 13:

• 6 (m(72), m(10132), m(10140), m(10145), m(10161), 12n591) have trans-

verse representatives that can be distinguished by both the HFK invari-

ant and by transverse homology;

• 4 (m(76), 944, 948, 10136) can be distinguished by transverse homology

but not the HFK invariant;

• 3 (m(945), 10128, 10160) cannot yet be distinguished by either HFK or

transverse homology.

Of these last 3, preliminary joint work with Dylan Thurston suggests that

m(945) and 10128 can be distinguished by naturality in conjunction with the

HFK invariant, but the third cannot.7 It is conceivable that some or all of

these last 3 can be distinguished by transverse homology, but they are related

by an operation known as “transverse mirroring” that is relatively difficult

to detect by transverse homology.

It appears that the two known effective transverse invariants, the trans-

verse HFK invariant and transverse homology, are functionally independent,

but it would be very interesting to know if there is some connection between

them.
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Appendix: Conventions and the Fully Noncommutative

DGA

In the literature on knot contact homology, a number of mutually inconsistent

conventions are used. The conventions that we have adopted in this article

are unfortunately different again from the existing ones, but we would like to

7The transverse representatives of m(76), 944, 948, 10136, and 10160 cannot be distinguished

by the transverse HFK invariant, with or without naturality, because ĤFK= 0 and HFK−

has rank 1 in the relevant bidegree.
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advocate these new conventions as combining the best qualities of previous

ones while avoiding some disadvantages that have become apparent in the

interim.

First we describe how to extend the definition of knot contact homol-

ogy from Section 3 in two directions: first, by allowing for multi-component

links, and second, by extending to the fully noncommutative DGA (see Re-

mark 2.2), in which homology classes do not commute with Reeb chords. The

result is a “stronger” formulation of (combinatorial) knot contact homology

than usually appears in the literature. After this, we will discuss how this

definition compares to previous conventions.

If K is a link given by the closure of a braid B ∈ Bn, we can define

a slightly more complicated version of the braid homomorphism φB from

Section 3 as follows. Let Ãn denote the tensor algebra over Z freely generated

by aij , 1≤ i 
= j ≤ n, and by μ̃±1
i , 1≤ i≤ n. (Here the μ̃i’s do not commute

with the aij ’s, or indeed with each other, and the only nontrivial relations

are μ̃i · μ̃−1
i = μ̃−1

i · μ̃i = 1.) For 1≤ k ≤ n− 1, define φσk
: Ãn →Ãn by:

φσk
:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij �→ aij , i, j 
= k, k+ 1

ak+1,i �→ aki, i 
= k, k+ 1

ai,k+1 �→ aik, i 
= k, k+ 1

ak,k+1 �→ −ak+1,k

ak+1,k �→ −μ̃kak,k+1μ̃
−1
k+1

aki �→ ak+1,i − ak+1,kaki, i 
= k, k+ 1

aik �→ ai,k+1 − aikak,k+1, i < k

aik �→ ai,k+1 − aikμ̃kak,k+1μ̃
−1
k+1, i > k+ 1

μ̃±1
i �→ μ̃±1

i , i 
= k, k+ 1

μ̃±1
k �→ μ̃±1

k+1

μ̃±1
k+1 �→ μ̃±1

k .

This extends to a group homomorphism φ :Bn →Aut Ãn and thus defines a

map φB ∈Aut Ãn.

Suppose that K has r components, and number the components of K

1, . . . , r. For i = 1, . . . , n, define α(i) ∈ {1, . . . , r} to be the number of the

component containing strand i of the braid B whose closure is K. If we now

define An to be the tensor algebra over Z freely generated by the aij ’s and

by variables μ±1
1 , . . . , μ±1

r , then it is easy to check that φB descends to an

algebra automorphism of An by setting μ̃i = μα(i) for all 1≤ i≤ n. We can
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define ΦL
B,Φ

R
B ∈Matn×n(An) as in Definition 3.9, with the important caveat

that the extra strand ∗ is treated as strand 0 rather than strand n+ 1; for

multi-component links, this makes a difference because of the form of the

definition of φσk
above.

Define A to be the tensor algebra over Z[U±1] freely generated by

μ±1
1 , . . . , μ±1

r along with the generators aij , bij , cij , dij , eij , fij as in Defini-

tion 3.11. Assemble n× n matrices A, Â,B, B̂,C,D,E,F, where C,D,E,F

are as in Definition 3.11, while

Aij =

⎧
⎪⎨

⎪⎩

aij i < j

−aijμα(j) i > j

1− μα(i) i= j

Bij =

⎧
⎪⎨

⎪⎩

bij i < j

−bijμα(j) i > j

0 i= j

(Â)ij =

⎧
⎪⎨

⎪⎩

Uaij i < j

−aijμα(j) i > j

U − μα(i) i= j

(B̂)ij =

⎧
⎪⎨

⎪⎩

Ubij i < j

−bijμα(j) i > j

0 i= j.

Also define a matrix Λ as follows: choose one strand of B belonging to each

component of the closure K, and call the resulting r strands leading ; then

define

(Λ)ij =

⎧
⎪⎪⎨

⎪⎪⎩

λα(i)μ
w(α(i))
α(i) U−(w(α(i))−n(α(i))+1)/2 i= j and strand i leading

1 i= j and strand i not leading

0 i 
= j,

where n(α) is the number of strands belonging to component α and w(α) is

the writhe of component α viewed as an n(α)-strand braid (with the other

components deleted).

With this notation, one can now define the differential ∂ on A exactly as

in Definition 3.11. The resulting DGA has the same properties as in Theo-

rem 3.15: ∂2 = 0 and (A, ∂) is an isotopy invariant of the link K viewed as an

oriented link with numbered components, up to stable tame isomorphisms

that act as the identity on U and on each of λ1, . . . , λr, μ1, . . . , μr.

Note that the definition of the DGA given above is for the topological

knot/link invariant as discussed in Sections 2 and 3. This corresponds to

“infinity transverse homology” from [34] (also mentioned in [16]). There is

an analogous definition of transverse homology as in Section 6 or [16, 34] but

we omit its definition here.
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We now compare our definition to the two previous conventions for the

knot DGA: the convention from [15, 16] and the convention from [33, 34].

Note that all versions of the DGA from these references first quotient so

that homology classes λ1, . . . , λr, μ1, . . . , μr commute with all Reeb chords.

Also, the versions from [16] and [34] involve an additional variable V , but

we set V = 1 for this discussion; as explained in [34, §4], this does not lose

any information. Finally, the conventions from [15] and [33] agree with the

conventions from [16] and [34], respectively, after setting U = V = 1.

We claim that we can then obtain the knot DGAs in the conventions of

[16] and [34] from the knot DGA presented in this article, up to isomorphism,

as follows:

• for [16], replace λα �→ −λα and μα �→ −μα for each component α;

• for [34], which only considers the single-component case, keep λ as is,

and replace μ �→ −μ−1.

We check the claim for the convention of [16]; the claim for [34] then

follows from [34, §3.4].8 Note that negating each λα and μα causes our defini-

tions to line up precisely with the definitions from [16], except for Λ (denoted

in [16] by -λ), which differs by the presence or absence of a power of U , along

with some signs. But the power of U is merely a notational/framing issue

(cf. [34]), while the sign discrepancy disappears because it can be checked

that the products of the diagonal entries of Λ and −λ corresponding to

any particular link component are exactly equal including sign, whence the

DGAs given by the two conventions are isomorphic by the argument of [34,

Proposition 3.1].

Remark A.1. Except for the μ �→ μ−1 issue, all differences between con-

ventions consist just of negating some subset of {λ,μ}. This is explained by

the fact that the signs in the differential in Legendrian contact homology

depend on a choice of spin structure on the Legendrian submanifold Λ; see

[13] for full discussion. In our setting, if K is a knot, ΛK
∼= T 2 has four spin

structures, and changing from one spin structure to another sends λ �→ ±λ

and μ �→ ±μ. Thus the different choices of signs arise from different choices

of spin structure on ΛK .

8Note that [34], building on work from [33], uses an unusual convention for braids, so that a
positive generator σk of the braid group is given topologically as a negative crossing in the
usual knot theory sense. This has the effect of mirroring all topological knots and explains
the μ−1 difference in conventions.
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A summary of the relations between conventions in different articles is

as follows:

This article
λ�→−λ, μ �→−μ

μ �→−μ−1

[16]
U �→1

[15]

[34]
U �→1

[33]
λ�→1, μ �→1

[30, 31].

We close by noting that our current choice of conventions allows for

some cleaner results than the conventions from [16] or [34]. In particular,

our signs are more natural than the signs from either [16] or [34] when we

consider the relation to representations of the knot group as in Section 5.

For instance, our two-variable augmentation polynomials are divisible by

(λ − 1)(μ − 1) as opposed to (λ + 1)(μ + 1) in [16] or (λ − 1)(μ + 1) in

[33, 34], and AK(λ,μ) divides AugK(λ,μ2) in our convention rather than

AugK(−λ,−μ2) or AugK(λ,−μ2) in the other two.

There is another technical reason for preferring our signs or those from

[16] to the ones from [34], or more precisely to the extrapolation of [34] to

the link case. In either of the first two cases but not the third, we have the

following statement, which we leave as an exercise.

Proposition A.2. Let K be a link given by the closure of braid B, and let

K ′ ⊂K be a sublink given by the closure of a subbraid B′ ⊂ B obtained by

erasing some strands of B. Then the DGA for K ′ is a quotient of the DGA

for K, given by setting all Reeb chords aij , bij , etc. to 0 unless strands i and

j both belong to B′.

This result is used in [5] and is a special case of a general result relating

the Legendrian contact homology of a multi-component Legendrian to the

LCH of some subset of components.
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[38] P. Ozsváth, Z. Szabó, D. Thurston, Legendrian knots, transverse knots and combina-
torial Floer homology. Geom. Topol. 12(2), 941–980 (2008). arXiv:math/0611841

[39] T. Perutz, The symplectic topology of cotangent bundles. Eur. Math. Soc. Newsl.
(75), 30–33 (2010)

[40] D.A. Salamon, J. Weber, Floer homology and the heat flow. Geom. Funct. Anal.
16(5), 1050–1138 (2006). arXiv:math/0304383

http://arxiv.org/abs/arXiv:1211.6388
http://arxiv.org/abs/arXiv:hep-th/9811131
http://arxiv.org/abs/arXiv:hep-th/0412243
http://arxiv.org/abs/arXiv:math/0505056
http://arxiv.org/abs/arXiv:1209.3045
http://arxiv.org/abs/arXiv:1209.3045
http://arxiv.org/abs/arXiv:math/0312322
http://arxiv.org/abs/arXiv:0802.0628
http://arxiv.org/abs/arXiv:math/0302099
http://arxiv.org/abs/arXiv:math/0303343
http://arxiv.org/abs/arXiv:math/0412330
http://arxiv.org/abs/arXiv:math/0407071
http://arxiv.org/abs/arXiv:math/0407071
http://arxiv.org/abs/arXiv:1010.0451
http://arxiv.org/abs/arXiv:math/0703446
http://arxiv.org/abs/arXiv:hep-th/9912123
http://arxiv.org/abs/arXiv:math/0112207
http://arxiv.org/abs/arXiv:math/0611841
http://arxiv.org/abs/arXiv:math/0304383


530 L. Ng

[41] C. Viterbo, Functors and computations in Floer homology with applications.
II. Preprint (1996). Available at http://www.math.polytechnique.fr/cmat/viterbo/
Prepublications.html

[42] N.C. Wrinkle, The Markov theorem for transverse knots. arXiv:math/0202055

L. Ng (B)

Mathematics Department

Duke University

Durham, NC 27708

USA

e-mail: ng@math.duke.edu

url: http://www.math.duke.edu/�ng/

http://www.math.polytechnique.fr/cmat/viterbo/Prepublications.html
http://www.math.polytechnique.fr/cmat/viterbo/Prepublications.html
http://arxiv.org/abs/arXiv:math/0202055
mailto:ng@math.duke.edu
http://www.math.duke.edu/~ng/

	A Topological Introduction to Knot Contact Homology
	1 Introduction
	2 Legendrian Contact Homology
	3 Knot Contact Homology
	4 Cord Algebra
	5 Augmentation Polynomial
	6 Transverse Homology
	Appendix:  Conventions and the Fully Noncommutative DGA
	References


