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Preface

Proceedings of the Conferences Nantes, 2011 and

Budapest, 2012

The CAST (Contact and Symplectic Topology) Research Networking Pro-

gramme has been established in 2010 as one of the ESF (European Science

Foundation) sponsored networks. The network is financed by the support of

13 contributing European countries, embracing researchers from all over the

globe. The main profile of the network is to foster collaboration throughout

institutions in Europe. This aim has been achieved by supporting confer-

ences, workshops, Summer Schools focusing on various aspects of contact

and symplectic topology and by supporting research collaborations and ex-

changes of doctoral students and postdoctoral researchers within the field of

symplectic and contact topology.

In particular, the network partially sponsored (together with the Pays de

la Loire region, the ANR agency and the Institut Universitaire de France)

the Trimester on Contact and Symplectic Topology in Nantes (March-June

2011), and (together with the Lendület program of the Hungarian Academy of

Sciences, through the Lendület group ADT of the Rényi Institute) supported

the CAST Summer School and Conference in Budapest (July 2012). Nantes’

program has gathered, during five focused weeks, a summer school and an

international conference, a total of 160 mathematicians. The Budapest event

attracted more than 130 graduate students, postdoctoral researchers and se-

nior mathematicians from around the globe. Both events provided lecture se-

ries in various current topics in contact and symplectic topology. The present
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volume is the compilation of the notes of these lecture series written by the

lecturers. These notes provide a gentle introduction to topics which have

developed in an amazing speed in the recent past. The surveys target both

graduate students with solid contact and symplectic backgrounds, as well as

senior researchers interested in certain aspects of the field. The topics of the

lecture series include:

• contact topological questions in dimensions three and in dimensions

greater than three,

• open book decompositions and Lefschetz fibrations in contact topology

through asymptotically holomorphic techniques,

• Fukaya categories,

• Heegaard Floer homologies and embedded contact homologies (ECH)

of 3-dimensional manifolds,

• Stein structures on manifolds of dimension at least six, and

• knot contact homologies.

We dedicate this volume to the memory of V.I. Arnold, whose ideas and

results shaped the developement of symplectic and contact topology. The

opening paper (by Michèle Audin) is a tribute to the influence of Arnold

on symplectic topology, providing an account of the early days of the sub-

ject. It is followed by the contributions of the speakers of the Nantes and

Budapest Summer Schools. Below we provide short abstracts of each of the

contributions.

Frédéric Bourgeois

Vincent Colin

András Stipsicz

Orsay, France

Nantes, France

Budapest, Hungary

• Patrick Massot (Université Paris Sud, Orsay, France) Topolog-

ical methods in 3-dimensional contact geometry

These notes provide an introduction to Giroux’s theory of convex

surfaces in contact 3-manifolds and its simplest applications. They put

a special emphasis on pictures and discussions of explicit examples. The

first goal is to explain why all the information about a contact structure

in a neighborhood of a generic surface is encoded by finitely many curves

on the surface. Then we describe the bifurcations that happen in generic
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families of surfaces. As applications, we explain how Giroux used this

technology to reprove Bennequin’s theorem saying that the standard

contact structure on S3 is tight and Eliashberg’s theorem saying that

all tight contact structures on S3 are isotopic to the standard one.

• Denis Auroux (University of California, Berkeley, USA): A

beginner’s introduction to Fukaya categories

In these notes, we give a short introduction to Fukaya categories and

some of their applications. We first briefly review the definition of La-

grangian Floer homology and its algebraic structures. Then we introduce

the Fukaya category (informally and without a lot of the necessary tech-

nical detail), and discuss algebraic concepts such as exact triangles and

generators. Finally, we outline a few applications to symplectic topology,

mirror symmetry and low-dimensional topology.

• Francisco Presas (ICMAT, Madrid, Spain): Geometric decom-

positions of almost contact manifolds

These notes are intended to be an introduction to the use of approxi-

mately holomorphic techniques in almost contact and contact geometry.

We develop the setup of the approximately holomorphic geometry. Once

done, we sketch the existence of the two main geometric decompositions

available for an almost contact or contact manifold: open books and

Lefschetz pencils. The possible use of the two decompositions for the

problem of existence of contact structures is briefly explained.

• Klaus Niederkrüger (Université de Toulouse, France): Higher

dimensional contact topology via holomorphic disks

We will focus on fillability questions of higher dimensional contact

manifolds. We start with an overview of some basic examples and theo-

rems known so far, comparing them with analogous results in dimension

three. We will also describe an easy construction of non-fillable mani-

folds by Fran Presas. Then we will explain how to use holomorphic

curves with boundary to prove the fillability results stated earlier. No

a priori knowledge of holomorphic curves will be required, and many

properties will only be quoted.

• Gordana Matić (University of Georgia): Contact invariants in

Floer Homology

In a pair of seminal papers Peter Ozsváth and Zoltan Szabó defined

a collection of homology groups associated to a 3-manifold they named
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Heegaard-Floer homologies. Soon after, they associated to a contact

structure ξ on a 3-manifold, an element of its Heegaard-Floer homol-

ogy, the contact invariant c(ξ). This invariant has been used to prove

a plethora of results in contact topology of 3-manifolds. In this series

of lectures we introduce and review some basic facts about Heegaard

Floer Homology and its generalization to manifolds with boundary due

to Andras Juhász, the Sutured Floer Homology. We use the open book

decompositions in the case of closed manifolds, and partial open book

decompositions in the case of contact manifolds with convex boundary

to define contact invariants in both settings, and show some applications

to fillability questions.

• Robert Lipshitz (Columbia University, USA), Peter Ozsváth

(Princeton University, USA) and Dylan Thurston (University

of California, Berkeley, USA): Notes on bordered Floer homol-

ogy

Bordered Heegaard Floer homology is an extension of Ozsváth-

Szabó’s Heegaard Floer homology to 3-manifolds with boundary, en-

joying good properties with respect to gluings. In these notes we will

introduce the key features of bordered Heegaard Floer homology: its

formal structure, a precise definition of the invariants of surfaces, a

sketch of the definitions of the 3-manifold invariants, and some hints at

the analysis underlying the theory. We also talk about bordered Hee-

gaard Floer homology as a computational tool, both in theory and prac-

tice.

• Kai Cieliebak (Augsburg University, Germany) and Yakov

Eliashberg (Stanford, USA): Stein structures: existence and

flexibility

This survey on the topology of Stein manifolds is an extract from

our book “From Stein to Weinstein and Back”. It is compiled from

two short lecture series given by the first author in 2012 at the Insti-

tute for Advanced Study, Princeton, and the Alfréd Rényi Institute of

Mathematics, Budapest.

The first part of this survey is devoted to the topological character-

ization of those smooth manifolds of real dimension greater than four

that admit the structure of a Stein complex manifold. The second part

discusses more recent results on the topology of Stein structures such as

a Stein version of the h-cobordism theorem, a uniqueness theorem for

subcritical Stein structures, and a remarkable class of “flexible” Stein

structures that also satisfy uniqueness.
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• Michael Hutchings (University of California, Berkeley, USA):

Lecture notes on embedded contact homology

These notes give an introduction to embedded contact homology

(ECH) of contact three-manifolds, gathering together many basic no-

tions which are scattered across a number of papers. We also discuss the

origins of ECH, including various remarks and examples which have not

been previously published. Finally, we review the recent application to

four-dimensional symplectic embedding problems. This article is based

on lectures given in Budapest and Munich in the summer of 2012, a se-

ries of accompanying blog postings at floerhomology.wordpress.com,

and related lectures at UC Berkeley in Fall 2012. There is already a

brief introduction to ECH in the article1, but the present notes give

much more background and detail.

• Lenhard Ng (Duke University, USA): A topological introduc-

tion to knot contact homology

Knot contact homology is a Floer-theoretic knot invariant derived

from counting holomorphic curves in the cotangent bundle of R3 with

Lagrangian boundary condition on the conormal bundle to the knot.

Among other things, this can be used to produce a three-variable poly-

nomial that detects the unknot and conjecturally contains many known

knot invariants; a different part of the package yields an effective invari-

ant of transverse knots in R
3.

In these notes we will describe knot contact homology and the topol-

ogy and algebra behind it, as well as connections to other knot invari-

ants, transverse knot theory, and physics. Topics to be treated along

the way include: Legendrian contact homology; the conormal construc-

tion; a combinatorial formulation of knot contact homology in terms of

braids; the cord algebra, a topological interpretation of part of the in-

variant; transverse homology, a filtered version associated to transverse

knots; and relations to the A-polynomial, the HOMFLY polynomial,

and recent work in string theory.

1M. Hutchings: Embedded contact homology and its applications, Proceedings of the In-
ternational Congress of Mathematicians, Volume II, 1022–1041, Hindustan Book Agency,
New Delhi, 2010.
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Vladimir Igorevich Arnold

and the Invention of Symplectic

Topology

MICHÈLE AUDIN

1. First Step: A Definition (1986)

First steps in symplectic topology, this was the (English) title of a 1986 pa-

per [14] of Vladimir Igorevich Arnold. Like any good mathematical paper,

this one started with a definition:

By symplectic topology, I mean the discipline having the same relation to ordinary
topology as the theory of Hamiltonian dynamical systems has to the general theory
of dynamical systems.

And, to make things clearer, the author added:

The correspondence here is similar to that between real and complex geometry.

Well. . . this was Arnold’s style. A definition by analogy (an analogy I am

not sure I understand clearly). Nobody could accuse him of formalism or,

worse, of Bourbakism.

However, this paper was, is, “stimulating” (as the reviewer in Math. Re-

views would write1). Its first part (after the provocative introduction), enti-

tled “Is there such a thing as symplectic topology?”, even contains a proof

of the “existence of symplectic topology” (hence the answer to the question

is yes), that the author attributed to Gromov in [50] (as he notes, Eliashberg

also contributed to the statement, see below):

1This one was Jean-Claude Sikorav.

F. Bourgeois et al. (eds.), Contact and Symplectic Topology,
Bolyai Society Mathematical Studies 26, DOI 10.1007/978-3-319-02036-5 1,
© Copyright jointly owned by the János Bolyai Mathematical Society and Springer 2014

http://dx.doi.org/10.1007/978-3-319-02036-5_1


2 M. Audin

Theorem. If the limit of a uniformly (C0) converging sequence of symplectomor-
phisms is a diffeomorphism, then it is symplectic.

No geometer would contest that such a statement is indeed a proof: this is

a theorem about the behavior of symplectic diffeomorphisms with respect to

the C0-topology; the terms of the sequence are defined via their first deriva-

tives while the convergence is in the C0-topology. This indeed belongs to

symplectic topology. Hence the latter is not empty.

But, whatever the credit Arnold decided to give to Gromov and Eliash-

berg in this article, symplectic topology existed twenty years before Gromov’s

seminal paper [50] appeared: symplectic topology has an official birthdate,

and this is October 27th, 1965.

In this paper, I plan to sketch a picture of how symplectic topology grew,

in the hands of Arnold, his students, and followers, between his two papers [3]

of 1965 and [14] of 1986.

2. October 27
th

1965

This is the day when a short paper by Vladimir Arnold (so the author’s name

was spelled, see Figure 1), Sur une propriété topologique des applications

globalement canoniques de la mécanique classique, was presented to the Paris

Academy of sciences by Academician Jean Leray and became the Comptes

rendus note [3].

Fig. 1. A birth announcement (title and abstract of [3])

The so-called “applications globalement canoniques” would become sym-

plectomorphisms, the topology was already in the title. Here are the state-

ments of this note (my translation):

Theorem 1. The tori T and AT have at least 2n intersection points (counted with
multiplicities) assuming that AT is given by

(7) p= p(q)

∣
∣
∣
∣

∂p

∂q

∣
∣
∣
∣
<∞.
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Here T is the zero section p= 0 in the “toric annulus” Ω = Tn ×Bn (with

coordinates (q, p)) and the mapping A :Ω→Ω is globally canonical, namely,

it is homotopic to the identity and satisfies
∮

γ
pdq =

∮

Aγ
pdq, (pdq = p1 dq1 + · · ·+ pn dqn)

for any closed curve (possibly not nullhomologous) γ.

Hence, Theorem 1 asserts that the image of the zero section in Tn ×Bn

under a certain type of transformations should intersect the zero section

itself. We shall come back to this later. The second statement concerned

fixed points. To this also we shall come back.

Theorem 2. Let A be a globally canonical mapping, close enough to A0. The map-
ping AN has at least 2n fixed points (counted with multiplicities) in a neighborhood
of the torus p= p0.

Here, A0 has the form (q, p) �→ (q+ω(p), p), for a map ω :Bn→Rn such that

det

∣
∣
∣
∣

∂ω

∂p

∣
∣
∣
∣
�≡ 0, so that there exist p0 ∈Bn and integers m1, . . . ,mn,N with

ω1(p0) =
2πm1

N
, . . . , ωn(p0) =

2πmn

N

(this defining the p0 and the N in the statement).

Remark A. Replacing in the proofs the theory of M. Morse by that of L.A. Lus-
ternik and L.G. Schnirelman, we obtain, in Theorem 1, (n+1) geometrically different
intersection points of T and AT . One could wonder whether there exist (n+ 1) in-
tersection points of T and AT for the globally canonical homeomorphisms A?

Remark B. The existence of infinitely many periodic orbits near a generic elliptic
orbit follows from Theorem 2 (extension of Birkhoff’s Theorem to n > 1).

Remark C. It is plausible that Theorem 1 is still true without the assumption (7), if
A is a diffeomorphism2. From the proof, several “recurrence theorems” would follow.

Remark D. It also seems plausible that Poincaré’s last theorem can be extended as
follows:
Let A : Ω → Ω (Ω = Br × Tn; Bn = {p, |p| ≤ 1}; Tn = {q mod 2π}) be a canoni-
cal diffeomorphism such that, for any q ∈ Tn the spheres Sn−1(q) = ∂Bn × q and
ASn−1(q) are linked in ∂Bn ×Rn (Rn being the universal cover of Tn). Then A has
at least 2n fixed points in Ω (counted with multiplicities).

2If A is not a diffeomorphism, counter-examples can be constructed with n = 1. Note of
V.I. Arnold.



4 M. Audin

Remark C is the statement that will become “Arnold’s conjecture”. The

question in Remark A will also be part of this conjecture. Note that, twenty

years after, when he wrote [14], Arnold mentioned that the statement in

Remark D had still not been proved.

Before I comment more on the statements and their descendants, let me

go back to one of their ancestors, the so-called last geometric theorem of

Poincaré.

3. A Theorem of Geometry, 1912

On March 7th 1912, Henri Poincaré finished writing a paper and sent it to the

Rendiconti di Circolo matematico di Palermo. It was accepted at the meeting

of the Mathematical circle which took place three days later (adunanza del

10 marzo 1912), together, e.g. with papers of Francesco Severi and Paul Lévy,

and it was printed in May3 as [58]. In this paper, Poincaré stated what he

called “un théorème de géométrie”. Before that, he apologized for publishing

a result

– that he would have liked to be true, because he had applications (to

celestial mechanics) for it,

– that he believed to be true, because he was able to prove some special

cases of it

but that he could not prove. Here is this statement (my translation). Poincaré

denotes by x and y (mod 2π for the latter) the polar coordinates of a point.

He considers an annulus a ≤ x ≤ b and a transformation T of this annulus

(x, y) �→ (X(x, y), Y (x, y)).

First condition. As T transforms the annulus into itself, it preserves the two bound-
ary circles x = a and x = b. [He then explains that T moves one of the circle in a
direction and the other in the opposite one. I shall (anachronistically) call this the
twist condition.]

3All of this was very fast, including the mail from Paris to Palermo (recall that there was
no air-mail and that Palermo was already on an island). All the dates given here can be
found on the printed journal. For some reason (which I was unable to understand), they
were cut out in Poincaré’s complete works, even the date he probably wrote himself at the
end of his paper.
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Second condition. The transformation preserves the area, or, more generally, it admits
a positive integral invariant, that is, there exists a positive function f(x, y), so that

∫∫

f(x, y)dxdy =

∫∫

f(X,Y )dX dY,

the two integrals being relative to any area and its transform.

If these two conditions are satisfied, I say that there will always exist in the interior
of the annulus two points that are not modified by the transformation.

Clearly, the two conditions are necessary: there exists

– maps preserving the area without fixed points, a rotation for instance,

but it does not satisfy the twist condition,

– twist maps without fixed points, e.g.4 (x, y) �→ (x2, x + y − π), but it

does not preserve the area.

Notice also that there exist twist maps preserving the area with exactly two

fixed points, like the one evoked by Figure 2. The picture shows a part of

an infinite strip. The diffeomorphism is the flow of the vector field drawn.

It descends to the quotient (by the integral horizontal translation) annulus

where it has two fixed points.

Fig. 2. A twist map with two fixed points

Such area preserving maps of the annulus arose as Poincaré sections for

Hamiltonian systems with two degrees of freedom—namely, in dimension 4—

and their fixed points would correspond to periodic orbits. Needless to say:

celestial mechanicians love periodic orbits. Hence the Poincaré problem.

Let me add that, in the introduction of his paper, Poincaré wrote that

he had thought of letting the problem mature for a few years and then of

coming back to it more successfully, but that, at his age, he could not be

4I copied this example from [54].



6 M. Audin

sure. He was actually only 58, but he died, unexpectedly, four months later,

on July 17th.

On October 26th, the same year, George David Birkhoff presented a proof

of this theorem to the American mathematical society, and his paper Proof

of Poincaré’s geometric theorem was published in the Transactions of this

society [30]. Birkhoff considered himself as a student (and even as the last stu-

dent) of Poincaré. He and Jacques Hadamard were probably the two mathe-

maticians who knew Poincaré’s work best. Although this was not as easy as it

is nowadays, Birkhoff would go very often to Paris and lecture at Hadamard’s

Seminar, on Poincaré’s theorems, during the 1920’s and 1930’s. The main ref-

erence in his paper was a previous paper of him [29], published, in French,

by the French mathematical society. No wonder that his proof of Poincaré’s

theorem was translated and republished, in French, as “Démonstration du

dernier théorème de géométrie de Poincaré5” [31].

Note that, using a degree argument (that Poincaré attributed to Kro-

necker), the existence of one fixed point implies that there are two of them. . .

except that they could coincide. It is not absolutely clear that the original

proof of Birkhoff gave the existence of two geometrically distinct fixed points.

This is why he himself came back to this theorem later. See his paper [32]

and his book [33]6.

For modern symplectic readers: there is a proof of the existence of one

fixed point in [54], which can be completed with [36].

Chapter VI of Birkhoff’s book is devoted to the application of Poincaré’s

geometric theorem. It starts as follows:

Poincaré’s last geometric theorem and modifications thereof7 yield an additional
instrument for establishing the existence of periodic motions. Up to the present time
no proper generalization of this theorem to higher dimensions has been found, so that
its application remains limited to dynamical systems with two degrees of freedom.

At that time, the symplectic nature of Hamilton’s equations still needed

some clarification. Now we know that the good generalization of “preserv-

5“Dernier”, which means last, was not in the American title. Also, the translation kept
the original phrasing “théorème de géométrie” rather than “théorème géométrique”, as in
English.
6Note that, in the preface Marston Morse wrote for the 1966 edition of this 1927 book, he
insisted on the relationship between Birkhoff’s work on periodic orbits and “the work of
Moser, Arnold and others on stability”.
7See my paper, An extension of Poincaré’s last geometric theorem, Acta Mathematica,
vol. 47 (1926). Note of G.D. Birkhoff.
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ing the area” is not “preserving the volume”. And Arnold was (one of) the

mathematicians who taught us that. A Hamiltonian flow, namely a solution

(q(t), p(t)) of Hamilton’s equations

⎧

⎪⎪⎨

⎪⎪⎩

q̇ =
∂H

∂p

ṗ=−∂H
∂q

preserves the symplectic form

ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn

and not only the volume form

dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn =
ω∧n

n!
.

This is written in Rn×Rn, but could also be understood in Tn×Rn (if H is

periodic in q), which is the same as T �Tn, hence can be generalized to T �V

(which has a “pdq” and thus also a “dp ∧ dq” form), and to any symplectic

manifold W . To a function H :W →R, the symplectic form ω associates a

vector field (the Hamiltonian vector field) XH by dH = iXH
ω and thus a flow

(the Hamiltonian flow) which preserves ω since

LXH
ω = diXH

ω = ddH = 0.

4. Back to Arnold and His Golden Sixties

In 1965, although he was a young man of 28, Arnold was not a beginner. Ten

years before, he had contributed (with his master Kolmogorov, as he would

say) to Hilbert’s thirteenth problem. Then he had worked on stability and

had already proved the theorem on invariant tori that would soon be known,

first as “Kolmogorov-Arnold-Moser”, and later as “KAM”. This was what he

lectured on when he came to Paris at the Spring of 1965, as the book [16]8

shows (the “KAM” statement is Theorem 21.11 and there is a proof in Ap-

pendix 33). He had already published, for instance, the big paper [1]9, about

which the reviewer of Math. Reviews10 wrote:

8Soon translated in English as [17].
9This was also very fast: the translation in English in Russian mathematical surveys would
arrive in the libraries less than one year after the publication of the Russian original.
10This one was Jürgen Moser.
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It is to be hoped that this remarkable paper and exceptional work helps to arouse
the interest of more mathematicians in this subject.

This might have been the first appearance of the famous cat of Arnold, and

of a figure such as Figure 311.

Fig. 3. More fixed points. . . after [1]

Of course, KAM theorem was also the main topic of the half-an-hour

talk Arnold gave at the icm in Moscow in 1966, Problema usto�qivosti
i �rgodiqeskie svo�stva klassiqeskih dinamiqeskih sistem12 [4].

However, there was a short section with the statements of (and reference to)

the note [3].

5. Problems of Present Day Mathematics, 1974

In May 1974, the American mathematical society had a Symposium on de-

velopments arising from Hilbert problems. The organizers also intended to

make another list of problems—for the present day. Arnold sent a problem

(if I understand well, the problems were collected by Jean Dieudonné and

edited by Felix Browder), which appeared in a list of “Problems for present

day mathematics” in the book [35]. This is Problem xx, on page 66:

11Note that Figure 3 contains a 5-fold covering and a 3-fold covering of the map in Figure 2.
12A stability problem and ergodic properties of classical dynamical systems.
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XX. Fixed points of symplectic diffeomorphisms (V. Arnold). The problem
goes back to the “last geometric theorem” of Poincaré. The simplest case is the
following problem: Does every symplectic diffeomorphism of a 2-dimensional torus,
which is homologous to the identity, have a fixed point?
A symplectic diffeomorphism is a diffeomorphism which preserves a nondegenerate
closed 2-form (the area in the 2-dimensional case). It is homologous to the identity iff
it belongs to the commutator subgroup of the group of symplectic diffeomorphisms
homotopical to the identity. With coordinates, such a diffeomorphism is given by
x→ x+f(x), where x is a point of the plane and f is periodic. It is symplectic iff the
Jacobian det(D(x+ f(x))/Dx) is identically 1, and it is homologous to the identity
iff the mean value of f is 0.
The “last geometric theorem” of Poincaré (proved by G. D. Birkhoff) deals with
a circular ring. The existence of 2 geometrically different fixed points for symplec-
tic diffeomorphisms of the 2-sphere is also proved (A. Shnirelman, N. Nikishin). In
the general case, one may conjecture that the number of fixed points is bounded
from below by the number of critical points of a function (both algebraically and
geometrically).

The ams book appeared two years later, in 1976. Notice that the “sim-

plest” question is asked in dimension 2, but that the general case, at the very

end of the text, seems to refer to an arbitrary symplectic manifold. The com-

plicated definition of “homologous to the identity” given shows that Arnold

was indeed thinking of a general symplectic manifold. Note that, according

to a theorem Augustin Banyaga [25] would prove in 1980, and that Arnold

would quote in [14] and in 1986, these are the Hamiltonian diffeomorphisms.

Also note there was already a proof available, and this was for the S2

case: Arnold was working. . . and his students were working too. The very first

symplectic fixed point theorem (after [3]) was that of N.A. Nikishin [57]—

note that, although published in 1974, the paper was submitted to the journal

as soon as November 1972:

Theorem. A diffeomorphism of S2 which preserves the area has at least two geo-
metrically distinct fixed points.

Namely, at least as many as a function has critical points. The proof was

not very hard: Nikishin proved that the index of a fixed point of such a

diffeomorphism should be ≤ 1. But the Lefschetz number is 2.

Arnold was working. For instance on singularity (or catastrophe) theory.

One of the people he met in Paris in Spring 1965 was René Thom (this we

know at least from [16] and from [59]), whose seminar he attended. Arnold

was working. Starting a seminar on singularity theory in Moscow13. Lecturing

13Let me mention here the beautiful little book [13] he wrote on this subject for a general
audience in the eighties.
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on classical mechanics in 1966–68. And writing up notes. Nikishin, in [57],

quotes Arnold’s Lectures on classical mechanics, dated 1968. They would

become a famous book. . .

6. Mathematical Methods in Classical Mechanics, 1974

(Our Golden Seventies)

In 1974, the Soviet publishing house Nauka published Arnold’s Matema-
tiqeskie metody klassiqesko� mehaniki [8].

At that time, a wicked bureaucracy had decided not to allow Arnold to

travel abroad anymore. However, his book was soon translated to French and

published, in Moscow, by the foreign language Soviet publishing house Mir,
Mir, and [9] was available in France, at a very low price, in 1976.

6.1. A Few Personal Remarks

In the seventies, the only math books we could afford, we Parisian students,

were the Mir books. We would go quite often to their bookstore la Librairie

du Globe rue de Buci to fetch the new books (whatever they were). The

Soviet translation program was devoted helping French-speaking developing

countries, not French students. So what?

The word “translation” was already used at least seven times in this

text. A French mathematician publishing a paper in French in an Italian

journal, an American mathematician writing papers in French and in English,

a Russian one writing in Russian and in French. Before I leave the language

question, let me comment on that. When I visited Arnold in Moscow in the

Fall of 1986, he told me that he preferred to speak French than English, so

we used to discuss in French. Of course, he asked me to lecture in English,

because of his students. So I spoke English. . . but, he would interrupt quite

often to ask a question or make a comment (well, this was Arnold’s seminar,

you know14), and, of course (?) he would do it in French, then I would

answer (or not), and he would translate and comment in Russian, for his

students15. And of course, I would try to understand the comment: I knew

perfectly well that he was explaining things I was talking about but did not

14If you don’t know, look at [59].
15Again, you should read [59].



V.I. Arnold and Symplectic Topology 11

quite understand16. Arnold’s fast, intricate and subtle questions17, plus two

foreign languages at the same time—hard work!

�

There and then (I mean in [9] and in 1976), we discovered, after the New-

tonian and the Lagrangian mechanics, the third part of the book, Hamilto-

nian mechanics18, symplectic manifolds and action-angle variables, notably.

So, mechanics was, after all, geometry! Good news! And you could put so

much mathematics in a series of so-called “appendices”.

7. The Symplectic Community

Two years later, Springer published a translation in English, by Karen Vogt-

mann and Alan Weinstein19 [10]. In a letter to Alan Weinstein, Arnold com-

plained:

There is something wrong with the occidental scientific books editions: the prices are
awful. e.g. my undergraduate ordinary differential equations textbook20 costs here
0,67 rbls (∼ 1/30 the price of a pair of boots), and 40 000 exemplairs where sold
in few months, so it is impossible to buy it at Moscow at present; the MIT Press
translation by Silverman price was perhaps more than 20$ and the result – 650 sales
the 1 year.
Now the 17 000 exemplaires of the “mechanics” disappeared here at few days, the
price being rbls 1,10. I think the right price for the translation must be less than 1$,
then the students will buy it.

As Weinstein pointed out in his answer, books were unsubsidized in the

U.S. economy. And, as it could be added, scientific publishers were not non-

profitmaking organizations. And the price of the present Springer book is

100 euros (added in proof).

The English translation appeared. This time, this was no longer a short

Comptes rendus note in French, a cheap translation made in the Soviet Union

for developing countries or a paper in Russian. You (or your library) had to

pay to read it. For instance, Helmut Hofer [52] would remember:

16In any case, you should read [59].
17Let me quote what I wrote at the very moment I learned his death in a short online
paper [23]: he was charming, provocative, brilliant, cultured, funny, caustic sometimes
even wicked, adorable, quick, lively, incisive, yes, all this together.
18Nothing is perfect. One thing I never understood and never dared to ask, is why there is
a Lagrangian but no Hamiltonian treatment of the spinning top in this book.
19It seems that the idea was Jerry Marsden’s. The translation was made by Karen Vogt-
mann and edited by Alan Weinstein, who knew the domain and its lexicon better.
20This one was [5–7], before becoming [15].
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As a student I read Arnold’s wonderful book Mathematical Methods of Classical
Mechanics.

After the AMS volume [35] and the Springer book [10], nobody in the West

could ignore Arnold’s question! It was more or less at the same time that

Gromov emigrated21, first to the States, then to Paris. Thirteen years after,

things started to become serious22.

In Appendix 9 of [10], one can read:

Thus we come to the following generalization of Poincaré’s theorem:

Theorem. Every symplectic diffeomorphism of a compact symplectic manifold, ho-
mologous to the identity, has at least as many fixed points as a smooth function on
this manifold has critical points (at least if this diffeomorphism is not too far from
the identity).

Quoting Hofer again [52]:

The symplectic community has been trying since 1965 to remove the parenthetical23

part of the statement. After tough times from 1965 to 1982, an enormously fruitful
period started with the Conley-Zehnder theorem in 1982–83.

It is not absolutely clear to me that there existed a symplectic community

in the “tough times from 1965 to 1982”. I may be wrong, so I will not insist on

the precise date, but I would say that the “symplectic topology community”

was born around 1982. So far, I have mainly mentioned Arnold24 (and the

Soviet Union). But there were indeed mathematicians working on celestial

mechanics and stability questions elsewhere. The names of Marston Morse

(who had been a student of Birkhoff) and Jürgen Moser have already been

written in this paper. That of Michel Herman should be added. This would

be connected to KAM rather than to actual symplectic geometry25. Working

21Mikhail Gromov’s paper [49] (at icm Nice 1970), where the h-principle for Lagrangian
immersions was announced, should also be mentioned.
22Math. Reviews waited until May 1979 to publish a review of the 1974 Russian edition.
The reviewer was very enthusiastic, so enthusiastic that he added a very elegant remark:

The reader should be aware that the reviewer participated in the English translation
of the work under review, and so has been prejudiced in favor of the book by the
pleasure which that project provided.

This one was Alan Weinstein.
23The French translation has no parenthesis, only a comma.
24and Gromov.
25Not taking Moser’s homotopy method [55] (see also [62]) into account.
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on periodic orbits in the States and in the 1970’s, Alan Weinstein not only

solved problems [63, 64], but wrote a series of lectures [62], on symplectic

geometry, which have also been quite useful. If I were to qualify all this

activity in only two words, I would probably say “variational methods”.

Well, another side of the story I have told so far, which also starts with

the Poincaré-Birkhoff theorem and also ends with Weinstein’s lecture notes,

but is quite different—and complementary—is given in [54, p. 2].

There were some connections. Of course the name of Alan Weinstein

must be repeated here. I should add that what we did not learn in [9], we

learned it in [62].

However, it is around the Arnold conjecture (as it was named since then)

that a community began to aggregate, and, if we needed a birthdate for

this community, I would agree with Hofer and suggest March 1983, when

Charles Conley and Eduard Zehnder sent their paper [40] to Inventiones

mathematicae. This was soon reviewed by Marc Chaperon for the Bourbaki

Seminar in Paris [37]26. In this “report”, Chaperon added a few personal

(and new) ideas and results, in particular, he proved the non-displacement

property for tori. At the same time, Daniel Bennequin [26] had succeeded in

attacking the contact side of the story. . . and Gromov developed solutions

of an elliptic operator, pseudo-holomorphic curves—the powerful new tool.

7.1. Symplectic Geometry/Topology

I am not sure I can date the locution “symplectic-topology”.

I shall not take sides in the question “what is symplectic topology/what

is symplectic geometry?”. For instance, where should I put the symplec-

tic reduction process [53]? And the glorious convexity theorem of Atiyah,

Gullemin and Sternberg [19, 51], which appeared more or less at the same

time as [40]? In geometry? But topologists use it a lot. . . And what about

deformation quantization, which originated—in the Soviet Union and in the

seventies—in Berezin’s work [28]?

Let me just say that Arnold was a geometer in the widest possible sense

of the word, and that he was very fast to make connections between different

fields.

26Replacing Fourier series by a broken geodesics idea, Chaperon himself soon gave a more
elementary proof in [39], which is the basis of the proof given in [54].
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One of Arnold’s important symplectic texts was published shortly be-

fore the “first steps” of [14]. Written in collaboration with the young Sasha

Givental, it was still called “Symplectic geometry” [18]. This was in 1985. The

Soviet Union was still publishing cheap books, in this case volumes of an “En-

cyclopedia”27. This is probably the best place to look at if you want to see the

global idea Arnold had on the subject “symplectic geology-or-topometry”.

Note first that this is part of a series called “Dynamical systems”. And then,

let me make a list:

Well. . . integrable systems with the so-called Liouville Theorem (and

the invariant tori some of which survive perturbations in KAM theory), La-

grangian and Legendrian submanifolds, caustics and wavefronts (and through

generating functions, singularity theory, catastrophes and versal deforma-

tions), real algebraic geometry, the Maslov class (which he had defined in [2]28

and which is related to Fourier integral operators), Lagrange and Legendre

cobordisms (this turned out to be symplectic algebraic topology29), generat-

ing functions, and, yes, fixed points of symplectic diffeomorphisms.

8. Lagrangian Submanifolds, Statements of Arnold’s

Conjecture

A Lagrangian in a symplectic manifold is a submanifold of the maximal

possible dimension (which is half the dimension of the symplectic manifold)

on which the symplectic form vanishes.

8.1. Sections of a Cotangent Bundle and Fixed Points

For instance, the zero section in a cotangent bundle T �V is Lagrangian. Also

the graph of a 1-form on V is Lagrangian if and only if this 1-form is closed.

Notice, in connection with Theorem 1 in Arnold’s note [3] (here page 2), that

the graph of an exact 1-form df intersects the zero section precisely at the

critical points of f .

27And this became one of the most expensive Springer series in the 1990’s.
28The contents of [2] would deserve a whole paper. . . Note that the adjectives Lagrangian,
Legendrian, in the sense used in symplectic geometry, were invented in [2].
29Allow me to mention that this was the way I entered symplectic geometry. See [44]
and [20–22].
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Let us now consider a Hamiltonian diffeomorphism ϕ of T �V , that is,

a diffeomorphism generated by a Hamiltonian vector field XH . A version of

the Arnold conjecture would be:

Conjecture. The Lagrangian submanifold ϕ(V ) intersects the zero section

V of T �V at least as many points as a function on V has critical points.

Suppose that ϕ is C1-close to the identity. Then ϕ(V ) is a section of T �V .

The fact that ϕ is symplectic implies that ϕ(V ) is Lagrangian and hence, the

graph of a closed 1-form; the fact that ϕ is Hamiltonian implies that this is

the graph of the differential of a function. Hence the result in this case. Note

that the nondegenerate case, that is, when ϕ(V ) is transverse to V , is the

case where the function is a Morse function. With the Morse inequalities, this

leads to the weak (although nontrivial) form of the conjecture: the number

intersection points is not less than the sum of the Betti numbers of V .

Now, according to a theorem of Weinstein [62], a tubular neighborhood

of any Lagrangian submanifold L in any symplectic manifold is isomorphic

(as a symplectic manifold) to a tubular neighborhood of the zero section in

T �L. Generalizations of the statement above follow. . .

8.2. Graphs of Symplectic Diffeomorphisms

Another important class of examples is the following. Denote by W a mani-

fold endowed with a symplectic form ω. Let ϕ :W →W be any map. Now,

W ×W , endowed with ω⊕−ω, is a symplectic manifold, and the graph of ϕ

is a submanifold therein. Clearly, this is a Lagrangian submanifold if and

only if ϕ�ω = ω, that is, if and only if ϕ is a symplectic diffeomorphism. And

the intersection points of the graph with the diagonal are the fixed points

of ϕ. Hence Lagrangian intersections are related to fixed points of symplectic

diffeomorphisms.

Conjecture. A Hamiltonian diffeomorphism of a compact symplectic man-

ifold W has at least as many fixed points as a function on W has critical

points.

9. Generating Functions

A connection between symplectic geometry and catastrophe theory is via

generating functions. Remember that, if S is a function, the graph of dS is a
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Lagrangian submanifold of the cotangent bundle. Together with symplectic

reduction, this has the following generalization (see [62]). Let S : V ×Rk→R

be a function, so that the graph of dS is a Lagrangian submanifold in

T �(V ×Rk). If this is transversal to the coisotropic submanifold T �V ×Rk,

the symplectic reduction process ensures that the projection

graph(dS)∩
(

T �V ×Rk
)

−→ T �V

is a Lagrangian immersion. In coordinates (q, a) ∈ V ×Rk, this is to say that,

if

ΣS =

{

(q, a) ∈ V ×Rk

∣
∣
∣
∣

∂S

∂a
= 0

}

is a submanifold, then

ΣS −→ T �V

(q, a) �−→
(

q,
∂S

∂q

)

is a Lagrangian immersion. For instance (with V =Rn and k = 1), if we start

from

S :Rn ×R−→R

(q, a) �−→ a‖q‖2 + a3

3
− a

then

ΣS =
{

(q, a) | ‖q‖2 + a2 = 1
}

= Sn

is an n-sphere and

Sn −→Rn ×Rn = T �Rn

(q, a) �−→ (q,2aq)

is a Lagrangian immersion. Note that it has a double point (q = 0, a=±1):
this is a Lagrangian version of the “Whitney immersion”.

9.1. Caustics and Wave Fronts

The geometric version of a wave front is as follows. Start with L⊂ T �V , a

Lagrangian in a cotangent bundle (it may be only immersed) and look at the
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projection L→ T �V → V . Using “canonical” coordinates (q, p), we are just

forgetting the p. The caustic is the singular locus in the projection.

Now comes the contact structure. We rather look at the jet space

J1(V ;R), that is, T �V ×R, with the 1-form dz− pdq. As the 2-form dp∧dq
vanishes on L, the 1-form pdq is closed, hence (up to a covering) it is exact,

pdq = df and, well, now we can “draw” L in V ×R, namely in codimension 1

rather than n.

Fig. 4. Two wave fronts

For instance if S is a generating function

ΣS −→ V ×R

(q, a) �−→
(

q,S(q, a)
)

is the wave front of the Lagrangian immersion defined by S.

The pictures in Figure 4 represent (in coordinates (q, z)) a round circle

and a figure eight (in coordinates (q, p)), the latter being the one-dimensional

version of the Whitney immersion. Of course, only exact Lagrangians give

closed wavefronts. Note also that any picture like the ones on Figures 4 or 5

would allow you to reconstruct a Lagrangian. Namely: knowing z and q, you

get p by dz = pdq. For instance, to the two points with the same abscissa

and horizontal tangents on the “smile” (right of Figure 4) correspond to the

double point of the Whitney immersion.

Of course, this is related to the propagation, of light, say, this is related

to evolvents, and to what Arnold calls “Singularities of ray systems” [12] and

Daniel Bennequin the “Mystic caustic” [27].

So what? Well, this allowed Givental to construct examples of Lagrangian

embeddings in R4 of all the surfaces which could have one, just by drawing
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them [48] in R3 (4 = 2n⇒ 3 = n+ 1) (and leaving the Klein bottle case to

posterity30).

Fig. 5.

This also allowed Eliashberg to prove the Arnold conjecture for sur-

faces31—at the same time as Floer dit it. Eliashberg even had a proof [41]

of the “existence theorem” of symplectic topology stated at the beginning of

this article (see also [42]) using a decomposition of wave fronts.

9.2. Crossbows. . .

The last wave front drawn (right of Figure 5) represents an exact Lagrangian

immersion of the circle with two double points, which is regularly homotopic

to the standard embedding (exactness meaning that the total area enclosed

by this curve is zero). It appeared in Arnold’s papers on Lagrangian cobor-

disms [11]: this is the generator of the cobordism group in dimension 1.

Arnold calls it “the crossbow”. Which reminds me of something Stein is sup-

posed to have told Remmert in 1953 when he learned the use Cartan and

Serre made of sheaves and their cohomology to solve problems in complex

analysis: “The French have tanks. We only have bows and arrows” [34].

30See [56].
31Note that Nikishin’s article [57] quoted in [35] more or less disappeared from the lit-
erature. The statement and a (different) proof were given in [37] without any reference.
A few years later the conjecture for CPn was announced by Fortune and Weinstein [47]
then published by Fortune [46] with no mention that the CP1-case was already known.
Even in [14] the S2-case is mentioned as an analogous of Poincaré’s geometric theorem,
but not in connection with the proof of the conjecture for surfaces (attributed both to
Eliashberg [43] and Floer [45]).
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9.3. . . . and Tanks

This time the tank was Floer theory. Well, we were not anymore in 1953.

And the war metaphor is not the best possible to speak of the Floer Power. . .

The starting point was the action functional, like

AH(x) =

∫ 1

0
(pdq−Ht dt)

where x(t) is a path and Ht a (time-dependent) Hamiltonian. . . except that

we are on a general symplectic manifold, where pdq does not mean anything.

Well this can be arranged and replaced by a (closed) action form αH , defined

on a path x and a vector field Y along this path by

(αH)x(Y ) =

∫ 1

0
ωx(t)

(

ẋ(t)−XHt

(

x(t)
)

, Y (t)
)

dt.

The critical points are the solutions of the Hamilton equation. Once you have

fixed a compatible almost complex structure, the gradient lines connecting

the critical points are the solutions of the Floer equation:

∂u

∂s
+ J(u)

∂u

∂t
+ gradHt(u) = 0.

Note that, when Ht ≡ 0, this is just the Cauchy-Riemann equation

∂u

∂s
+ J(u)

∂u

∂t
= 0

giving Gromov’s pseudo-holomorphic curves.

Taking in his hands both the variational methods (Morse theory) used by

Conley and Zehnder and the elliptic operators (pseudo-holomorphic curves)

of Gromov, using the “characteristic class entering in quantization condi-

tions” of [2], Andreas Floer built for us a Yellow-Brick-Road to prove the

Arnold conjecture in greater and greater generality. (And this is what we32

did.)

32By “we” here, I mean the community. I could also mention that some of us (and here,
by “us”, I mean the two authors of [24]) wrote a textbook to explain all this (a translation
to English will be available soon).
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10. Generating Functions (Continuation)

From the very description of wave fronts, it is clear that generating func-

tions are a good tool for the study of contact geometry/topology. Note also

that there are contact analogues of self-intersections of Lagrangians, namely

chords of Legendrian knots.

Much progress has been done, but there is not enough space here to men-

tion all this. The name of another former student of Arnold’s, Yuri Chekanov,

should be added here.

11. Twenty Years After. . . First Steps Again

Let us go back to the 1986 paper [14] we started with. Poincaré’s geometric

theorem was mentioned in the “Is there such a thing as symplectic topol-

ogy?” section, but not its possible generalizations, which appeared only in

Section 2, where, quoting [3, 4] for the statement and [40] for the proof,

Arnold stated:

Theorem. A symplectomorphism of the torus homologous to the identity has no
fewer than four fixed points (taking multiplicities into account) and no fewer than
three geometrically distinct fixed points.

Four was for 2n, three for n + 1, hence the torus in the statement was 2-

dimensional—this was the case, neither for the conjecture nor for the proof. . .

The “multidimensional generalization” was more than just multidimensional,

and for it Arnold quoted the problem in [35]. . . and his comments to the

Russian edition of Poincaré’s selected works33, a book I never saw:

Conjecture. A symplectomorphism of a compact manifold, homologous to the iden-
tity transformation34, has at least as many fixed points as a smooth function on the
manifold has critical points.

I think this was the first time the word “conjecture” (in reference to this

problem) appeared in a paper by Arnold himself.

33See Review 52#5337 onMath. Reviews. Already in 1972, it was possible to publish double
translations without checking the signification. The title of our favorite Poincaré paper [58]
became there “A certain theorem of geometry”.
34Joined by a one-parameter family of symplectomorphisms with single valued (but time-
dependent) Hamiltonians. Note of V.I. Arnold.
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And he listed the results obtained so far—a state of the art in 1986.

That is, the torus ([37, 38, 40]), the surfaces ([43, 45]), the complex projec-

tive space ([47]), (many) Kähler manifolds of negative curvature ([45, 60]),

diffeomorphisms that are C0-close to the identity ([65]).

12. Epilogue (2012)

And now, this is 2012. Twenty-six years after the “first steps”. Three new

appendices have been added to a second (1989) edition of [10]. Some, many

versions of Arnold’s conjecture have been proved. Others are still open. Many

powerful techniques have been created, used, improved. Even the crossbows

turned out to be very efficient. Helping to solve old problems, the new tools

generated new ones.

Vladimir Igorevich died in Paris on June 3rd, 2010.

Symplectic topology is not standing still.

Acknowledgement. I thank Bob Stanton and Marcus Slupinski for their

help with the translation of the adjectives in footnote 17.

Many thanks to Alan Weinstein and Karen Vogtmann, who were so kind

to send me recollections and information and also to Alan, for allowing me

to publish an excerpt of a letter Arnold had sent to him.

I am very grateful to Mihai Damian, Leonid Polterovich and Marc Chap-

eron, who kindly agreed to read preliminary versions of this paper, for their

friendly comments and suggestions.

The last sentence in this paper was inspired by [61].

References

[1] V.I. Arnold, Small denominators and problems of stability of motion in classical and
celestial mechanics. Usp. Mat. Nauk 18(6(114)), 91–192 (1963)

[2] V.I. Arnold, A characteristic class entering in quantization conditions. Funct. Anal.
Appl. 1 (1965)
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1. Introduction

These lecture notes are an introduction to the study of global properties of

contact structures on 3-manifolds using topological rather than analytical

methods. From that perspective, the main tool to study a contact manifold

(V, ξ) is the study of its ξ-convex surfaces. These surfaces embedded in V

are useful because all the information about ξ near each of them is encoded

into a surprisingly small combinatorial data. In order to illustrate the power

of ξ-convex surfaces without long developments, we use them to reprove,

following Giroux [9], two important theorems which were originally proved

using different techniques by Bennequin [1] and Eliashberg [5].

Besides Giroux’s original papers [8, 9], there are already two sets of lec-

tures notes by Etnyre [6] and Honda [13] and a book by Geiges [7] which

cover almost all topics we will discuss as well as more advanced topics. Our

goal is not to replace those references but to complement them. Mostly, we

include many pictures that are not easily found in print and can help to

build intuition. We focus on a small set of contact manifolds and illustrate

all phenomena on those examples by showing explicit embedded surfaces. On

the other hand, we almost never give complete proofs.

Section 2 explains the local theory of contact structures starting with the

most basic definitions. There are many ways to define contact structures and

contact forms and we use unusual geometric definitions in order to comple-

ment existing sources. We also try to explain the geometric intuition behind

the theorems of Darboux-Pfaff and Gray rather than using Moser’s path

method without explanation.

Once enough definitions are given, an interlude states the theorems of

Bennequin and Eliashberg that are proved at the high point of these notes.

It serves as motivation for the rather long developments of Section 4.

Section 4 begins the study of surfaces in contact manifolds. The starting

point is the singular foliation printed by a contact structure on any surface.

We then work towards ξ-convex surfaces theory by simplifying gradually

the contact condition near a surface. Once the amazing realization lemma is

proved, we investigate obstructions to ξ-convexity and prove these obstruc-

tions are generically not present. The last part of this section then gets the

first fruits of this study by proving the Eliashberg-Bennequin inequalities.

Section 5 goes beyond the study of a single surface by studying some

one-parameter families of surfaces. In particular we describe what happens

exactly when one of the obstructions to ξ-convexity discussed in the preced-
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ing section arises. This allows us to prove the theorems of Bennequin and

Eliashberg mentioned above. Until now, the proof of Bennequin’s theorem

using ξ-convex surfaces was explained only in [9].

Of course this is only the beginning of a story which continues both by

itself and in combination with holomorphic curves techniques.

Conventions. A plane field ξ on a 3-manifold V is a (smooth) map asso-

ciating to each point p of V a 2-dimensional subspace ξ(p) of TpV . All plane

fields considered here will be coorientable, it means one can continuously

choose one of the half spaces cut out by ξ(p) in TpV . In this situation, ξ can

be defined as the kernel of some nowhere vanishing 1-form α: ξ(p) = kerα(p).

The coorientation is given by the sign of α. We will always assume that V

is oriented. In this situation a coorientation of ξ combines with the ambient

orientation to give an orientation on ξ. All contact structures in these notes

will be cooriented.

Occasionally, we will include remarks or comments that are not part of

the main flow of explanations. These remarks are typeset in small italic print.

2. Local Theory

2.1. Contact Structures as Rotating Plane Fields

The Canonical Contact Structure on the Space of Contact Ele-

ments. Let S be a surface and π : ST ∗S→ S the bundle of cooriented lines

tangent to S (also called contact elements for S). It can be seen as the bun-

dle of rays in T ∗S, hence the notation. The canonical contact structure on

ST ∗S at a point d is defined as the inverse image under π∗ of d⊂ Tπ(d)S, see
Figure 1.

Suppose first that S is the torus T 2 = R
2/2πZ2. Let x and y be the

canonical S1-valued coordinates on T 2. A cooriented line tangent to T 2 at

some point (x, y) can be seen as the kernel of a 1-form λ which has unit

norm with respect to the canonical flat metric. So there is some angle z

such that λ= cos(z)dx− sin(z)dy. Hence we have a natural identification of

ST ∗T 2 with T 3. In addition the canonical contact structure can be defined by

cos(z)dx− sin(z)dy now seen as a 1-form on T 3 called the canonical contact

form on T 3, see Figure 2.

When S is the sphere S
2, ST ∗S is endowed with a free transitive action

of SO3(R) so it is diffeomorphic to SO3(R). So there is a two-fold covering
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Fig. 1. Canonical contact structure on the bundle of cooriented lines. At bottom is a
portion of S with a tangent line at some point. Above that point one gets the fiber by

gluing top and bottom of the interval. The contact structure is shown at the point of the
fiber corresponding to the line drawn below

Fig. 2. Canonical contact structure on T 3. Opposite faces of the cube are glued to get T 3

map from S
3 � SU(2) to ST ∗

S
2. The lifted plane field is called the canonical

contact structure on S
3. We will see different ways of describing this example

later on.

Contact Structures and Contact Forms.

Definition 1. A contact structure on a 3-manifold is a plane field which is

locally diffeomorphic to the canonical contact structure on ST ∗T 2. A contact
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form is a 1-form whose kernel is a contact structure. A curve or a vector field

is Legendrian if it is tangent to a given contact structure.

As noted above all our manifolds will be oriented and diffeomorphisms

in the above definition shall preserve orientations.

Theorem 2 (Darboux–Pfaff theorem). A 1-form α is a contact form if and

only if α∧ dα is a positive volume form.

Let ξ be the kernel of α. The condition α∧dα > 0 will henceforth be called

the contact condition for α. It is equivalent to the requirement that dα|ξ is

non-degenerate and defines the orientation of ξ coming from the orientation

of the ambient manifold and the coorientation of ξ.

Proof. If ξ is a contact structure then the image of α in the local model

is fα0 where f is some nowhere vanishing function and α0 = cos(z)dx −
sin(z)dy. So

α∧ dα= fα0 ∧ (fdα0 + df ∧ α0) = f2α0 ∧ dα0

= f2 dx∧ dy ∧ dz

which is a positive volume form. More generally the above computation

proves that the contact condition for a nowhere vanishing one-form depends

only on its kernel.

Conversely, suppose α∧dα is positive. Let p be a point inM . We want to

construct a coordinate chart around p such that ξ = ker(cos(z)dx−sin(z)dy).

We first choose a small surface S containing p and transverse to ξ. Then we

pick a non-singular vector field X tangent to S and ξ near p and a small

curve c in S containing p and transverse to X , see Figure 3. Let y be a

coordinate on c. The flow of X at time x starting from c gives coordinates

(x, y) on S near p in which X = ∂x.

We now consider a vector field V transverse to S and tangent to ξ. The

flow of V at time t starting from S gives coordinates (x, y, t) near p such

that α= f(x, y, t)dx+ g(x, y, t)dy because α(∂t) = α(V ) = 0. Up to rescaling,

one can use instead α1 = cosz(x, y, t)dx− sin z(x, y, t)dy for some function z

such that z(x, y,0) = 0. Now it is time to use the contact condition. We can

compute

α1 ∧ dα1 =
∂z

∂t
dx∧ dy ∧ dt.
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Fig. 3. Proof of the Darboux–Pfaff theorem

Remember the contact condition for α is equivalent to the contact condition

for α1. So
∂z
∂t is positive and the implicit function theorem then guaranties

that we can use z as a coordinate instead of t. �

In the above proof, z(x, y, t) was the angle between ξ and the horizon-

tal ∂x is the plane normal to the Legendrian vector field ∂t. We saw that

the contact condition forces this angle to increase. This means that the con-

tact structure rotates around ∂t. The above proof essentially says that this

rotation along Legendrian vector fields characterizes contact structures.

We now focus on the difference between contact structures and contact

forms. The data of a contact form is equivalent to a contact structure and

either a choice of a Reeb vector field or a section of its symplectization.

Definition 3. A Reeb vector field for a contact structure ξ is a vector field

which is transverse to ξ and whose flow preserves ξ.

If one has a Riemannian metric on a surface S then the bundle of contact

elements of S can be identified with the unit tangent bundle STS and the

geodesic flow is then the flow of a Reeb vector field for the canonical contact

structure.

One can easily prove that each contact form α comes with a canonical

Reeb vector field Rα which is characterized by dα(Rα, ·) = 0 and α(Rα) = 1.

All Reeb vector fields arise this way.

Next, for any co-oriented plane field ξ on a 3-manifold V , one can consider

the annihilator of ξ in T ∗V :

Sξ :=
{

λ ∈ T ∗V
∣
∣ kerλ= ξ and λ(v)> 0 if v is positively transverse to ξ

}

.
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It is a good exercise to check that a plane field ξ on V is a contact structure

if and only if Sξ is a symplectic submanifold of (T ∗V,ωcan). In this case Sξ
is called the symplectization of ξ. The manifold Sξ is a principal R-bundle

where a real number t acts by λ �→ etλ. Any contact form α is a section

of this R-bundle, and thus determines a trivialization R× V → Sξ given by

(t, v) �→ etαv. In this trivialization, the restriction of the canonical symplectic

form ωcan becomes d(etα).

2.2. Examples

The Canonical Contact Structure on R
3. The universal cover of

ST ∗T 2 is of course R3 and the lifted contact structure is ξ0 = ker(cos(z)dx−
sin(z)dy) where x, y and z are now honest real-valued coordinates. The plane

field ξ0 is called the standard contact structure on R
3.

Depending on context, it can be useful to have different ways of look-

ing at ξ0 using various diffeomorphisms of R3. The image of ξ0 under the

diffeomorphism

⎛

⎝

x

y

z

⎞

⎠ �→

⎛

⎝

t

p

q

⎞

⎠=

⎛

⎝

cos(z) − sin(z) 0

sin(z) cos(z) 0

0 0 1

⎞

⎠

⎛

⎝

x

y

z

⎞

⎠

is drawn in Figure 5. It admits the contact form dt+pdq and arises naturally

on R
3 seen as the space of 1-jets of functions from R to R (see e.g. [7, Example

2.5.11] for more information on this interpretation).

Figures 4 and 5 together are often confusing for beginners. First the thick

black line {t = p = 0} in Figure 5 is Legendrian yet the contact structure

does not seem to rotate along it. Second, it seems the two pictures exhibit

Legendrian foliations by lines with very different behavior. In the second

picture the contact structure turns half a turn along each leave whereas it

turns infinitely many turns in the first picture.

Both puzzles are solved by the same picture. The diffeomorphism we

used above sends the foliation by Legendrian lines of Figure 4 to a foliation

containing the mysterious line {t= p= 0} in Figure 5 together with helices

around that line, see Figure 6.

So we first see where is the foliation of Figure 4 inside Figure 5. And sec-

ond we remember that it makes sense to say that a plane field rotates along

a curve only compared to something else. Contact structures rotate along
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Fig. 4. Universal cover of the standard contact structure on T
3 seen from the side. It is

invariant under translation in the vertical direction

Fig. 5. ker(dt+ pdq) on R
3. It is invariant under translation in the vertical direction. It

becomes vertical only if one goes all the way to p=±∞

Fig. 6. The mysterious line in Figure 5 together with two helices coming from the lines of
Figure 4
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Fig. 7. Another view of the standard contact structure on R
3

Fig. 8. Embedding of Figure 7 into Figure 5

Legendrian curves compared to neighborhood leaves of some Legendrian fo-

liation. And indeed we see the contact structure turns infinitely many times

along the mysterious line compared to the nearby Legendrian helices.

It is also sometimes convenient to consider the image of ker(dt + pdq)

under the diffeomorphism (t, p, q) �→ (q,−p, t+ pq
2 ). This image is the kernel

of dz + 1
2r

2dθ in cylindrical coordinates, see Figure 7. In this model, one

sees clearly that, at each point, there are Legendrian curves going in every

possible direction.

Figure 8 shows how to deform Figure 7 to embed it inside Figure 5.

Either of these contact structures (which are diffeomorphic by construc-

tion) will be called the canonical contact structure on R
3. Of course they can

all be used as the local model in the definition of a contact structure.
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The Canonical Contact Structure on S
3. We have already met the

canonical contact structure on S
3 coming from the canonical contact struc-

tures on ST ∗
S
2. One can prove that it is also

• the orthogonal of the Hopf circles for the round metric,

• a left-invariant contact structure on the Lie group SU(2),

• TS3 ∩ JTS3 when S
3 is seen as the boundary of the unit ball in C

2 and

J denotes the action of multiplication by i in TC2.

The complement of a point in the standard S
3 is isomorphic to the stan-

dard R
3, see [7, Proposition 2.1.8] for a computational proof valid in any

dimension.

2.3. Isotopies

Isotopic Contact Structures and Gray’s Theorem. Up to now we con-

sidered two contact structures to be the same if they are conjugated by some

diffeomorphism. One can restrict this by considering only diffeomorphisms

corresponding to deformations of the ambient manifold. An isotopy is a fam-

ily of diffeomorphisms ϕt parametrized by t ∈ [0,1] such that (x, t) �→ ϕt(x)

is smooth and ϕ0 = Id. The time-dependent vector field generating ϕt is de-

fined asXt =
d
dtϕt. One says that two contact structures ξ0 and ξ1 are isotopic

if there is an isotopy ϕt such that ξ1 = (ϕ1)∗ξ0. In particular such contact

structures can be connected by the path of contact structures ξt := (ϕt)∗ξ0.
It is then natural to consider the seemingly weaker equivalence relation of

homotopy among contact structures. The next theorem says in particular

that, on closed manifolds, this equivalence relation is actually the same as

the isotopy relation.

Theorem 4 (Gray [12]). For any path (ξt)t∈[0,1] of contact structures on a

closed manifold, there is an isotopy ϕt such that ϕ∗
t ξt = ξ0.

The vector field Xt generating ϕt can be chosen in limε→0 ξt ∩ ξt+ε at

each time t.

Proof. The proof of this theorem can be found in many places but with-

out much geometric explanations. So we now explain the picture behind it.

The key is to be able to construct an isotopy pulling back ξt+ε to ξt for in-

finitesimally small ε. It means we will construct the generating vector field
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Fig. 9. Proof of Gray’s theorem

Xt rather than ϕt directly. The compactness assumption will guaranty that

the flow of Xt exists for all time.

At any point p, if the plane ξt+ε coincides with ξt then we have nothing

to do and set Xt = 0. Otherwise, these two planes intersect transversely

along a line dt,ε. The natural way to bring ξt+ε back to ξt is to rotate it

around dt,ε. Since we know from the proof of Theorem 2 that the flow of

Legendrian vector fields rotate the contact structure, we will choose Xt in

the line dt := limε→0 dt,ε, see Figure 9. Let us compute dt,ε:

dt,ε =
{

v | αt+ε(v) = αt(v) = 0
}

=

{

v ∈ ξt
∣
∣
∣
∣

1

ε
(αt+ε − αt)(v) = 0

}

which gives, as ε goes to zero: dt = ξt ∩ ker(α̇t).

The contact condition for αt is equivalent to the fact that (dαt)|ξt is non-

degenerate. So Xt belongs to ξt ∩ ker(α̇t) if and only if it belongs to ξt and

ιXt
dαt = ftα̇t on ξt for some function ft.

Moreover, we want Xt to compensate the rotation expressed by α̇t. A nat-

ural guess is then to pick the unique Legendrian vector field Xt such that

(ιXt
dαt)|ξt =−(α̇t)|ξt .

We now have a precise candidate for Xt and we can compute to prove

that it does the job. Let ϕt be the flow of Xt. Using Cartan’s formula, we
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get:

d

dt
ϕ∗
tαt = ϕ∗

t (α̇t +LXt
αt)

= ϕ∗
t (α̇t + ιXt

dαt).

By construction, the term in the parenthesis vanishes on ξt so it is αt multi-

plied by some function μt and we get:

d

dt
ϕ∗
tαt = (μt ◦ϕt)ϕ

∗
tαt.

So ϕ∗
tαt stays on a line in the space of one forms. This line is obviously

the line spanned by ϕ∗
0α0 = α0 and we then have kerϕ∗

tαt = kerα0 = ξ0 for

all t. It is not hard to see that Xt is the only Legendrian vector field which

works. �

Some compactness assumption is indeed necessary in Gray’s theorem. There are
counter-examples on R

2 × S
1 discovered in [4].

Contact structures form an open set in the space of all plane fields. Gray’s theorem
proves that isotopy classes of contact structures on a closed manifold are actually
connected components of this open set. In particular there are only finitely many
isotopy classes of contact structures on a closed manifold.
The example of linear foliations on T 3 proves that Gray’s theorem wouldn’t hold for
foliations.

Libermann’s Theorem on Contact Hamiltonians. Contact transfor-

mations of a contact manifold (V, ξ) are diffeomorphisms of V which preserve

ξ. The infinitesimal version of these are vector fields whose flow consists of

contact transformations. They are called contact vector fields and are exactly

those X for which (LX α)|ξ = 0 for any contact form α defining ξ. Note that

this condition is weaker than LX α = 0 which would imply that the flow of

X preserves α and not only its kernel ξ.

In the proof of Gray’s theorem, we saw that one can rotate a contact

structure at will using the flow of a Legendrian vector field uniquely deter-

mined by the rotation we want to achieve. The same idea allows to prove that

any vector field on a contact manifold can be transformed into a contact vec-

tor field by adding a uniquely determined Legendrian vector field. This is the

geometric fact underlying the existence of so-called contact Hamiltonians.

Theorem 5 (Libermann [14]). On a contact manifold (V, ξ) the map which

sends a contact vector field to its reduction modulo ξ is an isomorphism from

the space of contact vector fields to the space of sections of the normal bundle

TV/ξ.
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If we single out a contact form α then we get a trivialization TV/ξ→
V × R given by (x, [u]) �→ (x,α(u)). Sections of TV/ξ can then be seen as

functions on V and the contact vector field Xf associated to a function f

using the preceding theorem is called the Hamiltonian vector field coming

from α and f . Libermann’s theorem both implies existence of Xf and the fact

that it is the unique contact vector field satisfying α(X) = f . The situation

is analogous to the case of Hamiltonian vector fields in symplectic geometry

but in the symplectic case there are symplectic vector fields that are not

Hamiltonian. Note that the above interpretation when a contact form is

fixed is what Libermann originally discussed and also the most common use

of the word contact Hamiltonian.

Proof of Theorem 5. Let X be any vector field on V . The theorem is

equivalent to the assertion that there is a unique Legendrian vector field Xξ

such that X +Xξ is contact. Using any contact form α, we have equivalent

reformulations:

X +Xξ is contact ⇐⇒ (LX+Xξ
α)|ξ = 0

⇐⇒
(

ιX+Xξ
dα+ d(ιXα)

)

|ξ = 0

⇐⇒ (ιXξ
dα)|ξ =−

(

ιXdα+ d(ιXα)
)

|ξ

and the later condition defines uniquely Xξ because dα|ξ is non-degener-

ate. �

Remark 6. A common use of contact Hamiltonians, and the only one we

will need, is to cut-off or extend a contact vector field. For instance if X is a

contact vector field defined on an open set U ⊂ V and F is a closed subset

of V contained in U then there is a contact vector field X̃ which vanishes

outside U and equals X on F . If L denotes the isomorphism of Theorem 5

and ρ is a function with support in U such that ρ|F ≡ 1 then we can use

X̃ = L−1(ρL(X)).

3. The Tight vs Overtwisted Dichotomy

After the local theory and before starting our study of convex surfaces, we

need some motivation.

In Figure 7 showing ker(dz+ r2dθ), the contact planes rotate along rays

perpendicular to the z-axis but are never horizontal away from the z-axis.
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Fig. 10. An overtwisted contact structure

On the other extreme one can instead consider a contact structure which

turns infinitely many times along these rays. A possible contact form for this

is cos(r)dz + r sin(r)dθ which is horizontal for each r such that sin(r) = 0,

i.e. r = kπ. Figure 10 shows what happens along z = 0 and r ≤ π. One sees a

disk whose tangent space agrees with ξ at the center and along the boundary.

Definition 7 (Eliashberg). A contact manifold is overtwisted if it contains

an embedded disk along which the contact structure is as in Figure 10: the

contact structure ξ is tangent to the disk in the center and along the boundary

and tangent to rays from the center to the boundary. A contact structure

which is not overtwisted is called tight.

It may look like this is the beginning of an infinite series of definitions

where ones looks at disks z = 0, r ≤ kπ in the model above. But this would

bring nothing new as can be seen from the following exercise.

Exercise. Prove that any neighborhood of an overtwisted disk in a contact

manifold contains a whole copy of (R3, ξOT) where ξOT = ker(cos(r)dz +

r sin(r)dθ).

The above exercise is pretty challenging at this stage but it can serve as

a motivation for the technology at the beginning of Section 4. And, most of

all, it shows that not immediately seeing something in a contact manifold

does not mean it is not there (recall also Figure 6). This begins to highlight

the depth of the following two results whose proof is the main goal of these

lecture notes.
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Theorem 8 (Bennequin 1982 [1]). The standard contact structures on R
3

and S
3 are tight.

Theorem 9 (Eliashberg 1992 [5]). All tight contact structures on R
3 or S

3

are isomorphic to the standard ones.

Bennequin’s theorem shows in particular that the standard contact struc-

ture on R
3 is not isomorphic to the overtwisted structure of Figure 10. In

order to put this in perspective, recall that Figures 4 and 5 show isomorphic

contact structures. It may look like the difference between these is analogous

to the difference between Figures 7 and 10. But Bennequin’s theorem proves

that the later two pictures are really different.

Eliashberg’s theorem shows that tight contact structures on S
3 are rare.

By contrast, overtwisted contact structures abound. The Lutz–Martinet the-

orem, revisited by Eliashberg, says that, on a closed oriented manifold, any

plane field is homotopic to an overtwisted contact structure [3]. Recall that,

because the Euler characteristic of a 3-manifold always vanishes, all such

manifolds have plane fields and even more, there are always infinitely many

homotopy classes of plane fields (for the classification of homotopy classes of

plane fields one can refer to [7, Section 4.2]).

In [2], Colin, Giroux and Honda proved that only finitely many homotopy

classes of planes fields on each manifold can contain tight contact structures.

This is far beyond the scope of these lectures but see Theorem 30 for a weaker

version due to Eliashberg [5].

4. Convex Surfaces

The goal of this section is to explain the following crucial observation by

Emmanuel Giroux in 1991:

If S is a generic surface in a contact 3-manifold, all the information

about the contact structure near S is contained in an isotopy class of

curves on S.

All this section except the last subsection comes from Giroux’s PhD thesis [8],

see also the webpage of Daniel Mathews for his translation of that paper into

English.
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Fig. 11. Characteristic foliation of a surface as the intersection between the tangent
space and the contact plane

4.1. Characteristic Foliations of Surfaces

After the local theory which explains what happens in neighborhoods of

points in contact manifolds, we want to start the semi-local theory which

deals with neighborhoods of surfaces.

The main tool will be characteristic foliations. The basic idea is to look

at the singular foliation given on a surface S by the line field TS ∩ ξ, see
Figure 11.

In order to define precisely what is a line field with singularities, we

see them as vector fields whose scale has been forgotten. It means they are

equivalence classes of vector fields where X ∼ Y if there is a positive function

f such that X = fY . A singularity is then a point where some, hence all,

representative vanishes. Note that f should be positive everywhere, including

singularities.

One can think of a line as the kernel of a linear form rather than a

subspace spanned by a vector. This prompts an equivalent definition as an

equivalence class of 1-forms where α∼ β if there is a positive function f such

that α= fβ.

To go from one point of view to the dual one, we can use an area form ω

on the surface. The correspondence between vector fields and 1-forms is then

given by X �→ β := ιXω. The singular foliations [X] defined by X and [β]

defined by β are indeed geometrically the same since X and β vanish at the

same points and elsewhere X spans kerβ. In addition, one has the following

commutative diagram which will be useful later.

(4.1)

vector fields
∼−−−−→
ι•ω

1-forms

div

⏐
⏐
�

⏐
⏐
�d

functions
∼−−−−→
•ω

2-forms



Topological Methods in 3-Dimensional Contact Geometry 43

The left-hand side vertical arrow is the divergence map defined by the

equality LX ω = (divX)ω. So positive divergence means the flow of X ex-

pands area while negative divergence means area contraction. Divergence is

not well defined for a singular foliation because it depends on the representa-

tive vector field. However, at a singularity of a foliation, the sign of divergence

is well defined because

LfX ω = df ∧ ιXω+ f(divX)ω

so, at points where X vanishes, div fX = f divX . The same kind of compu-

tation proves that this sign doesn’t depend on the choice of the area form

within a given orientation class.

Definition 10. Let S be an oriented surface in a contact manifold (M,ξ)

with ξ = kerα, co-oriented by α. The characteristic foliation ξS of S is the

equivalence class of the 1-form ι∗α induced by α on S.

In particular, singularities of the characteristic foliation ξS are points

where ξ = TS (maybe with reversed orientation). At those points dι∗α= dα|ξ
is non-degenerate so the above commutative diagram proves that singularities

of characteristic foliations have non-zero divergence.

Examples. Figures 12, 13 and 14 show examples of characteristic folia-

tions.

Leaves of Characteristics Foliations. The leaves (or orbits) of a singu-

lar foliation are the integral curves of any vector field representing it. The

intuitive notion of a singular foliation is rather the data of leaves than an

equivalence class of vector fields. In contact geometry, this discrepancy does

not generate any confusion thanks to the following lemma. It is a rather

technical point but we discuss it here anyway because it doesn’t appear to

be published anywhere else, although it is mentioned in [9, page 629].

Lemma 11 (Giroux). If two singular foliations on a surface have the same

leaves and if their singularities have non-zero divergence then they are equal.

The following proof can be safely skipped on first reading.

Proof. The statement is clear away from singularities and a partition of

unity argument brings it down to a purely local statement. So we focus on a

neighborhood of a singularity (which may be non-isolated though).
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Fig. 12. Characteristic foliation of Euclidean spheres around the origin in R
3 equipped

with the canonical contact structure ξ = ker(dz + r2dθ). There are singular points at the
intersection with the z-axis and all regular leaves go from a singularity to the other one

Fig. 13. Characteristic foliation of a torus {x= constant} in T 3 equipped with its
canonical contact structure ξ = ker(cos(z)dx− sin(z)dy). One can see two circles made

entirely of singularities where sin(z) = 0, one appear in the middle of the picture and the
other one can be seen both at bottom and at top

Let Y and Y ′ be vector fields on R
2 which vanish at the origin and have

the same orbits.

Y = f∂x + g∂y and Y ′ = f ′∂x + g′∂y.
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Fig. 14. Characteristic foliation of a torus {z = constant} in T 3 equipped with its
canonical contact structure ξ = ker(cos(z)dx− sin(z)dy)

We will compute divergence using the Euclidean area form ω = dx ∧ dy (we

know the sign of divergence of singular points does not depend on this choice).

So divY = ∂xf + ∂yg. All the following assertions will be true in a neighbor-

hood of the origin that will shrink only finitely many times. Since div(Y ) is

non-zero, we can use a linear coordinate change to ensure that ∂xf doesn’t

vanish. The implicit function theorem then gives new coordinates such that

f(x, y) = x. Because

f ′(x, y) = f ′(0, y) + x

∫ 1

0
∂xf

′(tx, y)dt

we can write f ′ = xu(x, y)+v(y). Along the curve {x= 0}, the vector field Y
is vertical (or zero) so the same is true for Y ′. Hence f ′ also vanishes along

this curve and v is identically zero. The condition that Y and Y ′ are either

simultaneously zero or colinear is then:

∣
∣
∣
∣

x xu

g g′

∣
∣
∣
∣
= 0

which gives g′ = ug where x is non-zero hence everywhere by continuity.

One then gets Y ′ = uY . In particular divY ′ = udivY + du ∧ (ιY dx ∧ dy).
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Away from zeros of Y and Y ′, u is positive because Y and Y ′ have the same

leaves. At a common zero, divY ′ = udivY and, because singularities of Y ′

have non-zero divergence, the function u doesn’t vanish. Hence it is positive

everywhere (note that Y and Y ′ can’t be everywhere zero). �

4.2. Neighborhoods of Surfaces

Any orientable surface S in an orientable 3-manifold has a neighborhood

diffeomorphic to S × R (use the flow of a vector field transverse to S). We

will always denote by t the coordinate on R and by St the surface S×{t} for
a fixed t. From now on, we will assume that S is oriented and orient S ×R

as a product.

Any plane field ξ defined near S has then an equation α= utdt+βt where

ut is a family of functions on S and βt is a family of 1-forms on S. Note that

the characteristic foliation of St is the equivalence class of βt since the latter

is the 1-form induced by α on St.

The contact condition for ξ (with respect to the product orientation) is

equivalent to

utdβt + βt ∧ (dut − β̇t)> 0(�)

where β̇t denotes
∂βt

∂t . This condition is a non-linear partial differential rela-

tion which is not so simple. The main thrust of the following discussion will

be to simplify it by fixing some of the terms.

4.3. Reconstruction Lemmas

The easiest case is to fix the whole family βt. In this case the contact condition

(�) is only about the family ut and becomes convex. In particular the space

of solutions ut is connected and we get:

Lemma 12 (Global reconstruction). If ξ and ξ′ are positive contact struc-

tures on S ×R such that ξSt = ξ′St for all t then ξ and ξ′ are isotopic.

We give a detailed proof since it is a model of several later proofs.

Proof. There are equations utdt+βt and u
′
tdt+β

′
t of ξ and ξ

′. The hypoth-
esis of the lemma is that β′t = ftβt for some family of positive functions ft
on S. So another equation for ξ′ is u′t/ftdt+βt. We have two solutions ut and
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Fig. 15. Reconstruction lemmas. We have two contact structures printing the same
characteristic foliation on a surface. One of them is drawn along an arc going from a

singularity to another. The second one appears only at one point with dotted outline. At
this point the isotopy constructed in the proof is tangent to the arc to make the contact

structure rotate

u′t/ft of the contact condition, Equation (�), with βt fixed. Since this condi-

tion is convex, the space of its solutions is connected so we can find a family of

solution (ust )s∈[0,1] relating them (a linear interpolation will do the job). This

family corresponds to a family of contact structures ξs = ker(ustdt+βt) which

Gray’s theorem (Theorem 4) converts to an isotopy of contact structures1.

Our discussion of Gray’s theorem actually tells us more about what is

going on. Recall the vector field generating the isotopy at time s can be

chosen in the intersections of ξs and ξs+ε. So we see the isotopy is stationary

at each singular point of the characteristic foliations [βt]. At all other points

it is tangent to the characteristic foliation and its flow makes the contact

structures we want to relate to rotate toward each other, see Figure 15. �

If instead of fixing the whole family βt we fix only β0 then we get the

following lemma.

Lemma 13 (Local reconstruction). If ξ and ξ′ are positive contact struc-

tures which prints the same characteristic foliation on a closed embedded

surface S then there is a neighborhood of S on which ξ and ξ′ are isotopic

(by an isotopy globally preserving S).

Proof. The contact condition along S0 becomes a convex condition on u0
and β̇0. Again we can find a path of plane fields which, along S, are contact

structures interpolating between ξ and ξ′. Because the contact condition is

1One may worry about the fact that S ×R is non-compact but here the vector field con-
structed during the proof of this theorem is tangent to St which is compact for all t hence
its flow is well defined for all times.
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Fig. 16. Rotating the wavy curve around the z-axis in (R3, ξOT) gives a plane having a
characteristic foliation diffeomorphic to that of {z = 0}. Note that the curve is horizontal

at each intersection with the {r = π} axis

open, they will stay contact structures near S and we can use Gray’s theorem

again. �

Exercise. Prove that the two preceding lemmas are false for foliations.

We can now return to the challenging exercise of Section 3 with much

better chances of success. Recall that ξOT = ker(cos(r)dz + r sin(r)dθ).

Exercise. Use the local reconstruction lemma to prove that any neighbor-

hood of an overtwisted disk in a contact manifold contains a copy of (R3, ξOT).

Hint: try to understand the characteristic foliation of the surface of Figure 16.

As illustrated by the previous exercise, the reconstruction lemmas are

already quite useful by themselves. But the characteristic foliation is still a

huge data and it is very sensitive to perturbations of the contact structure

or the surface. This will be clear from the discussion of genericity of convex

surfaces and of the realisation lemma below.

4.4. Convex Surfaces

Homogeneous Neighborhoods. The next step in our quest to simplify

the contact condition (�) seems to be fixing ut instead of βt. But this still

gives a non-linear equation on the family βt if β̇t is not zero. So we assume

that βt does not depend on t: βt = β. In particular the families (u0, β) and

(ut, β) both give contact structures with the same characteristic foliation [β]

on each St. Hence the global reconstruction Lemma tells us these contact

structures are isotopic. So we now assume that ut is also independent of t.
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In this situation, the contact structure itself becomes invariant under R

translations, one says that ∂t is a contact vector field. Note that this vector

field is transverse to all surfaces St. Conversely if a contact vector field is

transverse to a surface then it can be cut-off away from the surface using

Remark 6 and then its flow defines a tubular neighborhood S × R with a

t-invariant contact structure.

Definition 14 (Giroux [8]). A surface S in a contact 3-manifold (M,ξ) is

ξ-convex if it is transverse to a contact vector field or, equivalently, if it has

a so called homogeneous neighborhood: a tubular neighborhood S×R where

the restriction of ξ is R-invariant.

Example 15. In T 3 with its canonical contact structure, all tori {x =

constant} as in Figure 13 are ξ-convex since they are transverse to the contact

vector field ∂x.

Example 16. In (R3,ker(dz + r2dθ)), any Euclidean sphere around the

origin is ξ-convex since they are transverse to the contact vector field x∂x +

y∂y + 2z∂z .

In the convex case, the contact condition becomes:

udβ + β ∧ du > 0(†)

Using some area form ω and Equation (4.1), one can rephrase it in terms of

the vector field Y ω-dual to β as:

udivω Y − du(Y )> 0(†′)

Analogously to the previous section we see that, u being fixed, the space of

solutions β to (†) is contractible, this was our stated goal when we asked

βt to be independent of t. The miracle is that it essentially stays true if

one fixes only the zero set Γ of u. Indeed, away from Γ , we can divide our

contact form udt+ β by |u| to replace it by ker(±dt+ β′) where β′ = 1
|u|β.

The condition (†) for (±1, β′) is simply ±dβ′ > 0 which is not only convex, it

does not depend on u! Of course this discussion needs some precise definitions

which are provided below but the first miracle has already happened: near a

ξ-convex surface S, all the information about ξ is contained in Γ . It remains

to see that such surfaces are generic, the second miracle.

Dividing Sets. Let us take a look at Γ = {u = 0}. Along Γ , the contact

condition (†′) reads −du(Y )> 0. So Γ is a regular level set of u. Hence it is
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Fig. 17. Characteristic foliation near the dividing set Γ

a one-dimensional submanifold without boundary, i.e. a collection of disjoint

simple closed curves in S. Such collections will be referred to as multi-curves.

The condition −du(Y )> 0 also implies that Γ is transverse to ξS. More

precisely, Y goes from S+ = {u > 0} to S− = {u < 0} along Γ and the picture

near Γ is always as in Figure 17. In the following discussion we will use several

time the fact that this picture is very simple and controlled to be less precise

about what happens near Γ .

The last remarkable property of the decomposition of S in S+ and S−
is Y expands some area form in S+ and contracts it in S−. Indeed, if one

sets Ω = 1
|u|ω on S \ Γ then divΩ Y =± 1

u2 on S±. One can actually modify

Ω near Γ so that divΩ Y is positive on S+, negative on S− and vanishes

along Γ .

Definition 17. A singular foliation F of a surface S is divided by an (em-

bedded) multi-curve Γ if there is some area form Ω on S and a vector field

Y directing F such that:

• the divergence of Y does not vanish outside Γ—we set

S± =
{

p ∈ S; ±divΩ Y (p)> 0
}

• the vector field Y goes transversely out of S+ and into S− along Γ .

What we proved above is that the characteristic foliation of a ξ-convex

surface is divided by some multi-curve. Using the local reconstruction lemma

(Lemma 13), one can prove the converse to get:

Proposition 18. A surface S is ξ-convex if and only if ξS is divided.
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Fig. 18. A dividing set for the torus of Figure 13 (dashed on the picture)

Proof. We assume that ξS is divided by some multi-curve Γ . According

to the local reconstruction lemma, we only need to prove that there is a

contact structure ξ′ defined near S such that S is ξ′-convex and ξ′S = ξS.

We set β = ιYΩ. In particular ξS = [β]. On S \Γ , ξ′ = ker±dt+β is a contact

structure which also prints [β] on S \ Γ and one can check that there is no

problem to extend it along Γ . �

Note that the dividing set is not unique for a given foliation. If X is a

contact vector field transverse to the surface S then the considerations above

prove that ΓX := {s ∈ S; X(s) ∈ ξ} is a dividing set for S.

However, if one fixes β in the contact condition (†), it becomes convex

in u, hence the space of solutions u is connected. This implies that the space

of multi-curves dividing a given foliation is connected (in fact contractible).

Examples. In the case of spheres of Example 16, the dividing set corre-

sponding to the given vector field is the equator {z = 0}.

In the torus case of Figure 13, the dividing set coming from ∂x is defined

by cos(z) = 0 so it is made of two circles sitting between the singularity circles

defined by sin(z) = 0, see Figure 18.
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Fig. 19. A generic foliation of the torus divided by two curves

The Realization Lemma. We are now ready to make precise the fact that

the dividing set contains all the information about the contact structure near

a convex surface.

Lemma 19 (Realization Lemma). Let S be a ξ-convex surface divided by

some multi-curve Γ . For any singular foliation F divided by Γ , there is an

isotopy δt with support in an arbitrarily small neighborhood of S and such

that ξ′ = δ∗1ξ satisfies ξ′S =F . Equivalently, one has ξδ1(S) = δ1(F ).

So any singular foliation divided by Γ is printed on S by some contact

structure isotopic to ξ or, equivalently, it can be realized as the characteristic

foliation of a surface isotopic to S.

The proof of this very important lemma has already been essentially ex-

plained right after stating condition (†). It follows from the fact that ±dβ > 0

is a convex condition and Gray’s theorem as in the reconstruction lemmas.

This lemma is often called Giroux’s flexibility theorem but one can argue

that it is rather a rigidity result since all the information can be stored into

a tiny combinatorial data: the isotopy class of the dividing set.

Example. Consider the convex torus of Figure 18. Its characteristic foli-

ation is highly non generic since it has two circles of singularities. Yet it is

divided by two circles parallel to the singularity circles. Figure 19 shows a

generic foliation divided by the same curves but where singular circles have

been replaced by regular closed leaves.
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Fig. 20. A realization of Figure 19 as a deformation of the torus of Figure 13

The realization lemma implies that the surface of Figure 13 is isotopic to

a surface which has Figure 19 as its characteristic foliation. Figure 20 shows

this surface explicitly.

The transition between these foliations play an important role in the classification of
tight contact structures on the product of a torus and an interval, see [9, Section 1.F].

In order to use the power of the realization lemma, we need to prove that

ξ-convex surfaces exist in abundance. We will first discuss some obstructions

to ξ-convexity then prove genericity of ξ-convex surfaces.

4.5. Obstructions to Convexity

Degenerate Closed Leaves. The most obvious obstruction to ξ-convexity

for a closed surface S is when ξS is defined by some β with dβ = 0, as in

Figure 14, because then the contact condition (†) becomes β ∧ du > 0 which

implies that u has no critical point.

Surfaces with such characteristic foliations are called pre-Lagrangian. They are either
tori or Klein bottles and play an important role in some later part of the theory.
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Fig. 21. Poincaré’s first return map π on a transversal c to a closed leaf L

This obstruction idea can be extended remarking that it does not need

the whole of S, it can be applied along a closed leaf L of ξS. This is easier to

see in the dual picture of equation (†′). Indeed, if divω(Y ) vanishes along L,

condition (†′) says that −u′|L > 0 whereas the restriction u|L necessarily has

some critical point.

Definition 20. A closed leaf L of a singular foliation is degenerate if there

is a 1-form β defining the foliation near L and whose differential dβ vanishes

along L. A non-degenerate leaf is called repelling (resp attracting) if there is

some β such that dβ is positive (resp negative) along L.

The definition above is convenient for our purposes but one should keep

in mind that it is equivalent to the more geometrical definition through

Poincaré’s first return map π on a transverse curve c, see Figure 21. A closed

leaf is degenerate if π′(0) = 1. See Figures 22 and 23. A non-degenerate closed

leaf is attracting if π′(0)< 1 and repelling if π′(0)> 1.

The discussion preceding the definition proves that if S is ξ-convex then

ξS has no degenerate closed leaves.

Remark 21. Suppose now that S is indeed ξ-convex and L is a (non-

degenerate) closed leaf of ξS. Let Γ be a dividing set for ξS. Because ξS is

transverse to Γ and always goes out of S+ and into S−, L cannot meet Γ .

Because L is compact, the restriction of u to L has at least one critical point.

At this point, the contact condition gives udβ > 0. So repelling orbits are in

S+ and attracting orbits are in S−.

Retrograde Connections. Recall from Section 4.1 that the contact con-

dition ensures that all singularities of characteristic foliations have non-zero
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Fig. 22. A sphere or radius π in the overtwisted R
3. The equator is a degenerate closed

leaf. Note how leaves spiral a lot more around a degenerate leaf than around a
non-degenerate

Fig. 23. A sphere or radius slightly less than 2π in the overtwisted R
3. The intersection

with the cylinder {r = π} consists of two non-degenerate closed leaves (one of them is not
visible in the picture)

divergence and hence have non-zero sign. Singularities of ξS correspond to

points where S is tangent to ξ and they are positive or negative depending

on whether the orientation of ξ and S match or not.

In generic characteristic foliations one sees only two topological types of

singularities: nodes and saddles. If one considers generic families of character-

istic foliations then saddle-nodes may appear, see Figure 24. Since the sign

of singularities corresponds to their divergence, positive nodes are always

sources while negative nodes are always sinks. The sign of saddles cannot be

read from topological pictures only.
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Fig. 24. Generic singularities of characteristic foliations

Let S be a ξ-convex surface so that ξ = ker(udt+ β) near S. We begin

by a remark analogous to Remark 21. At any singular point p of ξS, the

contact condition (†) give udβ(p)> 0. So singularities are positive in S+ and

negative in S−.

Suppose now that p and q are two singular points of ξS with opposite

signs and there is a regular leaf L of ξS going from p to q. Because L has to

be transverse to Γ and go from S+ to S−, the above discussion proves that

p is positive and q is negative.

Definition 22. In the characteristic foliation of a surface, a retrograde con-

nection is a leaf which goes from a negative singularity to a positive one.

The discussion above proves that ξ-convex surfaces have no retrograde

connections. Note that retrograde connections cannot involve nodes since the

sign of nodes determine the local orientations of the foliation.

Leaves of characteristic foliations between two singularities of opposite

signs are always arcs tangent to the contact structure along which the contact

structure rotates half a turn compared to the surface. What makes retrograde

connections special is that the direction of rotation is opposite to the one

around Legendrian foliations.

Example 23 ([9, Example 3.41]). In R
2 × S

1 with contact structure ξ =

ker(cos(2πz)dx− sin(2πz)dy), we consider the family of transformations

ϕt

(

(x, y), z
)

=
(

R−4πt(x, y), z + t
)

where Rθ denotes the rotation of angle θ around the origin of R2. The orbit

of a circle in R
2 passing through the origin sweeps a torus S whose char-

acteristic foliation has two retrograde saddle connections along the z-axis,

see Figure 25. Indeed, along this axis, the tangent plane TS turns in the

same direction as ξ but twice as fast. It means that, seen from TS, ξ rotates
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Fig. 25. A torus having a retrograde saddle connection

one turn in the opposite direction. See Figure 26 for a better view of the

characteristic foliation.

4.6. Genericity of Convex Surfaces

We are now ready to use generic properties of vector fields on surfaces to

prove that any surface in a contact manifold can be perturbed to a ξ-convex

one. See Figures 27 and 28 for an example and [10, Proof of Proposition 2.10]

for more examples of the same kind.

Proposition 24. Any closed surface in a contact 3-manifold (M,ξ) is C∞-

close to a ξ-convex surface.

Genericity of ξ-convex surfaces is a small dimensional phenomenon, it

does not hold for hypersurfaces in higher dimensions [15]. In dimension 3,

ξ-convexity is a degenerate notion, much like ordinary convexity in real di-

mension 1 and pseudo-convexity in complex dimension 1.

We first prove that any foliation sufficiently close to a characteristic foli-

ation ξ0S is the characteristic foliation ξS coming from some ξ isotopic to ξ0.
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Fig. 26. A (double) saddle connection on the torus of Figure 25 after top/bottom and
left/right are glued. The top saddle is negative, the bottom one positive. The top node is
positive, the bottom one negative. The curves drawn are all the separatrices of the saddles

Fig. 27. A non-convex torus
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Fig. 28. Perturbation of the non-convex torus of Figure 27 into a convex torus

Equivalently it means it is the characteristic foliation printed by ξ0 on some

surface isotopic to S. Let C be the connected component of the space of

contact structures which contains ξ0. The first point is that the map which

maps ξ in C to the characteristic foliation ξS is open. The second point is

that Gray’s theorem imply that all ξ in C are isotopic to ξ0.

So the genericity of ξ-convex surfaces will follow from the one of divided

foliations. Essentially we will see that the obstructions to the existence of a

dividing set discussed above are the only ones provided that no non-trivial

recurrence appear. The precise requirement is expressed in the following def-

inition.

Definition 25. A singular foliation on a closed surface satisfies the

Poincaré–Bendixson property if the limit set of any half orbit is either a

singularity or a closed orbit or a union of singularities and orbits connecting

them.

The Poincaré-Bendixson theorem thus says that a singular foliation on a

sphere satisfies the Poincaré-Bendixson property as soon as its singularities

are isolated, see e.g. [16].
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Proposition 26. Let S be a surface in a contact manifold (V, ξ). If the

characteristic foliation ξS satisfies the Poincaré–Bendixson property then S

is ξ-convex if and only if ξS has neither degenerate closed leaves nor retro-

grade connections.

Genericity of ξ-convex surfaces then follows from Peixoto’s theorem stat-

ing that Morse-Smale foliations are generic on surfaces, see [16] for a beau-

tiful exposition of this result starting with the basic of dynamical systems.

A foliation is Morse-Smale if

• it satisfies the Poincaré-Bendixson property,

• all its singularities are nodes or saddles,

• all its closed leaves are non-degenerate,

• it has no saddle connections.

Proof of Proposition 26. In the preceding sections, we have seen that the

absence of degenerate closed leaves and retrograde connections is necessary

for convexity.

We now prove that it is sufficient when the Poincaré-Bendixson property

holds. In this proof we assume that all singularities are nodes, saddles or

saddle-nodes. This is true for generic families of characteristic foliations with

any number of parameters and is all we need in these lectures. In order to save

some more words we will even pretend there are no saddle-nodes. The reader

can replace any occurrence of the word “saddle” by “saddle or saddle-node”

to get the more general proof.

During the discussion of obstructions to convexity, we have seen that

singularities and closed leaves should be dispatched into S+ or S− according

to their signs. Another constraint comes from separatrices of saddles: since

we want the characteristic foliation to go transversely out of S+ along Γ ,

stable separatrices of positive saddles and unstable separatrices of negative

saddles cannot meet Γ .

So we build a subsurface S′
+ of S by putting a small disk around each

positive singularity and narrow bands around positive closed leaves and sta-

ble separatrices of positive saddles. If all these elements are sufficiently small,

the boundary of S′
+ can be smoothed to a curve transverse to the charac-

teristic foliation, see Figure 29. In addition one can find an area form on S′
+

which is expanded by ξS′
+. We can construct similarly a subsurface S′

− and
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Fig. 29. Construction of a dividing set on a torus. One can check that ∂S′
+ and ∂S′

− are
indeed isotopic among dividing curves

a contracted area form on it. None of these subsurfaces is empty because of

Stokes’ theorem which guaranties that an area form on a closed surface is

never exact.

Let A be a component of the complement of S′
+ ∪ S′

− in S. It has non-

empty boundary and does not contain any singularity so A is an annulus. In

addition it does not contain any closed leaf so Poincaré-Bendixson’s theorem

guaranties that all leaves of the characteristic foliation entering A along some

boundary component leave it through the other boundary component. So we

are indeed in the situation of Figure 17 and one can take the core of A as a

dividing curve. The corresponding subsurfaces S± then retract onto S′
±. �

The proof above contains some useful information about how a dividing

set can be recovered from the important features of the characteristic foliation

so we record this in a definition and a corollary.

Definition 27. Given a foliation F satisfying the Poincaré-Bendixson

property, we denote by G+ (resp G−) the union of repelling (resp attracting)

closed leaves, of positive (resp negative) singularities and of the stable (resp

unstable) separatrices of these singularities. The union G+∪G− is called the

Giroux graph of F .

Note that the terminology graph is a little stretched since one can have separatrices
accumulating on closed orbits (like in Figure 29) or on connected singularities so the
Giroux graph equipped with the induced topology is not necessarily homeomorphic
to a CW-complex of dimension one.
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Corollary 28. If a characteristic foliation satisfies the convexity criterion

of Proposition 26 and G+∪G− is its Giroux graph then, for any dividing set,

S+ retracts on a regular neighborhood of G+ and S− on a regular neighbor-

hood of G−.

4.7. Giroux Criterion and Eliashberg–Bennequin Inequalities

Until now, the discussion of this section does not make any distinction be-

tween tight and overtwisted contact structures. We now start to discuss how

convex surfaces theory sees tightness.

Theorem 29 (Giroux criterion [10, Theorem 4.5a]). In a contact manifold

(V, ξ), a ξ-convex surface divided by some multi-curve Γ has a tight neigh-

borhood if and only if one of the following conditions is satisfied:

• no component of Γ bounds a disk in S

• S is a sphere and Γ is connected.

The only application of this theorem we will present in detail is in the

classification of tight contact structures on S
3 (existence by Bennequin and

uniqueness by Eliashberg). There we will only need that, if S is a sphere, then

it has a tight neighborhood only if its dividing set is connected. So we prove

only this part of the theorem, we assume S is a sphere and Γ is not connected.

Let S′ be a component of S \Γ which is a disk and denote by γ its boundary.

Let S′′ be the other component containing γ in its boundary. Since Γ is not

connected, S′′ has more boundary components. Using this, one can construct

a foliation F on S which is divided by Γ , has a circle of singularities L in S′′,

is radial inside a disk bounded by L and coincides with ξS outside S′ ∪ S′′,

see Figure 30. In any neighborhood U of S, the realization Lemma gives a

surface δ1(S) which has δ1(F ) as its characteristic foliation. Then δ1(L) is

the boundary of an overtwisted disk contained in δ1(S) hence in U .

An important direct application of the Giroux criterion is Giroux’s proof

of the following constraint on the Euler class of a tight contact structure

(originally due to Eliashberg). We will not use it in those notes but include

it here since it now comes for free.

Theorem 30 (Eliashberg–Bennequin inequality [5]). Let (M,ξ) be a 3-

dimensional contact manifold. If ξ is tight and S is a closed surface embedded
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Fig. 30. Characteristic foliations for the Giroux criterion. The dividing set Γ is dashed.
On the left-hand side one has the simplest case when S′′ is an annulus. On the right

hand-side one sees a possible foliation when S′′ has one more boundary component (on
the right). Note that the disk bounded by the small component of Γ on the right may
contain more components of Γ . The extension to more boundary components uses the

same idea

in M then the Euler class of ξ satisfies the following inequality:

∣
∣
〈

e(ξ), S
〉∣
∣≤max

(

0,−χ(S)
)

Proof. Using genericity of ξ-convex surfaces, one can homotop S until it is

ξ-convex. This does not change the Euler class which can now be evaluated as

χ(S+)−χ(S−) since singularities are distributed among S+ and S− according

to their signs. If S is a sphere then the Giroux criterion says that both S+
and S− are disks so 〈e(ξ), S〉 = 0 and the inequality is proved. So suppose

now that S has positive genus. The Giroux criterion says that no connected

component of S+ or S− is a disk. This implies that both χ(S+) and χ(S−)

are negative. Hence both χ(S+)− χ(S−) and −χ(S+) + χ(S−) are less than

−χ(S+)− χ(S−) which is −χ(S). �

5. Bifurcations and First Classification Results

The goal of this section is to prove that any tight contact structure on S
3

has to be isotopic to the standard contact structure and that the later is

indeed tight. We will not give the original proofs due to Eliashberg [5] and

Bennequin [1] respectively. We will rather use the technology of ξ-convex

surfaces to prove them. These proofs were obtained by Giroux along its way

towards more general classification results in [9]. The classification result is

a comparatively easy special case of Giroux’s preparation Lemma [9, Lemma

2.17] while the tightness result follows from the bifurcation lemmas [9, Lem-

mas 2.12 and 2.14].
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Fig. 31. Elimination of a pair of singular points

5.1. The Elimination Lemma

In the characteristic foliation of a surface, a saddle and a node are said to be in

elimination position if they have the same sign and there is a leaf from one to

the other. Such a leaf is called an elimination arc. Giroux’s elimination lemma

in its simplest form says one can perturb the surface to replace a neighbor-

hood of the elimination arc by a region without singularity as in Figure 31.

For the classification of tight contact structures on S
3 we will need a

version of this process which keeps neighboring surfaces under control.

We do not need much control though and the following version is simpler than [9,
Lemma 2.15] which is needed for the classification of tight contact structures on torus
bundles.

Let ξ be a contact structure on S× [−1,1] and set St := S×{t}. Suppose a
node e0 and a saddle h0 are in elimination position on S0. This configuration

is stable so it persists for t in some interval (−ε, ε). Let Ct denote a continuous

family of elimination arcs between et and ht on St.

Lemma 31 (Giroux elimination lemma). Let δ be a positive number smaller

than ε. Let U a neighborhood of
⋃

|t|<δCt intersecting each St in a disk Dt

whose characteristic foliation is as in the left hand side of Figure 31. One

can deform ξ in U such that ξDt has:

• no singular point when |t|< δ,

• a saddle-node when |t|= δ,

• a pair of singularities in elimination position when |t| ∈ (δ, ε).

In addition, one can impose that separatrices facing the elimination arc are

connected to the same points of ∂Dt as before the deformation, see Figure 33.
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Fig. 32. The elimination move. The top box shows the move transverse to the
elimination arc seen as the middle point of the segment. This move is cut off in the

longitudinal direction

Fig. 33. Elimination in a family

The corresponding manipulation transverse to the elimination arc is ex-

plained in Figure 34.
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Fig. 34. The elimination move in family. The left hand-side shows the original surfaces St

stacked. The right hand-side performs the elimination, compare with top of Figure 32

5.2. Thickened Spheres and Eliashberg Uniqueness

The goal of this section is to explain Giroux’s proof of the classification of

tight contact structures on S
3.

Theorem 32 (Eliashberg [5]). Any tight contact structure on S
3 is isotopic

to the standard one.

By definition of contact structures, one can assume that S3 is the union of

two standard balls and a thickened sphere with standard ξ-convex boundary

as in Figure 12. This allows in particular to apply the following proposition.

Proposition 33. Let ξ be a tight contact structure on a thickened sphere

S× [0,1]. If S0 and S1 are ξ-convex then ξ is isotopic relative to the boundary

to a contact structure ξ′ such that all spheres St are ξ
′-convex.

Proof. First note that tightness prevents the apparition of any closed leaf in

any ξSt since it would bound an overtwisted disk. Then we need some theory

of one-parameter families of singular foliations on the sphere [17]. Specifically,

one can assume that each ξSt has finitely many singularities and at worse a

saddle connection or a saddle-node (but not both at the same time). Note

that finiteness of saddle connections can be achieved by perturbation thanks

to the absence of closed leaves (compare Figure 40). Using this, the Poincaré-

Bendixson theorem and the criterion of Proposition 26, one can see that all

surfaces St are ξ-convex except for finitely many t1, . . . , tk where:

• all singularities of ξSti are saddles or nodes

• there is exactly one saddle connection on ξSti and it is retrograde,

see Figure 35 for an example.

We will now modify ξ near each Sti in order to make all St ξ-convex.

Since we know closed leaf or non-trivial recurrence cannot arise, it suffices

to get rid of retrograde saddle connections. We concentrate on one ti at a

time. Let ε be a small positive number such that ξSt does not change up to
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Fig. 35. Original movie

homeomorphism when t is either in [ti− ε, ti) or (ti, ti + ε]. In particular the

positive part G+ of the Giroux graph deforms by isotopy in each of these

intervals. Theorem 29, the Giroux criterion, and the link between the Giroux

graph and the dividing set explained in Corollary 28 guarantee that G+ is a

tree in each interval. It implies that we can find elimination arcs between all

positive saddles and all but one positive nodes without using the separatrix

which enters the saddle connection at ti (recall in particular that the number

of vertices in a tree is exactly the number of edges plus one).

We now use Lemma 31, the elimination lemma, to get rid of all pos-

itive saddles for t in [t − δ, t + δ] for some positive δ smaller than ε, see

Figure 36. �

Before continuing the proof of the theorem, we note two properties of the

sphere which were somehow surreptitiously used in the above proof. After

the elimination of the retrograde connections we needed the fact that no

closed leaves could appear, this is due to Schönflies theorem which would

have provided an overtwisted disk. We also needed the Poincaré-Bendixson

theorem to prevent the apparition of non-trivial recurrence. Suppose one tries

to use the elimination lemma to get rid of the bifurcation of Figure 39 (which

is bound to fail since the isotopy class of the dividing set changes during this

bifurcation). If one gets rid of both saddles then degenerate leaves arise. If
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Fig. 36. Movie after elimination. The first picture is the same as in Figure 35 then a pair
of singularity is replaced by a saddle-node then it disappears. The fourth picture

corresponds to the central picture of Figure 35 but there is no more positive saddle so no
saddle connection. The eliminated pair returns in the sixth picture as a saddle-node and

the final picture is the same as in Figure 35

one gets rid of one saddle only (like we did for the sphere) then non-trivial

recurrence appear: we get a Cherry flow on the torus, see [16].

The proof of Theorem 32 now follows from Giroux’s uniqueness lemma

which allows to replace the contact structure obtained on the thickened

sphere of the previous proposition by the model.

Lemma 34 (Uniqueness lemma [9, Lemma 2.7]). Let ξ0 and ξ1 be two con-

tact structures printing the same characteristic foliations on the boundary of
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S× [0,1]. If there is a continuous family of multi-curves Γt dividing both ξ0St
and ξ1St then ξ0 and ξ1 are isotopic relative to the boundary.

The proof of this lemma is similar to the ones of the previous section but

the path of contact structures is less obvious.

We now explain how to get the classification of tight contact structures on

S
2×S

1 without extra effort. Let ξ be one of them and fix some S = S
2×{θ0}.

Using genericity of ξ-convex surfaces, we can perturb ξ to make S convex.

Then the Giroux criterion tells us that its dividing set is connected. Using

the realisation lemma, we change ξ by isotopy until ξS is standard, i.e. as in

Figure 12. We can then remove a homogeneous neighborhood of S and we

are back to a thickened sphere where we can apply Proposition 33 and the

uniqueness lemma.

5.3. Bifurcation Lemmas

We now consider a general closed surface S and any contact structure ξ on

S × I for some interval I . For each t in I , one has the surface St := S × {t}
and its characteristic foliation ξSt. If some St0 is not ξ-convex then the char-

acteristic foliations for t close to t0 are not all C
1-conjugate to ξSt0 , otherwise

the global reconstruction lemma (Lemma 12) would give a contradiction. We

will now try to understand what really happens when this lack of ξ-convexity

is explained by the obstructions we discussed in the previous section, i.e. it

comes from a degenerate closed leaf or a retrograde connection. We will see

in particular that the bifurcation is much sharper than expected: no foliation

ξSt is even C0-conjuguate to ξSt0 for t in a punctured neighborhood of t0.

Better, we will get a very precise description of what happens.

The Birth/Death Lemma. Let L be a degenerate closed leaf of the char-

acteristic foliation ξSt. This means that the Poincaré return map on any

curve transverse to L is tangent to the identity. One says that L is positive

(resp negative) if the second derivative of this map is positive (resp negative)

at the intersection point between L and the transverse curve. If L is either

positive or negative then one says that it is weakly degenerate.

Lemma 35 (Birth/Death Lemma [9, Lemma 2.12]). A positive (resp neg-

ative) degenerate closed orbit indicates the birth (resp death) of a pair of

non-degenerate closed leaves when t increases.
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Fig. 37. Birth and death of closed leaves on a torus

See Figure 37 for examples of these situations on a thickened torus T ×
[0,1]. Looking at these pictures it is easy to prove a weak form of the birth-

death lemma which already shows how the contact condition enters. Since

the contact structure is transverse to all tori Tt, t ∈ [0,1], one can lift ∂t
to a vector field tangent to ξ. The flow of this lift defines a new product

structure on T × [0,1] without changing the movie of singular foliations ξTt
up to diffeomorphism. So one can assume that all intervals Ip = {p} × [0,1]

are Legendrian. If we think of foliations ξTt as living all on T then the

contact condition is equivalent to asking that, at each point p, ξTt(p) rotates

clockwise as t increases. Indeed, if x and y are coordinates on T , there is a

function θ such that

ξ = ker
(

cos θ(x, y, t)dx− sin θ(x, y, t)dy
)

.

The contact condition is then equivalent to ∂tθ > 0, compare with the proof

of the Darboux-Pfaff theorem (Theorem 2).

Now the second picture in Figure 37 shows a positive degenerate orbit L

in some ξTt0 . Let A be a small annulus around L. Along L, the slope of ξTt0
is zero and it is positive in A \ L. So, for t < t0 it was everywhere positive

in A and there were no closed leaf at all in A. For t > t0, the slope becomes

negative along L and stays positive along the boundary of A. Then the

complement of L in A is made of two (half-open) annuli whose boundary are

transverse to ξT , see Figure 38. The Poincaré-Bendixson theorem guaranties

that each of these two sub-annuli contain at least one closed leaf for t > t0
sufficiently close to t0.

So we proved the following weak version of the birth/death lemma which

will be sufficient for our purposes: if there is a positive degenerate closed
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Fig. 38. Birth of at least a pair of periodic orbits. The annulus A is obtained by gluing
left and right. The circle L is at mid-height of each annulus

Fig. 39. Retrograde saddle connection on a torus

orbit L at time t0 then there is an annulus A around L and some positive ε

such that there is no closed leaves in A for t in (t0−ε, t0) and at least two for

t in (t0, t0 + ε). The death case on the bottom row of Figure 37 is explained

similarly. Note that nothing required T to be a torus in this explanation, one

only has to work near L.

The Crossing Lemma.

Lemma 36 (Crossing Lemma [9, Lemma 2.14]). Assume that there is a

retrograde connection at time t0. For t close to t0, there is a negative singu-

larity b−t , a positive one b+t , an unstable separatrix c−t of b−t and a stable one

c+t of b+t such that c−t0 = c+t0 .

For t close to t0, one can track separatrices using their intersection with

an oriented curve positively transverse to ξSt. Then, for t < t0 (resp t > t0),

the separatrix c−t is below (resp above) c+t .

Figure 39 shows a retrograde saddle connection on a torus obtained by

gluing top/bottom and left/right. Singularities in the lower part are negative

while those in the upper part are positive. The saddle connection is marked

by an arrow. The crossing Lemma tells us that the negative separatrix has

to turn to its right after the connection.

The proof of the crossing lemma is rather delicate so we will only try

to go as far as explaining how the contact condition and the fact that the
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connection is retrograde can enter the discussion. Each time we drop the t

subscript it means t= t0. Also we set c= c+ = c−. Compared to the situation

of the birth/death lemma, there is no hope to have a neighborhood S× [0,1]

with [0,1] tangent to ξ near c since ξ is tangent to S at b±. However we

will find at least one point on c where the characteristic foliation has to turn

clockwise. If Yt is a vector field defining ξSt, the contact condition (�) can be

expressed as: ut divYt − dut(Yt) + β̇t(Yt)> 0. The sign of singularities is the

sign of ut so u(b
−)< 0 and u(b+)> 0. Hence there is some point p on c such

that u(p) = 0 and du(Y )≥ 0. Here we used that c, hence Y , is oriented from

b− to b+. At p, the contact condition becomes β̇(Y ) > du(Y ) so β̇(Y ) > 0.

This is the announced rotation. Since β(Y ) = 0, we have that, at p, ξSt is

positively transverse to c for t > t0 and negatively transverse for t < t0. Of

course this observation is very far from proving the crossing lemma, see [9,

Lemma 2.14] for the full story.

5.4. Bennequin’s Theorem

The goal of this section is to prove that the standard contact structure on

R
3 is tight. This was originally proved by Bennequin, without the word tight

which was introduced by Eliashberg.

Suppose there is an overtwisted disk in the standard contact structure

on R
3. Since it is compact, it is contained in some finite radius ball. We can

also assume it misses a small ball around the origin (for instance we can use

the contact vector field ∂z to push it upward until this is true). Recall we saw

in Example 16 there is a contact vector field X on R
3 which is transverse

to all Euclidean spheres around the origin. So these spheres are all ξ-convex

and divided by the equator {z = 0} where X is tangent to ξ. The above

discussion shows that Bennequin’s theorem is a consequence of the following

statement.

Theorem 37 (Bennequin seen by Giroux [9, Theorem 2.19]). Let ξ be a

contact structure on a thickened sphere S × [−1,1]. If all spheres St are ξ-

convex with connected dividing set then ξ is tight.

Families of Movies. In order to prove Theorem 37, we first need some

preparations from dynamical systems. Suppose that ξ0 and ξ1 are two contact

structures which print generic movies on S× [−1,1]. If they are isotopic, one

gets a 2-parameters family ξsSt of characteristic foliations. Thom transver-

sality and a little bit of normal form theory tells us that we can perturb
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the family until all these foliations have finitely many singularities which are

either nodes, saddles or saddle-nodes. Further perturbations allow to make

sure that all closed leaves have a Poincaré return map which is at worse tan-

gent to the identity up to order 2, the worse case happening only for isolated

values of (s, t).

Up to this point there was nothing specific to the sphere. The first special

property of S2 which is crucial in the following is the Poincaré-Bendixson the-

orem which says that, since we have isolated singularities for all our foliations,

the Poincaré-Bendixson property automatically holds. In particular we can

apply the convexity criterion of Proposition 26. In the square [0,1]× [−1,1]
the set Ω of points (s, t) such that St is ξs-convex is a dense open set. We

denote by Σ the complement of Ω. It is a union of injectively immersed

submanifolds of [0,1]× [−1,1]. In codimension 1, one sees:

• Σ1
dl where the characteristic foliation has a single weakly degenerate

closed leaf and no retrograde saddle connection and no degenerate sin-

gularity, see Figure 22.

• Σ1
sc where the characteristic foliation has a single retrograde saddle con-

nection and no degenerate closed leaf or singularity, see Figure 39.

The bifurcation lemmas imply that these two subsets are injectively im-

mersed submanifold of the square transverse to the t direction. In addition,

the bifurcation lemmas imply that components of Σ1
dl can accumulate only

on Σ1
sc, see Figure 40 for an example of accumulation. We set Σ1 =Σ1

dl∪Σ1
sc.

The accumulation of retrograde saddle connections in Figure 40 is not a phenomena
which we can get rid of by perturbation: it is structurally stable in a 1-dimensional
family, see [17]. However, Giroux’s discretization lemma [11, Lemma 15] states that
any contact structure on the product F × I of a closed surface and an interval with
convex boundary is isotopic relative to the boundary to a contact structure such
that only finitely many Ft are non-convex. This isotopy cannot be made arbitrarily
small. It uses first the dynamics banalization lemma [9, Lemma 2.10] which gets rid
of non-trivial recurrence and then replaces degenerate leaves with retrograde saddle
connexions. Both moves are non-perturbative.

In codimension 2, one sees:

• Σ11 where two codimension one strata intersect transversely, see Fig-

ure 41 and also Figure 26 for a realistic view of the central picture in

the case of Example 23.
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Fig. 40. Saddle connections accumulating a degenerate closed leaf. This is a movie of
characteristic foliations on an annulus obtained by gluing the left and right sides of each
square. A degenerate closed leaf is appearing in the middle. Leaves spiral more and more

in this region, resulting in infinitely many retrograde saddle connections

• Σ2
sc where there is a retrograde connection between a saddle and a

saddle-node. These points adhere to exactly one stratum in Σ1
sc, this

typically happens in the proof of the classification on S3 as an interme-

diate step between Figures 35 and 36.

• Σ2
dl where there is a degenerate orbit corresponding to the fusion of two

components of Σ1
dl, see Figure 42 for the picture in the (s, t) square and

Figure 43 for the corresponding foliations.

Proof Core. We now prove Theorem 37. Suppose there is some overtwisted

disk in (S × [−1,1], ξ). Then there is some isotopy relative to the boundary

bringing this disk onto the middle sphere S0. So this isotopy sends ξ0 = ξ

to a contact structure ξ1 such that S0 contains an overtwisted disk. Then

it can be modified in the same way genericity of convex surfaces is proved

until S0 is ξ1-convex and divided by a disconnected curve (use Corollary 28

to understand dividing sets here). We can perturb ξ1 to make sure it also

prints a generic movie of characteristic foliations and perturb the isotopy to

be in the situation of the preceding discussion on families of movies.

The set Ω of (s, t) such that St is ξs-convex is the disjoint union of Ωc cor-

responding to connected dividing sets and Ωd corresponding to disconnected

ones.
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Fig. 41. Intersection of two strata of retrograde saddle connections on a torus. It is a
good exercise to draw the Giroux graphs of all convex surfaces appearing to see the

non-trivial effect of this codimension 2 phenomenon on the dividing sets, contrasting with
the discussion below

In addition, we know by construction that Ωd intersects the right vertical

edge {s= 1} so it is not empty. But it does not intersect the left edge {s= 0}
by hypothesis of the theorem. More precisely, we can assume the closure of
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Fig. 42. The central point is in Σ2
dl. It corresponds to a degenerate closed leaf with

π′′(0) = 0 but π(3)(0)< 0, see Figure 43 for the corresponding foliations

Ωd does not meet {s = 0} so the minimum s0 of its projection to [0,1] is

positive. Choose t0 such that (s0, t0) is in the closure of Ωd.

The point (s0, t0) cannot be in:

• Σ1 because the later is transverse to the t direction so components of

Ω adjacent to a point (s, t) in Σ1 project to neighborhoods of s.

• Σ2
sc because each point (s, t) in Σ2

sc adheres to only one component

of Σ1
sc so the intersection between Ω and a small disc around (s, t) is

connected and projects to a neighborhood of s.

• Σ2
dl because all components of Ω touching Σ2

dl are in Ωd because the

corresponding foliations have closed leaves.

• any point Σ11 involving degenerate closed leaves, again because strata

in Σ1
dl are transverse to the t-direction and indicate birth or death of

stable closed leaves giving disconnected dividing sets.

The only configuration which really needs to be carefully ruled out is that

of points in Σ11 involving only Σ1
sc like in Figure 44. In this situation ξs0St0

has two retrograde saddle connections which happen on different surfaces

St for s in a punctured neighborhood of s0 and get swapped when s goes

through s0, as in Figure 41. Note that characteristic foliations around (s0, t0)

have no closed leaf and we can also assume they do not have other saddle

connections that the ones we explicitly study.

To ξsSt we associate the oriented graph Γ+(s, t) (resp. Γ−(s, t)) whose

vertices are positive nodes and edges are the stable separatrices of positive

saddles (resp. negative saddles). Since we do not have any closed leaf or de-

generate singularities near (s0, t0), Γ+ coincides as a set with G+ from Defini-

tion 27 and Γ− is somehow dual to G−. So, according to Corollary 28, when

St is ξs-convex, there is a regular neighborhood of Γ+(s, t) whose boundary
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Fig. 43. Foliations corresponding to the strata of Figure 42. Left and right of each square
are glued to get an annulus. Thick closed leaves are the degenerate ones. The central
picture corresponds to the annihilation of a birth and a death of non-degenerate closed

leaves



78 P. Massot

Fig. 44. The situation we must rule out for Bennequin’s theorem

Fig. 45. Anatomy of a retrograde saddle connection

divides ξsSt. Because S is a sphere, we then get that (s, t) is in Ωc if and only

if Γ+(s, t) is a tree (i.e. a closed connected and simply connected graph). We

want to use the crossing lemma to understand how the graph changes when

a retrograde saddle connection happens, see Figure 45.

First we remark that, if we focus on a sufficiently small neighborhood of

(s0, t0) in parameter space, the graph Γ−(s, t) deforms by isotopy so we can

assume it does not depend on s and t. The same is true for Γ+(s, t) as long

as we stay in the complement of Σ. Suppose now there is a saddle connection

involving a negative saddle h−. Let A be the closure of the union of its stable

separatrices. The unstable separatrix of h− entering the saddle connection

coorients A and, together with the orientation of S, this orients A. We denote

by o(A) and d(A) the origin and destination of A.

During a bifurcation, exactly one edge E of Γ+ changes. After the bifur-

cation, the edge E is replaced by an edge A(E) which is obtained from the

concatenation of E and A by a small push towards the right which makes it

avoid o(A), see Figure 46 which also explains how these things will be drawn

schematically in the following. Note that the edge E is the edge which is

immediately to the right of A at o(A) with respect to the cyclic ordering of

edges of Γ+∪Γ− incident to o(A). So the oriented arc A completely describes
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Fig. 46. A schematic view of the same retrograde saddle connection as in Figure 45

Fig. 47. Regions in the parameter space

the bifurcation. We will denote by A(Γ+) the graph obtained from Γ+ after

a bifurcation described by A (up to isotopy).

Returning to the codimension 2 bifurcation at (s0, t0) we have two distinct

strata Σ1
sc(A1) and Σ

1
sc(A2) corresponding to distinct (oriented) bifurcation

arcs A1 and A2, see Figure 47. We take the graph Γ+ of the Bottom region

as a reference and apply to it the following proposition. Note that, on a tree,

any ordered pair of vertices determines a unique oriented segment.

Proposition 38. Suppose Γ is a tree and A1 and A2 are bifurcation arcs

for Γ . The following properties are equivalent.

1. A1(Γ ) is not a tree but A2(A1(Γ )) is a tree.

2. On Γ , the oriented segment S from d(A2) to d(A1) contains, in that or-

der: d(A2)≤ o(A1)< o(A2)≤ d(A1) and, furthermore, S is immediately

to the right of A1 at o(A1) and A2 at o(A2).

Note that condition 1 above holds if Γ is the tree Γ+ coming from the

Bottom region B since we assume T and B are in Ωc while R is in Ωd. This

proposition concludes the proof of Theorem 37 because condition 2 above is
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Fig. 48. Trees and graphs in the proof of Proposition 38

symmetric in A1 and A2 (here one should not forget that exchanging A1 and

A2 will reverse the orientation on S). So the graph A2(Γ ) corresponding to

the left region L is not a tree and L is also in Ωd.

Proof. We first prove that property 1 implies property 2. Let E be the

edge of Γ modified by A1. In particular E has vertices o(A1) and some other

vertex v and E is immediately to the right of A1 at o(A1). Because Γ is a

tree, v can’t be the same as o(A1) and (the closure of) Γ \E is the disjoint

union of two trees Γ1 containing o(A1) and Γ2 containing v, see Figure 48.

Note that d(A1) cannot be in Γ1 since otherwise A1(E) would go from

Γ1 to Γ2 and A1(Γ ) would be a tree.

So d(A1) is in Γ2 and this implies that v in the segment [o(A1), d(A1)]⊂ Γ .
Also we learn that A1(Γ ) is the disjoint union of the tree Γ1 and the graph

Γ2 ∪A1(E) which contains exactly one cycle C. This cycle contains A1(E)

and its vertices are all in [v, d(A1)]⊂ Γ , see Figure 48 again.

Since A2(A1(Γ )) is a tree, the edge E′ modified by A2 in A1(Γ ) belongs

to C otherwise C would persist in A2(A1(Γ )). So we get that o(A2) is in

C (in particular it can’t be the same as o(A1)). In addition d(A2) is in Γ1
otherwise A2(A1(Γ )) would stay disconnected. The last thing to check is that

E′ is part of the segment [d(A2), d(A1)]⊂ Γ . The only edge of C which is not

in this segment is A1(E). Remember E′ is immediately to the right of A2 at

o(A2) so it cannot be A1(E) because that would force A2 to go into the disk

bounded by C which does not contain Γ1 (surreptitiously using Schönflies

theorem again).
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Fig. 49. How the discussion would fail if A1 were reversed. In this example the reference
graph has three vertices and two edges. Regions L, T and B are tight whereas R is

overtwisted

We now prove the converse implication. Since S is immediately to the

right of A1 at o(A1), it contains the edge E of Γ moved by A1. More precisely,

E is in the segment [o(A1), d(A1)]⊂ Γ . So A1(Γ ) is the disjoint union of a

tree Γ1 and a graph Γ2 containing a unique cycle C. Since S is immediately

to the right of A2 at o(A2) and o(A1) �= o(A2), the edge E′ in A1(Γ ) moved

by A2 is either an edge in S or A1(E). In both cases, it is contained in C.

So the cycle C does not persist in A2(A1(Γ )) and A2(E1) connects Γ2 \E′

to Γ1. Hence A2(A1(Γ )) is a tree. �

Now this proof is finished let us see where we used the contact condition

and not only properties of generic families of foliations with two parameters.

The first thing is that Σ1 is transverse to the t direction because of the

bifurcation lemmas. A second more subtle point is that the crossing lemma

says more: it tells the direction of the bifurcations: separatrices turn to their

right when t increases. Figure 49 show how the above proof would fail if A1

and A2 were allowed to act as switches in opposite direction. In that figure

one sees an example of the bad situation of Figure 44. The explanation

is that, if we assume that the bifurcation corresponding to A1 acts in the

wrong direction then, in Proposition 38, we must replace “to the right of
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A1” by “to the left of A1” and we loose symmetry between A1 of A2. Of

course if both A1 and A2 act in the wrong direction then we do not have

any difference, this simply corresponds to considering negative tight contact

structures on S
3.
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1. Lagrangian Floer (Co)homology

1.1. Motivation

Lagrangian Floer homology was introduced by Floer in the late 1980s in or-

der to study the intersection properties of compact Lagrangian submanifolds

in symplectic manifolds and prove an important case of Arnold’s conjecture

concerning intersections between Hamiltonian isotopic Lagrangian subman-

ifolds [12].

Specifically, let (M,ω) be a symplectic manifold (compact, or satisfying a

“bounded geometry” assumption), and let L be a compact Lagrangian sub-

manifold of M . Let ψ ∈Ham(M,ω) be a Hamiltonian diffeomorphism. (Re-

call that a time-dependent Hamiltonian H ∈ C∞(M × [0,1],R) determines

a family of Hamiltonian vector fields Xt via the equation ω(·,Xt) = dHt,

where Ht = H(·, t); integrating these vector fields over t ∈ [0,1] yields the

Hamiltonian diffeomorphism ψ generated by H .)

Theorem 1.1 (Floer [17]). Assume that the symplectic area of any topo-

logical disc in M with boundary in L vanishes. Assume moreover that ψ(L)

and L intersect transversely. Then the number of intersection points of L

and ψ(L) satisfies the lower bound |ψ(L)∩L| ≥
∑

i dimH i(L;Z2).

Note that, by Stokes’ theorem, since ω|L = 0, the symplectic area of a

disc with boundary on L only depends on its class in the relative homotopy

group π2(M,L).

The bound given by Theorem 1.1 is stronger than what one could expect

from purely topological considerations. The assumptions that the diffeomor-

phism ψ is Hamiltonian, and that L does not bound discs of positive sym-

plectic area, are both essential (though the latter can be slightly relaxed in

various ways).

Example 1.2. Consider the cylinder M = R× S1, with the standard area

form, and a simple closed curve L that goes around the cylinder once: then

ψ(L) is also a simple closed curve going around the cylinder once, and the

assumption that ψ ∈Ham(M) means that the total signed area of the 2-chain

bounded by L and ψ(L) is zero. It is then an elementary fact that |ψ(L)∩L| ≥
2, as claimed by Theorem 1.1; see Figure 1 left. On the other hand, the result

becomes false if we only assume that ψ is a symplectomorphism (a large

vertical translation of the cylinder is area-preserving and eventually displaces
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Fig. 1. Arnold’s conjecture on the cylinder R× S1: an example (left) and a non-example
(right)

L away from itself); or if we take L to be a homotopically trivial simple closed

curve, which bounds a disc of positive area (see Figure 1 right).

Floer’s approach is to associate to the pair of Lagrangians (L0,L1) =

(L,ψ(L)) a chain complex CF (L0,L1), freely generated by the intersec-

tion points of L0 and L1, equipped with a differential ∂ : CF (L0,L1)→
CF (L0,L1), with the following properties:

(1) ∂2 = 0, so the Floer cohomology HF (L0,L1) = Ker∂/Im∂ is well-

defined;

(2) if L1 and L
′
1 are Hamiltonian isotopic then HF (L0,L1)�HF (L0,L

′
1);

(3) if L1 is Hamiltonian isotopic to L0, then HF (L0,L1)�H∗(L0) (with

suitable coefficients).

Theorem 1.1 then follows immediately, since the rank of HF (L,ψ(L)) �
H∗(L) is bounded by that of the Floer complex CF (L,ψ(L)), which equals

|ψ(L)∩L|.

Formally, Lagrangian Floer (co)homology can be viewed as an infinite-

dimensional analogue of Morse (co)homology for the action functional on

(the universal cover of) the path space P(L0,L1) = {γ : [0,1]→M | γ(0) ∈ L0,

γ(1) ∈ L1},

A
(

γ, [Γ ]
)

=−
∫

Γ
ω,

where (γ, [Γ ]) ∈ P̃(L0,L1) consists of a path γ ∈ P(L0,L1) and an equivalence

class [Γ ] of a homotopy Γ : [0,1]× [0,1]→M between γ and a fixed base point

in the connected component of P(L0,L1) containing γ. The critical points

of A are (lifts of) constant paths at intersection points, and its gradient flow

lines (with respect to the natural L2-metric induced by ω and a compati-
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ble almost-complex structure) are pseudo-holomorphic strips bounded by L0

and L1.

However, the analytic difficulties posed by Morse theory in the infinite-

dimensional setting are such that the actual definition of Floer (co)homology

does not rely on this interpretation: instead, the Floer differential is defined

in terms of moduli spaces of pseudo-holomorphic strips.

1.2. The Floer Differential

Let L0,L1 be compact Lagrangian submanifolds of a symplectic manifold

(M,ω), and assume for now that L0 and L1 intersect transversely, hence at

a finite set of points.

Before we introduce the Floer complex and the Floer differential, a brief

discussion of coefficients is in order. In general, Floer cohomology is defined

with Novikov coefficients (over some base field K, for example K = Q, or

K= Z2).

Definition 1.3. The Novikov ring over a base field K is

Λ0 =

{ ∞∑

i=0

aiT
λi

∣
∣
∣
∣
ai ∈K, λi ∈R≥0, lim

i→∞
λi =+∞

}

.

The Novikov field Λ is the field of fractions of Λ0, i.e.

Λ=

{ ∞∑

i=0

aiT
λi

∣
∣
∣
∣
ai ∈K, λi ∈R, lim

i→∞
λi =+∞

}

.

The Floer complex is then the free Λ-module generated by intersection

points: we denote by X (L0,L1) = L0 ∩L1 the set of generators, and set

CF (L0,L1) =
⊕

p∈X (L0,L1)

Λ · p.

Equip M with an ω-compatible almost-complex structure J . (By a classical

result, the space of ω-compatible almost-complex structures J (M,ω) = {J ∈
End(TM) | J2 =−1 and gJ = ω(·, J ·) is a Riemannian metric} is non-empty

and contractible [28].)

The Floer differential ∂ : CF (L0,L1)→ CF (L0,L1) is defined by count-

ing pseudo-holomorphic strips in M with boundary in L0 and L1: namely,
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given intersection points p, q ∈ X (L0,L1), the coefficient of q in ∂p is ob-

tained by considering the space of maps u : R× [0,1]→M which solve the

Cauchy-Riemann equation ∂̄Ju= 0, i.e.

(1.1)
∂u

∂s
+ J(u)

∂u

∂t
= 0,

subject to the boundary conditions

(1.2)

⎧

⎨

⎩

u(s,0) ∈ L0 and u(s,1) ∈ L1 ∀s ∈R,

lim
s→+∞

u(s, t) = p, lim
s→−∞

u(s, t) = q,

and the finite energy condition

(1.3) E(u) =

∫

u∗ω =

∫∫ ∣
∣
∣
∣

∂u

∂s

∣
∣
∣
∣

2

dsdt <∞.

(Note that, by the Riemann mapping theorem, the strip R× [0,1] is biholo-

morphic to D2 \{±1}, the closed unit disc minus two points on its boundary;

the map u then extends to the closed disc, with the boundary marked points

±1 mapping to p and q.)

Given a homotopy class [u] ∈ π2(M,L0∪L1), we denote by M̂(p, q; [u], J)

the space of solutions of (1.1)–(1.3) representing the class [u], and by

M(p, q; [u], J) its quotient by the action of R by reparametrization (i.e., a ∈R

acts by u �→ ua(s, t) := u(s− a, t)).

The boundary value problem (1.1)–(1.3) is a Fredholm problem, i.e.

the linearization D∂̄J ,u of ∂̄J at a given solution u is a Fredholm op-

erator. Specifically, D∂̄J ,u is a ∂̄-type first-order differential operator,

whose domain is a suitable space of sections of the pullback bundle

u∗TM (with Lagrangian boundary conditions), for example W 1,p(R ×
[0,1],R×{0,1};u∗TM,u∗|t=0TL0, u

∗
|t=1TL1). The Fredholm index ind([u]) :=

indR(D∂̄J ,u) = dimKerD∂̄J ,u− dimCokerD∂̄J ,u can be computed in terms of

an invariant of the class [u] called the Maslov index, which we discuss below.

The space of solutions M̂(p, q; [u], J) is then a smooth manifold of dimen-

sion ind([u]), provided that all solutions to (1.1)–(1.3) are regular, i.e. the

linearized operator D∂̄J ,u is surjective at each point of M̂(p, q; [u], J). This

transversality property is one of three fundamental technical issues that need

to be addressed for Floer (co)homology to be defined, the other two being the

compactness of the moduli space M(p, q; [u], J), and its orientability (unless

one is content to work over K= Z2).
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Transversality and compactness will be briefly discussed in Section 1.4

below. On the issue of orientations, we will only consider the case where

L0 and L1 are oriented and spin. It is then known that the choice of spin

structures on L0 and L1 determines a canonical orientation of the moduli

spaces of J -holomorphic strips; the construction of this orientation is fairly

technical, so we refer the reader to [19, 42] for details.

Assuming that all these issues have been taken care of, we observe that

when ind([u]) = 1 the moduli space M(p, q; [u], J) is a compact oriented 0-

manifold, i.e. a finite set of points which can be counted with signs. We can

then provisionally define:

Definition 1.4. The Floer differential ∂ :CF (L0,L1)→CF (L0,L1) is the

Λ-linear map defined by

(1.4) ∂(p) =
∑

q∈X (L0,L1)
[u]: ind([u])=1

(

#M
(

p, q; [u], J
))

Tω([u]) q,

where #M(p, q; [u], J) ∈ Z (or Z2) is the signed (or unsigned) count of points

in the moduli space of pseudo-holomorphic strips connecting p to q in the

class [u], and ω([u]) =
∫

u∗ω is the symplectic area of those strips.

In general, the definition needs to be modified by introducing a pertur-

bation term into the Cauchy-Riemann equation in order to achieve transver-

sality (see Section 1.4 below). Thus, the Floer differential actually counts

perturbed pseudo-holomorphic strips connecting perturbed intersection points

of L0 and L1.

The following result is due to Floer for K= Z2:

Theorem 1.5. Assume that [ω] · π2(M,L0) = 0 and [ω] · π2(M,L1) = 0.

Moreover, when char(K) �= 2 assume that L0,L1 are oriented and equipped

with spin structures. Then the Floer differential ∂ is well-defined, satisfies

∂2 = 0, and the Floer cohomology HF (L0,L1) = H∗(CF (L0,L1), ∂) is, up

to isomorphism, independent of the chosen almost-complex structure J and

invariant under Hamiltonian isotopies of L0 or L1.

Remark 1.6. In this text we discuss the chain complex and differential for

Floer cohomology, which is dual to Floer’s original construction. Namely, in

Floer homology, the strip shown on Figure 2 would be considered a trajectory

from q to p rather than from p to q, and the grading conventions are reversed.
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Fig. 2. A pseudo-holomorphic strip contributing to the Floer differential on CF (L0,L1)

Remark 1.7. In general, the sum in the right-hand side of (1.4) can be

infinite. However, Gromov’s compactness theorem ensures that, given any

energy bound E0, there are only finitely many homotopy classes [u] with

ω([u])≤E0 for which the moduli spacesM(p, q; [u], J) are non-empty. Thus,

using Novikov coefficients and weighing counts of strips by area ensures that

the sum in the right-hand side of (1.4) is well-defined.

However, it is sometimes possible to work over smaller coefficient fields.

One such setting is that of exact Lagrangian submanifolds in an exact sym-

plectic manifold. Namely, assume that ω = dθ for some 1-form θ on M , and

there exist functions fi ∈C∞(Li,R) such that θ|Li
= dfi (for i= 0,1). Then,

by Stokes’ theorem, any strip connecting intersection points p and q satisfies
∫

u∗ω = (f1(q)− f0(q))− (f1(p)− f0(p)). Thus, rescaling each generator by

p �→ T f1(p)−f0(p)p, we can eliminate the weights Tω([u]) from (1.4), and work

directly over the coefficient field K instead of Λ.

Floer’s construction [17] was subsequently extended to more general set-

tings, beginning with Oh’s result on monotone Lagrangians [32], and culmi-

nating with the sophisticated methods introduced by Fukaya, Oh, Ohta and

Ono for the general case [19]; however as we will see below, Theorem 1.5 does

not hold in full generality, as pseudo-holomorphic discs with boundary in L0

or L1 “obstruct” Floer cohomology.

1.3. Maslov Index and Grading

The Maslov index plays a similar role in the index formula for pseudo-

holomorphic discs to that played by the first Chern class in that for closed

pseudo-holomorphic curves; in fact it can be viewed as a relative version of

the Chern class.

Denote by LGr(n) the Grassmannian of Lagrangian n-planes in the

symplectic vector space (R2n, ω0). It is a classical fact that the unitary
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group U(n) acts transitively on LGr(n), so that LGr(n)� U(n)/O(n), from

which it follows by an easy calculation that π1(LGr(n))� Z (see e.g. [28]).

This can be understood concretely by using the square of the determinant

map, det2 : U(n)/O(n)→ S1, which induces an isomorphism on fundamental

groups; the Maslov index of a loop in LGr(n) is simply the winding number

of its image under this map.

In a similar vein, consider two paths �0, �1 : [0,1]→ LGr(n) of Lagrangian

subspaces in R
2n, such that �0(0) is transverse to �1(0) and �0(1) is transverse

to �1(1). The Maslov index of the path �1 relative to �0 is then the number

of times (counting with signs and multiplicities) at which �0(t) and �1(t) are

not transverse to each other. (More precisely, it is the intersection number of

the path (�0(t), �1(t)) with the hypersurface in LGr(n)× LGr(n) consisting

of non-transverse pairs of subspaces.)

We now return to our main discussion, and consider a map u :R× [0,1]→
M satisfying the boundary conditions (1.2). Since R× [0,1] is contractible,

the pullback u∗TM is a trivial symplectic vector bundle; fixing a trivializa-

tion, we can view �0 = u∗|R×{0}TL0 and �1 = u∗|R×{1}TL1 as paths (oriented

with s going from +∞ to −∞) in LGr(n), one connecting TpL0 to TqL0 and

the other connecting TpL1 to TqL1. The index of u can then be defined as

the Maslov index of the path �1 relative to �0.

An equivalent definition, which generalizes more readily to the discs

that appear in the definition of product operations, is as follows. Given a

pair of transverse subspaces λ0, λ1 ∈ LGr(n), and identifying R
2n with C

n,

there exists an element A ∈ Sp(2n,R) which maps λ0 to R
n ⊂C

n and λ1 to

(iR)n ⊂ C
n. The subspaces λt = A−1((e−iπt/2

R)n), t ∈ [0,1] then provide a

distinguished homotopy class of path connecting λ0 to λ1 in LGr(n), which

we call the canonical short path.

Definition 1.8. Given p, q ∈ L0 ∩ L1, denote by λp the canonical short

path from TpL0 to TpL1 and by λq that from TqL0 to TqL1. Given a strip

u : R × [0,1]→M connecting p to q, for i ∈ {0,1}, denote by �i the path

u∗|R×{i}TLi oriented with s going from +∞ to −∞, from TpLi to TqLi. View

all these as paths in LGr(n) by fixing a trivialization of u∗TM . The index

of the strip u is then the Maslov index of the closed loop in LGr(n) (based

at TqL0) obtained by concatenating the paths −�0 (i.e. �0 backwards), λp,

�1, and finally −λq.

Example 1.9. Let M = R
2, and consider the strip u depicted in Figure 2:

then it is an easy exercise to check, using either definition, that ind(u) = 1.
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We now discuss the related issue of equipping Floer complexes with a

grading. In order to obtain a Z-grading on CF (L0,L1), one needs to make

sure that the index of a strip depends only on the difference between the

degrees of the two generators it connects, rather than on its homotopy class.

This is ensured by the following two requirements:

(1) The first Chern class of M must be 2-torsion: 2c1(TM) = 0. This

allows one to lift the Grassmannian LGr(TM) of Lagrangian planes

in TM (an LGr(n)-bundle over M ) to a fiberwise universal cover

L̃Gr(TM), the Grassmannian of graded Lagrangian planes in TM (an

L̃Gr(n)-bundle over M ).

Concretely, given a nowhere vanishing section Θ of (Λn
C
T ∗M)⊗2, the

argument of Θ associates to any Lagrangian plane � a phase ϕ(�) =

arg(Θ|�) ∈ S1 =R/2πZ; a graded lift of � is the choice of a real lift of

ϕ̃(�) ∈R of ϕ(�).

(2) The Maslov class of L, μL ∈Hom(π1(L),Z) =H1(L,Z), vanishes. The

Maslov class is by definition the obstruction to consistently choos-

ing graded lifts of the tangent planes to L, i.e. lifting the section of

LGr(TM) over L given by p �→ TpL to a section of the infinite cyclic

cover L̃Gr(TM). The Lagrangian submanifold L together with the

choice of such a lift is called a graded Lagrangian submanifold of M .

Equivalently, given a nowhere vanishing section of (Λn
C
T ∗M)⊗2, we

can associate to L its phase function ϕL : L→ S1, which maps p ∈ L
to ϕ(TpL) ∈ S1; the Maslov class is then the homotopy class [ϕL] ∈
[L,S1] =H1(L,Z), and a graded lift of L is the choice of a lift ϕ̃L :

L→R.

When these two assumptions are satisfied, fixing graded lifts L̃0, L̃1 of

the Lagrangian submanifolds L0,L1 ⊂M determines a natural Z-grading on

the Floer complex CF (L0,L1) as follows. For all p ∈ L0 ∩ L1, we obtain a

preferred homotopy class of path connecting TpL0 to TpL1 in LGr(TpM) by

connecting the chosen graded lifts of the tangent spaces at p via a path in

L̃Gr(TpM). Combining this path with −λp (the canonical short path from

TpL0 to TpL1, backwards), we obtain a closed loop in LGr(TpM); the degree

of p is by definition the Maslov index of this loop. It is then easy to check

that any strip connecting p to q satisfies

(1.5) ind(u) = deg(q)− deg(p).

In particular the Floer differential (1.4) has degree 1.
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In general, if we do not restrict ourselves to symplectic manifolds with

torsion c1(TM) and Lagrangian submanifolds with vanishing Maslov class,

the natural grading on Floer cohomology is only by a finite cyclic group.

As an important special case, if we simply assume that the Lagrangian sub-

manifolds L0,L1 are oriented, then we have a Z/2-grading, where the degree

of a generator p of CF (L0,L1) is determined by the sign of the intersec-

tion between L0 and L1 at p: namely deg(p) = 0 if the canonical short path

from TpL0 to TpL1 maps the given orientation of TpL0 to that of TpL1, and

deg(p) = 1 otherwise.

(Another approach, which we won’t discuss further, is to enlarge the

coefficient field by a formal variable of non-zero degree to keep track of the

Maslov indices of different homotopy classes. In the monotone case, where

index is proportional to symplectic area, it suffices to give a non-zero degree

to the Novikov parameter T .)

1.4. Transversality and Compactness

We now discuss very briefly the fundamental technical issues of transversality

and compactness.

Transversality of the moduli spaces of pseudo-holomorphic strips, i.e.

the surjectivity of the linearized ∂̄ operator at all solutions, is needed in

order to ensure that the spaces M̂(p, q; [u], J) (and other moduli spaces we

will introduce below) are smooth manifolds of the expected dimension. Still

assuming that L0 and L1 intersect transversely, transversality for strips can

be achieved by replacing the fixed almost-complex structure J in the Cauchy-

Riemann equation (1.1) by a generic family of ω-compatible almost-complex

structures which depend on the coordinate t in the strip R× [0,1].

A more basic issue is that of defining Floer cohomology for Lagrangian

submanifolds which do not intersect transversely (in particular, one would

like to be able to define the Floer cohomology of a Lagrangian with itself, i.e.

the case L0 = L1). In view of the requirement of Hamiltonian isotopy invari-

ance of the construction, the simplest approach is to introduce an inhomoge-

neous Hamiltonian perturbation term into the holomorphic curve equation:

we fix a generic Hamiltonian H ∈C∞([0,1]×M,R), and consider the modi-

fied equation (du−XH ⊗ dt)0,1 = 0, i.e.

(1.6)
∂u

∂s
+ J(t, u)

(
∂u

∂t
−XH(t, u)

)

= 0,
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still subject to the boundary conditions u(s,0) ∈ L0 and u(s,1) ∈ L1 and

a finite energy condition. For s→±∞, the strip u converges no longer to

intersection points but rather to trajectories of the flow of XH which start on

L0 and end on L1: thus the generators of the Floer complex CF (L0,L1) are in

fact defined to be flow lines γ : [0,1]→M , γ̇(t) =XH(t, γ(t)), such that γ(0) ∈
L0 and γ(1) ∈ L1. Equivalently, by considering γ(0), we set X (L0,L1) =

L0 ∩ (φ1H)−1(L1), where φ
1
H ∈Ham(M,ω) is the time 1 flow generated by H .

In this sense, the generators are perturbed intersection points of L0 with L1,

where the perturbation is given by the Hamiltonian diffeomorphism φ1H .

Remark 1.10. The perturbed equation (1.6) can be recast as a plain

Cauchy-Riemann equation by the following trick: consider ũ(s, t) =

(φtH)−1(u(s, t)), where φtH is the flow of XH over the interval [0, t]. Then

∂ũ

∂t
=

(

φtH
)−1

∗

(
∂u

∂t
−XH

)

,

so Floer’s equation (1.6) becomes

∂ũ

∂s
+ J̃(t, ũ)

∂ũ

∂t
= 0,

where J̃(t) = (φtH)−1
∗ (J(t)). Hence solutions to Floer’s equation correspond

to honest J̃ -holomorphic strips with boundaries on L0 and (φ1H)−1(L1).

Compactness of the moduli spaces is governed by Gromov’s compact-

ness theorem, according to which any sequence of J -holomorphic curves

with uniformly bounded energy admits a subsequence which converges, up to

reparametrization, to a nodal tree of J -holomorphic curves. The components

of the limit curve are obtained as limits of different reparametrizations of the

given sequence of curves, focusing on the different regions of the domain in

which a non-zero amount of energy concentrates (“bubbling”). In the case

of a sequence of J -holomorphic strips un :R× [0,1]→M with boundary on

Lagrangian submanifolds L0 and L1, there are three types of phenomena to

consider:

(1) strip breaking : energy concentrates at either end s→±∞, i.e. there

is a sequence an →±∞ such that the translated strips un(s− an, t)
converge to a non-constant limit strip (Figure 3 left);

(2) disc bubbling : energy concentrates at a point on the boundary of the

strip (t ∈ {0,1}), where suitable rescalings of un converge to a J -
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Fig. 3. Possible limits of pseudo-holomorphic strips: a broken strip (left) and a disc
bubble (right)

holomorphic disc in M with boundary entirely contained in either L0

or L1 (Figure 3 right);

(3) sphere bubbling : energy concentrates at an interior point of the strip,

where suitable rescalings of un converge to a J -holomorphic sphere

in M .

As we will see below, strip breaking is the key geometric ingredient in the

proof that the Floer differential squares to zero, provided that disc bubbling

can be excluded. This is not simply a technical issue—in general the Floer

differential does not square to zero, as illustrated by Example 1.11 below.

Another issue posed by disc and sphere bubbling is that of transversality:

the perturbation techniques we have outlined above are in general not suf-

ficient to achieve transversality for limit curves that include disc or sphere

bubble components. More sophisticated techniques, such as those proposed

by Fukaya et al. [19]1, or the polyfolds developed by Hofer-Wysocki-Zehnder

[23], are needed to extend Lagrangian Floer theory to the greatest possible

level of generality.

In our case, the absence of disc and sphere bubbles is ensured by the

assumption that [ω] ·π2(M,Li) = 0 in the statement of Theorem 1.5. A more

general context in which the theory still works is when bubbling can be ex-

cluded for dimension reasons, for instance when all bubbles are guaranteed

to have Maslov index greater than 2. (The important limit case where the

minimal Maslov index is equal to 2 can also be handled by elementary meth-

ods; however, in that case disc bubbling can occur and the Floer differential

does not automatically square to zero.) A common setting where an a priori

lower bound on the Maslov index can be guaranteed is that of monotone

Lagrangian submanifolds in monotone symplectic manifolds, i.e. when the

1The cautious reader should be aware that, as of this writing, the analytic foundations of
this approach are still the subject of some controversy.
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symplectic area of discs and their Maslov index are proportional to each

other [32].

1.5. Sketch of Proof of Theorem 1.5

The proof that the Floer differential squares to zero (under the assumption

that disc and sphere bubbling cannot occur) is conceptually similar to that

for Morse (co)homology.

Fix Lagrangian submanifolds L0 and L1 as in Theorem 1.5, a generic

almost-complex structure J and a Hamiltonian perturbation H so as to en-

sure transversality. Given two generators p, q of the Floer complex, and a

homotopy class [u] with ind([u]) = 2, the moduli space M(p, q; [u], J) is a 1-

dimensional manifold. Since our assumptions exclude the possibilities of disc

or sphere bubbling, Gromov compactness implies that this moduli space can

be compactified to a space M(p, q; [u], J) whose elements are broken strips

connecting p to q and representing the total class [u].

Two-component broken strips of the sort depicted in Figure 3 (left) cor-

respond to products of moduli spacesM(p, r; [u′], J)×M(r, q; [u′′], J), where

r is any generator of the Floer complex and [u′] + [u′′] = [u]. Observe that

the index is additive under such decompositions; moreover, transversality

implies that any non-constant strip must have index at least 1. Thus, the

only possibility is ind([u′]) = ind([u′′]) = 1, and broken configurations with

more than two components cannot occur.

Conversely, a gluing theorem states that every broken strip is locally the

limit of a unique family of index 2 strips, andM(p, q; [u], J) is a 1-dimensional

manifold with boundary, with

(1.7)

∂M
(

p, q; [u], J
)

=
∐

r∈X (L0,L1)
[u′]+[u′′]=[u]

ind([u′])=ind([u′′])=1

(

M
(

p, r;
[

u′
]

, J
)

×M
(

r, q;
[

u′′
]

, J
))

Moreover, the choice of orientations and spin structures on L0 and L1 equips

all these moduli spaces with natural orientations, and (1.7) is compatible with

these orientations (up to an overall sign). Since the total (signed) number of

boundary points of a compact 1-manifold with boundary is always zero, we
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Fig. 4. A counterexample to ∂2 = 0

conclude that

(1.8)
∑

r∈X (L0,L1)
[u′]+[u′′]=[u]

ind([u′])=ind([u′′])=1

(

#M
(

p, r;
[

u′
]

, J
)) (

#M
(

r, q;
[

u′′
]

, J
))

Tω([u′])+ω([u′′]) = 0.

Summing over all possible [u], the left-hand side is precisely the coefficient

of q in ∂2(p); therefore ∂2 = 0.

When L0 and/or L1 bound J -holomorphic discs, the sum (1.8) no

longer cancels, because the boundary of the 1-dimensional moduli space

M(p, q; [u], J) also contains configurations with disc bubbles. The following

example shows that this is an issue even in the monotone case.

Example 1.11. Consider again the cylinder M = R× S1, and let L0 be a

simple closed curve that goes around the cylinder once, and L1 a homotopi-

cally trivial curve intersecting L0 in two points p and q, as shown in Figure 4

left. Then L0 and L1 bound precisely two holomorphic strips of index 1,

denoted by u and v in Figure 4. (There are other holomorphic discs with

boundary on L0 and L1 but those have higher index.) Comparing with the

convention depicted in Figure 2, u is a trajectory from p to q, while v is a

trajectory from q to p: thus we have

∂p=±Tω(u)q and ∂q =±Tω(v)p,

and ∂2 �= 0. To understand why ∂2(p) �= 0, consider the moduli space of index

2 holomorphic strips connecting p to itself. The images of these strips exactly

cover the disc bounded by L1, with a slit along L0, as shown in Figure 4 right.

We can give an explicit description using local coordinates in which L0

corresponds to the real axis and L1 to the unit circle: using the upper half-disc



A Beginner’s Introduction to Fukaya Categories 99

minus the points ±1 as domain of our maps instead of the usual R× [0,1] (to

which it is biholomorphic), one easily checks that any index 2 strip connecting

p to itself can be parametrized as

uα(z) =
z2 + α

1 + αz2

for some α ∈ (−1,1) (corresponding to the end point of the slit).

The two ends of this moduli space are different: when α→−1, energy
concentrates at z =±1, and the index 2 strips uα converge to a broken strip

whose nonconstant components are the index 1 strips u and v; whereas for

α→ 1 the maps uα exhibit disc bubbling at z = i, the limit being a constant

strip at p together with a disc bubble whose image is the disc bounded by L1.

Thus, broken strips do not cancel in pairs in the manner needed for ∂2 = 0

to hold.

Once the Floer differential is shown to square to zero, it remains to

prove that Floer cohomology does not depend on the choice of almost-

complex structure and Hamiltonian perturbation. Recall that the spaces of

such choices are contractible. Thus, given two choices (H,J) and (H ′, J ′) (for
which we assume transversality holds), let (H(τ), J(τ)), τ ∈ [0,1] be a (gener-

ically chosen) smooth family which agrees with (H,J) for τ = 0 and (H ′, J ′)
for τ = 1. One can then construct a continuation map F :CF (L0,L1;H,J)→
CF (L0,L1;H

′, J ′) by counting solutions to the equation

(1.9)
∂u

∂s
+ J

(

τ(s), t, u
)
(
∂u

∂t
−XH

(

τ(s), t, u
)
)

= 0,

where τ(s) is a smooth function of s which equals 1 for s� 0 and 0 for

s� 0. Unlike (1.6), the Equation (1.9) is not invariant under translations in

the s direction. Given generators p ∈ X (L0,L1;H) and p′ ∈ X (L0,L1;H
′) of

the respective Floer complexes, the coefficient of p′ in F (p) is defined as a

count of index 0 solutions to (1.9) which converge to p at s→+∞ and to p′

at s→−∞ (weighted by energy as usual).

The proof that F is a chain map, i.e. satisfies ∂′ ◦ F = F ◦ ∂ (again

assuming the absence of bubbling), comes from studying spaces of index

1 solutions to (1.9). These spaces are 1-dimensional manifolds, whose end

points correspond to broken trajectories where the main component is an

index 0 solution to (1.9), either preceded by an index 1 J -holomorphic strip

with perturbation data H (if energy concentrates at s→+∞), or followed

by an index 1 J ′-holomorphic strip with perturbation data H ′ (if energy



100 D. Auroux

concentrates at s→−∞). The composition F ◦ ∂ counts the first type of

limit configuration, while ∂′ ◦F counts the second type of limit configuration,

and the equality between these two maps follows again from the statement

that the total (signed) number of end points of a compact 1-manifold with

boundary is zero.

Using the reverse homotopy, i.e., considering (1.9) with τ(s) = 0 for s� 0

and 1 for s� 0, one similarly defines a chain map F ′ :CF (L0,L1;H
′, J ′)→

CF (L0,L1;H,J). The chain maps F and F ′ are quasi-inverses, i.e. F ′ ◦F is

homotopic to identity (and similarly for F ◦ F ′). An explicit homotopy can

be obtained by counting index −1 solutions to a one-parameter family of

equations similar to (1.9) but where τ(s) is 0 near ±∞ and is nonzero over

an interval of values of s of varying width.

1.6. The Floer Cohomology HF (L,L)

The Floer cohomology of a Lagrangian submanifold with itself is of particular

interest in the context of Arnold’s conjecture. By Weinstein’s Lagrangian

neighborhood theorem, a neighborhood of a Lagrangian submanifold L in

(M,ω) is symplectomorphic to a neighborhood of the zero section of the

cotangent bundle T ∗L with its standard symplectic form. In light of this, we

first consider the model case of the cotangent bundle.

Example 1.12. Let N be a compact real n-dimensional manifold, and

consider the cotangent bundle T ∗N , with its standard exact symplectic form

(given locally by ω =
∑
dqi ∧ dpi, where qi are local coordinates on N and pi

are the dual coordinates on the fibers of the cotangent bundle). Let L0 be the

zero section, and given a Morse function f :N →R and a small ε > 0, denote

by L1 the graph of the exact 1-form ε df . Then L0,L1 are exact Lagrangian

submanifolds of T ∗N , Hamiltonian isotopic to each other (the Hamiltonian

isotopy is generated by H = ε f ◦ π where π : T ∗N →N is the bundle map);

L0 and L1 intersect transversely at the critical points of f .

Choosing a graded lift of L0, and transporting it through the Hamiltonian

isotopy to define a graded lift of L1, we obtain a grading on the Floer complex

CF (L0,L1); by an explicit calculation, a critical point p of f of Morse index

i(p) defines a generator of the Floer complex of degree deg(p) = n − i(p).
Thus, the grading on the Floer complex agrees with that on the complex

CM∗(f) which defines the Morse cohomology of f .

The Morse differential counts index 1 trajectories of the gradient flow be-

tween critical points of f , and depends on the choice of a Riemannian metric
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g on N , which we assume to satisfy the Morse-Smale transversality condi-

tion. A result of Floer [18] is that, for a suitable choice of (time-dependent)

almost-complex structure J on T ∗N , solutions of Floer’s equation

∂u

∂s
+ J(t, u)

∂u

∂t
= 0

with boundary on L0 and L1 are regular and in one-to-one correspondence

with gradient flow trajectories

γ̇(s) = ε∇f
(

γ(s)
)

on N , the correspondence being given by γ(s) = u(s,0). (Note: an ascending

gradient flow line with γ(s) converging to p as s→ +∞ and q as s→−∞
counts as a trajectory from p to q in the Morse differential.)

To understand this correspondence between moduli spaces, observe that,

at any point x of the zero section, the natural almost-complex structure on

T ∗N induced by the metric g maps the horizontal vector ε∇f(x) ∈ TxN ⊂
Tx(T

∗N) to the vertical vector XH(x) = ε df(x) ∈ T ∗
xN ⊂ Tx(T ∗N). This al-

lows us to construct particularly simple solutions of (1.6) for this almost-

complex structure and the Hamiltonian perturbation −H , with both bound-

aries of the strip mapping to L0: for any gradient flow line γ of f , we obtain a

solution of (1.6) by setting u(s, t) = γ(s). Floer’s construction of strips with

boundary on L0 and L1 is equivalent to this via Remark 1.10.

Thus, for specific choices of perturbation data, after a rescaling of the

generators by p �→ T εf(p)p, the Floer complex of (L0,L1) is isomorphic to

the Morse complex of f , and the Floer cohomology HF ∗(L0,L1) is iso-

morphic to the Morse cohomology of f (with coefficients in Λ). Using the

independence of Floer cohomology under Hamiltonian isotopies and the

isomorphism between Morse and ordinary cohomology, we conclude that

HF ∗(L0,L0)�HF ∗(L0,L1)�H∗(L0;Λ).

(Since we are in the exact case, by Remark 1.7 one could actually work

directly over K rather than over Novikov coefficients.)

Now we consider the general case of a compact Lagrangian submanifold L

in a symplectic manifold (M,ω), under the assumption that [ω] ·π2(M,L) = 0.

Energy estimates then imply that, for a sufficiently small Hamiltonian pertur-

bation, the pseudo-holomorphic strips that determine the Floer cohomology

HF ∗(L,L) must all be contained in a small tubular neighborhood of L, so

that the calculation of Floer cohomology reduces to Example 1.12, and we

get the following result (due to Floer in the exact case and for K= Z2):
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Proposition 1.13. If [ω] · π2(M,L) = 0, then HF ∗(L,L)�H∗(L;Λ).

Together with Theorem 1.5, this implies Arnold’s conjecture (Theo-

rem 1.1).

Example 1.14. Let L be the zero section in T ∗S1 = R× S1 (see Figure 1

left), and consider the Hamiltonian perturbation depicted in the figure, which

comes from a Morse function on L= S1 with a maximum at p and a mini-

mum at q. Then L and ψ(L) bound two index 1 holomorphic strips (shaded

on the figure), both connecting p to q, and with equal areas. However, the

contributions of these two strips to the Floer differential cancel out (this is ob-

vious over K= Z2; when char(K) �= 2 a verification of signs is needed). Thus,

∂p= 0, and HF ∗(L,ψ(L))�H∗(S1), as expected from Proposition 1.13.

Things are different when L bounds pseudo-holomorphic discs, and the

Floer cohomology HF ∗(L,L) (when it is defined) is in general smaller than

H∗(L;Λ). For example, let L be a monotone Lagrangian submanifold in a

monotone symplectic manifold, with minimal Maslov index at least 2; this

is a setting where HF ∗(L,L) is well defined (though no longer Z-graded),

as disc bubbles either do not occur at all or occur in cancelling pairs. Us-

ing again a small multiple εf of a Morse function f on L as Hamiltonian

perturbation, the Floer complex differs from the Morse complex CM∗(f) by

the presence of additional terms in the differential; namely there are index 1

Floer trajectories representing a class in π2(M,L) of Maslov index k and

connecting a critical point p of Morse index i(p) to a critical point q of index

i(q) = i(p) + k − 1. This situation was studied by Oh [32, 33], who showed

that the Floer complex is filtered by index (or equivalently energy), and

there is a spectral sequence starting with the Morse cohomology HM∗(f) (or

equivalently the ordinary cohomology of L), whose successive differentials

account for classes of increasing Maslov index in π2(M,L), and converging

to the Floer cohomology HF ∗(L,L).

It is often easier to study honest pseudo-holomorphic discs with boundary

on L, rather than solutions of Floer’s equation with a Hamiltonian pertur-

bation, or strips with boundary on L and its image under a small isotopy.

This has led to the development of alternative constructions of HF ∗(L,L).

For instance, another model for the Floer cohomology of a monotone La-

grangian submanifold is the pearl complex first introduced in [34] (see also

[15]). In this model, the generators of the Floer complex are again the crit-

ical points of a Morse function f on L, but the differential counts “pearly
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trajectories”, which arise as limits of Floer trajectories of the sort considered

above as ε→ 0. Namely, a pearly trajectory between critical points p and

q of f consists of r ≥ 0 pseudo-holomorphic discs in M with boundary in

L, connected to each other and to p and q by r + 1 gradient flow lines of

f in L. (When there are no discs, a pearly trajectory is simply a gradient

flow line between p and q.) Yet another model, proposed by Fukaya-Oh-

Ohta-Ono [19], uses a chain complex where CF (L,L) = C∗(L) consists of

chains in L, and the differential is the sum of the classical boundary map

and a map defined in terms of moduli spaces of pseudo-holomorphic discs

with boundary on L. This model is computationally convenient, but requires

great care in its construction to address questions such as exactly what sort

of chains are considered and, in the general (non-monotone) case, how to

achieve transversality of the evaluation maps.

2. Product Operations

2.1. The Product

Let L0,L1,L2 be three Lagrangian submanifolds of (M,ω), which we assume

intersect each other transversely and do not bound any pseudo-holomorphic

discs. We now define a product operation on their Floer complexes, i.e. a

map

CF (L1,L2)⊗CF (L0,L1)−→CF (L0,L2).

Given intersection points p1 ∈ X (L0,L1), p2 ∈ X (L1,L2), and q ∈ X (L0,L2),

the coefficient of q in p2 · p1 is a weighted count of pseudo-holomorphic discs

in M with boundary on L0 ∪ L1 ∪ L2 and with corners at p1, p2, q. More

precisely, let D be the closed unit disc minus three boundary points, say for

instance z0 =−1, z1 = e−iπ/3, z2 = eiπ/3, and observe that a neighborhood of

each puncture in D is conformally equivalent to a strip (i.e., the product of

an infinite interval with [0,1]).

Given an almost-complex structure J on M and a homotopy class [u],

we denote by M(p1, p2, q; [u], J) the space of finite energy J -holomorphic

maps u :D→M which extend continuously to the closed disc, mapping the

boundary arcs from z0 to z1, z1 to z2, z2 to z0 to L0,L1,L2 respectively,

and the boundary punctures z1, z2, z0 to p1, p2, q respectively, in the given

homotopy class [u] (see Figure 5).

As in the case of strips, the expected dimension of M(p1, p2, q; [u], J) is

given by the index of the linearized Cauchy-Riemann operator D∂̄J ,u. This
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Fig. 5. A pseudo-holomorphic disc contributing to the product map

index can be expressed in terms of the Maslov index, exactly as in Defi-

nition 1.8: we now concatenate the paths given by the tangent spaces to

L0,L1,L2 going counterclockwise along the boundary of u, together with

the appropriate canonical short paths at p1, p2, q, to obtain a closed loop in

LGr(n) whose Maslov index is equal to ind(u). If c1(TM) is 2-torsion and

the Maslov classes of L0,L1,L2 vanish, then after choosing graded lifts of

the Lagrangians we have Z-gradings on the Floer complexes, and one checks

that

(2.1) ind(u) = deg(q)− deg(p1)− deg(p2).

Remark 2.1. The apparent lack of symmetry in the index formula (2.1) is

due to the difference between the gradings on CF (L0,L2) and CF (L2,L0).

Namely, the given intersection point q ∈ L0 ∩ L2 defines generators of both

complexes, whose degrees sum to n (the dimension of Li). In fact, the Floer

complexes CF (L0,L2) and CF (L2,L0) and the differentials on them are dual

to each other, provided that the almost-complex structures and perturbations

are chosen suitably. For instance, the strip depicted in Figure 2 is a trajectory

from p to q in the Floer complex CF (L0,L1), and from q to p in CF (L1,L0).

Assume that transversality holds, so that the moduli spaces M(p1, p2, q;

[u], J) are smooth manifolds; if char(K) �= 2, assume moreover that orienta-

tions and spin structures on L0,L1,L2 have been chosen, so as to determine

orientations of the moduli spaces. Then we define:

Definition 2.2. The Floer product is the Λ-linear map CF (L1,L2) ⊗
CF (L0,L1)→CF (L0,L2) defined by

(2.2) p2 · p1 =
∑

q∈X (L0,L2)
[u]:ind([u])=0

(

#M
(

p1, p2, q; [u], J
))

Tω([u])q.
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As in the previous section, in general this construction needs to be modi-

fied by introducing domain-dependent almost-complex structures and Hamil-

tonian perturbations to achieve transversality. We discuss this below, but for

now we assume transversality holds without further perturbations and ex-

amine the properties of the Floer product.

Proposition 2.3. If [ω] · π2(M,Li) = 0 for all i, then the Floer product

satisfies the Leibniz rule (with suitable signs) with respect to the Floer differ-

entials,

(2.3) ∂(p2 · p1) =±(∂p2) · p1 ± p2 · (∂p1),

and hence induces a well-defined product HF (L1,L2) ⊗ HF (L0,L1) →
HF (L0,L2). Moreover, this induced product on Floer cohomology groups is

independent of the chosen almost-complex structure (and Hamiltonian per-

turbations) and associative.

(However, the chain-level product on Floer complexes is not associative,

as we will see below.)

We now sketch the geometric argument behind the Leibniz rule, which

relies on an examination of index 1 moduli spaces of J -holomorphic discs

and their compactification. Namely, consider a triple of generators p1, p2, q as

above, and let [u] be a homotopy class with ind([u]) = 1. Then (still assuming

transversality)M(p1, p2, q; [u], J) is a smooth 1-dimensional manifold, and by

Gromov compactness admits a compactification M(p1, p2, q; [u], J) obtained

by adding nodal trees of J -holomorphic curves.

Since our assumptions exclude bubbling of discs or spheres, the only

phenomenon that can occur is strip-breaking (when energy concentrates at

one of the three ends of the punctured disc D). Since transversality excludes

the presence of discs of index less than 0 and nonconstant strips of index

less than 1, and since the sum of the indices of the limit components must

be 1, there are only three types of limit configurations to be considered, all

consisting of an index 0 disc with boundary on L0,L1,L2 and an index 1

strip with boundary on two of these three submanifolds; see Figure 6.

The three types of configurations contribute to the coefficient of Tω([u])q

in ∂(p2 · p1) (Figure 6 left), (∂p2) · p1 (middle), and p2 · (∂p1) (right) re-

spectively. On the other hand, a gluing theorem states that every such con-

figuration arises as an end of M(p1, p2, q; [u], J), and that the compactified

moduli space is a 1-dimensional compact manifold with boundary. Moreover,
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Fig. 6. The ends of a 1-dimensional moduli space M(p1, p2, q; [u], J)

the orientations agree up to overall sign factors depending only on the de-

grees of p1 and p2. Since the (signed) total number of boundary points of

M(p1, p2, q; [u], J) is zero, the Leibniz rule (2.3) follows.

Before moving on to higher products, we briefly discuss the issue of

transversality and compatibility in the choice of perturbations. As in the

case of strips, even without assuming that L0,L1,L2 intersect transversely, we

can ensure transversality by introducing domain-dependent almost-complex

structures and Hamiltonian perturbations; however, for the Leibniz rule to

hold, these need to be chosen suitably near the punctures z0, z1, z2. Fix once

and for all “strip-like ends” near the punctures, i.e. biholomorphisms from

R+ × [0,1] (resp. R− × [0,1]) to neighborhoods of the punctures z1 and z2
(resp. z0) in D; we denote by s + it the natural complex coordinate in

each strip-like end. Also fix a 1-form β ∈ Ω1(D), such that β|∂D = 0 and

β = dt in each strip-like end. Now, given L0,L1,L2, we choose a family of

ω-compatible almost-complex structures depending smoothly on z ∈D, i.e.

J ∈C∞(D,J (M,ω)), and a family of HamiltoniansH ∈C∞(D×M,R), with

the property that in each strip-like end J(z) and H(z) depend only on the

coordinate t ∈ [0,1]. We then perturb the Cauchy-Riemann equation to

(2.4) (du−XH ⊗ β)0,1J = 0,

which in each strip-like end reduces to (1.6).

For 0≤ i < j ≤ 2, denote by Hij ∈C∞([0,1]×M,R) and Jij ∈C∞([0,1],

J (M,ω)) the time-dependent Hamiltonians and almost-complex structures

on the strip-like end whose boundaries map to Li and Lj . The solutions of

(2.4) converge no longer to intersection points of Li ∩Lj , but to trajectories

of the time 1 flow generated by Hij which begin on Li and end on Lj , i.e.

generators of the perturbed Floer complex of (Li,Lj) with respect to the

Hamiltonian perturbation Hij . Moreover, when strip breaking occurs, the



A Beginner’s Introduction to Fukaya Categories 107

main component remains a solution of (2.4), while the strip component that

breaks off is a solution of (1.6) with respect to Hij and Jij .

Thus, by considering the moduli spaces of solutions to the perturbed

equation (2.4) and proceeding as in Definition 2.2, we obtain a product map

CF (L1,L2;H12, J12)⊗CF (L0,L1;H01, J01)−→CF (L0,L2;H02, J02)

on the perturbed Floer complexes, and Proposition 2.3 still holds (with re-

spect to the perturbed Floer differentials).

2.2. Higher Operations

Given k + 1 Lagrangian submanifolds L0, . . . ,Lk, a construction similar to

those above allows us to define an operation

μk :CF (Lk−1,Lk)⊗ · · · ⊗CF (L1,L2)⊗CF (L0,L1)−→CF (L0,Lk)

(of degree 2 − k in the situation where the Floer complexes are graded),

where μ1 is the Floer differential and μ2 is the product.

Given generators pi ∈ X (Li−1,Li) (i = 1, . . . , k) and q ∈ X (L0,Lk), the

coefficient of q in μk(pk, . . . , p1) is a count (weighted by area) of (perturbed)

pseudo-holomorphic discs in M with boundary on L0 ∪ · · · ∪Lk and corners

at p1, . . . , pk, q.

Specifically, one considers maps u :D→M whose domain D is the closed

unit disc minus k+1 boundary points z0, z1, . . . , zk ∈ S1, lying in that order

along the unit circle. The positions of these marked points are not fixed, and

the moduli space M0,k+1 of conformal structures on the domain D, i.e., the

quotient of the space of ordered (k+1)-tuples of points on S1 by the action

of Aut(D2), is a contractible (k− 2)-dimensional manifold.

Given an almost-complex structure J onM and a homotopy class [u], we

denote by M(p1, . . . , pk, q; [u], J) the space of J -holomorphic maps u :D→
M (where the positions of z0, . . . , zk are not fixed a priori) which extend

continuously to the closed disc, mapping the boundary arcs from zi to zi+1 (or

z0 for i= k) to Li, and the boundary punctures z1, . . . , zk, z0 to p1, . . . , pk, q

respectively, in the given homotopy class [u], up to the action of Aut(D2) by

reparametrization. (Or, equivalently, one can avoid quotienting and instead

take a slice for the reparametrization action by fixing the positions of three

of the zi.)
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For a fixed conformal structure on D, the index of the linearized Cauchy-

Riemann operator is again given by the Maslov index, as previously. Thus,

accounting for deformations of the conformal structure on D, assuming

transversality, the expected dimension of the moduli space is

(2.5)

dimM
(

p1, . . . , pk, q; [u], J
)

= k− 2 + ind
(

[u]
)

= k− 2 + deg(q)−
k∑

i=1

deg(pi).

Thus, assuming transversality, and choosing orientations and spin struc-

tures on L0, . . . ,Lk if char(K) �= 2, we define:

Definition 2.4. The operation μk : CF (Lk−1,Lk) ⊗ · · · ⊗ CF (L0,L1)→
CF (L0,Lk) is the Λ-linear map defined by

(2.6) μk(pk, . . . , p1) =
∑

q∈X (L0,Lk)
[u]:ind([u])=2−k

(

#M
(

p1, . . . , pk, q; [u], J
))

Tω([u]) q.

Remark 2.5. As before, in general this construction needs to be modified by

introducing domain-dependent almost-complex structures and Hamiltonian

perturbations to achieve transversality. Thus, we actually count solutions of

a perturbed Cauchy-Riemann equation similar to (2.4), involving a domain-

dependent almost-complex structure J ∈C∞(D,J (M,ω)) and Hamiltonian

H ∈ C∞(D ×M,R). As before, compatibility with strip-breaking requires

that, in each of the k+1 strip-like ends near the punctures of D, the chosen

J and H depend only on the coordinate t ∈ [0,1] and agree with the almost-

complex structures and Hamiltonians used to construct the Floer complexes

CF (Li,Li+1) and CF (L0,Lk). An additional compatibility condition comes

from the possible degenerations of the domain D to unions of discs with

fewer punctures, as discussed below: we need to require that, when D de-

generates in such a way, H and J are translation-invariant in the strip-like

regions connecting the components and agree with the choices made in the

construction of the Floer complexes CF (Li,Lj), while in each component H

and J agree with the choices made for that moduli space of discs with fewer

punctures. This forces the choices of H and J to further depend on the con-

formal structure of D. We refer the reader to [42] for a detailed construction

(and proof of existence) of compatible and consistent choices of perturbation

data (H,J).

The algebraic properties of μk follow from the study of the limit con-

figurations that arise in compactifications of 1-dimensional moduli spaces
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Fig. 7. The 1-dimensional associahedron M0,4

of (perturbed) pseudo-holomorphic discs; besides strip breaking, there are

now other possibilities, corresponding to cases where the domain D degen-

erates. The moduli space of conformal structures M0,k+1 admits a natural

compactification to a (k− 2)-dimensional polytope M0,k+1, the Stasheff as-

sociahedron, whose top-dimensional facets correspond to nodal degenerations

of D to a pair of discs D1 ∪D2, with each component carrying at least two

of the marked points z0, . . . , zk; and the higher codimension faces correspond

to nodal degenerations with more components.

Example 2.6. M0,4 is homeomorphic to a closed interval, whose end points

correspond to configurations where two adjacent marked points come to-

gether (Figure 7). For example, fixing the positions of z0, z1, z2 on the unit

circle and letting z3 vary along the arc from z2 to z0, the right end point

corresponds to the case where z3 approaches z2; the “main” component of

the limit configuration carries the marked points z0 and z1, while the com-

ponent carrying z2 and z3 arises from rescaling by suitable automorphisms

of the disc. Equivalently up to automorphisms of the disc, one could instead

fix the positions of z1, z2, z3, and let z0 vary along the arc from z3 to z1; the

right end point then corresponds to the case where z0 approaches z1.

Proposition 2.7. If [ω] · π2(M,Li) = 0 for all i, then the operations μk

satisfy the A∞-relations

(2.7)

k∑

�=1

k−�∑

j=0

(−1)∗μk+1−�
(

pk, . . . , pj+�+1, μ
�(pj+�, . . . , pj+1), pj , . . . , p1

)

= 0,

where ∗= j +deg(p1) + · · ·+deg(pj).

The case k = 1 of (2.7) is the identity ∂2 = 0, while k = 2 corresponds to

the Leibniz rule (2.3). For k = 3, it expresses the fact that the Floer product
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μ2 is associative up to an explicit homotopy given by μ3:

(2.8)
± (p3 · p2) · p1 ± p3 · (p2 · p1)

=±∂μ3(p3, p2, p1)± μ3(∂p3, p2, p1)± μ3(p3, ∂p2, p1)± μ3(p3, p2, ∂p1).

More generally, each operation μk gives an explicit homotopy for a certain

compatibility property among the preceding ones.

The proof of Proposition 2.7 again relies on an analysis of 1-dimensional

moduli spaces of (perturbed) J -holomorphic discs and their compactifica-

tion. Fix generators p1, . . . , pk, q and a homotopy class [u] with ind([u]) =

3 − k, and assume that J and H are chosen generically (so as to achieve

transversality) and compatibly (see Remark 2.5). Then the moduli space

M(p1, . . . , pk, q; [u], J) compactifies to a 1-dimensional manifold with bound-

ary, whose boundary points correspond either to an index 1 (perturbed)

J -holomorphic strip breaking off at one of the k + 1 marked points, or to a

degeneration of the domain to the boundary ofM0,k+1, i.e. to a pair of discs

with each component carrying at least two of the marked points. The first

case corresponds to the terms involving μ1 in (2.7), while the second case

corresponds to the other terms.

Example 2.8. For k = 3, limit configurations consisting of an index 1 strip

together with an index −1 disc with 4 marked points account for the right-

hand side in (2.8), while those consisting of a pair of index 0 discs with 3

marked points (when the domain degenerates to one of the two end points

of M0,4, see Figure 7) account for the two terms in the left-hand side.

2.3. The Fukaya Category

There are several variants of the Fukaya category of a symplectic manifold,

depending on the desired level of generality and a number of implemen-

tation details. The common features are the following. The objects of the

Fukaya category are suitable Lagrangian submanifolds, equipped with extra

data, and morphism spaces are given by Floer complexes, endowed with the

Floer differential. Composition of morphisms is given by the Floer product,

which is only associative up to homotopy, and the Fukaya category is an A∞-

category, i.e. the differential and composition are the first two in a sequence

of operations

μk : hom(Lk−1,Lk)⊗ · · · ⊗ hom(L0,L1)→ hom(L0,Lk)
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(of degree 2− k when a Z-grading is available), satisfying the A∞-relations

(2.7).

Given the setting in which we have developed Floer theory in the pre-

ceding sections, the most natural definition is the following:

Definition 2.9. Let (M,ω) be a symplectic manifold with 2c1(TM) = 0.

The objects of the (compact) Fukaya category F(M,ω) are compact closed,

oriented, spin Lagrangian submanifolds L⊂M such that [ω] · π2(M,L) = 0

and with vanishing Maslov class μL = 0 ∈H1(L,Z), together with extra data,

namely the choice of a spin structure and a graded lift of L. (We will usually

omit those from the notation and simply denote the object by L.)

For every pair of objects (L,L′) (not necessarily distinct), we choose

perturbation data HL,L′ ∈C∞([0,1]×M,R) and JL,L′ ∈C∞([0,1],J (M,ω));

and for all tuples of objects (L0, . . . ,Lk) and all moduli spaces of discs, we

choose consistent perturbation data (H,J) compatible with the choices made

for the pairs of objects (Li,Lj), so as to achieve transversality for all moduli

spaces of perturbed J -holomorphic discs. (See [42, §9] for the existence of

such perturbation data.)

Given this, we set hom(L,L′) = CF (L,L′;HL,L′ , JL,L′); and the differ-

ential μ1, composition μ2, and higher operations μk are given by counts of

perturbed pseudo-holomorphic discs as in Definition 2.4. By Proposition 2.7,

this makes F(M,ω) a Λ-linear, Z-graded, non-unital (but cohomologically

unital [42]) A∞-category.

One can also consider other settings: for example, we can drop the re-

quirement that 2c1(TM) = 0 and the assumption of vanishing of the Maslov

class if we are content with a Z/2-grading; spin structures can be ignored if

we work over a field of characteristic 2; and Novikov coefficients are unnec-

essary if we restrict ourselves to exact Lagrangian submanifolds in an exact

symplectic manifold.

As is obvious from the definition, the actual chain-level details of the

Fukaya category depend very much on the choice of perturbation data;

however, the A∞-categories obtained from various choices of perturbation

data are quasi-equivalent (i.e., they are related by A∞-functors which in-

duce equivalences, in fact in this case isomorphisms, at the level of cohomol-

ogy) [42].

We finish this section with a few remarks.
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Remark 2.10. One can recover an honest category from an A∞-category

by taking the cohomology of morphism spaces with respect to the differen-

tial μ1; the A∞-relations imply that μ2 descends to an associative composi-

tion operation on cohomology. The cohomology category of F(M,ω), where

hom(L,L′) = HF (L,L′) and composition is given by the cohomology-level

Floer product, is sometimes called the Donaldson-Fukaya category. However,

the higher operations contain important information that gets lost when pass-

ing to the cohomology category, and it is usually much better to work with

the chain-level A∞-category (see for instance the next section).

Remark 2.11. In the context of homological mirror symmetry, one is nat-

urally led to consider a slightly richer version of the Fukaya category, whose

objects are Lagrangian submanifolds equipped with local systems, i.e. flat

vector bundles E → L with unitary holonomy (over the Novikov field over

K=C). In this situation, we define

CF
(

(L0,E0), (L1,E1)
)

=
⊕

p∈X (L0,L1)

hom(E0|p,E1|p),

and modify the definition of μk as follows. Fix objects (L0,E0), . . . , (Lk,Ek),
intersections p1, . . . , pk, q, and a homotopy class [u]. Set p0 = pk+1 = q for

simplicity. Parallel transport along the portion of the boundary of [u] that

lies on Li yields an isomorphism γi ∈ hom(Ei|pi
,Ei|pi+1

) for each i= 0, . . . , k.

Now, given elements ρi ∈ hom(Ei−1|pi
,Ei|pi

) (i= 1, . . . , k), the composition of

all these linear maps defines an element η[u],ρk,...,ρ1
= γk · ρk · · · · · γ1 · ρ1 · γ0 ∈

hom(E0|q,Ek|q). Then we set

μk(ρk, . . . , ρ1) =
∑

q∈X (L0,Lk)
[u]:ind([u])=2−k

(

#M
(

p1, . . . , pk, q; [u], J
))

Tω([u]) η[u],ρk,...,ρ1
.

Remark 2.12. It is in principle possible to lift the assumption [ω] ·
π2(M,L) = 0 we have made throughout, at the expense of considerable ana-

lytic and algebraic difficulties in situations where disc bubbling occurs. Ana-

lytically, disc bubbles pose transversality problems that cannot be solved with

the techniques we have described above. Algebraically, they lead to a curved

A∞-category, i.e. for each object L we have an element μ0L ∈ hom(L,L) which

encodes a weighted count of J -holomorphic discs bounded by L. The A∞-

relations (2.7) are then modified by allowing the case �= 0 in the sum. For

example, the relation for k = 1 becomes

μ1
(

μ1(p)
)

+ (−1)deg pμ2
(

μ0L1
, p
)

+ μ2
(

p,μ0L0

)

= 0,
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where the last two terms correspond to disc bubbling along either edge of

an index 2 strip. To regain some sanity, one usually considers not arbitrary

objects, but weakly unobstructed objects, i.e. those for which μ0L is a scalar

multiple of the (cohomological) unit of hom(L,L) (this multiple is some-

times called “central charge” or “superpotential” in the context of mirror

symmetry); this happens for instance when the minimal Maslov index of a

holomorphic disc with boundary on L is equal to two and Maslov index 2

discs are regular. Weakly unobstructed objects of fixed central charge then

form an honest A∞-category. The curious reader is referred to [19].

3. Exact Triangles and Generators

While it is usually impossible to classify all Lagrangian submanifolds of a

given symplectic manifold, or even to directly compute Floer cohomology for

all those we can find, it is often possible to understand the whole Fukaya cat-

egory in terms of a small subset of generating objects—provided that we un-

derstand not only differentials and products but also higher operations among

those generators. To understand how this comes about, a healthy dose of ho-

mological algebra is necessary; in this section we give a very brief and informal

overview of exact triangles, twisted complexes and generators, in general and

as they pertain to Fukaya categories in particular. The first part of [42] fills

in the many details that we omit here, and more.

3.1. Exact Triangles and Mapping Cones

An exact triangle

A B

C

f

h

[1] g

in an A∞-category A consists of a triple of objects A,B,C and closed mor-

phisms f ∈ hom0(A,B), g ∈ hom0(B,C), h ∈ hom1(C,A) such that C is (up

to quasi-isomorphism) a mapping cone of f :A→B, with g and h the natu-

ral maps to and from it. We will clarify the meaning of this definition in the

next section; for now, we simply mention some key features and motivate the

concept.
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Exactness means that the compositions μ2(g, f), μ2(h, g) and μ2(f,h)

are exact, i.e. in the cohomology category H(A) the maps compose to zero.

(However, their triple Massey product is typically nontrivial.) An exact tri-

angle induces long exact sequences on morphism spaces in the cohomology

category: for every test object T , we have a long exact sequence

(3.1) · · · →H i hom(T,A)
f−→H i hom(T,B)

g−→H i hom(T,C)

h−→H i+1 hom(T,A)
f→ · · ·

where H i hom(T,A) is the cohomology of hom(T,A) with respect to the

differential μ1, and the maps are given by composition (in the cohomology

category) with f , g, and h; and similarly (in the contravariant direction)

for morphisms from A,B,C to T . Moreover, as T varies these long exact

sequences fit together naturally with respect to the multiplicative action of

the groups H∗ hom(T ′, T ), i.e. (3.1) fits into an exact sequence of modules

over H(A).

Exact triangles can also be characterized as images under A∞-functors

of a “universal” abstract exact triangle living in an A∞-category with three

objects [42, §3g].

The A∞-category A is said to be triangulated if every closed morphism

f : A→ B can be completed to an exact triangle (and the shift functor [1]

acting on A by change of gradings is a quasi-equivalence); or, in other terms,

if all morphisms in A have mapping cones. Here it is important to point out a

key difference with the case of ordinary triangulated categories, where the tri-

angles are an additional piece of structure on the category: the A∞-structure

is rich enough to “know” about triangles, and triangles automatically satisfy

an analogue of the usual axioms. In the same vein, A∞-functors are always

exact, i.e. map exact triangles to exact triangles.

Before saying more about mapping cones in A∞-categories, let us discuss

some classical motivating examples.

Example 3.1. The mapping cone of a continuous map f :X→ Y between

topological spaces is, by definition, the space obtained from X × [0,1] by

attaching Y to X × {1} via the map f and collapsing X × {0} to a point:

Cone(f) =
((

X × [0,1]
)

� Y
)

/(x,0)∼
(

x′,0
)

, (x,1)∼ f(x) ∀x,x′ ∈X.

We then have a sequence of maps

X
f−→ Y

i−→Cone(f)
p−→ΣX

Σf−→ΣY → · · · ,
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where i is the inclusion of Y into the mapping cone, and p is the projection

to the suspension of X obtained by collapsing Y . The composition of any

two of these maps is nullhomotopic, and the induced maps on (co)homology

form a long exact sequence.

Example 3.2. The notion of mapping cone in the category of chain com-

plexes is directly modelled on the previous example: let A= (
⊕
Ai, dA) and

B = (
⊕
Bi, dB) be two chain complexes, and let f :A→B be a chain map

(i.e., a collection of maps f i : Ai→ Bi satisfying dBf
i + f i+1dA = 0). Then

the mapping cone of f is, by definition, the chain complex C =A[1]⊕B (i.e.,

Ci =Ai+1 ⊕Bi), equipped with the differential

dC =

(
dA 0

f dB

)

.

The map f , the inclusion of B into C as a subcomplex, and the projection

of C onto the quotient complex A[1] then fit into an exact sequence.

Example 3.3. Let A be an algebra (resp. differential graded algebra or A∞-

algebra), and consider the category of differential graded modules (resp. A∞-

modules) over A. Recall that such a module M is a chain complex equipped

with a degree 1 differential dM and a multiplication map A ⊗M → M ,

(a,m) �→ a ·m, satisfying the Leibniz rule and associative (up to homotopies

given by higher structure maps μk|1M :A⊗k ⊗M →M [1− k], in the case of

A∞-modules). The mapping cone of a module homomorphism f :M → N

can then be defined essentially as in the previous example. In the differen-

tial graded case, f is a chain map compatible with the multiplication, and

the mapping cone of f as a chain complex inherits a natural module struc-

ture. For A∞-modules, recalling that an A∞-homomorphism is a collection

of maps fk|1 :A⊗k ⊗M →N [−k] (where the linear term f0|1 is a chain map

compatible with the product μ1|1 up to a homotopy given by f1|1, and so

on), the structure maps μ
k|1
K : A⊗k ⊗K →K[1− k] (k ≥ 0) of the mapping

cone K =M [1]⊕N are given by

μ
k|1
K

(

a1, . . . , ak, (m,n)
)

=
(

μ
k|1
M (a1, . . . , ak,m), fk|1(a1, . . . , ak,m) + μ

k|1
N (a1, . . . , ak, n)

)

.

3.2. Twisted Complexes

When an A∞-category A is not known to be triangulated, it is often ad-

vantageous to embed it into a larger category in which mapping cones are
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guaranteed to exist. For example, one can always do so by using the Yoneda

embedding construction into the category of A∞-modules over A (in which

mapping cones always exist, cf. Example 3.3); see e.g. [42, §1]. A milder con-

struction, which retains more features of the original category A, involves
twisted complexes. We give a brief outline, and refer the reader to [42, §3] for
details.

Definition 3.4. A twisted complex (E,δE) consists of:

• a formal direct sum E =
⊕N

i=1Ei[ki] of shifted objects of A (i.e., a finite

collection of pairs (Ei, ki) where Ei ∈ obA and ki ∈ Z);

• a strictly lower triangular differential δE ∈ End1(E), i.e. a collection of

maps δEij ∈Homkj−ki+1(Ei,Ej), 1≤ i < j ≤N , satisfying the equation

(3.2)
∑

k≥1

μk
(

δE , . . . , δE
)

= 0,

i.e.,
∑

k≥1

∑

i=i0<i1<···<ik=j μ
k(δEik−1ik

, . . . , δEi0i1) = 0 for all 1≤ i < j ≤N .

A degree d morphism of twisted complexes is simply a degree d map between

the underlying formal direct sums, i.e. if E =
⊕
Ei[ki] and E′ =

⊕
E′
j [k

′
j ]

then an element of Homd(E,E′) is by definition a collection of morphisms

aij ∈Homd+k′
j−ki(Ei,E

′
j).

Finally, given twisted complexes (E0, δ
0), . . . , (Ek, δ

k), k ≥ 1, and mor-

phisms ai ∈Hom(Ei−1,Ei), we set

μkTw(ak, . . . , a1)

=
∑

j0,...,jk≥0

μk+j0+···+jk
(

δk, . . . , δk
︸ ︷︷ ︸

jk

, ak, . . . , δ
1, . . . , δ1

︸ ︷︷ ︸

j1

, a1, δ
0, . . . , δ0

︸ ︷︷ ︸

j0

)

.

(The sum is finite since each δi is strictly lower triangular.)

Proposition 3.5. The above construction defines a triangulated A∞-

category which we denote by TwA, and into which A embeds fully faithfully.

It is instructive to see how twisted complexes relate to ordinary chain

complexes:

Example 3.6. Given objects A,B,C of A and f ∈ hom0(A,B), g ∈
hom0(A,C), we can consider (A[2] ⊕ B[1] ⊕ C,δ = f + g), conventionally
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denoted by

{A f−→B
g−→C}.

This forms a twisted complex if and only if μ1(f) = μ1(g) = 0 and μ2(g, f) =

0, i.e. f and g are closed morphisms and their composition is zero. However,

we can also introduce an extra term h ∈ hom−1(A,C) into the differential

δ, in which case the last condition becomes μ2(g, f) + μ1(h) = 0: thus it is

sufficient for the composition of f and g to be exact, with a homotopy given

by h.

Definition 3.7. Given twisted complexes (E,δ), (E′, δ′) ∈TwA and a closed

morphism f ∈ hom0(E,E′) (i.e., such that μ1Tw(f) = 0), the abstract mapping

cone of f is the twisted complex

Cone(f) =

(

E[1]⊕E′,

(
δ 0

f δ′

))

.

Given objects A,B,C of A and a closed morphism f ∈ hom0(A,B), we say

that C is a mapping cone of f if, in the category of twisted complexes TwA,
the object C is quasi-isomorphic to the abstract mapping cone of f , {A f−→
B}= (A[1]⊕B,f).

When C is a mapping cone of f :A→B, by composing the inclusion of B

into the abstract mapping cone (resp. the projection to A[1]) with the given

quasi-isomorphism from the abstract mapping cone to C (resp. its quasi-

inverse) we obtain morphisms i :B→ C and p : C→ A[1], which sit with f

in an exact triangle.

3.3. Exact Triangles in the Fukaya Category

The reader may legitimately wonder about the relevance of the above discus-

sion to Fukaya categories. It turns out that at least some mapping cones in

the Fukaya category of a symplectic manifold can be understood geometri-

cally. There are two well-known sources of these: Dehn twists, and Lagrangian

connected sums.

3.3.1. Dehn Twists. The symplectic geometry of Dehn twists was first

considered by Arnold, and later studied extensively by Seidel [41, 42]. The

local model is as follows. In the cotangent bundle T ∗Sn equipped with
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Fig. 8. The generating Hamiltonian on the complement of the zero section in T ∗Sn, and
the action of the Dehn twist on a cotangent fiber

its canonical symplectic form, a Hamiltonian of the form H(p, q) = h(‖p‖)
(where p is the fiber coordinate and ‖ · ‖ is the standard metric) generates a

rescaled version of geodesic flow. Choosing h : [0,∞)→ R so that h′(0) = π,

h′′ ≤ 0, and h is constant outside of a neighborhood of zero, we obtain a

Hamiltonian diffeomorphism of the complement of the zero section T ∗Sn\Sn,

which can be extended across the zero section by the antipodal map on Sn

to obtain a symplectomorphism of T ∗Sn (see Figure 8).

Now, given a Lagrangian sphere S in a symplectic manifold (M,ω), by

Weinstein’s theorem a neighborhood of S in M is symplectomorphic to a

neighborhood of the zero section in T ∗Sn; thus, performing the above con-

struction inside the standard neighborhood of S, we obtain a symplectomor-

phism τS , the Dehn twist about S, which is supported in a neighborhood of

S and maps S to itself antipodally. (Note: τS depends on the choices made

in the construction, but its isotopy class doesn’t.)

Theorem 3.8 (Seidel [41, 42]). Given a Lagrangian sphere S and any object

L of F(M,ω), there is an exact triangle in TwF(M,ω),

(3.3)

HF ∗(S,L)⊗ S L

τS(L)

ev

[1]

In other terms, the object τS(L) of F(M,ω) is quasi-isomorphic in

TwF(M,ω) to the abstract mapping cone of ev.

In (3.3), HF ∗(S,L)⊗ S is a direct sum of shifted copies of S, with one

summand for each generator ofHF ∗(S,L), and ev is a tautological evaluation
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map, mapping each summand to L by a closed morphism representing the

given generator of HF ∗(S,L) =H∗Hom(S,L).

Given a test object T , the corresponding long exact sequence (3.1) is

Seidel’s long exact sequence in Floer cohomology [41] associated to the Dehn

twist τS for all T,L:

· · · →HF ∗(S,L)⊗HF ∗(T,S)
μ2

−→HF ∗(T,L)−→HF ∗(T, τS(L)
) [1]−→ · · ·

3.3.2. Lagrangian Connected Sums. Given two Lagrangian submani-

folds L1,L2 which intersect transversely in a single point p, we can form the

Lagrangian connected sum (or surgery in the terminology of [38] and [21])

L1#L2. One possible construction is as follows. For ε > 0, the graph of the 1-

form ε d log ‖x‖ on R
n, given by the equations yi = εxi/‖x‖2, is a Lagrangian

submanifold of T ∗
R
n � C

n which is asymptotic to the zero section (i.e.,

R
n ⊂C

n) as ‖x‖→∞ and to the cotangent fiber over zero (i.e., (iR)n ⊂C
n)

as ‖y‖→∞; using suitable cut-off functions, we can modify this Lagrangian

so that it agrees with R
n ∪ (iR)n outside of a small neighborhood of the ori-

gin. Pasting this local model into a suitable Darboux chart centered at the

intersection point p and chosen so that TpL1 = R
n and TpL2 = (iR)n yields

L1#L2. (Note that, for a single connected sum operation, the end result is

independent of the size parameter ε and other choices up to Hamiltonian

isotopy; not so when summing at multiple points. Also note that L2#L1 is

not isotopic to L1#L2.)

Remark 3.9. When L2 is a sphere, L1#L2 is Hamiltonian isotopic to

τL2
(L1); this provides the basis for an alternative description of the con-

nected sum operation.

Given some other Lagrangian submanifold T (in generic position rela-

tively to L1 and L2), choosing ε small enough in the above construction en-

sures that the intersections of T with L1#L2 are the same as with L1 ∪L2.

Fukaya-Oh-Ohta-Ono [21] have studied the moduli spaces of J -holomorphic

discs bounded by L1#L2 and T . Their main result is that, for suitable J

and small enough ε, J -holomorphic strips with boundary on T and L1#L2

connecting an intersection in T ∩L2 to one in T ∩L1 are in bijection with J -

holomorphic triangles bounded by T , L2 and L1 with a corner at p, whereas

the counts of rigid strips in the other direction vanish. This is elementary in

dimension 1, as illustrated by Figure 9, but much harder in higher dimen-

sions.
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Fig. 9. The Lagrangian connected sum L1#L2 vs. L1 ∪L2

The outcome is that, as a chain complex, CF (T,L1#L2) is the mapping

cone of the map μ2(p, ·) :CF (T,L2)→CF (T,L1) given by multiplication by

the generator p of CF (L2,L1). Hence, the short exact sequence

0→CF (T,L1)→CF (T,L1#L2)→CF (T,L2)→ 0

induces a long exact sequence

· · · →HF (T,L1)−→HF (T,L1#L2)−→HF (T,L2)

μ2([p],·)−−−−−→HF (T,L1)→ · · ·

By an analogous argument for higher structure maps, one expects that

this long exact sequence can be upgraded to an exact triangle in the Fukaya

category,

(3.4)

L2 L1

L1#L2

p

[1]

i.e., L1#L2 is quasi-isomorphic to the twisted complex Cone(p) = {L2
p→ L1}.

(If L2 is a sphere, this is Seidel’s exact triangle for the Dehn twist of L1

about L2.)

Remark 3.10. Recall that, by definition, the differential μ1Tw on

hom(T,Cone(p)) involves not only the original Floer differential μ1, but also

multiplication by the differential of the twisted complex, i.e. μ2(p, ·). This is
exactly consistent with the above description of J -holomorphic strips with

boundary on T and L1#L2. Thus, replacing Lagrangian submanifolds by
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quasi-isomorphic twisted complexes built out of simpler Lagrangians, while

computationally powerful, comes at the expense of having to consider higher

operations on their Floer complexes (in this case, the expression for μ1Tw

involves μ2, and similarly that for μ2Tw involves μ3).

3.4. Generation and Yoneda Embedding

3.4.1. Generators and Split-Generators.

Definition 3.11. The objects G1, . . . ,Gr are said to generate the A∞-

category A if, in TwA, every object of A is quasi-isomorphic to a twisted

complex built from copies of G1, . . . ,Gr. (In other terms, every object of A
can be obtained from G1, . . . ,Gr by taking iterated mapping cones.)

The objects G1, . . . ,Gr are said to split-generate A if every object of A is

quasi-isomorphic to a direct summand in a twisted complex built from copies

of G1, . . . ,Gr.

Example 3.12. Consider the Fukaya category of the torus T 2 with its stan-

dard area form. Starting from the standard curves α and β along the two

factors of the torus, by taking iterated mapping cones we can obtain simple

closed curves representing all nontrivial primitive elements in π1(T
2) = Z

2.

For instance, the loop τα(β) � β#α (Figure 10 left) is quasi-isomorphic to

the mapping cone of p ∈Hom(α,β); further applications of the Dehn twists

τα and τβ (which generate the mapping class group of T 2) eventually yield

simple closed curves in all primitive homotopy classes. However, the objects

obtained in this manner all satisfy a certain “balancing” condition: given a

1-form θ ∈ Ω1(T 2 \ {pt}) with dθ = ω and such that
∫

α θ =
∫

β θ = 0, θ also

integrates to zero on all iterated mapping cones built from α and β. For

instance, all the simple closed curves that can be obtained in a given homo-

topy class are Hamiltonian isotopic to each other. Thus, α and β generate

the subcategory of F(T 2) consisting of Lagrangians which are balanced with

respect to θ, but not all of F(T 2).

On the other hand, given the two loops β and γ shown on Figure 10

right, the mapping cone of T a1q1 + T a2q2 ∈ Hom(γ,β) can be interpreted

geometrically as the connected sum of β and γ at their two intersection

points q1 and q2, with different gluing parameters. This mapping cone is

therefore quasi-isomorphic to the direct sum of two simple closed curves in

the homotopy class of α, but whose Hamiltonian isotopy classes depend on
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Fig. 10. Split-generating the Fukaya category of T 2

a1 and a2. Thus, by considering direct summands in mapping cones we can

obtain all nontrivial simple closed curves up to Hamiltonian isotopy, rather

than only those that are balanced: α and β split-generate F(T 2).

3.4.2. Yoneda Embedding. Let G1, . . . ,Gr be split-generators of the

A∞-category A. Then the endomorphism algebra of G1 ⊕ · · · ⊕Gr,

G =

r⊕

i,j=1

hom(Gi,Gj)

is an A∞-algebra (with structure maps given by the operations μk of A).
Next, given any object L of A,

Y(L) =
r⊕

i=1

hom(Gi,L)

is a (right) A∞-module over G, with differential given by μ1, multiplication

μ1|1 given by the operations

hom(Gj ,L)⊗ hom(Gi,Gj)
μ2

−→ hom(Gi,L),

and so on (the structure map μ1|k of Y(L) is given by μk+1).

Moreover, to a morphism a ∈ hom(L,L′) we can associate an A∞-

homomorphism Y(a) ∈ hommod-G(Y(L),Y(L′)), whose linear term is given

by composition with a.

The assignment L �→ Y(L), a �→ Y(a) is in turn the linear term of an

A∞-functor Y , which is the restriction to the given set of objects G1, . . . ,Gr

of the A∞ Yoneda embedding A→mod-A (see e.g. [42, §1]):
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Proposition 3.13. The above construction extends to an A∞-functor Y
from A to mod-G. Moreover, if G1, . . . ,Gr split-generate A then this A∞-

functor is a fully faithful quasi-embedding.

4. The Wrapped Fukaya Category, Examples and

Applications

In this section we assume that (M,ω) is a Liouville manifold, i.e. an exact

symplectic manifold such that the Liouville vector field Z associated to the

chosen primitive θ ∈ Ω1(M) of the symplectic form (i.e., the conformally

symplectic vector field defined by ιZω = θ) is complete and outward pointing

at infinity. More precisely, we require thatM contains a compact domainM in

with boundary a smooth hypersurface ∂M on which α = θ|∂M is a contact

form, and Z is positively transverse to ∂M and has no zeroes outside of

M in. The flow of Z can then be used to identify M \M in with the positive

symplectization (1,∞)× ∂M equipped with the exact symplectic form ω =

d(rα) and the Liouville field Z = r ∂
∂r .

In this setting it is natural to consider not only compact exact Lagrangian

submanifolds as we have done above, but also some noncompact ones with

suitable behavior at infinity. There are two different types of such noncom-

pact Fukaya categories, depending on the manner in which perturbations

at infinity are used to define Floer complexes. One possibility is to perform

“small” perturbations at infinity, restricting oneself to a smaller set of “ad-

missible” objects which go to infinity along well-controlled directions. Two

constructions that follow this philosophy are the “infinitesimal” Fukaya cat-

egory first defined by Nadler and Zaslow for cotangent bundles [31] and later

extended to Liouville manifolds equipped with a choice of Lagrangian skele-

ton; and Fukaya categories of Lefschetz fibrations as constructed by Seidel

[42, 44], and their putative generalization to Landau-Ginzburg models, in

which the behavior at infinity is controlled by a projection to the complex

plane. Here we focus on the other approach, which is to consider large pertur-

bations at infinity, leading to the wrapped Fukaya category of Abouzaid and

Seidel [3, 9]. For completeness we mention the nascent subject of partially

wrapped Fukaya categories, which attempt to interpolate between these two

approaches (cf. e.g. [13]).
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Fig. 11. Wrapping by a quadratic Hamiltonian

4.1. The Wrapped Fukaya Category

The objects of the wrapped Fukaya category W(M) of a Liouville manifold

(M,ω = dθ) are exact Lagrangian submanifolds L⊂M which are conical at

infinity, i.e. invariant under the flow of the Liouville vector field outside of

a compact subset, and such that the exact 1-form θ|L vanishes outside of

a compact set. In other terms, if L is noncompact then at infinity it must

coincide with the cone (1,∞)× ∂L over some Legendrian submanifold ∂L of

∂M .

The Hamiltonian perturbations used to define Floer complexes in the

wrapped setting are very specific: namely, we only consider Hamiltonians

H :M → R which, outside of a compact subset of M , satisfy H = r2 where

r ∈ (1,∞) is the radial coordinate of the symplectization (1,∞)×∂M . Thus,

outside of a compact set the Hamiltonian vector field XH is equal to 2r times

the Reeb vector field Rα of the contact form α on ∂M .

Given two objects L0,L1, the generating set X (L0,L1) of the wrapped

Floer complex CW (L0,L1) = CW (L0,L1;H) consists of time 1 trajectories

of the flow of XH which start on L0 and end on L1, i.e. points of φ
1
H(L0)∩L1.

More concretely, these consist of (perturbed) intersections between L0 and

L1 in the interior M in on one hand, and Reeb chords (of arbitrary length)

from ∂L0 to ∂L1 on the other hand (see Figure 11). Thus, wrapped Floer

cohomology is closely related to Legendrian contact homology. (Of course,

we need to assume that φ1H(L0) intersects L1 transversely, and in particular

that the Reeb chords from ∂L0 to ∂L1 are non-degenerate; otherwise a small

modification of H is required.)

The differential on the wrapped Floer complex counts solutions to Floer’s

equation (1.6), i.e. perturbed J -holomorphic strips with boundary on L0 and
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L1, as in Section 1. (Note: due to exactness we can work directly over the

field K, without resorting to Novikov coefficients.) As in Remark 1.10, these

can equivalently be viewed as (φ1−t
H )∗J -holomorphic strips with boundary on

φ1H(L0) and L1. The assumptions made on the objects of W(M) and on the

Hamiltonian H ensure that, for suitably chosen J , perturbed J -holomorphic

strips are well-behaved: an a priori energy estimate ensures that all solutions

of (1.6) which converge to a given generator p ∈ X (L0,L1) as s→ +∞ re-

main within a bounded subset of M (see e.g. [3]). Thus, ∂p is a finite linear

combination of generators of the wrapped Floer complex.

A subtlety comes up when we attempt to define the product operation

on wrapped Floer complexes,

(4.1) CW (L1,L2;H)⊗CW (L0,L1;H)→CW (L0,L2;H).

For the perturbed Cauchy-Riemann equation (2.4) to be well-behaved and

satisfy a priori energy estimates in spite of the non-compactness of M , one

needs the 1-form β that appears in the perturbation term XH ⊗ β to sat-

isfy dβ ≤ 0 (cf. [3, 9]). In other terms, the naturally defined product map

would take values in CW (L0,L2; 2H), and the usual continuation map from

this complex to CW (L0,L2;H) fails to be well-defined. This can be reme-

died using the following rescaling trick alluded to in [20] and systematically

developed in [3].

Recall that the flow of the Liouville vector field is conformally symplectic

and, in the symplectization (1,∞)× ∂M where Z = r ∂
∂r , simply amounts to

rescaling in the r direction. For ρ > 1, denote by ψρ the time logρ flow of Z,

which rescales r by a factor of ρ. Then there is a natural isomorphism

(4.2) CW (L0,L1;H,J)∼=CW
(

ψρ(L0),ψ
ρ(L1);ρ

−1H ◦ψρ,ψρ
∗J

)

.

Moreover, our assumptions imply that ψρ(Li) is exact Lagrangian isotopic

to Li by a compactly supported isotopy, and ρ−1H ◦ ψρ coincides with ρH

at infinity. Abouzaid shows that these properties ensure the existence of a

well-defined product map

(4.3) CW (L1,L2;H,J)⊗CW (L0,L1;H,J)

→CW

(

ψ2(L0),ψ
2(L2);

1

2
H ◦ψ2,ψ2

∗J

)

,

determined by counts of index 0 finite energy maps u :D→M from a disc

with three strip-like ends to M , mapping the three components of ∂D to the
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images of the respective Lagrangians under suitable Liouville rescalings, and

solving the perturbed Cauchy-Riemann equation

(du−XH̃ ⊗ β)
0,1

J̃
= 0,

where β is a closed 1-form on D with β|∂D = 0 which is standard in the

strip-like ends (modelled on dt for the input ends, 2dt for the output end),

and H̃ and J̃ are obtained from H and J by suitable rescalings (H̃ = H

and J̃ = J near the input punctures; H̃ = 1
4H ◦ ψ2 and J̃ = ψ2

∗J near the

output puncture; see [3]). The map (4.3), composed with the isomorphism

(4.2), yields the desired product map (4.1). The higher products

μk :CW (Lk−1,Lk;H)⊗ · · · ⊗CW (L0,L1;H)→CW (L0,Lk;H)

are constructed in the same manner [3]. These structure maps make W(M)

an A∞-category, the wrapped Fukaya category of the Liouville manifold M .

Remark 4.1. The rescaling trick can be informally understood as fol-

lows. As mentioned above, the naturally defined product map on wrapped

Floer complexes takes values in CW (L0,L2; 2H); while the usual con-

struction of a continuation map cannot be used to map this complex to

CW (L0,L2;H), the fact that 1
2H ◦ ψ2 = 2H at infinity and the assump-

tions made on L0 and L2 imply that there is a well-defined continua-

tion map to CW (ψ2(L0),ψ
2(L2);

1
2H ◦ ψ2), which by (4.2) is isomorphic to

CW (L0,L2;H). (Note: while this is a slightly simpler way to describe the

cohomology-level product, it lacks the compatibility and consistency features

needed to construct the chain-level A∞-structure, hence the slightly more

complicated construction in [3]).

Remark 4.2. Since compact exact Lagrangian submanifolds ofM in are not

affected by the wrapping at infinity,W(M) contains the ordinary Fukaya cat-

egory (of compact exact Lagrangian submanifolds) as a full A∞-subcategory.

4.2. An Example

Let M = T ∗S1 = R × S1, equipped with the standard Liouville form r dθ

and the wrapping Hamiltonian H = r2, and consider the exact Lagrangian

submanifold L = R × {pt}. We can label the intersection points of φ1H(L)

with L by integers, X (L,L) = {xi, i ∈ Z}, in increasing order along the real

axis, where x0 is the intersection occurring at the minimum of H ; in other

terms, x0 is an interior intersection of L with a small pushoff of it, while the
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Fig. 12. The wrapped Floer cohomology of L=R× {pt} in R× S1

other generators correspond to Reeb chords from ∂L= {pt} � {pt} to itself

in the contact manifold ∂M = S1 � S1 (see Figure 12).

Recall that the differential on CW (L,L) counts rigid pseudo-holomorphic

strips (for a t-dependent almost-complex structure) with boundary on L and

φ1H(L). Since there are no such strips (see Figure 12), the Floer differential

on CW (L,L) vanishes identically, and HW (L,L) � CW (L,L) = span{xi,
i ∈ Z}. (This can also be seen by observing that all generators of CW (L,L)

have degree 0 for the natural Z-grading.)

The product structure on CW (L,L) counts perturbed pseudo-holomorph-

ic discs with three strip-like ends, as explained above; in the present

case, L is invariant under the Liouville flow ψρ : (r, θ) �→ (ρr, θ), while

H ◦ ψρ = ρ2H . Thus, the rescaling trick only affects the almost-complex

structure (i.e., ψ2 intertwines CW (L,L;H,J) and CW (L,L; 2H,ψ2
∗J)), and

otherwise simply amounts to identifying X (L,L; 2H) = φ2H(L) ∩ L with

X (L,L;H) = φ1H(L)∩L via the radial rescaling r �→ 2r.

Proceeding as in Remark 1.10, the perturbed pseudo-holomorphic discs

with boundary on L which determine the product on CW (L,L) can then be

reinterpreted as genuine pseudo-holomorphic discs (with respect to a modi-

fied family of almost-complex structures) with boundaries on φ2H(L), φ1H(L)

and L. Specifically, the coefficient of a generator q ∈ X (L,L) in the prod-

uct p2 · p1 of two generators p1, p2 ∈ X (L,L) is given by a count of index 0

pseudo-holomorphic discs with boundaries on φ2H(L), φ1H(L) and L, and with

strip-like ends converging to the intersection points φ1H(p1) ∈ φ2H(L)∩φ1H(L),

p2 ∈ φ1H(L) ∩ L, and q̃ ∈ φ2H(L) ∩ L, where q̃ corresponds to q ∈ φ1H(L) ∩ L
under the Liouville rescaling.

With this understood, the product structure can be determined directly

by looking at Figure 12. Observe that any two input intersections φ1H(xi) ∈
φ2H(L) ∩ φ1H(L) and xj ∈ φ1H(L) ∩ L are the vertices of a unique immersed

triangle, whose third vertex is x̃i+j ∈ φ2H(L) ∩ L. (This is easiest to see by

lifting the diagram of Figure 12 to the universal cover of M .) These triangles
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are all regular, and we conclude that

xj · xi = xi+j .

(Recall that thanks to exactness we are working over K and not keeping track

of symplectic areas.) For example, the triangle shaded in Figure 12 illustrates

the identity x0 ·x1 = x1. In other terms, renaming the generator xi to x
i, we

have a ring isomorphism

(4.4) CW (L,L)�K
[

x,x−1
]

.

Furthermore, the higher products on CW (L,L) are all identically zero, as can

be checked either by drawing the successive images of L under the wrapping

flow and looking for rigid holomorphic polygons (there are none), or more

directly by recalling that deg(xi) = 0 for all i ∈ Z whereas deg(μk) = 2− k.
Thus (4.4) is in fact an isomorphism of A∞-algebras.

4.3. Cotangent Bundles

The previous example is the simplest case of a general result about cotangent

bundles. Let N be a compact spin manifold, and letM = T ∗N equipped with

its standard Liouville form pdq and the wrapping Hamiltonian H = ‖p‖2 (for
some choice of Riemannian metric on N ). Then we have:

Theorem 4.3 (Abouzaid [6]). Let L = T ∗
qN , the cotangent fiber at some

point q ∈N . Then there is a quasi-isomorphism of A∞-algebras

(4.5) CW ∗(L,L)�C−∗(ΩqN)

between the wrapped Floer complex of L = T ∗
qN and chains on the based

loop space ΩqN equipped with (an A∞-refinement of) the usual Pontryagin

product.

(The corresponding statement for cohomology is an earlier result of Ab-

bondandolo and Schwarz [2].)

For instance, in the case of N = S1, the based loop space ΩqS
1 has

countably many components, each of which is contractible, thus ΩqS
1 ∼ Z,

and (4.5) reduces to (4.4). In fact, the assumption that N is spin can be

removed; in that case, CW ∗(L,L) is related to chains on ΩqN twisted by

the Z-local system determined by w2(N) [6].
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Furthermore, Abouzaid has shown that the fiber L= T ∗
qN generates the

wrapped Fukaya category W(T ∗N) [4]. Using Yoneda embedding (cf. Sec-

tion 3.4.2), we conclude:

Corollary 4.4 (Abouzaid). The wrapped Fukaya category W(T ∗N) quasi-

embeds fully faithfully into the category of A∞-modules over C−∗(ΩqN).

(Here again, when N is not spin a twist by a suitable local system is

required.)

This and other related results can be viewed as the culmination of over

a decade of investigations of the deep connections between the symplectic

topology of T ∗N and the algebraic topology of the loop space of N , as previ-

ously studied by Viterbo [48], Salamon-Weber [39], Abbondandolo-Schwarz

[1, 2], Cieliebak-Latschev [16], etc.

At the same time, studying Fukaya categories of cotangent bundles has

led to much progress on Arnold’s conjecture on exact Lagrangian submani-

folds:

Conjecture 4.5 (Arnold). Let N be a compact closed manifold: then any

compact closed exact Lagrangian submanifold of T ∗N (with its standard Li-

ouville form) is Hamiltonian isotopic to the zero section.

Theorem 4.6 (Fukaya-Seidel-Smith [20], Nadler-Zaslow [31], Abouzaid [7],

Kragh [26]). Let L be a compact connected exact Lagrangian submanifold of

T ∗N . Then as an object of W(T ∗N), L is quasi-isomorphic to the zero sec-

tion, and the restriction of the bundle projection π|L : L→N is a homotopy

equivalence.

Abouzaid has further shown that Floer theory detects more than purely

topological information about exact Lagrangians in cotangent bundles: cer-

tain exotic spheres (in dimensions ≥ 9) do not admit Lagrangian embeddings

into T ∗S4k+1 [8].

However, in spite of all the recent progress, Conjecture 4.5 appears to

remain out of reach of current technology.

4.4. Homological Mirror Symmetry

Kontsevich’s homological mirror symmetry conjecture [24] asserts that the

main manifestation of the phenomenon of mirror symmetry is as a derived
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equivalence between the Fukaya category of a symplectic manifold and the

category of coherent sheaves of its mirror. While this conjecture was initially

stated for compact Calabi-Yau manifolds (and recently proved for the quintic

3-fold by Sheridan [46]), it also holds (and is often easier to prove) for non-

compact manifolds (in which case one should consider the wrapped Fukaya

category), and outside of the Calabi-Yau case (in which case the mirror

is a Landau-Ginzburg model, for which one should consider Orlov’s derived

category of singularities [35, 36] rather than the ordinary derived category

of coherent sheaves).

The calculation we have performed in Section 4.2, together with

Abouzaid’s generation statement, essentially proves homological mirror sym-

metry for the cylinder C∗ = T ∗S1, and its mirror C∗ = SpecC[x±1]. Namely,

coherent sheaves over C
∗ are the same thing as finite rank C[x±1]-modules.

However, since the object L considered in Section 4.2 generates the wrapped

Fukaya category, W(T ∗S1) quasi-embeds into the category of modules over

CW (L,L) � C[x±1], and the image can be characterized explicitly enough

to prove the desired equivalence between W(T ∗S1) and DbCoh(C∗).

This general approach extends to other examples, with the caveat that in

general there are infinitely many non-trivial higher A∞-operations; one then

needs to rely on an algebraic classification result in order to determine which

structure coefficients need to be computed in order to fully determine the

A∞-structure up to homotopy. Symplectic manifolds whose Fukaya categories

have been determined in this manner include (but are not limited to) pairs

of pants [10], genus 2 curves [43], and Calabi-Yau hypersurfaces in projective

space [46].

4.5. An Application to Heegaard-Floer Homology

Heegaard-Floer homology associates to a closed 3-manifold Y a graded

abelian group ĤF (Y ). This invariant is constructed by considering a Hee-

gaard splitting Y = Y1 ∪Σ̄ Y2 of Y into two genus g handlebodies Yi, each

of which determines a product torus Ti in the g-fold symmetric product of

the Heegaard surface Σ̄ = ∂Y1 =−∂Y2. Deleting a marked point z from Σ̄ to

obtain an open surface Σ, ĤF (Y ) is then defined as the Floer cohomology

of the Lagrangian tori T1, T2 in the symplectic manifold Symg(Σ), see [37].

In this context it is natural to study the Fukaya category (ordinary or

wrapped) of Symg(Σ) (equipped with a Kähler form which agrees with the

product one away from the diagonal). It turns out that the wrapped category
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Fig. 13. Generating W(Symg(Σ))

has a particularly nice set of generators. Namely, consider a collection of 2g

disjoint properly embedded arcs α1, . . . , α2g in Σ such that Σ \(α1∪· · ·∪α2g)

is homeomorphic to a disc, see e.g. Figure 13. Given a g-element subset

s⊆ {1, . . . ,2g}, the productDs =
∏

i∈sαi is an exact Lagrangian submanifold

of Symg(Σ), and we have:

Theorem 4.7 [13, 14]. The Lagrangian submanifolds Ds =
∏

i∈sαi, s ⊆
{1, . . . ,2g}, |s|= g generate W(Symg(Σ)).

Thus, by Yoneda embedding, Lagrangian submanifolds of Symg(Σ) can

be viewed as modules over the A∞-algebra
⊕

s,s′ hom(Ds,Ds′).

Determining this A∞-algebra is not completely hopeless, as the wrapping

Hamiltonian H on Symg(Σ) can be chosen in a manner compatible with the

product structure so that φ1H(Ds) =
∏

i∈s φ
1
h(αi), where h is a Hamiltonian on

Σ that grows quadratically in the cylindrical end, and pseudo-holomorphic

discs in the symmetric product can be viewed by projecting them to Σ as is

customary in Heegaard-Floer theory; nonetheless, things are complicated by

the presence of many nontrivial A∞-products.

It is easier to study a partially wrapped version of the Fukaya category,

in which the wrapping “stops” along a ray {z} × (1,∞) in the cylindrical

end of Σ; i.e., the Hamiltonian is again chosen to be compatible with the

product structure away from the diagonal, but the effect on each component

is to push the ends of the arc αi in the positive direction towards the ray

{z} × (1,∞), without ever crossing it: see [13]. Theorem 4.7 continues to

hold in this setting: the product Lagrangians Ds also generate the partially

wrapped Fukaya category. Furthermore, in the partially wrapped case the

A∞-algebra A=
⊕

s,s′ hom(Ds,Ds′) turns out to be a finite-dimensional dg-

algebra (i.e., μk = 0 for k ≥ 3) which admits a simple explicit combinatorial

description [13]; in fact, A is precisely the strands algebra first introduced by

Lipshitz, Ozsváth and Thurston [27].
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By Yoneda embedding, Lagrangian submanifolds of Symg(Σ), such as

the product tori associated to genus g handlebodies in Heegaard-Floer the-

ory, can be viewed as A∞-modules over the strands algebra. Moreover, the

same holds true for generalized Lagrangian submanifolds of Symg(Σ) (i.e.,

formal images of Lagrangian submanifolds under sequences of Lagrangian

correspondences, cf. [49]), such as those associated to arbitrary 3-manifolds

with boundary Σ̄ (not just handlebodies) according to ongoing work of Lekili

and Perutz. This provides a symplectic geometry interpretation of Lipshitz-

Ozsváth-Thurston’s bordered Heegaard-Floer homology [27], which associates

to a 3-manifold Y with boundary ∂Y = Σ̄ an A∞-module ĈFA(Y ) over the

strands algebra. Namely, Lekili and Perutz’s construction associates to such

a 3-manifold a generalized Lagrangian submanifold of Symg(Σ), whose im-

age under Yoneda embedding (as in Section 3.4.2, but using quilted Floer

cohomology of Lagrangian correspondences) is the A∞-module ĈFA(Y ); see

[13, 14].

4.6. A Closing Remark

The methods available to calculate Floer cohomology and Fukaya categories

are still evolving rapidly. Besides the use of algebraic generation statements

such as those in [3] and [42] to reduce to a simpler set of Lagrangian subman-

ifolds, there are at least two key ideas that have made calculations possible.

On one hand, it is often possible to find holomorphic projection maps

(to the complex plane or to other Riemann surfaces) under which the given

Lagrangians project to arcs or curves, in which case holomorphic discs can

be studied by looking at their projections to the base and by reducing to the

symplectic geometry of the fiber; this is e.g. the guiding principle of Seidel’s

work on Lefschetz fibrations [42, 44] and the various calculations done using

that framework.

At the same time, since such holomorphic projections are easier to come

by on open manifolds, another idea that nicely complements this one is to

carry out calculations for an exact open subdomain M0 of the given sym-

plectic manifold M obtained by deleting some complex hypersurface, and

then use abstract deformation theory to view the Fukaya category of M as

an A∞-deformation of that of M0 (cf. [40]). The Hochschild cohomology

class that determines the deformation is then often determined by symmetry

considerations and/or by studying specific A∞-structure maps (i.e., certain

counts of holomorphic discs in M ). See e.g. [43, 46] for an illustration of this
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approach. (One guiding principle which might explain why this approach is

so successful is that algebraic deformations of Fukaya categories are often

geometric: natural “closed-open” maps from the quantum or symplectic co-

homology of M to the Hochschild cohomology of its ordinary or wrapped

Fukaya category often turn out to be isomorphisms [11, 22].)

Going forward, there is hope that sheaf-theoretic methods will lead to

completely new methods of computation of Fukaya categories (at least for

Liouville manifolds) in terms of the topology of a Lagrangian “skeleton”.

This is an idea that to our knowledge originated with Kontsevich [25], and

was subsequently developed by various other authors (see e.g. [5, 30, 45, 47]);

the ultimate goal being to bypass the analysis of pseudo-holomorphic curves

in favor of algebraic and topological methods. It is too early to tell how

successful these approaches will be, but it is entirely possible that they will

ultimately supplant the techniques we have described in this text.
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1. Introduction

Projective algebraic geometry is a field in which meaningful classification and

existence questions of manifolds have been answered. Complete theories have

been developed in the last two centuries: from the classification of algebraic

curves already completed by Riemann, the study and classification of surfaces

by the Italian school at the beginning of the 20th century, to the more recent

high–dimensional analogues studied by means of Mori theory. There are two

central ingredients in these theories:

– The existence of algebraic curves in abundance in a projective variety.

– The theory of divisors: the algebraic understanding of the codimension

one subvarieties of a projective variety.

Symplectic manifolds can be thought as topological generalizations of the

projective varieties. In the projective setting the essential geometric object
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from which the theory is developed is the hyperplane divisor. In symplectic

geometry the symplectic form is the topological analogue of this divisor: in

a projective variety the Poincaré dual of the hyperplane section is the in-

duced Fubini–Study symplectic form. Therefore, for a while, it was thought

that the classification of symplectic manifolds could be achieved by the same

methods as in the projective case. For that to work a correct generalization of

the concept of algebraic curve and divisor had to be provided. The algebraic

curves concept was generalized by the notion of pseudo-holomorphic curves

introduced by Gromov [18] and has been shown to be central in the develop-

ment of the symplectic topology. In real dimension 4, a divisor coincides with

an algebraic curve and this has been enough to push a meaningful theory

in such a situation. There was left to procure an analogue of the Riemann–

Roch theorem providing the existence of algebraic curves when topologically

expected. In the nineties, C. Taubes showed how to handle this by intro-

ducing a relation with the Seiberg–Witten invariants [31]. From that point

onwards a partial classification of 4-dimensional symplectic manifolds has

been achieved, e.g. see [22].

In higher dimensions a correct theory of divisors is lacking and probably

it is not reasonable to expect it, since the symplectic geography problem in

high dimensions is considerably wild, cf. [17, 26]. However, the particular

case of very ample divisors was worked out by S. Donaldson in a series of

foundational articles [7, 9]. The claim is that a theory of asymptotically very

ample divisors can be developed in symplectic geometry, in other words very

ample linear systems are available. The notion of ampleness is related to

positivity, which holds due to the non-degeneracy of the symplectic form.

The implications of these results are the same as in projective geometry:

– Bertini’s theorem on the existence and genericity of smooth very ample

divisors [7].

– Existence of symplectic Lefschetz pencils [9] and associated symplectic

invariants [3, 8].

– Connectedness of the space of very ample divisors [1].

– High-dimensional linear systems in the symplectic setting [2].

Maybe, the main conclusion is the existence of nice decompositions of a

symplectic manifold in the same fashion as in the projective setting. This

is not enough to classify though, but it provides a better understanding of

the symplectic topology. In other words, a Lefschetz pencil is a clever way of

trivializing a symplectic manifold. Therefore, the implications of the existence
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result are the usual implications of a statement providing a combinatorial

description of a geometric object: construction of solutions of equations [10]

and building blocks for the definition of new theories [30].

Contact geometry can be understood as a conformal analogue of the

symplectic geometry and from this understanding the Donaldson techniques

have been adapted to the contact setting. However, the general picture was

initially far less clear since there is no classical analogue of the projective

setting for contact manifolds. It turned out that there is one: the goal of

these notes is to show its behaviour and the results it produces. The his-

tory developed as follows. The first attempt was to study the existence of

codimension 2 contact submanifolds on a general contact manifold [21], this

was non-achievable by the h-principle and it is the expected analogue of the

Bertini’s theorem in contact geometry. Not surprisingly, the contact picture

was much more flexible than the symplectic one and it was shown that any

codimension 2 integer homology class on a closed contact manifold admits a

smooth contact representative. The next two constructions to be worked out

are the analogues of the:

– Lefschetz pencil decomposition of a symplectic manifold [9].

– Decomposition of a symplectic manifold in terms of a very ample divisor

and its Stein complementary [4].

The equivalent of the Stein-divisor decomposition for a contact manifold is

the open book decomposition constructed by Giroux and Mohsen [15, 16].

There, the Stein manifold in which the symplectic manifold is trivialized is

substituted by a 1-parametric family of Stein manifolds, the so-called leaves

of the open book, and the divisor becomes a codimension 2 contact subman-

ifold. The equivalent of the Donaldson’s construction is straightforward and

introduces the concept of a contact Lefschetz pencil [28]. The idea in that

case is to produce a codimension 2 fibration over the sphere whose fibers are

contact manifolds, special singular fibers are also allowed corresponding to

parametric holomorphic singularities.

The central question concerns the possible uses of these constructions,

the essential feature being that these constructions are almost topological.

In other words, they are h-principle achievable: there is no need for a contact

structure in order to produce them, an almost contact structure is enough for

them to exist. In case the contact structure could be recovered, they would

produce an existence result in contact topology: any almost contact structure

could be deformed to a contact one. This was highly unexpected a decade
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ago but nowadays it seems to be a reasonable statement in contact topol-

ogy. The reason for the old perception is based on the fact that the almost

symplectic condition does not imply the existence of a symplectic structure,

which was proved in the late nineties. Hence it was believed to be a matter

of time to find equivalent examples in the contact category. Nevertheless, the

appearance of the previously mentioned decompositions gave support to the

idea of almost contact implying contact being conceivable. The reason is that

both the Stein-divisor decomposition and the Lefschetz pencil decomposition

are not doable in the almost symplectic setting and they constitute an actual

geometric obstruction to the existence of a symplectic structure on a general

almost symplectic manifold.

This approach has been successful in dimension 5, where any almost

contact manifold has been proved to be contact [5] through the appropriate

use of an almost contact pencil decomposition. The hope is that any of the

two decompositions will eventually succeed to prove the existence of a contact

structure in higher dimensions. Based on that, we detail in these notes the

construction of the two decompositions.

The structure of the article reads as follows. In Section 2 we establish

the foundations of the approximately holomorphic theory for almost contact

geometry. In Section 3 we provide the argument of E. Giroux for the existence

of open book decompositions adapted to a contact structure. In Section 4 we

detail the construction of almost contact Lefschetz pencils after [28] and [24].

2. Approximately Holomorphic Techniques

Let M be a (2n + 1)-dimensional smooth manifold. A global distribution

ξ ⊂ TM is said to be a contact structure if it admits a global 1-form α ∈
Ω1(M) such that ξ = kerα and α∧(dα)n > 0 everywhere. A contact manifold

is a manifold with a contact structure. The 1-form α defining the contact

structure is said to be a contact form for the distribution.

In the literature this definition corresponds to the notion of a cooriented

contact distribution, we will restrict ourselves to this case1. Note that the

1Just once and for all it is important to mention that all the results in these notes can
be easily adapted to the non-coorientable case. The essential point being that any non-
coorientable contact manifold admits a coorientable double-cover. Therefore to study non-
coorientable manifolds is reduced to study coorientable ones with free Z/2Z-actions. See
[21] for details.
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contact condition does not strictly depend on the choice of the 1-form α, any

other 1-form α′ = fα, with f :M −→R
+ a smooth function, also satisfies

α′ ∧
(

dα′)n = fn+1α∧ (dα)n > 0.

Let us emphasize the topological features of a contact distribution. There

are two topological objects appearing in the definition

(i) The distribution ξ, a real codimension 1 subbundle of TM .

(ii) The symplectic structure induced in the bundle ξ by dα. To be precise,

only the conformal symplectic class is determined: a change of form

α′ = fα as above does change the representatives from the symplectic

bundle (ξ, dα) to (ξ, fdα).

We therefore define an almost contact manifold as a (2n + 1)-dimensional

manifold M with a codimension-1 cooriented2 distribution ξ and a confor-

mally symplectic class on ξ, understood as an abstract bundle. A distribution

admitting a conformally symplectic class is called an almost contact struc-

ture. The almost contact condition might be seen as the formal necessary

condition for the existence of a contact structure. The long standing conjec-

ture in contact topology is

Conjecture 2.1. Any almost contact structure on a manifold M admits a

deformation in its homotopy class of almost contact structures to a contact

structure.

In the case of open manifolds M , the result is true and it is one of the

first applications of Gromov’s h-principle, see [19]. The situation is not as

established for closed manifolds. The conjecture was proven by R. Lutz [23]

for 3-dimensional closed manifolds. The classification of simply connected

5-dimensional contact closed manifolds allowed H. Geiges [12] to also answer

positively in these cases. The general 5-dimensional case was recently proved

by Casals et al., see [5]. The conjecture remains open in general, some recent

progress has been obtained by E. Giroux using the techniques described in

Section 3.

2The normal bundle TM/ξ of ξ as a subbundle of TM is trivial.
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2.1. The Quasi-contact Category

An initial strategy in a geometric setting consists in understanding the im-

plications of the h-principle; in our case we start with an almost-contact

manifold. The further structure that the h-principle offers is provided in the

following

Definition 2.2. A quasi-contact structure on a (2n+1)-dimensional mani-

fold M is a pair (ξ, β) satisfying:

– ξ is a cooriented distribution.

– β is a 1-form on M such that (ξ, dβ) is a symplectic bundle.

Observe that the condition is stronger than the almost-contact one for dβ

is necessarily closed, and not just a non-degenerate 2-form. However, it is still

weaker than the contact condition since (ξ, β) inducing a contact structure

would imply α = β, with the previous notations. As previously mentioned,

the quasi-contact condition can be reached through the h-principle, indeed

one may show:

Lemma 2.3. Any almost-contact structure admits a quasi-contact structure

in its homotopy class of symplectic hyperplane fields.

For the proof see Lemma 2.2 in [5] (see also [11]). In the article [5] the

definition of quasi-contact structure is given in a slightly more general setting,

however no further applications are obtained and so we may concentrate in

the more adapted definition above.

The fundamental property of quasi-contact manifolds is the closedness

condition d(dβ) = 0. This is the precise piece of data we require to develop

the theory of approximately holomorphic bundles: to begin with, a closed

2-form topologically induces a complex line bundle. Let us start with the

definitions: the pre-quantizable line bundle associated to the quasi-contact

structure (ξ, β) is the hermitian line bundle L :=M ×C with the choice of

connection ∇L = d− iβ.

A compatible almost complex structure for the quasi-contact structure

(ξ, β) is a compatible complex structure J for the symplectic bundle (ξ, dβ).

Also, a compatible metric for (ξ, β, J) is any Riemannian metric g such that

g(u, v) = dβ(u,Jv),
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for all u, v ∈ ξ and such that kerdβ is orthogonal to ξ. This amounts to a

choice of a unitary vector field in kerdβ. Let us fix the unitary vector field

orthogonal to ξ, it will be referred as the Reeb vector field R. We define the

1-form

α(v) := g(R,v),

that clearly satisfies kerα = ξ. We suppose that set of objects (ξ, β, g) and

the induced R and α are given. For convenience, we also fix the following

sequence of Riemannian metrics gk = k · g.

Let E be a hermitian complex bundle with connection ∇, we can split

the connection along ξ in its holomorphic and antiholomorphic parts since

∇ restricted to ξ is an operator between complex linear spaces and therefore

admits a decomposition

∇|ξ = ∂ + ∂̄.

As explained in Section 1, we should be able to produce symplectic and con-

tact divisors. In analogy with the projective setting, the procedure Donaldson

developed provides such divisors as vanishing loci of sections of a vector bun-

dle. Instead of complex submanifolds from holomorphic sections we procure

to obtain symplectic and contact submanifolds from asymptotically holo-

morphic sections. For a symplectic or contact structure to be induced in the

vanishing locus the intersection of the asymptotically holomorphic section

with the base manifold has to satisfy certain transversality condition. Let us

recall the following ideas from linear algebra:

Definition 2.4. A linear map f : Rn −→ R
r is said to be ε-transverse to

zero if it admits a right inverse of norm smaller than ε−1.

There is a more geometric way of understanding the previous property

Lemma 2.5. A linear map f :Rn −→R
r is ε-transverse to zero if and only

if there exists an r-dimensional subspace W ⊂R
n such that for any w ∈W ,

we have
∣
∣f(w)

∣
∣≥ ε|w|.

Proof. If there exists a right inverse g : Rr −→ R
n, set W = g(Rr). This

satisfies the required property. Conversely, suppose that such subspace W ⊂
R
n exists. Define g as the right inverse map of the restriction f :W −→R

r,

which exists since dimR(W ) = r. �
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The linear condition required for the tangent bundle of the submanifold

to be a symplectic subbundle can be stated as

Lemma 2.6 (Proposition 3 in [7]). Let f : Cn → C
r be an R-linear map

ε-transverse to zero. Suppose there exists a constant δ > 0, depending only

on ε, such that the antiholomorphic part of f satisfies

∣
∣f0,1

∣
∣≤ δ,

then kerf is a symplectic subspace of Cn.

The proof is based on the fact that the condition f0,1 = 0 implies that the

subspace is complex and therefore symplectic for the compatible symplectic

structure and the symplectic condition is open. We are in position to describe

the suitable transversality condition:

Definition 2.7. Let E −→M be a hermitian complex bundle with connec-

tion ∇. A section s :M −→ E is said to be ε-transverse to zero along ξ if

∀x ∈M any of the following conditions hold:

– |s(x)|> ε,

– ∇ξ(s)(x) : ξx→Ex is ε-transverse to zero.

A submanifold S
e
↪→ (M,ξ,β) is said to be quasi-contact if ξ is everywhere

transverse to S and (e∗(ξ), e∗β) is a quasi-contact structure on S. Let us

provide a simple way to decide whether the zero locus of a section is a quasi-

contact submanifold:

Lemma 2.8. For any ε > 0, there exists a δ > 0 such that if s :M −→E is

ε-transverse to zero along ξ and |∂̄s| ≤ δ, then the zero set Z(s) is a smooth

quasi-contact submanifold of M .

Proof. Denote by r the rank of the complex bundle E. The ε-transversality

along ξ, in particular, implies that the section is transverse to zero in the

usual sense, i.e. for any x ∈ Z(s), the linear map ∇s(x) is surjective. There-
fore, the set Z(s) is a smooth submanifold of dimension 2(n− r) + 1. The

transversality along ξ further implies that the submanifold Z(s) is trans-

verse to ξ, since for any point x ∈ Z(s) we have that the induced distribution

e∗(ξ) = ker∇ξs(x) on x has real dimension 2(n− r).
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It is left to verify that e∗(ξ) = ker∇ξs is symplectic everywhere, but for

a suitable choice of δ we are in the hypothesis of the Lemma 2.6. �

Note that ε-transversality is a C1-stable notion. Indeed, let s :M −→E

be a section ε-transverse along ξ and sδ :M −→ E a perturbative section

satisfying that |sδ|C1 ≤ δ. Then the perturbed section s + sδ still is (ε −
cδ)-transverse to zero along ξ for some universal constant c > 0. Thus, C1-

perturbations do not destroy the estimated transversality along ξ.

Let us define a central notion in the approximately holomorphic theory,

these are also referred as asymptotically holomorphic techniques since the

produced objects acquire a holomorphic behaviour at the limit. Given a line

bundle L on M constructed as above, we can associate to the hermitian

bundle E the following sequence of bundles Ek := E ⊗ L⊗k for k ∈ N. This

is related to the twisting sheaf in projective geometry, allowing to shift a

coherent sheaf to an affine behaviour. In quasi-contact geometry, our aim is

to produce the following objects:

Definition 2.9. A sequence of sections sk :M −→Ek is Cr-asymptotically

holomorphic if the following estimates hold

|sk|=O(1),
∣
∣∇lsk

∣
∣=O(1),

∣
∣∇l−1∂̄sk

∣
∣=O

(

k−1/2
)

, ∀l≤ r,

the norms being measured with respect to the gk-metric.

The index l will be omitted if it is clear from the context. As a conse-

quence of the previous discussion we conclude:

Corollary 2.10. Let sk :M −→ Ek be an asymptotically holomorphic se-

quence of sections ε-transverse to zero along ξ. For k large enough, the set

Z(sk) is a smooth quasi-contact submanifold.

The existence of ε-transverse asymptotically holomorphic sections is par-

tially guaranteed due to the following:

Theorem 2.11. Let E be a vector bundle, δ > 0 and sk :M −→ Ek be

an asymptotically holomorphic sequence of sections. There exists a constant

ε > 0 and an asymptotically holomorphic sequence of sections σk :M −→Ek

such that they are ε-transverse to zero along ξ and |σk − sk|C2 ≤ δ.
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We will give an overview of the proof of this Theorem in the rest of this

Section. However, it is just the generalization to the quasi-contact category

of the main result in [21]. The result implies the existence of quasi-contact

divisors with prescribed topology:

Corollary 2.12. Fix an integer homology class A ∈H2n−1(M,Z), there ex-

ists a smooth quasi-contact submanifold S representing it.

Proof. Let γ ∈H2(M,Z) be the Poincaré dual of A. Construct a hermitian

line bundle V with c1(V ) = γ. Apply the Theorem 2.11 to the sequence Vk =

V ⊗ L⊗k with starting sequence sk = 0. Since c1(Lk) = c1(L) = γ = PD(A),

any submanifold Z(σk), for k large enough, fulfills the requirements. �

The previous construction can also be made relative to a complex distri-

bution. Let sk :M −→E⊗L⊗k be a Cr-asymptotically holomorphic sequence

of sections and D ⊂ ξ any fixed complex distribution, it is simple to verify

that ∂Dsk :M −→D∗ ⊗E ⊗ L⊗k is a Cr−1-asymptotically holomorphic se-

quence of sections. There is also an existence result for this case:

Theorem 2.13. Let V be a line bundle, D ⊂ ξ complex distribution and

δ > 0. Consider sk :M −→ V ⊗L⊗k ⊗C
2 an asymptotically holomorphic se-

quence of sections. There exists a constant ε and an asymptotically holomor-

phic sequence of sections σk = (σk,0, σk,1) :M −→ V ⊗ L⊗k ⊗ C
2 such that

|sk − σk|C2 ≤ δ and ∂Dσk,0 ⊗ σk,1 − σk,0 ⊗ ∂Dσk,1 are ε-transverse to zero

along ξ.

The previous results also hold for the particular setting in which α= β,

systematically replacing the word quasi-contact by contact. This is the for-

mulation found in [21, 28]. However, the proofs remain practically unchanged

in this more general setting. D. Mart́ınez-Torres has provided a general the-

ory for the quasi-contact case in different articles [20, 24]. In his notation the

quasi-contact structures are called 2-calibrated structures. This Section is in-

tended to provide a short version of [24] centered just in 0 and 1-dimensional

linear systems; in that article the general theory for r-dimensional linear sys-

tems is worked out. The essential problem to overcome is to obtain transver-

sality for sequences of sections, there are two available techniques to do it:

– The one developed in [21], strictly working in the quasi-contact manifold

itself.
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– The relative version developed in [27] in which we embed the quasi-

contact structure in a symplectic manifold and the transversality is

achieved there.

We shall use the second alternative to deduce Theorem 2.11. The definitions

required for the symplectization setting are now provided.

2.2. The Symplectization of a Quasi-contact Structure

We define the symplectization of a quasi-contact structure (M,ξ = kerα,dβ)

as the symplectic manifold S(M) := M × [−τ, τ ] with the form ωS :=

d(β + tα), where τ > 0 is chosen small enough so that the form ωS sym-

plectic. We can construct the required data as restrictions of objects in the

symplectization. In particular, we will need:

(i) Any choice of compatible J can be extended to an almost-complex

structure Ĵ on TS(M) = ξ⊕R⊕∂t by declaring J∂t =R. This almost-

complex structure is compatible with ωS .

(ii) The associated Riemannian metric ĝ = ωS(·, Ĵ ·) extends g setting ∂t
to be orthonormal to TM ⊂ TS(M). Also, we define ĝk = kĝ.

(iii) The prequantizable bundle on the quasi-contact manifold is the re-

striction of the prequantizable bundle over S(M) defined as the trivial

bundle L= S(M)×C with connection ∇= d− iβ̂, for the primitive

form β̂ = β + tα.

These choices are to be assumed in the following discussion. Thus, we may use

the definitions of transversality and asymptotically holomorphic sequences

in the symplectic case, see [1]. We briefly recall them; given a hermitian

bundle E over S(M), denote Ek :=E⊗L⊗k. The fundamental notion in the

symplectic case is contained in the following:

Definition 2.14. A sequence of sections sk : S(M)−→Ek is Cr-asymptoti-

cally holomorphic if the following estimates hold,

|sk|=O(1),
∣
∣∇lsk

∣
∣=O(1),

∣
∣∇l−1∂̄sk

∣
∣=O

(

k−1/2
)

, ∀l≤ r,

the norms being measured with respect to the ĝk-metric.

The splitting of the connection in holomorphic and antiholomorphic parts

is a consequence of the usual decomposition ∇ = ∂ + ∂̄. The transversality

condition is analogously stated as
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Definition 2.15. Let E −→ S(M) be a hermitian complex bundle with con-

nection ∇. A section s : S(M)−→E is said to be ε-transverse to zero overM ,

if ∀x ∈M × {0} any of the following conditions hold:

– |s(x)|> ε,

– ∇M (s)(x) : (T (M × {0}))x→Ex is ε-transverse to zero.

Observe that an asymptotically holomorphic sequence of sections in the

symplectization sk : S(M)−→Ek restricts to M × {0} as an asymptotically

holomorphic sequence of sections e∗sk. It is less clear that transversality

along the quasi-contact distribution can be also achieved. Let us prove the

following

Proposition 2.16. Let s : S(M)−→E be an ε-transverse section over M .

Assume that |∂̄s| ≤ δ for some δ > 0 small enough and depending only on ε.

Then the restriction of the section

e∗s :M −→ e∗E

is an ε
2 -transverse section along ξ.

Proof. This is essentially a linear algebra question. Let 2r = rk(E) and fix

a point x ∈M for which |s(x)| ≤ ε, then the linear map

∇Ms(x) : ξx ⊕ 〈R〉→Ex

is ε-transverse to zero. Define ε′ = 3
4ε. Let δ > 0 be small enough such that

f = ∂s(x) is ε′-transverse to zero. Thus, there exists a right inverse of norm

smaller than (ε′)−1. By Lemma 2.5, this implies that there exists a 2r-

dimensional subspace W ⊂ ξx ⊕ 〈R〉 such that for any w ∈W ,

∣
∣f(w)

∣
∣≥ ε′|w|.

If W ⊂ ξx we are done. Otherwise, define V =W ∩ ξx and let U ⊂ V be

an isotropic r-dimensional subspace. Consider Û = f(U), then we obtain the

splitting Ex = Û⊕iÛ . The map f restricted to the subspace UC = U⊕JU ⊂ ξ
satisfies

∣
∣f(u)

∣
∣
2
=

∣
∣f(u1) + if(u2)

∣
∣
2
=

∣
∣f(u1)

∣
∣
2
+

∣
∣f(u2)

∣
∣
2 ≥

(

ε′
)2|u|2,

where u = u1 + Ju2 ∈ UC. Therefore f|ξ is ε′-transverse to zero. Again, for

fixed δ > 0 small enough, the linear map ∇ξs(x) is
1
2ε-transverse to zero. �
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Since we may achieve transversality with respect to the distribution, to

conclude the proof of Theorem 2.11 we must ensure the existence of uniformly

transverse asymptotically holomorphic sections. For that purpose, we refer

to the main result in [27]:

Theorem 2.17 (Mohsen). Let (W,ω) be a symplectic manifold of integer

class. Fix a compatible almost complex structure J , a closed submanifold S

and a hermitian vector bundle E. Then for any asymptotically holomorphic

sequence of sections sk :W −→E⊗L⊗k and for any δ > 0, there exists a C3-

asymptotically holomorphic sequence of sections σk :W →E⊗L⊗k satisfying

– |σk − sk|C2 ≤ δ,

– The sequence (σk)|S is ε-transverse to zero in S, for some uniform con-

stant ε > 0 not depending on k.

It is now immediate to conclude the existence of transverse asymptoti-

cally holomorphic sections:

Proof of Theorem 2.11. Let us describe the elements appearing in the

hypothesis of Theorem 2.17. The symplectization (S(M), d(β + tα)) will be

the symplectic manifold. The submanifold will be the quasi-contact manifold,

hence S =M×{0}. Finally, pull-back the vector bundle E −→M to a bundle

in S(M), still denoted E. As a consequence of the theorem applied to the

constant sequence sk = 0 we obtain a C2-small sequence σk : S(M)−→E ⊗
L⊗k which is ε-transverse to zero in M . After Proposition 2.16 the sequence

e∗σk :M →E ⊗L⊗k is 1
2ε-transverse to ξ. �

To conclude Theorem 2.13 we have to slightly generalize Theorem 2.17

to allow certain control for the derivative of the quotient along the complex

distribution. The precise statement we require is the following

Theorem 2.18. Let (W,ω) be a symplectic manifold of integer class. Fix

a compatible almost complex structure J , a closed submanifold S, a her-

mitian line bundle V and a complex distribution D ⊂ TS over the sub-

manifold. Then, for any asymptotically holomorphic sequence of sections

sk :W −→ V ⊗ L⊗k ⊗ C
2 and for any δ > 0, there exists an asymptotically

holomorphic sequence of sections σk = (σk,0, σk,1) :W −→ V ⊗L⊗k ⊗C
2 sat-

isfying

– |σk − sk|C2 ≤ δ,
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Fig. 1. Open book close to the binding

– ∂Dσk,0⊗σk,1− σk,0⊗ ∂Dσk,1 is ε-transverse to zero in S, for some uni-

form constant ε > 0 not depending on k.

The proof of this Theorem, in a more general case, can be found in [24].

Finally, Theorem 2.13 is an immediate consequence of this result.

3. Open Books in Contact Geometry

This section develops the open book decomposition mentioned in Section 1.

We begin with the main definition:

Definition 3.1. LetM be a smooth closed manifold. A pair of objects (B,π)

is called an open book decomposition if they satisfy:

– B is a codimension-2 closed submanifold.

– π :M \B→ S1 is a submersion.

– The normal bundle of B is trivial and there exists a tubular neighbor-

hood U with a trivializing diffeomorphism φ :B×B2(δ)→ U such that

(π ◦ φ)(p, r, θ) = θ,

where p ∈B and (r, θ) are polar coordinates in B2(δ) (see Figure 1).

The divisor B is referred to as the binding. The closure of the fibers of π in

M are called the pages of the open book (B,π).

Let us describe an equivalent construction. Consider a smooth manifold

P with boundary B = ∂P , and Ψ : P → P a diffeomorphism restricting to
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the identity close to the boundary. We then construct a closed manifold M

from the pair (P,Ψ): as a topological space M = (P × [0,1])/ ∼ where the

equivalence relation is defined as

(p, t)∼ (q, s)⇐⇒

⎧

⎨

⎩

p= q ∈B,
or

p= Ψ(q) and t= 0, s= 1.

This produces a manifold. Indeed, before quotienting it is certainly a manifold

and then the quotient can be understood as a two-step process. In the first

step P × {0} and P × {1} are identified by means of the diffeomorphism Ψ

to produce a manifold PΨ that fibers over S1, its boundary is diffeomorphic

to B × S1. Secondly, in order to obtain the collapse from the first condition

in the equivalence relation, we fill the boundary of PΨ with B ×D2. This

produces a smooth manifold M without boundary. Define the map

π :
((

P × [0,1]
)

/∼
)

\B −→ S1

(p, t) �−→ t.

Then (B,π) is an open book decomposition of M with pages diffeomorphic

to P . Conversely, given an open book decomposition (B,π) of a manifoldM ,

we may recover P = π−1(0) and Ψ . For the diffeomorphism, consider a con-

nection for the fibration π :M \B→ S1, thus providing a notion of parallel

transport, and then Ψ ∈Diff(P ) is obtained as the time-1 flow of the lifting

of ∂t with respect to the chosen connection. Hence, we can define an open

book decomposition either by providing the pair (B,π) or the pair (P,Ψ).

The notion of an open book decomposition is essentially topological. We

now follow E. Giroux [15] to relate it with contact geometry (see also [25]).

Given a contact form α for a contact structure, let R = Rα be the unique

vector field such that dα(R, ·) = 0 and α(R) = 1. This is called the Reeb

vector field of α. The interaction between contact geometry and open book

decompositions is based on the following

Definition 3.2. Let (M,ξ) be a contact manifold. A contact form α supports

an open book decomposition (B,π) if:

– (B,αB = α|B) is a contact submanifold.

– The Reeb vector field R is positively transverse to the projection π, i.e.

dπ(R)> 0 everywhere, and tangent to the submanifold B.
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Given a fixed contact structure and a supporting contact form, the open

book is said to be adapted to the contact structure through the contact form.

The open book is called adapted to a contact structure if it is adapted through

a contact form inducing the given contact structure. The requirements in the

definition have the following implications:

– The pages Pt = π−1(t) inherit an exact symplectic structure provided

by the restriction of dα.

– The associated flow Ψ is a symplectomorphism since the generating

vector field is of the form X = f ·R and LRdα= 0.

– The boundary of any page is ∂Pt = B, and it is of convex type with

respect to the symplectic structure (dα)|Pt
.

Recall that an exact symplectic manifold (M,ω = dα) has a boundary of

convex type with respect to the Liouville form α if the associated Liouville

vector field X , defined by α= iXdα, is transverse to the boundary of M and

points outwards. Convexity is a relevant property in procedures such as gluing

or filling constructions and has a fundamental role in the understanding of

Conjecture 2.1. The first two assertions are readily seen to hold, let us detail

the third statement:

Lemma 3.3. Let (B,π) be an open book decomposition adapted to

(M,kerα). There exists a neighborhood U of the binding B and a trivial-

izing diffeomorphism ψ :B ×B2(δ)→M such that

ψ∗α= g ·
(

α|B + r2dθ
)

,

where g :B ×B2(δ)−→R
+ satisfies ∂rg < 0 for r > 0.

Proof. Consider the trivializing map φ : B × B2(δ)→ U provided by the

definition of an open book decomposition. Note that for δ > 0 small enough

the fibers are contact submanifolds. Let π2 : B × B2(δ) −→ B2(δ) be the

projection onto the second factor, then the projection

πU = π2 ◦ φ−1 : U →B2(δ)

is a contact fibration in the sense of [29]. As such, there is an associated

contact connection. Certainly, at a point p ∈ U the vertical subspace is

Vp = kerdπU (p). Since the fiber is a contact submanifold, (ξB)p = Vp ∩ ξp
is a symplectic subspace of (ξp, dαp) and therefore we may define the hori-

zontal subspace as the symplectic orthogonal Hp = (ξB)
⊥dαp
p . This defines a



Geometric Decompositions of Almost Contact Manifolds 153

contact connection for the contact fibration. In particular, the induced par-

allel transport is by contactomorphisms. We use this connection to suitably

trivialize the fibration πU . Lifting the radial vector field r∂r on the disk pro-

vides a flow on U : the associated contactomorphism from the central fiber

π−1
U (0) to the general fiber π−1

U (r, θ) will be denoted by Φ(r,θ). The appropri-

ate trivialization is provided by the contactomorphism

Φ :B ×B2(δ)−→B ×B2(δ)

(p, r, θ) �−→
(

Φ(r,θ)(p), r, θ
)

.

The composition Φ̃= Φ ◦ φ satisfies

Φ̃∗α= g̃ ·
(

αB + rH(p, r, θ)dθ
)

,

where g̃ is a strictly positive smooth function and H is a function with the

following properties:

– The identity being induced in the central fiber, H(p,0,0) = 0.

– After the contact condition, ∂r(rH)> 0 in r > 0.

– It achieves a radial minimum in the central fiber, ∂rH(p,0,0)> 0.

In order to suppress the H factor we further compose with

f :B ×B2(δ)−→B ×B2(δ)

(p, r, θ) �−→ (p,
√
rH,θ),

which is injective for r small enough. We then obtain the diffeomorphism

ψ = Φ̃ ◦ f :B ×B2(δ)→ U

satisfying ψ∗α = g · (α|B + r2dθ), for some positive function g. Denote this

form by αg, it remains to verify that the radial derivative of g is negative.

Let us express this in terms of the Reeb vector fields. Note that the open

book map restricts as (π ◦ψ)(p, r, θ) = θ and thus Rα satisfies

(1) ∂θ
(

ψ∗Rα

)

> 0, for r > 0,

since the set {r = 0} is the binding B in these coordinates. This condition

implies ∂rg < 0. Indeed, decompose the Reeb vector field Rg of αg as

ψ∗R=Rg = V + b∂r + c∂θ, for some V ∈ Γ (TB) and b, c ∈R.
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Condition (1) translates into c > 0. The symplectic form is written as

dαg = dg ∧
(

αB + r2dθ
)

+ g(dαB + 2rdr ∧ dθ)

and from the defining equations of the Reeb vector field we obtain

0 = dαg(Rg, ∂r) =−∂rg ·
1

g
− crg.

Consequently, the condition on g is verified as

c=−∂rg ·
1

g2r
> 0⇐⇒ ∂rg < 0. �

The third assertion regarding the convexity of the boundary can be de-

duced as follows:

Corollary 3.4. Let (B,π) be an open book decomposition supported by

(M,α). The binding B is a convex boundary of any page Pt = π−1(t) with

respect to the Liouville vector field associated to the Liouville form α|Pt
.

Proof. This is a computation close to the boundary, as such we may use the

trivialization model provided in Lemma 3.3. In this chart a page is defined

as the set

P̃t = ψ−1(Pt) =
{

(p, r, θ) ∈B ×B2(δ) : r > 0, θ = t
}

.

In these coordinates the Liouville vector field X is given by the equation

(αg)|Pt
= iX(dαg)|Pt

,

and the solution can be explicitly written as

X = (∂rg)
−1g · ∂r,

which is certainly outwards-transverse to the boundary. Thus, the boundary

is convex with respect to the stated Liouville structure. �

Given a contact structure and a choice of contact form, we have described

the geometric properties of an open book decomposition supported by them.

An open book decomposition supported by a contact structure will be shown

to exist at the end of this Section. Part of the relevance of the open book

decompositions in contact geometry also resides on the converse construction:

we will able to obtain contact structures from the symplectic data associated



Geometric Decompositions of Almost Contact Manifolds 155

to an open book allegedly supported by a contact form. To be precise, an

open book decomposition (P,Ψ) is said to be symplectic if (P,dβ) is an

exact symplectic manifold with convex boundary and Ψ ∈ Symp(P,∂P ;dβ)

is a symplectomorphism supported away from the boundary. Then we obtain

the following

Proposition 3.5. Let M = (P,Ψ) be a symplectic open book decomposition.

Then, there exists a contact structure with contact forms supporting the open

book decomposition. Further, any two such adapted contact forms that in-

duce symplectomorphic (relative to the boundary) pages are isotopic through

contact structures.

Proof. Let us first show existence. The contact structure will be con-

structed from a deformation of the constant distribution ker(β). Note that

the case in which Ψ is an exact symplectomorphism is particularly simple.

Consider a smooth decreasing cut-off function c : [0,1] −→ [0,1] such that

c(t)|[0,0.1] = 1 and c(t)|[0.9,1] = 0. Define on P × [0,1] the interpolating 1-form

βt = c(t)Ψ∗(β) +
(

1− c(t)
)

β.

Then the form

(2) αm = βt +mdt

is a contact form for m large enough. Indeed, since

dαm = dt∧
(

ċ(t)Ψ∗β +
(

1− ċ(t)
)

β
)

+ dβ

the contact condition reads

αm ∧ (dαm)n =mdt∧ (dβ)n + η

where η is a (2n+1)-form independent of m. It remains to extend the form

αm to the relative suspension, that is to say, to fill the mapping torus PΨ .

This will be done explicitly.

We use the characterization of the convex boundary of a symplectic man-

ifold in terms of the symplectization, cf. [13]. Let (M,dα) be an exact sym-

plectic manifold with convex boundary B = ∂M , then there exists a neigh-

borhood U of the boundary symplectomorphic to

(

B × (−ε,0], d
(

es · α|B
))

, s ∈ (−ε,0].
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In other words, a neighborhood is symplectomorphic to the symplectization

of the contact manifold (B,α|B). In particular, the Liouville vector field reads

X = ∂s in these coordinates.

Let us fill the mapping torus PΨ . A neighborhood V of its boundary is

of the form V
ϕ∼=B× (−ε,0]×S1. Fix coordinates (p, s, t) ∈B× (−ε,0]×S1,

then the contact form αm in (2) is written as

ϕ∗αm = es(α|B) +mdt.

Defining the form in the filling is tantamount to an extension in a neigh-

borhood of the boundary. Geometrically, we invert the model away from the

section B × {0} × S1 and glue it from the other side. In explicit terms, we

consider the change of coordinates

ρ :B × (−ε,0)× S1 −→B × (0, ε)× S1

(p, s, t) �−→ (p,−s, t).

In these coordinates our aim is to extend the form

η = e−sα|B +mdt= e−s ·
(

α|B +mesdt
)

to the gluing area s= 0 preserving the contact condition. The contact struc-

ture will be defined on the whole open book since we may understand the

(s, t)-coordinates as polar coordinates in the disk B2(ε). In the spirit of the

proof of Lemma 3.3, we define two smooth functions

H : [0, ε)−→ [0,1], g : [0, ε)−→
[

0,meε
]

,

that contact interpolate between η and the contact form in the boundary.

Being precise, the functions must satisfy the following conditions:

– H|[ε/2,ε) =mes and H|[0,τ ] = s2 for an arbitrarily small τ < ε/2.

For the contact condition, we require ∂sH > 0, for s > 0.

– g|[ε/2,ε) = e−s and g|[0,τ ] = 1− s2 for an arbitrarily small τ < ε/2. After

the lemma, since s is the radial coordinate, g should also satisfy ∂sg < 0,

for s > 0.

Finally we may construct the form

η̃ = g(s)
(

α|B +H(s)dt
)

,
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coinciding with η on the domain B× [ε/2, ε]×S1 and extending the contact

form αm to a neighborhood of the boundary. The contact structure is adapted

to the open book by construction.

Let us focus on the uniqueness statement. Consider two contact forms α0

and α1 adapted to the same open book (B,π) and inducing the same symplec-

tic structure on the leaves. Endow the manifold with a Riemmanian metric

and define the function d :MB → R
+ measuring the square of the distance

from a point to the binding. This function is smooth close to the binding;

smoothly deform d so it becomes constant away from a small neighborhood

of B, denote this deformation by d̃. Consider the 1-form ν = d̃ · π∗(dθ) de-

fined over M \B. We construct the following deformation of any compatible

contact form α:

αt = α+ tν,

for t ∈ [0,K] where the constant K > 0 is arbitrarily large. Observe that

the family αt is a family of compatible contact forms. In order to connect

the forms α0 and α1 we use the following linear family of compatible con-

tact structures: α̃t = (1− t)αK
0 + tαK

1 . By Gray’s stability we conclude the

uniqueness of the contact structure. �

As previously mentioned, we will explain a converse of this result. There

are two different cases depending on the dimension of the manifold being 3

or higher. In dimension 3 there is a strong statement that ensures a complete

equivalence:

Theorem 3.6 (Giroux). Let M be a smooth manifold. There exists a one-

to-one correspondence between contact structures over M up to isotopy and

symplectic open book pairs (P,φ) associated to M up to positive stabilization.

For the notion of stabilization and an account of the proof of this result,

see [6]. The higher-dimensional analogue is weaker. The statement is:

Theorem 3.7 (Giroux). Let (M,ξ) be a contact manifold. There exists a

contact form α for the contact structure ξ supporting an open book.

Proof. The proof constructs the open book decomposition using the the-

ory of asymptotically holomorphic sections. Let us divide the argument in

3 parts: construction of the binding as a contact divisor, obtaining the topo-

logical fibration over the circle and description of the contact form following

Lemma 3.3.
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Step 1: The binding. We first describe the input data require to use the

methods of Section 2: we select a contact form α for the contact distribution

ξ, fix a compatible almost complex structure J , construct the prequantizable

bundle L=M×C with associated connection∇= d−iα and fix the sequence

of metrics gk that we will compute the norms with. Theorem 2.11 provides

us with an asymptotically holomorphic sequence of sections sk :M → L⊗k

which are ε-transverse to zero along ξ. For k large enough, the zero locus

Bk = Z(sk) is a contact submanifold with trivial normal bundle. This is the

contact divisor that will be used as binding.

Step 2: The topological open book. Consider the following sequence of

maps

πk :M \Bk −→ S1,

p �−→ sk(p)

|sk(p)|
.

The section sk :M → L⊗k =M×C is being understood as a C-valued smooth

function since L is topologically trivial. Consider the following sequence of

open covers M = Uk ∪ Vk, where

Uk =

{

p ∈M : |sk|<
ε

2

}

and Vk =

{

p ∈M : |sk|>
ε

4

}

.

The covariant derivative reads as

∇sk(p) = dsk(p)− ikαsk(p),

and thus differentiating in the Reeb vector field direction we obtain

∇Rsk(p) = dRsk(p)− iksk(p).

Since the sections satisfy the asymptotically holomorphic bounds |∇sk| =
O(1) and |R|k = k1/2, the gk-norm of the derivative in the Reeb direction

can be estimated as

∣
∣dRsk(p) + iksk(p)

∣
∣=O

(

k1/2
)

.

Hence dRsk(p) ≈ −iksk(p) in the open set Vk. A brief computation shows

that πk is a submersion in this situation and that the Reeb vector field R is

transverse to the fibers.

To conclude analogously for Uk we use the directions in the distribution.

For any vector ep ∈ ξp the covariant derivative reads ∇epsk = depsk, there-

fore the ε-transversality ensures that for any point p in the region Uk, there
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are two vectors uk, vk ∈ ξp such that the map ∇sk : ξp −→C is surjective re-

stricted to them. Consequently so is the map dsk : ξp −→ C when restricted

to them, consequently the map πk is a submersion on Uk. The implicit func-

tion theorem provides the topological local model for the function close to

the binding.

Step 3: Contact form close to the binding. The contact form in a neigh-

borhood over the binding will be constructed as a contact fibration over the

normal disk. We should ensure that the fibers close to the binding are also

contact submanifolds, i.e. the sets Bk(t) = Z(sk − t) for t ∈B2(ε/2)⊂C are

contact submanifolds. It is important to notice that the sequence sk − t is
no longer asymptotically holomorphic, since the sequence of sections σk = t

is not asymptotically holomorphic because the derivatives in the Reeb direc-

tion do not satisfy the asymptotically holomorphic bounds. Since sk − t are
ε
2 -transverse to zero along ξ, the sets Bk(t) are at least smooth submanifolds.

However, the antiholomorphic part is bounded as |∂̄(sk− t)|=O(k−1/2) and

therefore the sets Bk(t) are also contact submanifolds. In particular, the

projection map

Πk : Vk −→D2(ε)

p �−→ sk(p)

is a contact fibration. We now use the contact fibration methods from the

proof of Lemma 3.3 to obtain a positive function δ :B −→R
+ such that the

domain Ṽk = {(p, v) ∈B ×R
2 : |v| ≤ δ(p)} admits a diffeomorphism

φk :Bk ×D2(δ)−→ Ṽk,

such that φ∗k(α) = g̃ · (αB + r2dθ), for a positive function g̃. This diffeomor-

phism is also compatible with the circle projection, i.e. if

πθ : Ṽk \B × {0} −→ S1

denotes the projection into the angular coordinates, then πθ = πk ◦ φk. Note

that there is no a priori guarantee that ∂rg̃ < 0 for r > 0, which is the con-

dition for the contact form to be adapted. However, we have already ver-

ified that α supports the open book in the neighborhood of the boundary

φ−1
k (Uk ∩ Ṽk), in particular ∂rg̃ < 0 in this region. Thus, it remains to find a

function g : Ṽk −→R
+ such that:

– g extends g̃, i.e. g = g̃ over φ−1
k (Uk ∩ Ṽk).
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– It satisfies the contact condition ∂rg < 0 for r > 0 and for small radii

0 ≤ r < r0 it coincides with the local model g(p, r) = k − r2 for some

large k > 0.

The function g always exists. Finally, we define the contact form

α̃= g ·
(

αB + r2dθ
)

,

extending φ∗k(α) beyond φ
−1
k (Uk∩ Ṽk). This form can be extended through φk

to an adapted global form on the open book decompositionM = (Bk, πk). �

Remark 3.8. We believe that is possible to construct the adapted contact

form to be C0-close to the arbitrary initial contact form. This would require

the use of the asymptotically holomorphic theory as developed in [21], since

we need a better control for the derivatives in the Reeb direction to ensure

the bound
∣
∣∇Rsk(p)

∣
∣=O

(

ks
)

,

where 0 ≤ s < 1/2. This would imply that the Reeb vector field would be

asymptotically tangent to the submanifold Bk and therefore, for k large

enough, we could obtain |∂rg̃|< γ, for γ > 0 arbitrarily small.

As mentioned in the introduction this existence result was essentially

proved by E. Giroux almost 10 years ago. E. Giroux and J.P. Mohsen are

writing a monography [16] containing this result and a more complete dic-

tionary relating open books and contact structures. We briefly cite some of

the main results in the area:

– Uniqueness up to stabilization of the open books constructed in the

preceding Theorem 3.7.

– Equivalence between convex decompositions, as defined in [14], and

adapted open book decompositions.

– In the case of a Stein fillable contact manifold, the open book can always

be understood as the boundary of a Lefschetz pencil over the disk. As

a corollary, they obtain that a contact manifold is Stein fillable if and

only if it admits an open book whose monodromy map is generated by

positive Dehn–Seidel twists.

– Relations with the existence of contact structures in higher dimensions.

In particular, existence of contact fibrations.
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4. Pencils in Quasi-contact and Contact Geometry

In this section we explain the second type of decomposition mentioned in

Section 1: the analogue of the Lefschetz pencil in a symplectic manifold.

They were initially introduced in [28] for the contact case and in [24] for the

quasi-contact one. The geometric construction still consists in projecting the

manifold to reduce the dimension. In this case we will produce a projection

onto CP
1, thus the fibers become real codimension-2 submanifolds.

4.1. Definitions

Let (M,ξ, dβ) be a quasi-contact structure and fix a compatible almost-

complex structure for the symplectic bundle (ξ, dβ). A chart φ : (U,p) −→
V ⊂ (Cn×R,0) is said to be compatible with the quasi-contact structure at

a point p ∈ U ⊂M if the push-forward at p of ξp is the hyperplane C
n×{0}

and φ∗dβp is a positive (1,1)-form. The central notion in this section is the

content of the following:

Definition 4.1. A quasi-contact pencil on a closed quasi-contact manifold

(M2n+1, ξ, dβ) is a triple (f,B,C) consisting of a codimension-4 quasi-contact

submanifold B, called the base locus, a finite set C of smooth transverse

curves and a map f :M\B −→CP
1 conforming the following conditions:

(1) The set f(C) contains locally smooth curves with transverse self-

intersections and the map f is a submersion on the complement of C.

(2) Each p ∈ B has a compatible local coordinate map to (Cn × R,0)

under which B is locally cut out by {z1 = z2 = 0} and f corre-

sponds to the projectivization of the first two coordinates, i.e. locally

f(z1, . . . , zn, t) =
z2
z1
.

(3) At a critical point p ∈ γ ⊂M there exists a compatible local coordinate

chart φP such that

(

f ◦ φ−1
P

)

(z1, . . . , zn, s) = f(p) + z21 + · · ·+ z2n + g(s)

where g : (R,0)−→ (C,0) is an embedding at the origin (see Figure 2).

(4) The fibers f−1(P ), for any P ∈ CP
1, are quasi-contact submanifolds

at the regular points.
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Fig. 2. Counter-image of a neighborhood of two curves of critical values

These objects always exist on a quasi-contact manifold. Actually, it is

even possible to partially prescribe the topology of the fibres:

Theorem 4.2. Let (M,ξ, dβ) be a quasi-contact manifold. Given an integral

class a ∈H2(M,Z), there exists a quasi-contact pencil (f,B,C) such that the

fibers are Poincaré dual to the class a.

This existence result can be readily extended to a more general no-

tion of quasi-contact structures, i.e. triples of objects (M,ξ,ω), with ξ a

codimension-1 cooriented distribution and ω a closed 2-form of integral class

such that (ξ,ω) is a symplectic bundle. In [24] the theory is developed for

these objects, though no further applications have been found in that more

general setting.

The remaining part of this section is dedicated to the proof of Theo-

rem 4.2. The strategy mimics the construction of Lefschetz pencils in pro-

jective geometry: we will produce a pair (s0, s1) of suitable sections of a

complex line bundle, thought of as a basis for a 1-dimensional linear system,

and use them to map the quasi-contact manifold onto CP
1. As in Section 3,

the asymptotically holomorphic theory from Section 2 will provide the sec-
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tions. Observe that in this occasion we will produce a pair of sections and

there should be further control for the behaviour of their quotient.

The initial data to obtain the sections is a quasi-contact form β, a com-

patible almost complex structure J for the symplectic bundle (ξ, dβ), a se-

quence of metrics gk and the prequantizable bundle L =M × C associated

to the connection ∇= d− iβ. In order to prescribe the Poincaré dual of the

fibers, let V be a fixed hermitian line bundle with a connection such that

the associated curvature ΘV satisfies [ΘV ] = a. Then the existence theorems

from Section 2 allow us to prove the following

Proposition 4.3. With the data as described above, there exists an asymp-

totically holomorphic sequence of sections

sk = (sk,0 ⊕ sk,1) :M −→ V ⊗L⊗k ⊗C
2

and two fixed constants ε, ε′ > 0 satisfying that

– sk is ε-transverse to zero along ξ over M ,

– sk,0 is ε-transverse to zero along ξ over M ,

– Consider the set W sk
∞ = {p ∈M : sk,0(p) = 0}. Then the holomorphic

part ∂( sk,1

sk,0
) of the covariant derivative is ε′-transverse to zero along ξ

over M \W sk
∞ .

Proof. The ε-transversality is a C1-stable property, thus we may system-

atically perform C1-perturbations and it will be preserved. Consider the

asymptotically holomorphic null-constant sequence of sections (0) :M −→
L⊗k ⊗ C

2, then Theorem 2.11 provides an asymptotically holomorphic se-

quence of sections sk which are ε1-transverse to zero.

Let δ = ε1/2 and apply Theorem 2.11 to the sequence sk,0 :M −→ L⊗k

in order to obtain an asymptotically holomorphic sequence of sections σk,0 :

M −→ L⊗k such that |sk,0 − σk,0|C2 ≤ δ and ε2-transverse to zero along ξ.

The pair s̃k = (s̃k,0, s̃k,1) = (σk,0, sk,1) :M −→ L⊗k ⊗C
2 satisfies the first two

transversality properties for ε3 =min(δ, ε2).

Observe that ∂( s̃k,1

s̃k,0
) is an asymptotically holomorphic sequence on the

open set U sk
ε = {p ∈M : |sk,0|> ε} since it is

∂s̃k,1 ⊗ s̃k,0 − s̃k,1 ⊗ ∂s̃k,0 :M −→ ξ1,0 ⊗L⊗k ⊗ V ⊗C
2,

divided by the bounded below asymptotically holomorphic sequence s̃k,0. Fi-

nally, apply Theorem 2.13 to the section s̃k and the constant ε3/2: there
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exists an asymptotically holomorphic sequence σ̃k such that ∂σ̃k,1 ⊗ σ̃k,0 −
σ̃k,1 ⊗ ∂σ̃k,0 is ε4-transverse to zero along ξ over M . This sequence satis-

fies that ∂( σ̃k,1

σ̃k,0
) is ε′-transverse to zero along Uσk

ε3/2
. Thus, the sequence σ̃k

satisfies the required properties for the chosen ε′ and ε= ε3/2. �

4.2. Existence of Quasi-contact Pencils

Let us briefly describe the argument. Apply Proposition 4.3 to the data

induced by the quasi-contact manifold (M,ξ, dβ) and a ∈H2(M,Z) as previ-

ously explained. This provides a pair of suitably transverse sections inducing

the potential quasi-contact pencil. The first step is the structure of the fibers,

which should satisfy (4) in Definition 4.1. Secondly we focus on the base lo-

cus and obtain the required local model. Finally, it is ensured that the Morse

model around the singularities can be achieved.

Step 1: Analysis. Since the sections sk provided by Proposition 4.3 are

ε-transverse, the zero set Bk = Z(sk) is a codimension 4 quasi-contact mani-

fold. Also, the set W sk
∞ is a codimension 2 quasi-contact submanifold. Let us

define the sequence of maps

Fk :M \W sk
∞ −→ C

p �−→ sk,1
sk,0

.

These are our candidates for quasi-contact pencil structures. Define the set

Γ =
{

p ∈M : |∂Fk| ≤ |∂̄Fk|
}

.

If we are able to show that Γ = {p ∈M : dξFk = 0} then the fibers of Fk will

be quasi-contact submanifolds at the regular points. We will actually justify

that the set Γ lies arbitrarily close to the critical curves. First, a bound from

below for the norm of sk,0 on Γ :

Lemma 4.4. There is a constant η > 0, depending only on ε′ and ε, such

that if k is large enough, then |sk,0| ≥ η on Γ .

Proof. The section sk is ε-transverse to zero along ξ and thus at any point

p ∈M with |sk(p)|< ε the map ∂sk(p) is ε-transverse. Without loss of gener-

ality suppose that |sk,0| ≤ |sk,1|. By surjectivity there exists a unitary vector
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v ∈ ξp such that |∂vsk,0(p)| ≥ ε and |∂vsk,1(p)|= 0 and thus

(3)
∣
∣∂sk,1(p)⊗ sk,0(p)− sk,1(p)⊗ ∂sk,0(p)

∣
∣≥ |sk(p)|

2
ε.

The asymptotically holomorphic bounds impose

(4)
∣
∣∂̄sk,1(p)⊗ sk,0(p)− sk,1(p)⊗ ∂̄sk,0(p)

∣
∣≤ ck−1/2|sk(p)|

and so combining the inequalities (3) and (4), for k large enough, we obtain
∣
∣∂sk,1(p)⊗sk,0(p)−sk,1(p)⊗∂sk,0(p)

∣
∣>

∣
∣∂̄sk,1(p)⊗sk,0(p)−sk,1(p)⊗ ∂̄sk,0(p)

∣
∣.

This implies |∂Fk(p)|> |∂̄Fk(p)| at any point p ∈M \W sk
∞ with |sk(p)|< ε.

Consider p ∈ M with |sk(p)| > ε, say |sk,1(p)| ≥ ε/2. Let η ≤ ε and

suppose further that |sk,0(p)| < η, by ε-transversality of sk,0 the inequal-

ity |∂sk,0(p)| > ε holds. At the same time the asymptotically holomorphic

bounds require |∂sk,1(p)| ≤ c, for some fixed constant c > 0. Fix η = ε2/4c,

then the reverse triangle inequality yields

∣
∣∂sk,1(p)⊗ sk,0(p)− sk,1(p)⊗ ∂sk,0(p)

∣
∣≥ ε2

4
.

Again (4), for k large enough, gives |∂Fk(p)|> |∂̄Fk(p)|. �

Let Δ⊂ Γ be the set of points where ∂Fk = 0. The connected components

of Δ form a discrete set of smooth transverse curves since ∂Fk satisfies the

adequate transversality condition. Observe that π0(Δ) is finite because Δ⊂
Γ and the set Γ is contained in the complementary of a τ -neighborhood of

the compact manifold W∞ = Z(s0k), for τ > 0 a constant small enough, after

Lemma 4.4. In order to understand the behaviour of the set Γ , consider

the set Ωη = {p ∈ C, |s0(p)| > η/2}. The following statement describes the

neighborhoods of the elements in Δ and in particular the geometry of Γ :

Proposition 4.5. With the above notation, there exists a uniform constant

ρ0 > 0 such that the ρ0-neighborhoods of each connected component γi ∈Δ
are disjoint and contained in Ωη. Further, given any ρ < ρ0, for k = k(ρ)

large enough, the set Γ is contained in a ρ-neighborhood of Δ.

This is essentially Proposition 9 in [9], instead of the distance to a finite

number of points we use the distance from a point to a curve. Geometrically,

in a point of Γ the norm |∂Fk| is bounded by |∂Fk|=O(k−1/2) and thus can

be arbitrarily small, transversality then provides a solution for the equation

∂Fk = 0 and the norm being arbitrarily small ensures its existence nearby.
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The detailed argument requires an estimated form of the Inverse Function

Theorem, cf. [9].

Step 2: Perturbation at the Base Point Set. The sequence ∂Fk will be per-

turbed in arbitrarily small neighborhoods of the alleged base locus Bk in

order to achieve the local model in Definition 4.1. To ease notation we write

B =Bk, as k is thought as fixed if large enough. We describe the local model

in terms of the equation for the tangent space at a point p ∈B

∇sk(p) =∇sk,0(p)⊕∇sk,1(p) : TpM −→ L⊗k
p ⊕L⊗k

p .

If TpB ⊂ ξp were a symplectic subspace, the R-linear map ∇sk(p) provides

an isomorphism as R-vector spaces of the symplectic orthogonal with the C-

vector space L⊗k
p ⊕L⊗k

p . In particular the symplectic orthogonal is endowed

with a complex structure. Let us prove a linear characterization of the model

with respect to the base locus:

Lemma 4.6. Let p ∈ B. Then Fk can be represented around p in the

standard local model of Definition 4.1 if and only if TpB ∩ (ξp, dβp) is a

symplectic subspace and the restriction of dβ to the symplectic orthogonal

Np = (TpB ∩ ξ)⊥dβ
x is a positive form of type (1,1) with respect to the com-

plex structure of Np induced by ∇sk(p).

Proof. It is readily seen that the condition is necessary since the existence

of a local model provided in the Definition 4.1 implies the properties in the

statement. Conversely, suppose that B is a quasi-contact submanifold near

p and let (z3, . . . , zn, t) be local coordinates at p such that

(dβ)|B =
i

2

n∑

j=3

dzj ∧ dz̄j and ξp = kerdt.

Extend the coordinate functions (z3, . . . , zn) ensuring that the their deriva-

tives vanish in the normal directions of Np. Locally trivialize the bundle L⊗k

via a non-vanishing section σ and define functions z0 = sk,0 · σ, z1 = sk,1 · σ.
These provide a complete set of coordinates (z1, . . . , zn, t) around p in which

the symplectic form is expressed as

(dβ)|B = (dβ)|Np
+

n∑

j=3

dzj ∧ dz̄j .

Thus we obtain the required local model. �
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To achieve the local model at B, it remains to perturb Fk such that it

satisfies the hypothesis of the linear characterization. More precisely, there

exists a perturbation Dp : TpM −→ L⊗k
p ⊕L⊗k

p of the map ∇sk(p) conforming

∣
∣
(

∇sk(p)−Dp

)

v
∣
∣≤ ck−1/2

∣
∣∇sk(p)(v)

∣
∣, ∀v ∈ TpM,

and the requirements of the Lemma 4.6. Indeed, it is simple to perturb the

pair sk = sk,0 ⊕ sk,1 to s̃k = s̃k,0 ⊗ s̃k,1 at distance O(k−1/2) in C3-norm

with Dp as the linearization at p of the associated pencil–map F̃k. This

perturbation fulfills the property (2) of the Definition 4.1. The perturbation

will still be referred to as Fk.

Step 3: Local Model for the Singularities. It remains to study the map Fk

near the singular set Δ. Let γ ∈Δ be a smooth connected curve. The per-

turbation of Fk will occur in a δ-neighborhood of Δ, Proposition 4.5 implies

that the perturbations can be independently performed in each connected

component of Δ. We will describe the associated quasi-contact data around

the curve γ, define a general perturbation well-behaved with respect to a

simple integral distribution and then prove that it can be chosen to induce

a Morse model with respect to the actual quasi-contact distribution.

Let us specify the information contained in a trivialization. For k large

enough, the curve γ is a transverse contact loop, equivalently TM |γ = Tγ⊕ξ,
and the angle between Tγ and ξ is bounded below by a uniform constant

because of the transversality of the sequence. To trivialize we use the geodesic

flow of the metric gJ associated to the fixed almost complex structure J and

obtain a diffeomorphism

φ : Uρ −→ Vρ ⊂ S1 ×C
n,

where Uρ is a ρ-neighborhood of γ, measured with the gk metric, and Vρ its

image by the flow, which is an open neighborhood of S1×{0}. In the neigh-

borhood S1 × C
n we consider the product metric with first component the

image of gk through φ and second component the standard hermitian metric

in C
n. Suppose also that φ∗J|γ = J0, J0 being the standard complex struc-

ture of Cn. In particular, the model being isometric allows us to explicitly

measure in Vρ.

Regarding the distributions, denote ξk = φ∗ξ and let ξh be the integrable

distribution given as {p}×C
n ⊂ S1×C

n. Possibly after a uniform shrinking
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of ρ, the angle3 between ξk and ξh tends to zero; more precisely, there exists

a uniform constant C > 0 such that

(5) ∠M

(

ξk(s, z), ξh(s, z)
)

<C|z|k−1/2, ∀(s, z) ∈ Vρ ⊂ S1 ×C
n.

Hence, we are able to project orthogonally the almost complex structure

φ∗J on ξk to an almost complex structure Jh in the distribution ξh. Let

μ :
∧(1,0)

J0
−→

∧(0,1)
J0

be the defining function of Jh with respect to J0 as

almost complex structures in ξh, cf. [7]. Denote by ∂ and ∂0 the associated

holomorphic parts of the covariant derivative with respect to Jh and J0. The

holomorphic and antiholomorphic parts of the operator corresponding to φ∗J
in ξk will be denoted ∂k and ∂̄k. In particular

(6) ∂ = ∂0 + μ̄∂̄0, ∂̄ = ∂̄0 + μ∂0.

It follows that |μ(z)| ≤C|z|k−1/2, C being a uniform constant.

Let us define the perturbation of Fk, as mentioned above we will construct

the perturbation in the isometric neighborhood S1 ×C
n. The context being

clear, we will still denote by Fk the pull-back (φ−1)∗Fk. Since the local model

required in Definition 4.1 is quadratic, we will deform Fk to approximately

its complex Hessian H = 1
2∇∂(∂Fk). Locally, it is expressed as

H(s, z) =
∑

Hαβ(s)zαzβ .

Consider a cut-off function βρ : S
1 ×C

n −→ [0,1] satisfying

– βρ(φ(p)) = 1 if dk(p, γ)≤ ρ/2, and βρ(φ(p)) = 0 if dk(p, γ)≥ ρ.

– |∇βρ|=O(ρ−1).

The second condition can be ensured due to the choice of metrics. The con-

stant ρ < ρ0 will be shrunk in a uniform way, and so we consider it fixed

assuring that the conditions are satisfied. The perturbation of Fk will be of

the form

F̃k(s, z) = βρ
(

w(s) +H(s, z)
)

+ (1− βρ)Fk(s, z),

where w : S1 −→ C is any smooth function. The only remaining issue is the

verification of Γ = Δ for the perturbed F̃k(s, z), this is the content of the

following

3The maximum angle between two subspaces U,V ⊂ R
m of the Euclidean space is by

definition ∠M (U,V ) =maxu∈U{∠(u,V )}.
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Lemma 4.7. With the above notations, let ρ > 0 and |w(s) − Fk(s,0)| be
small enough and |ẇ(s)|=O(1). Then for sufficiently large k the inequality

|∂kF̃k| ≤ |∂̄kF̃k| is only satisfied in γ.

Proof. There are two different scenarios, close to the curve where βρ ≡ 1

and the transition area where ∇βp does not vanish. Let us first consider

the former. Then the perturbation reads F̃k = w + H and so ∂F̃k = ∂H ,

∂̄F̃k = ∂̄H . The η-transversality of ∂Fk yields the following bound

∣
∣∂H(s, z)

∣
∣≥ η|z| −

∣
∣∂̄(∂F )

∣
∣
(z=0)

|z|.

Since ∂̄∂ + ∂∂̄ ≡ 0 on functions and the norm ∂∂̄F is controlled, as F has

uniform C3-bounds, we obtain

∣
∣∂H(s, z)

∣
∣≥ η|z| −Ck−1/2|z|.

We need to relate this to the distribution ξk. By hypothesis |ẇ(s)| = O(1)

and we also know |∂sHαβ(s)|=O(1) due to the C3-bounds of Fk. Then the

angle inequality (5) implies

(7)
∣
∣∂kH(s, z)

∣
∣≥ η|z| −Ck−1/2|z|,

where C > 0 is another suitable uniform constant; the uniform constants

appearing on the bounds will deliberately be referred to as C. The asymp-

totically holomorphic bounds also imply that |∂̄H| ≤C|z|2k−1/2 and we anal-

ogously deduce

(8) |∂̄kH| ≤C
(

|z|2k−1/2 + |z|k−1/2
)

.

The condition |∂kH| ≤ |∂̄kH| along with (7) and (8) implies z = 0 for k large

enough, concluding the statement in this case.

We focus on the latter situation, i.e. the behaviour of Γ around points in

the annulus containing the support of ∇βρ. The antiholomorphic derivative

of the perturbation reads

∂̄F̃k = ∂̄βρ(w+H − Fk) + βρ∂̄H + (1− βρ)∂̄Fk.

As before this concerns ξh and we may bound the norm |∂̄f0| as in [9]. Again

the hypothesis |ẇ(s)| = O(1) and the asymptotically holomorphic estimate

|∂̄kFk|=O(k−1/2) combine with the angle inequality (5) to conclude

|∂̄kF̃k| ≤C
(

ρ2 + k−1/2 +
∣
∣F̃k(s,0)−w

∣
∣ρ−1

)

.
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The direct computation ∂kF̃k = ∂kβρ(w +H − Fk) + βρ∂kH + (1− βρ)∂kFk

and the transversality of Fk yield a lower bound for |∂kF̃k|. The argument

follows as in [9] until

|∂kF̃k| − |∂̄kF̃k| ≥
ηρ

2
−C

(

ρ2 + k−1/2 +
∣
∣w− Fk(s,0)

∣
∣ρ−1

)

.

By the hypothesis |w−Fk(s,0)| is small enough, and once fixed a sufficiently

small ρ, for k large enough the right hand side of the inequality is strictly pos-

itive over the annulus. This concludes the statement in the second case. �

Note that w can be chosen generic enough to ensure that the projection

of the critical points is a family of immersed curves. Also, the perturbation

satisfies the local model around the curves because a real generic S1-family

of non-degenerate quadratic forms can be diagonalised. This proves the exis-

tence of quasi-contact pencils. The statement concerning the Poincaré dual

of the fibers follows from the fact that first Chern class of the normal bundle

to the section is the Poincaré dual of its vanishing locus.
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Higher Dimensional Contact Topology

via Holomorphic Disks

KLAUS NIEDERKRÜGER

1. Introduction

In ’85 Gromov published his article on pseudo-holomorphic curves [17] that

made symplectic topology as we know it today only possible. Using these

techniques, Gromov presented in his initial paper many spectacular results,

and soon many other people started using these methods to settle questions

that before had been out of reach [1, 9, 10, 18, 22, 23] and many others; for

more recent results in this vein we refer to [31, 36].

While the references above rely on studying the topology of the moduli

space itself, Gromov’s J -holomorphic methods have also been used to develop

powerful algebraic theories like Floer Homology, Gromov-Witten Theory,

Symplectic Field Theory, Fukaya Theory etc. that basically rely on counting

rigid holomorphic curves (that means holomorphic curves that are isolated).

Note though that we will completely ignore such algebraic techniques in these

notes.

Gromov’s approach for studying a symplectic manifold (W,ω) consists in

choosing an auxiliary almost complex structure J on W that is compatible

with ω in a certain way. This auxiliary structure allows us to study so called

J -holomorphic curves, that means, equivalence classes of maps

u : (Σ,j)→ (W,J)

F. Bourgeois et al. (eds.), Contact and Symplectic Topology,
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from a Riemann surface (Σ,j) to W whose differential at every point x ∈Σ
is a (j, J)-complex map

Dux : TxΣ→ Tu(x)W.

Conceivable generalizations of such a theory based on studying J -holo-

morphic surfaces or even higher dimensional J -complex manifolds only work

for integrable complex structures; otherwise generically such submanifolds

do not exist. A different approach has been developed by Donaldson [7, 8],

and consists in studying approximately holomorphic sections in a line bundle

over W . This theory yields many important results, but has a very different

flavor than the one discussed here by Gromov.

The J -holomorphic curves are relatively rare and usually come in finite

dimensional families. Technical problems aside, one tries to understand the

symplectic manifold (W,ω) by studying how these curves move through W .

Let us illustrate this strategy with the well-known example of CPn. We

know that there is exactly one complex line through any two points of CPn.

We fix a point z0 ∈CPn, and study the space of all holomorphic lines going

through z0. It follows directly that CPn\{z0} is foliated by these holomorphic

lines, and every line with z0 removed is a disk. Using that the lines are

parametrized by the corresponding complex line in Tz0CP
n that is tangent to

them, we see that the space of holomorphic lines is diffeomorphic to CPn−1,

and that CPn \ {z0} will be a disk bundle over CPn−1.

In this example, we have used an ambient manifold that we understand

rather well, CPn, to compute the topology of the space of complex lines.

So far, it might seem unclear how one could obtain information about the

topology of the space of complex lines in an ambient space that we do not

understand equally well, to then extract in a second step missing information

about the ambient manifold.

The common strategy is to assume that the almost complex manifold

we want to study already contains a family of holomorphic curves. We then

observe how this family evolves, hoping that it will eventually “fill up” the

entire symplectic manifold (or produce other interesting effects).

To briefly sketch the type of arguments used in general, consider now

a symplectic manifold W with a compatible almost complex structure, and

suppose that it contains an open subset U diffeomorphic to a neighborhood

of CP 1 × {0} in CP 1 × C (see [22]). In this neighborhood we find a family

of holomorphic spheres CP 1 × {z} parametrized by the points z. We can
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explicitly write down the holomorphic spheres that lie completely inside U ,

but Gromov compactness tells us that as the holomorphic curves approach

the boundary of U , they cannot just cease to exist but instead there is a well

understood way in which they can degenerate, which is called bubbling. Bub-

bling means that a family of holomorphic curves decomposes in the limit into

several smaller ones. Sometimes bubbling can be controlled or even excluded

by imposing technical conditions, and in this case, the limit curve will just

be a regular holomorphic curve.

In the example we were sketching above, this means that if no bubbling

can happen, there will be regular holomorphic spheres (partially) outside U

that are obtained by pushing the given ones towards the boundary of U . This

limit curve is also part of the 2-parameter space of spheres, and thus it will

be surrounded by other holomorphic spheres of the same family. As long as

we do not have any bubbling, we can thus extend the family by pushing the

spheres to the limit and then obtain a new regular sphere, which again is

surrounded by other holomorphic spheres. This way, we can eventually show

that the whole symplectic manifold is filled up by a 2-dimensional family of

holomorphic spheres. Furthermore the holomorphic spheres do not intersect

each other (in dimension 4), and this way we obtain a 2-sphere fibration of

the symplectic manifold.

In conclusion, we obtain in this example just from the existence of the

chart U , and the conditions that exclude bubbling that the symplectic man-

ifold needs to be a 2-sphere bundle over a compact surface (the space of

spheres).

Note that many arguments in the example above (in particular the idea

that the moduli spaces foliate the ambient manifold) do not hold in general,

that means for generic almost complex structures in manifolds of dimension

more than 4. Either one needs to weaken the desired statements or find

suitable work arounds. The principle that is universal is the use of a well

understood local model in which we can detect a family of holomorphic

curves. If bubbling can be excluded, this family extends into the unknown

parts of the symplectic manifold, and can be used to understand certain

topological properties of this manifold.

These notes are based on a course that took place at the Université de

Nantes in June 2011 during the Trimester on Contact and Symplectic Topol-

ogy. We will explain how holomorphic curves can be used to study symplectic

fillings of a given contact manifold. Our main goal consists in showing that

certain contact manifolds do not admit any symplectic filling at all. Since
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closed symplectic manifolds are usually studied using closed holomorphic

curves, it is natural to study symplectic fillings by using holomorphic curves

with boundary. We will explain how the existence of so called Legendrian open

books (Lobs) and bordered Legendrian open books (bLobs) controls the behav-

ior of holomorphic disks, and what properties we can deduce from families

of such disks. The notions are direct generalizations of the overtwisted disk

[9, 17] and standardly embedded 2-spheres in a contact 3-manifold [4, 17, 18].

For completeness, we would like to mention that symplectic fillings have

also been studied successfully via punctured holomorphic curves whose be-

havior is linked to Reeb orbit dynamics, and via closed holomorphic curves by

first capping off the symplectic filling to create a closed symplectic manifold.

1.1. Outline of the Notes

In the first part of these notes we will talk about Legendrian foliations, and

in particular about Lobs and bLobs. We will not consider any holomorphic

curves here, but the main aim will be instead to illustrate examples where

these objects can be localized. In Section 3, we study the properties of holo-

morphic disks imposed by Legendrian foliations and convex boundaries. In

the last section, we use this information to understand moduli spaces of holo-

morphic disks obtained from a Lob or a bLob, and we prove some basic results

about symplectic fillings.

The content of these notes are based on an unfinished manuscript of [28].

1.2. Notation

We assume throughout a certain working knowledge on contact topology

(for a reference see for example [24, Chapter 3.4] and [12]) and on holomor-

phic curves [3, 25]. The contact structures we consider in this text are al-

ways cooriented. Remember that by choice of a coorientation, (M,ξ) always

obtains a natural orientation and its contact structure ξ carries a natural

conformal symplectic structure. For both, it suffices to choose a positive

contact form α, that means, a 1-form with ξ = kerα that evaluates posi-

tively on vectors that are positively transverse to the contact structure. The

orientation on M is then given by the volume form

α∧ dαn,
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where dimM = 2n + 1, while the conformal symplectic structure is repre-

sented by dα|ξ .

One can easily check that these notions are well-defined by choosing

any other positive contact form α′ so that there exists a smooth function

f : M →R such that α′ = efα.

Further Conventions. Note that D2 denotes in this text the closed unit

disk.

I owe it to Patrick Massot to have been converted to the following jargon.

Definition. The term regular equation can refer in this text to any of the

following objects:

(1) When Σ is a cooriented hypersurface in a manifold M , then we call

a smooth function h : M → R a regular equation for Σ, if 0 is a

regular value of h and h−1(0) =Σ.

(2) When D ≤ TM is a singular codimension 1 distribution, then we say

that a 1-form β is a regular equation for D, if D = kerβ and if

dβ �= 0 at singular points of D.

According to this definition, an equation of a contact structure is just a

contact form.

2. Lobs & bLobs: Legendrian Open Books and Bordered

Legendrian Open Books

2.1. Legendrian Foliations

2.1.1. General Facts about Legendrian Foliations. Let (M,ξ) be a

contact manifold that contains a submanifold N . Generically, if we look at

any point p ∈N the intersection between ξp and the tangent space TpN will

be a codimension 1 hyperplane. Globally though, the distribution D = ξ∩TN
may be singular, because there can be points p ∈ N where TpN ⊂ ξp, and

equally important the distribution D will only be in very rare cases a foliation.

In fact, if we choose a contact form α for ξ, then we obtain by the Frobenius

theorem that D will only be a (singular) foliation if

(α∧ dα)|TN ≡ 0.
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Another way to state this condition is to say that we have dα|Dp
= 0 at every

regular point p ∈ N of D, so that Dp has to be an isotropic subspace of

(ξp, dαp). In particular, this shows that the induced distribution D can never

be integrable if dimD > 1
2 dim ξ.

We will usually denote the distribution ξ∩TN by F whenever it is a sin-

gular foliation. Furthermore, we will call such an F a Legendrian foliation

if dimF = 1
2 dim ξ, which implies that N has to be a submanifold of dimen-

sion n+ 1 if the dimension of the ambient contact manifold is 2n+ 1. For

reasons that we will briefly sketch below, but that will be treated extensively

from Section 3 on, we will be mostly interested in submanifolds carrying such

a Legendrian foliation. Note in particular that in a contact 3-manifold every

hypersurface N carries automatically a Legendrian foliation.

Denote the set of points p ∈N where F is singular by Sing(F). One of the

basic properties of a Legendrian foliation is that for any contact form α, the

restriction dα|TN does not vanish on Sing(F), because otherwise TpN ⊂ ξp
would be an isotropic subspace of (ξp, dαp) which is impossible for dimen-

sional reasons. Since dα|TN does not vanish on Sing(F), we deduce in par-

ticular that N \ Sing(F) is a dense and open subset of N .

The main reason, why we are interested in submanifolds that

have a Legendrian foliation is that they often allow us to success-

fully use J-holomorphic curve techniques. On one side, such submani-

folds will be automatically totally real for any suitable almost complex struc-

ture on a symplectic filling, thus posing a good boundary condition for the

Cauchy-Riemann equation: The solution space of a Cauchy-Riemann equa-

tion with totally real boundary condition is often a finite dimensional smooth

manifold, so that it follows that the moduli spaces of J -holomorphic curves

whose boundaries lie in a submanifold with a Legendrian foliation will have

a nice local structure. A second important property is that the topology of

the Legendrian foliation controls the behavior of J -holomorphic curves, and

will allow us to obtain many results in contact and symplectic topology. El-

liptic codimension 2 singularities of the Legendrian foliation “emit” families

of holomorphic disks; suitable codimension 1 singularities form “walls” that

cannot be crossed by holomorphic disks.

In the rest of this section, we will state some general properties of Leg-

endrian foliations. Theorem 2.2 shows that a manifold with a Legendrian

foliation determines the germ of the contact structure on its neighborhood.

This allows us to describe small deformations of the Legendrian foliation,

and study almost complex structures more explicitly (see Section 3.2). Theo-
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Fig. 1. The singularities of a Legendrian foliation look locally like the product of Rn−1

with a foliation in the plane

rem 2.3 gives a precise characterization of the foliations that can be realized

as Legendrian ones.

2.1.2. Singular Codimension 1 Foliations. The principal aim of this

section will be to explain the following result due to Kupka [20] that tells

us that the behavior of a Legendrian foliation close to a singular point can

always be reduced to the 2-dimensional situation (see Figure 1).

Theorem 2.1. Let N be a manifold with a singular foliation F that admits

a regular equation β. Then we find around any p ∈ Sing(F) a chart with

coordinates (s, t, x1, . . . , xn−1), such that β is represented by the 1-form

a(s, t)ds+ b(s, t)dt

for smooth functions a and b.

We will call any chart of N of the form described in the theorem a

Kupka chart. Note that the foliation in a Kupka chart restricts on every

2-dimensional slice {(x1, . . . , xn−1) = const} to one that does not have any

isochore singularities (a term introduced in [15]).

Proof. From the Frobenius condition β∧dβ ≡ 0, it follows that dβ2 = 0, so

that if dimN > 2, there is a non-vanishing vector field X on a neighborhood

of p with dβ(X, ·) = 0. We can also easily see that X ∈ kerβ and LXβ = 0,

because

0 = ιX(β ∧ dβ) = β(X)dβ − β ∧ (ιXdβ) = β(X)dβ,

and dβ does not vanish on a neighborhood of p.



180 K. Niederkrüger

Let ΦX
t be the flow of X , and choose a small hypersurface Σ transverse

to X . Using the diffeomorphism

Ψ : Σ × (−ε, ε)→N, (p, t) �→ ΦX
t (p)

we can pull back the 1-form β to Σ × (−ε, ε) and we see it reduces to β|TΣ .
By repeating this construction the necessary number of times we obtain the

desired statement. �

2.1.3. Local Behavior of Legendrian Foliations. We state the follow-

ing two theorems without proof, and point the interested reader to [28] for

more details. The situation in Section 2.2.2 is treated in these notes in full

completeness to illustrate the flavor of the necessary methods. The first re-

sult tells us that a Legendrian foliation determines the germ of the contact

structure in its neighborhood.

Theorem 2.2. Let N be a compact manifold (possibly with boundary) and

let (M1, ξ1) and (M2, ξ2) be contact manifolds. Assume that two embeddings

ι1 : N ↪→M1 and ι2 : N ↪→M2 are given such that ξ1 and ξ2 induce on N the

same cooriented Legendrian foliation F . Then we find neighborhoods U1 ⊂M1

of ι1(N) and U2 ⊂M2 of ι2(N) together with a contactomorphism

Φ : (U1, ξ1)→ (U2, ξ2)

that preserves N , that means, Φ ◦ ι1 = ι2.

Another useful fact is the following theorem that tells us that the singular

foliations that can be realized as Legendrian ones are exactly those that admit

a regular equation (using the convention from the introduction). This result

generalizes the 3-dimensional situation [15], where this property was called

a foliation without “isochore singularities”.

Theorem 2.3. Let N be a manifold with a singular codimension-1 folia-

tion F given by a regular equation β. Then we can find an (open) cooriented

contact manifold (M,ξ) that contains N as a submanifold such that ξ induces

F as Legendrian foliation on N .
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2.2. Singularities of the Legendrian Foliation

The singular set of a Legendrian foliation F can be extremely complicated.

We will only discuss briefly a few general properties of such points, before

we specialize all considerations to two simple situations.

Let N have a singular foliation F given by a regular equation β, and

let p ∈ Sing(F) be a singular point of F . Choose a Kupka chart U with

coordinates (s, t, x1, . . . , xn−1) centered at p. In this chart β is represented by

a(s, t)ds+ b(s, t)dt

with two smooth functions a, b : U → R that only depend on the s- and t-

coordinates, and that vanish at the origin.

To understand the shape of the foliation depending on the functions a

and b, we might study trajectories of the vector field

X = b(s, t)
∂

∂s
− a(s, t) ∂

∂t

that spans the intersection of the foliation with the (s, t)-slices. Its divergence

divX = ∂b/∂s − ∂a/∂t does not vanish, since dβ �= 0. Up to a genericity

condition, we know by the Grobman-Hartman theorem that the flow of X is

C0-equivalent to the flow of its linearization (see [32]). In dimension 2, the

Grobman-Hartman theorem even yields a C1-equivalence, but this does not

suffice for our purposes. For one, we would like to stick to a smooth model

for all singularities, but in fact it even suffices for our goals to only look at

singularities whose leaves are all radial, so we will use below a more hands-on

approach.

2.2.1. Elliptic Singularities. The first type of singularities we allow

for the foliation F on N are called elliptic: In this case, the point p ∈
Sing(F) admits a Kupka chart diffeomorphic to R

2 × R
n with coordinates

{(s, t, x1, . . . , xn)} in which the foliation is given as the kernel of the 1-form

sdt− t ds

that means, the leaves are just the radial rays in each (s, t)-slice.

We will always assume that the elliptic singularities of a foliation F
are closed isolated codimension 2 submanifolds S in the interior of N with

trivial normal bundle, so that the tubular neighborhood of S is diffeomor-

phic to D
2
ε × S. We assume additionally that the foliation F in this model
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Fig. 2. In dimension 3 it is well-known that we can get rid of 1-dimensional singular sets
of a Legendrian foliation by slightly tilting the surface along the singular set. The picture
represents how to produce an overtwisted disk whose boundary is a regular compact leaf

of the foliation

neighborhood is given by the points with constant angular coordinate on the

D
2
ε-factor.

2.2.2. Singularities of Codimension 1. Singular sets of codimension 1

are extremely ungeneric, but can be often found through explicit construc-

tions (as in Example 2.7). We will show in this section that by slightly de-

forming the foliated submanifold one can sometimes modify the foliation in

a controlled way so that the singular set turns into a regular compact leaf

(see Figure 2).

We will treat this situation in detail to illustrate what type of methods

are needed for the proofs in this section.

Lemma 2.4. Let N be a compact manifold with a singular codimension 1 fo-

liation F given by a regular equation β. Assume that the singular set Sing(F)
of the foliation contains a closed codimension 1 submanifold S ↪→N that is

cooriented.

Then we can find a tubular neighborhood of S diffeomorphic to (−ε, ε)×S
such that β pulls back to

s · β̃,

where s denotes the coordinate on (−ε, ε), and β̃ is a non-vanishing 1-form

on S that defines a regular codimension 1 foliation on S.

Proof. Choose a coorientation for S. We first find a vector field X on a

neighborhood of S that is transverse to S and lies in the kernel of β. Study

the local situation in a Kupka chart U around a point p ∈ S with coordinates
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(s, t, x1, . . . , xn−1). Assume that β restricts to

a(s, t)ds+ b(s, t)dt,

such that S ∩U corresponds to the subset {s= 0}, and such that s increases

in direction of the chosen coorientation.

Since a and b vanish along S ∩U , we may write this form also as

sas(s, t)ds+ s bs(s, t)dt= s
(

as(s, t)ds+ bs(s, t)dt
)

with smooth functions as and bs that satisfy the conditions

as(0, t) =
∂a

∂s
(0, t) and bs(0, t) =

∂b

∂s
(0, t).

The function bs does not vanish in a small neighborhood of S∩U , because

0 �= dβ = ∂sbds ∧ dt. Choose then on the Kupka chart U the smooth vector

field

XU (s, t, x1, . . . , xn−1) = ∂s −
a(s, t)

b(s, t)
∂t = ∂s −

as(s, t)

bs(s, t)
∂t.

This field lies in F , and is positively transverse to S ∩U .

Cover the singular set S with a finite number of Kupka charts U1, . . . ,UN ,

construct vector fields XUj
according to the method described above, and

glue them together to obtain the desired vector field X by using a partition

of unity subordinate to the cover. We can use the flow of X to obtain a

tubular neighborhood of S that is diffeomorphic to (−ε, ε)×S, where {0}×S
corresponds to the submanifold S, and X corresponds to the field ∂s, where

s is the coordinate on the interval (−ε, ε), and since β(X)≡ 0, it follows that

β does not contain any ds-terms.

Let γ be the 1-form given by ιXdβ. This form does not vanish on a

neighborhood of the singular set S, because dβ �= 0 while β|TS ≡ 0, and so

we can write

0≡ ιX(β ∧ dβ) = β(X)dβ − β ∧ (ιXdβ) =−β ∧ γ.

This means that there is a smooth function F : (−ε, ε)×S→R with F |S = 0

such that β = Fγ. Furthermore, we get that

γ = ιXdβ = dF (X)γ + FιXdγ

does not vanish along S, but F does, so we obtain on S that dF (X) = 1, and

it follows that S is a regular zero level set of the function F . In fact, we can
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also easily see from

0≡ β ∧ dβ = F 2γ ∧ dγ

that γ ∧ dγ vanishes everywhere so that kerγ defines a regular foliation F̃
that agrees with the initial foliation outside Sing(F).

Finally, we have ιXγ ≡ 0, and using a similar argument as before, we see

0≡ ιX(γ ∧ dγ) =−γ ∧ ιXdγ

so that there is a smooth function f : (−ε, ε) × S → R such that LXγ =

ιXdγ = fγ. The flow in s-direction possibly rescales the 1-form γ, but it

leaves its kernel invariant, thus the foliation F̃ is tangent to the s-direction

and s-invariant. We can hence represent F̃ on (−ε, ε)× S as the kernel of

the 1-form β̃ = γ|TS that does not depend on the s-coordinate, and does not

have any ds-terms. It follows that γ is equal to F̃ γ|TS for a function F̃ that

restricts on S to 1.

For the initial 1-form β this means that β = (FF̃ )β̃, and FF̃ is a smooth

function and {0} × S is the (regular) level set of 0. We can redefine the

model (−ε, ε)×S by using the flow of a vector field G−1∂s with G= ∂s(FF̃ )

to achieve that β reduces on this new model to sβ̃. �

Suppose from now on that the singular foliation is of the form described

in Lemma 2.4, that means, we have a closed manifold S with a regular

codimension 1 foliation FS given as the kernel of a 1-form β̃, and N is

diffeomorphic to (−ε, ε)× S with a singular foliation F given as the kernel

of the 1-form sβ̃.

Remember that a 1-form σ on S defines a section in T ∗S with the prop-

erty that σ∗λcan = σ. We may realize F as a Legendrian foliation, by embed-

ding (−ε, ε)× S into the 1-jet space (R× T ∗S,dz + λcan) via the map

(s, p) �→ (0, sβ̃).

The foliations agree, and according to Theorem 2.2 this model describes a

small neighborhood of (N,sβ̃) embedded into an arbitrary contact manifold.

Assume from now on additionally that β̃ is a closed 1-form on S (by a

result of Tischler, S fibers over the circle [34]). Choose a smooth odd function

f : (−ε, ε)→ R with compact support such that the derivative f ′(0) = −1.
The section

(−ε, ε)× S ↪→R× T ∗S, (s, p) �→
(

δf(s), sβ̃
)
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describes for small δ > 0 a C∞-small deformation of N that agrees away from

S with N . The perturbed submanifold N ′ also carries a Legendrian foliation

induced by ker(ds+ λcan), because the pull-back form β′ = f ′ ds+ sβ̃ gives

β′ ∧ dβ′ =
(

f ′ ds+ sβ̃
)

∧ (ds∧ β̃ + sdβ̃) = s
(

f ′ ds+ sβ̃
)

∧ dβ̃ = sf ′ ds∧ dβ̃,

which vanishes, so that β′ satisfies the Frobenius condition. Furthermore,

since β′ itself does not vanish anywhere, it is easy to check that kerβ′ defines
a regular foliation F ′, and that {0} × S is a closed leaf of F ′.

As a conclusion, we obtain

Corollary 2.5. Let (M,ξ) be a contact manifold containing a submani-

fold N with an induced Legendrian foliation F . Assume that the singular

set of F contains a cooriented closed codimension 1-submanifold S ⊂N , and

that there is a regular foliation F that agrees outside N with F , and that

corresponds on S with a fibration over the circle. Using an arbitrary small

C∞ perturbation of N close to S, we obtain a new Legendrian foliation for

which S has become a regular closed leaf.

2.3. Examples of Legendrian Foliations

The following example relates Legendrian foliations to Lagrangian subman-

ifolds. It is not important by itself, but it may help understanding the con-

struction of the bLobs in blown down Giroux domains given in [21], and

I believe that it might pave the way to other applications.

Example 2.6. Let P be a principal circle bundle over a base manifold B,

and suppose that ξ is a contact structure on P that is transverse to the

S
1-fibers and invariant under the action. It is well-known that by averaging,

we can choose an S
1-invariant contact form α for ξ and that there exists

a symplectic form ω on B such that π∗ω = dα, where π is the bundle pro-

jection π : P →B. The symplectic form ω represents the image of the Euler

class e(P ) in H2(B,R), and hence P cannot be a trivial bundle (see [5]). The

manifold (PL, α) is usually called the pre-quantization of the symplectic

manifold (B,ω) (or the Boothby-Wang manifold).

Let L be a Lagrangian submanifold in (B,ω), and let PL := π−1(L) be

the fibration over L. Note first that in this situation, we have ω|TL = 0, so

that e(PL) = e(P )|L will automatically either vanish or be a torsion class.

We assume that e(PL) = 0, so that the fibration PL will be trivial, and we

can find a section σ : L→ PL.
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We have (α∧dα)|TPL
= (α∧π∗ω)|TPL

≡ 0, so that ξ induces a Legendrian

foliation F on PL. Furthermore, since the infinitesimal generator Xϕ of the

circle action satisfies α(Xϕ) ≡ 1, it follows that F is everywhere regular.

Using the section σ, we can identify PL with S
1 ×L, and write α|TPL

as

dϕ+ β,

where ϕ is the coordinate on the circle and β is a closed 1-form on L. The

leaves of the foliation F are local sections, but they need not be global ones,

and usually these leaves will not even be compact. Instead the proper way

to think of them is as the horizontal lift of the flat connection 1-form α|TPL
.

Choose any loop γ ⊂ L based at a point p0 ∈ L. We want to lift γ(t) to a

path γ̃(t) = (eiϕ(t), γ(t)) in PL ∼= S
1×L that is always tangent to a leaf of F ,

so that

γ̃′(t) =
(

−β
(

γ′(t)
)

, γ′(t)
)

.

In particular start and end point of γ̃ are related by the monodromy

Cγ :=−
∫

γ
β,

that means, if γ̃ starts at (eiϕ0 , p0) ∈ S
1 × L, then its end point will be

(ei(ϕ0+Cγ), p0).

Note that since the connection is flat, that means, β is closed, two ho-

mologous paths from p0 to p1 will lift the end point in the same way. Thus

we have a well-defined map

H1(L,Z)→ S
1.

The leaves of the Legendrian foliation will only be compact, if the image of

this map is discrete.

Note that the embedding of H1(L,Q)→ H1(L,R) is dense, and so we

find a 1-form β′ arbitrarily close to β such that the monodromy for every

loop in L will be a rational number. Clearly, we can extend δ = β′ − β to

a 1-form defined on the whole bundle P , and suppose that δ is sufficiently

small so that α′ = α + δ determines a contact structure that is isotopic to

the initial one. We may hence suppose that after a small perturbation of α

that the Legendrian foliation on PL is given by dφ+ β′.

In fact, since H1(L,Z) is finitely generated, we find a number c ∈Q such

that all possible values of the monodromy are a multiple of c, and by slightly
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perturbing α we obtain a regular Legendrian foliation on PL, with compact

leaves.

The second example gives a Legendrian foliation with a codimension 1

singular set.

Example 2.7. Let L be any smooth (n+ 1)-dimensional manifold with a

Riemannian metric g. It is well-known that the unit cotangent bundle S(T ∗L)
carries a contact structure given as the kernel of the canonical 1-form λcan.

The fibers of this bundle are Legendrian spheres, hence if we choose any

smooth regular loop γ : S1 → L, and if we study the fibers lying over this

path, we obtain the submanifold Nγ := π−1(γ) that has a singular Legendrian

foliation.

In fact, we can naturally decompose T ∗L|γ into the two subsets U+ and

U− defined as

U± =
{

ν ∈Nγ

∣
∣±ν

(

γ′
)

≥ 0
}

.

These sets correspond in each fiber of Nγ to opposite hemispheres. The sin-

gular set of the Legendrian foliation on Nγ is U+ ∩U−, and that the regular

leaves correspond to the intersection of each fiber of Nγ with the interior

of U+ and U−. In particular, if Nγ is orientable, we obtain that it can be

written as
(

S
1 × S

n, x0 dϕ
)

,

where ϕ is the coordinate on S
1, and (x0, . . . , xn) are the coordinates on S

n.

Using the results of Section 2.2.2, we can perturb Nγ to a submanifold

with a regular Legendrian foliation composed of two Reeb components.

2.4. Legendrian Open Books

Even though we discussed Legendrian foliations quite generally, we will only

be interested in two special types: Legendrian open books introduced in [29]

and bordered Legendrian open books introduced in [21]. Both objects were de-

fined with the aim of generalizings results from 3-dimensional contact topol-

ogy that hold for the 2-sphere with standard foliation and the overtwisted

disk respectively [4, 9, 17, 18].

Definition. Let N be a closed manifold. An open book on N is a

pair (B,ϑ) where:
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• The binding B is a nonempty codimension 2 submanifold in the interior

of N with trivial normal bundle.

• ϑ : N \B→ S
1 is a fibration, which coincides in a neighborhood B×D

2

of B =B × {0} with the normal angular coordinate.

Definition. If N is a compact manifold with nonempty boundary, then a

relative open book on N is a pair (B,ϑ) where:

• The binding B is a nonempty codimension 2 submanifold in the interior

of N with trivial normal bundle.

• ϑ : N \ B → S
1 is a fibration whose fibers are transverse to ∂N , and

which coincides in a neighborhood B × D
2 of B = B × {0} with the

normal angular coordinate.

We are interested in studying contact manifolds with submanifolds with

a Legendrian foliation that either define an open book or a relative open

book.

Definition. A closed submanifold N carrying a Legendrian foliation F in

a contact manifold (M,ξ) is a Legendrian open book (abbreviated Lob),

if N admits an open book (B,ϑ), whose fibers are the regular leaves of the

Legendrian foliation (the binding is the singular set of F).

Definition. A compact submanifold N with boundary in a contact man-

ifold (M,ξ) is called a bordered Legendrian open book (abbreviated

bLob), if N carries a Legendrian foliation F and if it has a relative open

book (B,ϑ) such that:

(i) the regular leaves of F lie in the fibers of θ,

(ii) Sing(F) = ∂N ∪B.

A contact manifold that contains a bLob is called PS-overtwisted.

Example 2.8.

(i) Every Lob in a contact 3-manifold is diffeomorphic to a 2-sphere

with the binding consisting of the north and south poles, and the

fibers being the longitudes. This special type of Lob has been stud-

ied extensively and has given several important applications, see for
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example [4, 9, 17, 18]. It is easy to find such Lobs locally, for ex-

ample, the unit sphere in R
3 with the standard contact structure

ξ = ker(dz + xdy− y dx).
(ii) A bLob in a 3-dimensional contact manifold is an overtwisted disk

(with singular boundary).

(iii) In higher dimensions, the plastikstufe had been introduced as a filling

obstruction [27], but note that a plastikstufe is just a specific bLob

that is diffeomorphic to D
2 ×B, where the fibration is the one of an

overtwisted disk (with singular boundary) on the D2-factor, extended

by a product with a closed manifold B. Topologically a bLob might

be much more general than the initial definition of the plastikstufe.

For example, a plastikstufe in dimension 5 is always diffeomorphic to

a solid torus D2× S
1 while a 3-manifold admits a relative open book

if and only if its boundary is a nonempty union of tori.

The importance of the previous definitions lie in the following two theo-

rems, which will be proved in Section 4.

Theorem A ([21, 27]). Let (M,ξ) be a contact manifold that contains a

bLob N , then M does not admit any semi-positive weak symplectic filling

(W,ω) for which ω|TN is exact.

The statement above is a generalization of the analogous statement found

first for the overtwisted disk in [9, 17].

Remark 2.9. A bLob obstructs always (semi-positive) strong symplectic

filling, because in that case the restriction of ω to N is exact.

Remark 2.10. In dimension 4 and 6, every symplectic manifold is auto-

matically semi-positive.

Theorem B ([29]). Let (M,ξ) be a contact manifold of dimension (2n+1)

that contains a Lob N . If M has a weak symplectic filling (W,ω) that is

symplectically aspherical, and for which ω|TN is exact, then it follows that

N represents a trivial class in Hn+1(W,Z2). If the first and second Stiefel-

Whitney classes w1(N) and w2(N) vanish, then we obtain that N must be a

trivial class in Hn+1(W,Z).

Remark 2.11. The methods from [18] can be generalized for Theorem A,

see [2], and for Theorem B, see [29], to find closed contractible Reeb orbits.
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2.5. Examples of bLobs

The most important result of these notes is the construction of non-fillable

manifolds in higher dimensions. The first such manifolds were obtained by

Presas in [33], and modifying his examples it was soon possible to show that

every contact structure can be converted into one that is PS-overtwisted [35].

This result was reproved and generalized in [11], where it was shown that

we may modify a contact structure into one that is PS-overtwisted without

changing the homotopy class of the underlying almost contact structure.

A very nice explicit construction in dimension 5 that is similar to the

3-dimensional Lutz twist was given in [26]. In [21] the construction was ex-

tended and produced examples that are not PS-overtwisted but share many

properties with 3-manifold that have positive Giroux torsion.

The following unpublished construction is due to Francisco Presas who

explained it to me during a stay in Madrid. It is probably the easiest way to

produce a closed PS-overtwisted manifolds of arbitrary dimensions.

Theorem 2.12 (Fran Presas). Let (M1, ξ1) and (M2, ξ2) be contact man-

ifolds of dimension 2n + 1 that both contain a PS-overtwisted submani-

fold (N,ξN ) of codimension 2 with trivial normal bundle. The fiber sum

of M1 and M2 along N is a PS-overtwisted (2n+ 1)-manifold.

Proof. Let αN be a contact form for ξN . The manifold N has neighbor-

hoods U1 ⊂M1 and U2 ⊂M2 that are contactomorphic to

D
2√
ε ×N

with contact structure given as the kernel of the 1-form αN + r2 dϕ [12,

Theorem 2.5.15].

We can remove the submanifold {0} × N in this model, and do a

reparametrization of the r-coordinate by s = r2 to bring the neighborhood

into the form

(0, ε)× S
1 ×N

with contact form αN +sdϕ. We extendM1 \N andM2 \N by attaching the

negative s-direction to the model collar, so that we obtain a neighborhood

(

(−ε, ε)× S
1 ×N, αN + sdϕ

)

.
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Denote these extended manifolds by (M̃1, ξ̃1) and (M̃2, ξ̃2), and glue them

together using the contactomorphism

(−ε, ε)× S
1 ×N → (−ε, ε)× S

1 ×N

(s,ϕ, p) �→ (−s,−ϕ,p).

We call the contact manifold (M ′, ξ′) that we have obtained this way the

fiber sum of M1 and M2 along N .

If S is a bLob in N , then it is easy to see that {0} × S
1 × S is a bLob in

the model neighborhood (−ε, ε)× S
1 ×N . �

With this proposition, we can now construct non-fillable contact mani-

folds of arbitrary dimension. Every oriented 3-manifold admits an overtwisted

contact structure in every homotopy class of almost contact structures.

Let (M,ξ) be a compact manifold, let αM be a contact form for ξ. A fun-

damental result due to Emmanuel Giroux gives the existence of a compatible

open book decomposition for M [16]. Using this open book decomposition,

it is easy to find functions f, g : M →R such that

(

M ×T
2,ker(αM + f dx+ g dy)

)

is a contact structure, see [6], where (x, y) denotes the coordinates on the

2-torus. The fibers M × {z} are contact submanifold with trivial normal

bundle, so that in particular if (M,ξ) is PS-overtwisted, we can apply the

construction above to glue two copies of M ×T
2 along a fiber M ×{z}. This

way, we obtain a PS-overtwisted contact structure on M ×Σ2, where Σ2 is

a genus 2 surface.

Using this process inductively, we find closed PS-overtwisted contact

manifolds of any dimension ≥ 3.

Note that in dimension 5, we can find more easily examples to which we

can apply Theorem 2.12, so that it is not necessary to rely on [6]. Let (M,ξ)

be an overtwisted 3-manifold with contact form α. After normalizing α with

respect to a Riemannian metric, it describes a section

σα : M → S
(

T ∗M
)

in the unit cotangent bundle. It satisfies the fundamental relation σ∗αλcan = α,

hence it gives a contact embedding of (M,ξ) into (S(T ∗M),kerλcan).

For trivial normal bundle, this allows us to glue with Theorem 2.12 two

copies together and obtain a PS-overtwisted 5-manifold.
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3. Behavior of J-Holomorphic Disks Imposed by Convexity

The following section only fixes notation, and explains some well-known facts

about J -convexity. With some basic knowledge on J -holomorphic curves, one

can safely skip it and continue directly to Section 3.2, which describes the

local models around the binding and the boundary of the Lobs and bLobs and

the behavior of holomorphic disks that lie nearby. The next two sections in-

clude a description about moduli spaces and their basic properties, but most

results are only explained in an intuitive way without giving any proofs. The

fifth section deals with the Gromov compactness of the considered moduli

spaces, and the chapter finishes proving the two applications that relate a

Lob or a bLob to the topology of a symplectic filling.

3.1. Almost Complex Structures and Maximally Foliated

Submanifolds

3.1.1. Preliminaries: J-Convexity.

The Maximum Principle. One of the basic ingredients in the theory

of J -holomorphic curves with boundary is the maximum principle, which

we will now briefly describe in the special case of Riemann surfaces. We

assume in this section that (Σ,j) is a Riemann surface that does not need to

be compact and may or may not have boundary. We define the differential

operator dj that associates to every smooth function f : Σ → R a 1-form

given by
(

djf
)

(v) :=−df(jv)

for v ∈ TΣ.

Definition. We say that a function f : (Σ,j)→R is

(a) harmonic if the 2-form ddjf vanishes everywhere,

(b) it is subharmonic if the 2-form ddjf is a positive volume form with

respect to the orientation defined by (v, jv) for any non-vanishing

vector v ∈ TΣ.

(c) If f only satisfies

ddjf(v, jv)≥ 0

then we call it weakly subharmonic.
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In particular, if we choose a complex chart (U ⊂C, φ) for Σ with coordi-

nate z = x+iy, we can represent f by fU := f ◦φ−1 : U →R. The 2-form ddjf

simplifies on this chart to ddifU , because φ is holomorphic with respect to j

and i, and we can write ddifU in the form (!fU )dx∧dy, where the Laplacian
is defined as

!fU =
∂2fU
∂x2

+
∂2fU
∂y2

.

Note that fU is subharmonic, if and only if ddifU (∂x, ∂y) > 0, that means,

!fU > 0.

For strictly subharmonic functions, it is obvious that they may not have

any interior maxima, because the Hessian needs to be negative definite at any

such point. We really need to consider both weakly subharmonic functions

and the behavior at boundary points. To prove the maximum principle in

this more general setup, we use the following technical result.

Lemma 3.1. Let f : D2 ⊂C→R be a function that is C1 on the closed unit

disk, and both C2 and weakly subharmonic on the interior of the disk. Assume

that f takes its maximum at a boundary point z0 ∈ ∂D2 and is everywhere

else strictly smaller than f(z0). Choose an arbitrary vector X ∈ Tz0C at z0

pointing transversely out of D
2
.

Then the derivative LXf(z0) in X-direction needs to be strictly positive.

Proof. We will perturb f to a strictly subharmonic function making use

of the auxiliary function g : D
2→R defined by (see Figure 3)

g(r) = r4 − 9

4
r2 +

5

4
.

The function g vanishes along the boundary ∂D2, and its derivative in

any direction v that is positively transverse to the boundary ∂D2 is strictly

negative, because ∂ϕg = 0 and because

r∂rg =
1

2
r2
(

8r2 − 9
)

.

Finally, we also see that g is strictly subharmonic on the open annulus A=

{z ∈C | 3/4< |z|< 1} as

!g = ∂2g

∂x2
+
∂2g

∂y2
= 16r2 − 9.
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Fig. 3. The function g(r) is subharmonic, vanishes on the boundary, and has negative
radial derivative

We slightly perturb f by setting fε = f + εg for small ε > 0, and we

additionally restrict fε to the closure of the annulus A. Note in particular

that fε must take its maximum on ∂A, because fε is strictly subharmonic on

the interior of A so that one of ∂2fε
∂x2 or ∂2fε

∂y2 must be strictly positive. This

contradicts existence of possible interior maximum points. The functions fε
are equal to f along the outer boundary of A so that the maximum of fε will

either lie in z0 or on the inner boundary of A.

The initial function f is by assumption strictly smaller than f(z0) on the

inner boundary of the annulus and by choosing ε sufficiently small, it follows

that the perturbed function fε will still be strictly smaller than fε(z0) =

f(z0). Thus z0 will also be the maximum of fε. Let X be a vector at z0 that

points transversely out of D
2
. The derivative LXfε at z0 cannot be strictly

negative, because z0 is a maximum, and so since

0≤LXfε = LXf + εLXg,

the derivative of f in X-direction has to be strictly positive, yielding the

desired result. �

Now we are prepared to state and prove the maximum principle.

Theorem 3.2 (Weak maximum principle). Let (Σ,j) be a connected com-

pact Riemann surface. A weakly subharmonic function f : Σ→R that attains

its maximum at an interior point z0 ∈Σ \ ∂Σ must be constant.
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Fig. 4. Constructing a disk that has a single maximum on its boundary

Proof. The proof is classical and holds in much greater generality (see for

example [14]). Nonetheless we will explain it in the special case needed by us

to show that it only uses elementary techniques. The strategy is simply to

find a closed disk in the interior of the Riemann surface with the properties

required by Lemma 3.1. Then the function f increases in radial direction

further, so that the maximum point was not really a maximum.

More precisely, assume f not to be constant, and to have a maximum at

an interior point z+ ∈Σ \∂Σ with C+ := f(z+). The subset K := f−1(C+)∩
Σ̊ is closed in Σ̊. For every point z ∈K, we find an Rz > 0 such that the

open disk DRz
(z) is contained in some complex chart. There must be a point

z0 ∈K for which the half sized disk DRz0/2
(z0) intersects Σ̊ \K, for otherwise

K would be open and hence as Σ̊ is connected, K = Σ̊.

Let p be a point in DRz0/2
(z0) \K (see Figure 4). It lies so close to z0

that the entire closed disk of radius |p− z0| lies in the chart U , and then we

can choose first a disk DR(p) centered at p, where R is the largest number

for which the open disk does not intersect f−1(C+). We are interested in

finding a closed disk that intersects f−1(C+) at a single boundary point: For

this let q be the mid point between p and one of the boundary points in

∂D2
R(p)∩ f−1(C+). The disk D

2
R/2(q) touches f

−1(C+) at exactly one point.

This smaller disk satisfies the conditions of Lemma 3.1, and so it follows

that the derivative of f at the maximum is strictly positive in radial direction.

But since this point lies in the interior of Σ, it follows that f still increases

in that direction and hence this point cannot be the maximum. Of course,

the whole existence of the disk was based on the assumption that f was not

constant, so we obtain the statement of the theorem. �

If Σ has boundary, we also get the following refinement.
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Theorem 3.3 (Boundary point lemma). Let f : Σ→R be a weakly subhar-

monic function on a connected compact Riemann surface (Σ,j) with bound-

ary. Assume f takes its maximum at a point z+ ∈ ∂Σ, then f will either be

constant or the derivative at z+

LXf(z+)> 0

in any outward direction X ∈ Tz+Σ has to be strictly positive.

Proof. Denote the maximum f(z+) by C+. By the maximum principle,

Theorem 3.2, we know that f will be constant if there is a point z ∈Σ \ ∂Σ
for which f(z) = C+. We can thus assume that for all z /∈ ∂Σ, we have

f < C+. Using a chart U around the point z+, that represents an open set in

H := {z ∈C| Imz ≥ 0}, such that z+ corresponds to the origin, we can easily

find a small disk in H that touches ∂H only in 0, and hence allows us to

directly apply Lemma 3.1 to complete the proof. �

Plurisubharmonic Functions. We will now explain the connection be-

tween the previous section and contact topology.

Let (W,J) be an almost complex manifold, that means that J is a section

of the endomorphism bundle End(TM) with J2 =−1. Define the differential

dJf of a smooth function f : W →R as before by

(

dJf
)

(v) :=−df(J · v)

for any vector v ∈ TW .

Definition. We say that a function h : W →R is J-plurisubharmonic, if

the 2-form

ωh := ddJh

evaluates positively on J -complex lines, that means that ωh(v,Jv) is strictly

positive for every non-vanishing vector v ∈ TW .

If ωh vanishes, then we say that h is J-harmonic.

Remark 3.4.

(1) If h is J -plurisubharmonic, then ωh is an exact symplectic form that

tames J .
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(2) If ωh is only non-negative, then we say that h is weakly J-

plurisubharmonic. This notion might be for example interesting

in the context of confoliations.

Let (Σ,j) be a Riemann surface that does not need to be compact, and

may or may not have boundary. We say that a smooth map u : Σ→W is J-

holomorphic, if its differential commutes with the pair (j, J), that means,

at every z ∈Σ we have

J ·Du=Du · j.

Using the commutation relation, we easily check for every J -holomorphic

map u and every smooth function f : U →R the formula

(3.1) u∗dJf =−df ·J ·Du=−df ·Du · j =−d(f ◦u) · j = dj(f ◦u) = dju∗f.

Corollary 3.5. If u : (Σ,j)→ (W,J) is J-holomorphic and h : W →R is a

J-plurisubharmonic function, then h ◦ u will be weakly subharmonic, because

ddj(h ◦ u) = du∗dJh= u∗ddJh

and because the differential Du commutes with the complex structures, so

that

ddj(h ◦ u)(v, jv) = ddJh(Du · v,J ·Du · v)≥ 0

for every vector v ∈ TΣ. The function is strictly positive precisely at points

z ∈ U , where Duz does not vanish.

The maximum principle restricts severely the behavior of holomorphic

maps:

Corollary 3.6. Let u : (Σ,j) → (W,J) be a J-holomorphic map and

h : W → R be a J-plurisubharmonic function. If u is not a constant map

then h ◦ u : Σ→R will never take its maximum on the interior of Σ.

Proof. Since h ◦ u is weakly subharmonic, it follows immediately from the

maximum principle (Theorem 3.2) that h ◦ u must be constant if it takes its

maximum in the interior of Σ, and hence d(h ◦ u) = 0. On the other hand,

we know that if there were a point z ∈Σ with Dzu �= 0, then ωh(Du · v,Du ·
jv) would need to be strictly positive for non-vanishing vectors. This is not

possible though, because u∗ωh = ddj(h ◦ u) = 0. �
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Corollary 3.7. Let (Σ,j) be a Riemann surface with boundary, u : (Σ,j)→
(W,J) a J-holomorphic map and h : W → R be a J-plurisubharmonic func-

tion. If h ◦ u : Σ → R takes its maximum at z0 ∈ ∂Σ then it follows either

that d(h◦u)(v)> 0 for every vector v ∈ Tz0Σ pointing transversely out of the

surface, or u will be constant.

Proof. The proof is analogous to the previous one, but uses the boundary

point lemma (Theorem 3.3) instead of the simple maximum principle. �

Remark 3.8. Note that if h is only weakly plurisubharmonic, then we can

only deduce in the two corollaries above that u has to lie in a level set of h,

and not that u itself must be constant.

Contact Structures as Convex Boundaries. Now we will finally ex-

plain the relation between plurisubharmonic functions and contact manifolds.

Definition. Let (W,J) be an almost complex manifold with boundary. We

say that W has J-convex boundary, if there exists a smooth function

h : W → (−∞,0] with the properties

• h is J -plurisubharmonic on a neighborhood of ∂W ,

• h is a regular equation for ∂W , that means, 0 is a regular value of h

and ∂W = h−1(0).

Note that the function h in the definition takes its maximum on ∂W , so

that it must be strictly increasing in outward direction.

We will show that the boundary of an almost complex manifold is J -

convex if and only if it carries a natural cooriented contact structure (whose

conformal symplectic structure tames J). Remember that we are always as-

suming our contact manifolds to be cooriented. Hence the manifold is ori-

ented, and its contact structure will have a natural conformal symplectic

structure.

Definition. Let M be a codimension 1 submanifold in an almost complex

manifold (W,J). The subbundle of complex tangencies of M is the J -

complex subbundle

ξ := TM ∩ (J · TM).
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Proposition 3.9. Let (W,J) be an almost complex manifold with bound-

ary M := ∂W and let ξ be the subbundle of complex tangencies of M . We

have the following equivalence:

(1) The boundary M is J-convex.

(2) The subbundle ξ is a cooriented contact structure whose natural ori-

entation is compatible with the boundary orientation of M , and whose

natural conformal symplectic structure tames J |ξ .

Proof. To prove the direction “(1)⇒ (2)”, let h be the J -plurisubharmonic

equation of M that exists by assumption. A straight forward calculation

shows that the kernel of the 1-form α := dJh|TM is precisely ξ, and in par-

ticular that α does not vanish. Furthermore dα|TM = ωh|TM is a symplectic

structure on ξ that tames J |ξ , so that α is a contact form. To check that

α ∧ dαn−1 is a positive volume form with respect to the boundary orien-

tation induced on M by (W,J), let Rα be the Reeb field of α, and define

a vector field Y = −JRα. The field Y is positively transverse to ∂W , be-

cause LY h = dh(Y ) = dJh(Rα) = α(Rα) = 1 is positive. Choosing a basis

(v1, . . . , v2n−2) for ξ at a point p ∈M , we compute

α∧ dαn−1(Rα, v1, . . . , v2n−2) = dαn−1(v1, . . . , v2n−2) = ωn−1
h (v1, . . . , v2n−2).

Similarly, we obtain

ωn
h(Y,Rα, v1, . . . , v2n−2) = nωh(Y,Rα) · ωn−1

h (v1, . . . , v2n−2)

= nωh(Rα, JRα) · ωn−1
h (v1, . . . , v2n−2),

where we have used that ωh(Rα, vj) = dα(Rα, vj) = 0 for all j ∈ {1, . . . , n−1}.
The first term ωh(Rα, JRα) is positive, and hence α∧dαn−1 and ιY ω

n
h induce

identical orientations on M .

To prove the direction “(2) ⇒ (1)”, choose any collar neighborhood

(−ε,0] × M for the boundary, and let t be the coordinate on (−ε,0].
First note that α = dJ t|TM is a non-vanishing 1-form with kernel ξ, so

in particular it will be contact. Let Rα be the Reeb field of α, and set

Y := −JRα. As before, the field Y is positively transverse to M , because

of LY t=−dt(JRα) = α(Rα) = 1.

Let C be a large constant, whose size will be determined below, and set

h(t, p) := eCt − 1. Clearly, h is a regular equation for M , and we claim that

for sufficiently large C, h will be a J -plurisubharmonic function.
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Let v ∈ TpW be any non-vanishing vector at p ∈M and represent it as

v = aY + bRα + cZ,

where Y and Rα were defined above, and Z ∈ ξ is a vector in the contact

structure that has been normalized such that dα(Z,JZ) = ωt(Z,JZ) = 1.

Note that the 1-form αC = dJh|TM =CeCtα is a contact form that represents

the same coorientation as α.

We compute ωh = ddJh=CeCt(ωt+C dt∧dJ t), which simplifies for t= 0

further to ωh =C(ωt +C dt∧ dJ t) and so we have

ωh(Rα, ·) =C
(

ωt(Rα, ·)−C dt
)

and ωh(Y, ·) =C
(

ωt(·, JRα) +C dJ t
)

.

This implies ωh(Rα,Z) = ωh(Rα, JZ) = 0 for all Z ∈ ξ, and ωh(Y,Rα) =C2+

Cωt(Rα, JRα) can be made arbitrarily large by increasing the size of C. With

these relations we obtain

ωh(v,Jv)

= ωh(aY + bRα + cZ,aRα − bY + cJZ)

=
(

a2 + b2
)

ωh(Y,Rα) + c2ωh(Z,JZ) + acωh(Y,JZ) + bcωh(Y,Z)

=
(

a2 + b2
)(

C2 +O(C)
)

+C
(

c2ωt(Z,JZ) + acωt(Y,JZ) + bcωt(Y,Z)
)

and setting Aa = ωt(Y,JZ) and Ab = ωt(Y,Z) and using that ωt(Z,JZ) = 1

=
(

a2 + b2
)(

C2 +O(C)
)

+C
(

c2 +Aaac+Abbc
)

=
(

a2 + b2
)(

C2 +O(C)
)

+
C

2

(

(c+ aAa)
2 − a2A2

a + (c+ bAb)
2 − b2A2

b

)

= a2
(

C2 +O(C)
)

+ b2
(

C2 +O(C)
)

+
C

2

(

(c+ aAa)
2 + (c+ bAb)

2
)

.

By choosing C large enough, we can ensure that the a2- and b2-coefficients

are both positive. Then it is obvious from the computation above that ωh
tames J , and hence h is J -plurisubharmonic. �

Legendrian Foliations in Convex Boundaries.

Definition. A totally real submanifold N of an almost complex man-

ifold (W,J) is a submanifold of dimension dimN = 1
2 dimW that is not

tangent to any J -complex line, that means, TN ∩ (J TN) = {0}, which is

equivalent to requiring

TW |N = TN ⊕ (J TN).
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Proposition 3.10. Let (W,J) be an almost complex manifold with J-convex

boundary (M,ξ). Assume N is a submanifold of M for which the complex

tangencies ξ induce the Legendrian foliation F = TN ∩ ξ. Then it is easy to

check that N \ Sing(F) is totally real.

Proof. If X ∈ TN is a non-vanishing vector with JX also in TN , then in

particular

X ∈ TN ∩ (JTN)⊂ TM ∩ (JTM) = ξ,

so that X and JX have to lie in F . The 2-form dα tames J |ξ so that

dα(X,JX) > 0, but dα|F vanishes at regular points of the foliation, and

hence X must be 0. �

We will next study the restrictions imposed by a Legendrian foliation

on J -holomorphic curves. Let (Σ,j) be a compact Riemann surface with

boundary, and let A be a subset of an almost complex manifold (W,J). We

introduce for J -holomorphic maps u : Σ→W with u(∂Σ)⊂A the notation

u : (Σ,∂Σ, j)→ (W,A,J).

Note that we are always supposing that u is at least C1 along the boundary.

Corollary 3.11. Let (W,J) be an almost complex manifold with convex

boundary (M,ξ). Let N ↪→M be a submanifold with an induced Legendrian

foliation F , and let u be a J-holomorphic map

u : (Σ,∂Σ, j)→
(

W,N \ Sing(F), J
)

.

If there is an interior point z0 ∈Σ \ ∂Σ at which u touches M , or if ∂u is

not positively transverse to F , then u is a constant map.

Proof. Choose a J -plurisubharmonic function h : W →R that is a regular

equation for M . The first implication follows directly from Corollary 3.6,

because z0 would be an interior maximum for h ◦ u.

For the second implication note first that h ◦ u takes its maximum on

∂Σ so that if u is not constant, we have by Corollary 3.7 that the derivative

Lv(h◦u) is strictly positive for every point z1 ∈ ∂Σ and every vector v ∈ Tz1Σ
pointing out of Σ. Now if w ∈ TΣ is a vector that is tangent to ∂Σ such that

jw points inward (so that w corresponds to the boundary orientation of ∂Σ,

because (−jw,w) is a positive basis of TΣ), we obtain

α(Du ·w) =−dh(JDu ·w) =−dh(Du · jw) =−d(h ◦ u)(jw)> 0.
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The boundary of ∂u has thus to be positively transverse to ξ, and so it is in

particular positively transverse to the Legendrian foliation F . �

Note that the result above applies only for holomorphic maps that are

C1 along the boundary.

3.1.2. Preliminaries: ω-Convexity. Above we have explained the notion

of J -convexity, and the relevant relationship between contact and almost

complex structures. In this section, we want to discuss the notion of ω-

convexity, that means the relationship between an (almost) symplectic and

a contact structure.

In fact, we are not interested in studying almost complex manifolds

for their own sake, but we would like to use the almost complex struc-

ture to understand instead a symplectic manifold (W,ω). As initiated by

Gromov, we introduce an auxiliary almost complex structure to be able to

study J -holomorphic curves in the hope that even though the J -holomorphic

curves depend very strongly on the almost complex structure chosen, we’ll

be able to extract interesting information about the initial symplectic struc-

ture.

For this strategy to work, we need the almost complex structure to be

tamed by ω, that means, we want

ω(X,JX)> 0

for every non-vanishing vector X ∈ TW . This tameness condition is impor-

tant, because it allows us to control the limit behavior of sequences of holo-

morphic curves (see Section 4.3).

As explained in the previous section, J -convexity is a property that

greatly helps us in understanding holomorphic curves in ambient manifolds

that have boundary. When (W,ω) is a symplectic manifold with bound-

ary M = ∂W , we would thus like to chose an almost complex structure J

that is

• tamed by ω, and

• that makes the boundary J -convex.

In particular, if such a J exists, we know that the boundary admits an

induced contact structure

ξ = TM ∩ (J · TM).
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From the symplectic or contact topological view point, the opposite setup

would be more natural though: given a symplectic manifold (W,ω) with

contact boundary (M,ξ), can we choose an almost complex structure J that

is tamed by ω, and that makes the boundary J -convex such that ξ is the

bundle of J -complex tangencies?

The general answer to that question was given in [21].

Definition. Let (M,ξ) be a cooriented contact manifold of dimension 2n−1,

and let (W,ω) be a symplectic manifold whose boundary is M . Let α be a

positive contact form for ξ, and assume that the orientation induced by

α ∧ dαn−1 on M agrees with the boundary orientation of (W,ω). We call

(W,ω) a weak symplectic filling of (M,ξ), if

α∧ (T dα+ ω)n−1 > 0

for every T ∈ [0,∞).

The proofs of the following statements are very lengthy, hence we will

omit the proofs referring instead to the Appendix of [21] for more details.

Theorem 3.12. Let (M,ξ) be a cooriented contact manifold, and let (W,ω)

be a symplectic manifold with boundary M = ∂W . The following two state-

ments are equivalent

• (W,ω) is a weak symplectic filling of (M,ξ).

• There exists an almost complex structure J on W that is tamed by ω

and that makes M a J-convex boundary whose J-complex tangencies

are ξ.

Furthermore the space of all almost complex structures that satisfy these

conditions is contractible (if non-empty).

A weak filling is a notion that is relatively recent in higher dimensions;

traditionally it is the concept of a strong symplectic filling that has been

studied for a much longer time. Let (W,ω) be a symplectic manifold. A vector

field XL is called a Liouville vector field, if it satisfies the equation

LXL
ω = ω.

Definition. Let (M,ξ) be a cooriented contact manifold, and let (W,ω)

be a symplectic manifold whose boundary is M . We call (W,ω) a strong
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symplectic filling of (M,ξ), if there exists a Liouville vector field XL on

a neighborhood of M such that λ := (ιXL
ω)|TM is a positive contact form

for ξ.

It is easy to see that a strong filling is in particular a weak filling. Note

that the symplectic form of a strong filling becomes always exact when re-

stricted to the boundary, but that this needs not be true for a weak filling;

if it is then it will usually still not be a strong symplectic filling, but by

Corollary 3.15 it can deformed into one.

Lemma 3.13. Let (W,ω) be a symplectic manifold and let M be a hyper-

surface (possibly a boundary component of W ) together with a non-vanishing

1-form λ. Assume that the restriction of ω to kerλ is symplectic.

Then there is a tubular neighborhood ofM inW that is symplectomorphic

to the model
(

(−ε, ε)×M,d(tλ) + ω|TM
)

,

where t is the coordinate on the interval (−ε, ε). The 0-slice {0} ×M cor-

responds in this identification to the hypersurface M . If M is a boundary

component of W then of course we need to replace the model by (−ε,0]×M
or by [0, ε)×M depending on whether λ∧ ωn−1 is oriented as the boundary

of (W,ω) or not.

For the proof see [21, Lemma 2.6].

Proposition 3.14. Let (W,ω) be a weak filling of a contact manifold (M,ξ),

and let Ω be a 2-form on M that is cohomologous to ω|TM . Choose a positive

contact form α for (M,ξ). Then if we allow C > 0 to be sufficiently large, we

can attach a collar [0,C]×M to W with a symplectic form ωC that agrees

close to {C}×M with d(tα) +Ω, and such that the new manifold is a weak

filling of ({t0} ×M,ξ) for every t0 ∈ [0,C].

The proof can be found in [21, Lemma 2.10].

Corollary 3.15. Let (W,ω) be a weak symplectic filling of (M,ξ) and as-

sume that ω restricted to a neighborhood of M is an exact symplectic form.

Then we may deform ω on a small neighborhood of M such it becomes a

strong symplectic filling.
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Proof. Since ω|TM is exact, we can apply the proposition above with Ω = 0.

Afterwards we can isotope the collar back into the neighborhood of the

boundary of W . �

Note that two contact structures that are strongly filled by the same sym-

plectic manifold are isotopic, while a symplectic manifold may be a weak fill-

ing of two different contact manifolds. This is true even when the restriction

of the symplectic structure to the boundary is exact, see [21, Remark 2.11].

3.2. Holomorphic Curves and Legendrian Foliations

Let (W,J) be an almost complex manifold with J -convex boundary (M,ξ),

and let N ⊂M be a submanifold carrying a Legendrian foliation F . The aim

of this section will be to better understand the behavior of J -holomorphic

maps

u : (Σ,∂Σ, j)→ (W,N,J),

that lie close to a singular point p ∈ Sing(F) of the Legendrian foliation. For

this we will assume that J is of a very specific form in a neighborhood of the

point p.

3.2.1. Existence of J-Convex Functions Close to Totally Real Sub-

manifolds. As a preliminary tool, we will need the following result.

Proposition 3.16. Let (W,J) be an almost complex structure that con-

tains a closed totally real submanifold L. Then there exists a smooth function

f : W → [0,∞) with L = f−1(0) that is J-plurisubharmonic on a neighbor-

hood of L. In particular, it follows that dfp = 0 at every point p ∈ L.

Proof. We will first show that we find around every point p ∈ L a chart

U with coordinates {(x1, . . . , xn;y1, . . . , yn)} ⊂ R
2n such that L ∩ U = {y1 =

· · ·= yn = 0} and

J
∂

∂xj

∣
∣
∣
∣
L∩U

=
∂

∂yj

∣
∣
∣
∣
L∩U

.

For this, start by choosing coordinates {(x1, . . . , xn)} ⊂R
n for the submani-

fold L around the point p, and consider the associated vector fields

Y1 = J
∂

∂x1
, . . . , Yn = J

∂

∂xn
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along L. These vector fields are everywhere linearly independent and trans-

verse to L, hence, we can define a smooth map from a small ball around 0

in R
2n = {(x1, . . . , xn;y1, . . . , yn)} to W by

y1Y1(x1, . . . , xn) + · · ·+ ynY1(x1, . . . , xn) �→ exp(y1Y1 + · · ·+ ynY1),

where exp is the exponential map for an arbitrary Riemannian metric on W .

If the ball is chosen sufficiently small, the map will be a chart with the desired

properties.

For such a chart U , we will choose a function

fU : U → [0,∞), (x1, . . . , xn;y1, . . . , yn) �→
1

2

(

y21 + · · ·+ y2n
)

.

It is obvious that both the function itself, and its differential vanish along

L∩U . Furthermore f is plurisubharmonic close to L∩U , because

ddJfU = d
(

y1 d
Jy1 + · · ·+ yn d

Jyn
)

= dy1 ∧ dJy1 + · · ·+ dyn ∧ dJyn + y1 dd
Jy1 + · · ·+ yn dd

Jyn

simplifies at L∩U to

ddJfU
∣
∣
L∩U = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn,

where we have used that all yj vanish, and that J ∂
∂xj

= ∂
∂yj

and J ∂
∂yj

=

J2 ∂
∂xj

= − ∂
∂xj

. It is easy to check that this 2-form evaluates positively on

complex lines along L∩U , and hence also in a small neighborhood of p.

Now to obtain a global plurisubharmonic function as stated in the propo-

sition, cover L with finitely many charts U1, . . . ,UN , each with a function

f1, . . . , fN according to the construction given above. Choose a subordinate

partition of unity ρ1, . . . , ρN , and define

f =

N∑

j=1

ρj · fj .

The function f and its differential df =
∑N

j=1(ρj dfj + fj dρj) vanish along L

so that the only term in

ddJf = d

N∑

j=1

(

ρj d
Jfj + fj d

Jρj
)

=

N∑

j=1

(

ρj dd
Jfj + dρj ∧ dJfj + fj dd

Jρj + dfj ∧ dJρj
)
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that survives along L is the first one, giving us along L

ddJf =

N∑

j=1

ρj dd
Jfj .

This 2-form is positive on J -complex lines, and hence there is a small neigh-

borhood of L on which f is plurisubharmonic. Finally, we modify f to be

positive outside this small neighborhood so that we have L= f−1(0) as re-

quired. �

Corollary 3.17. Let (W,J) be an almost complex structure that contains

a closed totally real submanifold L. Then we find a small neighborhood U of

L for which every J-holomorphic map

u : (Σ,∂Σ, j)→ (W,L,J)

from a compact Riemann surface needs to be constant if u(Σ)⊂ U .

Proof. Let f : W → [0,∞) be the function constructed in Proposition 3.16,

and let U ⊂ (W,J) be the neighborhood of L, where f is J -plurisubharmonic.

Because u(Σ) ⊂ U , we obtain from Corollary 3.6 that f ◦ u must take its

maximum on the boundary of Σ, but because f ◦ u is zero on all of ∂Σ, it

follows that f ◦ u will vanish on the whole surface Σ. The image u(Σ) lies

then in the totally real submanifold L, and this implies that the differential

of u vanishes everywhere. Hence there is a q0 ∈ L with u(z) = q0 for all

z ∈Σ. �

3.2.2. J-Holomorphic Curves Close to Elliptic Singularities of a

Legendrian Foliation. The aim of this section will be to show that for a

suitable choice of an almost complex structure, elliptic singularities give birth

to a family of holomorphic disks, and that apart from these disks and their

branched covers, no other holomorphic disks may get close to the elliptic

singularities.

Before studying the higher dimensional case, we will construct a model

situation for a 4-dimensional almost complex manifold with convex boundary.

Dimension 4. Consider C2 with its standard complex structure i. Then it

is easy to check that h(z1, z2) =
1
2(|z1|

2+ |z2|2) is a plurisubharmonic function

whose regular level sets are the concentric spheres around the origin. We

choose the level set M = h−1(1/2), that is, the boundary of the closed unit
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ball W := h−1((−∞,1/2]) that is i-convex and has the induced contact form

α0 = dih
∣
∣
TM

= x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2.

We only want to study a neighborhood U of (0,1) in W . Embed a small

disk by the map

Φ : z �→
(

z,

√

1− |z|2
)

into M ∩ U , and denote the image of Φ by N0. This submanifold is the

intersection of M = S
3 with a hyperplane whose z2-coordinate is purely real.

The restriction of α0 to N0 reduces to

(3.2) α0|TN0
= Φ∗α0 = xdy− y dx,

so that the Legendrian foliation has at the origin an elliptic singularity (of

the type described in Section 2.2.1).

Let U be the subset

U =
{

(z1, z2) ∈C
2
∣
∣Re(z2)> 1− δ

}

∩ h−1
(

(−∞,1/2]
)

for small δ > 0, that means, we take the unit ball and cut off all points under

a certain x2-height.

The following propositions explain that there is essentially a unique holo-

morphic disk with boundary in N0 passing through a given point (z1, z2) ∈
N0∩U . All other holomorphic curves with the same boundary condition will

either be constant or will be (branched) covers of that disk.

Proposition 3.18. Denote the intersection of U with the complex plane

C × {x} for x ∈ (1 − δ,1) by Lx. For every x2 ∈ (1 − δ,1), there exists a

unique injective holomorphic map

ux2
:
(

D
2, ∂D2

)

→ (Lx2
, ∂Lx2

)

that satisfies ux2
(0) = (0, x2) and ux2

(1) ∈ {(x1, x2) ∈ U |x1 > 0}.

The last two conditions only serve to fix a parametrization of a given

geometric disk.

Proof. The desired map ux2
can be explicitly written down as

ux2
(z) = (Cz,x2)

with C =
√

1− x22.
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To prove uniqueness assume that there were a second holomorphic map

ũx2
:
(

D
2, ∂D2

)

→ (Lx2
, ∂Lx2

)

with the required properties. It is clear that Lx2
= {(x+ iy, x2) ∈ C

2 | x2 +
y2 ≤ 1− x22} is a round disk.

By Corollary 3.11, the restriction ux2
|∂D2 of the map to the boundary

has non-vanishing derivative, and it is by assumption injective, hence it is

a diffeomorphism onto ∂Lx2
. This proves that ux2

has to be for topological

reasons surjective on Lx2
(otherwise we could construct a retract of the disk

onto its boundary). Note also that the germ of a holomorphic map around

the origin in C is always biholomorphic to z �→ zk for some integer k ∈ N0,

so that the differential of ux2
may not vanish anywhere, because otherwise

ux2
could not be injective.

Together this allows us to define a biholomorphism

ϕ := u−1
x2
◦ ũx2

:
(

D
2, ∂D2

)

→
(

D
2, ∂D2

)

with ϕ(0) = 0 and ϕ(1) = 1, but the only automorphism of the disk with

these properties is the identity, thus showing that ux2
= ũx2

. �

Proposition 3.19. Let

u : (Σ,∂Σ; j)→ (U,N0; i)

be any holomorphic map from a connected compact Riemann surface (Σ,j)

to U with u(∂Σ)⊂N0.

Either u is constant or its image is one of the slices Lx2
= U ∩ (C×{x2}).

If u is injective at one of its boundary points, then Σ will be a disk, and after a

reparametrization by a Möbius transformation, u will be equal to the map ux2

given in Proposition 3.18.

Proof. Note that we are supposing that u is at least C1 on the boundary

so that by Corollary 3.11 the map u will be constant if it touches the elliptic

singularity in N .

The proof of the proposition will be based on the harmonicity of the

coordinate functions x1, y1, x2, and y2. Let f : U → R be the function

(z1, z2) �→ y2 = Im(z2). Since Σ is a compact domain, the function f ◦ u
attains somewhere on Σ its maximum and its minimum, and applying the

maximum principle, Corollary 3.6, to f ◦ u itself and also to −f ◦ u, we
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obtain that both the maximum and the minimum have to lie on ∂Σ. But

since u(∂Σ)⊂N0 has vanishing imaginary z2-part, it follows that f ◦ u≡ 0

on the whole surface. Using now the Cauchy-Riemann equations, it immedi-

ately follows that the real part of the z2-coordinate of u has to be constant

everywhere. We can deduce that the image of u has to lie in one of the

slices Lx2
=C×{x2}, and in particular the boundary u(∂Σ) lies in the circle

∂Lx2
= {(x+ iy, x2) ∈C

2 | x2 + y2 = 1− x22}.

Assume that u is not constant. Since u lies in Lx2
, we can use the map

ux2
from Proposition 3.18, to define a holomorphic map

ϕ := u−1
x2
◦ u : (Σ,∂Σ)→

(

D
2, ∂D2

)

.

If u were not surjective on Lx2
, we could suppose (after a Möbius transfor-

mation on the target space) that the image of ϕ does not contain 0. The

function h(z) =− ln |z| on D
2 \ {0} is harmonic, because it is locally the real

part of a holomorphic function, and because h ◦ ϕ would have its maximum

on the interior of Σ, we obtain that h ◦ ϕ is constant, so that the image of

ϕ lies in ∂D2. The image of a non-constant holomorphic map is open, and

hence u must be constant.

Assume now that u is injective at one of its boundary points. As we

have shown in Proposition 3.18 the restriction u|∂Σ : ∂Σ → ∂Lx2
will be a

diffeomorphism for each component of ∂Σ so that ∂Σ must be connected.

Furthermore, it follows that u will also be injective on a small neighborhood

of ∂Lx2
, because if we find two sequences (zk)k and (z̃k)k coming arbitrarily

close to ∂Σ with u(zk) = u(z̃k) for every k, then after assuming that they

both converge (reducing if necessary to subsequences), we see by continuity

that limu(zk) = limu(z̃k) and lim zk, lim z̃k ∈ ∂Σ, so that we can conclude

that lim zk = lim z̃k. Using that the differential of u in lim zk is not singular,

we obtain that for k sufficiently large, we will always have zk = z̃k showing

that u is indeed injective on a small neighborhood of ∂Σ.

Assume z0 ∈ Σ is a point at which the differential Dϕ vanishes. Then

we know that ϕ can be represented in suitable charts as z �→ zk for some

k ∈ N, but if k > 1 this yields a contradiction, because we know that ϕ is a

biholomorphism on a neighborhood of ∂Σ, and hence its degree must be 1.

Since ϕ is holomorphic, it preserves orientations, so that on the other hand,

we would have that the degree would need to be at least k, if there were such

a critical point.

We obtain that ϕ has nowhere vanishing differential, and hence it must

be a regular cover, but since it is of degree 1, it is in fact a biholomorphism,

and Σ must be a disk. �
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The Higher Dimensional Situation. In this section, L will always be a

closed manifold, and we will choose for T ∗L an almost complex structure JL
for which the 0-section L is totally real, so that there is by Proposition 3.16

a function fL : T
∗L→ [0,∞) that vanishes on L (and only on L) and that is

plurisubharmonic on a small neighborhood of L.

As before, we will first describe a very explicit manifold that will serve as

a model for the neighborhood of an elliptic singularity. Let C2× T ∗L be the

almost complex manifold with almost complex structure J = i⊕ JL, where i
is the standard complex structure on C

2. We define a function f : C2×T ∗L→
[0,∞) by

f(z1, z2,q,p) =
1

2

(

|z1|2 + |z2|2
)

+ fL(q,p).

If we stay in a sufficiently small neighborhood of the 0-section of T ∗L, this

function is clearly J -plurisubharmonic and we denote its regular level set

f−1(1/2) by M ; its contact form is given by

α := dJf
∣
∣
TM

=
(

x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2 + dJLfL
)∣
∣
TM

.

Now we define a submanifold N in M as the image of the map

Φ : D2 ×L ↪→M ⊂C
2 × T ∗L

given by Φ(z;q) = (z,
√

1− |z|2;q,0), that means, the image of Φ is the

product of the 0-section in T ∗L and the submanifold N0 given in the previous

section. The submanifold has a Legendrian foliation F induced by

α|TN = Φ∗dJf = xdy− y dx.

In particular, the leaves of the foliation are parallel to the L-factor in D
2×L

and F has an elliptic singularity in {0} ×L.

Note that both the almost complex structure as well as the submani-

fold N split as a product, thus if we consider a holomorphic map

u : (Σ,∂Σ; j)→
(

C
2 × T ∗L,N ;J

)

,

we can decompose it into u= (u1, u2) with

u1 : (Σ,∂Σ; j)→
(

C
2,N0; i

)

u2 : (Σ,∂Σ; j)→
(

T ∗L,L;JL
)

.
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This allows us to treat each factor independently from the other one, and we

will easily be able to obtain similar results as in the previous section.

Since we are interested in finding a local model, we will first restrict our

situation to the following subset

(3.3) U :=
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

that is, for δ sufficiently small, a compact neighborhood of N in f−1([0,1/2]),

because the points (z1, z2;q,p) in U satisfy

0≤ 1

2
|z1|2 + fL(q,p)≤

1

2

(

1− |z2|2
)

≤ δ− 1

2
δ2 ≤ δ

so that all coordinates are bounded. Note in particular, that this bound on

the p-coordinates guarantees that f will be J -plurisubharmonic on U .

The submanifold N ∩U can also be written in the following easy form

{

(z,x2;q,0) | x2 ≥ 1− δ and |z|2 = 1− x22
}

×L.

Corollary 3.20. Let

u : (Σ,∂Σ, j)→ (U,N ∩U ;J)

be any holomorphic map from a connected compact Riemann surface (Σ,j)

to U with u(∂Σ)⊂N .

Either u is constant or its image is one of the slices Lx2,q0
= (C×{x2}×

{q0})∩U with x2 ∈ [1− δ,1) and q0 a point on the 0-section of T ∗L. If u is

injective at one of its boundary points, then Σ will be a disk, and u is equal

to

u(z) =
(

ux2
◦ϕ(z);q0,0

)

,

where ux2
is the map given in Proposition 3.18, and ϕ is a Möbius transfor-

mation of the unit disk.

Proof. Let u be a J -holomorphic map as in the statement. We will study

u by decomposing it into u= (uC2 , uT ∗L) with

uC2 : (Σ,∂Σ, j)→
(

C
2,N, i

)

uT ∗L : (Σ,∂Σ, j)→
(

T ∗L,L,JL
)

.
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Using that fL is JL-plurisubharmonic on the considered neighborhood

of the 0-section contained in U , it follows from Corollary 3.17 that uT ∗L is

constant.

Once we know that uT ∗L is constant, the situation for uC2 is identical to

the one in Proposition 3.19, so that we obtain the desired result. �

The results obtained so far only explain the behavior of holomorphic

curves that are completely contained in the model neighborhood U . Next we

will extend this result to show that a holomorphic curve is either disjoint

from the subset U or is lies completely inside U .

Assume (W,J) is a compact almost complex manifold with convex bound-

ary M = ∂W . Let N be a submanifold of M , and assume that there is a

compact subset U in W such that U is diffeomorphic to the model above,

with M ∩U , N ∩U and J |U all being equal to the corresponding objects in

our model neighborhood.

Proposition 3.21. Let

u : (Σ,∂Σ; j)→ (W,N ;J)

be a holomorphic map, and let U be a compact subset of W that agrees with

the model described above.

If u(Σ) intersects U , then it has to lie entirely in U , and it will be con-

sequently of the form given by Corollary 3.20.

Proof. Assume u to be a holomorphic map whose image lies partially in

U . The set U is a compact manifold with corners, and we write ∂U = ∂MU ∪
∂WU (see Figure 5), where

∂MU = U ∩M

∂WU =
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

.

We will show that the real part of the z2-coordinate of u needs to be constant.

This then proves the proposition, because it prevents u from leaving U .

Thus assume instead that the real part of z2 does vary on u. Slightly

decreasing the cut-off level δ in (3.3) using Sard’s theorem, the holomor-

phic map u will intersect ∂WU transversely, so that u−1(∂WU) will be a

properly embedded submanifold of Σ. We will restrict u to the compact

subset G = u−1(U), and denote the boundary components of this domain
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Fig. 5. Sketch of the symplectic model neighborhood of an elliptic singularity.
A holomorphic curve lying only partially in this neighborhood would have two types of
boundary, one part u(∂MG) that lies in N ∩U , and a second one u(∂WG) where the

curve leaves the model neighborhood

by ∂MG= u−1(N ∩U) and ∂WG= u−1(∂WU). We thus have a holomorphic

map

u|G : (G,∂G; j)→ (U,∂U ;J)

with u(∂MG)⊂N ∩U and u(∂WG)⊂ ∂WU .

The coordinate maps hx : (z1, z2;q,p) �→ Re(z2) and hy : (z1, z2;q,p) �→
Im(z2) are harmonic, and it follows by the maximum principle that the max-

imum of hx ◦ u|G will lie for each component of G on the boundary of that

component.

Furthermore the maximum of hx ◦ u|G cannot lie on ∂WG, because by

our assumption u|G is transverse to ∂WU . It follows that the maximum of

hx ◦ u|G will be a point z0 ∈ ∂MG; in particular z0 does not lie on one of the

edges of G. By the boundary point lemma, either hx ◦ u|G is constant or the

outward derivative of this function at z0 must be strictly positive. On the

other hand, the function hy ◦ u|G is equal to 0 all along the boundary ∂MG

so that the derivatives of hx ◦ u|G and hy ◦ u|G vanish at z0 in directions

that are tangent to the boundary. Using the Cauchy-Riemann equation we

see that this implies that the derivatives of these two functions at z0 vanish

in every direction, in particular this implies that the function hx ◦ u|G needs

to be constant.

In either case, we have proved that the image of u lies completely in-

side U . �
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The conclusion of the results in this section is that every curve that

intersects a certain neighborhood of the elliptic singularities lies completely

in this neighborhood and can be explicitly determined.

3.2.3. J-Holomorphic Curves Close to Codimension 1 Singulari-

ties. Let (N,F) be a submanifold with Legendrian foliation and with non-

empty boundary. We will show in this section that a boundary component of

N lying in the singular set of F can sometimes exclude that any holomorphic

curve gets close to this component. This way, the boundary may block any

holomorphic disks from escaping the submanifold N .

The argument is similar to that of the previous section, where we con-

structed an almost complex manifold that served as a model for the neigh-

borhood of the singular set.

Remark 3.22. We will only be dealing here with the easiest type of singular

sets: Products of a closed manifold with S
1. A more general situation has been

considered in [21], where the singular set is allowed to be a fiber bundle over

the circle.

Let T ∗F be the cotangent bundle of a closed manifold F , choose an

almost complex structure JF on T ∗F for which F is a totally real sub-

manifold, and let fF : T ∗F → [0,∞) be the function constructed in Propo-

sition 3.16 that only vanishes along the 0-section of T ∗F and that is JF -

plurisubharmonic close to the 0-section F .

Define (W,J) as

W :=C× T ∗
S
1 × T ∗F =

{

(x+ iy;ϕ, r;q,p)
}

,

and let J be the almost complex structure i ⊕ i ⊕ JF , where the complex

structure on T ∗
S
1 is the one induced from the identification of T ∗

S
1 and

C/(2πZ) with ϕ+ ir ∼ ϕ+ 2π+ ir. The function

f : W → [0,∞), (x+ iy;ϕ, r;q,p) �→ 1

2

(

x2 + y2
)

+
1

2
r2 + fF (q,p)

is J -plurisubharmonic on a neighborhood where the values of p are small.

We denote the level set f−1(1/2) by M , and note that for small values of p,

it is a smooth contact manifold with contact form

αM :=
(

xdy− y dx− r dϕ+ dJF fF
)∣
∣
TM

.
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Let N be the submanifold of M given as the image of the map

Φ : S1 × [0, ε)× F, (ϕ, r;q) �→
(√

1− r2;ϕ, r;q,0
)

.

It has a Legendrian foliation F , because Φ∗αM =−r dϕ that becomes singu-

lar exactly at the boundary ∂N = {1} × S
1 × F .

Our local model will be the subset

U =
{

(x+ iy;ϕ, r;q,p) | x≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

for sufficiently small δ > 0. Clearly U contains ∂N = Sing(ker(−r dϕ)).
Furthermore U is compact, because all coordinates are bounded: Points

(x+ iy;ϕ, r;q,p) in U satisfy

0≤ 1

2
y2 +

1

2
r2 + fF (q,p) = f(x+ iy;ϕ, r;q,p)− 1

2
x2 ≤ 1/2

(

1− x2
)

≤ δ.

We also obtain that if δ has been chosen small enough, f is everywhere

J -plurisubharmonic on U .

Remark 3.23. Note that the construction of the local model also applies in

the case of contact 3-manifolds, because F may be just a point.

We will first exclude existence of holomorphic curves that are entirely

contained in U .

Proposition 3.24. A J-holomorphic map

u : (Σ,∂Σ, j)→ (U,N ∩U,J)

from a compact Riemann surface into U , whose boundary is mapped into

N ∩U , must be constant.

Proof. As in the previous section, we can decompose u as (uC×T ∗S1 , uT ∗F )

with

uC×T ∗S1 : (Σ,∂Σ, j)→
(

C× T ∗
S
1,
{(√

1− r2;ϕ, r
) ∣
∣ ϕ ∈ S

1, r ∈ [0, ε)
}

, i⊕ i
)

uT ∗F : (Σ,∂Σ, j)→
(

T ∗F,F,JF
)

.

Note in particular that the boundary conditions also split in this decompo-

sition, so that we obtain two completely uncoupled problems. Furthermore,

using Corollary 3.17, it follows that the second map is constant, because fF
is a JF plurisubharmonic function on the considered neighborhood.
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To show that uC×T ∗S1 is constant, use the harmonic function g(z;ϕ, r) =

Im(z). Since g ◦uC×T ∗S1 vanishes along ∂Σ, it follows that g ◦uC×T ∗S1 has to

be zero on the whole Riemann surface, and combining this with the Cauchy-

Riemann equation, it follows that the real part of the z-coordinate of uC×T ∗S1

is equal to a constant C ∈ [1− δ,1]. Now that we know that the first coordi-

nate of uC×T ∗S1 is constant, we see that the boundary of uC×T ∗S1 has to lie

in the circle {(C;ϕ,+
√
1−C2) | ϕ ∈ S

1} ⊂C× T ∗
S
1.

This allows us to study only the second coordinate of uC×T ∗S1 reducing

our map to the form

uT ∗S1 : (Σ,∂Σ, j)→
(

T ∗
S
1, S, i

)

,

where S = {r = +
√
1−C2}. Using that the map (r,ϕ) �→ r is harmonic,

and that it is constant along the boundary of Σ, we obtain that the whole

image of the surface has to lie in the corresponding circle, implying with the

Cauchy-Riemann equation that uT ∗S1 needs to be constant. �

Next we will show that holomorphic curves may not enter the domain U

even partially. Let (W,J) be now a compact almost complex manifold with

convex boundary M = ∂W , and let N be a submanifold of M with ∂N �= ∅.
Assume that W contains a compact subset U that is identical to the model

neighborhood constructed above such that M ∩U , N ∩U and J |U all agree

with the corresponding objects in the model.

Proposition 3.25. If the image of a J-holomorphic map

u : (Σ,∂Σ, j)→ (W,N,J)

intersects the neighborhood U , then it will be constant.

Proof. It suffices to show that the image of u lies inside U , because we

can then apply Proposition 3.24. Following the same line of arguments as in

the proof of Proposition 3.21, one can show that the real part of the first

coordinate of u needs to be constant. We recommend the reader to work out

the details as an exercise. �

Remark 3.26. Note that when the codimension 1 singular set lies in the

interior of the maximally foliated submanifold, one can find under additional

conditions a family of holomorphic annuli with one boundary component

on each side of the singular set (see [30]). The reason why these curves do
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not appear in the results of this section are that we are assuming that all

boundary components of the holomorphic curves lie locally on one side of

the singular set.

4. Moduli Spaces of Disks and Filling Obstructions

4.1. The Moduli Space of Holomorphic Disks

Let us assume again that (W,J) is an almost complex manifold, and that

N ⊂W is a totally real submanifold. We want to study the space of maps

u :
(

D
2, ∂D2

)

→ (W,N ;J)

that are J -holomorphic (strictly speaking they are (i, J)-holomorphic), mean-

ing that we want the differential of u to be complex linear, so that it satisfies

at every z ∈Σ the equation

Duz · i= J
(

u(z)
)

·Duz.

Note that J depends on the point u(z)!

A different way to state this equation is by introducing the Cauchy-

Riemann operator

∂̄Ju= J(u) ·Du−Du · i,

and writing ∂̄Ju= 0, so that the space of J -holomorphic maps, we are inter-

ested in then becomes

M̃
(

D
2,N ;J

)

=
{

u : D2→W
∣
∣ ∂̄Ju= 0 and u

(

∂D2
)

⊂N
}

.

Remark 4.1. The situation of holomorphic disks is a bit special compared

to the one of general holomorphic maps, because all complex structures on

the disk are equivalent. If Σ were a smooth compact surface of higher genus,

we would usually need to study the space of pairs (u, j), where j is a complex

structure on Σ, and u is a map u : (Σ,∂Σ)→ (W,N) that should be (j, J)-

holomorphic, that means, J(u) ·Du−Du · j = 0.

To be a bit more precise, we do not choose pairs (u, j) with arbitrary

complex structures j on Σ, but we only allow for j a single element in each

equivalence class of complex structures: If ϕ : Σ→Σ is a diffeomorphism, and

j is some complex structure, then of course ϕ∗j will generally be a complex

structure different from j, but we usually identify all complex structures up



Higher Dimensional Contact Topology via Holomorphic Disks 219

to isotopy, and use that the space of equivalence classes of complex structures

can be represented as a smooth finite dimensional manifold (see [19] for a

nice introduction to this theory).

Fortunately, these complications are not necessary for holomorphic disks

(or spheres), and it is sufficient for us to work with the standard complex

structure i on D
2.

In this section, we want to explain the topological structure of the space

M̃(D2,N ;J) without entering into too many technical details. Instead of

starting directly with our particular case, we will try to argue on an intuitive

level by considering a finite dimensional situation that has strong analogies

with the problem we are dealing with.

Let us consider a vector bundle E of rank r over a smooth n-manifold B.

Choose a section σ : B → E, and let M = σ−1(0) be the set of points at

which σ intersects the 0-section. We would “expect” M to be a smooth

submanifold of dimension dimM = n− r (if n− r < 0, we could hope not to

have any intersections at all); unfortunately, this intuitive expectation might

very well be false. A sufficient condition under which it holds, is when σ is

transverse to the 0-section, that means, for every x ∈M , the tangent space to

the 0-section TxB in TxE spans together with the image Dσ ·TxB the whole

tangent space TxE. It is well-known that when the transversality condition

is initially not true, it can be achieved by slightly perturbing the section σ.

Let us now come again to the Cauchy-Riemann problem. The role of B

will be taken by the space of all maps u : (D2, ∂D2)→ (W,N), which we will

denote by B(D2;N). We do not want to spend any time thinking about the

regularity of the maps and point instead to [25] as reference. It is sufficient

for us to observe that the space B(D2;N) is a Banach manifold, that means,

an infinite dimensional manifold modeled on a Banach space.

The section σ will be replaced by the Cauchy-Riemann operator ∂̄J , and

before pursuing this analogy further, we want first to specify the target space

of this operator. In fact, ∂̄J associates to every map u ∈ B(D2;N) a 1-form

on Σ with values in TW . The formal way to state this is that we have for

every map u a vector bundle u∗TW over D2, which allows us to construct

Hom
(

TD2, u∗TW
)

.

The sections in Hom(TD2, u∗TW ) form a vector space, and if we look at all

sections for all maps u, we obtain a vector bundle over B(D2;N), whose fiber
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over a point u are all sections in Hom(TD2, u∗TW ). We denote this bundle

by E(D2;N).

The operator ∂̄J associates to every u, that means, to every point of

B(D2;N) an element in E(D2;N) so that we can think of ∂̄J as a section in

the bundle E(D2;N). The J -holomorphic maps are the points of B(D2;N)

where the section ∂̄J intersects the 0-section. In fact, ∂̄Ju is always anti-

holomorphic, because

J(u) · ∂̄Ju=−Du− J(u) ·Du · i=
(

Du · i− J(u) ·Du
)

· i=−(∂̄Ju) · i,

and for analytical reasons we will only consider sections in Hom(TΣ,u∗TW )

taking values in the subbundle HomC(TΣ,u
∗TW ) of anti-holomorphic

homomorphisms. We denote the subbundle of sections taking values in

HomC(TΣ,u
∗TW ) by ĒC(D2;N).

4.1.1. The Expected Dimension of M̃(D2,N ;J). The rank of

ĒC(D2;N) and the dimension of B(D2;N) are both infinite, hence we cannot

compute the expected dimension of the solution space M̃(D2,N ;J) as in the

finite dimensional case, where it was just the difference dimM − rankE.

Nonetheless we can associate a so called Fredholm index to a Cauchy-

Riemann problem. We will later give some more details about how the index

is actually defined, for now we just note that it is an integer that determines

the expected dimension of the space M̃(D2,N ;J).

For a Cauchy-Riemann problem with totally real boundary condition the

index has an easy explicit formula (see for example [25, Theorem C.1.10])

that simplifies in our specific case of holomorphic disks to

(4.1) indu ∂̄J =
1

2
dimW + μ

(

u∗TW,u∗TN
)

,

where we have used that the Euler characteristic of a disk is χ(D2) = 1.

Remark 4.2. We would like to warn the reader that the dimension of a

moduli space of holomorphic disks or holomorphic spheres tends to increase,

if we increase the dimension of the symplectic ambient manifold. Unfortu-

nately, the opposite is true for a higher genus curve Σ: The formula above

becomes

indu ∂̄J =
1

2
χ(Σ)dimW + μ

(

u∗TW,u∗TN
)

,

and since the Euler characteristic is negative, and it is harder to find curves

with genus in high dimensional spaces than in lower dimensional ones.
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The Maslov index μ is an integer that classifies loops of totally real

subspaces up to homotopy:

Definition. Let EC be a complex vector bundle over the closed 2-disk D
2

and let ER be a totally real subbundle of EC|∂D2 defined only over the

boundary of the disk. The Maslov index μ(EC,ER) is an integer that is

computed by trivializing EC over the disk, and choosing a continuous frame

A(eiφ) ∈GL(n,C) over the boundary ∂D2 representing ER. We then set

μ(EC,ER) := deg
detA2

det(A∗A)
,

where deg(f) is the degree of a continuous map f : S1→ S
1.

In these notes, we will compute the Maslov index only once, in Sec-

tion 4.1.3, but note that the index indu ∂̄J depends on the holomorphic disk u

in M̃(D2,N ;J), we are considering; this should not confuse us however, be-

cause it only means that the space of disks may have different components

and the expected dimensions of the different components do not need to

agree.

We will now briefly explain how the index of ∂̄J is defined. We have a map

∂̄J : B(D2;N)→ ĒC(D2;N), and we need to compute the linearization of ∂̄J
at a point of u ∈ B(D2;N), that means, we have to compute the differential

D̄J(u) : TuB
(

D
2;N

)

→ T∂̄JuĒC
(

D
2;N

)

.

To find D̄J(u), choose a smooth path ut of maps in B(D2;N) with u0 = u,

then we can regard the image ∂̄Jut, and take its derivative with respect to t in

t= 0. If we set u̇0 =
d
dt |t=0ut, this allows us to obtain a linear operator D̄J(u)

by

D̄J(u) · u̇0 =
d

dt

∣
∣
∣
∣
t=0

∂̄Jut.

It is a good exercise to determine the domain and target space of this oper-

ator, and find a way to describe them.

The index of ∂̄J at u is defined as

indu ∂̄J := dimker D̄J(u)− dimcoker D̄J(u).

It is a remarkable fact that the index is finite and determined by formula (4.1)

above. Also note that the index is constant on each connected component of

B(D2;N).
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4.1.2. Transversality of the Cauchy-Riemann Problem. Just as in

the finite dimensional analogue, it may happen that the formal dimension

we have computed does not correspond to the dimension we are observing

in an actual situation. In fact, if the section σ (or in our infinite dimensional

case, ∂̄J ) are not transverse to the 0-section, there is no reason why M or

M̃(D2,N ;J) would need to be smooth manifolds at all.

On the other hand, if σ is transverse to the 0-section, then M = σ−1(0)

is a smooth submanifold of dimension dimM − rankE, and the analogue

result is also true for the Cauchy-Riemann problem: If ∂̄J is at every point

of M̃(D2,N ;J) transverse to 0 (or said equivalently, if the cokernel of the

linearized operator is trivial for every holomorphic disk), then M̃(D2,N ;J)

will be a smooth manifold whose dimension is given by the index of ∂̄J .

In the finite dimensional situation, we can often achieve transversality by

a small perturbation of σ, but of course, this might require a subtle analysis

of the situation, when we want to perturb σ only within a space of sections

satisfying certain prescribed properties.

Definition. Let u : Σ→W be a holomorphic map from a Riemann surface

with or without boundary. We call u somewhere injective, if there exists

a point z ∈Σ with duz �= 0, and such that z is the only point that is mapped

by u to u(z), that means,

u−1
(

u(z)
)

= {z}.

We call a holomorphic curve that is not the multiple cover of any other

holomorphic curve a simple holomorphic curve. Closed simple holomor-

phic curves are somewhere injective, [25, Proposition 2.5.1].

It is a non-trivial result that by perturbing the almost complex struc-

ture J , we can achieve transversality of the Cauchy-Riemann operator for

every disk in W whose boundary is injective in a totally real submanifold N .

We could hope that this theoretical result would be sufficient for us, because

the considered disks are injective along their boundaries, but we have chosen

a very specific almost complex structure in Section 3.2, and perturbing this

J would destroy the results obtained in that section. Below, we will prove

by hand that ∂̄J is transverse to 0 for the holomorphic disks in our model

neighborhood.

Remark 4.3. Note that often it is not possible to work only with some-

where injective holomorphic curves, and perturbing J will in that case not
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be sufficient to obtain transversality for holomorphic curves. Sometimes one

can work around this problem by requiring that W is semi-positive, see Sec-

tion 4.3. Unfortunately, there are many situations where this approach won’t

work either, as is the case of SFT, where transversality has been one of the

most important outstanding technical problems.

4.1.3. The Bishop Family. In this section, we will show that the disks

that we have found in Section 3.2.2, lying in the model neighborhood are

regular solutions of the Cauchy-Riemann problem.

Before starting the actual proof of our claim, we will briefly recapitulate

the situation described in Section 3.2.2. Let (W,J) be an almost complex

manifold of dimension 2n with boundary that contains a model neighbor-

hood U of the desired form. Remember that U was a subset of C2×T ∗L with

almost complex structure i⊕JL, that we had a function f : C2×T ∗L→ [0,∞)

given by

f(z1, z2,q,p) =
1

2

(

|z1|2 + |z2|2
)

+ fL(q,p),

and that the model neighborhood U was the subset

U :=
{

(z1, z2;q,p) |Re(z2)≥ 1− δ
}

∩ f−1
(

[0,1/2]
)

.

The totally real manifold N is the image of the map

(z;q) ∈D
2
ε ×L �→

(

z,

√

1− |z|2;q,0
)

⊂ ∂U.

For every pair (s,q) ∈ [1− δ,1)×L, we find a holomorphic map of the form

us,q :
(

D
2, ∂D2

)

→ U

z �→ (Csz, s;q,0)

with Cs =
√
1− s2. We call this map a (parametrized) Bishop disk, and

we call the collection of these disks, the Bishop family. Sometimes we will

not be precise about whether the disks are parametrized or not, and whether

we speak about disks with or without a marked point (see Section 4.2), but

we hope that in each situation it will be clear what is meant.

To check that a given Bishop disk us,q is regular, we will first compute the

index of the linearized Cauchy-Riemann operator that gives us the expected

dimension for the space of holomorphic disks containing the Bishop family.

Note that the observed dimension is 1 + dimL+3= 1+ (n− 2) + 3 = n+2.
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The first part, 1 + dimL corresponds to the s- and q-parameters of the

family; the three corresponds to the dimension of the group of Möbius trans-

formations acting on the complex unit disk: If us,q is a Bishop disk, and if

ϕ : D2→ D
2 is a Möbius transformation, then of course us,q ◦ ϕ will also be

a holomorphic map with admissible boundary condition. On the other hand

we showed in Corollary 3.20 that every holomorphic disk that lies in U is up

to a Möbius transformation one of the Bishop disks.

For the index computations, it suffices by Section 4.1.1 to trivialize the

bundle EC := u∗s,qTW over D
2, and study the topology of the totally real

subbundle ER = u∗s,qTN over ∂D2.

Before starting any concrete computations, we will significantly simplify

the setup by choosing a particular chart: Note that the T ∗L-part of a Bishop

disk us,q is constant, we can hence choose a chart diffeomorphic to R
2n−4 =

{(x1, . . . , xn−2;y1, . . . , yn−2)} for T ∗L with the properties

• the point (q,0) corresponds to the origin,

• the almost complex structure JL is represented at the origin by the

standard i,

• the intersections of the 0-section L with the chart corresponds to the

subspace (x1, . . . , xn−2; 0, . . . ,0).

In the chosen chart, we write us,q as

us,q(z) = (Csz, s; 0, . . . ,0) ∈C
2 ×R

2n−4

with Cs =
√
1− s2. By our assumption, the complex structure on the second

factor is at the origin of R2n−4 equal to i, and there is then a direct identi-

fication of u∗s,qTW with C
2 ×C

n−2. The submanifold N corresponds in the

chart to

{

(z1, z2;x1, . . . , xn−2,0, . . . ,0) ∈C
2 ×R

2n−4
∣
∣ Imz2 = 0, |z1|2 + |z2|2 = 1

}

.

The boundary of us,q is given by eiϕ �→ (
√
1− s2eiϕ, s; 0, . . . ,0), and the tan-

gent space of TN over this loop is spanned over R by the vector fields

(

ieiϕ,0; 0, . . . ,0
)

,

(

− s√
1− s2

eiϕ,1; 0, . . . ,0

)

, (0,0; 1,0, . . . ,0), . . . ,

(0,0; 0, . . . ,0,1,0, . . . ,0).
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We can now easily compute the Maslov index μ(EC,ER) as

deg
detA2

det(A∗A)
= deg

−e2iϕ
1

= 2,

where A is the matrix composed by the vector fields given above. Hence we

obtain for the index

indu ∂̄J =
1

2
dimW + μ

(

u∗s,qTW,u
∗
s.qTN

)

= n+ 2,

which corresponds to the observed dimension computed above.

We will now show that the linearized operator D̄J is surjective. We do

not do this directly, but we compute instead the dimension of its kernel, and

show that it is equal (and not larger than) the Fredholm index. From the

definition of the index

indu ∂̄J := ker D̄J(u)− coker D̄J(u),

we see that the cokernel needs to be trivial, and this way the surjectivity

result follows.

We now compute the linearized Cauchy-Riemann operator at a Bishop

disk us,q. Let vt be a smooth family of maps

vt :
(

D
2, ∂D2

)

→ (U,N)

with v0 = us,q (think of each vt as a smooth map, but for an analytically

correct study, we would need to allow here for Sobolev maps).

In this chart, we can write the family vt as

vt(z) =
(

z1(z, t), z2(z, t);x(z, t),y(z, t)
)

∈C
2 ×R

2n−4,

where we have set x(z, t) = (x1(z, t), . . . , xn−2(z, t)) and y(z, t) = (y1(z, t), . . . ,

yn−2(z, t)), and we require that the boundary of each of the vt has to lie in N .

When we now take the derivative of vt with respect to t at t= 0, we obtain

a vector in Tus,q
B that is represented by a map

v̇0 : D
2→C

2 ×R
2(n−2), z �→

(

ż1(z), ż2(z); ẋ(z), ẏ(z)
)

with boundary conditions ẏ(z) = 0 and Im ż2(z) = 0 for every z ∈ ∂D2. Fur-

thermore taking the derivative of |z1(z, t)|2+ |z2(z, t)|2 = 1 for every z ∈ ∂D2

with respect to t, we obtain the condition

z̄1(z,0) · ż1(z) + z1(z,0) · ˙̄z1(z) + z̄2(z,0) · ż2(z) + z2(z,0) · ˙̄z2(z) = 0,
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which simplifies by using the explicit form of (z1(z,0), z2(z,0)) to

Csz̄ · ż1(z) +Csz · ˙̄z1(z) + sż2(z) + s ˙̄z2(z) = 0

for every z ∈ ∂D2.

The linearization of the Cauchy-Riemann operator ∂̄J at us,q given by

D̄J · v̇0 :=
d

dt

∣
∣
∣
∣
t=0

∂̄Jvs

decomposes into the C
2-part

(idż1 − dż1i, idż2 − dż2i)

and the R
2(n−2)-part

d

dt

∣
∣
∣
∣
t=0

(

JL
(

x(z, t),y(z, t)
)

·
(

dx(z, t), dy(z, t)
)

−
(

dx(z, t) · i, dy(z, t) · i
))

.

The second part can be significantly simplified by using first the product

rule, and applying then that x(z,0) = 0 and y(z,0) = 0 are constant so that

their differentials vanish. We obtain then

JL(0,0) · (dẋ, dẏ)− (dẋ · i, dẏ · i),

and using that JL(0,0) = i, it finally reduces to

(dẏ− dẋ · i,−dẋ− dẏ · i).

We have shown that linearized Cauchy-Riemann operator simplifies for all

coordinates to the standard Cauchy-Riemann operator, so that if v̇0(z) =

(ż1(z), ż2(z); ẋ(z), ẏ(z)) lies in the kernel of D̄J then the coordinate functions

ż1(z), ż2(z) and ẋ(z)+ iẏ(z) need all to be holomorphic in the classical sense.

Now using the boundary conditions, we easily deduce that ẏ(z) needs to

vanish, because it is a harmonic function, and it takes both maximum and

minimum on ∂D2. A direct consequence of ẏ ≡ 0 and the Cauchy-Riemann

equation is that ẋ(z) will be everywhere constant. We get the analogous

result for the function ż2(z), so that we can write

v̇0(z) =
(

ż1(z), ṡ; q̇0,0
)

,

where ṡ is a real constant, and q̇0 is a fixed vector in R
2(n−2), and we only

need to still understand the holomorphic function ż1(z).
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The boundary condition for ż1(z) is z̄ · ż1(z) + z · ˙̄z1(z) =−2sṡ
Cs

for every

z ∈ ∂D2. Using that the function ż1(z) is holomorphic, we can write it as

power series in the form

ż1(z) =

∞∑

k=0

akz
k

and we get at eiϕ ∈ ∂D2

ż1
(

eiϕ
)

=

∞∑

k=0

ak e
ikϕ.

Plugging these series into the equation of the boundary condition, we find

e−iϕ ·
∞∑

k=0

ak e
ikϕ + eiϕ ·

∞∑

k=0

āk e
−ikϕ =−2sṡ

Cs

so that
∞∑

k=0

(

ak e
(k−1) iϕ + āk e

−(k−1) iϕ
)

=−2sṡ

Cs

and by comparing coefficients we see that

a1 + ā1 =−
2sṡ

Cs
, a0 + ā2 = 0, ak = 0 for all k ≥ 3.

This means that the three (real) parameters we can choose freely are z0 and

Imz1.

Concluding, we have found that the dimension of the kernel of D̄J is

equal to 3 + 1 + n− 2 = n+ 2 which corresponds to the Fredholm index of

our problem. Thus there is no need to perturb J on the neighborhood of the

Bishop family to obtain regularity.

Corollary 4.4. Let (W,ω) be a compact symplectic manifold that is a weak

symplectic filling of a contact manifold (M,ξ). Suppose that N is either a Lob

or a bLob in M , then we can choose close to the binding and to the boundary

of N the almost complex structure described in the previous sections, and

extend it to an almost complex structure J that is tamed by ω, whose bundle

of complex tangencies alongM is ξ and that makesM J-convex. By a generic

perturbation away from the binding and the boundary of N , we can achieve

that all somewhere injective holomorphic curves become regular.

We call a J with these properties an almost complex structure

adapted to N .
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The argument in the proof of the corollary above is that the Bishop disks

are already regular, and that all other simple holomorphic curves have to lie

outside the neighborhood where we require an explicit form for J . Thus it

suffices to perturb outside these domains to obtain regularity for every other

simple curve.

4.2. The Moduli Space of Holomorphic Disks with a Marked

Point

Until now, we only have studied the space of certain J -holomorphic maps

M̃
(

D
2,N ;J

)

=
{

u : D2→W | ∂̄Ju= 0 and u
(

∂D2
)

⊂N
}

,

but many maps correspond to different parametrizations of the same geo-

metric disk. To get rid of this ambiguity (and to obtain compactness), we

quotient the space of maps by the biholomorphic reparametrizations of the

unit disk, that means, by the Möbius transformations, but we will also add

a marked point z0 ∈ D
2 to preserve the structure of the geometric disk. To

simplify the notation, we will also omit the almost complex structure J in

M̃(D2,N).

From now on let

M̃
(

D
2,N ;z0

)

=
{

(u, z0) | z0 ∈D
2, ∂̄Ju= 0 and u

(

∂D2
)

⊂N
}

= M̃
(

D
2,N

)

×D
2

be the space of holomorphic maps together with a special point z0 ∈D
2 that

will be called the marked point. The moduli space we are interested in

is the space of equivalence classes

M
(

D
2,N ;z0

)

= M̃
(

D
2,N ;z0

)

/∼

where we identify two elements (u, z0) and (u′, z′0), if and only if there is a

biholomorphism ϕ : D2→D
2 such that u= u′ ◦ϕ−1 and z0 = ϕ(z′0). The map

(u, z) �→ u(z) descends to a well defined map

ev : M
(

D
2,N ;z0

)

→W

[u, z0] �→ u(z0)

on the moduli space, which we call the evaluation map.
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Let N be a Lob or a bLob, and assume that B0 is one of the components

of the binding of N . Since this is the only situation, we are really inter-

ested in these notes, we introduce the notation M̃0(D
2,N) for the connected

component in M̃(D2,N) that contains the Bishop family around B0. When

adding a marked point, we write M̃0(D
2,N ;z0) and M0(D

2,N ;z0) for the

corresponding subspaces.

It is easy to see that M0(D
2,N ;z0) is a smooth (non-compact) man-

ifold with boundary. Note first that M̃0(D
2,N ;z0) is also a smooth and

non-compact manifold with boundary: If J is regular, we know that

M̃0(D
2,N) is a smooth manifold, and so the boundary of the product man-

ifold M̃0(D
2,N ;z0) is

∂M̃0

(

D
2,N ;z0

)

= M̃0

(

D
2,N

)

× ∂D2.

Passing to the quotient preserves this structure, because the boundary

of the maps in M̃0(D
2,N) intersects each of the pages of the open book

exactly once (this is a consequence of Corollary 3.11 and Section 3.2.2), and

hence each of the disks is injective along its boundary. The only Möbius

transformation that preserves the boundary pointwise is the identity, hence

it follows that the group of Möbius transformations acts smoothly, freely and

properly on M̃0(D
2,N ;z0), and hence the quotient will be a smooth manifold

of dimension

dimM0

(

D
2,N ;z0

)

= dimM̃0

(

D
2,N ;z0

)

− 3 = indu ∂̄J + 2− 3 = n+ 1.

As before the points on the boundary of M0(D
2,N ;z0) are the classes [u, z]

with z ∈ ∂D2. It is also clear that the evaluation map evz0 : M0(D
2,N ;z0)→

W is smooth.

Remember that the Bishop disks contract to points as they approach

the binding B0. We will show that we incorporate B0 into the moduli

space M0(D
2,N ;z0) and that the resulting space carries a natural smooth

structure that corresponds to the intuitive picture of disks collapsing to one

point.

The neighborhood of the binding B0 in W is diffeomorphic to the model

U =
{

(z1, z2;q,p) ∈C
2 × T ∗B0 |Re(z2)> 1− δ

}

∩ h−1
(

(−∞,1/2]
)

for small δ > 0 with the function

h(z1, z2) =
1

2

(

|z1|2 + |z2|2
)

+ fB0
(q,p),

see Section 3.2.2.
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The content of Proposition 3.21 and of Corollary 3.20 is that for every

point

(z, s;q0,0) ∈ U

with s ∈ (1− δ,1) and q0 in the 0-section of T ∗B0,

• there is up to a Möbius transformation a unique holomorphic map u ∈
M̃0(D

2,N) containing that point in its image, and

• M̃(D2,N) does not contain any holomorphic maps whose image is not

entirely contained in U ∩ (C×R×B0).

As a result, it follows that V = ev−1
z0 (U) is an open subset of

M0(D
2,N ;z0), and that the restriction of the evaluation map

evz0 |V : V → U

is a diffeomorphism onto U ∩ (C× (1− δ,1)×B0). The closure of this subset

is the smooth submanifold

U ∩ (C×R×B0),

which we obtain by including the binding {0} × {1} ×B0 of N .

Using the evaluation map, we can identify V with its image in U , and

this way glue B0 to the moduli spaceM0(D
2,N ;z0). The new space is also a

smooth manifold with boundary, and the evaluation map extends to it, and

is a diffeomorphism onto its image in U so that we can effectively identify

U with a subset of the moduli space. In particular, it follows that B0 is a

submanifold that is of codimension 2 in the boundary of the moduli space.

The aim of the next section will consist in studying the Gromov com-

pactification of M0(D
2,N ;z0).

4.3. Compactness

Gromov compactness is a result that describes the possible limits of a se-

quence of holomorphic curves, and ensures under certain conditions that

every such sequence contains a converging subsequence. In the limit, a given

sequence of holomorphic curves may break into several components, called

bubbles, each of which is again a holomorphic curve. We will not describe

in detail what “convergence” in this sense really means, but we only sketch
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the idea: The holomorphic curves in a moduli space can be represented by

holomorphic maps, and in the optimal case, one could hope that by choosing

for each curve in the given sequence a suitable representative, we might have

uniform convergence of the maps, and this way we would find the limit of

the sequence as a proper holomorphic curve. Unfortunately, this is usually

wrong, but it might be true that for the correct choice of parametrization we

have convergence on subdomains. Choosing different reparametrizations, we

then obtain convergence on different domains, and each such domain gives

then rise to a bubble, that means, a holomorphic curve that represents one

component of the Gromov limit.

Theorem 4.5 (Gromov compactness). Let (W,J) be a compact almost com-

plex manifold (with or without boundary), and assume that J is tamed by a

symplectic form ω. Let L be a compact totally real submanifold. Choose a

sequence of J-holomorphic maps uk : (D
2, ∂D2)→ (W,L) whose ω-energy

E(uk) :=

∫

D2

u∗kω

is bounded by a constant C > 0.

Then there is a subsequence of (ukl
)l that converges in the Gromov sense

to a bubble tree composed of a finite family of non-constant holomorphic disks

u
(1)
∞ , . . . , u

(K)
∞ whose boundary lies in L, and a finite family of non-constant

holomorphic spheres v
(1)
∞ , . . . , v

(K′)
∞ . The total energy is preserved so that

lim
l→∞

E(ukl
) =

K∑

j=1

E
(

u(j)∞
)

+

K′
∑

j=1

E
(

v(j)∞
)

.

If each of the disks uk is equipped with a marked point zk ∈D
2, then after

possibly reducing to a another subsequence, there is a marked point z∞ on

one of the components of the bubble tree such that limk zk = z∞ in a suitable

sense.

The ω-energy is fundamental in the proof of the compactness theorem to

limit the number of possible bubbles: By [25, Proposition 4.1.4], there exists

in the situation of Theorem 4.5 a constant �> 0 that bounds the energy of

every holomorphic sphere or every holomorphic disk uk : (D
2, ∂D2)→ (W,L)

from below. Since every bubble needs to have at least an �-quantum of energy,

and since the total energy of the curves in the sequence is bounded by C, the

limit curve will never break into more than C/� bubbles (the upper bound of

the energy is also used to make sure that each bubble is a compact surface).
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We will show in the rest of this section that we can apply Gromov

compactness to sequences of holomorphic disks lying in the moduli space

M0(D
2,N) studied in the previous section, and how we can incorporate these

limits into M0(D
2,N ;z0) to construct the compactification M0(D

2,N ;z0).

Proposition 4.6. Let N be a Lob or a bLob in the contact boundary (M,ξ)

of a symplectic filling (W,ω), and assume that we find a contact form α for

ξ such that ω|TN = dα|TN .

There is a global energy bound C > 0 for all holomorphic disks in

M̃0(D
2,N).

Proof. There is a slight complication in our proof, because we may not

assume that ω is globally exact, which would allow us to obtain the energy

of a holomorphic disk by integrating over the boundary of the disk. To prove

the desired statement, proceed as follows: Let u : (D2, ∂D2)→ (W,N) be any

element in M̃0(D
2,N). By our assumption, there exists a smooth path of

maps ut that starts at the constant map u0(z)≡ b0 ∈B0 in the binding and

ends at the chosen map u1 = u. This family of disks may be interpreted as a

map from the 3-ball into W . The boundary consists of the image of u1, and

the union of the boundary of all disks ut|∂D2 .

Using Stokes’ theorem, we get

0 =

∫

[0,1]×D2

u∗tdω =

∫

D2

u∗1ω+

∫

[0,1]×∂D2

u∗tω

so that E(u) =−
∫

[0,1]×∂D2 u
∗
tω.

By our assumption, we have a contact form on the contact boundary M

for which ω|TN = dα|TN , so that using Stokes’ theorem a second time (and

that u0(z) = b0) we get

E(u) =

∫

∂D2

u∗α.

The Legendrian foliation on N is an open book whose pages are fibers

of a fibration ϑ : N \B→ S
1. Hence the 1-form dϑ and α|TN have the same

kernel, and it follows that there exists a smooth function f : N → [0,∞) such

that

α|TN = f dϑ.

The function f vanishes on the binding and on the boundary of a bLob, and

f is hence bounded on N so that we define C := 2πmaxx∈N |f(x)|.
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Using that the boundary of u intersects every leaf of the open book

exactly once, we obtain for the energy of u the estimate

E(u) =

∫

∂D2

u∗α≤max
x∈N

∣
∣f(x)

∣
∣

∫

∂D2

u∗dϑ≤ 2πmax
x∈N

∣
∣f(x)

∣
∣=C. �

With the given energy bound, we obtain now Gromov compactness in

form of the following corollary.

Corollary 4.7. Let N be a Lob or a bLob in the contact boundary (M,ξ)

of a symplectic filling (W,ω), and assume that we find a contact form α for

ξ such that ω|TN = dα|TN . Let (uk)k be a sequence of holomorphic maps in

M̃0(D
2,N).

There exists a subsequence (ukl
)l that converges either

• uniformly up to reparametrizations of the domain to a J-holomorphic

map u∞ ∈ M̃0(D
2,N),

• to a constant disk u∞(z)≡ b0 lying in the binding of N ,

• or to a bubble tree composed of a single holomorphic disk u∞ :

(D2, ∂D2)→ (W,N) and a finite family of non-constant holomorphic

spheres v1, . . . , vj with j ≥ 1.

Proof. We will apply Theorem 4.5. The submanifold N is not totally real

along the binding B and ∂N , but we simply remove a small open neighbor-

hood of both sets. By Proposition 3.24, none of the holomorphic disks uk
may get close to ∂N , and by Proposition 3.21 we know precisely how the

curves look like that intersect a neighborhood of B. If we find disks in (uk)k
that get arbitrarily close to the binding of N , then using that B is compact,

we may choose a subsequence that converges to a single point in the binding.

If (uk)k stays at finite distance from B, we may assume that the neighbor-

hood, we have removed from N is so small that the holomorphic disks we

are studying all lie inside.

If the sequence (uk)k does not contain any subsequence that can be

reparametrized in such a way that it converges to a single non-constant disk

u∞, we use Gromov compactness to obtain a subsequence that splits into a

finite collection of holomorphic spheres and disks. But as a consequence from

Corollary 3.11, we see that non-constant holomorphic disks attached to N

need to intersect the pages of the open book transversely in positive direc-

tion. A sequence of holomorphic disks that intersects every page of the open

book exactly once, cannot split into several disks intersecting pages several
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times. In particular possible bubble trees contain by this argument a single

disk in its limit. �

Above, we have obtained compactness for a sequence of disks, but we

would like to understand how these limits can be incorporated into the moduli

space. Adding the bubble trees to the space of parametrized maps does not

give rise to a valid topology, because the bubbling phenomenon can only be

understood by using different reparametrizations of the disk to recover all

components of the bubble tree.

We will denote the compactification of M0(D
2,N ;z0) by M0(D

2,N ;z0).

For us, it is not necessary to understand the topology of M0(D
2,N ;z0) in

detail, but it will be sufficient to see that bubbling is a “codimension 2 phe-

nomenon”. In fact, it is not the topology of the moduli space itself we are

interested in, but our aim is to obtain information about the symplectic

manifold. For this we want to make sure that the image under the eval-

uation map of all bubble trees that appear in the limit, that means, of

M0(D
2,N ;z0) \M0(D

2,N ;z0) is contained in the image of a smooth map

defined on a finite union of manifolds each of dimension at most

dimM0

(

D
2,N ;z0

)

− 2.

For this to be true, we need to impose additional conditions for (W,ω).

Definition. A 2n-dimensional symplectic manifold (M,ω) is called

• symplectically aspherical, if ω([A]) vanishes for every A ∈ π2(M).

• It is called semipositive if every A ∈ π2(M) with ω([A]) > 0 and

c1(A)≥ 3− n has non-negative Chern number.

Note that every symplectic 4- or 6-manifold is obviously semipositive.

In a symplectically aspherical manifold no J -holomorphic spheres exist,

because their energy would be zero. So in particular they may not appear

in any bubble tree and Corollary 4.7 implies in our situation that every

sequence of holomorphic disks contains a subsequence that either collapses

into the binding or that converges to a single disk in M0(D
2,N ;z0). Using

the results of Section 4.2, we obtain the following corollary.

Corollary 4.8. Let (W,ω) be a compact symplectically aspherical manifold

that is a weak filling of a contact manifold (M,ξ). Let N be a Lob or a
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bLob in M , and assume that we find a contact form for ξ such that ω|TN =

dα|TN . Choose an almost complex structure J that is adapted to N (as in

Corollary 4.4).

Then the compactification of the moduli space M0(D
2,N ;z0) is a smooth

compact manifold

M0

(

D
2,N ;z0

)

=M0

(

D
2,N ;z0

)

∪ (binding of N)

with boundary. The binding of N is a submanifold of codimension 2 in the

boundary ∂M0(D
2,N ;z0).

The condition of asphericity is very strong, and we will obtain more gen-

eral results by studying instead semipositive manifolds. The important point

here is that a generic almost complex structure only ensure transversality

for somewhere injective holomorphic curves, see Section 4.1.2. Even though

the holomorphic disks inM0(D
2,N ;z0) are simple, it could happen that once

the disks bubble, there appear spheres that are multiple covers. For these, we

cannot guarantee transversality, and hence we cannot directly predict if the

compactification ofM0(D
2,N ;z0) consists of adding “codimension 2 strata”

or if we will be forced to include too many bubble trees.

Still, we know that every sphere that is not simple is the multiple cover

of a simple one (by the Riemann-Hurwitz formula a sphere can only multiply

cover a sphere), we can hence compute the dimension of the moduli space of

the underlying simple spheres, and use this information as an upper bound

for the dimension of the spheres that appear in the bubble tree.

Let v : S2 → W be a holomorphic sphere that is a k-fold cover of a

sphere ṽ representing a homology class [v] and [ṽ] ∈H2(W,Z) respectively

with [v] = k[ṽ] and with ω([ṽ])> 0. The expected dimension of the space of

maps containing v is by an index formula

indv ∂̄J = 2n+ 2c1
(

[v]
)

= 2n+ 2kc1
(

[ṽ]
)

.

The space of biholomorphisms of S2 has dimension 6, and hence the expected

dimension of the moduli space of unparametrized spheres that contain [v] is

indv ∂̄J − 6 = 2(n− 3) + 2kc1([ṽ]).

As we explained above and in Section 4.1.2, this expected dimension

does not correspond in general to the observed dimension of the bubble

trees, instead we study the expected dimension of the underlying simple

spheres. The dimension of the space containing ṽ is given by indṽ ∂̄J − 6 =
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2(n − 3) + 2c1([ṽ]). If c1([ṽ]) < n − 3, then the expected dimension will be

negative, and since we obtain regularity of all simple holomorphic curves by

choosing a generic almost complex structure, it follows that the moduli space

containing ṽ is generically empty. As a consequence bubble trees appearing

as limits do not contain any component that is the k-fold cover of a simple

sphere representing the homology class [ṽ].

If c1([ṽ])≥ n− 3, the definition of semipositivity implies that c1([ṽ])≥ 0.

When we compare the expected dimension of the moduli space containing v

with the one of the underlying disk ṽ, we observe that indv ∂̄J − 6 = 2(n−
3) + 2kc1([ṽ])≥ 2(n− 3) + 2c1([ṽ]) = indṽ ∂̄J − 6.

Consider now the image in W of all spheres in the moduli space of v that

are k-fold multiple covers of some simple sphere. Their image is contained

in the image of the simple spheres lying in the same moduli space as ṽ.

The dimension of this second moduli space is smaller or equal than the

expected dimension of the initial moduli space containing v, and even though

we cannot ensure regularity for v, we have an estimate on the dimension of

the subset containing all singular spheres.

The following result allows us to find the desired bound for the dimension

of the image of complete bubble trees.

Proposition 4.9. Assume that (W,ω) is semipositive. To compactify the

moduli space M0(W,N,z0), one has to add bubbled curves. We find a fi-

nite set of manifolds X1, . . . ,XN with dimXj ≤ dimM0(W,N,z0) − 2 and

smooth maps fj : Xj →W such that the image of the bubbled curves under

the evaluation map evz0 is contained in
⋃

fj(Xj).

When we consider instead the compactification of the boundary

∂M0(W,N,z0), that means the space of holomorphic disks with a marked

point on the boundary of the disk only, then we obtain the analogue result,

only that the manifolds X1, . . . ,XN have dimension dimXj ≤
dim∂M0(W,N,z0)− 2 = dimM0(W,N,z0)− 3.

Proof. The standard way to treat bubbled curves consists in consider-

ing them as elements in a bubble tree: Here such a tree is composed by

a simple holomorphic disk u0 : (D
2,S1)→ (W,N) and holomorphic spheres

u1, . . . , uk′ : S2→W . These holomorphic curves are connected to each other

in a certain way. We formalize this relation by saying that the holomorphic
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curves are vertices in a tree, i.e. in a connected graph without cycles. We

denote the edges of this graph by {ui, uj}, 0≤ i < j ≤ k′.

Now we assign to any edge two nodal points zij and zji, the first one

in the domain of the bubble ui, the other one in the domain of uj , and

we require that evzij (ui) = evzji(uj). For technical reasons, we also require

nodal points on each holomorphic curve to be pairwise distinct. To include

into the theory, trees with more than one bubble connected at the same

point to a holomorphic curve, we add “ghost bubbles”. These are constant

holomorphic spheres inserted at the point where several bubbles are joined to

a single curve. Now all the links at that point are opened and reattached at

the ghost bubble. Ghost bubbles are the only constant holomorphic spheres

we allow in a bubble tree.

The aim is to give a manifold structure to these bubble trees, but unfor-

tunately this is not always possible, when multiply covered spheres appear

in the bubble tree.

Instead, we note that the image of every bubble tree is equal to the image

of a simple bubble tree, that means, to a tree, where every holomorphic

sphere is simple and any two spheres have different image. Since we are only

interested in the image of the evaluation map on the bubble trees, it is for

our purposes equivalent to consider the simple bubble tree instead of the

original one. The disk u0 is always simple, and does not need to be replaced

by another simple curve.

Let u0, u1, . . . , uk′ be the holomorphic curves composing the original bub-

ble tree, and let Ai ∈H2(W ) be the homology class represented by the holo-

morphic sphere ui. The simple tree is composed by u0, v1, . . . , vk such that

for every uj there is a bubble sphere vij with equal image

uj
(

S
2
)

= vij
(

S
2
)

and in particular Aj =mjBij , where Bij = [vij ] ∈H2(W ) and mj ≥ 1 is an

integer. Write also A for the sum
∑k′

j=1Aj and B for the sum
∑k

i=1Bi. Below

we will compute the dimension of this simple bubble tree.

The initial bubble tree u0, u1, . . . , uk′ is the limit of a sequence in the

moduli spaceM0(W,N,z0). Hence the connected sum u∞ := u0# · · ·#uk′ is,

as element of π2(W,N), homotopic to a disk u in the bishop family, and the

Maslov indeces

μ(u) := μ
(

u∗TW,u∗TN
)

and μ(u∞) := μ
(

u∗∞TW,u
∗
∞TN

)
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have to be equal. With the standard rules for the Maslov index (see for

example [25, Appendix C.3]), we obtain

2 = μ(u) = μ(u∞) = μ(u0) +

k′
∑

j=1

2c1
(

[uj ]
)

= μ(u0) + 2c1(A).

The dimension of the unconnected set of holomorphic curves

M̃[u0](W,N,z0)×
∏k

j=1 M̃Bj
(W ) for the simple bubble tree is

(

n+ μ(u0)
)

+

k∑

j=1

2
(

n+ c1(Bj)
)

= n+ 2− 2c1(A) + 2nk+

k∑

j=1

2c1(Bj)

= n+ 2+ 2nk+ 2
(

c1(B)− c1(A)
)

.

In the next step, we want to consider the subset of connected bubbles, i.e.

we choose a total of k pairs of nodal points, which then have to be pairwise

equal under the evaluation map. The nodal points span a manifold

Z(2k)⊂
{

(1, . . . ,2k)→D
2 # S

2 # · · · # S
2
}

of dimension 4k. The dimension reduction comes from requiring that the

evaluation map

ev : M̃[u0](W,N,z0)×
k∏

j=1

M̃Bj
(W )×Z(2k)→W 2k

sends pairs of nodal points to the same image in the symplectic manifold.

By regularity and transversality of the evaluation map to the diagonal sub-

manifold !(k) ↪→W 2k, the dimension of the space of holomorphic curves is

reduced by the codimension of !(k), which is 2nk.

As a last step, we have to add the marked point z0 used for the evalu-

ation map evz0 , this way increasing the dimension by 2, and then we take

the quotient by the automorphism group to obtain the moduli space. The

dimension of the automorphism group is 6k+3. Hence the dimension of the

total moduli space is

n+ 2+ 2nk+ 2
(

c1(B)− c1(A)
)

+ 4k− 2nk+ 2− (6k+ 3)

= n+ 1− 2k+ 2
(

c1(B)− c1(A)
)

≤ n+ 1− 2k.

The inequality holds because by the assumption of semipositivity, all the

Chern classes are non-negative on holomorphic spheres, and all coefficients nj
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in the difference c1(B) − c1(A) =
∑

j c1(Bj) −
∑

i c1(Ai) =
∑

j c1(Bj) −
∑

imic1(Bji) =
∑

j njc1(Bj) are non-positive integers.

The computations for the disks in ∂M0(D
2,N ;z0) only differs by the

requirement that the marked point needs to lie on the boundary of the disk u0
instead of moving freely on the bubble tree. Instead of having two degrees of

freedom for this choice, we thus only add one extra dimension. �

4.4. Proof of the Non-fillability Theorem A

Theorem A. Let (M,ξ) be a contact manifold that contains a bLob N , then

M does not admit any semi-positive weak symplectic filling (W,ω) for which

ω|TN is exact.

Assume there were a semi-positive symplectic filling (W,ω) for which

ω|TN is exact. Let α be a positive contact form for ξ. By Proposition 3.14,

we can extend (W,ω) with a collar in such a way that we have ω|TN = dα|TN ,

which will allow us to use the energy estimates of the previous section. Now

we choose an almost complex structure that is adapted to the bLob N as in

Corollary 4.4, and we will study the moduli space M0(D
2,N ;z0) defined in

Section 4.2 of holomorphic disks with one marked point lying in the same

component as the Bishop family around a chosen component B0 of the bind-

ing of N .

Trace a smooth path γ : [0,1]→ N that starts at γ(0) ∈ B0 and ends

on the boundary ∂N . Assume further that γ is a regular curve, and that it

intersects the binding and ∂N only on the endpoints of [0,1]. We want to

select a 1-dimensional moduli space in M0(D
2,N ;z0) by only considering

Mγ := ev−1
z0

(

γ(I)
)

.

It will be important for us that γ(I) does not intersect the image of any

bubble trees in M0(D
2,N ;z0) \M0(D

2,N ;z0).

By Proposition 4.9, we have that the bubble trees in ∂M0(D
2,N ;z0) lie in

the image of a finite union of smooth maps defined on manifolds of dimension

dim∂M0(D
2,N ;z0) − 2 = dimN − 2. The subset N \ evz0(bubble trees) is

connected and we can deform γ keeping the endpoints fixed so that it does

not intersect any of the bubble trees.

For a small perturbation of J (away from the binding and the boundary

of N ), we can make sure that the evaluation map evz0 is transverse to the
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path γ(I). If the perturbed J lies sufficiently close to the old one, then γ will

also not intersect any bubble trees for this new J , for otherwise we could

choose a sequence of almost complex structures Jk converging to the unper-

turbed J such that for everyone there existed a bubble tree vk intersecting γ.

We would find a converging subsequence of vk yielding a bubble tree v∞ for

the unperturbed almost complex structure intersecting γ, which contradicts

our assumption.

It follows thatMγ is a collection of compact 1-dimensional submanifolds

of ∂M0(D
2,N ;z0). There is one component in Mγ , which we will denote by

Mγ
0 that contains the Bishop disks that intersect γ([0, ε)). We know that the

Bishop disks are the only disks close to the binding, and hence it follows that

Mγ
0 cannot be a loop that closes, but must be instead a closed interval.

The first endpoint ofMγ
0 is the constant disk with image γ(0) ∈B0, and

we will deduce a contradiction by showing that no holomorphic disk can be

the second endpoint of Mγ
0 .

By Proposition 3.24, there is a small neighborhood of ∂N that cannot be

entered by any holomorphic disk. By our construction the endpoint of Mγ
0

cannot be any bubble tree either. It follows that the endpoint needs to be

a regular disk [u, z0] ∈ ∂M0(D
2,N ;z0) for which the boundary of u lies in

N \ (∂N ∪B) and whose interior points cannot touch ∂W either, because we

are assuming that the boundary of W is convex.

It follows that this regular disk cannot really be the endpoint of Mγ
0 ,

because the evaluation map evz0 will also be transverse to γ at [u, z0] so that

we can extend Mγ
0 further.

This leads to a contradiction that shows that the assumption that the

boundary of W is everywhere convex cannot hold.

4.5. Proof of Theorem B

For the proof, we first recall the definition of the degree of a map.

Definition. Let X and Y be closed oriented n-manifolds. The degree of a

map f : X→ Y is the integer d= deg(f) such that

f#[X] = d · [Y ],

where [X] ∈Hn(X,Z) and [Y ] ∈Hn(Y,Z) are the fundamental classes of the

corresponding manifolds. When the manifolds X and Y are not orientable,
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we define the degree to be an element of Z2 using the same formula, where

the fundamental classes are elements in Hn(X,Z2) and Hn(Y,Z2).

Note that we can easily compute the degree of a smooth map f between

smooth manifolds by considering a regular value y0 ∈ Y of f (which by Sard’s

theorem exist in abundance), and adding

deg f =
∑

x∈f−1(y0)

signDfx,

where the point x contributes to the sum with +1, whenever Dfx is orien-

tation preserving, and contributes with −1 otherwise. In case the manifolds

are not orientable, we can always add +1 in the above formula, but need to

take sum over Z2.

Theorem B. Let (M,ξ) be a contact manifold of dimension (2n+ 1) that

contains a Lob N . If M has a weak symplectic filling (W,ω) that is symplec-

tically aspherical, and for which ω|TN is exact, then it follows that N repre-

sents a trivial class in Hn+1(W,Z2). If the first and second Stiefel-Whitney

classes w1(N) and w2(N) vanish, then we obtain that [N ] must be a trivial

class in Hn+1(W,Z).

Using Proposition 3.14 we can assume that ω|TN = dα|TN for a chosen

contact form α. Choose an almost complex structure J onW that is adapted

to the Lob N , and letM0(D
2,N ;z0) be the moduli space of holomorphic disks

with one marked point lying in the same component as the Bishop family

around a chosen component of the binding of N .

Since W is symplectically aspherical, we obtain by Corollary 4.8 that

M0(D
2,N ;z0) is a compact smooth manifold with boundary. It was shown

in [13] thatM0(D
2,N ;z0) is orientable if the first and second Stiefel-Whitney

classes of N \ B vanish. With our assumptions this is the case, because

wj(N \B) =wj(N)|(N\B). IfM0(D
2,N ;z0) is orientable thenM0(D

2,N ;z0)

will also be orientable: If there were an orientation reversing loop γ in the

compactified moduli space (which is obtained from M0(D
2,N ;z0) by gluing

in B as codimension 3 submanifold), then due to the large codimension we

could easily push γ completely into the regular part of the moduli space,

where it would still need to be orientation reversing.

It follows that the boundary ∂M0(D
2,N ;z0) is also homologically a

boundary (either with Z- or Z2-coefficients depending on the orientability

of the considered spaces).
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Denote the restriction of the evaluation map

evz0 |∂M0(D2,N ;z0)
: ∂M0

(

D
2,N ;z0

)

→N,

by f . We know that close to the binding every point is covered by a unique

Bishop disk, this implies by the remarks made above that the degree deg(f)

needs to be ±1.

We have the following obvious equation

evz0 ◦ι∂M = ιN ◦ f,

where ι∂M denotes the embedding of ∂M0(D
2,N ;z0) in M0(D

2,N ;z0) and

ιN the embedding of N in W . The homomorphism induced by ι∂M is the

trivial map on the (n + 1)-st homology group, so that the left side of the

equation gives rise to the 0-map

Hn+1

(

∂M0

(

D
2,N ;z0

)

,R
)

→Hn+1(W,R)

with R being either Z or Z2. Since f# is ± identity, it follows that ιN has to

induce the trivial map on homology, which implies that N is homologically

trivial in W .
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Sci. Éc. Norm. Super. 44(5), 801–853 (2011)

[31] A. Oancea, C. Viterbo, On the topology of fillings of contact manifolds and applica-
tions. Comment. Math. Helv. 87(1), 41–69 (2012)

[32] J. Palis, W. de Melo, Geometric Theory of Dynamical Systems (Springer, New York,
1982)

[33] F. Presas, A class of non-fillable contact structures. Geom. Topol. 11, 2203–2225
(2007)

[34] D. Tischler, On fibering certain foliated manifolds over S1. Topology 9, 153–154 (1970)
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Contact Invariants in Floer Homology

GORDANA MATIĆ

1. Heegaard Floer Homology—A Very Quick

Introduction

In a pair of seminal papers [24, 25] Peter Ozsváth and Zoltan Szabó defined

a collection of homology groups they named Heegaard-Floer homologies. To

define these groups, they first associate to a 3-manifold M a Heegaard dia-

gram, use it to define a chain complex, and then show that the associated

homology groups do not depend on choices made.

A Heegaard decomposition of a 3-manifold is a decomposition M =H1 ∪
H2 into two handlebodies with Σg = ∂H1 =−∂H2 =H1∩H2. We can define a

genus g handlebody as a 3-manifold obtained by gluing g “handles”D2× [0,1]

to B3 by attaching D2× 0 and D2× 1 along disjoint pairs of discs in S2 and

smoothing. Every 3-manifold has a Heegaard decomposition. The easiest way

to “visualize” one is to take a triangulation of M and take the neighborhood

of the 1-skeleton as H1 and the complement as H2, It is clear that H1 is

a handlebody—if we take a maximal tree T in the 1-skeleton and cut the

neighborhood along the discs perpendicular to the edges not in T , we have

a ball. The complement is a neighborhood of the dual 1-skeleton, so is a

handlebody by the same argument.

Another way to obtain a Heegaard decomposition is to look at Morse

functions onM . Assume that a Morse function f :M → [0,3] is self-indexing,

i.e. that it has critical points of index i at critical values i= 0, . . . ,3. When

there are g critical points of index 1 and 2, the mid-level surface Σ = f−1(3/2)

F. Bourgeois et al. (eds.), Contact and Symplectic Topology,
Bolyai Society Mathematical Studies 26, DOI 10.1007/978-3-319-02036-5 6,
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Fig. 1. Self-indexing Morse function f :M → [0,3] with critical points of index 1 and
their ascending discs in red, and critical points of index 2 and their descending discs in

blue tracing the Heegaard diagram on Σ = f−1( 3
2
)

has genus g. The descending discs Dpi
of the index 2 critical points {pi|i=

1, . . . , g} and the ascending discs Dqi of the index 1 critical points {qi|i =
1, . . . , g} cut the handlebodies H1 = f−1[3/2,3] and H2 = f−1[0,3/2] into

3-balls (see Figure 1).

Collections of their boundary curves {αi|αi = ∂Dpi
} (correspondingly

{βi|βi = ∂Dqi}) cut the Heegaard surface Σg into a 2g-times punctured

sphere. The Heegaard diagram (Σ,{αi},{βi}) determines M—it can be ob-

tained from Σ × [−1,1] by gluing compressing discs along αi × {−1} and

along βi × {1}, thickening the discs and then finally gluing in two copies

of B3. It is a theorem of Reidemeister and Singer [28, 31] that any two Hee-

gaard diagrams for the same 3-manifold can be related to each other by three

moves: (1) stabilization, in which genus of Σ is increased by adding a one

handle and a pair of dual curves α0, β0 is added to {αi}, {βi} (and destabi-

lization), (2) isotopy of multicurves {αi}, {βi} and (3) handle slides, where

{α1, α2, . . .} is replaced by {α1 + α2, α2 . . .}.

Heegaard Floer homology is a variant of Lagrangian Floer homology

applied to the two Lagrangian submanifolds Tα = α1 × · · · × αg and Tβ =

β1 × · · · × βg in the singular symplectic manifold Symg(Σg), the symmetric

product of g copies of Σg. In [24, 25] Ozsváth and Szabó define several

versions of this invariant. To describe the simplest of them, ĤF (M) with Z/2

coefficients, we define the chain group ĈF (Σ,α,β) = SpanZ/2{x|x ∈ Tα∩Tβ}
to be the free Z/2-module generated by the points x= (x1, . . . , xg) in Tα∩Tβ .

Note that such a g-tuple x= (x1, . . . , xg) contains one point on each αi and

one point on each βi curve.
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Grading and the boundary maps are defined by considering pseudoholo-

morphic discs in Symg(Σg) with boundary on Tα and Tβ . More precisely, we

look at maps φ from the unit disc D2 ⊂ C to Symg(Σ) that map −i �→ x,

i �→ y, S1∩{Re z ≥ 0} to Tα and S1∩{Re z ≤ 0} to Tβ . We denote the set of

homotopy classes of such maps by π2(x,y). With a generic choice of almost

complex structure on Symg(Σg), the space of pseudoholomorphic discs in

the homotopy class of φ ∈ π2(x,y) is a smooth manifoldM(φ). These spaces

carry a free R action by translation. To see this translation action we think

of a biholomorphism between D2 \ {i,−i} and [−1,1]×R taking ±i to ±∞
and translate in the R direction. The dimension of the space M(φ) of holo-

morphic maps in the homotopy class of φ is calculated via the Maslov index

μ(φ), which defines a relative grading on ĈF (Σ,α,β). When the dimension

of M(φ) is one, compactness arguments give finiteness of M̂φ =M(φ)/R,

and we define the boundary operator on ĈF (Σ,α,β) by counting (mod 2)

the number of points in the 0-dimensional space M̂φ. If we fix a marked point

z in the complement of the α and β curves, the function nz(φ) on π2(x,y) is

given by the intersection number of φ(D2) with z×Symg−1(Σ). If the image

of φ misses z × Symg−1(Σ) then nz(φ) = 0. The differential

∂x=
∑

y

∑

φ∈π2(x,y)
μ(φ)=1,nz(φ)=0

#(M̂φ)y

has grading −1 and satisfies ∂ ◦ ∂ = 0.

To understand better what we are summing over, note that the map

φ :D2→ Symg(Σ) corresponds to a map φ̃ : D̃→Σ from a g-fold branched

cover D̃ of D2 to Σ (branching is over the preimage of the intersection of

φ(D2) with the diagonal in Symg(Σ)). The two marked points i and −i on
the boundary of D2 lift to 2g marked points on the boundary of D̃, and

under φ̃ these are mapped in alternating fashion to the coordinates xi and yi
of x and y. The segments on the boundary of D̃ between these 2g points are

mapped in alternating fashion to segments on α and β curves connecting xi
and yj . The image of the map φ̃ is a union of domains Di in the complement

of the α and β curves in Σ, and the Maslov index can be computed from

this picture according to a combinatorial formula of Lipshitz [20]. Analysis

of the moduli spaces corresponding to Maslov index 2 maps shows that the

boundary map satisfies ∂2 = 0. The resulting homology is shown in [24] to be

independent of the choice of a marked Heegaard diagram (Σ,αi, βi, z) forM ,

and therefore an invariant of the 3-manifold M .

Given a marked point z, each intersection point x = (x1, . . . , xg) in

Tα ∩ Tβ defines a spinc structure s(x) on the 3-manifold M determined by
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Fig. 2. A bigon and a rectangular domain

the Heegaard diagram. If there is a topological disc from x= (x1, . . . , xg) to

y = (y1, . . . , yg) with boundary contained in the union of two tori Tα and

Tβ the two spinc structures s(x) and s(y) agree. Therefore ĈF (Σ,α,β, z)

splits as the sum of ĈF ((Σ,α,β, z), s) and, as is clear from the definition, the

boundary map preserves this splitting. Hence the complex, and the homology

of the complex as well, split according to spinc structures:

ĤF (M) =
∑

s∈Spinc(M)

ĤF (M, s)

Other versions of Heegaard Floer homology, HF∞ and HF+, are defined by

considering the free Z/2[U,U−1] or Z/2[U ] modules, respectively, generated

by points in Tα ∩ Tβ and counting also the pseudoholomorphic curves that

cross the marked point z in the differential, by recording nz(φ):

∂x=
∑

y

∑

φ∈π2(x,y)
μ(φ)=1

#(M̂φ)U
nz(φ)y

Defining orientations on the moduli spaces M̂φ makes it possible to count

the number of points in the 0-dimensional moduli spaces M̂φ/R with sign in

order to work over Z.

It is highly nontrivial to count the number of points in the moduli spaces

M̂φ for a general φ, as that count depends on the choice of almost complex

structure on Symg(Σ). However, if the image of φ̃ is a topological disc con-

necting two intersection points x= (x1, x2, x3 . . . xg) and y= (y1, x2, x3 . . . xg)

that differ in just one coordinate, called a bigon domain (see Figure 2), or be-

tween two intersection points x= (x1, x2, x3 . . . xg) and y = (y1, y2, x3 . . . xg)

that differ in exactly two coordinates, called a rectangular domain (and con-

stant maps on other components of the cover), there is a unique holomorphic

disc in that homotopy class.

This makes it possible to have a combinatorial calculation of the chain

complex and the homology. Sarkar and Wang [30] described a method to
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Fig. 3. A neighborhood of the binding in an open book decomposition

produce “nice Heegaard diagrams”, i.e. diagrams for which all but one dis-

tinguished domain are bigons and rectangles and when the base point z

is placed in that distinguished domain, the count involved in calculating

ĤF (M) becomes combinatorial. There are other combinatorial approaches

to calculating the Heegaard Floer homology and a variant associated to a

knot K ⊂M , the knot Floer homology H̃FK(M,K), notably the gird dia-

grams and convenient diagrams ([22, 27] and many other sources).

2. Open Book Decompositions, Contact Structures and

Convex Surfaces

Let S be a surface with boundary and let Aut(S,∂S) = {h ∈Diff(S,∂S)|h|∂S =

id}. Moding S× [0,1] out by the equivalence relation (x,1)∼h (h(x),0) pro-

duces a manifoldM(S,h) with a torus boundary component for each compo-

nent of ∂S. Moding out the boundary by further identifying (x, t)∼h (x, t
′)

for all t, t′ ∈ [0,1] and x ∈ ∂S reduces each torus boundary component to a

knot in a closed 3 manifold M(S,h) = S × [0,1]/ ∼h (Figure 3). Denote by

B(S,h) ⊂M(S,h) the image of ∂S × [0,1] under the quotient projection. The

complement of a small neighborhood of B(S,h) in M(S,h) is diffeomorphic to

M(S,h) and fibers over S1 = [0,1]/0∼ 1. The link B(S,h) is called the binding

of the open book and the image of each S×{t} under the quotient projection
is a page. The projection π : Int(S)× [0,1]/∼h→ [0,1]/0∼1 induces a bundle

structure on the complement of the binding with the preimage of a point in

t ∈ S1 = [0,1]/0∼1 being the interior of the page St.

An open book decomposition for a 3-manifoldM with page S, binding B

and monodromy h ∈Aut(S,∂S) is a projection p :M \B→ S1 and a home-

omorphism Φ : (M,B)→ (M(S,h),B(S,h)) that commutes with projections p
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and π. We say in this case that (S,h) is a formal open book decomposition

for (M,B,p).

It is a theorem of Alexander that every 3-manifold has an open book de-

composition. Different open book decompositions of the same manifold are

related by sequences of positive/negative stabilizations, where stabilization

changes S by adding a 1-handle to S and changes h by composing it with

a positive/negative Dehn twist about a curve γ dual to the handle. More

precisely, we attach a handle H = [0,1]× [−ε, ε] to S along {0,1}× [−ε, ε] to
obtain S′ and let h ∪ id be extension of h by identity on [0,1]× [−ε, ε]. Let
γ be any simple closed curve in S′ that intersects the co-core 1/2× [−ε, ε] of
the handle H once, and let Rγ (R−1

γ ) be the right (left) handed Dehn twist.

If h′ =R±1
γ ◦ (h∪ id) we say that (S′, h′) is a positive (negative) stabilization

of (S,h). It is not hard to see that if (S′, h′) is a positive (negative) stabiliza-

tion of (S,h), and (S,h) is a formal open book decomposition of (M,B,p),

then (S′, h′) gives a formal open book decomposition of (M,B′, p′) where the
binding B′ is obtained by a Murasugi sum along γ of the binding B with a

positive (negative) Hopf link. For a nice description see [29].

Open book decompositions of 3-manifolds are intimately related to con-

tact topology. A contact structure ξ on a 3-manifold M is a 2-plane filed

which is the kernel of a nondegenerate 1-form α, the contact form. (Nonde-

generacy means that α ∧ dα = d vol .) The contact structure ξ is said to be

supported by the open book decomposition (M,B,p) if:

1. B is transverse to ξ,

2. there is a contact 1-form α for which dα induces a symplectic form on

each fiber St = p−1(t) of p :M \B→ S1,

3. the orientation on B given by α is the same as the boundary orientation

induced from St oriented by the symplectic structure induced by dα.

Thurston and Winkelnkemper [32] showed that any open book decomposition

(S,h) of M supports a contact structure ξ by constructing a contact form

ξ(S,h) onM(S,h) with these properties. Torisu [33] and Giroux [10] proved that

the converse is true, namely that every contact manifold is supported by (has

a compatible) open book decomposition. Giroux established the following

correspondence:

Theorem 2.1 (Giroux). Any contact structure (M,ξ) on a closed 3-

manifold M is supported by an open book decomposition (S,h). Moreover,

any two open book decompositions (S,h) and (S′, h′) which support the same
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Fig. 4. Convex surface and its characteristic foliation and dividing set

contact structure (M,ξ) are equivalent under a sequence of positive stabiliza-

tions/destabilizations.

To give an indication of how a compatible open book decomposition can

be found for a given a contact manifold (M,ξ), we need to first talk about

convex decomposition methods in contact topology. In the early 90’s Emanuel

Giroux introduced an important tool in contact topology—convex surfaces.

A vector field −→v in a contact manifold (M,ξ) is called contact if its flow

preserves ξ. A surface S ⊂M is called convex if there exists a contact vector

field −→v transverse to S. Note that a convex surface S can be transverse to

many different contact vector fields. To a convex surface S and a contact

vector field −→v transverse to S one can associate

ΓS =
{

x ∈ S|−→v (x) ∈ ξ(x)
}

its dividing set (see Figure 4). It is not hard to show that ΓS is a smooth

multicurve, and that the isotopy class of ΓS is independent of −→v .

If g( , ) is a Riemannian metric on M and we denote by −→n ξ a normal

vector field to ξ, the dividing set on a convex surface S ⊂M determined by a

contact vector field −→v (p) can be described as ΓS = {p ∈ S | g(−→v (p),−→n ξ(p)) =

0}. The dividing set Γ clearly divides the convex surface S into two regions

R+(S) and R−(S) where R+ = {p ∈ S | g(−→v (p),−→n ξ(p))≥ 0} and R− = {p ∈
S | g(−→v (p),−→n ξ(p)) ≤ 0}. It is not hard to see that, if S is a closed convex

surface in the contact manifold (M,ξ), the contact class of ξ evaluates on S

as χ(ξ)[S] = χ(R+(S))− χ(R−(S)).

A knot is Legendrian if it is everywhere tangent to contact planes. Con-

tact planes (cooriented by −→n ξ) induce, on a surface S oriented by −→v , an
oriented singular foliation F by Legendrian curves called the characteristic

foliation. The regions R± correspond to “source” and “sink” regions in this

picture. Legendrian curves of the foliation intersect the dividing set transver-

sally as in Figure 4. If a convex surface S has Legendrian boundary, then the

dividing set intersects the boundary in an even number of points 2n, and n

describes the number of twists that the contact plane makes relative to the

framing for the Legendrian boundary curve coming from the convex surface.
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Fig. 5. Standard neighborhood of a Legendrian curve at the intersection of two
perpendicular convex surfaces

Fig. 6. Smoothing of the dividing set after cutting along convex surface Σ and rounding
corners

We can decompose a contact manifold (M,ξ) by cutting it along properly

embedded convex surfaces Σ. For a gentler introduction see [12]. When (M,ξ)

is a contact manifold with boundary we assume that the boundary ∂M is

convex, and that the convex cutting surface Σ has Legendrian boundary

L= ∂Σ ⊂ S. A standard neighborhood theorem says that if L intersects the

dividing set ΓΣ geometrically 2n times, there is a neighborhood Nε(L) of L

in M and local coordinates (x, y, z) on it so that Nε(L) = {(x, y, z)|x2+ y2 <
ε,x≤ 0} in R

2 × (R/Z) (see Figure 5).

Here L lies on the z axis, the set of points with x= 0 corresponds to an

annular neighborhood of L in Σ, the set of points with y = 0 corresponds to

a neighborhood of L in S, and the contact structure ξ is given as the kernel

of α = sin(2πnz)dx + cos(2πnz)dy, n �= 0. If we choose the contact vector

fields for S and Σ to be vS = ∂
∂x and vΣ = ∂

∂y it is not hard to calculate that

the dividing sets are ΓS = {(0, y, k
2n)|0≤ k < 2n} and ΓΣ = {(x,0, 1+2k

4n )|0≤
k < 2n}.

After cutting M along Σ and rounding corners to obtain M ′, transverse

contact vector fields on the new boundary components of ∂M ′ = S′ can be

chosen to be vS = a ∂
∂x + b

∂
∂y so that they rotate between ∂

∂x and ∂
∂y . A simple
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Fig. 7. Adding a bypass

calculation shows that the new dividing set on ∂M ′ is obtained by the “turn

to the right” method illustrated in Figure 6.

Giroux and Honda showed that isotoping a convex surface S through a

contact manifold preserves the isotopy class of the dividing set except for

at finitely many levels of the isotopy. Honda described how at these levels

the product contact structure changes by adding a “bypass” to the product

structure on S × I , i.e. engulfing a “half overtwisted disc” B bounded by a

Legendrian arc α in S connecting three dividing curves (possibly not globally

different), and an Legendrian arc β along which the contact planes coincide

with the tangent planes of B. Thickening the bypass disc to B × [−ε, ε]
attached along α× [−ε, ε], looking at the dividing set and rounding to obtain

S′ we see that the change in the dividing set after adding a bypass is as

pictured in Figure 7.

To describe briefly how to find an open book compatible with a given

contact structure ξ on M we start with a triangulation of M that is fine

enough so that each 3-simplex is contained in a standard contact chart for ξ.

The 1-skeleton can then be perturbed to be Legendrian in such a way that

the relative twisting of the contact planes along the boundaries of the discs

in the 2-skeleton is such that these discs can be made convex with the given

Legendrian boundary. By adding extra pieces to the 1-skeleton to divide the

discs in the 2-skeleton in such a way that each contains exactly one arc in

its dividing set we can achieve the following:

(1) There is a handlebody decomposition of the 3-manifold into H1 =

ν(M (1)), the neighborhood of the 1-skeleton, and the complementary

handlebody H2 = ν(M̄ (1)) which is the nighbourhood of the dual 1-

skeleton.

(2) The common boundary Σ is a convex surface.

(3) The contact handlebodies H1 and H2 with convex boundary are disc

decomposable, i.e. there is a family of compressing discs with Legen-

drian boundary such that the boundary of each disc intersects the

dividing set in exactly two points.
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Fig. 8. Cutting a genus one handlebody along a convex compressing disc

Fig. 9. Gluing disc decomposable contact structures on H1 and H2

Note that the convex discs in (3) are just small discs transverse to the 1-

cells of the 1-skeleton in H1 and the 2-cells of the subdivided complex for H2.

By cutting along the compressing discs until we obtain B3, we can see that

contact handlebodies Hi are contactomorphic to product contact manifolds

R× I where R is homeomorphic to Σ+ (and Σ−), as we think of obtaining

Hi by gluing contact 1-handles onto a standard ball with convex boundary

S2 and dividing set S1. The simplest case, of a genus one surface with two

parallel longitudinal dividing curves, is shown in Figure 8.

Note that when we consider Σ as the boundary of H2 the roles of Σ+

and Σ− are reversed in comparison to what they are when we consider Σ

as the boundary of H1 (due to the change of orientation on Σ). We identify

H1 with R× [0,1/2] in such a way that Σ− corresponds to R×{0} and Σ+

corresponds to R× {1/2}, and identify H2 with R× [1/2,1] in such a way

that Σ− corresponds to R×{1/2} and Σ+ to R×{1}. Then the identification

of R×{0} and R×{1} coming form the way H1 and H2 are glued inside M

defines the monodromy map h : R→ R which realizes M as corresponding

to the open book (R,h), and the open book inside M is compatible with ξ

(see Figure 9).

We say that a contact structure ξ on a 3-manifold M is overtwisted if

there is an embedded D2 in M such that the tangent plane TPD
2 and the

contact plane ξP agree at all points P ∈ ∂D2. If ξ is not overtwisted we say

it is tight. There are familiar examples of tight contact structures. It is a
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theorem of Bennequin [4] that the standard contact structure on R
3 is tight.

Giroux showed that a product neighborhood of a convex surface is tight if

and only if it has no contractible dividing curve, or is S2 with Γ = S1.

A theorem of Eliashberg [5] says that overtwisted contact structures are

classified up to isotopy through contactomorphisms (contact isotopy) by the

homotopy class of their plane fields, i.e. two overtwisted contact structures

that are homotopic as plane fields are isotopic through a family of contact

structures. This is not true in the case of tight contact structures, which are

more closely related to the finer topology of the manifold. A central question

in contact topology on 3-manifolds is to construct, recognize and classify

tight contact structures on a given M3.

There is a rich source of tight examples; the fillable contact structures.

A contact manifold (M,ξ) is Stein fillable if there is a compact complex Stein

manifold W with convex boundary such that M = ∂W and contact planes

are complex lines in TM . (M,ξ) is strongly symplectically fillable if M is the

boundary of a symplectic manifold (W,ω) which looks like a Stein manifold

near the boundary. Finally, (M,ξ) is weakly symplectically fillable if M is

boundary of a symplectic manifold (W,ω) and ω|ξ ≥ 0. It is a theorem of

Gromov and Eliashberg that fillable contact structures are tight [7, 11].

To describe tightness in the framework of open book decompositions

we use the notion of “right-veering” homeomorphisms [13]. We say that a

homeomorphism h ∈Aut(S,∂S) is right-veering if every properly embedded

oriented arc α in S is mapped “to the right” of α as in Figure 10. For

two properly embedded arcs α and β with the same initial point α(0) =

β(0) which are isotoped rel boundary to intersect transversally in a minimal

number of points, we say that β is to the right of α if the tangent vectors

{β′(0), α′(0)} define the orientation of S.

Fig. 10. The image arc h(α) is to the right of α
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Theorem 2.2 (Honda-Kazez-Matić). A contact 3-manifold (M,ξ) is tight

if and only if all of its adapted open book decompositions have right-veering

monodromy.

Right-veering diffeomorphisms of S form a monoid Veer(S,∂S) in

Aut(S,∂S). Monodromies in the submonoid Dehn+(S,∂S) ⊂ Veer(S,∂S)

consisting of diffeomorphisms that are products of positive Dehn twists give

rise to Stein fillable structures by the work of Eliashberg [6]. That every

Stein fillable structure has a monodromy in Dehn+(S,∂S) is a theorem by

Loi-Piergallini and Akbulut-Ozbagci [1, 21]. John Baldwin [3] and Baker,

Etnyre and Van-Horn Morris [2] have shown that there are open books

for Stein fillable contact structures that are not in Dehn+(S,∂S). They

have also shown that the open book monodromies corresponding to Stein,

strongly and weekly fillable contact structures form monoids. The natural

inclusions Dehn+(S,∂S) � Stein(S,∂S) � Strong(S,∂S) � Week(S,∂S) �

Tight(S,∂S) � Veer(S,∂S) are all proper according to work of, in order,

Baker-Etnyre-VanHorn Morris and independently Wand, Ghiggini, Eliash-

berg, Ghiggini and Honda-Kazez-Matić and Goodman. However, it is not

clear that Tight(S,∂S) is a monoid, or how to describe the tightness in

terms of one open book. It is easy to show that any open book can be stabi-

lized to be right veering, hence there are right veering open books supporting

overtwisted contact structures. Even if we know that an open book has right

veering monodromy and that it is not the result of a stabilization, this does

not guarantee tightness, as first shown by Lekili [19].

3. From Open Books to Contact Invariants

Ozsváth and Szabó [26] used the one-to-one correspondence between equiv-

alence classes of open books for M under positive stabilization and isotopy

classes of contact structures on M to define an invariant c(ξ) of contact

structures that lives in the Heegaard Floer homology of −M . To do this

they associated to an open book decomposition (M,B,p) compatible with ξ

the fibered manifold M0(B) obtained by performing 0-framed surgery with

respect to the page framing on the binding B. Heegaard Floer homology for a

fibered 3-manifold is special—it is one dimensional in the spinc structure cor-

responding to the fibration. Ozsváth and Szabó defined c(ξ) to be the image

of the generator of this group under the map induced by the cobordism de-

fined by the 0-handle attachment from ĤF (−M0(B)) to ĤF (−M). It has the

property that c(ξ) = 0 if ξ is overtwisted, and that c(ξ) �= 0 when ξ is fillable.
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Fig. 11. The Heegaard decomposition and the diagram determined by a basis of arcs for
the page of an open book decomposition

To see a concrete generator of c(ξ) we will use the open book decom-

position to construct a Heegaard diagram in which this generator sits in a

distinguished way. An open book decomposition adapted to ξ gives rise to

a Heegaard decomposition into two handlebodies H1 = S × [0,1/2]/∼h
and

H2 = S × [1/2,1]/∼h
.

A basis of arcs for the surface with boundary S is a collection of properly

embedded arcs {ai|i= 1, . . . , r} that cuts the surface into a disc, S \ (
⋃
ai) =

D2. Given a basis of arcs we can construct the family of compressing discs

Dai
= ai× [0,1/2] for H1 which cut H1 into a ball. We perturb the ai slightly

to obtain a basis of arcs bi such that each bi intersects ai transversely at

exactly one point (positively) and consider discs Dbi = bi× [1/2,1] which are

a set of compressing discs that cut H2 down to a ball.

Taking the boundary curves of these discs αi = ∂(Dai
) and βi = ∂(Dbi)

and looking at them as curves in the separating surface Σ = S×{1/2}∪−S×
{0}= S×{1/2}∪−S×{1} (here Σ is the common boundary of H1 and H2,

and S × {1} is identified with S × {0} via the monodromy h), we obtain

a Heegaard diagram (Σ,αi, βi, z) (see Figure 11). There is a distinguished

generator x = (x1, . . . , xi, . . .) for ĈF (Σ,αi, βi, z) that is contained in Σ =

S × {1/2} where xi = αi ∩ βi. If we choose the marked point z to lie in

Σ = S × {1/2} and outside the thin strips bounded by αi and βi curves, it

is easy to see that x is a cycle, and in fact:
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Fig. 12. The Heegaard diagram determined by a basis of arcs and the contact element
x= (x1, x2)

Theorem 3.1 [14]. The generator x = (x1, x2, . . . , xr) is a cycle in

ĈF (Σ,βi, α1, z) and its homology class is the Ozsváth-Szabó contact class,

x= c(ξ) ∈ ĤF (−M).

In particular, for a different open book decomposition compatible with

the same contact structure ξ, we get the same class c(ξ) ∈ ĤF (−M). Note

that we needed to switch the role of α and β curves, hence the orientation

of M in order for x to be a cycle.

From this description it is easy to see that for an overtwisted contact

structure c(ξ) = 0. Specifically, an overtwisted contact structure has a com-

patible open book decomposition and a basis of arcs such that the holon-

omy takes at least one of the arcs, we can name it α1, to the left of itself.

Then in the corresponding Heegaard diagram, there is a bigon connecting

y = (y1, x2, . . . , xr) to x = (x1, x2, . . . , xr), which gives ∂y = x, hence x = 0

in homology. When looking at the Figure 12, it might seem that α1 is in

fact mapped to the right, but that is an artifact of reversal of orientation on

−S × {0}.

Given that c(ξ) = 0 for overtwisted contact structure, and that c(ξ) �= 0

when ξ is fillable (by a theorem of Gromov and Eliashberg [7, 11]), it was a

natural question to ask whether c(ξ) �= 0 is a characterization of tightness.

Ghiggini [8] showed that there are tight contact manifolds with c(ξ) = 0. The

examples he found contain Giroux torsion, i.e. a contact embedding of T 2×
[0,1] =R

2/Z2× [0,1] with contact structure given by ξtor = ker(cos(2πz)dx−
sin(2πz)dy).

The question then was reformulated to ask if c(ξ) = 0 is equivalent to the

requirement that ξ contains Giroux torsion. The answer was obtained with
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the use of a contact invariant defined for contact manifolds with boundary,

the sutured contact invariant, which we will discuss in the next section. On

one hand, the invariant is used in [9] to prove that any contact manifold

containing Giroux torsion has c(ξ) = 0. On the other hand, it is used in [16]

to show that for a general surface with boundary S there are S1-invariant

contact structures on S×S1 generalizing Giroux torsion that have the prop-

erty that any contact manifold that contains them has c(ξ) = 0, and is hence

not fillable.

4. Sutured Manifolds and Partial Open Books

When a 3-manifold M has nonempty boundary, we will study contact struc-

tures onM for which the boundary ∂M is a convex surface with a prescribed

dividing set Γ ⊂ ∂M dividing ∂M into R+ and R− regions. A pair (M,Γ )

of a manifold and a dividing set Γ on the boundary (which divides every

boundary component) is called a sutured manifold. Sutured manifolds were

first defined by Gabai for use in the study of foliations. When χ(R+) = χ(R−)

we call the sutured manifold (M,Γ ) balanced (Figure 13).

We say that the balanced sutured manifold (M,Γ ) carries a compatible

contact structure ξ with convex boundary if the suture Γ agrees with the

dividing set Γξ on the boundary. Recall that on a closed convex surface Σ in a

contact manifold (M,ξ) the contact class evaluates as c(ξ)[Σ] = χ(R+(Σ))−
χ(R−(Σ)). Since ∂M =Σ is zero in homology, c(ξ)[Σ] = 0 and χ(R+(Σ)) =

χ(R−(Σ)). Hence a sutured manifold that supports a contact structure with

convex boundary is balanced.

We want to define an analogue of a Heegaard diagram in the case of a

manifold with boundary, and sutured manifolds provide the right framework.

A sutured Heegaard diagram consists of a surface with boundary Σ of genus

g and two families of attaching curves {αi|i= 1, . . . , k} and {βi|i= 1, . . . , l}
with k, l ≤ g. When we attach 2-handles to Σ × [0,1] along those curves

Fig. 13. A balanced sutured manifold
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Fig. 14. A Morse function picture of a balanced sutured manifold

we will build a 3-manifold with boundary. It will have a suture Γ = ∂Σ ×
{12} which divides the boundary into two regions: R+ which is obtained by

compressing Σ ×{1} along αi curves (cutting open along α and filling in by

attaching pairs of discs), and R− obtained by compressing Σ ×{0} along βi
curves. On the 3-manifold with boundary we obtain this way there is clearly

a Morse function picture, analogous to the closed case, that has the centers

of the attached 2-handles as critical points (see Figure 14). Note that in the

case of a closed manifold and a classical Heegaard diagram of genus g and α

and β curves cutting it to a 2g times punctured sphere, adding 2-handles to

the Heegaard surface along the α and β curves produces first a manifold with

two S2 boundary components to which, in the end, we add two 3-handles.

A way to build a closed manifold from the sutured manifold is to attach

enough handles until we obtain a union of sutured spheres on the boundary,

one for each of the boundary components of the Heegaard surface, and then

add 3-balls. It is easy to see that in the sutured Heegaard diagram where

k = l, i.e. when we attach the same number of compressing discs to Σ ×{1}
as to Σ × {0}, the sutured manifold we build is balanced.

Andras Juhasz [17] defined Sutured Floer Homology for a balanced su-

tured manifold in analogy to the Heegaard Floer Homology ĤF . As is done

in the case of a closed manifold, he associated to a balanced Heegaard dia-

gram (Σ,αi, βi) a chain complex generated by the intersection points of the

two tori Tα = α1 × · · · × αk and Tβ = β1 × · · · × βk in Symk(Σ) and defined

the boundary operator by counting holomorphic disc. The role played by the

base-point z in the closed case is played by the boundary ∂Σ, namely we

consider only domains that do not go out to the boundary. The homology

of this complex is denoted by SFH (M,Γ ) and Juhasz proved it does not

depend on the choice of the sutured Heegaard diagram for (M,Γ ).
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Fig. 15. Gluing to obtain a partial open book

We want to associate to a contact structure ξ with convex boundary

supported by (M,Γ ) an element in the Sutured Heegaard Floer homol-

ogy SFH (−M,−Γ ). The change of orientation is parallel to the fact that

contact invariant in the closed case lives in ĤF (−M). In order to define

c(ξ) ∈ SFH (−M,−Γ ), we first need to define an analogue of open book de-

compositions for manifolds with sutured boundary.

Definition 4.1. A partial open book (S,P,h) consists of the following data:

a compact, oriented surface S with nonempty boundary, and a “partial”

monodromy map h : P → S defined on a subset P ⊂ S such that ∂P ∩∂S �= 0

and h|∂P∩∂S = id .

To obtain a sutured manifold associated to a partial open book de-

composition (S,P,h) define an equivalence relation ∼h on S × [0,1] by set-

ting (x,1) ∼h (h(x),0) for x ∈ P , and (x, t) ∼h (x, t′) for t, t′ ∈ [0,1] x ∈ ∂S
(see Figure 15). It is not difficult to see that the glued-up space can be

smoothed out to a manifold with boundary, where R+ = (S \ P )× {1} and

R− = (S \ h(P ))× {0} and the dividing set is Γ = ∂(S \ int P ).

To motivate this definition let us think about the construction of the

open book compatible with a contact structure ξ in the closed case that

we described in Section 2. We will adapt this construction to the case of

balanced sutured (M,Γ ). We again take a cell decomposition of M by cells

small enough so that the contact structure on them is standard, make the

1-skeleton Legendrian and 2-cells convex (keeping the boundary fixed), and

this time consider a Legendrian 1-complex L that consists of the portion of

the Legendrian 1-skeleton that is in the interior of the manifold together with

enough of the Legendrian 1-simplices that come out and meet the boundary

in points on the dividing set to meet every component of it in at least 2

points. If we take the cell decomposition to be fine enough, we can ensure that

the neighborhood of L is a disc-decomposable contact handlebody H2 with



262 G. Matić

Fig. 16. Neighborhood of the Legendrian skeleton L near the boundary

convex boundary, and that its complement H1 is also a disc-decomposable

handlebody [15].

The boundary of H2 = ν(L) consists of a “tube region” P and some

discs that are part of the boundary and intersect the dividing set Γ in one

segment each (see Figure 16). The tube P is divided by its dividing set

into two regions P± and the boundary of the complement H1 consists of

S+ =R+ ∪P+ and S− =R− ∪P− (we are being a bit sloppy and identifying

R± with R± \ ∂(ν(L)). The choice of a fine enough decomposition ensures

that the two contact handlebodies H1 and H2 are disc-decomposable and we

can identify H1 = S × [0,1/2] and H2 = P × [1/2,1], where S = R+ ∪ P+ =

R− ∪P− (see Figure 17). For simplicity of notation we ignore in this picture

the fact that in the product handlebodies we mod out by (x, t)∼ (x, t′) to get

to the real disc decomposable handlebody picture. By looking at the gluing

of H2 to H1 inside M we see that we can think of M as obtained first by

gluing along P− to obtain the glued up S × [0,1/2] ∪P×{1/2} P × [1/2,1] as

homeomorphic to S× [0,1], and of the final gluing along P+ as gluing by the

partial monodromy (after we identify S × [0,1/2] ∪P×{1/2} P × [1/2,1] with

S × [0,1] in an obvious way).

We now want to associate a sutured Heegaard diagram to this decom-

position. Define a basis of arcs in P to be a collection {ai|i = 1, . . . , k} of

disjoint properly embedded arcs in P with boundary on ∂P ∩ ∂S such that

S \
⋃
{ai}i=1,...,k deformation retracts onto R+ = S − P . In our example in

Figures 17 and 18, the basis consists of just one arc a1. Let bi, i= 1, . . . , k, be

pushoffs of ai in the direction of ∂S so that ai and bi intersect exactly once

at a point xi. It is not hard to see that if we set Σ = (S × {0})∪ (P × {12}),
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Fig. 17. The partial open book and the handlebody decomposition

Fig. 18. The partial open book and the Heegaard diagram

αi = ∂(ai× [0, 12 ]) and βi = (bi×{12})∪ (h(bi)×{0}), then (Σ,β,α) is a Hee-

gaard diagram for (−M,−Γ ). See Figure 19.

We can again look at the special generator x = (x1, . . . , xi, . . .) for

SFH (Σ,β,α) and, as in the case of the closed manifold, x = [(x1, . . . , xk)]

is a cycle. It is shown in [15] that it defines a contact invariant.

Fig. 19. The Heegaard diagram determined by a basis of arcs a1 and the contact element
x= (x1)
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Fig. 20. A partial open book decomposition and a Heegaard diagram for a neighborhood
of an overtwisted disc

Theorem 4.2. The point x= [(x1, . . . , xk)] is independent of choices up to

±1 and generates the sutured contact invariant c(ξ) ∈ SFH (−M,−Γ ).

A concrete example we will look at here is a partial open book decompo-

sition for a neighborhood of an overtwisted disc. The corresponding sutured

manifold is (B3, Γ ) with the dividing set consisting of 3 parallel curves. It is

enough to take just one segment connecting two nonadjacent components of

the dividing set for the Legendrian 1-complex L, to get the complement to

be a disc-decomposable handlebody. The segment comprising L is the core

of the cylinder in Figure 20, while P± are two halves of the cylinder, and

the basis of arcs consists of a single arc a on P . In the left-hand diagram of

Figure 20 arc a is shown on P × {1/2} ⊂ S × {1/2} (thus might more prop-

erly be denoted by a × {1/2}). Isotoping a (rel endpoints) through N(L)

where we use the homeomorphism N(L) = P × [1/2,1] produces, by the def-

inition of the monodromy h, the arc h(a)× {0} ⊂ S × {0}. Finally pushing

h(a) × {0} (rel endpoints) through the fibration M − N(L) that identifies

M − N(L) = S × [0,1/2] results in h(a) × {1/2} ⊂ S × {1/2}, and this is

denoted simply by h(a). The right side of the figure shows a and h(a) in

S = S × {1/2}.

5. Gluing Theorem for Sutured Manifolds

In [13] we work to understand the effect of cutting and gluing of contact

manifolds along convex surfaces in sutured manifolds in the context of the

contact invariant. We say that one balanced sutured manifold (M ′, Γ ′) is a

sutured submanifold of another balanced sutured manifold (M,Γ ) if M ′ is a
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submanifold with boundary of M and M ′ ⊂ int(M). A contact structure ξ

defined on M ⊂ int(M ′) is compatible with the sutured manifold structures

of M and M ′ if the dividing set of ξ on the boundary of M − int(M ′) is

Γ ∪ −Γ ′. In this section we will define a map on sutured Floer homology

induced by the inclusion of (M ′, Γ ′) into (M,Γ ) in the presence of a com-

patible contact structure in the complement. We will see how triviality of

the contact invariant on a sutured submanifold implies the triviality of the

contact invariant of the manifold itself. In the next section we will use the

gluing theorem to calculate the contact invariant in some examples, and ob-

tain some interesting obstructions to fillability. For simplicity, we can think

of all constructions as done over Z/2Z, so we do not have to worry about the

sign ambiguity.

If a connected component N of M \ int(M ′) contains no components of

∂M we say that N is isolated. WhenM \ int(M ′) has no isolated components

we have the following:

Theorem 5.1 [13]. Let (M ′, Γ ′) be a sutured submanifold of (M,Γ ), and let

ξ be a compatible contact structure onM \ int(M ′). Assume thatM− int(M ′)

has no isolated components. Then ξ induces a natural map:

Φξ : SFH
(

−M ′,−Γ ′)→ SFH (−M,−Γ )

Moreover, if ξ′ is any contact structure on M ′ compatible with Γ ′ then

Φξ

(

c
(

M ′, Γ ′, ξ′
))

= c
(

M,Γ, ξ′ ∪ ξ
)

where ξ′ ∪ ξ is a contact structure on M that restricts to ξ on M \ int(M ′)

and to ξ′ on M ′.

There is a more complicated statement in the case of existence of isolated

components which involves considering multi-pointed Heegaard diagrams and

tensoring with ĤF (S1 × S2), see [13].

Brief description of Φξ. To define this map we have to carefully extend a

sutured Heegaard diagram for (M ′, Γ ′) to a diagram for (M,Γ ). For details

of this construction look at [13]. Here is just a very quick idea. We use, in an

essential way, the contact structure ξ on M \ int(M ′) compatible with the

sutures Γ and Γ ′ to define the map. We start from a Heegaard surface forM ′.

If we are given ξ′ on M ′ take (Σ′, β′, α′) to be defined by a partial open book

compatible with ξ′. If we are not given a ξ′, let (Σ′, β′, α′) be a Heegaard
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diagram arising from a partial open book decomposition of some contact

structure ζ which has dividing set Γ ′ on ∂M ′. We would like to join this

Heegaard diagram to one generated by ξ on M \ int(M ′). However, that is in

general not precise enough, as it does not provide enough compressing discs

for the union. To connect the two sides, we need to start with N , a contact

product neigbourhood of ∂M ′ inM \ int(M ′), and letM ′′ =M \ int(M ′∪N).

We carefully choose a Heegaard surface ΣN which is compatible with the

[0,1]-invariant contact structure ξ|N , as well as a basis of arcs {aNi } for it. We

then extend ΣN to a Heegaard surface ΣM ′′ and denote a basis of arcs on the

union extending {aNi } in a way necessary to obtain sutured Heegaard diagram

for (M \ intM ′, Γ ∪Γ ′) by {α′′
i }. This needs to be done in a way compatible

with ξ∪ζ, i.e. so that after {a′′i } and their perturbations {b′′i } are chosen, and
we look at boundaries {α′′

i } and {β′′i } of corresponding compressing discs,

the special point x′′ = (. . . ,x′′
i , . . . ), consisting of x′′i = a′′i ∩ b′′i , is the contact

class of ξ ∪ ζ. After gluing we get a Heegaard diagram for (M,Γ ) by taking

α= α′ ∪ α′′ and β′ = β′ ∪ β′′. We then define

Φξ :CF
(

Σ′, β′, α′)→CF
(

Σ,β′ ∪ β′′, α′ ∪ α′′),

y �→
(

y,x′′). �
Above theorem has as an immediate consequence:

Theorem 5.2 [13]. Let i : (M ′, Γ ′, ξ′)→ (M,Γ, ξ) be an inclusion such that

ξ|M ′ = ξ′. If c(M,Γ, ξ) �= 0, then c(M ′, Γ ′, ξ′) �= 0.

Juhász [17] showed that we can recover the Heegaard Floer Homology of a

closed manifoldM by calculating the sutured Floer homology of the manifold

with sutured boundary (M \B3, Γ ) obtained by removing a solid ball B3 from

M and letting the suture Γ be S1 ⊂ S2 on the boundary S2 = ∂(M \B3).

This isomorphism is one to one on generators when we consider the sutured

Heegaard diagram onM \B3 and the corresponding Heegaard diagram onM

obtained by closing the Heegaard surface by adding a disc along its boundary

and making its center a marked point. This isomorphism takes in a natural

way the sutured contact invariant of (M \B3, S1) to the contact invariant of

the closed manifold. Since fillable structures have nonzero contact invariants

we have:

Theorem 5.3 [13]. If c(M,Γ, ξ) = 0, then (M,Γ, ξ) does not embed into any

fillable contact structure.
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It is clear from the construction, as we had remarked after defining the

contact invariant generator in the closed case, that an arc that is taken

to the left by the monodromy produces a holomorphic disc that kills the

contact invariant. The partial open book we constructed in Figure 20 shows

that c(ξ) = 0 for the sutured manifold which is the neighborhood of the

overtwisted disc (there is a disc from y to x making ∂y = x). From this,

coupled with the embedding theorem, we see another proof that c(ξ) = 0 for

any overtwisted contact structure.

6. A TQFT Aspect of c(ξ) and Fillability Obstructions

In this section we study S1 invariant contact structures ξ on Σ × S1, such

that Σ × {t} is convex surface with Legendrian boundary, and for all the

components of ∂Σ there is twisting of ξ with respect to the framing deter-

mined by Σ. These contact structures are classified by their dividing sets Γξ
which are properly embedded multicurves (disjoint union of curves and arcs)

that intersect every component of the boundary of Σ in an even number of

points, and divide Σ and hence ∂Σ into positive and negative regions. We

say that a properly embedded multicurve K ⊂Σ is isolating if Σ \K con-

tains a component that does not intersect ∂Σ (see Figure 21). Examples of

contact structures with c(M,Γ, ξ) = 0 can now be obtained quite easily from:

Theorem 6.1 [13]. Let ξK be the S1 invariant contact structures on Σ×S1,

such that Σ ×{t} is convex with dividing set ΓΣ =K. If K is isolating then

c(Σ × S1, ξK) = 0.

To prove this theorem we use some TQFT-like properties of contact in-

variants for S1 invariant contact structures on Σ×S1. Consider a “bordered”

Fig. 21. An isolating dividing set on a punctured torus
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surface with boundary (Σ,F ), i.e. a surface Σ with a finite subset F ⊂ ∂Σ
consisting of 2n points that divide the boundary γ = ∂Σ into alternating pos-

itive and negative regions γ±, with γ \F = γ− � γ+. We say that a union K

of closed curves and properly embedded arcs in Σ with ∂K = F is a dividing

set on (Σ,F ), or that K divides Σ, if Σ \K is a disjoint union of positive and

negative regions R±, and ∂R± =K ∪ γ±. Denote by D(Σ,F ) the family of

all dividing sets for (Σ,F ). We will use Sutured Floer Homology and sutured

contact invariants to define a map that assigns a vector space V (Σ,F ) to

each (Σ,F ) and an element in that vector space to each K ∈ D(Σ,F ) with

following TQFT-like properties:

1. If Σ is connected, then

V (Σ,F ) = F
2 ⊗ · · · ⊗ F

2,

where F= Z/2Z, the number of copies of F2 is r = n−χ(Σ), and F
2 =

F ⊕ F is a graded F-module whose first summand has grading 1 and

the second summand has grading −1. If (Σ,F ) is the disjoint union of

(Σ1, F1) and (Σ2, F2), then

V (Σ1 �Σ2, F1 � F2)� V (Σ1, F1)⊗ V (Σ2, F2).

2. To each K ∈D(Σ,F ) it assigns c(K) ∈ V (Σ,F ). If K has a homotopi-

cally trivial closed component, then c(K) = 0.

3. Given (Σ,F ), possibly disconnected, let δ, δ′ ⊂ ∂Σ be mutually disjoint

submanifolds of ∂Σ, such that their endpoints do not lie in F , and let

τ be a diffeomorphism τ : δ
∼→ δ′ which identifies δ ∩ F ∼→ δ′ ∩ F and

preserves the ± labeling and reverses the orientation on δ, δ′ inherited
from ∂Σ. Denote by (Σ′, F ′) the result of identifying γ and γ′ via τ .
For every K ∈D(Σ,F ) denote by K the dividing set obtained from K

by gluing K|γ and K|γ′ . Then there exists a map

Φτ : V (Σ,F )→ V
(

Σ′, F ′),

which satisfies

c(K) �→ c(K).

Figure 22 shows the case when Σ is a union of disjoint surfaces Σ′′ and Σ′′′,
and hence Σ′ is obtained by gluing Σ′′ and Σ′′′.

To define this assignment for every (Σ,F,γ±), we first perturb F by mov-

ing it slightly in the direction opposite to the one defined by the orientation
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Fig. 22. Gluing (Σ′′,K′′) and (Σ′′′,K′′′)

on γ = ∂Σ to obtain F 0, and shifting γ± in the same way to obtain γ0±.
We then consider the sutured 3-manifold (Σ × S1, Γ ) where Γ = F 0 × S1

and R± = γ0± × S1. Denote by V (Σ,F ) the sutured Floer homology of

(−Σ × S1,−Γ ). A dividing set K ∈D(Σ,F ) defines an S1-invariant contact

structure ξK on (Σ × S1, Γ ), and hence the corresponding contact invariant

c(K) = c(ξ) ∈ V (Σ,F ). We use F 0 instead of F since the two convex surfaces

Σ×{t} and ∂(Σ×S1) are transverse, so the two dividing sets have to mark

“interlocking points” along the Legendrian intersection curve, i.e. points in

F 0 = Γ ∩ ∂Σ must lie between the endpoints F of K (see Figure 5).

To prove that V (Σ,F ) = F
2⊗· · ·⊗F

2 with appropriate number of factors,

we first need to calculate SFH (D2 × S1, Γ2) for a solid torus with dividing

set Γ2 made up of 4 longitudinal curves. It is shown in [13, Section 5, Ex-

ample 3] that the result is SFH (D2 × S1, Γ2) = F
2 = F(1) ⊕ F(−1). There are

exactly two S1 invariant contact structures compatible with these sutures,

each determined by one of the two dividing sets on D2 consisting of two arcs,

and each generating one of the F(±1). We cut the surface Σ repeatedly by

properly embedded arcs that connect + and − regions of ∂Σ until we get a

disc. Every time we do a cut, each of the two new arcs in the boundary that

correspond to the cut gets one marked point in F , thus each cut adds two

points to the boundary, increasing n by one. A tensor product formula by

Juhász [18, Proposition 8.10] that holds for splitting sutured manifolds along

product annuli applies. The annulus here is product of a cutting arc with S1.

The number of summands, r = n−χ(Σ) corresponds to the number of discs,

each with 4 marked points on the boundary, that Σ is finally cut into, and

the F
2 factor corresponds to the contribution of each such disc to SFH.

If K has a homotopically trivial closed component, then ξK is overtwisted

and hence c(K) = 0 since we defined c(K) ∈ V (Σ,F ) to be the value of the

contact invariant for the S1-invariant contact structure ξK determined by K.
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Fig. 23. The dividing set K0 on Σ′ \Σ is given in red

Fig. 24. Dividing sets on Σ =D2 for |F |= 6

The Gluing Theorem 5.1 applied to Σ×S1 ⊂Σ′×S1 gives us the map Φτ .

We think of Σ as a subset of Σ′ as in Figure 23, where Σ = Σ′′ �Σ′′′ and
Σ′′ and Σ′′′ are identified with slightly shrunk copies inside σ′.

The contact structure on Σ′ × S1 \Σ × S1 is the S1 invariant structure

determined by the dividing set Kτ on Σ′ \Σ determined by F ′′, F ′′′ and the

identification τ .

By studying what we have in the case of Σ = D2 and |F | = 6 we

see in [16] that for dividing sets K1,K2,K3 as in Figure 24 we have that

the corresponding c(K1), c(K2), c(K3) are nonzero and distinct, and satisfy

c(K1) = c(K2) + c(K3). Note that these three configurations are related by

bypass addition. In fact, K2 is obtained by adding a bypass to the front of

K1 along an arc connecting the three dividing curves, and K3 is obtained by

adding a bypass from the back of K1 (digging a bypass).

When we combine this with the gluing theorem, we obtain the same

relationship for any three dividing sets {Ki, i = 1,2,3} related by bypass

addition on a general Σ. We will quickly argue that c(ξK) = 0 for our example

in Figure 21.

It is not hard to see that by adding and digging bypasses along the bypass

arc δ given in blue in K1 in Figure 25, we obtain dividing curves as in K2
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Fig. 25. Bypass adition in the proof of c(ξK) = 0 for an isolating dividin set

and K3. Cutting Σ along the green curve τ and looking at the dividing

sets K ′
2 and K ′

3 resulting from K2 and K3 on the resulting annulus, we see

that c(K ′
2) = c(K ′

3). Juházs’ annulus theorem says gluing along τ induces an

isomorphism, so that we get c(K2) = c(K3). This completes the proof that

c(ξK1
) = 0 since c(K1) = c(K2)+c(K3) = 0 as we are working over F= Z/2Z.

More general isolating dividing sets on surfaces of higher genus can be

dealt with by similar methods or reduced to this case, thus proving Theo-

rem 6.1. For full explanation see [16]. The fact that the contact invariant

vanishes for isolating dividing sets was proved over Z coefficients by Patrick

Massot [23].

Theorem 6.1 together with Theorem 5.3 shows that (Σ × S1, ξK) with

contact structures corresponding to an isolating K form a vast family of

universally tight contact structures that do not embed into fillable structures

and are thus generalizing Giroux torsion. Similar results were obtained by

looking at holomorphic curves and contact homology by Chris Wendl [34].
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Notes on Bordered Floer Homology

ROBERT LIPSHITZ, PETER OZSVÁTH, and DYLAN P. THURSTON

1. Introduction

Heegaard Floer homology is a kind of (3 + 1)-dimensional topological field

theory defined by the second author and Z. Szabó. More precisely, one vari-

ant of Heegaard Floer homology associates to each connected, oriented 3-

manifold Y an abelian group ĤF (Y ) [46] (see also [16]), and to each smooth,

connected, 4-dimensional cobordism W from Y1 to Y2 a group homomor-

phism F̂ : ĤF (Y1)→ ĤF (Y2) [50]. This assignment is functorial: composition

of cobordisms corresponds to composition of maps. As the name suggests,

the Heegaard Floer homology groups are the homologies of chain complexes

ĈF (Y ), defined via Lagrangian-intersection Floer homology1. The invariant

is also multiplicative: the chain complex ĈF (Y1#Y2) associated to the con-

nected sum of Y1 and Y2 is the tensor product ĈF (Y1)⊗ ĈF (Y2) of the chain

complexes associated to Y1 and Y2. The other variants of Heegaard Floer

homology—HF+(Y ), HF−(Y ) and HF∞(Y )—are modules over Z[U ], but

otherwise behave fairly similarly to ĤF (Y ) (but see point (4) below).

Heegaard Floer homology has received widespread attention largely be-

cause of its striking topological applications. Many of these applications draw

on the remarkable geometric content of the Heegaard Floer invariants:

1Strictly speaking, in the original definition the manifolds were only totally-real, not La-
grangian. It was shown in [54] that a Kähler form can be chosen making the relevant
submanifolds Lagrangian.
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(1) The group ĤF (Y ) detects the Thurston norm of Y ; similarly, the

variant of Heegaard Floer homology ĤFK (Y,K) associated to a null-

homologous knot K, called knot Floer homology [44, 56], detects the

genus of K [43].

(2) The group ĤF (Y ) detects whether and how Y fibers over S1; similarly,

ĤFK (Y,K) detects whether K is fibered [9, 41].

(3) The two previous properties are reminiscent of the Alexander polyno-

mial, which gives partial information in each case. There is a precise

relationship between ĤFK and the Alexander polynomial. Specifically,

if K is a knot in S3, then ĤFK (K) is endowed with an integral bi-

grading ĤFK (K) =
⊕

d,s∈Z ĤFK d(K,s), and

∑

d

(−1)dT s rank ĤFK d(K,s) =ΔK(T )

[44, 56].

(4) The Heegaard Floer homology groups of closed 3-manifolds are now

known to agree with the Seiberg-Witten Floer homology groups [6–

8, 19–23, 59–63]. Moreover, one can use Heegaard Floer homology to

define an invariant of smooth, closed 4-manifolds [50], with similar

properties to the Seiberg-Witten invariant [14, 47, 57]; it is expected

that the two invariants agree. Note, however, that to capture the ana-

logue of the Seiberg-Witten invariant one needs to work with the HF+

and HF− variants of Heegaard Floer homology.

As mentioned above, Heegaard Floer homology is defined using Lagrang-

ian-intersection Floer homology, i.e., by counting holomorphic curves. Con-

sequently, it is in general hard to compute—though there are now several

algorithms for doing so; see particularly [37–40, 58]. With the goal of com-

puting and better understanding Heegaard Floer homology in mind, we have

been developing bordered Heegaard Floer homology, a tool for understand-

ing the behavior of the Heegaard Floer homology group ĤF (Y ) under cut-

ting and gluing of Y along surfaces. Roughly, bordered Floer homology is

a (2 + 1 + 1)-dimensional field theory. That is, roughly, it assigns to each

connected, oriented surface F a differential graded algebra A(F ) and to a

cobordism Y from F1 to F2 an (A(F1),A(F2))-bimodule ĈFDA(Y ). Compo-

sition of cobordisms corresponds to tensor product of bimodules.

More precisely, like in Heegaard Floer homology, in bordered Floer ho-

mology, the invariants are not associated directly to the topological objects
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of interest—manifolds of dimensions 2 through 4—but rather to certain com-

binatorial representations for these objects, which we describe next.

The combinatorial representations of oriented surfaces which appear in

bordered Floer homology, the pointed matched circles, which we denote by Z ,
consist essentially of a handle-decomposition of the surface. (See Defini-

tion 2.1 below for a more precise formulation.) We will let F (Z) denote the

surface underlying Z . Bordered Floer homology associates to such a pointed

matched circle a differential-graded (dg) algebra A(Z); the definition of A(Z)
is purely combinatorial.

The three-dimensional objects studied in the bordered theory are cobor-

disms, i.e., three-manifolds with parameterized boundary. More precisely,

a bordered 3-manifold consists of a compact, oriented 3-manifold-with-

boundary Y and a homeomorphism φ : F (Z)→ ∂Y , where Z is some pointed

matched circle.

Bordered Floer homology associates to a bordered 3-manifold (Y,φ :

F (Z)→ ∂Y ) a left dg A(−Z)-module, which we denote ĈFD(Y ). (The mi-

nus sign in front of Z denotes a reversal of orientation.) Explicitly, ĈFD(Y )

is a left module over the dg algebra A(−Z); and ĈFD(Y ) is equipped with

a differential which satisfies the Leibniz rule2 with respect to the action by

the algebra;

∂
ĈFD(Y )

(a · x) = dA(−Z)(a) · x+ a · ∂
ĈFD(Y )

(x).

Like the algebras, the modules ĈFD are also associated to combinatorial

representations of the underlying structure. In this case, the combinatorial

structure is called a bordered Heegaard diagram (Definition 2.5 below). Unlike

the algebras, the definition of ĈFD then depends on further analytic choices

(specifically, a family of complex structures on the underlying Heegaard sur-

face); but the quasi-isomorphism type of the module does not depend on

these further choices.

The modules ĈFD can be used to reconstruct the Heegaard Floer homol-

ogy ĤF via pairing theorems, which come in several variants. For example,

recall that if M1 and M2 are two dg-modules over some algebra A, we can

consider their chain complex of morphisms MorA(M1,M2), which is to be

2The ground ring for bordered Floer homology is Z/2Z; hence the signs usually appearing
in the differential graded Leibniz rule become irrelevant.
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thought of as the space of A-linear maps φ :M1 →M2, equipped with a

differential

dMor(φ) = dM2
◦ φ+ φ ◦ dM1

.

Theorem 1.1. Let Y1 and Y2 be two Z-bordered three-manifolds. Then

there is an isomorphism between the homology of the morphism space

MorA(−Z)(ĈFD(Y1), ĈFD(Y2)) and the Heegaard Floer homology ĤF (Y ) of

the three-manifold Y = −Y1 ∪F (Z) Y2 obtained by gluing −Y1 and Y2 along

their common boundary F (Z) (according to the identifications specified by

their borderings).

(This was not the original formulation of the pairing theorem; rather it

is a re-formulation appearing first in [1]; see also [32].)

The discussion above naturally raises the following questions:

(1) To what extent is the algebra of a pointed matched surface an invariant

of the underlying surface?

(2) In what way does the bordered invariant ĈFD(Y ) depend on the pa-

rameterization of the boundary of Y ?

Perhaps not too surprisingly, the answers to both of these questions are

governed by certain bimodules.

Given a homeomorphism ψ : F (−Z1) → F (−Z2), there is an A(Z1)-

A(Z2)-bimodule ĈFDD(ψ) which allows one to change the framing of a bor-

dered three-manifold. There is a mild technical point which becomes impor-

tant when discussing these bimodules: as we will see, F (Z) contains a distin-

guished disk, and the homeomorphism ψ is required to fix this disk pointwise.

We can now state the dependence of the modules on the parameterization

in terms of these bimodules. To state the dependence, recall that if A1 and

A2 are two dg algebras, B is an A1-A2-bimodule and M is a dg A1-module,

then the space MorA1
(B,M) is naturally a left dg A2-module.

Theorem 1.2. If (Y,φ : F (−Z2)→ ∂Y ) is a bordered three-manifold and ψ :

F (−Z1)→ F (−Z2) is a homeomorphism then there is a quasi-isomorphism:

ĈFD(Y,φ ◦ψ)�MorA(Z1)

(

ĈFDD(ψ), ĈFD(Y,φ)
)

.

Theorem 1.2 can be thought of as a kind of pairing theorem, as well.

The bimodule ĈFDD(ψ) appearing above is the invariant associated to a
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very simple bordered three-manifold with two boundary components: the

underlying three-manifold here is the product of an interval with the sur-

face F (Z2). It is best to think of this as the special case of a more general

construction, involving bordered three-manifolds with two boundary com-

ponents. It turns out that these three-manifolds need to be equipped with

some additional structure, giving the arced cobordisms of Definition 2.10 be-

low. Theorem 1.2 then becomes a special case of a pairing theorem for gluing

bordered three-manifolds to arced cobordisms (Theorem 2.23, below); see

Example 2.24.

Theorem 1.2 answers Question (2) above. The bimodules associated to

mapping classes also answer Question (1): while A(Z) is not an invariant of

F (Z), the (equivalence class of the) derived category of modules over A(Z) is
an invariant of (the homeomorphism type of) F (Z). For more details, see [29,

Theorem 1].

Arguably more excitingly, Theorems 1.1 and 1.2 are an effective tool for

computing Heegaard Floer homology. They can be used to give an algorithm

for computing ĤF (Y ) for an arbitrary closed, oriented three-manifold Y [31];

the map F̂W associated to any smooth cobordism W [36]; and the spec-

tral sequence [49] from Khovanov homology to ĤF of the branched double

cover [30, 35]. (We sketch the algorithm for computing ĤF (Y ) in Section 6.)

In a different direction, the torus boundary case of bordered Floer homology

has been particularly useful for practical computations; see Section 5.

Bordered Floer homology also associates another kind of module, denoted

ĈFA(Y ), to a bordered 3-manifold (Y,φ : F (Z)→ ∂Y ). The module ĈFA(Y )

is a right A∞-module over A(Z). To avoid digressing into A∞-algebra, we

have suppressed ĈFA(Y ), and will continue to do so throughout these notes

to the extent possible. (Another drawback of ĈFA(Y ) is that its definition

requires counting more holomorphic curves than ĈFD(Y ), making ĈFA(Y )

typically harder to compute.) There is one place that ĈFA(Y ) seems unavoid-

able: in the proof of the pairing theorem, which we sketch in Section 4.4.

These notes are organized into five lectures. The first of these (Sec-

tion 2) focuses primarily on the combinatorial representations for manifolds

(pointed matched circles and Heegaard diagrams for bordered and arced

three-manifolds) which are used in the definitions of the modules. After a

sufficient amount of the background is laid out, we give a second, more de-

tailed overview of the theory during the middle of the first lecture. Finally,

Section 2 concludes by defining the algebra A(Z) associated to a pointed

matched circle Z .



280 R. Lipshitz et al.

The second lecture is devoted to defining the module ĈFD(Y ) associated

to a bordered 3-manifold Y , as well as its generalization ĈFDD(Y ) to an

arced cobordism. That lecture starts by reviewing both the original definition

and the cylindrical reformulation of the invariant ĤF (Y ) for a closed 3-

manifold. The lecture then turns to ĈFD(Y ) and the moduli spaces used to

define it, proves the surgery exact triangle for ĤF (originally proved in [45])

and concludes by briefly defining the extension ĈFDD(Y ).

In the third lecture, we describe the analysis which underpins the theory.

This allows us to sketch the proof that the differential on ĈFD is, in fact,

a differential. It also allows us to sketch a proof of the pairing theorem; in

the process, the invariant ĈFA(Y ), elsewhere absent from these notes, arises

naturally.

The last two lectures are computational. The fourth lecture is devoted to

the torus-boundary case. After recalling some terminology about knot Floer

homology, it explains how one can recover the knot Floer homology group

ĤFK (Y,K) from the bordered Floer homology of Y \K; indeed, this process

also allows one to obtain, with a little more work, the knot Floer homology

of any satellite of K. The lecture then discusses the other direction: for a

knot K in S3, one can recover the bordered Floer homology S3 \K from

the knot Floer complex CFK−(K). Combining these results, one obtains a

theorem about the behavior of knot Floer homology under taking satellites.

Finally, the last lecture describes an algorithm coming from bordered

Floer homology for computing ĤF (Y ) for closed three-manifolds Y .

There are a number of important aspects of the theory which are missing

from these notes. These include:

• Any discussion of the grading on bordered Floer homology. The grading

takes a somewhat complicated form—the algebras are graded by a non-

commutative group G(Z) and the modules by G(Z)-sets—and we refer

the reader to [27, Chapter 10] for this part of the story.

• A more thorough treatment of ĈFA. This would involve a lengthy alge-

braic digression which might distract from the underlying geometry in

the theory. Again, we refer the reader to [27] to fill in this omission.

• A discussion of the proof of invariance of the bordered modules (The-

orem 2.16). Most of the ideas in the proof of invariance, however, are

present in the proof that ∂2 = 0 on ĈFD and the proof of invariance in

the closed case [46].
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• A proof of the Mor versions of the pairing theorem (Theorems 2.21

and 2.23). We refer the reader to [32] for these proofs.

• The connection between bordered Floer homology and Juhász’s sutured

Floer homology [15]. This connection is given by Zarev’s bordered sutured

theory [64].

There are two other expository articles on bordered Heegaard Floer ho-

mology, with somewhat different focuses, in which the reader might be inter-

ested: [28, 33]. The paper [34] is also intended to be partly expository.

2. Combinatorial Representations of Surfaces and

3-Manifolds with Boundary. Formal Structure

of Bordered Floer Homology. The Algebra Associated

to a Surface

Much of this lecture lays out in detail the combinatorial representations of

the topological objects used in the definition of bordered Floer homology.

We start with surfaces (encoded by pointed matched circles), and then move

on to bordered three-manifolds (encoded by Heegaard diagrams). With this

material in place, we give a more detailed overview of the formal structure

of bordered Floer homology. The lecture concludes with the definition of the

algebra associated to a pointed matched circle.

2.1. Arc Diagrams and Surfaces

Definition 2.1. A pointed matched circle consists of an oriented circle Z,

a point z ∈ Z, a finite set of points a⊂ Z disjoint from z, and a fixed-point

free involution M : a→ a. The map M matches the points a in pairs; that

is, we can view a as a union of S0s. We require that the result Z ′ of doing
surgery on (Z,a) according to M be connected. See Figure 1.

A pointed matched circle specifies a surface. There are a few essentially

equivalent constructions; here is one:

Construction 2.2. Fix a pointed matched circle Z = (Z,a,M, z). Build

an oriented surface-with-boundary F ◦(Z) as follows. Start with [0,1] × Z.
Attach a strip (2-dimensional 1-handle) to each pair of matched points in

a× {0}. The result has boundary (Z × {1})# Z ′. Fill in Z ′ with a copy of

D
2. The result is F ◦(Z). Again, see Figure 1.
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Fig. 1. Pointed matched circles and surfaces. Left: a pointed matched circle specifying a
once-punctured torus. Right: a pointed matched circle specifying a once-punctured genus

2 surface. In both cases, the involution M exchanges ai and a′
i

As a slight variant, we could fill in the boundary of F ◦(Z) with a

disk. This gives a surface F (Z) with a distinguished disk in it—the disk

F (Z) \ F ◦(Z)—and a distinguished basepoint on the boundary of this disk.

That is, F (Z) is a strongly based surface. (Papers in the subject sometimes

treat a pointed matched circle as specifying a surface with boundary, and

sometimes as specifying a closed, strongly based surface; it makes no essen-

tial difference.)

Remark 2.3. Pointed matched circles are a special case of Zarev’s arc dia-

grams ; any orientable surface with non-empty boundary can be represented

by an arc diagram, and there is an associated algebra similar to the one we

will describe in Section 2.4.3. Arc diagrams are, in turn, closely related to

fat graphs and chord diagrams.

2.2. Bordered Heegaard Diagrams for 3-Manifolds

We start with 3-manifolds with one boundary component:

Definition 2.4. A bordered 3-manifold consists of a compact, oriented 3-

manifold-with-boundary Y and a homeomorphism φ : F (Z)→ ∂Y for some

pointed matched circle Z .

Call two bordered 3-manifolds (Y1, φ1 : F (Z) → ∂Y1) and (Y2, φ2 :

F (Z)→ ∂Y2) equivalent if there is a homeomorphism ψ : Y1 → Y2 so that
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φ2 = ψ ◦ φ1, i.e.,

Y1
ψ

∼=
Y2

F (Z)
φ1 φ2

commutes.

We often drop the parametrization φ from the notation, writing Y to

denote a bordered 3-manifold, i.e., Y = (Y,φ).

We can represent bordered 3-manifolds combinatorially, as follows:

Definition 2.5. Let Z be a pointed matched circle representing a surface

of genus k. A bordered Heegaard diagram with boundary Z is a tuple

H=
(

Σg,

α
︷ ︸︸ ︷

αa

︷ ︸︸ ︷

αa
1, . . . , α

a
2k,

αc

︷ ︸︸ ︷

αc
1, . . . , α

c
g−k,

β
︷ ︸︸ ︷

β1, . . . , βg, z
)

where

• Σg is a compact, oriented surface of genus g with one boundary com-

ponent.

• β is a g-tuple of pairwise disjoint circles in the interior of Σ.

• αc is a (g− k)-tuple of pairwise disjoint circles in the interior of Σ.

• αa is a (2k)-tuple of pairwise disjoint arcs in Σ with boundary in ∂Σ.

• z is a basepoint in ∂Σ \αa.

• αa ∩αc = ∅.

• Σ \ (αc ∪αa) and Σ \β are both connected.

• Z = (∂Σ,αa ∩ ∂Σ,M,z). Here, M matches (exchanges) the two end-

points of each αa
i .

Especially when we are considering holomorphic curves, we will abuse

notation and also use Σ to denote Σ \ ∂Σ; and similarly for the α-arcs.
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Fig. 2. A bordered Heegaard diagram and the associated 3-manifold. The picture on the
left is a Heegaard diagram for the bordered solid torus shown on the right. (The labels A
indicate a handle between the corresponding circles.) The shaded part of the boundary

is F ◦(Z). This figure is adapted from [29, Figure 12]

Construction 2.6. Let H= (Σ,α,β, z) be a bordered Heegaard diagram

with boundary Z . There is a corresponding bordered 3-manifold Y (H) con-

structed as follows.

(1) Thicken Σ to Σ × [0,1].

(2) Attach three-dimensional two-handles along the α-circles in Σ × {0}.

(3) Attach three-dimensional two-handles along the β-circles in Σ × {1}.

A parameterization of the boundary is specified as follows. Consider the

graph
(

αa ∪
(

∂Σ \ nbd(z)
))

× {0} ⊂Σ × {0},

thought of as a subset of ∂Y . The closure F ◦ of a neighborhood of this graph

is naturally identified with F ◦(Z). The complement of F ◦ in ∂Y is a disk,

and is identified with F (Z) \ F ◦(Z). See Figure 2.

The orientations in Construction 2.6 are confusing; see [29, Construc-

tion 5.3] for a discussion of this point.

Example 2.7. Figure 2 shows a Heegaard diagram for a solid torus. This is

one of many Heegaard diagrams for bordered solid tori; see Section 3.4 for

more Heegaard diagrams for solid tori.

Example 2.8. Figure 26 (page 345) shows a Heegaard diagram for a genus

2 handlebody. Again, this is one among many.

Example 2.9. Fix an oriented surface Σ, equipped with a g-tuple of pair-

wise disjoint, homologically independent curves β and a (g−1)-tuple of pair-

wise disjoint, homologically independent curves αc = {αc
1, . . . , α

g−1
1 }. Then
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Fig. 3. A bordered Heegaard diagram for the trefoil complement. Left: a Heegaard
diagram for the complement of the trefoil. The circles labeled A (respectively B) denote a
handle attached to the plane. Right: a bordered Heegaard diagram, obtained by adding
the curves γ1 and γ2 and deleting a disk. It may be instructive to compare this diagram

with Figure 16

(Σ,αc,β) is a Heegaard diagram for a three-manifold with torus bound-

ary, and indeed any such three-manifold Y can be described by a Heegaard

diagram of this type. To turn such a diagram into a bordered Heegaard di-

agram, we proceed as follows. Fix an additional pair of circles γ1 and γ2 in

Σ so that:

• γ1 and γ2 are disjoint from αc
1, . . . , α

c
g−1,

• γ1 and γ2 intersect, transversally, in a single point p and

• both of the homology classes [γ1] and [γ2] are homologically independent

from [αc
1], . . . , [α

c
g−1].

Let D be a disk around p which is disjoint from all the above curves, except

for γ1 and γ2, each of which it meets in a single arc. Then, the complement of

D specifies a bordered Heegaard diagram for Y , for some parametrization of

∂Y . A bordered Heegaard diagram for the trefoil complement is illustrated

in Figure 3.

(This example is drawn from [27, Section 4.2]. See also the discussion

around [27, Figure 11.8].)

We also consider 3-dimensional cobordisms:

Definition 2.10. Fix pointed matched circles ZL = (ZL,aL,ML, zL) and

ZR = (ZR,aR,MR, zR). An arced cobordism from ZL to ZR consists of:

• A compact, oriented 3-manifold-with-boundary Y ,

• an injection φ : (−F ◦(ZL))# F ◦(ZR)→ ∂Y (where − denotes orienta-

tion reversal) and
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• a path γ in ∂Y \ Im(φ)

such that Y \ (Im(φ)∪ nbd(γ)) is a disk.

There is a natural notion of equivalence for arced cobordisms, similar to

the notion of equivalence for bordered 3-manifolds; we leave it as an exercise.

As for bordered 3-manifolds, we will typically denote all of the data of

an arced cobordism simply by Y . Also as with bordered 3-manifolds, there

are several other essentially equivalent ways to formulate the notion of an

arced cobordism; see for instance [29, Section 5] and [32, Section 3].

Again, a combinatorial representation of arced cobordisms will be impor-

tant to us:

Definition 2.11. An arced Heegaard diagram is a tuple

H=
(

Σg,

α
︷ ︸︸ ︷

αa,L

︷ ︸︸ ︷

αa,L
1 , . . . , αa,L

2kL
,

αa,R

︷ ︸︸ ︷

αa,R
1 , . . . , αa,R

2kR
,

αc

︷ ︸︸ ︷

αc
1, . . . , α

c
g−kL−kR

,

β
︷ ︸︸ ︷

β1, . . . , βg,z
)

where

• Σg is a compact, oriented surface of genus g with two boundary com-

ponents, ∂LΣ and ∂RΣ;

• β is a g-tuple of pairwise disjoint curves in the interior of Σ;

• αa,L is a collection of pairwise-disjoint embedded arcs with boundary

on ∂LΣ;

• αa,R is a collection of pairwise-disjoint embedded arcs with boundary

on ∂RΣ;

• αc is a collection of pairwise-disjoint circles in the interior of Σ; and

• z is a path in Σ \ (αa,L ∪αa,R ∪αc ∪β) between ∂LΣ and ∂RΣ.

These are required to satisfy:

• αa,L, αa,R and α are all disjoint,

• Σ \α and Σ \β are connected and

• α intersects β transversely.

(Compare [29, Definition 5.4].)
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Fig. 4. Constructing a bordered 3-manifold with two boundary components from an
arced bordered Heegaard diagram. The Heegaard diagram on the left represents an

elementary cobordism from the genus two surface to the genus one surface. On the right
is a (somewhat schematic) depiction of the resulting 3-manifold. The inside part of the
boundary, which corresponds to Σ × {1}, is a cylinder, since the β-circles caused the

handles to be filled in. The outside part of the boundary, corresponding to Σ × {0}, is a
surface of genus 3 with two boundary components. The region F ◦

L (respectively F ◦
R) is

darkly (respectively lightly) shaded

Observe that each boundary component of an arced Heegaard diagram

is a pointed matched circle.

Construction 2.12. Fix an arced Heegaard diagram H= (Σg,α
a,L,αa,R,

αc,β,z) with boundary ZL # ZR. Build a 3-manifold-with-boundary Y as

follows:

(1) Thicken Σ to Σ × [0,1].

(2) Attach three-dimensional two-handles along the α-circles in Σ × {0}.
(3) Attach three-dimensional two-handles along the β-circles in Σ × {1}.

Consider the graphs

ΓL =
(

αa,L ∪
(

∂LΣ \ nbd(z)
))

× {0} ⊂Σ × {0}

ΓR =
(

αa,R ∪
(

∂RΣ \ nbd(z)
))

× {0} ⊂Σ × {0}

thought of as subsets of ∂Y . The closure F ◦
L (respectively F ◦

R) of a neighbor-

hood of ΓL (respectively ΓR) is naturally identified with F ◦(ZL) (respectively

F ◦(ZR)). Let φ denote this identification F ◦(ZL)#F ◦(ZR)→ F ◦
L#F ◦

R. The

arc γz = z×{0} connects F ◦
L and F ◦

R, and ∂Y \ (F ◦
L∪F ◦

R∪nbd(γz)) is a disk.
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The data (Y,φ, γz) is an arced cobordism; we call this cobordism the arced

cobordism associated to H and denote it by Y (H). See Figure 4.

Example 2.13. Let ψ : F (ZL)→ F (ZR) be a homeomorphism taking the

preferred disk to the preferred disk and the basepoint to the basepoint; that

is, ψ is a strongly based homeomorphism. The mapping cylinder of ψ, denoted

Mψ, is the arced cobordism from ZL to ZR given as follows. The underlying 3-

manifold is [0,1]×F ◦(ZR). The map φ :−F ◦(ZL)#F ◦(ZR)→ ∂Mψ is given

by the identity map I : F ◦(ZR)→{1} × F ◦(ZR) and the map ψ : F ◦(ZL)→
{0} × F ◦(ZR). The arc γ is [0,1]× {z}.

Some examples of Heegaard diagrams for mapping cylinders are shown

in Figure 9.

Gluing the mapping cylinder for ψ to a bordered 3-manifold (Y,φ) in the

sense of Exercise 2.2 gives (Y,φ ◦ψ).

As in the closed case, the key properties of bordered Heegaard diagrams

are that every bordered 3-manifold can be represented by a bordered Hee-

gaard diagram, and any two such diagrams can be related by certain elemen-

tary moves:

Theorem 2.14. Let (Y,φ : F (Z)→ ∂Y ) be a bordered 3-manifold. Then Y

is represented by some bordered Heegaard diagram H. Similarly, let (Y,φ :

F ◦(ZL) # F ◦(ZR)→ ∂Y,γ) be an arced cobordisms. Then Y is represented

by some arced Heegaard diagram H.

The case of bordered Heegaard diagrams is [27, Lemma 4.9] while the

arced Heegaard diagram case is [29, Proposition 5.10].

Theorem 2.15. Suppose that H and H′ are bordered Heegaard diagrams

representing equivalent bordered 3-manifolds Y (H)∼= Y (H′). Then H and H′

can be made diffeomorphic by a sequence of the following moves:

• Isotopies of the α- and/or β-curves.

• Handleslides or α-circles over α-circles, α-arcs over α-circles, and β-

circles over β-circles.

• Stabilizations and destabilizations of the diagram, i.e., taking connected

sums with the standard Heegaard diagram for S3.

(See Figure 5.)
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Fig. 5. Heegaard moves. (a) A genus 2 bordered Heegaard diagram for a solid torus.
(b) The result of applying some isotopies to the α- and β-curves. (c) The result of a

handleslide of αa
1 over αc

1. (d) The result of a stabilization

An exactly analogous statement holds for arced Heegaard diagrams and

arced cobordisms.

The case of bordered Heegaard diagrams is [27, Proposition 4.10] while

the arced Heegaard diagram case is [29, Proposition 5.11].

2.3. The Structure of Bordered Floer Homology

2.3.1. The Connected Boundary Case. For simplicity, we begin with

the connected boundary case. Bordered Floer homology assigns:

Pointed matched circle Z dg algebra A(Z)

Bordered 3-manifold Right A∞ A(Z)-module ĈFA(Y )

(Y,φ : F (Z)→ ∂Y ) Left dg A(−Z)-module ĈFD(Y ).

Actually, the modules ĈFA(Y ) and ĈFD(Y ) depend on a choice of bor-

dered Heegaard diagram H for Y , as well as another auxiliary choice—an

almost-complex structure. However:

Theorem 2.16 [27, Theorems 1.1 and 1.2]. Up to quasi-isomorphism, the

modules ĈFA(Y ) and ĈFD(Y ) depend only on the equivalence class of bor-

dered 3-manifold Y .
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The utility of ĈFA and ĈFD comes from the fact that they can be

used to reconstruct the Heegaard Floer homology groups of closed three-

manifolds ĤF (Y ), via what we call a pairing theorem. Recall that ĤF (Y ) is

the homology of a chain complex ĈF (Y ).

Theorem 2.17 [27, Theorem 1.3]. Suppose that (Y1, φ1 : F (Z)→ ∂Y ) and

(Y2, φ2 :−F (Z)→ ∂Y ) are bordered 3-manifolds with boundaries parameter-

ized by Z and −Z , respectively. Write Y1 ∪∂ Y2 to mean (Y1 # Y2)/(φ1(x)∼
φ2(x)). Then

ĈF (Y )� ĈFA(Y1) ⊗̃A(F ) ĈFD(Y2).

Here, ⊗̃ denotes the appropriate notion of tensor product given that ĈFA

may be an A∞-module. In the case that ĈFA is an ordinary module, this

reduces to the derived tensor product—which is good, since ĈFA is only well-

defined up to quasi-isomorphism. But this distinction is not so important:

the module ĈFD is projective, so the derived and ordinary tensor products

agree.

The modules ĈFA(Y ) and ĈFD(Y ) are defined using holomorphic curves

(though for certain kinds of diagrams the techniques of [58] can be used to

compute them combinatorially). By contrast, the algebras A(Z) are defined

combinatorially. A few further properties of the algebras:

• Each A(Z) is a finite-dimensional algebra over F2.

• The algebra A(Z) decomposes as a direct sum of subalgebras

A(Z) =
k⊕

i=−k

A(Z, i).

Here, k is the genus of F (Z). The action of A(Z, i) on ĈFA(Y ) and

ĈFD(Y ) is trivial for i �= 0, but the other summands come up for the

cobordism invariants below.

• The algebra A(Z,−k) is isomorphic to F2 (with trivial differential).

In particular, if Z is the (unique) pointed matched circle for S2 then

A(Z) = F2. The algebra A(Z, k) is quasi-isomorphic to F2.
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• If Z is the unique pointed matched circle for the torus then A(Z,0) has
no differential; in terms of generators and relations, A(Z,0) is given by

(2.1) ι0•
ρ1

ρ3

•ι1ρ2 /(ρ2ρ1 = ρ3ρ2 = 0).

This algebra is 8-dimensional over F2. It will appear frequently, so we

name the rest of the elements in its standard basis: let ρ12 = ρ1ρ2, ρ23 =

ρ2ρ3 and ρ123 = ρ1ρ2ρ3.

(Our notation for path algebras might be somewhat non-standard.

The vertices ι0 and ι1 are, of course, idempotents. The arrow ρ1 indicates

that ι0ρ1ι1 = ρ1.)

2.3.2. Invariants of Arced Cobordisms. To get a useful theory, we

need to generalize to three-manifolds with two boundary components. In

fact, the invariants which come up in this two-boundary-component case are

associated to three-manifolds equipped with some extra structure: the arced

cobordisms of Definition 2.10.

Suppose Y is an arced cobordism from Z1 to Z2. Then there are several

kinds of bimodules we can associate to Y : we can treat each boundary com-

ponent of Y in either a “type D” way or a “type A” way. (What this means

will be clearer after Sections 3 and 4.) This gives invariants ĈFDD(Y ) (both

boundaries viewed in a type D way), ĈFDA(Y ) (one boundary, say Z1,

viewed in a type D way and the other in a type A way), and ĈFAA(Y )

(both boundaries viewed in a type A way). The bimodule ĈFDD(Y ) is

an ordinary—indeed, bi-projective—dg bimodule; both of ĈFDA(Y ) and

ĈFAA(Y ) are typically A∞-bimodules.

As with the modules associated to bordered 3-manifolds, the bimodules

ĈFDD(Y ), ĈFDA(Y ) and ĈFAA(Y ) depend on the choices of Heegaard

diagrams and almost-complex structures. Again, up to quasi-isomorphism

they are invariants:

Theorem 2.18 [29, Theorem 8]. Up to quasi-isomorphism, the bimodules

ĈFDD(Y ), ĈFDA(Y ) and ĈFAA(Y ) depend only on the equivalence class of

arced cobordism Y .

By convention, we view ĈFDD(Y ) as having commuting left actions by

A(−Z1) and A(−Z2); ĈFDA(Y ) as having a left action by A(−Z1) and a
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right action by A(Z2); and ĈFAA(Y ) as having right actions by A(Z1) and

A(Z2). However, A(−Z) is the opposite algebra to A(Z) (Exercise 2.13) so

we can move actions from one side to the other at the cost of introducing /

deleting minus signs. In the literature, we often find it convenient to decorate

the invariants with the algebras they are over, writing

A(−Z1),A(−Z2)ĈFDD(Y ) A(−Z1)ĈFDA(Y )A(Z2) ĈFAA(Y )A(Z1),A(Z1).

The superscripts indicate that the module structure is projective, and sub-

scripts indicate the module structure may be A∞. This notation leads to

a kind of Einstein summation behavior for tensor products in the pairing

theorems:

Theorem 2.19 [29, Theorem 11]. Let Y1 be a bordered 3-manifold with

boundary Z1 and Y2 be an arced cobordism from Z1 to Z2. Let Y1 ∪F (Z) Y2
be the bordered 3-manifold obtained by gluing Y1 to Y2 (Exercise 2.2). Then

there are quasi-isomorphisms

ĈFA(Y1) ⊗̃A(Z1) ĈFDA(Y2)� ĈFA(Y1 ∪F (Z1) Y2)

ĈFAA(Y2) ⊗̃A(−Z1) ĈFD(Y1)� ĈFA(Y1 ∪F (Z1) Y2)

ĈFA(Y1) ⊗̃A(Z1) ĈFDD(Y2)� ĈFD(Y1 ∪F (Z1) Y2)

ĈFDA(Y2) ⊗̃A(−Z1) ĈFD(Y1)� ĈFD(Y1 ∪F (Z1) Y2).

Theorem 2.20 [29, Theorem 12]. Let Y1 be an arced cobordism from Z1

to Z2 and Y2 an arced cobordism from Z2 and Z3. Let Y1 ∪F (Z2) Y2 be the

result of gluing Y1 to Y2 along F (Z2) (Exercise 2.2). Then there are quasi-

isomorphisms of bimodules:

ĈFDA(Y1) ⊗̃A(Z2) ĈFDA(Y2)� ĈFDA(Y1 ∪F (Z2) Y2)

ĈFAA(Y1) ⊗̃A(Z2) ĈFDA(Y2)� ĈFAA(Y1 ∪F (Z2) Y2)

ĈFDA(Y1) ⊗̃A(Z2) ĈFDD(Y2)� ĈFDD(Y1 ∪F (Z2) Y2)

ĈFAA(Y1) ⊗̃A(Z2) ĈFDD(Y2)� ĈFDA(Y1 ∪F (Z2) Y2).

The compact way of stating Theorems 2.19 and 2.20 is that if you tensor

type A boundaries with type D boundaries then you get what you expect.

2.3.3. Pairing Theorems without A Modules. To avoid a long detour

into A∞ formalism, in most of these lectures we will avoid ĈFA. (The ex-

ception will be the discussion of the pairing theorem in Section 4.) So, it
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will be useful to have versions of the pairing theorems—Theorems 2.17, 2.19

and 2.20—making use only of type D modules. We can accomplish this using

certain dualities of bordered Floer invariants:

Theorem 2.21 [32, Theorem 2]. Let Y be a bordered 3-manifold with bound-

ary F (Z). Let −Y denote Y with its orientation reversed, which has boundary

F (−Z). Then there are quasi-isomorphisms:

MorA(−Z)

(

ĈFD(Y ),A(−Z)
)

� ĈFA(−Y )(2.2)

MorA(Z)

(

ĈFA(Y ),A(Z)
)

� ĈFD(−Y ).(2.3)

In Formula (2.2), Mor denotes the chain complex of module homomor-

phisms from ĈFD(Y ) to A(−Z), with differential given by

∂(f) = f ◦ ∂
ĈFD(Y )

+ dA(−Z) ◦ f.

So, for instance, the cycles in the Mor complex are the dg module homo-

morphisms, i.e., chain maps which respect the module structure. In For-

mula (2.3), Mor denotes the chain complex of A∞-morphisms.

Corollary 2.22 [32, Theorem 1]. Suppose that Y1 and Y2 are bordered 3-

manifolds with boundary F (Z). Then

ĈF (−Y1 ∪F (Z) Y2)�MorA(−Z)

(

ĈFD(Y1), ĈFD(Y2)
)

�MorA(Z)

(

ĈFA(Y1), ĈFA(Y2)
)

so

ĤF (−Y1 ∪F (Z) Y2)� ExtA(−Z)

(

ĈFD(Y1), ĈFD(Y2)
)

� ExtA(Z)

(

ĈFA(Y1), ĈFA(Y2)
)

.

For bimodules the situation is somewhat more subtle: there are a few

natural notions of “dual”, and some versions introduce boundary Dehn twists

in the bimodules. The following result will be more than sufficient for these

lectures:

Theorem 2.23 [32, Corollary 8]. If Y1 is a bordered 3-manifold with bound-

ary F (Z1) and Y2 is an arced cobordism from −Z1 to −Z2 then

ĈFA
(

Y1 ∪F (Z1) (−Y2)
)

�MorA(−Z1)

(

ĈFDD(Y2), ĈFD(Y1)
)

ĈFD(−Y1 ∪F (Z1) Y2)�MorA(−Z1)

(

ĈFD(Y1), ĈFDD(Y2)
)

.
(2.4)
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Example 2.24. The bimodules ĈFDD(ψ) discussed in the introduction are

defined to be ĈFDD(Mψ) associated to the mapping cylinder of ψ (Exam-

ple 2.13). So, Theorem 1.2 from the introduction is a special case of Theo-

rem 2.23.

For further results like these, including some involving boundary Dehn

twists, see the introduction to [32].

2.4. The Algebra Associated to a Pointed Matched Circle

We will define the algebras associated to pointed matched circles in three

steps. We start with a warm-up in Section 2.4.1, discussing the group ring

of the symmetric group Sn and a deformation of it called the nilCoxeter

algebra. In Section 2.4.2 we define a family of algebras A(n,k) (n,k ∈ N),

which are a kind of directed, distributed version of the nilCoxeter algebra.

The algebra A(Z) associated to a pointed matched circle for a surface of

genus k is defined as a subalgebra of
⊕2k

i=0A(2k, i); the definition is given

in Section 2.4.3. (It is also possible to give a more direct definition of A(Z);
see, for instance, [31, Section 1.1].)

2.4.1. A Graphical Representation of Permutations. Consider the

symmetric group Sn on n = {1, . . . , n}. We can represent elements of Sn
graphically as homotopy classes of maps

(∐n
i=1[0,1],

∐n
i=1{0},

∐n
i=1{1}

) φ−→
(

[0,1]× [0, n],
∐n

i=1{0}×n,
∐n

i=1{1}×n
)

such that the restrictions φ|∐n
i=1{0} and φ|∐n

i=1{1} are injective. For example,

the permutation
(
1 2 3 4 5
3 1 2 5 4

)

∈ S5 is represented by the diagram

(2.5)

In the graphical notation, multiplication corresponds to juxtaposition.

So, the group ring Z[Sn] of Sn is given by formal linear combinations of dia-

grams as in (2.5), with product given by juxtaposition. Moreover, notice that

essential crossings in diagrams like Formula (2.5) correspond to inversions,

i.e., pairs i, j ∈ {1, . . . , n} such that i < j but σ(j)< σ(i).
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In Z[Sn], double-crossings can be undone via Reidemeister II-like moves:

(2.6) =

If we replace this relation by the relation that double-crossings are 0,

(2.7) = 0

we arrive at another algebra, the nilCoxeter algebra Nn; see, for instance [17].

Note that even though Nn �∼= Z[Sn], Sn still gives a basis for Nn. Let Inv(σ)

denote the set of inversions of σ. An equivalent formulation is that we define

σ ·N τ =

{

τ ◦ σ if # Inv(τ ◦ σ) =#Inv(σ) +#Inv(τ)

0 else.

If we work over F2, as is our tendency, we can define a differential on Nn

by declaring that d(σ) is the sum of all ways of smoothing a crossing in σ.

More formally, let τi,j denote the transposition exchanging i and j. Then

define

(2.8) d(σ) =
∑

(i,j)∈Inv(σ)
#Inv(τi,jσ)=#Inv(σ)−1

τi,j ◦ σ.

It is straightforward to verify that this makes Nn into a differential algebra.

(If we want to define this differential with signs, we need an odd version of

the nilCoxeter algebra; see [18].)

2.4.2. The Algebra A(n,k). Now, instead of permutations of {1, . . . , n},
consider partial permutations, i.e., triples (S,T,σ) where S,T ⊂ n and σ :

S→ T is a bijection. Call a partial permutation (S,T,σ) upward-veering if

σ(i)≥ i for all i ∈ S. Let A(n) denote the F2-vector space generated by all

upward-veering partial permutations. Define a product on A(n) by
(2.9)

(S,T,φ) · (U,V,ψ) =

⎧

⎪⎨

⎪⎩

0 if T �= U

0 if #Inv(ψ ◦ φ) �=#Inv(ψ) +#Inv(φ)

(S,V,ψ ◦ φ) otherwise.

Define a differential on A(n) by setting

d(S,T,φ) =
∑

(i,j)∈Inv(φ)
#Inv(τi,j◦φ)=#Inv(φ)−1

(S,T, τi,j ◦ φ).



296 R. Lipshitz et al.

Graphically, we can still represent generators of A(n) as strand diagrams;

for example, in n = 5, we draw the partial permutation ({1,2,3},{3,4,5},
(1 �→ 5,2 �→ 4,3 �→ 3)) as

Multiplication is 0 if the endpoints do not match up (the first condition in

Equation (2.9)) or if the concatenation contains a double crossing (the second

condition in Equation (2.9)); otherwise, the product is just the concatenation.

The differential is gotten by summing over all ways of smoothing one crossing,

and then throwing away any diagrams involving double crossings.

Proposition 2.25 [27, Lemma 3.1]. These operations make A(n) into a

differential algebra.

Proposition 2.25 is not especially difficult, though keeping track of the

double-crossing condition adds some complication. The reader is invited to

prove it as an extra exercise.

Notice that A(n) decomposes as a direct sum

(2.10) A(n) =
n⊕

l=0

A(n, i)

whereA(n, i) is generated by partial permutations (S,T,φ) with |S|= |T |= i.

The algebra A(n) has an obvious grading by the number of crossings.

This grading does not, however, descend in a nice way to the subalgebras

associated to pointed matched circles.

2.4.3. The Algebra Associated to a Pointed Matched Circle. Fix a

pointed matched circle Z = (Z,a,M, z) for a surface of genus k, so |a|= 4k.

The basepoint z and orientation of Z identify a with 4k = {1, . . . ,4k}. The
algebra A(Z) is a subalgebra of A(4k).

Call a generator (S,T,φ) of A(4k) M -admissible if S ∩M(S) = T ∩
M(T ) = ∅. (This terminology is not used elsewhere in the literature.) Write

Fix(φ) = {i ∈ S | φ(i) = i}. Suppose that φ is M -admissible. Then, given

U ⊂ Fix(φ) we can define a new element (S \U ∪M(U), T \U ∪M(U), φU ) ∈
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A(n) by replacing the horizontal strands at U by horizontal strands atM(U).

That is, φU is characterized by φU |S\U = φ|S\U and φU |M(U) = I. Given an

M -admissible (S,T,φ) define

a(S,T,φ) =
∑

U⊂Fix(φ)

(

S \U ∪M(U), T \U ∪M(U), φU
)

.

For example,

Now, A(Z) is defined to be the subalgebra of A(4k) generated by

a(S,T,φ) for M -admissible generators (S,T,φ).

The decomposition of A(n) from Formula (2.10) gives a decomposition of

A(Z). It is convenient to change the indexing slightly: let A(Z, i) =A(Z)∩
A(4k, k+ i), so A(Z) =

⊕k
i=−kA(Z, i).

2.5. Exercises

Exercise 2.1. Let Y be a closed 3-manifold. How do you go from a pointed

Heegaard diagram for Y to a bordered Heegaard diagram for Y \D3? Vice-

versa? (Hint: both directions are easy.)

Exercise 2.2. Let Y1 be a bordered 3-manifold with boundary Z1 and Y2
an arced cobordism from Z1 to Z2. There is a natural way to glue Y1 and Y2
to get a bordered 3-manifold with boundary Z2; how?

Similarly, if Y1 is an arced cobordism from Z1 to Z2 and Y2 is an arced

cobordism from Z2 to Z3 then there is a natural way to glue Y1 to Y2 to

obtain an arced cobordism from Z1 to Z3; how?

(Both parts are a little awkward with our definition of arced cobordism;

the definitions in [29] and [32] make them more obvious.)
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Exercise 2.3. Let H be a bordered Heegaard diagram with no α circles.

What is the underlying three-manifold Y (H)?

Exercise 2.4. Formulate precisely the notion of equivalence for arced cobor-

disms.

Exercise 2.5. The bordered Heegaard diagram in Figure 3 represents the

trefoil complement with some particular framing. Which one (as an element

of Z)?

Exercise 2.6. Draw a bordered Heegaard diagram for the 0-framed com-

plement of the figure eight knot.

Exercise 2.7. Verify that the differential given in Formula (2.8) makes the

nilCoxeter algebra into a differential algebra, i.e., that it satisfies d2 = 0 and

the Leibniz rule.

Exercise 2.8. Give an example of an element (S,T,φ) ∈ A(n) and a pair

(i, j) ∈ Inv(φ) so that (S,T, τi,j ◦ φ) is not in d(S,T,φ).

Exercise 2.9. Verify the path algebra description (Equation (2.1)) for the

algebra A(T 2,0).

Exercise 2.10. Prove: There is a one-to-one correspondence between in-

decomposable idempotents in A(Z) and subsets of the set of matched pairs

of Z , i.e., subsets of a/M . (An idempotent I is called indecomposable if for

any idempotent J , either I · J = I or I · (1− J) = I .) (Hint: this should be

easy.)

Exercise 2.11. In this exercise we explain how to produce arced Heegaard

diagrams for mapping cylinders. This algorithm is explained in somewhat

more detail in [29, Section 5.3].

(1) Show that the arced Heegaard diagram on the left of Figure 6 repre-

sents the mapping cylinder of the identity map (of the pointed matched

circle for a torus). Generalize this to give a diagram for the iden-

tity map of any pointed matched circle. (See Figure 27 for the stan-

dard arced Heegaard diagram for the identity map of another pointed

matched circle.)

(2) Let φ : F (ZL)→ F (ZR) be a strongly based homeomorphism. Recall

from Construction 2.12 that a neighborhood F ◦
L of the graph ΓL is
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Fig. 6. Building Heegaard diagrams for mapping cylinders. Left: a Heegaard diagram for
the identity map of the torus. Center: the sub-surface F ◦(ZL) and a dashed curve γ on
F ◦(ZL). Right: a Heegaard diagram for a Dehn twist around γ. This figure is adapted

from [29, Figure 15]

identified with F ◦(ZL). Start with the identity Heegaard diagram for

F (ZL), and apply the homeomorphism φ to the αa,L
i ⊂ F ◦

L. (See Fig-

ure 6 for an example.) Prove: the result is an arced Heegaard diagram

for φ.

Exercise 2.12. There is a unique pointed matched circle representing the

once-punctured torus.

(1) List several different pointed matched circles representing the once-

punctured genus 2 surface.

(2) Show that the set of matched circles representing the once-punctured

genus k surface is in bijection with the set of gluing patterns for the

4k-gon giving the genus k surface.

Exercise 2.13. Prove that A(−Z) is the opposite algebra to A(Z).

Exercise 2.14. Let Z be the split pointed matched circle for a surface of

genus k, as illustrated in Figure 21 (page 341). Give a path algebra descrip-

tion of A(Z,−k+ 1), similar to Formula (2.1).

Similarly, let Z be the antipodal pointed matched circle for a surface of

genus k, i.e., the pointed matched circle in which ai is matched to ai+2k

(i = 1, . . . ,2k). Give a path algebra description of A(Z,−k + 1), similar to

Formula (2.1). (For a solution to this part, see [34, Example 2.4].)
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3. Modules Associated to Bordered 3-Manifolds

3.1. Brief Review of the Cylindrical Setting for Heegaard Floer

Homology

3.1.1. A Quick Review of the Original Formulation of Heegaard

Floer Homology. We start by recalling the definition of Heegaard Floer

homology in the closed setting [46], as well as a “cylindrical” reformulation of

the definition [26]; this reformulation will be useful for defining the bordered

Floer invariants.

Fix a pointed Heegaard diagram H= (Σ,α,β, z) (in the sense of [46]) for

a closed 3-manifold Y . Associated to H are various Heegaard Floer homology

groups; as noted in the previous lecture, bordered Floer homology (so far)

relates to the technically simplest of these, ĤF (Y ). The group ĤF (Y ) is

defined as follows. Suppose Σ has genus g. Choosing a complex structure jΣ
on Σ makes the symmetric product

Symg(Σ) =

g copies
︷ ︸︸ ︷

Σ × · · · ×Σ /Sg

into a smooth—in fact, Kähler—manifold. (This is not obvious.) Writing α=

{α1, . . . , αg} and β = {β1, . . . , βg}, the tori α1× · · · ×αg, β1× · · · × βg ⊂Σ×g

project to embedded tori Tα and Tβ in Symg(Σ). Each of Tα and Tβ is totally

real; in fact, it was shown in [54] that for an appropriate choice of Kähler

form the tori Tα and Tβ are Lagrangian. Then, ĤF (Y ) is the Lagrangian

Floer homology of (Tα, Tβ) inside Symg(Σ \ {z}).

In a little more detail, ĤF (Y ) is the homology of a chain complex

(ĈF (Y ), ∂). ĈF (Y ) is the free F2-vector space generated by Tα ∩ Tβ . The
differential ∂ : ĈF (Y )→ ĈF (Y ) is defined by counting holomorphic disks

of the following kind. Given x,y ∈ Tα ∩ Tβ we consider the space of maps

D
2→ Symg(Σ \ {z}) such that:

• −i maps to x.

• +i maps to y.

• {p ∈ ∂D2 | $(p)> 0} maps to Tα.

• {p ∈ ∂D2 | $(p)< 0} maps to Tβ .

See Figure 7. Such disks are called Whitney disks. Let B(x,y) denote the

space of Whitney disks from x to y. Further:
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Fig. 7. Boundary conditions for Whitney disks

• Let π2(x,y) denote the set of homotopy classes of Whitney disks, i.e.,

the set of path components in B(x,y).

• Let M̃(x,y)⊂B(x,y) denote the space of holomorphic Whitney disks.

The space M̃(x,y) decomposes according to elements of π2(x,y):

M̃(x,y) =
∐

B∈π2(x,y)

M̃B(x,y).

If M̃(x,y) is transversally cut-out, each space M̃B(x,y) is a smooth man-

ifold whose dimension is given by a number μ(B) called the Maslov index

of B. There is an R-action on both B(x,y) and M̃(x,y) by translation in

the source (thought of as an infinite strip). Let MB(x,y) = M̃B(x,y)/R.

Finally, the differential on ĈF (Y ) is given by

(3.1) ∂(x) =
∑

y∈Tα∩Tβ

∑

B∈π2(x,y)
μ(B)=1

(

#MB(x,y)
)

y.

(Here, # denotes the modulo-2 count of points.) Under certain assumptions

on H, called admissibility, this count is guaranteed to be finite, so ∂ is well-

defined. Moreover:

Theorem 3.1 [46]. For any suitably generic choice of almost-complex

structure, the map ∂ satisfies ∂2 = 0. Moreover, the homology ĤF (Y ) =

H∗(ĈF (Y ), ∂) is an invariant of Y .

3.1.2. The Cylindrical Reformulation. Before proceeding to bordered

Floer homology, it will be helpful to have a mild reformulation of the defi-

nition of ĤF . It is based on the tautological correspondence between maps
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from D
2 to Symg(Σ) and multi-valued functions from D

2 to Σ:

Holomorphic maps D2→ Symg(Σ)←→Diagrams

S
uΣ

uD

Σ

D
2

with uΣ , uD holomorphic,

uD a g-fold branched cover.

One direction is easy: given a diagram as on the right, consider the map

D
2 → Symg(Σ) given by mapping p to the g-tuple uΣ(u

−1
D

(p)). The other

direction is not hard, either; see, for instance, [26, Section 13].

In light of the tautological correspondence, we can reformulate ĤF in

terms of maps to Σ ×D
2. It will be convenient later to view D

2 \ {±i} as a

strip [0,1]×R. Then:

• Generators of ĈF (Y ) correspond to g-tuples of points x= {xi}gi=1 with

xi ∈ αi ∩ βσ(i) for some σ ∈ Sg. These generators can be thought of as

g-tuples of chords x× [0,1]⊂Σ× [0,1], connecting α×{1} and β×{0}.

• The differential counts embedded holomorphic maps

(3.2) u : (S,∂S)→
((

Σ\{z}
)

× [0,1]×R,
(

α×{1}×R
)

∪
(

β×{0}×R
))

modulo translation in R. Here, S is a Riemann surface with bound-

ary and punctures on its boundary. The punctures are divided into +

punctures and − punctures. Near the − punctures, u is asymptotic

to x × [0,1] × {−∞} and near the + punctures u is asymptotic to

y× [0,1]× {+∞}.

In the cylindrical setting, the set of homotopy classes π2(x,y) of Whitney

disks becomes the set of homology classes (in a suitable sense) of maps as

in Formula (3.2). (Philosophically, this is related to the Dold-Thom theorem

that πk(Sym
∞(X))∼=Hk(X).)

We have been suppressing almost-complex structures. In order to achieve

transversality, one typically perturbs the complex structure jΣ × jD on

Σ × [0,1]× R to a more generic almost-complex structure J . In this cylin-

drical setting, it is important to ensure that translation in R remains J -

holomorphic. Some other conditions which are necessary or convenient are

given in [26, Section 1].



Notes on Bordered Floer Homology 303

Remark 3.2. It would have been more consistent with conventions in con-

tact homology to consider R× [0,1]×Σ rather that Σ × [0,1]×R.

3.2. Holomorphic Curves and Reeb Chords

Now consider a bordered Heegaard diagram H = (Σ,αa,αc,β, z). Rather

than viewing Σ as a compact surface-with-boundary, attach a cylindrical

end R× S1 to ∂Σ; and extend the α-arcs αa in a translation-invariant way

to R×S1. (Topologically, this is the same as simply deleting ∂Σ; but if one is

paying attention to the symplectic form and almost-complex structure then

there is a difference.) We abuse notation, using the same notation Σ and

αa for the versions with cylindrical ends. We will still consider holomorphic

maps as in Formula (3.2); but now there is a third source of non-compactness,

∂Σ, and these maps can have asymptotics there as well.

We start with the asymptotics at ±∞. A term for the asymptotics at

±∞:

Definition 3.3. By a generator we mean a g-tuple x⊂α∩β which has one

point on each α-circle, one point on each β-circle, and at most one point on

each α-arc.

We consider holomorphic curves disjoint from a neighborhood of z. It fol-

lows from this and the fact that only the α-arcs touch ∂Σ that the asymp-

totics at ∂Σ are of the form ρi × (1, ti), where ρi is a chord in ∂Σ \ {z}
with boundary on αa. We collect these curves into moduli spaces. Let

M̃(x,y;ρ1, . . . , ρn) denote the moduli space of embedded holomorphic maps

as in Formula (3.2) where:

• S is a surface with boundary and punctures on its boundary. Of these

punctures, g are labeled −, g are labeled +, and the rest are labeled e.

• x and y are generators.

• at the punctures labeled −, u is asymptotic to x× [0,1]× {−∞}.
• at the punctures labeled +, u is asymptotic to y× [0,1]× {+∞}.
• at the punctures labeled e, u is asymptotic to the chords ρi × (1, ti) ∈
∂Σ × {1} ×R. Moreover, we require that t1 < t2 < · · ·< tn.

There is an R-action on M̃(x,y;ρ1, . . . , ρn) by translation in the target; let

M(x,y;ρ1, . . . , ρn) = M̃(x,y;ρ1, . . . , ρn)/R.
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We call the chords ρ Reeb chords ; they are Reeb chords for the contact

structure on S1 = ∂Σ. This comes from thinking of the setup as related

to a Morse-Bott case of (relative) symplectic field theory. The asymptotic

boundary is then (∂Σ× [0,1]×R, ∂αa×{1}×R), and we are in the Levi-flat

case of, e.g., [5].

As in the closed case, the space of maps of the form just described natu-

rally decomposes into homology classes; see [27, Section 4.3]. To keep notation

consistent with the closed case, we let π2(x,y) denote the set of homology

classes of maps connecting x to y; note that we do not specify the Reeb

chords here. Then

M(x,y;ρ1, . . . , ρn) =
∐

B∈π2(x,y)

MB(x,y;ρ1, . . . , ρn).

As in the closed case, we have been suppressing the almost-complex structure

J from the discussion; the interested reader is referred to [27, Section 5.2].

For a generic choice of J , each of the spacesMB(x,y;ρ1, . . . , ρn) is a manifold

whose dimension is given by a number ind(B;ρ1, . . . , ρn)− 1. The notation

ind stands for index: as is usual for holomorphic curves, the dimension is

given by the index of the linearized ∂-operator. One can give an explicit

formula for ind(B;ρ1, . . . , ρn); see [27, Section 5.7].

The next natural thing to talk about, from an analytic perspective, is

what the compactifications of MB(x,y;ρ1, . . . , ρn) look like. We defer this

discussion to Section 4, and instead turn to the definition of the bordered

invariant ĈFD(Y ).

3.3. The Definition of ĈFD

3.3.1. Reeb Chords and Algebra Elements. Before defining ĈFD(H)

we need one more piece of notation. Let Z = (Z,a,M, z) be a pointed

matched circle and ρ a chord in Z \ {z} with boundary in a. Orienting ρ

according to the orientation of Z and identifying a= {1, . . . ,4k}, the chord

ρ has an initial point i and a terminal point j. Write

(3.3) a(ρ) =
∑

S⊂4k
i∈S

(

S,S \ {i} ∪ {j}, φS
)

where φS(i) = j and φS |S\i = I, and the sum is only over S’s so that S and

S \{i}∪{j} areM -admissible. That is, a(ρ) is the union of a strand from i to
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j and any admissible set of horizontal strands. A somewhat trivial example

is given by Exercise 2.9.

3.3.2. The Definition of ĈFD . Fix a bordered Heegaard diagram H=

(Σ,αa,αc,β, z) with boundary Z . We will define a left dg module ĈFD(H)

over A(−Z) (where, as usual, − denotes orientation reversal). The mod-

ule ĈFD(H) will lie over A(−Z,0), in the sense that the other summands

A(−Z, i), i �= 0, of A(−Z) act trivially on ĈFD(H).

LetS(H) denote the set of generators forH. Given a generator x ∈S(H),

let I(S) denote the set of α-arcs which are disjoint from x.3 Then I(S)

corresponds to a set of matched pairs in −Z , and hence, by Exercise 2.10,

to an indecomposable idempotent of A(−Z). As a (left) module, define

ĈFD(H) =
⊕

x∈S(H)

A(−Z) · I(S).

It remains to define the differential on ĈFD(H). For x ∈S(H) define

(3.4)

∂(x) =
∑

y∈S(H)
n≥0

(ρ1,...,ρn)
B|ind(B,ρ1,...,ρn)=1

(

#MB(x,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)y.

Here, the minus signs are included because ĈFD is a module over A(−Z)
rather than A(Z); −ρ is the chord ρ but viewed as running in the opposite

direction (i.e., as a chord in −Z).

Extend the differential to the rest of ĈFD(Y ) by the Leibniz rule. This

completes the definition of ĈFD(Y ).

Example 3.4. Consider the bordered Heegaard diagram in Figure 8. We

have labeled the three length-1 Reeb chords; notice that we have ordered

them in the opposite of the order induced by the orientation of ∂H, because

we are thinking of the algebra A(−∂H). The module ĈFD(H) has three

generators, x, a and b. With notation as in Formula (2.1), the idempotents

are given by

I(x) = ι1 I(a) = ι0 I(b) = ι0.

3This I(S) was denoted ID(S) in [27], where I(S) was used for IA(S) introduced in Sec-
tion 4.4.
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Fig. 8. A Heegaard diagram for a solid torus, and some holomorphic curves in it. The
circles labeled A indicate a handle. The shaded regions in the second through fourth
figures indicate the domains giving a ∈ ∂(b), ρ3x ∈ ∂b, and ρ2a ∈ ∂x, respectively

The differentials are given by

∂(b) = a+ ρ3x

∂(x) = ρ2a

∂(a) = 0.

Each of these differentials comes from a disk mapped to Σ × [0,1]×R; the

projections of these disks to Σ (their domains—see Definition 3.5) are indi-

cated in the figure. Since ρ3ρ2 = 0, ∂2 = 0.

3.3.3. Finiteness Conditions. As in the closed case, the definition of

ĈFD (Formula (3.4)) only makes sense if the sums involved are finite. To

ensure finiteness, we add assumptions on the Heegaard diagram H, analogous

to admissibility in the closed case:

Definition 3.5. Given a homology class B ∈ π2(x,y), the projection of B

to Σ defines a cellular 2-chain with respect to the cellulation of Σ given by

α ∪ β. This 2-chain is called the domain of B, and determines B. A non-

trivial class B is called positive if its local multiplicities are all non-negative.

The domains of homology classes B ∈ π2(x,x) are called periodic domains.

The set of periodic domains does not depend on x.

The Heegaard diagram H is called provincially admissible if it has no

positive periodic domains which have multiplicity 0 everywhere along ∂Σ.

The Heegaard diagram H is called admissible if it has no positive periodic

domains.

Lemma 3.6 [27, Lemma 6.5]. If H is provincially admissible then the sums

in Formula (3.4) are finite. Moreover, if H is admissible then the opera-

tor ∂ is nilpotent in the following sense. Consider sequences of generators
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(x1,x2, . . . ,xn) such that xi+1 occurs in ∂xi with nonzero coefficient. If H is

admissible then there is a universal bound on the length of such sequences.

The proof of Lemma 3.6 is not hard; it is an adaptation of the proof of

the corresponding fact from the closed case [46, Lemma 4.14]. The nilpotency

condition in Lemma 3.6 guarantees that ĈFD(H) is projective (or rather, K-
projective in the sense of, e.g., [4]). It is not particularly relevant until we

start taking tensor products, e.g. in the statement of Theorem 2.17.

Theorem 3.7 [27, Proposition 6.7]. Let H be a provincially admissible

Heegaard diagram. Then ĈFD(H) is a differential module.

The only nontrivial thing to check is that ∂2 = 0. The proof involves

studying the boundaries of 1-dimensional moduli spaces; we will sketch it in

Section 4.

3.4. The Surgery Exact Triangle4

Recall that Heegaard Floer homology admits a surgery exact triangle [45].

Specifically, for a pair (M,K) of a 3-manifold M and a framed knot K in

M , there is an exact triangle

(3.5)

ĤF (M−1) ĤF (M0)

ĤF (M∞)

where M−1, M0, and M∞ are −1, 0, and ∞ surgery on K, respectively. As

a simple application of bordered Floer theory, we reprove this result.

Consider the three diagrams

(3.6)

4The discussion in this section is taken from [27, Section 11.2].
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(Opposite edges are identified, to give T 2 \ D2. Each diagram has two α-

arcs and one β-circle. The numbers indicate which chord, in the notation of

Formula (2.1), corresponds to which arc in ∂H•. Note again that the chords

are numbered in the opposite of the order induced by the orientation of ∂H•.)

A generator for ĈFD(H•) consists of a single intersection point between the

β-circle in H• and an α-arc. These intersections are labeled above.

The boundary operators on the ĈFD(H•) (and the relevant domains)

are given by

There is a short exact sequence

0−→ ĈFD(H∞)
ϕ−→ ĈFD(H−1)

ψ−→ ĈFD(H0)−→ 0

where the maps φ and ψ are given by

ϕ(r) = b+ ρ2a ψ(a) = n ψ(b) = ρ2n.

Now, the surgery exact triangle follows immediately from the pairing

theorem and properties of the derived tensor product.

3.5. The Definition of ĈFDD

Suppose ZL and ZR are pointed matched circles. We can form their connected

sum ZL#ZR. There are two natural choice of where to put a basepoint in

ZL#ZR; let z be a point in one of these places and w a point in the other.

Thinking of z as the basepoint, there is an associated algebra A(ZL#ZR).

Moreover, there is an algebra homomorphism

p :A(ZL#ZR)→A(ZL)⊗F2
A(ZR)

given by setting to zero any algebra element crossing the extra basepoint w.

Now, suppose that H is an arced Heegaard diagram. Performing surgery

on H along the arc z gives a bordered Heegaard diagram Hdr. (Again, there

are two choices of where to put the basepoint in Hdr; choose either.) If the

boundary of H was ZL #ZR then the boundary of Hdr is ZL#ZR.

Associated to Hdr is a bordered module ĈFD(Hdr) over A(−(ZL#ZR)).
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Definition 3.8. With notation as above, let

ĈFDD(H) =
((

−A(ZL)
)

⊗F2

(

−A(ZR)
))

⊗A(−(ZL#ZR)) ĈFD(Hdr),

be the image of the bordered bimodule ĈFD(Hdr) under the induction func-

tor associated to the homomorphism p. Via the correspondence between

left-left (A(−ZL),A(−ZR))-bimodules and left ((−A(ZL))⊗F2
(−A(ZR)))-

modules, we view ĈFDD(H) as a left-left (A(−ZL),A(−ZR))-bimodules.

Of course, this definition can be unpacked to define ĈFDD(H) directly in

terms of intersection points and holomorphic curves; doing so is Exercise 3.8.

3.6. Exercises

Exercise 3.1. There is a unique almost-complex structure Symg(jΣ) on

Symg(Σ) so that the projection map (Σ×g, j×g
Σ )→ (Symg(Σ),Symg(jΣ)) is

holomorphic. In the tautological correspondence of Section 3.1.2, show that

if uΣ and uD are holomorphic then the map D
2→ Symg(Σ), p �→ uΣ(u

−1
D

(p))

is holomorphic with respect to Symg(jΣ).

Exercise 3.2. Consider the Heegaard diagrams of Section 3.4. Replacing

the blue (β) curve in the diagrams H• by a circle of slope p/q gives a bordered

Heegaard diagram Hp/q for a p/q-framed solid torus. It is fairly easy to

compute the invariants ĈFD(Hp/q) for these diagrams; compute some.

For any triple of rational numbers (p1/q1, p2/q2, p3/q3) (with pi, qi rela-

tively prime) such that p1+p2+p3 = q1+q2+q3 = 0 there is a corresponding

surgery triangle; check this for some other examples.

Exercise 3.3. Compute Mor(ĈFD(Hp/q), ĈFD(Hr/s)) for a few choices of

p, q, r, s. For example, Mor(ĈFD(H∞), ĈFD(H−1)) has generators (r �→ b),

(r �→ ρ23b) and (r �→ ρ2a). The differentials are given by

∂(r �→ b) = (r �→ ρ23b)

∂(r �→ ρ2a) = (r �→ ρ23b).

In particular, the homology of this Mor complex is 1-dimensional.

Recall that ĤF (L(p, q)) ∼= (F2)
p, and ĤF (S2 × S1) ∼= (F2)

2; check that

your answers are consistent with this.
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Exercise 3.4. We explain the type DD bimodule ĈFDD(I,0) associated to

the mapping cylinder for the identity map of F (Z). The notation is somewhat

cumbersome, as ĈFDD(I,0) has two commuting left actions by A(T 2,0). We

write one of these copies of A(T 2,0) in the notation of Formula (2.1), and

the other in the same way but with σ’s in place of ρ’s and η’s in place of ι’s.

Then, the bimodule ĈFDD(I,0) has two generators, x and y, with

ι0x= η0x= x ι1y = η1y = y

and differential given by

∂x= (ρ1σ3 + ρ3σ1 + ρ123σ123)⊗ y

∂y = (ρ2σ2)⊗ x.
(3.7)

(Compare [27, Section A.3.3].)

Verify that for the modules ĈFD(H•) of Section 3.4, Mor(ĈFDD(I,0), ·)
acts as the identity. That is, check that

MorA(T 2,0)

(

ĈFDD(I,0), ĈFD(H0)
)

� ĈFD(H0),

and similarly forH−1,H∞. (You will have to use the equivalence of categories

between left A(T 2,0)-modules and right A(T 2,0)-modules coming from the

fact that A(T 2,0) ∼= A(T 2,0)op. Note that this isomorphism exchanges ρ1
and ρ3.)

Remark 3.9. There are two non-equivalent notions of the Mor complex

above, depending on how one treats the other algebra action on ĈFDD(I,0).

The exercise will be true with either notion. See [32, Theorems 5 and 6] for

an example where this distinction matters.

Remark 3.10. It is sometimes convenient to encode the operations in For-

mula (3.7) by:

.

This way of encoding operations on DD bimodules will be used in Exer-

cise 3.6.
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Exercise 3.5. Note that the identity for Mor is the A-bimodule A. In spite

of the computations in Exercise 3.4, ĈFDD(I) �� A(T 2,0). Check this two

ways:

• Directly. (Think about the rank of the homologies.)

• By finding a moduleM over A(T 2,0) so that ĈFDD(I)⊗A(T 2,0)M ��M .

(Or, you can use Mor(ĈFDD(I),M) if you prefer.)

Exercise 3.6. Let τμ and τλ denote the Dehn twists of the torus along a

meridian and a longitude, respectively. Heegaard diagrams for the mapping

cylinders of τμ and τλ are shown in Figure 9. With notation as in Remark 3.10,

the type DD bimodules associated to these Dehn twists and their inverses

are given by

Convince yourself that these bimodules satisfy ∂2 = 0. Compute

Mor(ĈFDD(τμ),H0) and Mor(ĈFDD(τλ),H0). Compare the results with

the answers you computed in Exercise 3.2.
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Fig. 9. Heegaard diagrams for mapping class group elements. Genus 2 diagrams for τμ,
τ−1
μ , τλ and τ−1

λ are shown. In each of the four diagrams, there are three generators in
the i= 0 summand. (This figure is drawn from [28, Figure A.2])

Exercise 3.7. Up to Heegaard moves, there are some symmetries relating

the diagrams in Figure 9. How are these symmetries reflected in the bimod-

ules in Exercise 3.6?

Exercise 3.8. Unpack the definition of ĈFDD from Section 3.5 to give a

direct definition, avoiding the induction functor.

4. Analysis Underlying the Invariants and the Pairing

Theorem

4.1. Broken Flows in the Cylindrical Setting

As a warm-up, we begin this lecture by discussing the proof that ∂2 = 0

for the cylindrical picture for Heegaard Floer homology. We start with an

example. Consider the Heegaard diagram for S3 shown in Figure 10. There

are five generators, labeled a, b, c, d and e. The differentials are given by

∂(a) = b+ c ∂(b) = ∂(c) = d ∂(d) = 0 ∂(e) = b+ c.

(Remember that we are working with F2-coefficients.)
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Fig. 10. An unnecessarily complicated diagram for S3. In the two pictures on the bottom
we have indicated the image πΣ(u(∂D2)) for two typical elements of M(a, d). The thick

black segments indicate cuts

Consider the moduli space M(a, d) of curves connecting a to d. This

moduli space consists of holomorphic maps

u :
(

D
2 \ {±i}

)

→Σ × [0,1]×R.

Suppose we are working with the almost-complex structure jΣ × jD. Then
there are projection maps πΣ :Σ × [0,1]×R→Σ and πD :Σ × [0,1]×R→
[0,1]×R, and u being holomorphic is equivalent to πΣ ◦ u and πD ◦ u being

holomorphic.

The map πD ◦ u is a 1-fold branched cover, i.e., an isomorphism; up to

translation, there is a unique such isomorphism.

A short argument using the Riemann mapping theorem shows that the

map πΣ ◦u is determined by the image of ∂D2. Figure 10 shows two possibil-

ities for πΣ(u(∂D
2)). Note the branch point on α1 or β1. The whole moduli

space is determined by where the branch point lies; so, M(a, d) is an (open)

interval. The ends ofM(a, d) occur when the branch point approaches b or c.

We want to describe the limiting objects. In the ordinary setting for

Morse theory, these would be broken flows. In this setting, they are multi-

story holomorphic buildings. We see this as follows.



314 R. Lipshitz et al.

Consider a sequence of curves ui approaching the end of M(a, d) where

the branch point approaches c. Notice the points p1, p2 ∈ Σ shown in Fig-

ure 10. Consider the points q1 = (πΣ ◦ ui)−1(p1) and q2 = (πΣ ◦ ui)−1(p2)

in D
2. The points (πD◦ui)(q1) and (πD◦ui)(q2) in [0,1]×R are getting farther

and farther apart. Indeed, from the point of view of q1, half of the holomor-

phic curve is heading towards Σ× [0,1]×{+∞}, while from the point of view

of q2, half of the holomorphic curve is heading towards Σ × [0,1]× {−∞}.
So, the limiting object has two “stories”: the part of the limit containing q1
and the part of the limit containing q2. More formally:

Definition 4.1. An �-story holomorphic building connecting x to y consists

of a sequence of holomorphic curves ui ∈M(xi,xi+1), i= 1, . . . , �, with x1 =

x and x�+1 = y.

Each holomorphic building carries a homology class in π2(x,y), by adding

up (concatenating) the homology classes of its stories.

We should now give a topology on the space of holomorphic buildings,

to say precisely what it means for a sequence of one-story buildings, i.e.,

elements ofM(a, d), to converge to a multi-story building. Instead, however,

we refer the reader to [5].

The main structural result is:

Theorem 4.2. Suppose that B ∈ π2(x,y) has μ(B) = 2. Let MB
(x,y) de-

note the space of 1- or 2-story holomorphic buildings connecting x to y in

the homology class B. Then for a generic choice of almost-complex structure,

MB
(x,y) is a compact 1-dimensional manifold-with-boundary. The boundary

of MB
(x,y) consists exactly of the 2-story holomorphic buildings connecting

x to y in the homology class B.

In the cylindrical formulation, this is [26, Corollary 7.2]; the analogous

result for Heegaard Floer homology in the non-cylindrical setting was proved

in [46]. (Both proofs are relatively modest adaptations of standard holomor-

phic curve techniques.)

To conclude the warm-up, we recall that ∂2 = 0 follows from Theorem 4.2

by a standard argument:

Corollary 4.3. Let H be an admissible Heegaard diagram for a closed 3-

manifold. Then the differential ∂ on ĈF (H) satisfies ∂2 = 0.
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Proof. The proof involves the usual looking at ends of one-dimensional

moduli spaces, as is familiar in Floer homology:

∂(x) =
∑

y∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

(

#MB1(x,y)
)

y

∂2(x) =
∑

y∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

(

#MB1(x,y)
)

∂(y)

=
∑

y,z∈S(H)

∑

B1∈π2(x,y)
μ(B1)=1

∑

B2∈π2(y,z)
μ(B2)=1

(

#MB1(x,y)
)(

#MB2(y,z)
)

z

=
∑

z∈S(H)

∑

B∈π2(x,z)
μ(B)=2

(

#∂MB(x,z)
)

z

= 0.

Most of this is just manipulation of symbols; the key point is the fourth

equality, which uses Theorem 4.2. The last equality follows from the fact

that a 1-dimensional manifold-with-boundary has an even number of ends.

(The assumption about admissibility is used to ensure that the sums involved

at each stage are finite.) �

4.2. The Codimension-One Boundary: Statement

To prove that ∂2 = 0 for ĈFD we need to investigate the boundary of the

1-dimensional moduli spaces, analogously to Theorem 4.2. So, fix a bordered

Heegaard diagram H = (Σ,αc,αa,β). As above, we can have breaking at

±∞, giving multi-story holomorphic buildings; but now there are two other

sources of non-compactness:

(1) The manifold Σ has a cylindrical end, giving another direction in

which curves in Σ × [0,1]×R can break.

(2) In the moduli space MB(x,y;ρ1, . . . , ρn) we had Reeb chords ρi ×
(1, ti) where t1 < t2 < · · ·< tn. This can degenerate when ti+1− ti→ 0.

(There is overlap between the two cases.)

Degenerations of type (1) lead to the analogue of 2-story holomorphic

buildings, but in the “horizontal”, i.e., Σ, direction. In principle, one can
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have degenerations in both the vertical (R) and horizontal (Σ) directions at

once. We called the resulting objects holomorphic combs [27, Definition 5.20].

In codimension 1, the kinds of combs that can appear are quite limited, so

rather than giving the general story we will simply explain these cases.

By east ∞ we mean R× (∂Σ)× [0,1]×R; this is the symplectic manifold

that one sees at the (“horizontal”) end of Σ. Note that there are projection

maps

πΣ :R× (∂Σ)× [0,1]×R→R× (∂Σ)

πD :R× (∂Σ)× [0,1]×R→ [0,1]×R

t :R× (∂Σ)× [0,1]×R→R,

where t is projection onto the second (last) R-factor. Degenerations of

type (1) lead to pairs (u, v) where u is a curve in Σ × [0,1]×R of the kind

we have been considering and v is a curve at east∞, i.e., a holomorphic map

v : (S,∂S)→
(

R× (∂Σ)× [0,1]×R,R× (α∩ ∂Σ)× {1} ×R
)

.

Here, S is a surface with boundary and punctures on the boundary. Each

puncture is labeled either e or w. Near each e puncture, v is asymptotic to

some {∞}× ρi× (1, ti) where ρi is a chord in ∂Σ and ti ∈R. Similarly, near

each w puncture, v is asymptotic to some {−∞}× ρi × (1, ti).

It follows from the boundary conditions and asymptotics that for each

component of v, the map πD ◦ v is, in fact, constant. This makes describ-

ing holomorphic curves at east ∞ relatively straightforward. Three kinds of

curves will play special roles in studying ĈFD :

• A trivial component is a disk in R× (∂Σ)× [0,1]×R which is invariant

under translation in the first R-factor. It follows that a trivial component

has one w punctures and one e puncture, and is asymptotic to the same

chord ρ at both punctures.

• A join component is a disk in R× (∂Σ)× [0,1]×R with two w punctures

and one e puncture. At the two w punctures the curve is asymptotic

to chords ρ1 and ρ2 and at the e puncture the curve is asymptotic to a

chord ρ. With respect to the cyclic ordering of the punctures (ρ, ρ1, ρ2)

around the boundary of the disk (see Figure 11), the terminal endpoint

of ρ2 is the initial endpoint of ρ1; and ρ= ρ2 ∪ ρ1.
A join curve is the disjoint union of one join component and finitely

many trivial components.
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Fig. 11. Sources of curves at east ∞. Left: a trivial component. Center: a join
component. Right: a split component. This is [27, Figure 5.3]

Fig. 12. Examples of three kinds of codimension 1 degenerations. The large black dot
represents a boundary branch point of πΣ ◦ u. Left: degenerating into a two-story
building. Center: degenerating a join curve. Right: degenerating a split curve. The

diagrams show the projection of the curve in Σ × [0,1]×R to Σ. This figure is adapted
from [27, Figure 5.1]

• Roughly, a split component is the mirror of a join component. In more

detail, a split component is a disk in R × (∂Σ) × [0,1] × R with one

w punctures and two e puncture. At the two e punctures the curve

is asymptotic to chords ρ1 and ρ2 and at the w puncture the curve

is asymptotic to a chord ρ. With respect to the cyclic ordering of the

punctures (ρ, ρ1, ρ2) around the boundary of the disk (see Figure 11),

the terminal endpoint of ρ1 is the initial endpoint of ρ2; and ρ= ρ1∪ρ2.
For our purposes, a split curve is the disjoint union of one split com-

ponent and finitely many trivial components. (If we were also interested

in ĈFA, we would have to allow more than one split component in a

split curve.)

Figure 12 gives examples of degenerating a join curve and a split curve

at east ∞, as well as breaking into a two-story holomorphic building.
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Remark 4.4. In studying ĈFA, a third kind of curve at east ∞, called a

shuffle curve, is also important. See [27, Section 5.3] for a discussion of shuffle

curves.

Theorem 4.5. Suppose that ind(B;ρ1, . . . , ρn) = 2. Then the ends of the

moduli space MB(w,y;ρ1, . . . , ρn) consist exactly of the following configura-

tions:

(1) Two-story holomorphic buildings, i.e.,

n⋃

i=0

⋃

x∈S(H)

⋃

B1∈π2(w,x)
B2∈π2(x,y)
B1∗B2=B

MB1(w,x;ρ1, . . . , ρi)×MB2(x,y;ρi+1, . . . , ρn).

(2) Collapses of levels, i.e., curves u as in the definition of MB(w,y;ρ1,

. . . , ρn) except that the t-coordinates of ρi and ρi+1 are equal. More-

over, either:

(2a) the set of (one or two) α-arcs containing ∂ρi must be disjoint

from the set of (one or two) α-arcs containing ∂ρi+1, or

(2b) the initial endpoint of ρi is the same as the final endpoint of ρi+1.

(3) Join curve degenerations, i.e., pairs (u, v) where u is a curve like those

in

MB
(

w,y;ρ1, . . . , ρ
′
i, ρ

′′
i , ρi+1, . . . , ρn

)

except that the t-coordinates of ρ′i and ρ′′i are equal; and v is a

join curve with w asymptotics ρ1, . . . , ρ
′
i, ρ

′′
i , . . . , ρn and e asymptotics

ρ1, . . . , ρi, . . . , ρn. In particular, ρi = ρ′′i ∪ ρ′i. Moreover:

• The α-arc containing the terminal end of ρ′′i is distinct from the

α-arcs containing the initial and terminal ends of ρi.

• The t-coordinates of the w asymptotics of v agree with the t-

coordinates of the e asymptotics of u.

(4) Split curve degenerations, i.e., pairs (u, v) where u ∈MB(w,y;ρ1, . . . ,

ρi∪ρi+1, . . . , ρn) and v is a split curve with w asymptotics ρ1, . . . , (ρi∪
ρi+1), . . . , ρn and e asymptotics ρ1, . . . , ρi, ρi+1, . . . , ρn. Moreover, the t-

coordinates of the w asymptotics of v agree with the t-coordinates of

the e asymptotics of u.

In particular, the space of such pairs (u, v) can be canonically iden-

tified with MB(w,y;ρ1, . . . , ρi ∪ ρi+1, . . . , ρn).
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This is a combination of [27, Theorem 5.55] and [27, Lemma 5.70].

As in most of holomorphic curve theory, the key ingredients in the proof

of Theorem 4.5 are:

• A transversality statement: for generic almost-complex structures, the

relevant moduli spaces are transversally cut out. For curves in Σ ×
[0,1] × R this is [27, Proposition 5.6]; for curves at east ∞, it is [27,

Proposition 5.16]. Because we are not able to perturb the complex struc-

ture at east ∞, less transversality holds for curves at east ∞ than one

might like. (Specifically, we can not always ensure that the evaluation

maps at the punctures are transverse to the diagonal.)

• A compactness statement: sequences of holomorphic curves in Σ ×
[0,1]×R converge to holomorphic combs. This is [27, Proposition 5.23].

• Various gluing statements. Because of the Morse-Bott nature of the

asymptotics at east ∞ and transversality issues for curves at east ∞,

these statements become somewhat intricate. See [27, Section 5.5].

• An analysis of which of the possible degenerations can occur in

codimension-1. See [27, Sections 5.6 and 5.7.3].

There is one more ingredient, because we are working with embedded curves:

• A computation of the index of the ∂ operator shows that sequences

of embedded curves converge to embedded curves. Philosophically, this

is related to the adjunction formula. See [27, Section 5.7] for further

discussion.

Remark 4.6. The fact that πD is constant on each component of a curve

at east ∞ suggests that we have lost some information in our formulation of

the limiting objects. One could recover this information by rescaling while

taking the limit. Specifically, suppose a sequence of holomorphic curves ui
converges to a pair (u, v), where v : T → R× (∂Σ)× [0,1]×R is a curve at

east ∞. Fix a marked point pi on each ui converging to a marked point p

on u. In taking the limit, rescale the map πD ◦ ui on a neighborhood of pi so

that dpi
(πD ◦ ui) has norm 1. With some work, one thus obtains a rescaled

version of πD ◦ v in the form of a map T →{x+ iy ∈C | x≤ 1}.

The moduli spaces at east ∞ are sufficiently simple that this refined

limiting procedure turns out not to be necessary to construct the bordered

invariants; but it seems more relevant to constructing a bordered version of

HF±.
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4.3. ∂2 = 0 on ĈFD

With the codimension-1 boundary in hand, we are now ready to prove that

ĈFD is a dg module.

Theorem 4.7 [27, Proposition 6.7]. Fix a provincially admissible bordered

Heegaard diagram H. Then for a generic choice of almost-complex structure,

the differential ∂ on ĈFD(H) satisfies ∂2 = 0.

Sketch of proof. It suffices to show that for each generator w ∈ S(H),

∂2(w) = 0. We have

∂2(w) = ∂

(
∑

y∈S(H)
(ρ1,...,ρn)
B∈π2(w,y)

(

#MB(w,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)y
)

=
∑

x∈S(H)
(ρ1,...,ρi)

B1∈π2(w,x)

∑

y∈S(H)
(ρi+1,...,ρn)
B2∈π2(w,x)

(

#MB1(w,x;ρ1, . . . , ρi)
)

×
(

#MB2(w,x;ρi+1, . . . , ρn)
)

× a(−ρ1) · · ·a(−ρi)a(−ρi+1) · · ·a(−ρn)y

+
∑

x∈S(H)
(ρ1,...,ρn)
B∈π2(w,x)

(

#MB(w,x;ρ1, . . . , ρn)
)

a(−ρ1) · · ·d(ai) · · ·a(−ρn)x.

(There is some possibly confusing re-indexing: in the second line we have

replaced n→ i, y→ x, and B→B1. In the last line we use the same notation

as in the first line, however.)

The sum in the second line corresponds exactly to the 2-story holomor-

phic buildings, degeneration (1) in Theorem 4.5. The sum in the last line cor-

responds to the split curve degenerations, degeneration (4) in Theorem 4.5.

It remains to see that the remaining ends of the 1-dimensional mod-

uli spaces cancel in pairs. Indeed, it is easy to see that Case (2a) ends of

MB(w,y;ρ1, . . . , ρn) correspond to Case (2a) ends of MB(w,y;ρ1, . . . , ρi+1,

ρi, . . . , ρn); and Case (2b) ends of MB(w,y;ρ1, . . . , ρn) correspond to

join curve ends of MB(w,y;ρ1, . . . , ρi ∪ ρi+1, . . . , ρn). This completes the

proof. �
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Fig. 13. Splitting a closed Heegaard diagram. The bordered Heegaard diagrams H1 and
H2 are glued along the circle Z ⊂H

4.4. Deforming the Diagonal, ĈFA and the Pairing Theorem

Our goals for the rest of the lecture are two-fold:

(1) Define the invariant ĈFA(Y ) associated to a bordered 3-manifold.

(2) Prove the pairing theorem, Theorem 2.17.

We will do this in the opposite order: we will start proving Theorem 2.17, and

ĈFA will appear naturally. The material in this section is drawn from [27,

Chapter 9], to which we refer the reader for further details.

So, fix bordered Heegaard diagrams H1, H2 with ∂H1 =Z =−∂H2 and

let H=H1 ∪∂ H2. (See Figure 13.) We want to understand ĈF (H) in terms

of invariants of H1 and H2.

On the level of generators, this is trivial: a generator x ∈ ĈF (H) cor-

responds to a pair of generators (x1,x2) for H1 and H2 so that the α-arcs

occupied by x1 are complementary to the α-arcs occupied by x2. So, if we

define IA(x1) to be the idempotent in A(Z) corresponding to the α-arcs oc-

cupied by x1—this is the opposite of I(x) as defined in Section 3.3.2—and

let

ĈFA(H1) = F2

〈

S(H1)
〉

,

with IA(x1)x1 = x1, so other indecomposable idempotents kill x1, then we

have

(4.1) ĈFA(H1)⊗A(Z) ĈFD(H2)

as F2-vector spaces. Note that we have not defined an A(Z1)-module struc-

ture on ĈFA(H1) yet: Equation (4.1) uses only the action of the idempotents

and the fact that ĈFD(H2) is a sum of elementary projective modules.
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Holomorphic curves are more complicated.

Let Z ⊂ H denote the circle ∂H1. Recall that to define ĈFD(H2) we

attached a cylindrical end to −Z = ∂Σ2. Correspondingly, to prove the pair-

ing theorem, we consider inserting a long neck into Σ along Z. That is, fix

a complex structure jΣ on Σ and choose a neighborhood U of Z which is

biholomorphic to [−ε, ε] × S1 for some ε > 0. Let jRΣ denote the result of

replacing U by [−R,R]× S1.

Let Ri ∈R be a sequence with Ri→∞, and suppose ui ∈MB(x,y) is a

sequence of holomorphic curves with respect to jRi

Σ × jD. We are interested

in the limit of the sequence {ui}. Modulo some technicalities, this is the

kind of limit studied in symplectic field theory; the limiting objects have the

following form:

Definition 4.8. A matched holomorphic curve is a pair of curves

(u1, u2) ∈MB1(x1,y1;ρ1, . . . , ρn)×MB2(x2,y2;ρ1, . . . , ρn)

so that for each i= 1, . . . , n, the t-coordinate at which u1 is asymptotic to ρi
is equal to the t-coordinate at which u2 is asymptotic to ρi.

Equivalently, there is an evaluation map

ev :MBi(xi,yi;ρ1, . . . , ρn)→R
n−1

which takes a curve asymptotic to ρ1 × (1, t1), . . . , ρn × (1, tn) to (t2 − t1,

t3 − t2, . . . , tn − tn−1). Then a matched holomorphic curve is a pair (u1, u2)

such that ev(u1) = ev(u2).

LetMB(x,y;∞) denote the moduli space of matched holomorphic curves

in the homology class B. That is,

(4.2)

MB(x,y;∞) =
⋃

(ρ1,...,ρn)

MB1(x1,y1;ρ1, . . . , ρn) ev×evMB2(x2,y2;ρ1, . . . , ρn).

Here, x (respectively y) corresponds to the pair of generators (x1,x2) (re-

spectively (y1,y2)) and Bi is the intersection of B with Hi.

Proposition 4.9. Let MB(x,y;R) denote the moduli space of holomorphic

curves (in Σ × [0,1]×R, in the homology class B) with respect to an appro-

priate perturbation5 of the almost-complex structure jRΣ × jD. Suppose that

5As usual, we will suppress the fact that one needs to perturb the almost-complex structure
in order to achieve transversality from the discussion.



Notes on Bordered Floer Homology 323

μ(B) = 1. Then
⋃

R>0MB(x,y;R) is a 1-manifold whose ends as R→∞
are identified with MB(x,y;∞). More precisely, let

MB(x,y;≥R0) =MB(x,y;∞)∪
⋃

R≥R0

MB(x,y;R).

Then there is a there is a topology on MB(x,y;≥ R0) and an R0 so that

MB(x,y;≥R0) is a compact 1-manifold with boundary exactly

MB(x,y;∞)#MB(x,y;R0).

This follows from compactness and gluing arguments, in a fairly standard

way.

Corollary 4.10. Define ∂1 : ĈF (H)→ ĈF (H) by

(4.3) ∂1(x) =
∑

y∈Tα∩Tβ

∑

B∈π2(x,y)
μ(B)=1

#MB(x,y;∞)y

(cf. Formula (3.1)). Then H∗(ĈF (H), ∂1)∼= ĤF (Y ).

Example 4.11. Consider the splitting in Figure 13. The complex ĈF (H)

has two generators, x= {a, s} and y= {b, s}; in the notation above, x1 = {a},
x2 = {s}, y1 = {b} and y2 = {s}. The generator y occurs twice in ∂(x): once

from the small bigon region near the left of the diagram and once from the

annular region crossing through the circle Z. We focus on the second of

these contributions, the domain of which is shown in Figure 14. (It takes a

little work to show that this domain has a holomorphic representative; see

Exercise 4.5.)

Now, consider the result of stretching the neck along Z. There are two

cases, depending on whether the cut goes through Z or not (which in turn

depends on the complex structure on H). If the cut does not go through z,

the resulting matched curve (u1, u2) has u1 a disk with one Reeb chord and

u2 an annulus with one Reeb chord. (In fact, this case does not occur in the

limit; see Exercise 4.6.)

The more interesting case—and the one which actually occurs—is when

the cut does pass through Z. Then both u1 and u2 are disks with two Reeb

chords on each of their boundaries. The disk u2 is rigid, but the disk u1
comes in a 1-parameter family, depending on the length of the cut. There

is algebraically one length of cut for which the height difference of the two
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Fig. 14. Splitting an interesting domain. Depending on the complex structure, there are
two possible phenomena after splitting: either the cut stays entirely on the right side of
the diagram, as in the left picture, or the cut runs through the collapsed circle Z, as in
the right picture. We have drawn schematic illustrations of the matched holomorphic

curves below the two pictures

Reeb chords in u1 agrees with the height difference of the Reeb chords in u2
(Exercise 4.7).

Corollary 4.10 is a step in the direction of a pairing theorem: it gives

a definition of ĤF in terms of holomorphic curves in Σ1 × [0,1] × R and

Σ2 × [0,1]× R. But as we saw in Example 4.11, the corollary still has two

(related) drawbacks:

(1) The moduli spaces we are considering in for H1 and H2 are typically

high-dimensional. Indeed, in Formula (4.3), we have

dimMB1(x1,y1;ρ1, . . . , ρn) + dimMB2(x2,y2;ρ1, . . . , ρn) = n− 1.

(2) Since we are taking a fiber product of moduli spaces, which curves

we want to consider in H1 depends on H2. So, it is not yet obvious

how to define independent invariants of H1 and H2 containing the

information needed to compute ∂1.

To address complaint (2) we could try to formulate an algebra which re-

members the chain ev∗[MB1(x1,y1;ρ1, . . . , ρn)] ∈ C∗(Rn−1). This is a nat-

ural way to try to define a bordered Heegaard Floer invariant, and with

enough effort it could probably be made to work. This approach would be

far from combinatorial, and is also unnecessarily complicated, as we will now

show.

The next step is to deform the fiber product in Formula (4.2):
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Definition 4.12. A T -matched holomorphic curve is a pair

(u1, u2) ∈MB1(x1,y1;ρ1, . . . , ρn)×MB2(x2,y2;ρ1, . . . , ρn)

such that T · ev(u1) = ev(u2). Let MB
T (x,y;∞) denote the moduli space of

T -matched holomorphic curves, i.e.,

MB
T (x,y;∞)

=
⋃

(ρ1,...,ρn)

MB1(x1,y1;ρ1, . . . , ρn) T ·ev×evMB2(x2,y2;ρ1, . . . , ρn).

So, in particular, a 1-matched holomorphic curve is just a matched holo-

morphic curve.

A standard continuation-map argument shows:

Proposition 4.13. Let ∂T denote the map defined analogously to For-

mula (3.1) (or Formula (4.3)) but using the moduli spaces MB
T (x,y;∞).

Then H∗(ĈF (H), ∂T )∼= ĤF (Y ).

Now, of course, we send T →∞. Consider a sequence of Ti-matched

curves (ui1, u
i
2) with Ti →∞. Suppose that ui1 ∈MB1(x1,y1; (ρ1, . . . , ρn)).

Let sij be the R-coordinate at which ui1 is asymptotic to ρj and let tij be

the R-coordinate at which ui2 is asymptotic to ρj . Then, after passing to a

subsequence, for each ρj , either:

• (sij+1− sij) ∈ (0,∞) stays bounded away from 0 and (tij+1− tij)→∞ as

i→∞; or

• (sij+1 − sij)→ 0 and (tij+1 − tij) stays bounded as i→∞.

So, in the limit:

• On the right we have an �-story holomorphic building (for some �)

U∞
2 = (v1, . . . , v�), where vj ∈M(x1,j ,x1,j+1;ρnj

, . . . , ρnj+1
), x1,j = x1,

x1,�+1 = y1, 1 = n1 ≤ n2 ≤ · · · ≤ n�+1 = n.

• On the left we have a curve u∞1 asymptotic to some sets of Reeb chords

ρ1, . . . ,ρ� at t-coordinates t1 < · · ·< t� ∈R. Let

MB2(x2,y2;ρ1, . . . ,ρ�)

denote the moduli space of such curves.



326 R. Lipshitz et al.

Importantly, there is no longer a matching condition between the curves u∞1
and U∞

2 .

Example 4.14. Continuing with Example 4.11 in the case that the cut goes

through the neck, as on the right of Figure 14, as T →∞ the R-coordinates

of the two Reeb chords in u1 come together. (This results in degenerating

a split curve at ∂Σ; we elided this point in the rest of this section.) This is

indicated schematically in Figure 14.

Now, suppose we turned the diagram 180◦. To avoid re-drawing the figure,

we can think of this as sending T → 0 instead of T →∞. In this case, the

two chords in Figure 14 are pushed farther and farther apart; in the limit,

the cut goes all the way through to the β-curve, giving a 2-story holomorphic

building. Again, this is indicated schematically in Figure 14.

Observe that in both cases, the relevant curves are completely deter-

mined, i.e., belong to rigid moduli spaces: there is no “cut” left.

Now, associated to a set of Reeb chords ρ is an algebra element a(ρ),

defined analogously to Equation (3.3); see Exercise 4.8 or [27, Definition 3.23].

Define maps

mi+1 : ĈFA(H1)⊗A(Z)⊗i→ ĈFA(H1)

mi+1

(

x;a(ρ1), . . . , a(ρi)
)

=
∑

y∈S(H1)

∑

B∈π2(x,y)
ind(B,ρ1,...,ρi)=1

(

#MB(x,y;ρ1, . . . ,ρi)
)

y.

An argument similar to but in some ways easier than the proof of Theo-

rem 4.7 proves:

Theorem 4.15. For H1 a provincially-admissible Heegaard diagram and J

a generic almost-complex structure, the operations mi+1 make ĈFA(H1) into

an A∞-module.

The argument above is a sketch of the pairing theorem, Theorem 2.17.

Specifically, it follows from the sketch above that

ĈF (H)� ĈFA(H1)� ĈFD(H2),

where � is the model for the tensor product of an A∞-module with a type

D structure described in [27, Section 2.4].
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4.5. Exercises

Exercise 4.1. In the setting of Section 4.1, use the Riemann mapping

theorem to show that the map πΣ ◦ u is determined by the position of the

branch point (as claimed), and that there are no other elements of M(a, d).

Exercise 4.2. Suppose that v : S→ R× (∂Σ)× [0,1]×R is a holomorphic

curve at east ∞, as discussed in Section 4.2. Show that the restriction of

πD ◦ v to each component of S is constant.

Exercise 4.3. Prove: If x is a generator for ĈFD(Y ), where ∂Y = F (Z)
then I(x) ∈A(Z,0)⊂A(Z). (Hint: this is easy.) What is the corresponding

statement for the bimodules ĈFDD associated to arced cobordisms?

Exercise 4.4. The differential on the algebra A(T 2,0) associated to the

torus is trivial. This means that one of the cases in the proof of Theorem 4.7

does not arise if the boundary is a torus. Which one? Why?

Exercise 4.5. Show that the annular region in Figure 14 is the domain of

a holomorphic map S→Σ × [0,1]×R, in two ways:

(1) By adapting the argument from [46, Lemma 9.3].

(2) By using handleslide invariance of Heegaard Floer homology. (After

performing the right handleslide on Figure 13, it is easy to compute

ĤF .)

Exercise 4.6. Show that when one stretches the neck in Figure 13, as in

Example 4.11, the domain in Figure 14 must have a cut passing through the

neck.

Exercise 4.7. In Example 4.11 we claimed there is algebraically one length

of cut so that the height difference of the two Reeb chords in u1 agrees with

the height difference of the two Reeb chords in u2. (Since we are working

with F2-coefficients, probably we really meant that there are an odd num-

ber of such cut lengths.) Prove this. (Hint: what is the height difference

in u1 when the cut has length 0? When the cut goes all the way to the

β-circle?)

Exercise 4.8. Define a(ρ) ∈A(Z) when ρ is a set of chords in Z , no two of

which start (respectively end) at points from the same matched pair. (This
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Fig. 15. Degenerating the hexagon. A hexagon in the Heegaard diagram (giving a flow
from x= {x1, x2, x3} to y= {y1, y2, y3}) is divided into three pieces D1, D2, and D3,

grouped as D1 and D2 ∪D3. This is [27, Figure 9.3]

is a generalization of Formula (3.3), and should be straightforward. See [27,

Definition 3.23] for a solution.)

Exercise 4.9. Figure 15 shows a hexagonal domain connecting x =

{x1, x2, x3} to y = {y1, y2, y3}. Note that this domain always contributes a

term of y in ∂(x). Consider the result of degenerating this domain along

the dashed line, and then deforming the diagonal as in Section 4.4. (In the

notation of Section 4.4, consider both the case of sending T →∞ and the

case of sending T → 0.) What happens to the holomorphic representative for

this domain in the process? How is this encapsulated algebraically? (See [27,

Section 9.6] for a detailed discussion of this example.)

5. Computing with Bordered Floer Homology I: Knot

Complements

In this section we will discuss how the torus boundary case of bordered Floer

homology can be used to do certain kinds of computations. The main goal is a

technique for studying satellite knots, from [27, Chapter 11]. This technique

and extensions of it have been used in [12, 24, 25, 55].

We start with a review of knot Floer homology [44, 56], mainly to fix

notation (Section 5.1). We then discuss how the knot Floer homology of a

knotK in S3 determines the bordered Floer homology of S3\K (Section 5.2).

Finally, we turn this around to use our understanding of bordered Floer

homology to study the knot Floer homology of satellites (Section 5.3).
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Fig. 16. Doubly pointed Heegaard diagram for the trefoil

5.1. Review of Knot Floer Homology

Let K be a knot in S3, and let H= (Σ,α,β, z,w) be a doubly pointed Hee-

gaard diagram for K, in the sense of [44]. (For example, a doubly pointed

Heegaard diagram for the trefoil is shown in Figure 16.) Associated to H are

various knot Floer homology groups. The most general of these is CFK−(K),

which is a filtered chain complex over F2[U ]. The complex CFK−(K) is freely

generated (over F2[U ]) by Tα ∩Tβ , the same generators as ĈF (Σ,α,β). The

differential is given by

∂−(x) =
∑

y

∑

B∈π̃2(x,y)
μ(B)=1

#
(

MB(x,y)
)

Unw(B) · y.

Here, unlike the discussion above, we allow disks to cross the basepoint z;

we have used the notation π̃2(x,y) rather than π2(x,y) to indicate this.

The complex CFK−(K) has an integral grading, called the Maslov grad-

ing, which is decreased by one by the differential. We will make no particular

reference to this additional structure in the present notes; but it will be con-

venient (for the purposes of taking Euler characteristic, cf. Equations (5.1)

and (5.2) below) to have its parity, as encoded in (−1)M(x). This parity is

given as the local intersection number of Tα and Tβ at x. (As defined, we

have specified a function S(H)→ {±1} which is well-defined up to overall

sign.) Now, the fact that ∂− respects this parity is equivalent to the state-

ment that if B ∈ π̃2(x,y) has ind(B) = 1, then the local intersection numbers

of Tα and Tβ at x and y are opposite.



330 R. Lipshitz et al.

The complex CFK−(K) has an Alexander filtration which is uniquely

determined up to translation by

A(y)−A(x) = nw(B)− nz(B)

A(U · y) =A(y)− 1

where B ∈ π2(x,y). In other words, a term of the form Unw(B)y in ∂−(x)
has A(Unw(B)y) =A(x)− nz(B).

Let gCFK−(K) denote the associated graded complex to (CFK−(K),A).

Explicitly, the differential on gCFK−(K) is defined in the same way as the

differential on CFK−(K) except that we no longer allow holomorphic curves

to cross the z basepoint. Thus, the chain complex gCFK− splits as a direct

sum of complexes, determined by the Alexander grading:

gCFK−(K) =
⊕

s∈Z
gCFK−(K,s).

Finally, there is the complex ĈFK (K) obtained from gCFK−(K) by

setting U = 0. In other words, ĈFK (K) is generated over F2 by Tα∩Tβ , and
the differential counts holomorphic curves which do not cross z or w. Like

gCFK−, ĈFK has a direct sum splitting induced by the Alexander grading.

A key property of knot Floer homology is that its graded Euler charac-

teristic is the Alexander polynomial:

(5.1) ΔK(T ) =
∑

s∈Z
χ
(

ĈFK (K,s)
)

T s;

and similarly,

(5.2) ΔK(T )/(1− T ) =
∑

s∈Z
χ
(

CFK−(K,s)
)

T s.

(Note that the parity of the Maslov grading is used to compute the Euler

characteristic. Also, both sides of Formula (5.2) are formal power series.)

The translation indeterminacy in the Alexander grading can then be

removed by requiring the graded Euler characteristic of ĈFK to be the

Conway normalized Alexander polynomial (or equivalently χ(ĈFK (K,s)) =

χ(ĈFK (K,−s)) for all s ∈ Z); this normalization can also be used to remove

the overall indeterminacy in the parity of the Maslov grading.

There is a numerical invariant for knots derived from knot Floer homol-

ogy, τ(K), which will appear in Theorem 5.4 below. This is defined with
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Fig. 17. Doubly pointed Heegaard diagram for the figure eight knot

the help of the following observation. There are U -non-torsion elements in

H∗(gCFK
−(K,s)), i.e., elements h ∈ H∗(gCFK

−(K,s)) with the property

that for all positive integers m, Umh is homologically non-trivial. We can

consider the maximal s for which H∗(gCFK
−(K,s)) contains U -non-torsion

elements. Multiplying this s by −1 gives the invariant τ(K).

Example 5.1. Figure 16 shows a doubly-pointed Heegaard diagram for

the trefoil knot. The chain complex CFK−(H) is given by F2[U ]〈a, b, c〉. The
differential on CFK−(H) is given by

∂−(a) = b ∂−(b) = 0 ∂−(c) = Ub.

The Alexander filtration is given by A(a) = 1, A(b) = 0, A(c) =−1.

The differential on gCFK−(H) is given by

∂−g (a) = 0 ∂−g (b) = 0 ∂−g (c) = Ub.

The complex ĈFK (H) is F2〈a, b, c〉, with trivial differential.

Another concrete example is furnished by the Figure 8 knot.

Example 5.2. Figure 17 shows a doubly-pointed Heegaard diagram for the

figure eight knot. The chain complex CFK−(H) is given by F2[U ]〈a, b, c, d, e〉.
The differential on CFK−(H) is given by

∂−(a) = Ub+ c ∂−(b) = d ∂−(c) = Ud ∂−(d) = 0

∂−(e) = Ub+ c.
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The Alexander filtration is given by A(a) = A(d) = A(e) = 0, A(b) = 1,

A(c) =−1.

The differential on gCFK−(H) is given by

∂−g (a) = Ub ∂−g (b) = 0 ∂−g (c) = Ud ∂−g (d) = 0 ∂−g (e) = Ub.

The complex ĈFK (H) is F2〈a, b, c, d, e〉, with trivial differential.

We represent the chain complex CFK−(H) graphically by choosing a

basis {ξi} for CFK−(H) over F2[U ]—for instance, the standard basis whose

elements are points in Tα ∩ Tβ—and placing a generator of the form U−x ·
ξi with Alexander depth y on the plane at the position (x, y). Then the

differential of a generator at (x, y) can be represented graphically by arrows

connecting the point at (x, y) with the coordinates of other generators. These

arrows necessarily point (non-strictly) to the left and down.

Up to filtered homotopy equivalence, we can always ensure that the dif-

ferentials in the chain complex CFK−(H) change the Alexander grading or

the U power, or both; we call a chain complex reduced if it has this property.

Equivalently, CFK−(H) is reduced if every arrow changes the x-coordinate

or the y-coordinate or both. A reduced complex has two distinct kinds of

lowest-order terms: horizontal arrows and vertical arrows. We call the basis

{ξi} horizontally simplified (respectively vertically simplified) if every ele-

ment U jξi is the tail of at most one horizontal (respectively vertical) ar-

row and the head of at most one horizontal (respectively vertical) arrow. It

is reasonably straightforward to verify that a horizontally simplified basis

(respectively a vertically simplified basis) always exists; see [27, Proposi-

tion 11.52].

Abusing notation, we will say there is a length � horizontal arrow from

ξi to ξj if there is a horizontal arrow from ξi to U
�ξj .

We can invert U , giving a complex U−1CFK−(K) = F2[U,U
−1] ⊗F2[U ]

CFK−(K). (This complex is also denoted CFK∞(K) in the literature.)

It still makes sense to talk about horizontal and vertical arrows on

U−1CFK−(K). The homology of U−1CFK−(K) with respect to the hor-

izontal (respectively vertical) differentials on U−1CFK−(K) is F2[U,U
−1].

If the basis {ξi} is horizontally (respectively vertically) simplified then this

means there is a single generator η0 (respectively ξ0) over F2[U,U
−1] with

no horizontal (vertical) arrows into or out of it (in U−1CFK−(K)).
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Example 5.3. Continuing with Example 5.1, we draw the complex

gCFK−(H) as

In particular:

• This basis is reduced and both horizontally and vertically simplified.

• There is a length 1 horizontal arrow from c to b and a length 1 vertical

arrow from a to b.

• The element η0 is a. The element ξ0 is c.

Knot Floer homology has been computed extensively. It is determined by

the Alexander polynomial for torus knots [48]; it is determined by the Alexan-

der polynomial and the signature for alternating knots [42]; and it has an

efficient combinatorial description for knots whose doubly-pointed Heegaard

diagram can be drawn on the torus (so that the relevant holomorphic disks

are in the torus, rather than some higher symmetric product) [10]. Finally,

it admits a purely combinatorial description using grid diagrams [38, 39],

which is amenable to computations by computer [2] or via a cube of resolu-

tions [52, 53].

5.2. From ĈFK to ĈFD : Statement and Example

For convenience, we recall our notation for the torus algebra, from For-

mula (2.1). It is given by:

A
(

T 2,0
)

= ι0•
ρ1

ρ3

•ι1ρ2 /(ρ2ρ1 = ρ3ρ2 = 0).

We have named ρ12 = ρ1ρ2, ρ23 = ρ2ρ3 and ρ123 = ρ1ρ2ρ3, so {ι0, ι1, ρ1, ρ2, ρ3,
ρ12, ρ23, ρ123} is an F2-basis for A(T 2,0).
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Theorem 5.4 [27, Theorem A.11]. Let K ⊂ S3 be a knot and let CFK−(K)

be a reduced model for the knot Floer complex of K. Suppose CFK−(K) has

a basis {ξi} which is both horizontally and vertically simplified.

Fix an integer n, and let Y = S3 \ nbd(K) with framing n. We will de-

scribe ĈFD(Y ).

The submodule ι0ĈFD(Y ) has one generator for each basis element ξi.

The submodule ι1ĈFD(Y ) has basis elements coming from the horizontal

and vertical arrows in CFK−(K). Specifically, for each length � vertical ar-

row from ξi to ξj here are � basis elements κij1 , . . . , κ
ij
� for ι1ĈFD(Y ); and

for each length � horizontal arrow from ξi to ξj there are � basis elements

λij1 , . . . , λ
ij
� for ι1ĈFD(Y ). Finally, there are m = |2τ(K) − n| more basis

elements μ1, . . . , μm for ι1ĈFD(Y ).

The differential on ĈFD(Y ) is given as follows. From the vertical arrows

we get differentials

ξi
ρ1−→ κij1

ρ23←− · · · ρ23←− κijk
ρ23←− κijk+1

ρ23←− · · · ρ23←− κij�
ρ123←− ξj .

From the horizontal arrows we get differentials

ξi
ρ3−→ λij1

ρ23−→ · · · ρ23−→ λijk
ρ23−→ λijk+1

ρ23−→ · · · ρ23−→ λij�
ρ2−→ ξj .

Finally, we have the unstable chain:

• If n < 2τ the unstable chain has the form

ξ0
ρ1−→ μ1

ρ23←− μ2
ρ23←− · · · ρ23←− μm

ρ3←− η0.

• If n > 2τ the unstable chain has the form

ξ0
ρ123−→ μ1

ρ23−→ μ2 · · ·
ρ23−→ μm

ρ2−→ η0.

• If n= 2τ the unstable chain has the form

ξ0
ρ12−→ η0.

It is fairly straightforward to remove the condition that there be a basis

which is both horizontally and vertically simplified: one simply works with

two bases, one horizontally simplified and one vertically simplified, and keeps

track of the transition matrix. See [27, Theorem A.11]. There is also a basis-

free version of Theorem 5.4; see [27, Theorem 11.35].
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The proof of Theorem 5.4 has two parts. The first part is showing that

the theorem holds for large negative surgery coefficients. The argument is

somewhat similar to techniques in [11, 44, 51, 56], but is still quite involved.

The second part is deducing the result for general surgery coefficients. This

is done by changing the framing one step at a time, using the bimodules from

Exercise 3.6 (or their type DA analogues).

Example 5.5. Continuing with the trefoil example, recall that the trefoil

K has τ(K) =−1. (Compare Exercise 5.1.) The basis {a, b, c} is horizontally
and vertically simplified. So, ĈFD of S3 \K with framing 1, say, is given by

5.3. Studying Satellites

Suppose that H1 is a bordered Heegaard diagram for S3 \nbd(K) with the 0-

framing of the boundary. Let H2 be a bordered Heegaard diagram for D2×S1

with the∞-framing. Place an extra basepoint w in H2, and let H′
2 denote the

result. Then H1 ∪∂ H′
2 is a doubly-pointed Heegaard diagram representing a

knot L in S3.

Construction 5.6. Fix a doubly-pointed bordered Heegaard diagram H=

(Σ,αa,αc,β, z,w) for D2 × S1. Consider the knot P in D
2 × S1 determined

as follows. Connect the basepoints z and w in H by an arc γ in Σ \ (αa∪αc)

and an arc η in Σ \ β. Viewing Σ as Σ × {1/2} inside Σ × [0,1] ⊂ Y (H)

(Construction 2.6), let γ′ be the result of pushing the interior of γ slightly into

Σ × [0,1/2) and let η′ be the result of pushing the interior of η slightly into

Σ × (1/2,1]. Then let P = γ′ ∪ η′. We will say that H induces (D2 × S1, P ).

Lemma 5.7. With notation as above, suppose that H′
2 induces (D2×S1, P ).

Then L is the satellite knot with companion K ⊂ S3 and pattern P ⊂D
2×S1.
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Fig. 18. Heegaard diagram for the (2,1)-cabling operation. This is a doubly-pointed
Heegaard diagram for the (2,1) cable (of the unknot), thought of as a knot in the solid

torus. The basepoint z lies in the region marked with a 0. This picture is adapted
from [27, Figure 11.14]

The proof is left as Exercise 5.7.

Example 5.8. Figure 18 shows a doubly-pointed bordered Heegaard dia-

gram inducing the (2,1)-cabling operation.

Given a doubly-pointed bordered Heegaard diagramH, let CFD−(H, z,w)
denote F2[U ]⊗F2

ĈFD(H) with differential given by

∂(x) =
∑

y∈S(H)
n≥0

(ρ1,...,ρn)
B|ind(B,ρ1,...,ρn)=1

(

#MB(x,y;ρ1, . . . , ρn)
)

a(−ρ1) · · ·a(−ρn)Unw(B)y.

That is, we count curves as before except that we weight the curves which

cross w n times by Un.

Corollary 5.9. With notation as above,

gCFK−(L)∼=Mor
(

ĈFD(−H1),CFD
−(H2, z,w)

)

.

By Theorem 5.4, ĈFD(H1) is determined by CFK−(K). Thus, if we can

compute CFD−(H2, z,w) we obtain a formula for the knot Floer homology

gCFK−(L) in terms of CFK−(K) (for arbitrary K).

Example 5.10. In [27, Section 11.9] we use these techniques to compute

the (2,−3) cable of the left-handed trefoil. However, the computation there

uses the type A invariant of the pattern. In the spirit of continuing to avoid
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ĈFA, we give a similar computation using the Mor version of the pairing

theorem.

Let H2 denote the doubly-pointed bordered Heegaard diagram shown in

Figure 18. The module CFD−(H2, z,w) has generators x, y1 and y2 with

ι1x= x ι0y1 = y1 ι0y2 = y2.

The differentials are given by

∂(x) = U2ρ23x

∂(y1) = Uy2 + ρ1x

∂(y2) = Uρ123x.

By Theorem 5.4, the invariant ĈFD(Y ) of the 2-framed left-handed tre-

foil complement Y is given by

ĈFD(Y ) =

a

κ

b λ c.

ρ1

ρ123

ρ3ρ2

ρ12

As in Corollary 5.9, Mor(ĈFD(Y ),CFD−(H2, z,w)) is gCFK− of some

cable of the left-handed trefoil. Computing this morphism space, a basis over

F2[U ] is given by:

a �→ y1 a �→ ρ12y1 a �→ y2 a �→ ρ12y2

a �→ ρ1x a �→ ρ3x a �→ ρ123x

b �→ y1 b �→ ρ12y1 b �→ y2 b �→ ρ12y2

b �→ ρ1x b �→ ρ3x b �→ ρ123x

c �→ y1 c �→ ρ12y1 c �→ y2 c �→ ρ12y2

c �→ ρ1x c �→ ρ3x c �→ ρ123x

λ �→ x λ �→ ρ23x λ �→ ρ2y1 λ �→ ρ2y2

κ �→ x κ �→ ρ23x κ �→ ρ2y1 κ �→ ρ2y2.

(Nobody said this was quick. The complex is smaller if one uses

ĈFA(H2, z,w).) The differentials are shown in Figure 19. Cancelling as many



338 R. Lipshitz et al.

Fig. 19. The complex from Example 5.10

Fig. 20. Result of cancelling differentials in Figure 19

differentials not involving U as possible gives Figure 20. In particular, the

homology gHFK−(K) is given by F2[U ]⊕ (F2[U ]/U2)⊕ F2; and ĤFK (K) is

given by F
5
2.

In some sense, this strategy works in general:

Lemma 5.11. Given any pattern P in D
2 × S1 there is a doubly-pointed

Heegaard diagram inducing P .

The proof is left as Exercise 5.8.
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Corollary 5.12. Let P be a knot in D
2 × S1. Given a knot K in S3

let KP denote the satellite of K with pattern P . Then CFK−(K) deter-

mines gCFK−(KP ) in the following sense: if K1 and K2 are knots with

CFK−(K1)∼=CFK−(K2) then gCFK−(KP
1 )
∼= gCFK−(KP

2 ).

Remark 5.13. The diagram H′
2 specifies more than just a knot in D

2×S1;

see Exercise 5.10. Probably the best way to think of H′
2 is as representing a

bordered-sutured manifold (in the sense of [64]).

5.4. Exercises

Exercise 5.1. For K the trefoil and the figure eight, compute the F2[U ]

module structure onH∗(gCFK
−(K)), using the descriptions of the complexes

given in Examples 5.1 and 5.2 respectively. Use this to compute τ(K) for

these knots.

Exercise 5.2. Find a basis for CFK−(K) when K is the figure eight knot

which is both horizontally and vertically simplified.

Exercise 5.3. Let Y be the complement of the unknot in S3. Compute

ĈFD(Y ) in two ways:

(1) Using Theorem 5.4.

(2) Directly from a bordered Heegaard diagram.

(This exercise is courtesy of J. Hom.)

Exercise 5.4. Using Theorem 5.4, write down ĈFD of the trefoil comple-

ment with framings 1 and −2.

Exercise 5.5. Figure 3 gives a bordered Heegaard diagram for the trefoil

complement. Compute ĈFD of that diagram directly, and compare the an-

swer with that given by Theorem 5.4. (This is a fairly challenging computa-

tion, after which you are guaranteed to appreciated Theorem 5.4.)

Exercise 5.6. Verify that the modules ĈFD(Y ) given by Theorem 5.4 sat-

isfy ∂2 = 0.

Exercise 5.7. Prove Lemma 5.7.
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Exercise 5.8. Prove Lemma 5.11.

Exercise 5.9. Use the bimodules of Exercise 3.6 to show that if Theorem 5.4

holds for surgery coefficient n then it holds for surgery coefficient n±1. (This

is somewhat messy.)

Exercise 5.10. Find doubly-pointed bordered Heegaard diagrams H, H′

for D2 × S1 so that:

• The singly-pointed Heegaard diagrams obtained from H, H′ by forget-

ting the w basepoint both specify the same framing for D2 × S1.

• The diagrams H and H′ represent the same satellite operation in the

sense of Construction 5.6.

• The invariants CFD−(H, z,w) and CFD−(H′, z′,w′) are not homotopy

equivalent.

In particular, it is not true that any two diagrams representing the same

pattern P are related by a sequence of Heegaard moves in the complement

of the basepoints.

Exercise 5.11. We computed gCFK− of some cable of the trefoil in Exam-

ple 5.10. Which one?

6. Computing with Bordered Floer Homology II:

Factoring Mapping Classes

The goal of this lecture is to discuss an algorithm, coming from bor-

dered Floer homology, for computing the invariant ĤF (Y ) for any closed

3-manifold Y . This is not the first algorithm for computing ĤF (Y ), which is

due to Sarkar-Wang [58]; but it is independent of the Sarkar-Wang algorithm

and conceptually fairly satisfying.

6.1. Overview of the Algorithm

Fix a closed 3-manifold Y and a Heegaard splitting

Y =H1 ∪ψ H2
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Fig. 21. The pointed matched circles Z0
k . The cases k = 1, k = 2 and k = 3 are shown

for Y . That is, H1 and H2 are handlebodies of some genus k and ψ : ∂H1→
∂H2 is an orientation-reversing homeomorphism.

Without loss of generality, we can assume that each Hi is a particular

standard bordered handlebody (Hk, φ0 : F (Z0
k)→ ∂Hk). Here, Z0

k is a partic-

ular pointed matched circle—we will take it to be the k-fold connect sum of

the genus 1 pointed matched circle (i.e., the split matching); see Figure 21.

Then the map ψ is specified by a map ψ̃ = φ0 ◦ψ ◦φ−1
0 : F (Z0

k)→ F (Z0
k). To

specify Y up to homeomorphism we need only specify ψ up to isotopy; so,

it is natural to view ψ̃ as an element of the mapping class group of F (Z0
k).

Up to isotopy, we can assume that ψ̃ fixes the preferred disk in F (Z0
k), and

regard it as an element of the mapping class group of F ◦(Z0
k). (Of course,

the lift to the strongly based mapping class group depends on a choice.)

Let M
ψ̃
denote the mapping cylinder of ψ̃, as in Example 2.13. Then by

the relevant pairing theorems, Corollary 2.22 and Theorem 2.23, we have

ĈF (Y )�Mor
(

ĈFD(Hk, φ0),Mor
(

ĈFDD(−M
ψ̃
), ĈFD(Hk, φ0)

))

.

So, we have “reduced” the problem to computing the invariants of (Hk, φ0)

and M
ψ̃
.

This is not yet useful: there are about as many mapping classes as 3-

manifolds. On the other hand, the mapping classes form a group. Suppose

that ψ1, . . . , ψN are generators for the mapping class group of F ◦(Z0
k) as

a monoid—that is, we include inverses in our list of generators. Then we

can write ψ̃ = ψin ◦ · · · ◦ ψi1 for some sequence of generators ψi1 , . . . , ψin ∈
{ψ1, . . . , ψN}. Repeatedly using Theorem 2.23, we have

ĈF (Y )�Mor
(

ĈFD(−Hk, φ0),Mor
(

ĈFDD(−Mψin
),Mor

(

· · ·

. . . ,Mor
(

ĈFDD(−Mψi1
), ĈFD(Hk, φ0)

)

. . .
)))

.

Now we really have reduced the problem: we only need to compute the in-

variants ĈFD(Hk, φ0) and ĈFDD(Mψi
) for our preferred set of generators

ψ1, . . . , ψN .
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Fig. 22. Arc-slides. Two examples of arc-slides connecting pointed matched circles for
genus 2 surfaces. In both cases, the foot b1 is sliding over the matched pair C = {c1, c2}

(indicated by the darker dotted matching) at c1. This figure is [31, Figure 2]

6.1.1. Arc-Slides as Generators of the Mapping Class Groupoid.

Generalizing the mapping class group to a groupoid leads to a particularly

convenient set of generators.

Definition 6.1. The genus k mapping class groupoid is the category whose

objects are the pointed matched circles representing genus g surfaces, and

with Hom(Z1,Z2) the set of isotopy classes of strongly-based homeomor-

phisms F (Z1)→ F (Z2).

In particular, Aut(Z) = Hom(Z,Z) is the strongly-based mapping class

group.

Definition 6.2. Let Z be a pointed matched circle, and fix two matched

pairs C = {c1, c2} and B = {b1, b2} in Z . Suppose moreover that b1 and c1 are

adjacent, in the sense that there is an arc σ connecting b1 and c1 which does

not contain the basepoint z or any other point pi ∈ a. Then we can form

a new pointed matched circle Z ′ which agrees everywhere with Z , except
that b1 is replaced by a new distinguished point b′1, which now is adjacent

to c2 and b′1 is positioned so that the orientation on the arc from b1 to c1
is opposite to the orientation of the arc from b′1 to c2. In this case, we say

that Z ′ and Z differ by an arc-slide of b1 over c1. (See Figure 22 for two

examples.)

In this situation, there is a canonical element in Hom(Z,Z ′), which we

refer to as the arc-slide diffeomorphism; see Figure 23.

The diagrams in Figure 22 are shorthand for bordered Heegaard dia-

grams for the mapping cylinders of the arc-slides. Such a bordered Heegaard

diagram for the second arc-slide in Figure 22 is given in Figure 24.
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Fig. 23. The local case of an arc-slide diffeomorphism. Left: a pair of pants with boundary
components labeled P , Q, and R, and two distinguished curves B and C. Right: another
pair of pants with boundary components P ′, Q′, R′ and distinguished curves B′ and C.
The arc-slide diffeomorphism carries B to the dotted curve on the right, the curve labeled
C on the left to the curve labeled C on the right, and boundary components P , Q, and R
to P ′, Q′ and R′ respectively. This diffeomorphism can be extended to a diffeomorphism
between surfaces associated to pointed matched circles: in such a surface there are further
handles attached along the four dark intervals; however, our diffeomorphism carries the

four dark intervals on the left to the four dark intervals on the right and hence extends to
a diffeomorphism as stated. (This is only one of several possible configurations of B and

C: they could also be nested or linked.) This figure is [31, Figure 3]

Fig. 24. Heegaard diagram for an arc-slide. This diagram corresponds to the schematic
on the right of Figure 22

Lemma 6.3. The arc-slides generate the mapping class groupoid.

A proof can be found in [3]. It is perhaps a more familiar fact that the

mapping class group is generated by some finite, preferred set of Dehn twists;

see for example [13]. Lemma 6.3 can be deduced from this more familiar fact

by explicitly factoring that particular collection of Dehn twists into arcslides

(see Example 6.4).



344 R. Lipshitz et al.

Fig. 25. Factoring a Dehn twist into arc-slides. Left: a genus 2 surface specified by a
pointed matched circle, and a curve γ (drawn in thick green) in it. Right: a sequence of

arc-slides whose composition is a Dehn twist around γ. This is [31, Figure 7]

Example 6.4. Figure 25 shows a factorization of a (particular) Dehn twist

as a product of arc-slides.

So, two steps remain to compute ĈF :

• Compute ĈFD(Hk) for some Heegaard diagram Hk representing the

genus k handlebody.

• Compute ĈFDD(Mψ) for any arc-slide ψ.

We give these computations in Sections 6.2 and 6.4, respectively. (As a warm-

up before computing the invariant of arc-slides we compute the type DD

module associated to the identity cobordism.)

Remark 6.5. The relations among the arc-slides are also relatively easy to

state; see [3].

6.2. The Invariant of a Particular Handlebody

Let Z1 denote the (unique) pointed matched circle for the torus, and let Zk

denote the k-fold connect sum of Z1 with itself, i.e., the genus k split pointed

matched circle. Label the marked points in Zk as a1, . . . , a4k. So, in Zk the

matched pairs are {a4i−3, a4i−1} and {a4i, a4i−2}.

The 0-framed solid torus H1 = (H1, φ10) is the solid torus with bound-

ary −F (Z1) in which the handle determined by {a1, a3} bounds a disk. Let

φ10 denote the preferred diffeomorphism −F (Z1)→ ∂H1. The 0-framed han-

dlebody of genus k Hk = (Hk, φk0) is a boundary connect sum of k copies

of H1. Our conventions are illustrated by the bordered Heegaard diagram in

Figure 26.



Notes on Bordered Floer Homology 345

Fig. 26. Heegaard diagram for the 0-framed genus two handlebody. The lighter
(respectively darker) shaded pair of circles indicates a handle attached to the diagram.

This is [31, Figure 5]

Proposition 6.6. Let s = {a4i−3, a4i−1}ki=1. The module ĈFD(Hk) is gen-

erated over the algebra by a single element x with I(s)x= x, and is equipped

with the differential determined by

∂(x) =

k∑

i=1

a(ξi)x,

where ξi is the arc in Zk connecting a4i−3 and a4i−1.

Proof. This is a simple computation from the definitions. Note that the

domains of holomorphic curves contributing to the differential on ĈFD(Hk)

must be connected. It follows that the curves appearing here are simply copies

of the curves occurring in the differential on ĈFD(H1). These, in turn, were

already studied in Section 3.4. �

6.3. The DD Identity

Let I denote the identity arced cobordism of F (Z). As a warm-up to com-

puting the bimodules associated to arc-slides we compute the bimodule

ĈFDD(I). The standard bordered Heegaard diagram H(I) for the identity
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Fig. 27. Heegaard diagram for the identity map. This is a Heegaard diagram for the
identity cobordism of the genus two surface with antipodal matching, as indicated by the
arcs to the left of the diagram. To the left and the right of the diagram, we have also

indicated a pair of complementary idempotents, along with its unique extension into the
diagram as a generator for the complex. This figure is [31, Figure 13]

cobordism (for a particular choice of Z) is illustrated in Figure 27. Inspecting

the diagram, one has two immediate observations:

(1) Recall that indecomposable idempotents of A(Z) correspond to sub-

sets of the matched pairs in Z . There is an obvious bijection be-

tween matched pairs in Z and matched pairs in −Z . With respect

to this bijection, the generators of ĈFDD(I) correspond one-to-one

with pairs of indecomposable idempotents I(s)⊗I(t) ∈A(Z)⊗A(−Z)
with s ∩ t = ∅. We call such pairs complementary idempotents. (The

set of complementary idempotents is also in bijection with the set of

idempotents of A(Z), of course.)
Given a pair of complementary idempotents I ⊗ I ′ let xI,I′ denote

the corresponding generator of ĈFDD(I).

(2) Any domain in H(I) has the same multiplicities at the two bound-

aries of H(I). Any basic element of A(Z) has an associated support

in H1(Z \ {z},a); let [ξ] denote the support of ξ. It follows that if

(ξ⊗ ξ′)⊗xJ,J ′ occurs in ∂(xI,I′) then [ξ] = [ξ′] (in the obvious sense).

Formalizing the above, let the diagonal subalgebra of A(Z) ⊗ A(−Z)
denote the subalgebra with basis

{

(I · ξ · J)⊗
(

I ′ · ξ′ · J ′) | [ξ] = [ξ′],
(

I, I ′
)

complementary,
(

J,J ′) complementary
}

.
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Proposition 6.7. The diagonal subalgebra has a Z-grading gr with the

following properties:

(1) The grading gr respects the differential algebra structure, i.e., for ho-

mogeneous elements a and b, gr(ab) = gr(a) + gr(b) and gr(d(a)) =

gr(a)− 1.

(2) The differential on ĈFDD(I) is homogeneous of degree −1 with respect

to gr.

(3) The standard basis elements for the diagonal subalgebra are homoge-

neous with respect to gr.

(4) If a ∈A is homogeneous then gr(a)≤ 0.

(5) If gr(a) = 0 then a is an idempotent.

(6) If gr(a) =−1 then a is a linear combination of chords, i.e., elements

of the form a(ρ)⊗ a′(ρ) where ρ is a single chord in Z . (Here, a′(ρ)
denotes the element of A(−Z) associated to the chord ρ.)

Sketch of proof. There are at least two ways to go about this proof.

One is to show that any element of the diagonal algebra can be factored

as a product of chords, and the length of the factorization is unique. (This

is the approach taken in [31, Section 3].) Another approach is to observe

that there is a dg algebra with properties (1) and (2) associated to any type

DD bimodule (or type D module); we call this the coefficient algebra [31,

Sections 2.3.4 and 2.4.3]. In the case of ĈFDD(I), the coefficient algebra is

exactly the diagonal subalgebra. Verifying the remaining properties above is

then a fairly simple computation. (This is the approach taken for arc-slide

bimodules in [31, Section 4].) �

Corollary 6.8. If (a⊗ b)⊗ xJ,J ′ occurs in ∂(xI,I′) then a⊗ b is a linear

combination of chords a(ρi)⊗ a(ρ′i).

Let Chord(Z) denote the set of all chords for Z .

Theorem 6.9. As a bimodule, ĈFDD(I) is given by

ĈFDD(I) =
⊕

(I⊗I′) complementary

(

A(Z) · I
)

⊗F2

(

A(−Z) · I ′
)

⊗ xI,I′ .
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Fig. 28. Illustration of the inductive step in the proof of Theorem 6.9. We want to show

the term on the left occurs in ∂ on ĈFDD(I). The term on the far right occurs in ∂2, by
induction on the length of the chords involved. The only other contribution to ∂2 which
could cancel it is the differential of the term on the left. (The differential of the term on

the left also has other terms, not shown)

The differential of xI,I′ is given by

∂(xI,I′) =
∑

(J,J ′)

∑

ρ∈Chord(Z)

[(

I · a(ρ) · J
)

⊗
(

I ′ · a′(ρ) · J ′)]⊗ xJ,J ′ .

In other word, every term permitted by Corollary 6.8 to occur in ∂(xI,I′) does

occur.

Sketch of proof. All that remains is to show that every term of the form

[(I · a(ρ) · J)⊗ (I ′ · a′(ρ) · J ′)]⊗ xJ,J ′ does occur in ∂xI,I′ . The argument is

by induction on the support to ρ. The base case is when ρ has length 1.

In this case, the corresponding domain in H(I) is a hexagon, so it follows

from the Riemann mapping theorem that there is a holomorphic representa-

tive.

The rest of the induction argument is illustrated in Figure 28. In words,

suppose ρ has length bigger than 1, and suppose there is a position a ∈ a so

that:

• a lies in the interior of ρ and

• the matched pair containing a is in the idempotent I .

Let ρ1 be the chord from the start of ρ to the point a and let ρ2 be the

chord from a to the end of ρ. By induction, ∂2(xI,I′) contains a term of the

form [(I · a(ρ2)a(ρ1)J) ⊗ (I ′ · a′(ρ) · J ′)] ⊗ xJ,J ′ ; this term comes from the



Notes on Bordered Floer Homology 349

sequence

xI,I′
∂−→

[(

I · a(ρ2)
)

⊗
(

I ′ · a′(ρ2)
)]

⊗ xK,K′

∂−→
[(

I · a(ρ2)a(ρ1)
)

⊗
(

I ′ · a′(ρ2)a′(ρ1)
)]

⊗ xJ,J ′

=
[(

I · a(ρ2)a(ρ1)
)

⊗
(

I ′ · a′(ρ)
)]

⊗ xJ,J ′ .

The only term in ∂2(xI,I′) which could cancel this one is [(I · ∂a(ρ) · J) ⊗
(I · a′(ρ) · J ′)]⊗ xJ,J ′ . Thus, since ∂2 = 0, the term [(I · a(ρ) · J)⊗ (I · a′(ρ) ·
J ′)]⊗ xJ,J ′ must occur in ∂(xI,I′).

If there is a position a in the interior of ρ occupied in the idempotent

I ′ then a similar argument, with the left and right sides reversed, gives the

result. The only other case is that of length three chords in which both of

the interior positions are matched to the endpoints. We call such chords

special length 3 chords in [31]. There are various ways to handle this case.

A somewhat indirect argument is given in the proof of [31, Theorem 1]. One

can also prove the result in this case by a direct computation, as in the proof

of [29, Proposition 10.1]. �

Remark 6.10. The bimodule ĈFDD(I) exhibits a kind of duality between

the algebras A(Z) and A(−Z), called Koszul duality. See, for instance, [32,

Section 8].

6.4. Underslides

To explain the bimodule ĈFDD associated to an arc-slide we first divide

the arc-slides into two classes: underslides and overslides. Specifically, with

notation as in Definition 6.2, Z \C has two connected components. One of

these components contains the basepoint z; call that component Zz . Then

an arc-slide is an overslide if b1 ∈ Zz , and is an underslide if b1 �∈ Zz . So, in

Figure 22, the example on the left is an overslide while the example on the

right is an underslide.

It turns out that the bimodules for underslides are a little simpler, so we

will focus on this case, referring the reader to [31, Section 4.5] for the overslide

case. So, let ψ : Z → Z ′ be an underslide and Mψ the associated mapping

cylinder. To describe ĈFDD(Mψ) we need two more pieces of terminology:

Definition 6.11. There is an obvious bijection between matched pairs of Z
(i.e., 1-handles of F (Z)) and matched pairs of Z ′ (i.e., 1-handles of F (Z)).
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Fig. 29. Near-chords for under-slides

With notation as in Definition 6.2, a pair of indecomposable idempotents

I(s)⊗ I(s′) ∈A(Z)⊗A(−Z ′) are called near-complementary if either:

• s is complementary to s′ or

• s ∩ t consists of the matched pair of the feet of C, while s ∪ t contains

all the matched pairs except for the pair of feet of B.

Definition 6.12. A near-chord for the underslide ψ is an algebra element

of the form a(ξ)⊗ a′(ξ′) where ξ (respectively ξ′) is a collection of chords in

Z (respectively −Z ′) of one of the forms (U-1)–(U-6) shown in Figure 29.

Let NChord(ψ) denote the set of near-chords for ψ.

(See [31, Definition 4.17] for a more detailed description of the types

(U-1)–(U-6) of near-chords.)

Theorem 6.13. The bimodule ĈFDD(Mψ) has one generator xI,I′ for each

near-complementary pair of idempotents I⊗ I ′; and xI,I′ = (I⊗ I ′) ·xI,I′ . (In

other words, as a module ĈFDD(Mψ)∼=
⊕

I⊗I′ near complementary(A(Z) · I)⊗
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(A(−Z ′) · I ′).) The differential on ĈFDD(Mψ) is given by

∂(xI,I′)

=
∑

(J,J ′)
near-complementary

∑

(ξ,ξ′)∈NChord(ψ)

[(

I · a(ξ) · J
)

⊗
(

I ′ · a′
(

ξ′
)

· J ′)]⊗ xJ,J ′ .

Sketch of proof. The proof is similar to, though more involved than, the

proof of Theorem 6.9. There is an analogue of the diagonal algebra, called

the near-diagonal algebra, admitting a Z-grading satisfying analogous prop-

erties to Proposition 6.7. In particular, the near-chords are exactly the basic

elements in grading −1. So, it only remains to show that every near-chord

occurs in the differential. This follows from an inductive argument similar to

the proof of Theorem 6.9. For short near-chords—near chords of type (U-2)

and minimal-length near-chords of types (U-1) and (U-4)—it follows from

the Riemann mapping theorem that the chords occur in the differential. The

existence of other near-chords follows by a (somewhat complicated) induction

on the support, using only the fact that ∂2 = 0. �

We do not discuss the case of overslides, which are more complicated

than underslides. At the heart of the complication is the fact that, for over-

slides, the coefficient algebra contains non-idempotent elements in grading 0

(whereas in the underslide case, all non-idempotent elements have negative

grading). While in the underslide case, every element in grading −1 appears

as a coefficient in the differential, in the overslide case which grading −1 ele-

ments appear depends on a choice. Nonetheless, the index zero elements can

be used to induce maps between bimodules associated to the various choices,

and a somewhat weaker analogue of Theorem 6.13 holds: the overslide bimod-

ule can be computed explicitly after some combinatorial choices are made,

and the homotopy type of the answer is independent of those combinatorial

choices. The interested reader is referred to [32, Proposition 4.35].

6.5. Exercises

Exercise 6.1. Verify the type DD bimodule for the identity cobordism of

the torus given in Exercise 3.4 agrees with the answer given by Theorem 6.9.

Exercise 6.2. Verify that the bimodules from Exercise 3.6 agree with the

bimodules given by Theorem 6.13. (Note that one can view each of these

Dehn twists as an underslide.)
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Exercise 6.3. Extend the algorithm above to compute ĈFD(Y ) for any

bordered 3-manifold Y .
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[22] Ç. Kutluhan, Y.-J. Lee, C.H. Taubes, HF=HM IV: The Seiberg-Witten Floer homol-
ogy and ech correspondence (2011). arXiv:1107.2297
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[38] C. Manolescu, P.S. Ozsváth, Z. Szabó, D.P. Thurston, On combinatorial link Floer
homology. Geom. Topol. 11, 2339–2412 (2007). arXiv:math.GT/0610559
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[50] P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-
manifolds. Adv. Math. 202(2), 326–400 (2006). arXiv:math.SG/0110169
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1. The Topology of Stein Manifolds

Throughout this article, (V,J) denotes a smooth manifold (without bound-

ary) of real dimension 2n equipped with an almost complex structure J ,

i.e., an endomorphism J : TV → TV satisfying J2 = −id. The pair (V,J)

is called an almost complex manifold. It is called a complex manifold if the

almost complex structure J is integrable, i.e., J is induced by complex coordi-

nates on V . By the theorem of Newlander and Nirenberg [24], a (sufficiently

smooth) almost complex structure J is integrable if and only if its Nijenhuis

tensor

N(X,Y ) := [JX,JY ]− [X,Y ]− J [X,JY ]− J [JX,Y ], X,Y ∈ TV,

vanishes identically. An integrable almost complex structure is called a com-

plex structure. A complex manifold (V,J) is called Stein if it admits a proper

holomorphic embedding into some CN . Note that, due to the maximum prin-

ciple, every Stein manifold is open, i.e., it has no compact components.

By a theorem of Grauert, Bishop and Narasimhan [2, 13, 23], a complex

manifold (V,J) is Stein if and only if it admits a smooth function φ : V →R

which is

• exhausting, i.e., proper and bounded from below, and

• J -convex (or strictly plurisubharmonic), i.e., −ddCφ(v,Jv) > 0 for all

0 �= v ∈ TV , where dCφ := dφ ◦ J .

F. Bourgeois et al. (eds.), Contact and Symplectic Topology,
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Note that the second condition means that ωφ :=−ddCφ is a symplectic form

compatible with J . Note also that the “only if” follows simply by restrict-

ing the i-convex function φ(z) = |z|2 on C
N (where i denotes the standard

complex structure) to a properly embedded complex submanifold. Here are

some examples of Stein manifolds.

(1) (Cn, i) is Stein, and properly embedded complex submanifolds of Stein

manifolds are Stein.

(2) If X is a closed complex submanifold of some projective space CPN

and H ⊂CPN is a hyperplane, then X \H is Stein.

(3) All open Riemann surfaces are Stein.

(4) If φ : V →R is J -convex, then so is f ◦ φ for any smooth function f :

R→R with f ′ > 0 and f ′′ ≥ 0 (such f will be called a convex increasing

function). Given an exhausting J -convex function φ : V →R and any

c ∈R, we can pick a diffeomorphism f : (−∞, c)→R with f ′ > 0 and

f ′′ ≥ 0; then f ◦ φ is an exhausting J -convex function {φ < c} → R,

hence the sublevel set {φ < c} is Stein.

(5) Any strictly convex smooth function φ : Cn → R is i-convex. As a

consequence, using (4), all convex open subsets of Cn are Stein.

(6) Let L ⊂ V be a properly embedded totally real submanifold, i.e., L

has real dimension n and TxL ∩ J(TxL) = {0} for all x ∈ L. Then

the squared distance function dist2L : V → R from L with respect to

any Hermitian metric on V is J -convex on a neighbourhood of L. As

a consequence, L has arbitrarily small Stein tubular neighbourhoods

in V (which by (4) can be taken as sublevel sets {dist2L < ε} if L is

compact, but are more difficult to construct if L is noncompact).

Problem 1.1. 1 Prove (1), (2), and the first statements in (4), (5), (6).

Problem 1.2. A quadratic function φ(z1, . . . , zn) =
∑n

j=1(ajx
2
j + bjy

2
j ) on

C
n with coordinates zj = xj + iyj is i-convex if and only if aj + bj > 0 for

all j = 1, . . . , n. A smooth function φ :C→R is i-convex iff Δφ> 0, i.e., φ is

strictly subharmonic.

Problem 1.3. For an almost complex manifold (V,J) define ωφ :=−d(dφ ◦
J) as in the integrable case. Then ωφ(·, J ·) is symmetric for every function

φ : V →R if and only if J is integrable.

1“Problems” in this survey are meant to be reasonably hard exercises for the reader.
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Let us now turn to the following question: Which smooth manifolds V

admit the structure of a Stein manifold?

Clearly, one necessary condition is the existence of a (not necessarily

integrable) almost complex structure on V . This is a topological condition

on the tangent bundle of V which can be understood in terms of obstruction

theory. For example, the odd Stiefel-Whitney classes of TV must vanish and

the even ones must have integral lifts.

A second necessary condition arises from Morse theory. Recall that a

smooth function φ : V → R is called Morse if all its critical points are non-

degenerate, and the Morse index ind(p) of a critical point p is the maximal

dimension of a subspace of TpV on which the Hessian of φ is negative definite.

The following simple observation, due to Milnor and others, is fundamental

for the topology of Stein manifolds.

Lemma 1.4. The Morse index of each nondegenerate critical point p of a

J-convex function φ : V →R satisfies

ind(p)≤ n= dimC V.

Proof. 2 Suppose ind(p)> n. Then there exists a complex line L⊂ TpV on

which the Hessian of φ is negative definite. Pick a small embedded complex

curve C ⊂ V through p in direction L. Then φ|C has a local maximum at p,

which contradicts the maximum principle because Δ(φ|C)> 0. �

This lemma imposes strong restrictions on the topology of Stein man-

ifolds: Consider a Stein manifold (V,J) with exhausting J -convex function

φ : V → R. After a C2-small perturbation (which preserves J -convexity) we

may assume that φ is Morse. Thus, by Lemma 1.4 and Morse theory, V is

obtained from a union of balls by attaching handles Dk ×D2n−k
ε of indices

k ≤ n. In particular, all homology groups Hi(V ;Z) with i > n vanish. Sur-

prisingly, for n > 2 these two necessary conditions are also sufficient for the

existence of a Stein structure:

Theorem 1.5 ([10]). A smooth manifold V of real dimension 2n > 4 admits

a Stein structure if and only if it admits an almost complex structure J and

an exhausting Morse function φ without critical points of index > n. More

2“Proofs” in this survey are only sketches of proofs; for details see [7].
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precisely, J is homotopic through almost complex structures to a complex

structure J ′ such that φ is J ′-convex.

The idea of the proof is the following: Pick a sequence r0 < r1 < r2 < · · ·
of regular values of φ with r0 <minφ, ri→∞, and such that each interval

(ri, ri+1) contains at most one critical value of φ. By Morse theory, each sub-

level set Wi := {φ≤ ri} is obtained from Wi−1 by attaching a finite number

of disjoint handles of index ≤ n. Proceeding by induction over i, suppose

that on Wi−1, J is already integrable and φ is J -convex. Then for each k ≤ n
we need to

(i) extend J to a complex structure over a k-handle, and

(ii) extend φ to a J -convex function over a k-handle.

The first step is based on h-principles and will be explained in Section 3. The

second step requires the construction of certain J -convex model functions on

a standard handle and will be explained in Section 2.

2. Constructions of J-Convex Functions

The goal of this section it to construct the J -convex model functions needed

for the proof of Theorem 1.5. We begin with some preparations.

J -Convex Hypersurfaces. Consider a smooth hypersurface (of real

codimension one) Σ in a complex manifold (V,J). Each tangent space

TpΣ ⊂ TpV , p ∈ Σ, contains the unique maximal complex subspace ξp =

TpΣ ∩ J(TpΣ)⊂ TpΣ. These subspaces form a codimension one distribution

ξ ⊂ TΣ, the field of complex tangencies. Suppose that Σ is cooriented by a

transverse vector field ν to Σ in V such that Jν is tangent to Σ. The hyper-

plane field ξ can be defined by a Pfaffian equation {α= 0}, where the sign

of the 1-form α is fixed by the condition α(Jν)> 0. The 2-form ωΣ := dα|ξ ,
called the Levi form of Σ, is then defined uniquely up to multiplication by

a positive function. The cooriented hypersurface Σ is called J -convex (or

strictly Levi pseudoconvex) if ωΣ(v,Jv)> 0 for each nonzero v ∈ ξ.

Problem 2.1. Each regular level set of a J -convex function is J -convex

(where we always coorient level sets of a function by its gradient). Conversely,

if φ : V → R is a smooth function without critical points all of whose level
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sets are compact and J -convex, then there exists a convex increasing function

f :R→R such that f ◦ φ is J -convex.

Thus, up to composition with a convex increasing function, proper J -

convex functions are the same as J -lc functions (“lc” stands for “level con-

vex”), i.e., functions that are J -convex near the critical points and have

compact J -convex level sets outside a neighbourhood of the critical points.

Problem 2.2. Let φ : V → R be an exhausting J -convex function. Then

for every convex increasing function f : R→ R with limy→∞ f ′(y) =∞ the

gradient vector field ∇f◦φ(f ◦ φ) is complete, i.e., its flow exists for all time.

Continuous J -Convex Functions. We will need the notion of J -convex-

ity also for continuous functions. To derive this, recall that i-convexity of a

function φ : U →R on an open subset U ⊂C is equivalent to Δφ> 0.

Problem 2.3. A smooth function φ : U →R on an open subset U ⊂C sat-

isfies Δφ(z) ≥ ε > 0 at z ∈ U if and only if it satisfies for each sufficiently

small r > 0 the mean value inequality

(1) φ(z) +
εr2

4
≤ 1

2π

∫ 2π

0
φ
(

z + reiθ
)

dθ.

Since inequality (1) does not involve derivatives of φ, we can take it as

the definition of i-convexity for a continuous function φ : C ⊃ U → R, and

hence via local coordinates for a continuous function on a complex curve

(note however that the value ε depends on the local coordinate). Finally, we

call a continuous function φ : V → R on a complex manifold J -convex if its

restriction to every embedded complex curve C ⊂ V is J -convex. With this

definition, we have

Lemma 2.4. The maximum max(φ,ψ) of two continuous J-convex func-

tions is again J-convex.

Proof. After restriction to complex curves it suffices to consider the case

φ,ψ :C⊃ U →R. Then the mean value inequalities for φ and ψ,

φ(z) +
εφr

2

4
≤ 1

2π

∫ 2π

0
φ
(

z + reiθ
)

dθ ≤ 1

2π

∫ 2π

0
max(φ,ψ)

(

z + reiθ
)

dθ,

ψ(z) +
εψr

2

4
≤ 1

2π

∫ 2π

0
ψ
(

z + reiθ
)

dθ ≤ 1

2π

∫ 2π

0
max(φ,ψ)

(

z + reiθ
)

dθ



362 K. Cieliebak and Y. Eliashberg

combine to the mean value inequality for max(φ,ψ),

max(φ,ψ)(z) +
min(εφ, εψ)r

2

4
≤ 1

2π

∫ 2π

0
max(φ,ψ)

(

z + reiθ
)

dθ. �

Smoothing of J -Convex Functions. Continuous J -convex functions are

useful for our purposes because of

Proposition 2.5 (Richberg [25]). Every continuous J-convex function on

a complex manifold can be C0-approximated by smooth J-convex functions.

Proof. The proof is based on an explicit smoothing procedure for functions

on C
n. Fix a smooth nonnegative function ρ : Cn→ R with support in the

unit ball and
∫

Cn ρ= 1. For δ > 0 set ρδ(x) := δ−2nρ(x/δ). For a continuous

function φ :Cn→R define the “mollified” function φδ :C
n→R,

(2) φδ(x) :=

∫

Cn

φ(x− y)ρδ(y)d2ny =
∫

Cn

φ(y)ρδ(x− y)d2ny.

The last expression shows that the functions φδ are smooth for every δ > 0,

and the first expression shows that φδ → φ as δ→ 0 uniformly on compact

subsets. Moreover, if φ is i-convex, then the mean value inequality for φ

yields for all x,w ∈C with |w| sufficiently small

φδ(x) +
1

4
ε|w|2 =

∫

Cn

(

φ(x− y) + 1

4
ε|w|2

)

ρδ(y)d
2ny

≤
∫

Cn

1

2π

∫ 2π

0
φ
(

x− y+weiθ
)

dθρδ(y)d
2ny

=
1

2π

∫ 2π

0
φδ

(

x+weiθ
)

dθ,

so φδ is i-convex. This proves the proposition on C
n. The manifold case

follows from this by a patching argument. �

We will need four corollaries of Proposition 2.5. The first one is just

combining it with Lemma 2.4:

Corollary 2.6 (maximum construction for functions). The maximum

max(φ,ψ) of two smooth J-convex functions can be C0-approximated by

smooth J-convex functions. �
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Fig. 1. Construction of the function ϑ3

We will denote a smooth approximation of max(φ,ψ) by

smoothmax(φ,ψ). This is a slight abuse of notation because such an ap-

proximation is not unique; it is somewhat justified by the fact that the

approximation can be chosen smoothly in families.

Corollary 2.7 (interpolation near a totally real submanifold). Let L be a

compact totally real submanifold of a complex manifold (V,J). Let φ,ψ : V →
R be two smooth J-convex functions such that φ(x) = ψ(x) and dφ(x) =

dψ(x) for all x ∈ L. Then, given any neighborhood U of L, there exists a

smooth J-convex function ϑ : V → R which coincides with φ outside U and

with ψ in a smaller neighborhood of L.

Proof. For the construction, see Figure 1. Shrink U so that ρ := dist2L :

U →R is smooth and J -convex and U = {ρ < ε}. Since φ and ψ agree to first

order along L, we find an a > 0 such that φ+ aρ > ψ on U \ L. An explicit

computation shows that we can find a J -convex function φ̄= φ+ f(ρ) which

agrees with φ outside U and with φ+aρ on {ρ < δ} for some δ < ε. Perturb φ̄

inside {ρ < δ} to a J -convex function φ̂ with φ̂ < ψ near L. Then the desired

function ϑ is given by smoothmax(ψ, φ̂) on {ρ < δ}, and φ̂ outside. �

Corollary 2.8 (minimum construction for hypersurfaces). Let Σ,Σ′ be two

compact J-convex hypersurfaces in a complex manifold (V =M ×R, J) that

are given as graphs of smooth functions f, g :M → R and cooriented from

below. Then there exists a C0-close smooth approximation of min(f, g) whose

graph Σ′′ is J-convex.

3This figure, and all further figures of this Chapter have been taken from our book [7] with
the permission of the American Mathematical Society.
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Proof. The functions φ(x, y) := y − f(x) and ψ(x, y) := y − g(x) have J -

convex zero sets Σ = φ−1(0) and Σ′ = ψ−1(0). Note that the zero set of

max(φ,ψ) = y − min(f, g)(x) is the graph of the function min(f, g). Now

pick a convex increasing function h : R→ R with h(0) = 0 such that h ◦ φ
and h ◦ ψ are J -convex near Σ resp. Σ′, and define Σ′′ as the zero set of

smoothmax(h ◦ φ,h ◦ψ). �

Corollary 2.9 (from families of hypersurfaces to foliations). Let (M ×
[0,1], J) be a compact complex manifold. Suppose there exists a smooth family

of J-convex graphs (cooriented from below) Σλ = {y = fλ(x)}, λ ∈ [0,1], with

Σ0 =M × {0} and Σ1 =M × {1}. Then there exists a smooth foliation of

M × [0,1] by J-convex graphs Σ̃λ = {y = f̃λ(x)} λ ∈ [0,1], with Σ̃0 =M ×{0}
and Σ̃1 =M × {1}.

Proof. By a family version of Corollary 2.8, the continuous functions

f̄λ := minμ≥λ fμ can be C0-approximated by smooth functions gλ :M → [0,1]

whose graphs {y = gλ(x)} are J -convex. Since f̄λ ≤ f̄λ′ for λ≤ λ′, this can be

done in such a way that gλ ≤ gλ′ for λ≤ λ′. So the graphs of gλ almost form

a foliation, and stretching them slightly in the y-direction yields the desired

foliation. �

Open Question. Does an analogue of Proposition 2.5, or at least of Corol-

lary 2.6, hold for non-integrable J? If this were true, then a lot of the theory

in these notes would work in the non-integrable case.

J -Convex Model Functions. Let us fix integers 1≤ k ≤ n. Consider Cn

with complex coordinates zj = xj + iyj , j = 1, . . . , n, and set

R :=

√
√
√
√

k∑

j=1

x2j , r :=

√
√
√
√

n∑

j=k+1

x2j +

n∑

j=1

y2j .

Fix some a > 1 and define the standard i-convex function

Ψst(r,R) := ar2 −R2.

For small γ > 0, we will use

Hγ := {r ≤ γ, R≤ 1 + γ}

as a model for a complex k-handle. Its core disk is the totally real k-disk

{r = 0, R≤ 1+γ} and it will be attached to the boundary of a Stein domain
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Fig. 2. The function Ψ

along the set {r ≤ γ, R = 1 + γ}. The following theorem will allow us to

extend a J -convex function over the handle.

Theorem 2.10. For each 0< γ < 1< a there exists an i-lc function Ψ(r,R)

on Hγ with the following properties (see Figure 2):

(i) Ψ = Ψst near ∂Hγ ;

(ii) Ψ has a unique index k critical point at the origin;

(iii) the level set Σ = {Ψ =−1} surrounds the core disk in the sense that

{r = 0, R≤ 1 + γ} ⊂ {Ψ <−1}.

Proof. Step 1. The first task is the construction of the hypersurface Σ.

Let us write Σ as a graph R = φ(r), which we allow to become vertical

at r = δ. One can work out the condition for i-convexity of Σ (cooriented

from above), which becomes a rather complicated system of second order

differential inequalities for φ. However, it turns out that if φ > 0, φ′ > 0, and

φ′′ ≤ 0, the following simpler condition is sufficient for i-convexity:

(3) φ′′ +
φ′3

r
− 1

φ

(

1 + φ′2
)

> 0.



366 K. Cieliebak and Y. Eliashberg

Fig. 3. A solution of Struwe’s differential equation

Step 2. To construct solutions of (3), we follow a suggestion by

M. Struwe. We will find the function φ as a solution of Struwe’s equation

(4) φ′′ +
φ′3

2r
= 0,

with φ′ > 0 and hence φ′′ < 0. Then (3) reduces to

(5)
φ′3

2r
− 1

φ

(

1 + φ′2
)

> 0.

Now Struwe’s equation can be solved explicitly: It is equivalent to

(
1

φ′2

)′
=−2φ′′

φ′3
=

1

r
,

thus 1/φ′2 = ln(r/δ) for some constant δ > 0, or equivalently, φ′(r) =
1/

√

ln(r/δ). By integration, this yields a solution φ(r) for r ≥ δ which is

strictly increasing and concave and satisfies φ′(δ) = +∞. Choosing the re-

maining integration constant appropriately, we find a solution φ : [δ,Kδ]→R

which satisfies (5) and looks as shown in Figure 3. Here d > 0 can be chosen

arbitrarily and Kδ can be made arbitrarily small.

Step 3. Smoothing the maximum of the function φ from Step 2 and

the linear function L(r) = 1+ dr yields an i-convex hypersurface which sur-

rounds the core disk and agrees with {R = L(r)} for r ≥Kδ. To finish the

construction of the hypersurface Σ in Theorem 2.10, we still need to interpo-

late between L(r) and the function S(r) =
√
1 + ar2 whose graph is the level
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set {Ψst(r,R) = ar2−R2 =−1}. Unfortunately, this cannot be done directly

with the maximum construction because the graph of L ceases to define an

i-convex hypersurface before it intersects the graph of S. The solution is to

interpolate from L to a quadratic function Q(r) = 1 + br + cr2/2 and from

there to S. The details are rather involved due to the fact that the simple

sufficient condition (3) fails and one needs to invoke the full necessary and

sufficient condition to ensure i-convexity during this interpolation.

Step 4. In Step 3 we constructed the level set Σ as a graph {R= φ(r)}.
To construct the i-lc function Ψ :Hγ →R, in view of Corollary 2.9 it suffices

to connect Σ on both sides to level sets of Ψst by a smooth family of i-

convex graphs. Towards larger R this is a simple application of the maximum

construction, whereas towards smaller R it requires 1-parametric versions of

the constructions in Steps 1–3. This proves Theorem 2.10. �

3. Existence of Stein Structures

In this section we prove the Existence Theorem 1.5.

Step 1: Extension of complex structures over handles. Consider an

almost complex cobordism (W,J) of complex dimension n ≥ 1 such that

J is integrable near ∂−W , and ∂−W is J -convex when cooriented by an in-

ward pointing vector field. For k ≤ n consider an embedding f : (Dk, ∂Dk) ↪→
(W,∂−W ), where Dk ⊂R

k ⊂C
n is the closed unit disk.

Proposition 3.1. The almost complex structure J is homotopic rel

Op(∂−W ) to one which is integrable near f(Dk).

Proof. After trivializing the relevant bundles, the differential of f defines

a map

df :
(

Dk, ∂Dk
)

→ (V2n,k, V2n−1,k−1),

where Vm,� is the Stiefel manifold of �-frames in R
m. Let V C

m,� ⊂ V2m,� be the

Stiefel manifold of complex �-frames in C
m, or equivalently, of totally real

�-frames in R
2m.

Problem 3.2. For each n≥ 1 and k ≤ n, the map

πk
(

V C

n,k, V
C

n−1,k−1

)

→ πk(V2n,k, V2n−1,k−1)

induced by the obvious inclusions is surjective.
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Thus there exists a homotopy Ft : (D
k, ∂Dk)→ (V2n,k, V2n−1,k−1) from

F0 = df to some F1 : (D
k, ∂Dk)→ (V C

n,k, V
C

n−1,k−1). Now a relative version

of Gromov’s h-principle for totally real embeddings [11, 15] yields an iso-

topy of embeddings ft : (D
k, ∂Dk) ↪→ (W,∂−W ) from f0 = f to a totally real

embedding f1.

By a further isotopy we can achieve that f1|∂Dk is real analytic. We

complexify f1|∂Dk to a holomorphic embedding from a neighbourhood of

∂Dk in C
n into a slight extension W̃ of W past ∂−W , and then extend it to

an embedding f̃1 :D
k ×D2n−k

ε ↪→ W̃ which agrees with f1 on Dk =Dk × 0

and whose differential is complex linear along Dk. The push-forward (f̃1)∗i

of the standard complex structure i on Dk×D2n−k
ε ⊂C

n agrees with J on a

neighbourhood of f1(∂D
k) (since f̃1 is holomorphic there) and at points of

f1(D
k). Thus we can extend (f̃1)∗i to an almost complex structure J̃ on W

which coincides with J near ∂−W and outside a neighbourhood of f1(D
k) and

is integrable near f1(D
k). An application of the isotopy extension theorem

now yields the desired almost complex structure which coincides with J near

∂−W and is integrable near the original disk f(Dk). �

By induction over the handles, Proposition 3.1 yields the following special

case of the Gromov–Landweber theorem:

Corollary 3.3 (Gromov [14], Landweber [18]). Let (V,J) be an almost com-

plex manifold of complex dimension n≥ 1 which admits an exhausting Morse

function φ : V →R without critical points of index > n. Then J is homotopic

to an integrable complex structure.

Step 2: Extension of J -convex functions over handles. Consider again

(W,J) and f : (Dk, ∂Dk) ↪→ (W,∂−W ) as in Step 1. After applying Propo-

sition 3.1 we may assume that J is integrable near Δ := f(Dk). After real

analytic approximation and complexification, we may assume that f extends

to a holomorphic embedding F :Hγ ↪→ W̃ , where Hγ is the standard handle

Dk
1+γ ×D2n−k

γ ⊂C
n and W̃ is a slight extension of W past ∂−W .

Let φ be a given J -convex function near ∂−W = {φ=−1}. To finish the

proof of Theorem 1.5, we need to extend φ to a J -convex function φ̃ on a

neighbourhood of Δ whose level set {φ̃=−1} coincides with ∂−W outside a

neighbourhood of ∂Δ and surrounds f(Dk) in W as shown in Figure 4.

Equivalently, we need to extend F ∗φ to an i-convex function Ψ on Hγ

whose level set {Ψ =−1} coincides with {F ∗φ=−1} near ∂Hγ and surrounds
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Fig. 4. Surrounding a J -orthogonally attached totally real disk

Dk in Hγ . According to Theorem 2.10 in the previous section, this can be

done if we can arrange that F ∗φ equals the standard function Ψst(r,R) =

ar2 −R2 near ∂Dk.

To analyze the last condition, note that the n-disk Dn meets the level set

{Ψst =−1} i-orthogonally along ∂Dn in the sense that i(TxD
n)⊂ TxΣ for all

x ∈ ∂Dn. Conversely, suppose that Dn is i-orthogonal to the level set {F ∗φ=

−1} along ∂Dk. Then F ∗φ and Ψst have the same kernel Tx∂D
n ⊕ i(TxDn)

at x ∈ ∂Dk. After rescaling we may assume that F ∗φ agrees with Ψst to first

order along ∂Dk, so by Corollary 2.7 we can deform F ∗φ to make it coincide

with Ψst near ∂D
k.

The preceding discussion shows that it suffices to arrange that F (Dn ∩
Hγ) is J -orthogonal to ∂−W along ∂Δ= f(∂Dk). This can be arranged by

appropriate choice of the extension F provided that Δ is J -orthogonal to

∂−W along ∂Δ. Note that a necessary condition for this is JTx∂Δ⊂ Tx∂−W
for x ∈ ∂Δ, which means that ∂Δ is isotropic for the contact structure ξ =

T∂−W ∩J(T∂−W ) on ∂−W . Conversely, if this condition holds it is not hard

to arrange J -orthogonality. So we have reduced the proof of Theorem 1.5 to

Proposition 3.4. Consider an almost complex cobordism (W,J) of complex

dimension n such that J is integrable near ∂−W , and ∂−W is J-convex when

cooriented by an inward pointing vector field. If n > 2, then any embedding

f : (Dk, ∂Dk) ↪→ (W,∂−W ), k ≤ n, is isotopic to one which is totally real on

Dk and isotropic on ∂Dk.
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The remainder of this section is devoted to the proof of this proposition.

The subcritical case. Recall from Step 1 that there exists a homotopy

Ft : (D
k, ∂Dk)→ (V2n,k, V2n−1,k−1) from F0 = df to some F1 : (D

k, ∂Dk)→
(V C

n,k, V
C

n−1,k−1). Restricting it to the boundary provides a homotopy Gt =

Ft|∂Dk : ∂Dk → V2n−1,k−1 from G0 = df |∂Dk to some G1 : ∂D
k → V C

n−1,k−1.

Now Gromov’s h-principle for isotropic immersions [11, 15] yields a homo-

topy of immersions gt : ∂D
k→ ∂−W from g0 = f |∂Dk to an isotropic immer-

sion g1 together with a 2-parameter family of maps Gs
t : ∂D

k → V2n−1,k−1

satisfying G0
t = dgt, G

1
t = Gt, G

s
0 = dg0, and Gs

1 : ∂Dk → V C

n−1,k−1 for all

s, t ∈ [0,1].

If the gt can be chosen to be embeddings rather than immersions, then

the h-principle for totally real embeddings allows us to extend the gt to em-

beddings ft :D
k ↪→W with f1 totally real and the proposition follows. In the

subcritical case k < n, this can be achieved simply by a generic perturbation

of the gt (keeping g1 isotropic).

Remark 3.5. The existence of the 2-parameter family Gs
t is crucial for the

application of the h-principle for totally real embeddings. Indeed, we can

always connect g0 = f |∂Dk by embeddings gt to some isotropic embedding

g1, so if we could extend these gt to totally real embeddings Dk ↪→W we

would prove Proposition 3.4 also in the case k = n= 2 where, as we shall see

below, it is false in general.

The critical case. In the critical case k = n, we can still perturb g1 to a

Legendrian embedding, but the gt need not all be embeddings. To understand

the obstruction to this, consider the immersion

Γ : Sn−1 × [0,1]→ ∂−W × [0,1], (x, t) �→
(

gt(x), t
)

.

After a generic perturbation, we may assume that Γ has finitely many trans-

verse self-intersections and define its self-intersection index

IΓ :=
∑

p

IΓ (p) ∈
{

Z if n is even,

Z2 if n is odd

as the sum over the indices of all self-intersection points p. Here the index

IΓ (p) =±1 is defined by comparing the orientations of the two intersecting

branches of Γ to the orientation of ∂−W × [0,1]. For n even this does not de-

pend on the order of the branches and thus gives a well-defined integer, while
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Fig. 5. Stabilization of a Legendrian submanifold

for n odd it is only well-defined mod 2. By a theorem of Whitney [27], for

n > 2, the regular homotopy gt can be deformed through regular homotopies

fixed at t= 0,1 to an isotopy if and only if IΓ = 0.

So if the family gt satisfies IΓ = 0 we are done. If IΓ �= 0 we will connect

g1 to another Legendrian embedding g2 by a Legendrian regular homotopy

gt, t ∈ [1,2], whose self-intersection index equals −IΓ . The extended family

gt, t ∈ [0,2], then has self-intersection index zero, so applying the previous

argument to this family will conclude the proof.

Stabilization of Legendrian submanifolds. Consider a Legendrian sub-

manifold Λ0 in a contact manifold (M,ξ) of dimension 2n − 1. Near a

point of Λ0 pick Darboux coordinates (q1, p1, . . . , qn−1, pn−1, z) in which

ξ = ker(dz −
∑

j pjdqj) and the front projection of Λ0 is a standard cusp

z2 = q31 . Deform the two branches of the front to make them parallel over

some open ball Bn−1 ⊂R
n−1. After rescaling, we may thus assume that the

front of Λ0 has two parallel branches {z = 0} and {z = 1} over Bn−1, see

Figure 5.

Pick a non-negative function f : Bn−1 → R with compact support and

1 as a regular value, so N := {f ≥ 1} ⊂ Bn−1 is a compact manifold with

boundary. Replacing for each t ∈ [0,1] the lower branch {z = 0} by the graph

{z = tf(q)} of the function tf yields the fronts of a path of Legendrian

immersions Λt ⊂M connecting Λ0 to a new Legendrian submanifold Λ1.

Note that Λt has a self-intersection for each critical point of tf on level 1.

Problem 3.6. The Legendrian regular homotopy Λt, t ∈ [0,1], has self-

intersection index (−1)(n−1)(n−2)/2χ(N).
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Problem 3.7. For n > 2 there exist compact submanifolds N ⊂R
n−1 of ar-

bitrary Euler characteristic χ(N) ∈ Z, while for n= 2 the Euler characteristic

is always positive.

These two problems show that for n > 2 the stabilization construction

allows us find a Legendrian regular homotopy Λt, t ∈ [0,1], with arbitrary

self-intersection index. In view of the discussion above, this concludes the

proof of Proposition 3.4 and hence of Theorem 1.5.

Remark 3.8. The condition n > 2 was used twice in the proof of Proposi-

tion 3.4: for the application of Whitney’s theorem, and to arbitrarily modify

the self-intersection index by stabilization.

To illustrate the failure of Theorem 1.5 for n= 2, let us analyze for which

oriented plane bundles V → S2 the total space admits a Stein structure. Here

V is oriented by minus the orientation of the base followed by that of the

fibre. Such bundles are classified by their Euler class e(V ), which equals

minus the self-intersection number S · S ∈ Z of the zero section S ⊂ V .

We can construct each such bundle by attaching a 2-handle to the 4-ball

B4 along a topologically trivial Legendrian knot Λ⊂ (S3, ξst). Let Δ⊂B4 be

an embedded 2-disk meeting ∂B4 transversely along ∂Δ=Λ. It fits together

with the core disk D of the handle to an embedded 2-sphere S ⊂ V giving

the zero section in V . Recall that the Thurston-Bennequin invariant tb(Λ)

is defined as the linking number of Λ with a push-off Λ′ in the direction of a

Reeb vector field on (S3, ξst).

Problem 3.9. The complex structure on B4 ⊂ C
2 extends to a complex

structure on V for which the core disk D is totally real (and hence by Theo-

rem 1.5 to a Stein structure on V ) if and only if −e(V ) = S · S = tb(Λ)− 1.

In view of Bennequin’s inequality tb(Λ)≤−1, this shows that the con-

struction of Theorem 1.5 works to provide a Stein structure on V if and

only if e(V ) ≥ 2. A much deeper theorem of Lisca and Matič [19] (proved

via Seiberg-Witten theory) asserts that S · S ≤ −2 for every homologically

nontrivial embedded 2-sphere S in a Stein surface, hence V admits a Stein

structure if and only if e(V ) ≥ 2. For example, the manifold S2 × R
2 does

not admit any Stein structure.
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4. Morse-Smale Theory for J -Convex Functions

Morse-Smale theory deals with the problem of simplification of a Morse func-

tion, trying to remove as many critical points as the topology allows. One con-

sequence is the h-cobordism theorem and the proof of the higher-dimensional

Poincaré conjecture. In this section we study Morse-Smale theory for J -

convex Morse functions, resulting in a Stein version of the h-cobordism the-

orem.

The h-Cobordism Theorem. Let us begin by recalling the celebrated

Theorem 4.1 (h-cobordism theorem, Smale [26]). Let W be an h-

cobordism, i.e., a compact cobordism such that W and ∂±W are simply

connected and H∗(W,∂−W ;Z) = 0. Suppose that dimW ≥ 6. Then W car-

ries a function without critical points and constant on ∂±W .

For the proof, one considers a compact cobordism W with a Morse func-

tion φ :W → R having ∂±W as regular level sets and a gradient-like vector

field X for φ. We will refer to such (W,X,φ) as a Smale cobordism. It is

called elementary if W−
p ∩W+

q = ∅ for all critical points p �= q, where W−
p

and W+
p denotes the stable resp. unstable manifold of p with respect to X .

The key geometric ingredients in the proof of the h-cobordism theorem

are the following four geometric lemmas about modifications of Smale cobor-

disms (see [21]). The first three of them are rather simple, while the fourth

one is more difficult.

Lemma 4.2 (moving critical levels). Let (W,X,φ0) be an elementary Smale

cobordism. Then there exists a homotopy (W,X,φt) of elementary Smale

cobordisms which arbitrarily changes the ordering of the values of the critical

points.

Lemma 4.3 (moving attaching spheres). Let (W,X0, φ) be a Smale cobor-

dism and p ∈W a critical point whose stable manifold W−
p (X0) with respect

to X0 intersects ∂−W along a sphere S0 ⊂ ∂−W . Then given any isotopy

St ⊂ ∂−W , t ∈ [0,1], there exists a homotopy of Smale cobordisms (W,Xt, φ)

such that the stable manifold W−
p (Xt) intersects ∂−W along St.

Lemma 4.4 (creation of critical points). Let (W,X0, φ0) be a Smale cobor-

dism without critical points. Then for any 1≤ k ≤ dimW and any p ∈ IntW
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there exists a Smale homotopy (W,Xt, φt), t ∈ [0,1], fixed outside a neigh-

bourhood of p, which creates a pair of critical points of index k − 1 and k

connected by a unique trajectory of X1 along which the stable and unstable

manifolds intersect transversely.

Lemma 4.5 (cancellation of critical points). Suppose that a Smale cobor-

dism (W,X0, φ0) contains exactly two critical points of index k − 1 and k

which are connected by a unique trajectory of X along which the stable and

unstable manifolds intersect transversely. Then there exists a Smale homo-

topy (W,Xt, φt), t ∈ [0,1], which kills the critical points, so the cobordism

(W,X1, φ1) has no critical points.

Here all the homotopies will be fixed on a neighbourhood of ∂±W . The

functions φt in Lemmas 4.4 and 4.5 will be Morse except for one value t0 ∈
(0,1) where they have a birth-death type critical point. Here a birth-death

type critical point of index k− 1 at t0 is described by the local model

φt(x) = x31 ∓ (t− t0)x1 − x22 − · · · − x2k + x2k+1 + · · ·+ x2m.

Problem 4.6. Prove Lemmas 4.2, 4.3 and 4.4.

Modifications of J -Convex Morse Functions. Let us now state the

analogues of the four lemmas for J -convex functions. By a Stein cobordism

(W,J,φ) we will mean a complex cobordism (W,J) with a J -convex Morse

function φ :W →R having ∂±W as regular level sets. We will always use the

gradient vector field ∇φφ of φ with respect to the metric gφ =−ddCφ(·, J ·)
to obtain a Smale cobordism (W,∇φφ,φ). Note that in the following four

propositions the complex structure J is always fixed.

Proposition 4.7 (moving critical levels). Let (W,J,φ0) be an elementary

Stein cobordism. Then there exists a homotopy (W,J,φt) of elementary Stein

cobordisms which arbitrarily changes the ordering of the values of the critical

points.

Proposition 4.8 (moving attaching spheres). Let (W,J,φ0) be a Stein

cobordism and p ∈W a critical point whose stable manifold W−
p (φ0) with

respect to ∇φ0
φ0 intersects ∂−W along an isotropic sphere S0 ⊂ ∂−W . Then

given any isotropic isotopy St ⊂ ∂−W , t ∈ [0,1], there exists a homotopy of

Stein cobordisms (W,J,φt) with fixed critical point p such that the stable

manifold W−
p (φt) intersects ∂−W along St.
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Proposition 4.9 (creation of critical points). Let (W,J,φ0) be a Stein

cobordism without critical points. Then for any 1 ≤ k ≤ dimCW and any

p ∈ IntW there exists a Stein homotopy (W,J,φt), t ∈ [0,1], fixed outside

a neighbourhood of p, which creates a pair of critical points of index k − 1

and k connected by a unique trajectory of ∇φ1
φ1 along which the stable and

unstable manifolds intersect transversely.

Proposition 4.10 (cancellation of critical points). Suppose that a Stein

cobordism (W,J,φ0) contains exactly two critical points of index k− 1 and k

which are connected by a unique trajectory of ∇φ0
φ0 along which the stable

and unstable manifolds intersect transversely. Then there exists a Stein ho-

motopy (W,J,φt), t ∈ [0,1], which kills the critical points, so the cobordism

(W,J,φ1) has no critical points.

Again, all the homotopies will be fixed on a neighbourhood of ∂±W , up to

composition of the J -convex functions with some convex increasing function

R→ R. The statements are precise analogues of those in the smooth case,

with one notable difference: in Proposition 4.8 we require the isotopy St
to be isotropic. This difference, and the lack of a 1-parametric h-principle

for Legendrian embeddings, is largely responsible for all symplectic rigidity

phenomena on Stein manifolds. However, in the subcritical case ind(p) =

k < n we have an h-principle stating that any smooth isotopy St starting at

an isotropic embedding S0 can be C0-approximated by an isotropic isotopy

starting at S0. With this, the proof of the h-cobordism theorem goes through

for J -convex functions and we obtain

Theorem 4.11 (Stein h-cobordism theorem). Let (W,J,φ) be a subcritical

Stein h-cobordism. Suppose that dimCW ≥ 3. Then W carries a J-convex

function without critical points and constant on ∂±W .

Further implications of these results will be discussed in Section 5. The

remainder of this section is devoted to the proofs of Propositions 4.7 to 4.10.

Proof of Proposition 4.7. This is an immediate consequence of the J -

convex model functions constructed in Section 3: Since the cobordism is

elementary, the stable manifolds of the critical points are disjoint embedded

disks. For each critical point p, Theorem 2.10 allows us to deform φ0 near

W−
p such that for the new J -lc function the level set containing p is connected

to a level set of φ0 slightly above ∂−W . Now we perform this operation for
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Fig. 6. Moving attaching spheres by isotropic isotopies

each critical point and choose the level sets near ∂−W to achieve any given

ordering. �

Proof of Proposition 4.8. Let k := ind(p)≤ n. We identify level sets of

φ0 near ∂−W via Gray’s theorem. Then we construct an isotopy of embedded

k-disks Dt ⊂W such that D0 =W−
p , Dt agrees with W−

p near p, ∂Dt = St,

and Dt intersects all level sets of φ below c := φ(p) transversely in isotropic

(k−1)-spheres; see Figure 6. The last condition implies thatDt is totally real.

If k < n we can further extend Dt to a totally real embedding of Dk ×Dn−k
ε

intersecting level sets transversely in isotropic submanifolds, so it suffices to

consider the case k = n. To conclude the proof, we will construct J -convex

functions φt which agree with φ0 near p and whose gradient ∇φt
φt is tangent

to Dt. This is done in two steps.

In the first step we construct J -convex functions ψt whose level sets

below c are J -orthogonal to Dt. To do this, consider some level set Σ of φ0
intersecting Dt in the isotropic submanifold Λt. Let ξ be the induced contact

structure on Σ. We deform Σ near Λt to a new hypersurface Σ′ which agrees

with Σ outside a neighbourhood of Λt, intersects Dt J -orthogonally in Λt,

and satisfies ξ ⊂ TΣ′ along Λt (so we “turn Σ around ξ along Λt”); see

Figure 7. A careful estimate of the Levi form shows that Σ′ can be made

J -convex. Deforming all level sets in this way leads to a family of J -convex

hypersurfaces, which by Corollary 2.9 can be turned into a foliation and thus

into level sets of a J -lc function.

For the second step, consider the J -convex functions ψt from the first

step whose level sets below c are J -orthogonal to Dt. It is not hard to write

down in a local model a J -convex function ϑt near Dt which agrees with ψt

on Dt, whose level sets are J -orthogonal to Dt, and whose gradient ∇ϑt
ϑt

is tangent to Dt. Now Corollary 2.7 provides the desired function φt which
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Fig. 7. Turning a J -convex hypersurface along an isotropic submanifold

Fig. 8. The half-disk Δ

coincides with ψt outside a neighbourhood of Dt and with ϑt in a smaller

neighborhood of Dt. �

Proof of Proposition 4.10. Let (W,J,φ0) be a Stein cobordism with

exactly two critical points p, q of index k, k − 1 connected by a unique

trajectory of ∇φ0
φ0 along which the stable and unstable manifolds intersect

transversely. Set a := φ0|∂−W , b := φ0(q) and c := φ0(p).

Problem 4.12. In the situation above, suppose that φ0 is quadratic in some

holomorphic coordinates near p and q. Then the closure of W−
p is an embed-

ded k-dimensional half-disk Δ ⊂W with lower boundary ∂−Δ =Δ ∩ ∂−W
and upper boundary ∂+Δ=W−

q ; see Figure 8.
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Fig. 9. The first surrounding hypersurface Σ1 and the disk D

We will now deform the function φ0 in 4 steps. The first 3 steps modify

φ0 outside Δ, without affecting its critical points, to make some level set

closely surround Δ; the actual cancellation happens in the last step.

First surrounding. First we apply Theorem 2.10 to the (k − 1)-disk

∂+Δ to deform φ0 to a J -lc function φ1 such that some level set Σ1 = {φ1 =
c1} closely surrounds ∂+Δ as shown in Figure 9.

Second surrounding. Next we apply Theorem 2.10 to the k-disk D :=

Δ∩{φ1 ≥ c1} to deform φ1 to a J -lc function φ2 such that some level set Σ2 =

{φ2 = c2} closely surrounds Δ as shown in Figure 9. Note that a cross-section

of Σ2 will have a dumbell-like shape as in Figure 10, where x= (x1, . . . , xk)

and u= (xk+1, . . . , xn, y1, . . . , yn).

Third surrounding. On the other hand, we can construct another hy-

persurface Σ3 surrounding Δ as follows: Restrict a very thin model hypersur-

face Σ provided by Theorem 2.10 to a neighbourhood of the lower half-disk

{r = 0,R ≤ 1, yk ≤ 0} in C
n, implant it onto a neighbourhood of Δ in W ,

and apply the minimum construction in Corollary 2.8 to this hypersurface

and Σ2. The resulting J -convex hypersurface Σ3 is shown in Figure 11. The

most difficult part is now to connect Σ3 to Σ2 by a family of J -convex hy-

persurfaces. Once this is done, we can apply Corollary 2.9 to deform φ2 to a

J -lc function φ3 having Σ3 as a level set.

The cancellation. Let us extend Δ across ∂+Δ to a slightly larger

half-disk Δ′, still surrounded by Σ3, so that the critical points p, q lie in
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Fig. 10. The dumbell-shaped cross-section of the second surrounding hypersurface Σ2

Fig. 11. The third surrounding hypersurface Σ3
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the interior of Δ′, and ∇φ3
φ3 is inward pointing along ∂−Δ′ and outward

pointing along ∂+Δ
′. By Lemma 4.5 there exists a family of smooth functions

βt : Δ
′ → R, t ∈ [3,4], fixed near ∂Δ′, such that β3 = φ3|Δ′ and β4 has no

critical points. Identifying Δ′ with the lower half-disk in the standard handle,

we can pick a large constant B > 0 such that the functions ψt := βt +Br2

near Δ′ are J -convex for all t ∈ [3,4].

After an application of Corollary 2.7, we may assume that ψ3 = φ3 near

Δ′. We can choose convex increasing functions ft : R→R with f3 = id such

that for t ∈ [3,4] the J -convex function φt := smoothmax(ψt, ft ◦ φ3) agrees

with ft ◦ φ3 in the region outside of Σ3 and with ψt near Δ
′. In particular,

φ4 has no critical points (for this one needs to check that the maximum

constructon does not create new critical points outside Δ′). Hence (W,J,φ4t),

t ∈ [0,1], is the desired Stein homotopy and Proposition 4.10 is proved. �

Proof of Proposition 4.9. The proof is similar to that of Proposition 4.10

but much simpler. Set a := φ0|∂−W and c := φ0(p). Pick an isotropic embed-

ded (k− 1)-sphere S through p in the level set φ−1
0 (c) and let Z ⊂W be the

totally real cylinder swept out by S under the backward gradient flow of φ0.

We identify Z with the cylinder {r = 0,1/2≤R≤ 1} in the standard handle.

A slight modification of Theorem 2.10 yields a family of J -convex functions

φt :W →R, t ∈ [0,1], such that some level set Σ1 of φ1 surrounds Z in W .

By Lemma 4.4 there exists a family of smooth functions βt : Z → R,

t ∈ [1,2], fixed near ∂Z, such that β1 = φ1|Z and β2 has exactly two critical

points of index k− 1 and k connected by a unique gradient trajectory along

which the stable and unstable manifolds intersect transversely. As above, we

can pick a large constant B > 0 such that the functions ψt := βt+Br
2 near Z

are J -convex for all t ∈ [1,2] and set φt := smoothmax(ψt, ft ◦ φ1), t ∈ [1,2],

to obtain the desired family φ2t, t ∈ [0,1]. �

5. Flexibility of Stein Structures

In this section we study the question when two Stein structures on the same

manifold can be connected by a Stein homotopy.

Stein Homotopies. Let us first carefully define the notion of a Stein ho-

motopy. Consider first a smooth family (with respect to the C∞
loc-topology) of

exhausting functions φt : V →R, t ∈ [0,1], on a manifold V . We call it a sim-

ple Morse homotopy if there exists a family of smooth functions c1 < c2 < · · ·
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on the interval [0,1] such that for each t ∈ [0,1], ci(t) is a regular value of the

function φt and
⋃

k{φt ≤ ck(t)}= V . Then a Morse homotopy is a composi-

tion of finitely many simple Morse homotopies, and a Stein homotopy is a

family of Stein structures (V,Jt, φt) such that the functions φt form a Morse

homotopy.

The role of the regular levels ci(t) is to prevent critical points from “es-

caping to infinity”. The following three problems motivate why this is the

correct definition. The first one shows that, without this condition, the notion

of “homotopy” would become rather trivial:

Problem 5.1. Any two Stein structures (J0, φ0) and (J1, φ1) on C
n can be

connected by a smooth family of Stein structures (Jt, φt) on C
n, allowing

critical points to escape to infinity.

The second one shows that the question whether two Stein structures are

homotopic does not depend on the chosen J -convex functions:

Problem 5.2. If φ0, φ1 : V →R are two exhausting J -convex functions for

the same complex structure J , then (J,φ0) and (J,φ1) can be connected by

a Stein homotopy (J,φt).

The third one makes the question of Stein homotopies accessible to sym-

plectic techniques. Let us call a Stein structure (J,φ) complete if the gradient

vector field∇φφ is complete; by Problem 2.2, any Stein structure can be made

complete by composing φ with a convex increasing function f :R→R.

Problem 5.3. If two complete Stein structures (J0, φ0) and (J1, φ1) on a

manifold V are Stein homotopic, then the associated symplectic manifolds

(V,−ddCφ0) and (V,−ddCφ1) are symplectomorphic.

From now on, when we talk about individual Stein structures (J,φ) we

will always assume that the function φ is Morse, while for Stein homotopies

we allow birth-death type singularities.

The 2-Index Theorem. Before studying Stein homotopies, let us first

consider the situation in smooth topology. It follows from Problem 5.2 (sim-

ply ignoring J -convexity) that any two Morse functions on the same manifold

can be connected by a Morse homotopy. In addition, we will need some con-

trol over the indices of critical points. This is provided by following immediate
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consequence of the two-index theorem of Hatcher and Wagoner ([16], see also

[17]):

Theorem 5.4. Let φ0, φ1 :W → [0,1] be two Morse functions on an m-

dimensional cobordism W with ∂±W as regular level sets. For some k ≥ 3,

suppose that φ0, φ1 have no critical points of index > k. Then φ0 and φ1 can

be connected by a Morse homotopy φt (all having ∂±W as regular level sets)

without critical points of index > k.

We will apply this theorem in the following two cases with m= 2n:

• the subcritical case k+ 1= n≥ 4;

• the critical case k = n≥ 3.

Uniqueness of Subcritical Stein Structures. After these preparations,

we can prove our first uniqueness theorem.

Theorem 5.5 (uniqueness of subcritical Stein structures). Let (J0, φ0) and

(J1, φ1) be two subcritical Stein structures on the same manifold V of com-

plex dimension n > 3. If J0 and J1 are homotopic as almost complex struc-

tures, then (J0, φ0) and (J1, φ1) are Stein homotopic.

Proof. By Theorem 5.4 with k+1= n≥ 4, the functions φ0 and φ1 can be

connected a Morse homotopy φt without critical points of index ≥ n. We cut

the homotopy into a finite number of simple Morse homotopies, and we cut

each simple homotopy at the regular levels ci into countably many compact

cobordisms. Let us pick gradient-like vector fields Xt for φt. After further

decomposition of these cobordisms, we may assume that on each cobordism

W only one of the following two cases occurs:

(i) all the Smale cobordisms (W,Xt, φt) are elementary;

(ii) a pair of critical points is created or cancelled.

In the first case, only the levels of the critical points vary and the attaching

spheres move by smooth isotopies. By the h-principle for subcritical isotropic

embeddings, these isotopies can be C0-approximated by isotropic isotopies.

So we can apply Propositions 4.7 and 4.8 to realize the same moves by J -

convex functions. The second case is treated by Propositions 4.9 and 4.10.

Applying the four propositions inductively over the simple homotopies, and
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within each simple homotopy over increasing levels, we hence construct a

family of J0-convex functions (all for the same J0!) ψt : V → R such that

ψt = φt ◦ ht for a smooth family of diffeomorphisms ht : V → V with h0 = id.

Note that ((ht)∗J0, φt) provides a Stein homotopy from (J0, φ0) to (J2 :=

(h1)∗J0, φ1). So the theorem is proved if we can connect (J2, φ1) to (J1, φ1)

by a Stein homotopy (Jt, φ1), t ∈ [1,2] (with fixed function φ1!). For this, we

decompose V into elementary cobordisms containing only one critical level,

and we pick a family Xt of gradient-like vector fields for φ1 connecting the

gradients with respect to J1 and J2. Then for each critical point p on such

a cobordism W the attaching spheres with respect to Xt form a smooth

isotopy St, t ∈ [1,2], connecting the isotropic spheres S1 and S2. Again by

the h-principle for subcritical isotropic embeddings, we can make the isotopy

St isotropic. Now by a 1-parametric version of the Existence Theorem 1.5, we

can connect J1 and J2 by a smooth family of integrable complex structures

Jt on W such that φ1 is Jt-convex for all t ∈ [1,2]. �

Problem 5.6. Find the major gap in the preceding proof, and consult [7]

on how it can be filled.

Exotic Stein Structures. In the critical case, uniqueness fails dramat-

ically. In 2009, McLean [20] constructed infinitely many pairwise non-

homotopic Stein structures on C
n for any n≥ 4. Extending McLean’s result

to n= 3 (see [1]) and combining it with the surgery exact sequence from [3],

one obtains

Theorem 5.7. Let (V,J) be an almost complex manifold of real dimension

2n≥ 6 which admits an exhausting Morse function with finitely many critical

points all of which have index ≤ n. Then V carries infinitely many finite type

Stein structures (Jk, φk), k ∈N, such that the Jk are homotopic to J as almost

complex structures and (Jk, φk), (J�, φ�) are not Stein homotopic for k �= �.

Here a Stein structure (J,φ) is said to be of finite type if φ has only

finitely many critical points. The Stein structures (Jk, φk) are distinguished

up to homotopy by showing that the symplectic manifolds (V,−ddCφk) are

pairwise non-symplectomorphic, distinguished by their symplectic homology.

Despite this wealth of exotic Stein structures, it has recently turned out that

there is still some flexibility in the critical case, which we will describe next.

Murphy’s h-Principle for Loose Legendrian Knots. It is well-known

that the 1-parametric h-principle fails for Legendrian embeddings. More pre-
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cisely, a formal Legendrian isotopy (ft, F
s
t ) between two Legendrian embed-

dings f0, f1 : Λ ↪→ (M,ξ) consists of a smooth isotopy ft : Λ ↪→M , t ∈ [0,1],

together with a 2-parameter family of injective bundle homomorphisms

F s
t : TΛ→ TM covering ft, s, t ∈ [0,1], such that F s

0 = df0, F
s
1 = df1, F

0
t = dft,

and F 1
t : TΛ→ ξ is isotropic for all s, t. By the h-principle for Legendrian im-

mersions, this implies that f0 and f1 are connected by a Legendrian regular

homotopy. On the other hand, there are many examples of pairs of Legen-

drian embeddings that are formally Legendrian isotopic but not Legendrian

isotopic (see e.g. [5] in dimension 3, and [9] in higher dimensions).

Despite the failure of the h-principle, there are two partial flexibility

results for Legendrian knots in dimension 3: Any two formally isotopic Leg-

endrian knots in (R3, ξst) become Legendrian isotopic after sufficiently many

stabilizations [12], and any two formally isotopic Legendrian knots in the

complement of an overtwisted disk are Legendrian isotopic [8]. E. Murphy

recently discovered a remarkable class of Legendrian embeddings in dimen-

sions ≥ 5 which satisfy the 1-parametric h-principle:

Theorem 5.8 (Murphy’s h-principle for loose Legendrian embeddings [22]).

In contact manifolds (M,ξ) of dimension ≥ 5 there exists a class of loose

Legendrian embeddings with the following properties:

(a) The stabilization construction described in Section 3 with χ(N) = 0

turns any Legendrian embedding f0 into a loose Legendrian embedding

f1 formally isotopic to f0.

(b) Let (ft, F
s
t ), s, t ∈ [0,1], be a formal Legendrian isotopy connecting

two loose Legendrian embeddings f0, f1 : Λ ↪→M . Then there exists a

Legendrian isotopy f̃t connecting f̃0 = f0 and f̃1 = f1 which is C0-close

to ft and is homotopic to the formal isotopy (ft, F
s
t ) through formal

isotopies with fixed endpoints.

Note that, in contrast to the 3-dimensional case, Legendrian embeddings

in dimension ≥ 5 become loose after just one stabilization, and the stabiliza-

tion of a loose Legendrian embedding is Legendrian isotopic to the original

one.

Existence and Uniqueness of Flexible Stein Structures. Let us call

a Stein manifold (V,J,φ) of complex dimension ≥ 3 flexible if all attaching

spheres on all regular level sets are either subcritical or loose Legendrian. In

view of Theorem 5.8(a), we can perform a stabilization in each inductional

step of the proof of the Existence Theorem 1.5 to obtain
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Theorem 5.9 (existence of flexible Stein structures). Any smooth manifold

V of dimension 2n > 4 which admits a Stein structure also admits a flexible

one (in a given homotopy class of almost complex structures).

Now we can repeat the proof of Theorem 5.5, using Theorem 5.4 in

the critical case k = n≥ 3 and Theorem 5.8(b) for the Legendrian attaching

spheres (always keeping the Stein structures flexible in the process), to obtain

Theorem 5.10 (uniqueness of flexible Stein structures). Let (J0, φ0) and

(J1, φ1) be two flexible Stein structures on the same manifold V of complex

dimension n > 2. If J0 and J1 are homotopic as almost complex structures,

then (J0, φ0) and (J1, φ1) are Stein homotopic.

Remark 5.11. (a) Since subcritical Stein manifolds are flexible, Theo-

rem 5.10 allows us to weaken the hypothesis on the dimension in Theorem 5.5

from n > 3 to n > 2.

(b) Combining the result in [6] with the surgery exact sequence in [3]

implies that flexible Stein manifolds have vanishing symplectic homology.

Applications to Symplectomorphisms and Pseudo-isotopies. The-

orem 5.10 has the following consequence for symplectomorphisms of flexible

Stein manifolds.

Theorem 5.12. Let (V,J,φ) be a complete flexible Stein manifold of com-

plex dimension n > 2, and f : V → V be a diffeomorphism such that f∗J is

homotopic to J as almost complex structures. Then there exists diffeotopy

(i.e., a smooth family of diffeomorphisms) ft : V → V , t ∈ [0,1], such that

f0 = f , and f1 is a symplectomorphism of (V,ωφ).

Proof. By Theorem 5.10, there exists a Stein homotopy (Jt, φt) connecting

the flexible Stein structures (J0, φ0) = (J,φ) and (J1, φ1) = (f∗J, f∗φ). By

Problem 5.3, there exists a diffeotopy ht : V → V such that h0 = id and

h∗tωφt
= ωφ. In particular, (f ◦ h1)∗ωφ = h∗1ωφ1

= ωφ, so ft = f ◦ ht is the

desired diffeotopy. �

Remark 5.13. Even if (J,φ) is of finite type and f = id outside a compact

set, the diffeotopy ft provided by Theorem 5.12 will in general not equal the

identity outside a compact set.
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For our last application, consider a closed manifold M . A pseudo-isotopy

of M is a smooth function φ :M × [0,1]→ R without critical points which

is constant on M × 0 and M × 1 with f |M×0 < f |M×1. We denote by E(M)

the space of pseudo-isotopies equipped with the C∞-topology. The homotopy

group π0E(M) is trivial if dimM ≥ 5 andM is simply connected [4], while in

the non-simply connected case for dimM ≥ 6 it is often nontrivial [16, 17].

Problem 5.14. Show that E(M) is homotopy equivalent to the space P(M)

of diffeomorphisms of M × [0,1] that restrict as the identity to M × 0.

(The map P(M)→ E(M) assigns to f the pullback f∗φst of the function

φst(x, t) = t, and a homotopy inverse is obtained by following trajectories of

a gradient-like vector field). This explains the name “pseudo-isotopy” because

any isotopy ft :M →M with f0 = id defines an element f(x, t) = (ft(x), t) in

P(M).

Now consider a topologically trivial Stein cobordism (M × [0,1], J,φ)

and denote by E(M × [0,1], J) the space of J -convex functions M × [0,1]→
R without critical points which are constant on M × 0 and M × 1 with

f |M×0 < f |M×1.

Theorem 5.15. For any topologically trivial flexible Stein cobordism (M ×
[0,1], J,φ) of dimension 2n > 4 the canonical inclusion I : E(M × [0,1], J) ↪→
E(M) induces a surjection

I∗ : π0E
(

M × [0,1], J
)

→ π0E(M).

Proof. Let ψ ∈ E(M) be given. By Theorem 5.4 with k = n≥ 3, there exists

a Morse homotopy φt :M × [0,1]→ R without critical points of index > n

connecting the J -convex function φ0 = φ to φ1 = ψ. Arguing as in the proof

of Theorem 5.5, always keeping the Stein structures flexible, we construct a

diffeotopy ht :M × [0,1]→M × [0,1] with h0 = id such that the functions

ψt = φt ◦ ht are J -convex for all t ∈ [0,1]. Then the J -convex function ψ1 =

ψ◦h1 is connected to ψ by the path ψ◦ht of functions without critical points,
so ψ1 and ψ belong to the same path connected component of E(M). �

We conjecture that I∗ in Theorem 5.15 is an isomorphism.
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[19] P. Lisca, G. Matič, Tight contact structures and Seiberg-Witten invariants. Invent.
Math. 129, 509–525 (1997)

[20] M. McLean, Lefschetz fibrations and symplectic homology. Geom. Topol. 13(4), 1877–
1944 (2009)

[21] J. Milnor, Lectures on the h-Cobordism Theorem (Princeton Univ. Press, Princeton,
1965). Notes by L. Siebenmann and J. Sondow

[22] E. Murphy, Loose Legendrian embeddings in high dimensional contact manifolds.
arXiv:1201.2245

[23] R. Narasimhan, Imbedding of holomorphically complete complex spaces. Am. J. Math.
82, 917–934 (1960)

http://arxiv.org/abs/arXiv:0911.0026
http://arxiv.org/abs/arXiv:1201.2245


388 K. Cieliebak and Y. Eliashberg

[24] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex mani-
folds. Ann. Math. 65, 391–404 (1957)

[25] R. Richberg, Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 251–286
(1968)

[26] S. Smale, On the structure of manifolds. Am. J. Math. 84, 387–399 (1962)

[27] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space. Ann. Math.
45, 220–246 (1944)

K. Cieliebak

Augsburg University

Augsburg

Germany

Y. Eliashberg

Stanford University

Stanford

USA



BOLYAI SOCIETY
MATHEMATICAL STUDIES, 26

Contact and Symplectic
Topology

pp. 389–484.

Lecture Notes on Embedded Contact

Homology

MICHAEL HUTCHINGS

1. Introduction

We begin by describing an application of ECH to four-dimensional symplectic

embedding problems. We will then give an overview of the basic structure of

ECH and how it leads to the application.

1.1. Symplectic Embeddings in Four Dimensions

Let (X0, ω0) and (X1, ω1) be symplectic four-manifolds, possibly with bound-

ary or corners. A symplectic embedding of (X0, ω0) into (X1, ω1) is a smooth

embedding ϕ :X0→X1 such that ϕ∗ω1 = ω0. It is interesting to ask when

such a symplectic embedding exists.

This is a nontrivial question already for domains in R
4. For example,

given a, b > 0, define the ellipsoid

(1.1) E(a, b) =

{

(z1, z2) ∈C
2

∣
∣
∣
∣

π|z1|2
a

+
π|z2|2
b

≤ 1

}

.

Here we identify C
2 = R

4 with coordinates zk = xk + yk for k = 1,2, with

the standard symplectic form ω =
∑2

k=1 dxkdyk. In particular, define the ball
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B(a) =E(a,a). Also, define the polydisk

(1.2) P (a, b) =
{

(z1, z2) ∈C
2
∣
∣ π|z1|2 ≤ a, π|z2|2 ≤ b

}

.

We can now ask, when does one ellipsoid or polydisk symplectically embed

into another?

A landmark in the theory of symplectic embeddings is Gromov’s non-

squeezing theorem from 1985. The four-dimensional case of this theorem

asserts that B(r) symplectically embeds into P (R,∞) if and only if r ≤R.

The question of when one four-dimensional ellipsoid symplectically em-

beds into another was answered only in 2010, by McDuff. To state the em-

bedding criterion, let N(a, b) denote the sequence of all nonnegative integer

linear combinations of a and b, arranged in nondecreasing order, and indexed

starting at 0. For example,

(1.3) N(1,1) = (0,1,1,2,2,2, . . .)

and

(1.4) N(1,2) = (0,1,2,2,3,3,4,4,4,5,5,5, . . .).

Theorem 1.1 (McDuff [41]). There is a symplectic embedding int(E(a, b))→
E(c, d) if and only if N(a, b)≤N(c, d), i.e. N(a, b)k ≤N(c, d)k for each k ≥ 0.

For example, it is not hard to deduce from Theorem 1.1, together with

(1.3) and (1.4), that int(E(1,2)) symplectically embeds into B(c) if and only

if c≥ 2.

Given more general a, b, c, d, it can be nontrivial to decide whether

N(a, b) ≤ N(c, d). For example, consider the problem of an embedding an

ellipsoid into a ball, i.e. the case c= d. By scaling, we can encode this prob-

lem into a single function f : [1,∞)→ [1,∞), where f(a) is defined to be the

infimum over c such that E(1, a) symplectically embeds into B(c) =E(c, c).

In general, if there is a symplectic embedding of (X0, ω0) into (X1, ω1),

then necessarily

(1.5) vol(X0, ω0)≤ vol(X1, ω1),

where in four dimensions

vol(X,ω) =
1

2

∫

X
ω ∧ ω.



Lecture Notes on Embedded Contact Homology 391

In particular, the ellipsoid has volume vol(E(a, b)) = ab/2, cf. Equation

(4.12), so it follows from the volume constraint (1.5) that f(a)≥
√
a.

McDuff-Schlenk computed the function f explicitly and found that the

volume constraint is the only constraint if a is sufficiently large, while for

smaller a the situation is more interesting. In particular, their calculation

implies the following1:

Theorem 1.2 (McDuff-Schlenk [43]).

• On the interval [1, (1+
√
5/2)4), the function f is piecewise linear, given

by a “Fibonacci staircase”.

• The interval [(1+
√
5/2)4, (17/6)2] is divided into finitely many intervals,

on each of which either f is linear or f(a) =
√
a.

• On the interval [(17/6)2,∞), we have f(a) =
√
a.

Note that Theorems 1.1 and 1.2 were proved by different methods. It

is a subtle number-theoretic problem to deduce Theorem 1.2 directly from

Theorem 1.1.

1.2. Properties of ECH Capacities

Embedded contact homology can be used to prove the obstruction half of

Theorem 1.1, namely the fact that if int(E(a, b)) symplectically embeds into

E(c, d) then N(a, b)≤N(c, d). This follows from the more general theory of

“ECH capacities”. Here are some of the key properties of ECH capacities;

the definition of ECH capacities will be given in Section 1.5.

Theorem 1.3 [24]. For each symplectic four-manifold (X,ω) (not neces-

sarily connected, possibly with boundary or corners), there is a sequence of

real numbers

0 = c0(X,ω)≤ c1(X,ω)≤ · · · ≤∞,

called ECH capacities, with the following properties:

1An analogue of Theorem 1.2 for symplectically embedding int(E(1, a)) into P (c, c) was
recently worked out in [17]. This is equivalent to symplectically embedding int(E(1, a))
into E(c,2c), by Remark 1.5(b) and Equation (1.10) below.
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(Monotonicity) If (X0, ω0) symplectically embeds into (X1, ω1), then

(1.6) ck(X0, ω0)≤ ck(X1, ω1)

for all k ≥ 0.

(Conformality) If r is a nonzero real number, then

ck(X,rω) = |r|ck(X,ω).

(Ellipsoid)

(1.7) ck
(

E(a, b)
)

=N(a, b)k.

(Polydisk)

(1.8) ck
(

P (a, b)
)

=min
{

am+ bn |m,n ∈N, (m+ 1)(n+ 1)≥ k+ 1
}

.

(Disjoint union)

ck

(
n∐

i=1

(Xi, ωi)

)

= max
k1+···+kn=k

n∑

i=1

cki
(Xi, ωi).

(Volume) [11] If (X,ω) is a Liouville domain (see Definition 1.12) with all

ECH capacities finite (for example a star-shaped domain in R
4), then

(1.9) lim
k→∞

ck(X,ω)
2

k
= 4vol(X,ω).

In particular, the Monotonicity and Ellipsoid properties immediately im-

ply the obstruction half of Theorem 1.1. Theorem 1.3 does not say anything

about the other half of Theorem 1.1, namely the existence of symplectic

embeddings.

The Volume property says that for Liouville domains with all ECH ca-

pacities finite, the asymptotic behavior of the Monotonicity property (1.6)

as k→∞ recovers the volume constraint (1.5).

Exercise 1.4. Check the volume property (1.9) when (X,ω) is an ellipsoid

E(a, b). (See answer in Appendix.)

Remark 1.5. Here is what we know about the sharpness of the ECH ob-

struction for some other symplectic embedding problems.
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(a) ECH capacities give a sharp obstruction to symplectically embedding

a disjoint union of balls of possibly different sizes into a ball. This

follows by comparison with work of McDuff [40] and Biran [1] from

the 1990’s which solved this embedding problem. See [25] for details.

(b) It follows from work of Müller that ECH capacities give a sharp ob-

struction to embedding an ellipsoid into a polydisk, see [25] and [17].

(c) ECH capacities do not give a sharp obstruction to symplectically em-

bedding a polydisk into an ellipsoid. For example, one can check that

(1.10) ck
(

P (1,1)
)

= ck
(

E(1,2)
)

for all k, so ECH capacities give no obstruction to symplectically

embedding P (1,1) into E(a,2a) when a > 1. However the Ekeland-

Hofer capacities imply that P (1,1) does not symplectically embed

into E(a,2a) when a < 3/2; these capacities are (1,2,3, . . .) and

(a,2a,2a,3a,4a,4a, . . .) respectively [5, 13]. The Ekeland-Hofer ob-

struction is sharp, because it follows from (1.1) and (1.2) that P (1,1),

as defined, is a subset of E(3/2,3).

(d) We know very little about when one polydisk can be symplectically

embedded into another or how good the ECH obstruction to this is.

In Section 4.3 we will compute the ECH capacities of a larger family of

examples, namely “toric domains” in C
2.

1.3. Overview of ECH

We now outline the definition of embedded contact homology; details will be

given in Section 3.

Let Y be a closed oriented three-manifold. Recall that a contact form on

Y is a 1-form λ on Y such that λ ∧ dλ > 0 everywhere. The contact form λ

determines the contact structure ξ = Kerλ, which is an oriented two-plane

field, and the Reeb vector field R characterized by dλ(R, ·) = 0 and λ(R) = 1.

A Reeb orbit is a closed orbit of R, i.e. a map γ : R/TZ→ Y for some

T > 0, modulo reparametrization, such that γ′(t) =R(γ(t)). A Reeb orbit is

either embedded in Y , or an m-fold cover of an embedded Reeb orbit for

some integer m> 1.
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We often want to assume that the Reeb orbits are “cut out transversely”

in the following sense. Given a Reeb orbit γ as above, the linearized re-

turn map is a symplectic automorphism Pγ of the symplectic vector space

(ξγ(0), dλ), which is defined as the derivative of the time T flow of R. The

Reeb orbit γ is called nondegenerate if 1 is not an eigenvalue of Pγ . The

contact form λ is called nondegenerate if all Reeb orbits are nondegenerate.

This holds for generic contact forms.

A nondegenerate Reeb orbit γ is called elliptic if the eigenvalues of Pγ
are on the unit circle, so that Pγ is conjugate to a rotation. Otherwise γ is

hyperbolic, meaning that the eigenvalues of Pγ are real. There are two kinds

of hyperbolic orbits: positive hyperbolic orbits for which the eigenvalues of

Pγ are positive, and negative hyperbolic orbits for which the eigenvalues of

Pγ are negative.

Assume now that λ is nondegenerate, and fix a homology class Γ ∈
H1(Y ). One can then define the embedded contact homology ECH∗(Y, ξ,Γ ) as
follows. This is the homology of a chain complex ECC(Y,λ,Γ,J). The chain

complex is freely generated over Z/2 by finite sets of pairs α = {(αi,mi)}
where:

• The αi are distinct embedded Reeb orbits.

• The mi are positive integers.

• The total homology class
∑

imi[αi] = Γ .

• mi = 1 whenever αi is hyperbolic.

It is a frequently asked question why the last condition is necessary; we

will give one answer in Sections 2.6–2.7 and another answer in Section 5.4.

Note also that ECH can be defined with integer coefficients, see [30, §9];
however the details of the signs are beyond the scope of these notes, and Z/2

coefficients are sufficient for all the applications we will consider here.

The chain complex differential is defined roughly as follows. We call an

almost complex structure J on the “symplectization” R×Y symplectization-

admissible if J is R-invariant, J(∂s) =R where s denotes the R coordinate on

R×Y , and J sends the contact structure ξ to itself, rotating positively with

respect to dλ. These are the standard conditions on J for defining various

flavors of contact homology. In the notation for the chain complex, J is a

generic symplectization-admissible almost complex structure on R× Y .

If α = {(αi,mi)} and β = {(βj , nj)} are chain complex generators, then

the differential coefficient 〈∂α,β〉 ∈ Z/2 is a mod 2 count of J -holomorphic



Lecture Notes on Embedded Contact Homology 395

curves C in R×Y , modulo R translation and equivalence of currents, satisfy-

ing two conditions. The first condition is that, roughly speaking, C converges

as a current to
∑

imiαi as s→+∞, and to
∑

j njβj as s→−∞. The sec-

ond condition is that C has “ECH index” equal to 1. The definition of the

ECH index is the key nontrivial part of the definition of ECH; the original

references are [21, 22], and we will spend considerable time explaining this

in Section 3. We will see in Proposition 3.7 that our assumption that J is

generic implies every ECH index 1 curve is embedded, except possibly for

multiple covers of “trivial cylinders” R× γ where γ is a Reeb orbit; hence

the name “embedded contact homology”. We will explain in Section 5.3 why

∂ is well-defined. It is shown in [29, §7] that ∂2 = 0; we will introduce some

of what is involved in the proof in Section 5.4.

Let ECH∗(Y,λ,Γ,J) denote the homology of the chain complex

ECC∗(Y,λ,Γ,J). It turns out that this homology does not depend on the

almost complex structure J or on the contact form λ for ξ, and so defines a

well-defined Z/2-module ECH∗(Y, ξ,Γ ). In principle one should be able to

prove this by counting holomorphic curves with ECH index zero, but there

are unsolved technical problems with this approach which we will describe in

Section 5.5. Currently the only way to prove the above invariance is using:

Theorem 1.6 (Taubes [58]). If Y is connected, then there is a canonical

isomorphism of relatively graded modules (with Z/2 or Z coefficients)

(1.11) ECH∗(Y,λ,Γ,J) = ĤM
−∗(

Y, sξ +PD(Γ )
)

.

Here ĤM
∗
denotes the “from” version of Seiberg-Witten Floer coho-

mology defined by Kronheimer-Mrowka [34], and sξ denotes a spin-c struc-

ture determined by the oriented 2-plane field ξ, see Section 2.8. The relative

grading is explained in Section 3.5. Kutluhan-Lee-Taubes [35] and Colin-

Ghiggini-Honda [8] also showed that both sides of (1.11) are isomorphic to

the Heegaard Floer homology HF+(−Y, sξ + PD(Γ )) defined in [46]. The

upshot is that ECH is a topological invariant of Y , except that one needs to

shift Γ if one changes the contact structure.

Remark 1.7. In fact, both Seiberg-Witten Floer cohomology and ECH

have absolute gradings by homotopy classes of oriented two-plane fields [22,

34], and Taubes’s isomorphism (1.11) respects these absolute gradings [9].

Thus one can write the isomorphism (1.11) as ECHp(Y,λ,J) = ĤM
p
(Y )

where p denotes a homotopy class of oriented two-plane fields on Y .
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Although ECH does not depend on the contact form, because it is defined

using the contact form it has applications to contact geometry. For exam-

ple, Theorem 1.6, together with known properties of Seiberg-Witten Floer

cohomology, implies the three-dimensional Weinstein conjecture: every con-

tact form on a closed connected three-manifold has at least one Reeb orbit.

Indeed, Taubes’s proof of the Weinstein conjecture in [57] can be regarded

as a first step towards proving Theorem 1.6.

The reason that Theorem 1.6 implies the Weinstein conjecture is that if

there is no closed orbit, then λ is nondegenerate and

ECH∗(Y, ξ,Γ ) =

{
Z/2, Γ = 0,

0, Γ �= 0.

Here the Z/2 comes from the empty set of Reeb orbits, which is a legitimate

chain complex generator when Γ = 0. However results of Kronheimer-Mrowka

[34] imply that if c1(ξ) + 2PD(Γ ) ∈H2(Y ;Z) is torsion (and by a little al-

gebraic topology one can always find a class Γ ∈H1(Y ) with this property),

then ĤM
∗
(Y, sξ + Γ ) is infinitely generated, which is a contradiction.

Note that although ECH(Y, ξ,Γ ) is infinitely generated for Γ as above,

there might not exist infinitely many embedded Reeb orbits. To give a coun-

terexample, first recall that in any symplectic manifold (M,ω), a Liouville

vector field is a vector field ρ such that Lρω = ω. A hypersurface Y ⊂M is of

contact type if there exists a Liouville vector field ρ transverse to Y defined

in a neighborhood of Y . In this case the “Liouville form” ıρω restricts to

a contact form on Y , whose Reeb vector field is parallel to the Hamilonian

vector field XH where H :M → R is any smooth function having Y as a

regular level set. For example, the radial vector field

ρ=
1

2

2∑

k=1

(

xk
∂

∂xj
+ yk

∂

∂yk

)

is a Liouville vector field defined on all of R4. It follows that if Y is a hyper-

surface in R
4 which is “star-shaped”, meaning transverse to the radial vector

field ρ, then the Liouville form

(1.12) λ=
1

2

2∑

k=1

(xkdyk − ykdxk)

restricts to a contact form on Y , with Reeb vector field determined as above.
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Example 1.8. If Y = ∂E(a, b) is the boundary of an ellipsoid, then it follows

from the above discussion that the Liouville form λ in (1.12) restricts to a

contact form on Y , whose Reeb vector field is given in polar coordinates by

R=
2π

a

∂

∂θ1
+

2π

b

∂

∂θ2
.

If a/b is irrational, then there are just two embedded Reeb orbits, which we

denote by γ1 = (z2 = 0) and γ2 = (z1 = 0). The linearized return map Pγ1
is

rotation by 2πa/b, and the linearized return map Pγ2
is rotation by 2πb/a, so

both of these Reeb orbits are elliptic. A generator of the ECH chain complex

then has the form γm1

1 γm2

2 , where this notation indicates the set consisting

of the pair (γ1,m1) (if m1 �= 0) and the pair (γ2,m2) (if m2 �= 0). For grading

reasons to be explained in Section 3.7, the differential ∂ is identically zero.

Thus ECH(∂E(a, b), λ,0) has one generator for each pair of nonnegative

integers.

By making stronger use of the isomorphism (1.11), one can prove some

slight refinements of the Weinstein conjecture. For example, there are always

at least two embedded Reeb orbits [10]; and if λ is nondegenerate and Y is not

a sphere or a lens space then there at least three embedded Reeb orbits [31].

To put this in perspective, Colin-Honda [6] used linearized contact homology

to show that for many contact structures, every contact form has infinitely

many embedded Reeb orbits. The only examples of closed contact three-

manifolds we know of with only finitely many embedded Reeb orbits are the

ellipsoid examples in Example 1.8, and quotients of these on lens spaces, with

exactly two embedded Reeb orbits.

Historical Note. The original motivation for the definition of ECH was

to find a symplectic model for Seiberg-Witten Floer homology, so that an

isomorphism of the form (1.11) would hold2, analogously to Taubes’s Seiberg-

Witten = Gromov theorem for closed symplectic four-manifolds. We will

explain this motivation in detail in Sections 2–3.

2More precisely, we first defined an analogous theory for mapping tori of symplectomor-
phisms of surfaces, called periodic Floer homology , and conjectured that this was isomor-
phic to Seiberg-Witten Floer homology, see [21, §1.1]. This conjecture was later proved by
Lee and Taubes [38]. Initially it was not clear if ECH would also be isomorphic to Seiberg-
Witten Floer homology because the geometry of contact manifolds is slightly different than
that of mapping tori. However the calculation of the ECH of T 3 then provided nontrivial
evidence that this is the case, see [28, §1.1].



398 M. Hutchings

1.4. Additional Structure on ECH

The definition of ECH capacities uses four additional structures on ECH,

which we now briefly describe.

1. The U map. Assuming that Y is connected, there is a degree −2 map

(1.13) U :ECH∗(Y, ξ,Γ )−→ECH∗−2(Y, ξ,Γ ).

This is induced by a chain map which is defined similarly to the differential,

except that instead of counting ECH index 1 curves modulo R translation,

it counts ECH index 2 curves that pass through a base point (0, z) ∈R× Y .

Since Y is connected, the induced map on homology

(1.14) U :ECH∗(Y,λ,Γ,J)−→ECH∗−2(Y,λ,Γ,J)

does not depend on the choice of base point z, see Section 3.8 for details.

Taubes [59] showed that (1.14) agrees with an analogous U map on Seiberg-

Witten Floer cohomology, and in particular it gives a well-defined map (1.13).

Thus the U map, like ECH, is in fact a topological invariant of Y .

If Y is disconnected, then there is a different U map for each component

of Y . More precisely, suppose that (Y,λ) =
∐n

i=1(Yi, λi) with Yi connected,

and let Γ = (Γ1, . . . , Γn) ∈H1(Y ). It follows from the definitions, and the fact

that we are using coefficients in a field, that there is a canonical isomorphism

ECH(Y, ξ,Γ ) =

n⊗

i=1

ECH(Yi, ξi, Γi).

The U map on the left hand side determined by the component Yi is the

tensor product on the right hand side of the U map on ECH(Yi, ξi, Γi) with

the identity on the other factors.

2. The ECH contact invariant. ECH contains a canonical class de-

fined as follows. Observe that for any nondegenerate contact three-manifold

(Y,λ), the empty set of Reeb orbits is a generator of the chain complex

ECC(Y,λ,0, J). It follows from (1.15) below that this chain complex gener-

ator is actually a cycle, i.e.

∂∅= 0.

(In this equation, the empty set is not the same as zero!) ECH cobordism

maps, described below, can be used to show that the homology class of this
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cycle does not depend on J or λ, and thus represents a well-defined class

c(ξ) ∈ECH∗(Y, ξ,0),

which we call the ECH contact invariant . Taubes [59] showed that under the

isomorphism (1.11), this agrees with a related contact invariant in Seiberg-

Witten Floer cohomology.

Although ECH and the U map on it are topological invariants of the

three-manifold Y , the contact invariant can distinguish some contact struc-

tures. For example, if ξ is overtwisted then c(ξ) = 0. This holds because, as

shown in the appendix to [63], if ξ is overtwisted then one can find a contact

form such that the shortest Reeb orbit γ bounds a unique holomorphic curve

(which is a holomorphic plane) in R× Y ; the latter turns out to have ECH

index 1, so ∂γ = ∅. On the other hand, it follows using the ECH cobordism

maps defined in [26] that c(ξ) �= 0 whenever (Y, ξ) is strongly symplectically

fillable; a special case of this is proved in Example 1.10 below.

3. Filtered ECH. There is a refinement of ECH which sees not just the

contact structure but also the contact form. To describe this, recall that if γ

is a Reeb orbit, its symplectic action is defined by

A(γ) =
∫

γ
λ.

If α= {(αi,mi)} is an ECH generator, define its symplectic action by

A(α) =
∑

i

miA(αi).

It follows from the conditions on the almost complex structure J that the re-

striction of dλ to any J -holomorphic curve in R×Y is pointwise nonnegative.

Consequently, by Stokes’s theorem, the differential decreases3 the symplectic

action, i.e.

(1.15) 〈∂α,β〉 �= 0=⇒A(α)≥A(β).

Given L ∈ R, define ECCL(Y,λ,Γ,J) to be the span of those genera-

tors α with A(α) < L. It follows from (1.15) that this is a subcomplex of

ECC(Y,λ,Γ,J). The homology of this subcomplex is called filtered ECH

3In fact the inequality on the right side of (1.15) is strict, but we do not need this.
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and denoted by ECHL(Y,λ,Γ ). It is shown in [32, Thm. 1.3] that filtered

ECH does not depend on J . There is also a U map (or U maps when Y is

disconnected) defined on filtered ECH, which we continue to denote by U .

Unlike the usual ECH, filtered ECH depends heavily on the contact

form λ. For example, if Y = ∂E(a, b) with the standard contact form as

in Example 1.8, then the symplectic action of a chain complex generator is

given by

(1.16) A
(

γm1

1 γm2

2

)

= am1 + bm2.

Thus the rank of ECHL(∂E(a, b)) is the number of nonnegative integer linear

combinations of a and b that are less than L. Obviously this depends on a

and b; but the ellipsoids for different a and b with their contact forms all

determine the unique tight contact structure on S3. There is also a general

scaling property: if r > 0 is a positive constant, then there is a canonical

isomorphism

(1.17) ECHL(Y,λ,Γ ) =ECHrL(Y, rλ,Γ ).

4. Cobordism maps. We now consider maps on ECH induced by cobor-

disms. For this purpose there are various kinds of cobordisms that one can

consider. To describe these, let (Y+, λ+) and (Y−, λ−) be closed contact three-

manifolds.

A strong symplectic cobordism from4 (Y+, λ+) to (Y−, λ−) is a compact

symplectic four-manifold (X,ω) with boundary

(1.18) ∂X = Y+ − Y−,

such that ω|Y± = dλ±. Note that the signs in (1.18) are important; here X

has an orientation determined by the symplectic structure, while Y+ and Y−
have orientations determined by the contact structures. In particular, there

is a distinction between the positive (or “convex”) boundary Y+ and the

negative (or “concave”) boundary Y−.

An exact symplectic cobordism is a strong symplectic cobordism as above

such that there is a 1-form λ on X with dλ= ω and λ|Y± = λ±.

4Our use of the words “from” and “to” in this connection is controversial. In the usual
TQFT language, one would say that X is a cobordism from Y− to Y+. However cobordism
maps on ECH and other kinds of contact homology naturally go from the invariant of Y+

to the invariant of Y−. We apologize for any confusion.
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A strong (resp. exact) symplectic filling of (Y,λ) is a strong (resp. exact)

symplectic cobordism from (Y,λ) to the empty set.

For example, if X is a compact star-shaped domain in R
4 with bound-

ary Y , if ω is the standard symplectic form on R
4, and if λ is the Liouville

form (1.12), then (X,ω) is an exact symplectic filling of (Y,λ|Y ).

Maps on ECH induced by exact symplectic cobordisms were constructed

in [32], where they were used to prove the Arnold chord conjecture in three

dimensions. More generally, maps on ECH induced by arbitrary strong sym-

plectic cobordisms are constructed in [26].

To set up the theory of ECH capacities, we need a notion in between

exact and strong symplectic cobordisms. Define a weakly exact symplectic

cobordism to be a strong symplectic cobordism as above such that ω is exact

(but ω need not have a primitive on X which restricts to the contact forms

on the boundary).

Theorem 1.9 ([24, Thm. 2.3]). Let (X,ω) be a weakly exact symplectic

cobordism from (Y+, λ+) to (Y−, λ−), and assume that the contact forms λ±
are nondegenerate. Then for each L> 0 there are maps

ΦL(X,ω) :ECHL(Y+, λ+,0)−→ECHL(Y−, λ−,0)

with the following properties:

(a) φL(X,ω)[∅] = [∅].

(b) If U+ and U− are U maps on ECHL(Y±, λ±,0) corresponding to com-

ponents of Y± that are contained in the same component of X , then

φL(X,ω) ◦U+ = U− ◦ φL(X,ω).

Example 1.10. If Y− = ∅, i.e. if (X,ω) is a weakly exact symplectic filling

of (Y+, λ+), then the content of the theorem is that there are maps

ΦL(X,ω) :ECHL(Y+, λ+,0)−→ Z/2

with ΦL(X,ω)[∅] = 1. In particular, it follows that c(ξ+) �= 0 ∈ECH(Y+, ξ+,0).

Theorem 1.9 is proved using Seiberg-Witten theory, as we describe in

Section 5.5. For now let us see how the above structure can be used to define

ECH capacities.
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1.5. Definition of ECH Capacities

Before defining ECH capacities of symplectic four-manifolds, we first need

another three-dimensional definition.

ECH Spectrum. Let (Y,λ) be a closed contact three-manifold, write

ξ = Ker(λ) as usual, and assume that c(ξ) �= 0 ∈ ECH(Y, ξ,0). We define

a sequence of real numbers

0 = c0(Y,λ)< c1(Y,λ)≤ c2(Y,λ)≤ · · · ≤∞,

called the ECH spectrum of (Y,λ), as follows.

Suppose first that λ is nondegenerate and Y is connected. Then ck(Y,λ) is

the infimum of L such that there is a class η ∈ECHL(Y,λ,0) with Ukη = [∅].
If no such class exists then ck(Y,λ) =∞. In particular, ck(Y,λ)<∞ if and

only if c(ξ) is in the image of Uk on ECH(Y, ξ,0).

Example 1.11. Suppose Y = ∂E(a, b) with a/b irrational. Denote the chain

complex generators in order of increasing symplectic action by ζ0, ζ1, . . . . We

will see in Section 4.1 that Uζk = ζk−1 for k > 0. It follows from this and

(1.16) that

(1.19) ck
(

∂E(a, b)
)

=N(a, b)k.

Continuing the definition of the ECH spectrum, if (Y,λ) =
∐n

i=1(Yi, λi)

with Yi connected and λi nondegenerate, let Ui denote the U map corre-

sponding to the ith component. Then ck(Y,λ) is the infimum of L such that

there exists a class η ∈ECHL(Y,λ,0) with

(1.20) Uk1

1 ◦ · · · ◦Ukn
n η = [∅]

whenever k1 + · · ·+ kn = k. It follows from some algebra in [24, §5] that

(1.21) ck

(
n∐

i=1

(Yi, λi)

)

= max
k1+···+kn=k

n∑

i=1

cki
(Yi, λi).

Finally, if (Y,λ) is a closed contact three-manifold with λ possibly degen-

erate, define ck(Y,λ) = limn→∞ ck(Y, fnλ), where fn : Y →R
>0 are functions

on Y with fnλ nondegenerate and limn→∞ fn = 1 in the C0 topology. It can

be shown using Theorem 1.9 that this is well-defined and still satisfies (1.21).

For example, Equation (1.19) also holds when a/b is rational.
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ECH Capacities. We are now ready to define ECH capacities.

Definition 1.12. A (four-dimensional) Liouville domain is a weakly5 exact

symplectic filling (X,ω) of a contact three-manifold (Y,λ).

Definition 1.13. If (X,ω) is a four-dimensional Liouville domain with

boundary (Y,λ), define the ECH capacities of (X,ω) by

ck(X,ω) = ck(Y,λ) ∈ [0,∞].

To see why this definition makes sense, first note that c(ξ) �= 0 ∈
ECH(Y, ξ,0) by Example 1.10, so ck(Y,λ) is defined. We also need to ex-

plain why ck(X,ω) does not depend on the choice of contact form λ on Y

with dλ= ω|Y . Let λ′ be another such contact form. Assume that λ and λ′

are nondegenerate (one can handle the degenerate case by taking a limit of

nondegenerate forms). Since dλ = dλ′, the Reeb vector fields R and R′ for

λ and λ′ are related by R′ = fR where f : Y → R
>0. Let J be an almost

complex structure on R × Y as needed to define the ECH of λ. Let J ′ be

the almost complex structure on R× Y which agrees with J on the contact

planes ξ but sends ∂s �→R′. There is then a canonical isomorphism of chain

complexes

(1.22) ECCL(Y,λ,0, J) =ECCL
(

Y,λ′,0, J ′)

which preserves the U maps and the empty set. The reason is that the chain

complexes ECC(Y,λ,Γ,J) and ECC(Y,λ′, Γ, J ′) have the same generators,

and when Γ = 0 the symplectic actions as defined using λ or λ′ agree by

Stokes’s theorem because dλ= dλ′. Furthermore the J -holomorphic curves in

R×Y agree with the J ′-holomorphic curves after rescaling the R coordinate

on R× Y using the function f . And it follows immediately from (1.22) that

ck(Y,λ) = ck(Y,λ
′).

For example, the Ellipsoid property of ECH capacities now follows from

(1.19).

Monotonicity for Liouville Domains. We now explain why the Mono-

tonicity property holds when (X0, ω0) and (X1, ω1) are Liouville domains. By

5Our definition of “Liouville domain” is more general than the usual definition, and perhaps
should be called a “weak Liouville domain”. Ordinarily a “Liouville domain” is an exact
symplectic filling.
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a limiting argument, one can assume that (X0, ω0) symplectically embeds into

the interior of (X1, ω1). For i= 0,1, let Yi = ∂Xi, and let λi be a contact form

on Yi with ∂λi = ω|Yi
. Then (X \ϕ(int(X0)), ω1) is a weakly exact symplectic

cobordism from (Y1, λ1) to (Y0, λ0). The Monotonicity property in this case

now follows from:

Lemma 1.14. Let (X,ω) be a weakly exact symplectic cobordism from

(Y+, λ+) to (Y−, λ−). Then

ck(Y−, λ−)≤ ck(Y+, λ+)

for each k ≥ 0.

This lemma follows almost immediately from the fact that ck is defined

solely in terms of the filtration, the U maps, and the contact invariant, and

these structures are preserved by the cobordism map. Here are the details.

Proof. By a limiting argument we may assume that the contact forms λ±
are nondegenerate. Let U+

1 , . . . ,U
+
m denote the U maps on ECH(Y+, λ+,0)

associated to the components of Y+, and let U−
1 , . . . ,U

−
n denote the U maps

on ECH(Y−, λ−,0) associated to the components of Y−. Let L> 0 and sup-

pose that ck(Y+, λ) < L; it is enough to show that ck(Y−, λ−) ≤ L. Since

ck(Y+, λ)<L, there exists a class η+ ∈ECHL(Y+, λ+,0) such that

(1.23)
(

U+
1

)k1 · · ·
(

U+
m

)km
η+ = [∅]

whenever k1 + · · ·+ km = k.

Let

η− = ΦL(X,ω)η+ ∈ECHL(Y−, λ−,0).

We claim that

(1.24)
(

U−
1

)k1 · · ·
(

U−
n

)kn
η− = [∅]

whenever k1 + · · ·+ kn = k, so that ck(Y−, λ−)≤ L. To prove this, first note

that by Exercise 1.15 below, each component of Y− is contained in the same

component of X as some component of Y+. Equation (1.24) then follows

from Equation (1.23) together with Theorem 1.9. �

Exercise 1.15. Show that if (X,ω) is a weakly exact symplectic cobor-

dism from (Y+, λ+) to (Y−, λ−) with Y− �= ∅, then Y+ �= ∅. (See answer in

Appendix.)
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Non-Liouville Domains. We extend the definition of ECH capacities to

symplectic four-manifolds which are not Liouville domains by a simple trick:

If (X,ω) is any symplectic four-manifold, define

ck(X,ω) = sup
{

ck
(

X ′, ω′)},

where the supremum is over Liouville domains (X ′, ω′) that can be symplec-

tically embedded into X . It is a tautology that this new definition of ck is

monotone with respect to symplectic embeddings. And this new definition

agrees with the old one when (X,ω) is already a Liouville domain, by the

Monotonicity property for the old definition of ck with respect to symplectic

embeddings of Liouville domains.

Properties of ECH Capacities. The remaining properties of ECH ca-

pacities in Theorem 1.3 are proved as follows. The Disjoint Union property

follows from (1.21). The Conformality property follows from the definitions

and the scaling property (1.17) when r > 0, and a similar argument6 when

r < 0. We will prove the Polydisk property at the end of Section 4.3. The

proof of the Volume property is beyond the scope of these notes; it is given in

[11], using ingredients from Taubes’s proof of the Weinstein conjecture [57].

2. Origins of ECH

One of the main goals of these notes is to explain something about where

ECH comes from. The starting point for the definition of ECH is Taubes’s

“SW=Gr” theorem [55] asserting that the Seiberg-Witten invariants of a

symplectic four-manifold agree with a “Gromov invariant” counting holo-

morphic curves. The basic idea of ECH is that it is a three-dimensional ana-

logue of Taubes’s Gromov invariant. So we will now review Taubes’s Gromov

invariant in such a way as to make the definition of ECH appear as natural

as possible. The impatient reader may wish to skip ahead to the definition

of ECH in Section 3, and refer back to this section when more motivation is

needed.

6In particular, there is a canonical isomorphism of chain complexes (with Z/2 coefficients)

ECCL(Y,λ,Γ,J) =ECCL(Y,−λ,−Γ,−J).

Note that the resulting isomorphism ECH(Y, ξ,Γ ) =ECH(Y,−ξ,−Γ ) corresponds, under
Taubes’s isomorphism (1.11), to “charge conjugation invariance” of Seiberg-Witten Floer
cohomology (with Z/2 coefficients).
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2.1. Taubes’s “SW=Gr” Theorem

We first briefly recall the statement of Taubes’s “SW=Gr” theorem. Let X

be a closed connected oriented four-manifold. (All manifolds in these notes

are smooth.) Let b+2 (X) denote the dimension of a maximal positive definite

subspace H+
2 (X;R) of H2(X;R) with respect to the intersection pairing. Let

Spinc(X) denote the set of spin-c structures7 on X ; this is an affine space

over H2(X;Z). If b+2 (X)> 1, one can define the Seiberg-Witten invariant

(2.1) SW (X) : Spinc(X)→ Z

by counting solutions to the Seiberg-Witten equations, see e.g. [45]. More

precisely, the Seiberg-Witten invariant depends on a choice of “homol-

ogy orientation” of X , namely an orientation of H0(X;R) ⊕ H1(X;R) ⊕
H+

2 (X;R). Switching the homology orientation will multiply the Seiberg-

Witten invariant by −1. If b+2 (X) = 1, the Seiberg-Witten invariant (2.1)

is still defined, but depends on an additional choice of one of two possi-

ble “chambers”; one can identify a chamber with an orientation of the line

H+
2 (X;R).

While the Seiberg-Witten invariants are very powerful for distinguishing

smooth four-manifolds, it is also nearly impossible to compute them directly

except in very special cases (although there are axiomatic properties which

one can use to compute the invariants for more interesting examples). How-

ever, Taubes showed that if X has a symplectic form ω, then the Seiberg-

Witten invariants of X are equal to a certain count of holomorphic curves,

which are much easier to understand than solutions to the Seiberg-Witten

equations. Namely, for each A ∈H2(X), Taubes defines a “Gromov invari-

ant”

Gr(X,ω,A) ∈ Z,

which is a certain count of holomorphic curves in the homology class A,

which we will review in Section 2.5 below. Further, the symplectic structure

ω determines a distinguished spin-c structure sω, so that we can identify

H2(X) = Spinc(X),

A↔ sω +PD(A).
(2.2)

7A spin-c structure on an oriented n-manifold is a lift of the frame bundle from a principal
SO(n) bundle to a principal Spinc(n) = Spin(n) ×Z/2 U(1) bundle. However we will not
need this here.
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We can now state:

Theorem 2.1 (Taubes). Let (X,ω) be a closed connected symplectic four-

manifold with b+2 (X) > 1. Then X has a homology orientation such that

under the identification (2.2),

SW (X) =Gr(X,ω, ·).

Remark 2.2. A version of this theorem also holds when b+2 (X) = 1. Here

one needs to compute the Seiberg-Witten invariant using the chamber de-

termined by the cohomology class of ω. Also, in this case the definition of

the Gromov invariant needs to be modified in the presence of symplectic

embedded spheres of square −1, see [39].

2.2. Holomorphic Curves in Symplectic Manifolds

We now briefly review what we will need to know about holomorphic curves

in order to define Taubes’s Gromov invariant. Proofs of the facts recalled

here may be found for example in [42].

Let (X2n, ω) be a closed symplectic manifold. An ω-compatible almost

complex structure is a bundle map J : TX → TX such that J2 = −1 and

g(v,w) = 〈Jv,w〉 defines a Riemannian metric on X . Given ω, the space of

compatible almost complex structures J is contractible. Fix an ω-compatible8

almost complex structure J .

A J -holomorphic curve in (X,ω) is a holomorphic map u : (Σ,j)→ (X,J)

where (Σ,j) is a compact Riemann surface (i.e. Σ is a compact surface

and j is an almost complex structure on Σ), u : Σ →X is a smooth map,

and J ◦ du = du ◦ j. The curve u is considered equivalent to u′ : (Σ′, j′)→
(X,J) if there exists a holomorphic bijection φ : (Σ,j)→ (Σ′, j′) such that

u′ ◦ φ = u. Thus a J -holomorphic curve is formally an equivalence class of

triples (Σ,j,u) satisfying the above conditions.

We call a J -holomorphic curve irreducible if its domain is connected.

If u : (Σ,j)→ (X,J) is an embedding, then the equivalence class of the

J -holomorphic curve u is determined by its image C = u(Σ) in X . Indeed,

8Taubes’s theorem presumably still works if one generalizes from compatible to tame almost
complex structures.
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an embedded J -holomorphic curve is equivalent to a closed two-dimensional

submanifold C ⊂X such that J(TC) = TC.

More generally, a holomorphic curve u :Σ→X is called somewhere injec-

tive if there exists z ∈Σ such that u−1(u(z)) = {z} and duz : TzΣ→ Tu(z)X

is injective. One can show that in this case u is an embedding on the com-

plement of a countable subset of Σ (which is finite in the case of interest

where n = 2), and the equivalence class of u is still determined by its im-

age in X . On the other hand, u is called multiply covered if there exists a

branched cover φ : (Σ,j)→ (Σ′, j′) of degree d > 1 and a holomorphic map

u′ : (Σ′, j′)→ (X,J) such that u= u′ ◦ φ.

It is a basic fact that every irreducible holomorphic curve is either some-

where injective or multiply covered. In particular, every irreducible holomor-

phic curve is the composition of a somewhere injective holomorphic curve

with a branched cover of degree d≥ 1. When d > 1, the holomorphic curve is

not determined just by its image in X ; it depends also on the degree d, the

images of the branch points in X , and the monodromy around the branch

points.

Define the Fredholm index of a holomorphic curve u : (Σ,j)→ (X,J) by

(2.3) ind(u) = (n− 3)χ(Σ) + 2
〈

c1(TX), u∗[Σ]
〉

.

Here c1(TX) denotes the first Chern class of TX , regarded as a complex

vector bundle using the almost complex structure J . The isomorphism class

of this complex vector bundle depends only on the symplectic structure and

not on the compatible almost complex structure.

A transversality argument shows that if J is generic, then for each some-

where injective holomorphic curve u, the moduli space of holomorphic curves

near u is a smooth manifold of dimension ind(u), cut out transversely in a

sense to be described below. Unfortunately, this usually does not hold for

multiply covered curves. Even if all somewhere injective holomorphic curves

are cut out transversely, there can still be multiply covered holomorphic

curves u such that ind(u) is less than the dimension of the moduli space near

u, or even negative. This is a major technical problem in defining holomorphic

curve counting invariants in general, and it also causes some complications

for ECH, as we will see in the proof that ∂2 = 0 in Section 5.4 and especially

in the construction of cobordism maps in Section 5.5.
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2.3. Deformations of Holomorphic Curves

We now clarify what it means for a holomorphic curve to be “cut out trans-

versely”. To simplify the discussion we restrict attention to immersed curves,

which are all we need to consider to define Taubes’s Gromov invariant.

Let u : C→X be an immersed J -holomorphic curve, which by abuse of

notation we will usually denote by C. Then C has a well defined normal

bundle NC , which is a complex vector bundle of rank n − 1 over C. The

derivative of the equation for C to be J -holomorphic defines a first-order

elliptic differential operator

DC : Γ (NC)−→ Γ
(

T 0,1C ⊗NC

)

,

which we call the deformation operator of C. Here Γ denotes the space of

smooth sections.

To explain this operator in more detail, we first recall some general for-

malism. Suppose E→B is a smooth vector bundle and ψ :B→E is a smooth

section. Let x ∈B be a zero of ψ. Then the derivative of the section ψ at x

defines a canonical map

(2.4) ∇ψ : TxB→Ex.

Namely, the derivative of ψ, regarded as a smooth map B→E, has a differ-

ential dψx : TxB→ T(x,0)E, and the map (2.4) is obtained by composing this

with the projection T(x,0)E = TxB ⊕Ex→Ex.

To put holomorphic curves into the above framework, let B be the infinite

dimensional (Frechet) manifold of immersed compact surfaces in X . Given an

immersed surface u :C→X , let NC = u∗TX/TC denote the normal bundle

to C, which is a rank 2n−2 real vector bundle over C, and let πNC
: u∗TX→

NC denote the quotient map. We can identify TCB = Γ (NC). There is an

infinite dimensional vector bundle E → B whose fiber over C is the space of

smooth bundle maps TC → NC . We define a smooth section ∂ : B → E by

defining ∂(C) : TC → NC to be the map sending v �→ πNC
(Jv). Then C is

J -holomorphic if and only if ∂(C) = 0. In this case the derivative of ∂ defines

a map Γ (NC)→ Γ (T ∗C ⊗NC). Furthermore, since C is J -holomorphic, the

values of this map anticommute with J , so it is actually an operator Γ (NC)→
Γ (T 0,1C ⊗NC). This is the deformation operator DC .

One can write the operator DC in local coordinates as follows. Let z =

s + it be a local coordinate on C, use idz to locally trivialize T 0,1C, and
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choose a local trivialization of NC over this coordinate neighborhood. With

respect to these coordinates and trivializations, the operator DC locally has

the form

DC = ∂s + J∂t +M(s, t).

Here M(s, t) is a real matrix of size 2n− 2 determined by the derivatives of

J in the normal directions to C.

We say that C is regular , or “cut out transversely”, if the operator DC is

surjective. In this case the moduli space of holomorphic curves is a manifold

near C, and its tangent space at C is the kernel of DC .

In the analysis one often needs to extend the operator DC to suitable

Banach space completions of the spaces of smooth sections, for example to

extend it to an operator

(2.5) DC : L2
1(C,NC)−→ L2

(

C,T 0,1C ⊗NC

)

.

SinceDC is elliptic, the extended operator is Fredholm, and its kernel consists

of smooth sections. It follows from the Riemann-Roch theorem that the index

of this Fredholm operator is the Fredholm index ind(C) defined in (2.3). This

is why the moduli space of holomorphic curves near a regular curve C, under

our simplifying assumption that C is immersed, has dimension ind(C).

2.4. Special Properties in Four Dimensions

In four dimensions, holomorphic curves enjoy three additional special prop-

erties which are important for our story. To state the first special prop-

erty, if p is an isolated intersection point of surfaces S1 and S2 in X , let

mp(S1 ∩ S2) ∈ Z denote the intersection multiplicity at p.

Intersection Positivity. Let C1 and C2 be distinct irreducible somewhere

injective J-holomorphic curves in a symplectic four-manifold. Then the in-

tersection points of C1 and C2 are isolated; and for each p ∈ C1 ∩ C2, the

intersection multiplicity mp(C1 ∩C2)> 0. Moreover, mp(C1 ∩C2) = 1 if and

only if C1 and C2 are embedded near p and intersect transversely at p.

It is easy to see that if C1 and C2 are embedded near p and intersect

transversely at p, so that mp(C1 ∩C2) =±1, then in fact mp(C1 ∩C2) = +1,

essentially because a complex vector space has a canonical orientation. The



Lecture Notes on Embedded Contact Homology 411

hard part of the theorem is to deal with the cases where C1 and C2 are not

embedded near p or do not intersect transversely at p.

In particular, intersection positivity implies that the homological inter-

section number

[C1] · [C2] =
∑

p∈C1∩C2

mp(C1 ∩C2)≥ 0,

with equality if and only if C1 and C2 are disjoint. Note that the assumption

that C1 and C2 are distinct is crucial. A single holomorphic curve C can have

[C] · [C]< 0; for example, the exceptional divisor in a blowup is a holomorphic

sphere C of square −1. What intersection positivity implies in this case is

that the exceptional divisor is the unique holomorphic curve in its homology

class.

The second special property of holomorphic curves in four dimensions

is the adjunction formula. To state it, define a singularity of a somewhere

injective J -holomorphic curve C in a symplectic four-manifold X to be a

point in X where C is not locally an embedding. A node is a singularity

given by a transverse self-intersection whose inverse image in the domain of

C consists of two points (where C is an immersion). Let χ(C) denote the

Euler characteristic of the domain of C (which may be larger than the Euler

characteristic of the image of C in X if there are singularities).

Adjunction Formula. Let C be a somewhere injective J-holomorphic curve

in a symplectic four-manifold (X,ω). Then the singularities of C are isolated,

and

(2.6)
〈

c1(TX), [C]
〉

= χ(C) + [C] · [C]− 2δ(C)

where δ(C) is a count of the singularities of C with positive integer weights.

Moreover, a singularity has weight 1 if and only if it is a node.

In particular, we have

(2.7) χ(C) + [C] · [C]−
〈

c1(TX), [C]
〉

≥ 0,

with equality if and only if C is embedded.

Exercise 2.3. Prove the adjunction formula in the special case when C is

immersed and the only singularities of C are nodes.
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The third special property of holomorphic curves in four dimensions is

a version of Gromov compactness using currents, which does not require

any genus bound. The usual version of Gromov compactness asserts that a

sequence of holomorphic curves of fixed genus with an upper bound on the

symplectic area has a subsequence which converges in an appropriate sense to

a holomorphic curve. In the connection with Seiberg-Witten theory, multiply

covered holomorphic curves naturally arise, but the information about the

branch points, and hence about the genus of their domains, is not relevant.

To keep track of the relevant information, define a holomorphic current in X

to be a finite set of pairs C = {(Ci, di)} where the Ci are distinct irreducible

somewhere injective J -holomorphic curves, and the di are positive integers.

Gromov Compactness via Currents (Taubes, [54, Prop. 3.3]). Let (X,ω)

be a compact symplectic four-manifold, possibly with boundary, and let J be

an ω-compatible almost complex structure. Let {Cn}n≥1 be a sequence of J-

holomorphic currents (possibly with boundary in ∂X) such that
∫

Cn
ω has an

n-independent upper bound. Then there is a subsequence which converges as

a current and as a point set to a J-holomorphic current C ⊂X (possibly with

boundary in ∂X).

Here “convergence as a current” means that if σ is any 2-form then

limn→∞
∫

Cn
σ =

∫

C σ. “Convergence as a point set” means that the corre-

sponding subsets of X converge with respect to the metric on compact sets

defined by

d(K1,K2) = sup
x1∈K1

inf
x2∈K2

d(x1, x2) + sup
x2∈K2

inf
x1∈K1

d(x2, x1).

2.5. Taubes’s Gromov Invariant

We now have enough background in place to define Taubes’s Gromov invari-

ant. While the definition is a bit complicated, we will be able to compute

examples in Section 2.6, and this is a useful warmup for the definition of

ECH.

What to Count. Let (X4, ω) be a closed connected symplectic four-

manifold, and let A ∈H2(X). We define the Gromov invariant Gr(X,ω,A) ∈
Z as follows. Fix a generic ω-compatible almost complex structure J . The

rough idea is to count J -holomorphic currents representing the homology

class A in “maximum dimensional moduli spaces”.
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To explain the latter notion, define an integer

(2.8) I(A) =
〈

c1(TX),A
〉

+A ·A.

In fact one can show that I(A) is always even. The integer I(A) is the

closed four-manifold version of the ECH index, a crucial notion which we

will introduce in Section 3.4. For now, the significance of the integer I(A)

is the following. Let C be a somewhere injective J -holomorphic curve. By

(2.3), the Fredholm index of C is given by

(2.9) ind(C) =−χ(C) + 2
〈

c1(TX), [C]
〉

.

It follows from this equation and the adjunction formula (2.6) that

(2.10) ind(C) = I
(

[C]
)

− 2δ(C).

That is, the maximum possible value of ind(C) for a somewhere injective

holomorphic curve C with homology class [C] =A is I(A), which is attained

exactly when C is embedded.

The Gromov invariant Gr(X,ω,A) ∈ Z is now a count of “admissible”

holomorphic currents in the homology class A. Here the homology class of a

holomorphic current C = {(Ci, di)} is defined by

[C] =
∑

i

di[Ci] ∈H2(X).

Furthermore, the current C is called “admissible” if di = 1 whenever Ci is a

sphere with [Ci] · [Ci]< 0.

If I(A)< 0, then there are no admissible holomorphic currents in the ho-

mology class A as we will show in a moment, and we define Gr(X,ω,A) = 0.

The most important case for our story is when I(A) = 0. The admissible

holomorphic currents in this case are described by the following lemma.

Lemma 2.4. Let C = {(Ci, di)} be an admissible holomorphic current with

homology class [C] =A. Then I(A)≥ 0. Moreover, if I(A) = 0, then the fol-

lowing hold:

(a) The holomorphic curves Ci are embedded and disjoint.

(b) di = 1 unless Ci is a torus with [Ci] · [Ci] = 0.

(c) ind(Ci) = I([Ci]) = 0 for each i.
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Proof. It follows directly from the definition of I that if B1,B2 ∈H2(X)

then

(2.11) I(B1 +B2) = I(B1) + I(B2) + 2B1 ·B2.

Applying this to A=
∑

i di[Ci] gives

(2.12) I(A) =
∑

i

diI
(

[Ci]
)

+
∑

i

(

d2i − di
)

[Ci] · [Ci] +
∑

i �=j

[Ci] · [Cj ].

Now the terms on the right hand side are all nonnegative. To see this, first

note that ind(Ci)≥ 0, since we are assuming that J is generic so that Ci is

regular. So by (2.10) we have I([Ci])≥ 0, with equality only if Ci is embedded.

In addition, if we combine the inequality ind(Ci) ≥ 0 with the adjunction

formula (2.7) for Ci, we find that

(2.13) χ(Ci) + 2[Ci] · [Ci]≥ 0

with equality only if Ci is embedded. In particular, the only way that [Ci] · [Ci]

can be negative is if Ci is an embedded sphere with square −1; and in this case

admissibility forces di = 1, so that the corresponding term in (2.12) is zero.

Finally, we know by intersection positivity that [Ci] · [Cj ]≥ 0 with equality

if and only if Ci and Cj are disjoint. We conclude that I(A) ≥ 0, and if

I(A) = 0 then the curves Ci are embedded and disjoint, ind(Ci) = I([Ci]) = 0,

and di > 1 only if Ci is a torus with square zero. (The inequality (2.13) also

allows [Ci] · [Ci] = 0 when Ci is a sphere, but this would require I([Ci]) = 2

and so cannot happen here.) �

One consequence of this lemma is that when I(A) = 0, we have a finite

set of holomorphic currents to count:

Lemma 2.5. If I(A) = 0, then the set of admissible holomorphic currents

C with homology class [C] =A is finite.

Proof. Suppose {Ck}k=1,2,... is an infinite sequence of distinct such currents.

By Gromov compactness with currents, the sequence converges as a current

and a point set to a holomorphic current C∞. Convergence as a current

implies that [C∞] = A. An argument using the Fredholm index which we

omit shows that C∞ is also admissible. Then by Lemma 2.4, C∞ = {(Ci, di)}
where ind(Ci) = 0 for each i and di = 1 unless Ci is a torus of square zero. We

are assuming that J is generic, so each Ci is isolated in the moduli space of

holomorphic curves. If every di = 1, then one can use convergence as a current
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and a point set to show that possibly after passing to a subsequence, each

Ck has an embedded component such that the sequence of these embedded

components converges in the smooth topology to Ci, which is a contradiction.

If any di > 1, one needs an additional lemma from [53] asserting that if J is

generic, then the unbranched multiple covers of the tori of square zero are

also regular. �

How to Count. When I(A) = 0, we define Gr(X,ω,A) ∈ Z to be the sum,

over all admissible holomorphic currents C = {(Ci, di)} with homology class

[C] =A, of a weight w(C) ∈ Z which we now define. The weight is given by a

product of weights associated to the irreducible components,

w(C) =
∏

i

w(Ci, di).

To complete the definition, we need to define the integer w(C,d) when C is

an irreducible embedded holomorphic curve with ind = 0, and d is a positive

integer (which is 1 unless C is a torus with square 0).

If d = 1, then W (C,1) = ε(C) ∈ {±1} is defined as follows. Roughly

speaking, ε(C) is the sign of the determinant of the operator DC , which

is the sign of the spectral flow from DC (extended as in (2.5)) to a complex

linear operator. What this means is the following: one can show that there

exists a differentiable 1-parameter family of operators {Dt}t∈[0,1] between the

same spaces such that D0 =DC ; the operator D1 is complex linear; there are

only finitely many t such that Dt is not invertible; and for each such t, the

operator Dt has one-dimensional kernel, and the derivative of Dt defines an

isomorphism from the kernel of Dt to the cokernel of Dt. Then ε(C) is simply

−1 to the number of such t. One can show that this is well-defined, and we

will compute some examples in Section 2.6.

It remains to define the weights w(C,d) when d > 1 and C is a torus

of square zero. The torus C has three connected unbranched double covers,

classified by nonzero elements of H1(C;Z/2). By [53], if J is generic then the

corresponding doubly covered holomorphic curves are regular. Each of these

double covers then has a sign ε defined above. The weight w(C,d) depends

only on d, the sign of C, and the number of double covers with each sign.

We denote this number by f±,k(d), where ± indicates the sign ε(C), and

k ∈ {0,1,2,3} is the number of double covers whose sign disagrees with that

of C. To define the numbers f±,k(d), combine them into a generating function

f±,k = 1+
∑

d≥1

f±,k(d)t
d.
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Then

f+,0 =
1

1− t ,

f+,1 = 1+ t,

f+,2 =
1+ t

1 + t2
,

f+,3 =
(1+ t)(1− t2)

1 + t2
,

f−,k =
1

f+,k
.

(2.14)

Where do these generating functions come from? It is shown in [53] that

Gr(X,ω,A) is independent of the choice of J and invariant under deforma-

tion of the symplectic form ω; another proof is given in [33]. This invariance

requires the generating functions f±,k to satisfy certain relations, because of

bifurcations of holomorphic curves that can occur as one deforms J or ω.

For example, it is possible for a pair of cancelling tori with opposite signs

to be created or destroyed, and this forces the relation f+,kf−,k = 1. We

will see another relation in the example in Section 2.6. One still has some

leeway in choosing the generating functions to obtain an invariant of sym-

plectic four-manifolds; however the choice above is the one that agrees with

Seiberg-Witten theory, for reasons we will explain in Section 2.7.

The Case I(A) > 0. To define the Gromov invariant Gr(X,ω,A) when

I(A)≥ 0, choose I(A)/2 generic points x1, . . . , xI(A)/2 ∈X . Then Gr(X,A)

is a count of admissible holomorphic currents C in the homology class A that

pass through all of the points x1, . . . , xI(A)/2. We omit the details as this

case is less important for motivating the definition of ECH, although it is

related to the U map introduced in Section 1.4. The Gromov invariants for

classes A with I(A)> 0 are interesting when b+2 (X) = 1. However the “simple

type conjecture” for Seiberg-Witten invariants implies that if b+2 (X)> 1 and

b1(X) = 0, then Gr(X,ω,A) = 0 for all classes A with I(A)> 0.

2.6. The Mapping Torus Example

We now compute Taubes’s Gromov invariant for an interesting family of

examples, namely mapping tori cross S1, for S1-invariant homology classes.
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This example will indicate what the generators of the ECH chain complex

should be.

Mapping Tori. Let (Σ,ω) be a closed connected symplectic two-manifold

and let φ be a symplectomorphism from (Σ,ω) to itself. The mapping torus

of φ is the three-manifold

Yφ = [0,1]×Σ/∼,

(1, x)∼
(

0, φ(x)
)

.

The three-manifold Yφ fibers over S1 = R/Z with fiber Σ, and ω defines a

symplectic form on each fiber. We denote the [0,1] coordinate on [0,1]×Σ
by t. The vector field ∂t on [0,1]×Σ descends to a vector field on Yφ, which

we also denote by ∂t. A fixed point of the map φp determines a periodic orbit

of the vector field ∂t of period p, and conversely a simple periodic orbit of ∂t
of period p determines p fixed points of φp.

The fiberwise symplectic form ω extends to a closed 2-form on Yφ which

annihilates ∂t, and which we still denote by ω. We then define a symplectic

form Ω on S1 × Yφ by

(2.15) Ω = ds∧ dt+ ω

where s denotes the S1 coordinate.

We will now calculate the Gromov invariant Gr(S1 × Yφ,Ω,A), where

A=
[

S1
]

× Γ ∈H2

(

S1 × Yφ
)

for some Γ ∈ H1(Yφ). Observe to start that I(A) = 0, so we just need to

count holomorphic currents of the type described in Lemma 2.4.

Almost Complex Structure. Choose a fiberwise ω-compatible almost

complex structure J on the fibers of Yφ→ S1. That is, for each t ∈ S1 =R/Z,

choose an almost complex structure Jt on the fiber over t, such that Jt varies

smoothly with t. Note that compatibility here just means that Jt rotates

positively with respect to the orientation on Σ.

The fiberwise almost complex structure extends to a unique almost com-

plex structure J on S1 × Yφ such that

(2.16) J∂s = ∂t.

It is an exercise to check that J is Ω-compatible.
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Holomorphic Curves. If γ ⊂ Yφ is an embedded periodic orbit of ∂t, then

it follows from (2.16) that S1 × γ ⊂ S1 × Y is an embedded J -holomorphic

torus. These are all the holomorphic curves we need to consider, because of

the following lemma.

Lemma 2.6. If C = {(Ci, di)} is a J-holomorphic current in S1 × Yφ with

homology class A= [S1]×Γ , then each Ci is a torus S1×γ with γ a periodic

orbit of ∂t.

Proof. We have 〈A, [ω]〉= 0, because the class A is S1-invariant while ω is

pulled back via the projection to Yφ. On the other hand, by the construction

of J , the restriction of ω to any J -holomorphic curve C is pointwise non-

negative, with equality only where C is tangent to the span of ∂s and ∂t (or

singular). Thus
∫

Ci
ω = 0 for each i, and then each Ci is everywhere tangent

to ∂s and ∂t. �

Transversality and Nondegeneracy. We now determine when the holo-

morphic tori S1 × γ are regular.

Let γ be a periodic orbit of period p, and let x ∈Σ be one of the corre-

sponding fixed points of φp. The fixed point x of φp is called nondegenerate

if the differential dφpx : TxΣ→ TxΣ does not have 1 as an eigenvalue. In this

case, the Lefschetz sign is the sign of det(1−dφpx). Also, since the linear map

dφpx is symplectic, we can classify the fixed point x as elliptic, positive hy-

perbolic, or negative hyperbolic according to the eigenvalues of dφpx, just as

we did for Reeb orbits in Section 1.3. In particular, the Lefschetz sign is +1

if the fixed point is elliptic or negative hyperbolic, and −1 if the fixed point

is positive hyperbolic. We say that the periodic orbit γ is nondegenerate if

the fixed point x is nondegenerate. All of the above conditions depend only

on γ and not on the choice of corresponding fixed point x.

The following lemma tells us that if all periodic orbits γ are nondegen-

erate (which will be the case if φ is generic), then for any S1-invariant J , all

the J -holomorphic tori that we need to count are regular9.

Lemma 2.7. The J-holomorphic torus C = S1× γ is regular if and only if

the periodic orbit γ is nondegenerate. In this case, the sign ε(C) agrees with

the Lefschetz sign.

9This is very lucky; in other S1-invariant situations, obtaining transversality for S1-
invariant J may not be possible. See e.g. [15, 16] for examples of this difficulty and ways
to deal with it.
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Proof. Since the deformation operator

DC : Γ (NC)−→ Γ
(

T 0,1C ⊗NC

)

has index zero, C is regular if and only if Ker(DC) = {0}.

To determine Ker(DC), we need to understand the deformation opera-

tor DC more explicitly. To start, identify NC with the pullback of the nor-

mal bundle to γ in Yφ. The latter can be identified with T vertYφ|γ , where
T vertYφ denotes the vertical tangent bundle of the fiber bundle Yφ → S1.

The linearization of the flow ∂t along γ defines a connection ∇ on the bundle

T vertYφ|γ .

Exercise 2.8. With the above identifications, if we use i(ds− idt) to triv-

ialize T 0,1C, then

DC = ∂s + J∇t.

Exercise 2.9. (See answer in Appendix.) Every element of Ker(DC) is

S1-invariant, so Ker(DC) is identified with the kernel of the operator

∇t : Γ
(

T vertYφ|γ
)

−→ Γ
(

T vertYφ|γ
)

.

Exercise 2.10. Let p denote the period of γ and let x be a fixed point of

φp corresponding to γ. Then there is a canonical identification

Ker(∇t) = Ker
(

1− dφpx
)

.

The above three exercises imply that C is regular if and only if γ is

nondegenerate.

To prove that ε(C) agrees with the Lefschetz sign when γ is nondegen-

erate, suppose first that γ is elliptic. Then one can choose a basis for TxΣ

in which dφpx is a rotation. It follows that one can choose a trivialization of

T vertYφ|γ in which the parallel transport of the connection ∇ between any

two points is a rotation. One can now choose J to be the standard almost

complex structure in this trivialization. With these choices, the operator DC

is complex linear, so ε(C) = 1. The same will be true for any other choice of J ,

because one can find a path between any two almost complex structures J ,

and by the exercises above the operator DC will never have a nontrivial ker-

nel. On the other hand, the Lefschetz sign is +1 in this case because the

eigenvalues of dφpx are complex conjugates of each other.
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To prove that ε(C) agrees with the Lefschetz sign when γ is not elliptic,

one deforms the operator DC in an S1-invariant fashion to look like the ellip-

tic case and uses the above exercises to show that the spectral flow changes

by ±1 whenever one switches between the elliptic case and the positive hy-

perbolic case, cf. [48, Lem. 2.6]. �

How to Count Multiple Covers. Assume now that φ is generic so that

all periodic orbits γ are nondegenerate. Then by the above lemmas, the Gro-

mov invariant Gr(S1 × Yφ,Ω, [S1]× Γ ) counts unions of (possibly multiply

covered) periodic orbits of ∂t in Yφ with total homology class Γ . We now

determine the weight with which each union of periodic orbits is counted.

For each embedded torus C = S1×γ, there is a generating function fγ(t)

from (2.14) encoding how its multiple covers are counted; the coefficient of td

is the number of times we count the current given by the d-fold cover of C.

Lemma 2.11.

fγ(t) =

⎧

⎨

⎩

(1− t)−1 = 1+ t+ t2 + · · · , γ elliptic,

1− t, γ positive hyperbolic,

1 + t, γ negative hyperbolic.

Proof. To compute the generating function fγ(t), we need to compute the

sign of C (which we have already done in Lemma 2.7) as well as the signs

of the three connected double covers of C. Let Cs denote the double cover

obtained by doubling in the s direction, let Ct denote the double cover ob-

tained by doubling in the t direction, and let Cs,t denote the third connected

double cover. We have ε(Cs) = ε(C), because one can compute the kernels

of the operators DCs
and DC in the same way. After a change of coordi-

nates, one can similarly show that ε(Cs,t) = ε(C). Finally ε(Ct) is the sign

corresponding to the double cover of γ, which is positive if γ is elliptic, and

negative if γ is positive or negative hyperbolic. So the signs are as shown in

the following table:

γ ε(C) ε(Cs) ε(Cs,t) ε(Ct)

elliptic +1 +1 +1 +1

positive hyperbolic −1 −1 −1 −1
negative hyperbolic +1 +1 +1 −1

The lemma now follows from these sign calculations and (2.14). �

Conclusion. The above calculation shows the following:
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Proposition 2.12. Let φ be a symplectomorphism of a closed connected

surface (Σ,ω) such that all periodic orbits of φ are nondegenerate. Then

Gr(S1 × Yφ,Ω, [S1] × Γ ) is a signed count of finite sets of pairs {(γi, di)}
where:

(i) the γi are distinct embedded periodic orbits of φt,

(ii) the di are positive integers,

(iii)
∑

i di[γi] = Γ ∈H1(Y ), and

(iv) di = 1 whenever γi is hyperbolic.

The sign associated to a set {(γi, di)} is −1 to the number of i such that γi
is positive hyperbolic.

Proof. It follows from Lemma 2.6 that Gr(S1×Yφ,Ω, [S1]×Γ ) is a count,

with appropriate weights, of finite sets {(γi, di)} satisfying conditions (i)–(iii).
The weight associated to a set {(γi, di)} is the product over i of the coefficient

of tdi in the generating function fγi
(t). By Lemma 2.11, this weight is zero

unless condition (iv) holds, in which case it is ±1 and given as claimed. �

2.7. Two Remarks on the Generating Functions

We now attempt to motivate the generating functions (2.14) a bit more, by

explaining why they are what they are in the mapping torus example.

1. One could try to define an invariant of the isotopy class of φ by counting

multiple covers of tori S1× γ using other generating functions. For example,

suppose we choose generating functions e(t), h+(t), and h−(t), and replace

the generating functions in Lemma 2.11 by

fγ(t) =

⎧

⎨

⎩

e(t), γ elliptic,

h+(t), γ positive hyperbolic,

h−(t), γ negative hyperbolic.

These generating functions must satisfy certain relations in order to give

an isotopy invariant of φ. First, as one isotopes φ, it is possible for a bifurca-

tion to occur in which an elliptic orbit cancels a positive hyperbolic orbit of

the same period. To obtain invariance under this bifurcation, we must have

(2.17) e(t)h+(t) = 1.
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Second, a “period-doubling” bifurcation can occur in which an elliptic orbit

turns into a negative hyperbolic orbit of the same period and an elliptic orbit

of twice the period. For invariance under this bifurcation we need

(2.18) e(t) = h−(t)e
(

t2
)

.

In fact, any triple of generating functions e(t), h+(t), and h−(t) satisfying

the relations (2.17) and (2.18) will give rise to an invariant of the isotopy

class of φ.

The generating functions in Lemma 2.11 are e(t) = (1− t)−1 and h±(t) =

1 ∓ t, which of course satisfy the relations (2.17) and (2.18). If we al-

lowed multiply covered hyperbolic orbits also and counted them with their

Lefschetz signs, then the generating functions would be e(t) = (1 − t)−1,

h+(t) = 1 − t − t2 − · · · , and h−(t) = 1 + t − t2 + · · · , which do not sat-

isfy the above relations. Throwing out all multiple covers and defining

e(t) = h−(t) = 1+ t and h+(t) = 1− t would not work either10.

2. Given that there are different triples of generating functions that satisfy

the relations (2.17) and (2.18), why is the triple in Lemma 2.11 the right one

for determining the Seiberg-Witten invariant of S1×Yφ? Here is one answer:

Let [Σ] ∈H2(S
1× Yφ) denote the homology class of a fiber of Yφ→ S1. One

can use Proposition 2.12 and the Lefschetz fixed point theorem to show that

for each nonnegative integer d, we have

∑

Γ ·[Σ]=d

Gr
(

S1 × Yφ,Ω,
[

S1
]

× Γ
)

= L
(

Symd φ
)

,

where Symd φ denotes the homeomorphism from the dth symmetric prod-

uct of Σ to itself determined by φ, and L denotes the Lefschetz number.

This is what we are supposed to get, because Salamon [49] showed that the

10There are of course other triples of generating functions which satisfy the above relations.
For example, the Euler characteristic of the mapping torus analogue of symplectic field
theory [14] (just using the q variables) is computed by the generating functions

e(t) = (1− t)−1(1− t2
)−1 · · · ,

h+(t) = (1− t)
(

1− t2
)

· · · ,

h−(t) = (1− t)−1(1− t)−3 · · · .

Here the omission of even powers of (1− t)−1 in h−(t) corresponds to the omission of “bad”
orbits, without which we would not have invariance under period doubling.
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corresponding Seiberg-Witten invariant is a signed count of fixed points of a

smooth perturbation of Symd φ. (Similar considerations locally in a neighbor-

hood of a holomorphic torus arise in Taubes’s work in [55] which originally

led to the generating functions.)

2.8. Three Dimensional Seiberg-Witten Theory

We now briefly review two basic ways to use the Seiberg-Witten equations

on four-manifolds to define invariants of three-manifolds.

Let Y be a closed oriented connected three-manifold. A spin-c structure

on Y can be regarded as an equivalence class of oriented two-plane fields

(two-dimensional subbundles of TY ), where two oriented two-plane fields

are considered equivalent if they are homotopic on the complement of a ball

in Y . The set of spin-c structures on Y is an affine space over H2(Y ;Z).

A spin-c structure s has a first Chern class c1(s) ∈H2(Y ;Z), and s is called

“torsion” when c1(s) is torsion. A spin-c structure on Y is equivalent to an

S1-invariant spin-c structure on S1 × Y , or an R-invariant spin-c structure

on R× Y .

The first way to define invariants of Y is to consider the Seiberg-Witten

invariants of the four-manifold S1 × Y for S1-invariant spin-c structures.

These invariants are the “Seiberg-Witten invariants” of Y , which we denote

by SW (Y, s) ∈ Z, and it turns out that they count S1-invariant solutions to

the Seiberg-Witten equations. Since b+2 (S
1×Y ) = b1(Y ), these invariants are

well-defined11 when b1(Y ) > 0, up to a choice of chamber when b1(Y ) = 1.

There is also a distinguished “zero” chamber to use when b1(Y ) = 1 and s is

not torsion. Proposition 2.12 computed this invariant when Y is a mapping

torus12. Indeed, we saw that the invariant counts S1-invariant holomorphic

curves.

In general, however, the Seiberg-Witten invariants of three-manifolds are

not very interesting, because it was shown by Meng-Taubes [44] and Turaev

[60] that they agree with a kind of Reidemeister torsion of Y .

The second, more interesting way to define invariants of Y , constructed

by Kronheimer-Mrowka [34], is to “categorify” the previous invariant by

11S1 × Y has a canonical homology orientation, so there is no sign ambiguity in the defi-
nition.
12When b1(Y ) = 1, we used the “symplectic” chamber, which disagrees with the “zero”
chamber for spin-c structures corresponding to Γ ∈ H1(Yφ) with Γ · [Σ] > g(Σ) − 1. If
Γ ∈H1(Y ) corresponds to a torsion spin-s structure then Γ · [Σ] = g(Σ)− 1.
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defining a chain complex (over Z) whose generators are R-invariant solutions

to the Seiberg-Witten equations on R × Y , and whose differential counts

non-R-invariant solutions to the Seiberg-Witten equations on R× Y which

converge to two different R-invariant solutions as the R-coordinate converges

to ±∞. If the spin-c structure s is non-torsion, then the homology of this chan

complex is a well-defined invariant HM∗(Y, s), called “Seiberg-Witten Floer

homology” or “monopole Floer homology”. This is a relatively Z/d-graded

Z-module, where d denotes the divisibility of c1(s) in H
2(Y ;Z) mod torsion

(which turns out to always be an even integer). This means that it splits into d

summands, and there is a well-defined grading difference in Z/d between any

two of them, which is additive for the pairwise differences between any three

summands. Each summand is finitely generated. There is also a canonical

Z/2-grading, with respect to which the Euler characteristic of the Seiberg-

Witten Floer homology HM∗(Y, s) is the Seiberg-Witten invariant SW (Y, s).

If s is torsion, then there is a difficulty in defining Seiberg-Witten Floer

homology caused by “reducible” solutions to the Seiberg-Witten equations.

There are two ways to resolve this difficulty, which lead to two versions

of Seiberg-Witten Floer homology, which are denoted by ĤM∗(Y, s) and
~HM∗(Y, s). These are relatively Z-graded; the former is zero in sufficiently

positive grading, and the latter is zero in sufficiently negative grading. They

fit into an exact triangle

HM∗(Y, s)→~HM∗(Y, s)→ ĤM∗(Y, s)→HM∗−1(Y, s))→ · · ·

where HM∗(Y, s) is a third invariant which is computable in terms of

the triple cup product on Y . In particular, HM∗(Y, s) is two-periodic, i.e.

HM∗(Y, s) =HM∗+2(Y, s), and nonzero in at least half of the gradings. In

conjunction with the above exact triangle, this implies that ĤM∗ (resp.
~HM∗) is likewise 2-periodic and nontrivial when the grading is sufficiently

negative (resp. positive). This fact is the key input from Seiberg-Witten the-

ory to the proof of the Weinstein conjecture, see Section 1.3.

If s is not torsion, then both ĤM∗(Y, s) and ~HM∗(Y, s) are equal to the

invariant HM∗(Y, s) discussed previously.

2.9. Towards ECH

The original motivation for defining ECH was to find an analogue of Taubes’s

SW = Gr theorem for a three-manifold. That is, we would like to identify

Seiberg-Witten Floer homology with an appropriate analogue of Taubes’s
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Gromov invariant for a three-manifold Y . The latter should be the homology

of a chain complex which is generated by R-invariant holomorphic curves in

R× Y , and whose differential counts non-R-invariant holomorphic curves in

R× Y .

For holomorphic curve counts to make sense, R× Y should have a sym-

plectic structure. This is the case for example when Y is the mapping torus

of a symplectomorphism φ; the symplectic form (2.15) on S1×Yφ also makes

sense on R×Yφ. The analogue of Taubes’s Gromov invariant in this case is the

“periodic Floer homology” of φ; it is the homology of a chain complex which

is generated by the unions of periodic orbits counted in Proposition 2.12,

and its differential counts certain holomorphic curves in R× Y . The defini-

tion of PFH is given in [21, 27], and it shown in [38] that PFH agrees with

Seiberg-Witten Floer homology.

Which holomorphic curves to count in the PFH differential is a subtle

matter which we will explain below. However, since not every three-manifold

is a mapping torus, we will instead carry out the analogous construction of

ECH for contact three-manifolds13, which is more general since every oriented

three-manifold admits a contact structure. Finding the appropriate definition

of the ECH chain complex is not obvious, but Taubes’s SW =Gr theorem

and the computation of Gr for mapping tori give us a lot of hints.

3. The Definition of ECH

Guided by the discussion in Section 2, we now define the embedded con-

tact homology of a contact three-manifold (Y,λ), using Z/2 coefficients for

simplicity.

Assume that λ is nondegenerate and fix Γ ∈H1(Y ). We wish to define

the chain complex ECC∗(Y,λ,Γ,J), where J is a generic symplectization-

admissible almost complex structure on R× Y , see Section 1.3.

13To spell out the analogy here, both mapping tori and contact structures are examples of
the more general notion of “stable Hamiltonian structure”. A stable Hamiltonian structure
on an oriented 3-manifold consists of a 1-form λ and a closed 2-form ω such that λ∧ω > 0
and dλ= fω with f : Y →R. These data determine an oriented 2-plane field ξ =Ker(λ) and
a “Reeb vector field” R characterized by ω(R, ·) = 0 and λ(R) = 1. For a mapping torus,
λ = dt, ω ≡ 0, f ≡ 0, and R = ∂t. For a contact structure, ω = dλ, f ≡ 1, and R is the
usual Reeb vector field. A version of ECH for somewhat more general stable Hamiltonian
structures with f ≥ 0 appears in the work of Kutluhan-Lee-Taubes [36].
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Define an orbit set in the homology class Γ to be a finite set of pairs

{(αi,mi)} where the αi are distinct embedded Reeb orbits, the mi are pos-

itive integers, and
∑

imi[αi] = Γ ∈H1(Y ). Motivated by Proposition 2.12,

we define the chain complex to be generated by orbit sets as above such that

mi = 1 whenever αi is hyperbolic. (We also need to study orbit sets not satis-

fying this last condition in order to develop the theory.) Proposition 2.12 also

suggests that there should be a canonical Z/2-grading by the parity of the

number of i such that αi is positive hyperbolic, and we will see in Section 3.5

that this is the case.

The differential should count J -holomorphic currents in R×Y by analogy

with the Gromov invariant. The three key formulas that entered into the

definition of the Gromov invariant were the Fredholm index formula (2.9),

the adjunction formula (2.6), and the definition of I in (2.8). To define the

ECH differential we need analogues of these three formulas for holomorphic

curves in R×Y , plus one additional ingredient, the “writhe bound”. We now

explain these.

3.1. Holomorphic Curves and Holomorphic Currents

We consider J -holomorphic curves of the form u : (Σ,j)→ (R× Y,J) where
the domain (Σ,j) is a punctured compact Riemann surface. If γ is a (possibly

multiply covered) Reeb orbit, a positive end of u at γ is a puncture near which

u is asymptotic to R× γ as s→∞. This means that a neighborhood of the

puncture can be given coordinates (σ, τ) ∈ (R/TZ)× [0,∞) with j(∂σ) = ∂τ
such that limσ→∞ πR(u(σ, τ)) =∞ and limσ→∞ πY (u(s, ·)) = γ. A negative

end is defined analogously with σ ∈ (−∞,0] and s→−∞. We assume that

all punctures are positive ends or negative ends as above. We mod out by the

usual equivalence relation on holomorphic curves, namely composition with

biholomorphic maps between domains.

Let α= {(αi,mi)} and β = {(βj , nj)} be orbit sets in the class Γ . Define

a J -holomorphic current from α to β to be a finite set of pairs C = {(Ck, dk)}
where the Ck are distinct irreducible somewhere injective J -holomorphic

curves in R × Y , the dk are positive integers, C is asymptotic to α as a

current as the R coordinate goes to +∞, and C is asymptotic to β as a

current as the R coordinate goes to −∞. This last condition means that the

positive ends of the curves Ck are at covers of the Reeb orbits αi, the sum

over k of dk times the total covering multiplicity of all ends of Ck at covers of

αi is mi, and analogously for the negative ends. Let M(α,β) denote the set
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of J -holomorphic currents from α to β. A holomorphic current C = {(Ck, dk)}
is “somewhere injective” if dk = 1 for each k, in which case it is “embedded”

if furthermore each Ck is embedded and the Ck are pairwise disjoint.

Let H2(Y,α,β) denote the set of 2-chains Σ in Y with

∂Σ =
∑

i

miαi −
∑

j

njβj ,

modulo boundaries of 3-chains. Then H2(Y,α,β) is an affine space over

H2(Y ), and every J -holomorphic current C ∈M(α,β) defines a class [C] ∈
H2(Y,α,β).

3.2. The Fredholm Index in Symplectizations

We now state a symplectization analogue of the index formula (2.3).

Proposition 3.1. If J is generic, then every somewhere injective J-holo-

morphic curve C in R×Y is regular (i.e. an appropriate deformation operator

is surjective), so the moduli space of J-holomorphic curves as above near C

is a manifold. Its dimension is the Fredholm index given by Eq. (3.1) below.

If C has k positive ends at Reeb orbits γ+1 , . . . , γ
+
k and l negative ends at

Reeb orbits γ−1 , . . . , γ
−
l , the Fredholm index of C is defined by

(3.1) ind(C) =−χ(C) + 2cτ (C) +

k∑

i=1

CZτ

(

γ+i
)

−
l∑

i=1

CZτ

(

γ−i
)

,

where the terms on the right hand side are defined as follows. First, τ is a

trivialization of ξ over the Reeb orbits γ±i , which is symplectic with respect

to dλ. Second, χ(C) denotes the Euler characteristic of the domain of C as

usual. Third,

cτ (C) = c1(ξ|C , τ) ∈ Z

is the relative first Chern class of the complex line bundle ξ|C with respect to

the trivialization τ . To define this, note that the trivialization τ determines

a trivialization of ξ|C over the ends of C, up to homotopy. One chooses a

generic section ψ of ξ|C which on each end is nonvanishing and constant with

respect to the trivialization on the ends. One then defines c1(ξ|C , τ) to be

the algebraic count of zeroes of ψ.
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To say more about what the relative first Chern class depends on, note

that C ∈M(α,β) for some orbit sets α = {(αi,mi)} and β = {(βj , nj)} in

the same homology class. Write Z = [C] ∈H2(Y,α,β). Then in fact c1(ξ|C , τ)
depends only on α, β, τ , and Z. To see this, let S be a compact oriented

surface with boundary, and let f : S→ [−1,1]×Y be a smooth map, such that

f |∂S consists of positively oriented covers of {1}×αi with total multiplicity

mi and negatively oriented covers of {−1} × βj with total multiplicity nj ,

and the projection of f to Y represents the relative homology class Z. Then

c1(f
∗ξ, τ) ∈ Z is defined as before.

Exercise 3.2.

(a) The relative first Chern class c1(f
∗ξ, τ) above depends only on α, β,

τ , and Z, and so can be denoted by cτ (Z).

(b) If Z ′ ∈H2(Y,α,β) is another relative homology class, then

cτ (Z)− cτ
(

Z ′)=
〈

c1(ξ),Z −Z ′〉,

where on the right hand side, c1(ξ) ∈H2(Y ;Z) denotes the usual first

Chern class of the complex line bundle ξ→ Y .

Continuing with the explanation of the index formula (3.1), CZτ (γ) ∈ Z

denotes the Conley-Zehnder index of γ with respect to the trivialization τ .

To define this, pick a parametrization γ : R/TZ→ Y . Let {ψt}t∈R denote

the one-parameter group of diffeomorphisms of Y given by the flow of R.

Then dψt : Tγ(0)Y → Tγ(t)Y induces a symplectic linear map φt : ξγ(0)→ ξγ(t),

which using our trivialization τ we can regard as a 2×2 symplectic matrix. In

particular, φ0 = 1, and φT is the linearized return map (in our trivialization),

which does not have 1 as an eigenvalue. We now define CZτ (γ) ∈ Z to be the

Conley-Zehnder index of the family of symplectic matrices {φt}t∈[0,T ], which

is given explicitly as follows. (See e.g. [48, §2.4] for the general definition of

the Conley-Zehnder index for paths of symplectic matrices in any dimension.)

If γ is hyperbolic, let v ∈R
2 be an eigenvector of φT ; then the family of

vectors {φt(v)}t∈[0,T ] rotates by angle πk for some integer k (which is even

in the positive hyperbolic case and odd in the negative hyperbolic case), and

CZτ (γ) = k.

If γ is elliptic, then we can change the trivialization so that each φt is rotation

by angle 2πθt ∈ R where θt is a continuous function of t ∈ [0, T ] and θ0 = 0.
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The number θ = θT ∈ R \ Z is called the “rotation angle” of γ with respect

to τ , and

(3.2) CZτ (γ) = 2)θ*+ 1.

Exercise 3.3. The right hand side of the index formula (3.1) does not de-

pend on τ , even though the individual terms in it do. (See hint in Appendix.)

The proof of Proposition 3.1 consists of a tranversality argument in [12]

and an index calculation in [50]. As usual, the somewhere injective assump-

tion is necessary; there is no J for which transversality holds for all multiply

covered curves. For example, transversality fails for some branched covers of

trivial cylinders, see Exercise 3.14 below.

3.3. The Relative Adjunction Formula

Our next goal is to obtain an analogue of the adjunction formula (2.6) for

a somewhere injective holomorphic curve in R × Y . To do so we need to

re-interpret each term in the formula (2.6) in the symplectization context;

and there is also a new term arising from the asymptotic behavior of the

holomorphic curve.

Relative Adjunction Formula [21, Rmk. 3.2]. Let C ∈M(α,β) be some-

where injective. Then C has only finitely many singularities, and

(3.3) cτ (C) = χ(C) +Qτ (C) +wτ (C)− 2δ(C).

Here τ is a trivialization of ξ over the Reeb orbits αi and βj ; the left hand

side is the relative first Chern class defined in Section 3.2; χ(C) is the Euler

characteristic of the domain as usual; and δ(C)≥ 0 is an algebraic count of

singularities with positive integer weights as in Section 2.4. The term Qτ (C)

is the “relative intersection pairing”, which is a symplectization analogue of

the intersection number [C] · [C] in the closed case. The new term wτ (C) is

the “asymptotic writhe”. Let us now explain both of these.

The Relative Intersection Pairing. Given a class Z ∈H2(Y,α,β), we

want to define the relative intersection pairing Qτ (Z) ∈ Z.

To warm up to this, recall that given a closed oriented 4-manifold X , and

given a class A ∈H2(X), to compute A ·A one can choose two embedded ori-
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ented surfaces S,S′ ⊂X representing the class A that intersect transversely,

and count the intersections of S and S′ with signs.

In the symplectization case, we could try to choose two embedded (except

at the boundary) oriented surfaces S,S′ ⊂ [−1,1]× Y representing the class

Z such that

∂S = ∂S′ =
∑

i

mi{1} × αi −
∑

j

nj{−1} × βj ,

and S and S′ intersect transversely (except at the boundary), and alge-

braically count intersections of the interior of S with the interior of S′. How-

ever this count of intersections is not a well-defined function of Z, because

if one deforms S or S′, then intersection points can appear or disappear at

the boundary.

To get a well-defined count of intersections, we need to specify something

about the boundary behavior. The choice of trivialization τ allows us to do

this. We require that the projections to Y of the intersections of S and S′

with (1− ε,1]× Y are embeddings, and their images in a transverse slice to

αi are unions of rays which do not intersect and which do not rotate with

respect to the trivialization τ as one goes around αi. Likewise, the projections

to Y of the intersections of S and S′ with [−1,−1+ ε)× Y are embeddings,

and their images in a transverse slice to βj are unions of rays which do not

intersect and which do not rotate with respect to the trivialization τ as one

goes around βj . If we count the interior intersections of two such surfaces S

and S′, then we get an integer which depends only on α,β,Z, and τ , and we

denote this integer by Qτ (Z). For more details see [21, §2.4] and [22, §2.7].

If C ∈M(α,β) is a J -holomorphic current, write Qτ (C) =Qτ ([C]).

The Asymptotic Writhe. Given a somewhere injective J -holomorphic

curve C ∈M(α,β), consider the slice C ∩ ({s} × Y ). If s� 0, then the slice

C ∩ ({s} × Y ) is an embedded curve which is the union, over i, of a braid

ζ+i around the Reeb orbit αi with mi strands. This fact, due to Siefring

[51], is shown along the way to proving the writhe bound (3.9) below, see

Lemma 5.5. This, together with an analogous statement for the negative ends

and the fact that the singularities of C are isolated, implies that C has only

finitely many singularities. Since the braid ζ+i is embedded for all s� 0, its

isotopy class does not depend on s� 0.

We can use the trivialization τ to identify the braid ζ+i with a link in

S1×D2. The writhe of this link, which we denote by wτ (ζ
+
i ) ∈ Z, is defined



Lecture Notes on Embedded Contact Homology 431

by identifying S1 ×D2 with an annulus cross an interval, projecting ζ+i to

the annulus, and counting crossings with signs. We use the sign convention

in which counterclockwise rotations in the D2 direction as one goes counter-

clockwise around S1 contribute positively to the writhe; this is opposite the

usual convention in knot theory, but makes sense in the present context.

Likewise, the slice C ∩ ({s}× Y ) for s� 0 is the union over j of a braid

ζ−j around the Reeb orbit βj with nj strands, and this braid has a writhe

wτ (ζ
−
j ) ∈ Z.

We now define the asymptotic writhe of C by

wτ (C) =
∑

i

wτ

(

ζ+i
)

−
∑

j

wτ

(

ζ−j
)

.

This completes the definition of all of the terms in the relative adjunction

formula (3.3).

Exercise 3.4. Show that the two sides of the relative adjunction formula

(3.3) change the same way if one changes the trivialization τ . (See hint in

Appendix.)

Here is an outline of the proof of the relative adjunction formula (3.3)

in the special case where C is immersed and the only singularities of C

are nodes. Let NC denote the normal bundle of C, which can be identified

with ξ|C near the ends of C. We compute c1(NC , τ) in two ways. First, the

decomposition (C⊕ ξ)|C = T (R× Y )|C = TC ⊕NC implies that

cτ (C) = χ(C) + c1(NC , τ),

see [21, Prop. 3.1(a)]. Second, one can count the intersections of C with a

nearby surface and compare with the definition of Qτ to show that

c1(NC , τ) =Qτ (C) +wτ (C)− 2δ(C),

cf. [21, Prop. 3.1(b)].

3.4. The ECH Index

We come now to the key nontrivial part of the definition in ECH, which is

to define an analogue of the quantity I in (2.8) for relative homology classes

in symplectizations.
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Let C ∈ M(α,β) be somewhere injective. By (3.1), we can write the

Fredholm index of C as

ind(C) =−χ(C) + 2cτ (C) +CZind
τ (C),

where CZind
τ (C) is shorthand for the Conley-Zehnder term that appears in

ind, namely the sum over all positive ends of C at a Reeb orbit γ of CZτ (γ)

(these Reeb orbits are covers of the Reeb orbits αi), minus the corresponding

sum for the negative ends of C. We know that if J is generic thenM(α,β) is a

manifold near C of dimension ind(C). We would like to bound this dimension

in terms of the relative homology class [C].

If γ is an embedded Reeb orbit and k is a positive integer, let γk denote

the k-fold iterate of γ.

Definition 3.5. If Z ∈H2(Y,α,β), define the ECH index

(3.4) I(α,β,Z) = cτ (Z) +Qτ (Z) +CZI
τ (α,β),

where CZI
τ is the Conley-Zehnder term that appears in I , namely

(3.5) CZI
τ (α,β) =

∑

i

mi∑

k=1

CZτ

(

αk
i

)

−
∑

j

nj∑

k=1

CZτ

(

βkj
)

.

If C ∈M(α,β), define I(C) = I(α,β, [C]).

Note that the Conley-Zehnder terms CZind
τ (C) and CZI

τ (α,β) are quite

different. The former just involves the Conley-Zehnder indices of orbits cor-

responding to ends of C; while the latter sums up the Conley-Zehnder indices

of all iterates of αi up to multiplicity mi, minus the Conley-Zehnder indices

of all iterates of βj up to multiplicity nj . For example, if C has positive

ends at α3
i and α5

i (and no other positive ends at covers of αi), then the

corresponding contribution to CZind
τ (C) is CZτ (α

3
i ) + CZτ (α

5
i ), while the

contribution to CZI
τ (α,β) is

∑8
k=1CZτ (α

k
i ).

Basic Properties of the ECH Index.

(Well Defined) The ECH index I(Z) does not depend on the choice of trivi-

alization τ .

(Index Ambiguity Formula) If Z ′ ∈ H2(α,β) is another relative homology

class, then

(3.6) I(Z)− I
(

Z ′)=
〈

Z −Z ′, c1(ξ) + 2PD(Γ )
〉

.
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(Additivity) If δ is another orbit set in the homology class Γ , and if W ∈
H2(Y,β, δ), then Z +W ∈H2(Y,α, δ) is defined and

I(Z +W ) = I(Z) + I(W ).

(Index Parity) If α and β are generators of the ECH chain complex (i.e. all

hyperbolic orbits have multiplicity 1), then

(3.7) (−1)I(Z) = ε(α)ε(β),

where ε(α) denotes −1 to the number of positive hyperbolic orbits in α.

Exercise 3.6. Prove the above basic properties. (See [21, §3.3].)

We now have the following analogue of (2.10), which is the key result

that gets ECH off the ground.

Index Inequality. If C ∈M(α,β) is somewhere injective, then

(3.8) ind(C)≤ I(C)− 2δ(C).

In particular, ind(C)≤ I(C), with equality only if C is embedded.

The index inequality follows immediately by combining the definition of

the ECH index in (3.4), the formula for the Fredholm index in (3.1), the

relative adjunction formula (3.3), and the following inequality:

Writhe Bound. If C ∈M(α,β) is somewhere injective, then

(3.9) wτ (C)≤CZI
τ (α,β)−CZind

τ (C).

The proof of the writhe bound will be outlined in Section 5.1.

Holomorphic Curves with Low ECH Index. The index inequality

(3.8) is most of what is needed to prove the following analogue of Lemma 2.4.

Below, a trivial cylinder means a cylinder R× γ ⊂R× Y where γ is an em-

bedded Reeb orbit.

Proposition 3.7. Suppose J is generic. Let α and β be orbit sets and

let C ∈ M(α,β) be any J-holomorphic current in R × Y , not necessarily

somewhere injective. Then:



434 M. Hutchings

0. I(C)≥ 0, with equality if and only if C is a union of trivial cylinders

with multiplicities.

1. If I(C) = 1, then C = C0 � C1, where I(C0) = 0, and C1 is embedded

and has ind(C1) = I(C1) = 1.

2. If I(C) = 2, and if α and β are generators of the chain complex

ECC∗(Y,λ,Γ,J), then C = C0 � C2, where I(C0) = 0, and C2 is em-

bedded and has ind(C2) = I(C2) = 2.

Proof. Let C = {(Ck, dk)} be a holomorphic current in M(α,β). We first

consider the special case in which dk = 1 whenever Ck is a trivial cylinder.

Since J is R-invariant, any J -holomorphic curve can be translated in the

R-direction to make a new J -holomorphic curve. Let C ′ be the union over k

of the union of dk different translates of Ck. Then C
′ is somewhere injective,

thanks to our simplifying assumption that dk = 1 whenever Ck is a trivial

cylinder. So the index inequality applies to C ′ to give

ind
(

C ′)≤ I
(

C ′)− 2δ
(

C ′).

Now because the Fredholm index ind is additive under taking unions of

holomorphic curves, and because the ECH index I depends only on the

relative homology class, this gives

(3.10)
∑

k

dk ind(Ck)≤ I(C)− 2δ
(

C ′).

Since J is generic, we must have ind(Ck) ≥ 0, with equality if and only if

Ck is a trivial cylinder. Parts (0) and (1) of the Proposition can now be

immediately read off from the inequality (3.10).

To prove part (2), we just need to rule out the case where there is one

nontrivial Ck with dk = 2. In this case, since α and β are ECH generators, all

ends of Ck must be at elliptic Reeb orbits. It then follows from the Fredholm

index formula (3.1) that ind(Ck) is even. Thus ind(Ck) ≥ 2, contradicting

the inequality (3.10).

To remove the simplifying assumption, one can show that if C contains

no trivial cylinders and if T is a union of trivial cylinders, then

I(C ∪ T )≥ I(C) + 2#(C ∩ T ),

compare (2.11). This is proved in [21, Prop. 7.1], and a more general state-

ment bounding the ECH index of any union of holomorphic currents is proved



Lecture Notes on Embedded Contact Homology 435

in [22, Thm. 5.1]. Now by intersection positivity, #(C ∩T )≥ 0, with equality

if and only if C and T are disjoint. The proposition for C ∪ T then follows

from the proposition for C. �

3.5. The ECH Differential

We can now define the differential ∂ on the chain complex ECC∗(Y,λ,Γ,J).

If α and β are orbit sets and k is an integer, define

Mk(α,β) =
{

C ∈M(α,β) | I(C) = k
}

.

If α is a chain complex generator, we define

∂α=
∑

β

#
(

M1(α,β)/R
)

β,

where the sum is over chain complex generators β, and ‘#’ denotes the mod

2 count. Here R acts on M1(α,β) by translation of the R coordinate on

R×Y ; and by Proposition 3.7 the quotient is a discrete set. We will show in

Section 5.3, analogously to Lemma 2.5, thatM1(α,β)/R is finite so that the

count #(M1(α,β)/R) is well defined. Next, it follows from the inequality

(1.15) and Exercise 3.8 below that for any α, there are only finitely many β

with M(α,β) nonempty, so ∂α is well defined.

Exercise 3.8. If λ is a nondegenerate contact form on Y and if L is a real

number, then λ has only finitely many Reeb orbits with symplectic action

less than L.

The proof that ∂2 = 0 is much more difficult, and we will give an in-

troduction to this in Section 5.4. Modulo this and the other facts we have

not proved, we have now defined ECH∗(Y,λ,Γ,J), and as reviewed in the

introduction this is an invariant ECH∗(Y, ξ,Γ ).

3.6. The Grading

The chain complex ECC∗(Y,λ,Γ,J), and hence its homology, is relatively

Z/d graded, where d denotes the divisibility of c1(ξ) + 2PD(Γ ) in H2(Y ;Z)

mod torsion. That is, if α and β are two chain complex generators, we can de-

fine their “index difference” I(α,β) by choosing an arbitrary Z ∈H2(Y,α,β)
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and setting

I(α,β) =
[

I(α,β,Z)
]

∈ Z/d.

This is well defined by the index ambiguity formula (3.6). When the chain

complex is nonzero, we can further define an absolute Z/d grading by picking

some generator β and declaring its grading to be zero, so that the grading

of any other generator is α is

|α|= I(α,β).

By the Additivity property of the ECH index, the differential decreases this

absolute grading by 1.

Remarks 3.9. (1) In particular, if Γ = 0, then the empty set of Reeb orbits

is a generator of the chain complex, which represents a homology class de-

pending only on Y and ξ, see Section 1.4. Thus ECH∗(Y, ξ,0) has a canonical

absolute Z/d grading in which the empty set has grading zero.

(2) It follows from the Index Parity property (3.7) that for every Γ there

is a canonical absolute Z/2 grading on ECH∗(Y, ξ,Γ ) by the parity of the

number of positive hyperbolic Reeb orbits.

3.7. Example: The ECH of an Ellipsoid

To illustrate the above definitions, we now compute ECH∗(Y,λ,0, J), where

Y is the three-dimensional ellipsoid Y = ∂E(a, b) with a/b irrational, and

λ is the contact form given by the restriction of the Liouville form (1.12).

We already saw in Example 1.8 that the chain complex generators have the

form γm1

1 γm2

2 with m1,m2 ≥ 0. Since the Reeb orbits γ1 and γ2 are elliptic,

it follows from the Index Parity property (3.7) that the grading difference

between any two generators is even, so the differential vanishes identically

for any J .

The Grading. To finish the computation of the homology, we just need to

compute the grading of each generator. We know from Section 3.6 that the

chain complex has a canonical Z-grading, where the empty set (corresponding

to m1 =m2 = 0) has grading zero. The grading of α= γm1

1 γm2

2 can then be

written as

(3.11) |α|= I(α,∅) = cτ (α) +Qτ (α) +CZI
τ (α).
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Here cτ (α) is shorthand for cτ (Z), and Qτ (α) is shorthand for Qτ (Z),

where Z is the unique element of H2(Y,α,∅); and CZI
τ (α) is shorthand for

CZI
τ (α,∅).

To calculate the terms on the right hand side of (3.11), we first need

to choose a trivialization τ of ξ over γ1 and γ2. Under the identification

TR4 =C⊕C, the restriction of ξ to γ1 agrees with the second C summand,

and the restriction of ξ to γ2 agrees with the first C summand. We use these

identifications to define the trivialization τ that we will use.

The calculations in Example 1.8 imply that with respect to this trivial-

ization τ , the rotation angle (see Section 3.2) of γ1 is a/b, and the rotation

angle of γ2 is b/a. So by the formula (3.2) for the Conley-Zehnder index, we

have

CZI
τ (α) =

m1∑

k=1

(

2)ka/b*+ 1
)

+

m2∑

k=1

(

2)kb/a*+ 1
)

.

The remaining terms in (3.11) are given as follows:

Exercise 3.10. cτ (α) =m1 +m2, and Qτ (α) = 2m1m2.

Putting the above together, we get that

(3.12) I(α) = 2

(

(m1 + 1)(m2 + 1)− 1 +

m1∑

k=1

)ka/b*+
m2∑

k=1

)kb/a*
)

.

In particular, this is a nonnegative even integer.

How many generators are there of each grading? By Taubes’s isomor-

phism (1.11), together with the calculation of the Seiberg-Witten Floer ho-

mology of S3 in [34], we should get

(3.13) ECH∗
(

∂E(a, b), λ,0, J
)

=

{
Z/2, ∗= 0,2,4, . . . ,

0, otherwise.

Exercise 3.11. Deduce (3.13) from (3.12). That is, show that (3.12) defines

a bijection from the set of pairs of nonnegative integers (m1,m2) to the set

of nonnegative even integers. (See hint in Appendix.)

3.8. The U Map

We now explain some more details of the U map which was introduced in

Section 1.4, following [31, §2.5].
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Suppose Y is connected, and choose a point z ∈ Y which is not on any

Reeb orbit. Let α and β be generators of the chain complex ECC∗(Y,λ,Γ,J),
and let C ∈M2(α,β) be a holomorphic current with (0, z) ∈ C. By Propo-

sition 3.7, we have C = C0 � C2 where I(C0) = 0, and C2 is embedded and

ind(C2) = 2. Since C0 is a union of trivial cylinders and z is not on any Reeb

orbit, it follows that (0, z) ∈ C2. Let N(0,z)C2 denote the normal bundle to

C2 at (0, z). There is then a natural map

(3.14) TCM2(α,β)→N(0,z)C2.

Transversality arguments as in Proposition 3.1 can be used to show that if J

is generic then the map (3.14) is an isomorphism for all holomorphic currents

C as above. In particular, this implies that the set of holomorphic currents C
as above is discrete. For J with this property, we define a chain map

Uz :ECC∗(Y,λ,Γ,J)−→ECC∗−2(Y,λ,Γ,J)

by

Uzα=
∑

β

#
{

C ∈M2(α,β) | (0, z) ∈ C
}

β,

where # denotes the mod 2 count as usual.

A compactness argument similar to the proof that ∂ is defined in Sec-

tion 5.3 shows that Uz is defined. Likewise, the proof that ∂2 = 0 introduced

in Section 5.4 can be modified to show that ∂Uz = Uz∂.

To show that the map (1.14) on ECH induced by Uz does not depend

on z, suppose z′ ∈ Y is another point which is not on any Reeb orbit. Since

there are only countably many Reeb orbits, we can choose an embedded path

η from z to z′ which does not intersect any Reeb orbit. Define a map

Kη :ECC∗(Y,λ,Γ,J)−→ECC∗−1(Y,λ,Γ,J)

by

Kηα=
∑

β

#
{

(C, y) ∈M1(α,β)× Y | (0, y) ∈ C
}

β.

Similarly to the proof that ∂ is well-defined, Kη is well-defined if J is generic.

Similarly to the proof that ∂2 = 0, one proves the chain homotopy equation

(3.15) ∂Kη +Kη∂ = Uz −Uz′ .

Remark 3.12. If z = z′, then it follows from (3.15) that Kη induces a map

on ECH of degree −1. In fact this map depends only on the homology class
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of the loop η, and thus defines a homomorphism from H1(Y ) to the set of

degree −1 maps on ECH∗(Y, ξ,Γ ). See [28, §12.1] for more about this map

and an example where it is nontrivial, and [59] for the proof that it agrees

with an analogous map on Seiberg-Witten Floer cohomology.

3.9. Partition Conditions

The definitions of the ECH differential and the U map do not directly specify

the topological type of the holomorphic currents to be counted. However it

turns out that most of this information is determined indirectly. We now

explain how the covering multiplicities of the Reeb orbits at the ends of

the nontrivial component of such a holomorphic current are uniquely deter-

mined if one knows the trivial cylinder components. (We will further see in

Section 5.2 that the genus of the nontrivial part of the holomorphic current

is then determined by its relative homology class.)

Let α= {(αi,mi)} and β = {(βj , nj)} be orbit sets, and let C ∈M(α,β)

be somewhere injective. For each i, the curve C has ends at covers of αi
whose total covering multiplicity is mi. The multiplicities of these covers are

a partition of the positive integermi which we denote by p+i (C). For example,

if C has two positive ends at αi, and one positive end at the triple cover of

αi, then mi = 5 and p+i (C) = (3,1,1). Likewise, the covering multiplicities of

the negative ends of C at covers of βj determine a partition of nj , which we

denote by p−j (C).

For each embedded Reeb orbit γ and each positive integer m, we will

shortly define two partitions of m, the “positive partition” p+γ (m) and the

“negative partition14” p−γ (m). We then have:

Partition Conditions. Suppose equality holds in the Writhe Bound (3.9)

for C. (This holds for example if C is the nontrivial component of a holomor-

phic current that contributes to the ECH differential or the U map.) Then

p+i (C) = p+αi
(mi) and p−j (C) = p−βj

(nj).

14In [21, 22], p+γ (m) is called the “outgoing partition” and denoted by poutγ (m), while p−γ (m)

is called the “incoming partition” and denoted by pinγ (m). It is never too late to change
your terminology to make it clearer.
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The partitions p±γ (m) are defined as follows. If γ is positive hyperbolic,

then

p+γ (m) = p−γ (m) = (1, . . . ,1).

Thus, if equality holds in the writhe bound for C, then C can never have an

end at a multiple cover of a positive hyperbolic Reeb orbit. If γ is negative

hyperbolic, then

p+γ (m) = p−γ (m) =

{

(2, . . . ,2), m even,

(2, . . . ,2,1), m odd.

Suppose now that γ is elliptic with rotation angle θ with respect to

some trivialization τ of ξ|γ , see Section 3.2. Then p±γ (m) = p±θ (m), where the

partitions p±θ (m) are defined as follows.

To define p+θ (m), let Λ+
θ (m) be the maximal concave polygonal path in

the plane (i.e. graph of a concave function) with vertices at lattice points

which starts at the origin, ends at (m, )mθ*), and lies below the line y = θx.

That is, Λ+
θ (m) is the non-vertical part of the boundary of the convex hull

of the set of lattice points (x, y) with 0 ≤ x ≤m and y ≤ θx. Then p+θ (m)

consists of the horizontal displacements of the segments of Λ+
θ (m) connecting

consecutive lattice points.

The partition p−θ (m) is defined analogously from the path Λ−
θ (m), which

is the minimal convex polygonal path with vertices at lattice points which

starts at the origin, ends at (m, +mθ,), and lies above the line y = θx. An

equivalent definition is p−θ (m) = p+−θ(m).

The partition p±θ (m) depends only on the class of θ in R/Z, and so p±γ (m)

does not depend on the choice of trivialization τ .

The simplest example, which we will need for the computations in Sec-

tion 4, is that if θ ∈ (0,1/m), then

p+θ (m) = (1, . . . ,1),

p−θ (m) = (m).
(3.16)

The partitions are more complicated for other θ, see Figure 1.

If m > 1, then p+θ (m) and p−θ (m) are disjoint. (This makes the gluing

theory to prove ∂2 = 0 nontrivial, see Section 5.4.) This is a consequence of

the following exercise, which may help in understanding the partitions.
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2 3 4 5 6 7 8

7/8,1 8

6/7,7/8 6
7

7,1

5/6,6/7 4
5

6,1 6,2

4/5,5/6 3 5,1 5,2 5,3

3/4,4/5 4,1 4,2 4,3 4,4

5/7,3/4 2 7 7,1

2/3,5/7
3,1 3,2 3,3

3,3,1 3,3,2

5/8,2/3 8

3/5,5/8
5 5,1 5,2

5,2,1

4/7,3/5
2,1 2,2

7 7,1

1/2,4/7
2,2,1 2,2,2

2,2,2,1 2,2,2,2

3/7,1/2 7 7,1

2/5,3/7
5 5,1

5,1,1 5,3

3/8,2/5
3 3,1

8

1/3,3/8
3,1,1 3,3 3,3,1

3,3,1,1

2/7,1/3 7 7,1

1/4,2/7 1,1
4 4,1 4,1,1

4,1,1,1 4,4

1/5,1/4 5 5,1 5,1,1 5,1,1,1

1/6,1/5 1,1,1 6 6,1 6,1,1

1/7,1/6 1,1,1,1 7 7,1

1/8,1/7
1,. . . ,1

1, . . . ,1 8

0,1/8
1,. . . ,1

1, . . . ,1

Fig. 1. The positive partitions p+θ (m) for 2≤m≤ 8 and all θ. The left column shows the
interval in which θ mod 1 lies, and the top row indicates m. (Borrowed from [21])

Exercise 3.13. (See answer in Appendix.) Write p+θ (m) = (q1, . . . , qk) and

p−θ (m) = (r1, . . . , rl).

(a) Show that if (a, b) is an edge vector of the path Λ+
θ (m), then b= )aθ*.

(b) Show that
∑

i∈I)qiθ*= )
∑

i∈I qiθ* for each subset I ⊂ {1, . . . , k}.

(c) Show that there do not exist proper subsets I ⊂ {1, . . . , k} and J ⊂
{1, . . . , l} such that

∑

i∈I qi =
∑

j∈J rj .

Here is a related combinatorial exercise, some of which is needed for the

proofs that ∂ is well-defined and ∂2 = 0 in Section 5.3 and Section 5.4.
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Exercise 3.14. (See answer in Appendix.) Fix an irrational number θ and

a positive integer m. Suppose γ is an embedded elliptic Reeb orbit with

rotation angle θ.

(a) Show that if u :C→R× γ is a degree m branched cover, regarded as

a holomorphic curve in R× Y , then the Fredholm index15 ind(u)≥ 0.

(b) If (a1, . . . , ak) and (b1, . . . , bl) are partitions of m, define (a1, . . . , ak)≥
(b1, . . . , bl) if there is a branched cover u of R× γ with positive ends

at γai , negative ends at γbj , and ind(u) = 0. Show that ≥ is a partial

order on the set of partitions of m.

(c) Show that p−θ (m)≥ p+θ (m).

(d) Show that there does not exist any partition q with q > p−θ (m) or

p+θ (m)> q.

Remark 3.15. If C ∈M(α,β) contributes to the differential or the U map,

and if C contains trivial cylinders, then additional partition conditions must

hold; see [21, Prop. 7.1] and [29, Lem. 7.28] for these conditions.

4. More Examples of ECH

The calculation of the ECH of an ellipsoid in Section 3.7 was fairly simple

because we just had to determine the grading of each generator. We now

outline some more complicated calculations which require counting holomor-

phic curves. These are useful for further understanding the machinery, and

relevant to the symplectic embedding obstructions described in Section 1.2.

4.1. The U Map on the ECH of an Ellipsoid

We first return to the ellipsoid example from Section 3.7. Recall from

(3.13) that ECH∗(∂E(a, b), λ,0) has one generator of grading 2k for each

k = 0,1, . . .; denote this generator by ζk. To calculate the ECH capacities of

E(a, b) in Section 1.5, we needed:

15The Fredholm index of a possibly multiply covered curve u :C → R× Y is defined as in
(3.1) with cτ (C) replaced by c1(u

∗ξ, τ).
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Proposition 4.1. For any J , the U map on ECH∗(∂E(a, b), λ,0, J) is

given by

(4.1) Uζk = ζk−1, k > 0.

As mentioned in Example 1.11, this follows from the isomorphism with

Seiberg-Witten theory. However it is instructive to try to prove Proposi-

tion 4.1 directly in ECH, without using Seiberg-Witten theory.

First of all, we can see directly in this case that the U map does not

depend on the almost complex structure J . The idea is that if we generically

deform J , then similarly to the compactness part of the proof that ∂2 = 0,

see Lemma 5.12, the chain map Uz can change only if at some time there

is a broken holomorphic curve containing a level with I = 1. But there are

no I = 1 curves by the Index Parity property (3.7) since all Reeb orbits are

elliptic.

We now sketch a direct proof of Proposition 4.1 in the special case when

a = 1− ε and b = 1 + ε where ε > 0 is sufficiently small with respect to k.

(One can probably prove the general case similarly with more work.)

If ε is sufficiently small with respect to k, then ζk is the kth generator in

the sequence

1, γ1, γ2, γ
2
1 , γ1γ2, γ

2
2 , γ

3
1 , γ

2
1γ2, γ1γ

2
2 , γ

3
2 , . . .

(indexed starting at k = 0). So to prove Proposition 4.1 in our special case,

it is enough to show the following:

Lemma 4.2. If a= 1−ε and b= 1+ε, then the U map on ECH∗(∂E(a, b),

λ,0, J) is given by:

(a) U(γi1γ
j
2) = γi+1

1 γj−1
2 if j > 0 and ε > 0 is sufficiently small with respect

to i+ j.

(b) U(γi1) = γi−1
2 if i > 0 and ε > 0 is sufficiently small with respect to i.

Proof. The proof has three steps.

Step 1. We first determine the types of holomorphic curves we need to

count.

Let C be a holomorphic current that contributes to Uz(γ
i
1γ

j
2) where

i+j > 0. Write C = C0�C2 as in Proposition 3.7. It follows from the partition

conditions (3.16) that C2 has at most one positive end at a cover of γ1, all
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positive ends of C2 at covers of γ2 have multiplicity 1, all negative ends of

C2 at covers of γ1 have multiplicity 1, and C2 has at most one negative end

at a cover of γ2.

Exercise 4.3. Deduce from this and the equation ind(C2) = 2 that if j = 0,

then C2 is a cylinder if i > 1, and a plane if i = 1, assuming that ε > 0 is

sufficiently small with respect to i. (See answer in Appendix.)

Exercise 4.4. Similarly show that if j > 0, then C2 is a cylinder with a

positive end at γ2 and a negative end at γ1, assuming that ε > 0 is sufficiently

small with respect to i+ j. (See answer in Appendix.)

Step 2. We now observe that the transversality conditions needed to

define Uz , see Section 3.8, hold automatically for any symplectization-

admissible J . This follows from two general facts. First, if C is an immersed

irreducible J -holomorphic curve such that

(4.2) 2g(C)− 2 + h+(C)< ind(C),

then C is automatically regular. Here g(C) denotes the genus of the domain

of C, and h+(C) denotes the number of ends of C at positive hyperbolic

orbits, including even covers of negative hyperbolic orbits. This and much

more general automatic transversality results are proved in [62]. Second, if

(4.3) 2g(C)− 2 + ind(C) + h+(C) = 0,

then every nonzero element of the kernel of the deformation operator of

C is nonvanishing16. If C = C2 where C2 is one of the holomorphic curves

described in Step 1, then C2 has genus zero, Fredholm index 2, and all ends

at elliptic orbits, so both conditions (4.2) and (4.3) hold, and we conclude

that C2 is regular and the map (3.14) has no kernel, which is exactly the

transversality needed to define Uz .

Step 3. We now count the holomorphic curves C2 described in Step 1. To

do so, consider the case a= b= 1. Here the contact form is not nondegenerate,

as every point on Y = S3 is on a Reeb orbit. Indeed, the set of embedded

16The left side of (4.3) is called the “normal Chern number” by Wendl [61]. Any holomor-
phic curve u in R× Y has normal Chern number ≥ 0, with equality only if the projection
of u to Y is an immersion. In favorable cases one can further show that the projection of
u to Y is an embedding. One such favorable case is described in [31, Prop. 3.4], which is
used to characterize contact three-manifolds in which all Reeb orbits are elliptic.
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Reeb orbits can be identified with CP 1, so that the map S3→CP 1 sending

a point to the Reeb orbit on which it lies is the Hopf fibration. This is an

example of a “Morse-Bott” contact form.

It is explained by Bourgeois [2] how one can understand holomorphic

curves for a nondegenerate perturbation of a Morse-Bott contact form in

terms of holomorphic curves for the Morse-Bott contact form itself. In the

present case, this means that we can understand holomorphic curves for the

ellipsoid with a = 1 − ε, b = 1 + ε, in terms of holomorphic curves for the

sphere with a= b= 1. Specifically, let pi ∈CP 1 denote the point correspond-

ing to the Reeb orbit γi for i= 1,2. Choose a Morse function f : CP 1→ R

with an index 2 critical point at γ2 and index 0 critical point at γ1. Then [2]

tells us the following.

First, a holomorphic cylinder for the perturbed contact form with a pos-

itive end at γ2 and a negative end at γ1 (modulo R translation) corresponds

to a negative gradient flow line of f from p2 to p1. If we choose a base point

z ∈CP 1 \{p1, p2}, then there is exactly one such flow line passing through z.

One can deduce from this that if we choose a base point z ∈ Y which is not

on γ1 or γ2, then there is exactly one holomorphic cylinder with a positive

end at γ2 and a negative end at γ1 passing through (0, z). This proves part

(a) of Lemma 4.2.

Second, to prove part (b) of Lemma 4.2, we need to count holomorphic

cylinders (or planes when i= 1) C for the Morse-Bott contact form with a

positive end at γi1, and a negative end at γi−1
2 when i > 0, which pass through

a base point. To count these, let L denote the tautological line bundle over

CP 1. Let J denote the canonical complex structure on L, and let Z ⊂ L
denote the zero section.

Exercise 4.5. One can identify L \ Z � R × S3 so that J corresponds

to a symplectization-admissible almost complex structure. A meromorphic

section ψ of L determines a holomorphic curve in R× S3 with positive ends

corresponding to the zeroes of ψ, and negative ends corresponding to the

poles of ψ. Conversely, a holomorphic curve in R× S3 which intersects each

fiber of L\Z→CP 1, except for the fibers over the Reeb orbits at the positive

and negative ends, transversely in a single point, comes from a meromorphic

section of L.

If C is a holomorphic curve as in the paragraph preceding the above

exercise, then by the definition of linking number in S3, the curve C has

algebraic intersection number 1 with each fiber of L \Z over CP 1 \ {p1, p2}.
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By intersection positivity, C intersects each such fiber transversely in a single

point. It follows then from Exercise 4.5 that to compute Uγi1, we need to

count meromorphic sections of L with a zero of order i at p1, a pole of order

i− 1 at p2, and no other zeroes or poles, which pass through a base point

in L\Z. There is exactly one such meromorphic section, and this completes

the proof of Lemma 4.2. �

4.2. The ECH of T 3

Our next example of ECH is more complicated, but will ultimately be useful

in computing many examples of ECH capacities. We consider

Y = T 3 = (R/2πZ)× (R/Z)2.

Let θ denote the R/2πZ coordinate and let x, y denote the two R/Z coordi-

nates. We start with the contact form

(4.4) λ1 = cosθ dx+ sin θ dy.

Let ξ1 =Ker(λ1); we now describe how to compute ECH∗(T 3, ξ1,0), follow-

ing [28].

Perturbing the Contact Form. The Reeb vector field associated to λ1
is

R1 = cos θ
∂

∂x
+ sinθ

∂

∂y
.

If tanθ ∈Q∪ {∞}, so that the vector (cosθ, sinθ) is a positive real multiple

of a vector (a, b) where a, b are relatively prime integers, then every point

on {θ} × (R/Z)2 is on an embedded Reeb orbit γ in the homology class

(0, a, b) ∈H1(T
3). The symplectic action of the Reeb orbit γ is

A(γ) =
√

a2 + b2.

In particular, there is a circle Sa,b of such Reeb orbits. Thus the contact form

λ1 is not nondegenerate; again it is Morse-Bott.

To compute the ECH of ξ1, we will perturb λ1 to a nondegenerate contact

form. Given a, b, one can perturb the contact form λ1 near Sa,b so that,

modulo longer Reeb orbits, the circle of Reeb orbits Sa,b becomes just two

embedded Reeb orbits, one elliptic with rotation angle slightly positive, and

one positive hyperbolic. We denote these by ea,b and ha,b. The orbits ea,b and
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ha,b are still in the homology class (0, a, b), and have symplectic action close

to
√
a2 + b2, with the action of ea,b slightly greater than that of ha,b. For

any given L > 0, one can perform such a perturbation for all of the finitely

many pairs of relatively prime integers (a, b) with
√
a2 + b2 <L, to obtain a

contact form λ for which the embedded Reeb orbits with symplectic action

less than L are the elliptic orbits ea,b and the hyperbolic orbits ha,b where

(a, b) ranges over all pairs of relatively prime integers with
√
a2 + b2 <L.

It is probably not possible to do this for L =∞, i.e. to find a contact

form such that the embedded Reeb orbits of all actions are the orbits ea,b
and ha,b where (a, b) ranges over all pairs of relatively prime integers. Rather,

one can show that to calculate the ECH of ξ1, we can perturb as above for

a given L, compute the filtered ECH in symplectic action less than L, and

take the direct limit as L→∞. In the calculations below, we only consider

generators of symplectic action less than L, and we omit L from the notation.

The Generators. A generator of the chain complex ECC∗(Y,λ,0, J) now

consists of a finite set of Reeb orbits ea,b and ha,b with positive integer mul-

tiplicities, where each ha,b has multiplicity 1, and the sum with multiplicities

of all the vectors (a, b) is (0,0). To describe this more simply, if (a, b) are

relatively prime integers and if m is a positive integer, let ema,mb denote the

elliptic orbit ea,b with multiplicity m; and let hma,mb denote the hyperbolic

orbit ha,b, together with the elliptic orbit ea,b with multiplicity m− 1 when

m > 1. A chain complex generator then consists of a finite set of symbols

ea,b and ha,b, where each (a, b) is a pair of (not necessarily relatively prime)

integers which are not both zero, no pair (a, b) appears more than once, and

the sum of the vectors (a, b) that appear is zero. If we arrange the vectors

(a, b) head to tail in order of increasing slope, we obtain a convex polygon

in the plane. Thus, a generator of the chain complex ECC∗(Y,λ,0, J) can

be represented as convex polygon Λ in the plane, modulo translation, with

vertices at lattice points, with each edge labeled either ‘e’ or ‘h’. The polygon

can be a 2-gon (for a generator such as ea,be−a,−b) or a point (for the empty

set of Reeb orbits). The symplectic action of the generator is approximately

the Euclidean length of the polygon Λ.

The Grading. The two-plane field ξ1 is trivial; indeed ∂θ defines a global

trivialization τ . Thus c1(ξ1) = 0, and the chain complex ECC∗(T 3, λ,0, J)

has a canonical Z-grading, in which the empty set has grading zero.
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Lemma 4.6. The canonical Z-grading of a generator Λ is given by

(4.5) |Λ|= 2
(

L(Λ)− 1
)

− h(Λ),

where L(Λ) denotes the number of lattice points enclosed by Λ (including

lattice points on the edges), and h(Λ) denotes the number of edges of Λ that

are labeled ‘h’.

Proof. As in (3.11), we can write the grading of a generator Λ as

|Λ|= cτ (Λ) +Qτ (Λ) +CZI
τ (Λ).

Since τ is a global trivialization, cτ (Λ) = 0. We also have CZτ (ea,b) = 1 and

CZτ (ha,b) = 0; consequently,

CZI
τ (Λ) =m(Λ)− h(Λ),

where m(Λ) denotes the total divisibility of all edges of Λ. Finally, it is a

somewhat challenging exercise (which can be solved by the argument in [27,

Lem. 3.7]) to show that

Qτ (Λ) = 2Area(Λ)

where Area(Λ) denotes the area enclosed by Λ. Now Pick’s formula for the

area of a lattice polygon asserts that

2Area(Λ) = 2L(Λ)−m(Λ)− 2.

The grading formula (4.5) follows from the above four equations. �

Combinatorial Formula for the Differential. Define a combinatorial

differential

δ :ECC∗
(

T 3, λ,0, J
)

−→ECC∗−1

(

T 3, λ,0, J
)

as follows. If Λ is a generator, then δΛ is the sum over all labeled polygons

Λ′ that are obtained from Λ by “rounding a corner” and “locally losing

one ‘h’ ”. Here “rounding a corner” means replacing the polygon Λ by the

boundary of the convex hull of the set of enclosed lattice points with one

corner removed. “Locally losing one ‘h’ ” means that of the two edges adjacent

to the corner that is rounded, at least one must be labeled ‘h’; if only one is

labeled ‘h’, then all edges created or shortened by the rounding are labeled ‘e’;

otherwise exactly one of the edges created or shortened by the rounding is

labeled ‘h’. All edges not created or shortened by the rounding keep their
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previous labels. It follows from (4.5) that the combinatorial differential δ

decreases the grading by 1, since L(Λ′) = L(Λ) − 1 and h(Λ′) = h(Λ) − 1.

A less trivial combinatorial fact, proved in [28, Cor. 3.13], is that δ2 = 0.

Proposition 4.7 [28, §11.3]. For every L> 0, the perturbed contact form λ

and almost complex structure J can be chosen so that up to symplectic action

L, the ECH differential ∂ agrees with the combinatorial differential δ.

We will describe some of the proof of Proposition 4.7 at the end of this

subsection.

The homology of the combinatorial differential δ is computed in [28]

(there with Z coefficients), and the conclusion (with Z/2 coefficients) is that

(4.6) ECH∗
(

T 3, ξ1,0
)

�
{
(Z/2)3, ∗ ≥ 0,

0, ∗< 0.

Exercise 4.8. Prove that the homology of the combinatorial differential δ

in degree 0 is isomorphic to (Z/2)3.

The U Map. To compute ECH capacities, we do not need to know the

homology (4.6), but rather the following combinatorial formula for the U

map. Pick θ ∈R/2πZ with tanθ irrational. Define a combinatorial map

Uθ :ECC∗
(

T 3, λ,0, J
)

−→ECC∗−2

(

T 3, λ,0, J
)

as follows. If Λ is a generator, then it has a distinguished corner cθ such that

the oriented line T through cθ with direction vector (cosθ, sinθ) intersects

Λ only at cθ, with the rest of Λ lying to the left of T . Then Uθ is the sum

over all generators Λ′ obtained from Λ by rounding the distinguished corner

cθ and “conserving the h labels”. To explain what this last condition means,

note that Λ′ also has a distinguished corner c′θ. If the edge of Λ preceding cθ
is labeled ‘h’, then exactly one of the new or shortened edges of Λ′ preceding
c′θ is labeled ‘h’; otherwise all new or shortened edges of Λ′ preceding c′θ are

labeled ‘e’. Likewise for the edge of Λ following cθ and the new or shortened

edges of Λ′ following c′θ. All other edge labels are unchanged.

To connect this with the U map on ECH, let z = (θ,x, y) ∈ T 3 where

x, y ∈R/Z are arbitrary.

Proposition 4.9 [28, §12.1.4]. For any L> 0, one can choose λ and J as in

Proposition 4.7 so that up to symplectic action L, we have Uz = Uθ, modulo

terms that decrease the number of ‘h’ labels.
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In particular, if all edges of Λ are labeled ‘e’, then UzΛ is the generator

Λ′ obtained from Λ by rounding the distinguished corner cθ and keeping all

edges labeled ‘e’. (If Λ is a point then UzΛ= 0.)

ECH Spectrum. We now use the above facts to compute the ECH spec-

trum of (T 3, λ1) in terms of a discrete isoperimetric problem.

Proposition 4.10. The ECH spectrum of (T 3, λ1) is given by

(4.7) ck
(

T 3, λ1
)

=min
{

�(Λ) | L(Λ) = k+ 1
}

,

where the minimum is over closed convex polygonal paths Λ with vertices at

lattice points, � denotes the Euclidean length, and L(Λ) denotes the number

of lattice points enclosed by Λ, including lattice points on the edges.

Proof. Fix a nonnegative integer k. Let Λk be a length-minimizing closed

convex polygon with vertices at lattice points subject to the constraint

L(Λk) = k+ 1. We need to show that ck(T
3, λ1) = �(Λk).

Fix z ∈ T 3 for use in defining the chain map Uz . Choose L> �(Λk), and let

λ and J be a perturbed contact form and almost complex structure supplied

by Propositions 4.7 and 4.9. Label all edges of Λk by ‘e’ in order to regard

Λk as a generator of the chain complex ECC(T 3, λ,0, J). Then Λk is a cycle

by Proposition 4.7, and Uk
z Λk = ∅ by Proposition 4.9. Thus ck(T

3, λ) is less

than or equal to the symplectic action of Λk, which is approximately �(Λk).

It follows from the limiting definition of the ECH spectrum for degenerate

contact forms in Section 1.5 that ck(T
3, λ1)≤ �(Λk).

To complete the proof, we now show that ck(T
3, λ1)≥ �(Λk). It is enough

to show that if Λ is any other generator with 〈Uk
z Λ,∅〉 �= 0, then �(Λ)≥ �(Λk).

Since |Λ|= 2k, it follows from the grading formula (4.5) that

L(Λ) = k+ 1+
h(Λ)

2
.

We then have

�(Λ)≥ �(Λk+h(Λ)/2)≥ �(Λk)

where the first inequality holds by definition, and the second inequality holds

because rounding corners of polygons decreases length17. �

17It is a combinatorial exercise to prove that rounding corners of polygons decreases length,
see [28, Lem. 2.14].



Lecture Notes on Embedded Contact Homology 451

Computing the Differential. We now indicate a bit of what is involved

in the proof of Proposition 4.7; similar arguments prove Proposition 4.9. For

the application to ECH capacities, one may skip ahead to Section 4.3.

The easier half of the proof of Proposition 4.7 is to show that λ and J

can be chosen so that

(4.8)
〈

∂Λ,Λ′〉 �= 0 =⇒
〈

δΛ,Λ′〉 �= 0.

The following lemma is a first step towards proving (4.8).

Lemma 4.11. Let C ∈M(Λ,Λ′) be a holomorphic current that contributes

to the differential ∂, and write C = C0 � C1 as in Proposition 3.7. Then C1

has genus zero, and one of the following three alternatives holds:

(i) C1 is a cylinder with positive end at an embedded elliptic orbit ea,b
and negative end at ha,b.

(ii) C1 has two positive ends, and the number of positive ends at hyper-

bolic orbits is one more than the number of negative ends at hyperbolic

orbits.

(iii) C1 has three positive ends, all at hyperbolic orbits; and all negative

ends of C1 are at elliptic orbits.

Proof. Let us first see what the Fredholm index formula (3.1) tells us

about C1. Let g denote the genus of C1, let e+ denote the number of positive

ends of C1 at elliptic orbits, let h+ denote the number of positive ends of C1

at hyperbolic orbits, and let e− and h− denote the number of negative ends

of C1 at elliptic and hyperbolic orbits respectively. Then

χ(C1) = 2− 2g− e+ − h+ − e− − h−

and

CZ ind
τ (C) = e+ − e−,

so by the Fredholm index formula (3.1) we have

ind(C1) = 2g− 2 + 2e+ + h+ + h−.

Since ind(C1) = 1, we obtain

(4.9) 2g+ 2e+ + h+ + h− = 3.
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Since the differential ∂ decreases symplectic action, C1 has at least one

positive end.

Exercise 4.12. Further use the fact that the differential ∂ decreases sym-

plectic action to show that g = 0. (See answer in Appendix.)

If C1 has exactly one positive end, then similarly to the solution to Exer-

cise 4.12, this positive end is at an elliptic orbit. By the partition conditions

(3.16), this positive end is at an embedded elliptic orbit ea,b. Then, similarly

to the solution to Exercise 4.12, C1 has exactly one negative end, which is

at ha,b, so alternative (i) holds.

If C1 has more than one positive end, then it follows from Equation (4.9)

that alternative (ii) or (iii) holds. �

Now 〈δΛ,Λ′〉 �= 0 is only possible in case (ii). So to prove (4.8) we would

like to rule out alternatives (i) and (iii). In fact alternative (i) cannot be

ruled out; there are two holomorphic cylinders from ea,b to ha,b for each pair

of relatively prime integers (a, b). These arise in the Morse-Bott picture from

the two flow gradient flow lines of the Morse function on the circle of Reeb

orbits Sa,b that we used to perturb the Morse-Bott contact form λ1, similarly

to the proof of Proposition 4.1(a). However these cylinders cancel18 in the

ECH differential ∂. Alternative (iii) may occur depending on how exactly

one perturbs the Morse-Bott contact form λ1. However it is shown in [28,

§11.3, Step 5] that the perturbation λ and almost complex structure J can

be chosen so that alternative (iii) does not happen.

The main remaining step in the proof of (4.8) is to show that λ and

J above can be chosen so that if 〈∂Λ,Λ′〉 �= 0, then the polygons Λ and Λ′

can be translated so that Λ′ is nested inside Λ. The proof uses intersection

positivity, see [28, §10.3].

To complete the proof of Proposition 4.7, we need to prove the converse

of (4.8), namely that λ and J above can be chosen so that if 〈δΛ,Λ′〉 �= 0 then

〈∂Λ,Λ′〉 �= 0. One can calculate 〈∂Λ,Λ′〉 by counting appropriate holomorphic

curves for the Morse-Bott contact form λ1. Work of Taubes [56] and Parker

[47] determines the latter curves in terms of tropical geometry. Unfortunately

it would take us too far afield to explain this story here.

18There is also a “twisted” version of ECH in which these cylinders do not cancel in the
differential, see [28, §12.1.1].
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4.3. ECH Capacities of Convex Toric Domains

We now use the results of Section 4.2 to compute the ECH capacities of

a large family of examples. Let Ω be a compact domain in [0,∞)2 with

piecewise smooth boundary. Define a “toric domain” or “Reinhardt domain”

XΩ =
{

(z1, z2) ∈C
2
∣
∣
(

π|z1|2, π|z2|2
)

∈Ω
}

.

For example, if Ω is the triangle with vertices (0,0), (a,0), and (0, b), then

XΩ is the ellipsoid E(a, b). If Ω is the rectangle with vertices (0,0), (a,0),

(0, b), and (a, b), then XΩ is the polydisk P (a, b).

Assume now that Ω is convex and does not touch the axes. We can then

state a formula for the ECH capacities of XΩ , similar to Proposition 4.10.

Let Ω′ ⊂ R
2 be a translate of Ω that contains the origin in its interior. Let

‖ · ‖ denote the (not necessarily symmetric) norm on R
2 that has Ω′ as its

unit ball. Let ‖ · ‖∗ denote the dual norm on (R2)∗, which we identify with

R
2 via the Euclidean inner product 〈·, ·〉. That is, if v ∈R

2, then

‖v‖∗ =max
{

〈v,w〉 |w ∈ ∂Ω′}.

If Λ is a polygonal path in R
2, let �Ω(Λ) denote the length of the path Λ as

measured using the dual norm ‖ · ‖∗, i.e. the sum of the ‖ · ‖∗-norms of the

edge vectors of Λ.

Exercise 4.13. If Λ is a loop, then �Ω(Λ) does not depend on the choice

of translate Ω′ of Ω. (See answer in Appendix.)

Theorem 4.14 [24, Thm. 1.11]19. If Ω is convex and does not intersect the

axes, then

(4.10) ck(XΩ) =min
{

�Ω(Λ) | L(Λ) = k+ 1
}

,

where the minimum is over closed convex polygonal paths Λ with vertices at

lattice points, and L(Λ) denotes the number of lattice points enclosed by Λ,

including lattice points on the edges.

Remark 4.15. One can weaken and possibly drop the assumption that Ω

does not intersect the axes. For example, the formula (4.10) is still correct

when Ω is a triangle or rectangle with two sides on the axes, so that XΩ

19The definition of XΩ in [24] is different, but symplectomorphic to the one given here.
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is an ellipsoid or polydisk. This is a consequence of the following exercise,

which should help with understanding the combinatorial formula (4.10).

Exercise 4.16.

(a) Suppose that Ω is a convex polygon. Show that the minimum on the

right hand side of (4.10) is the same if it is taken over closed convex

polygonal paths Λ with arbitrary vertices whose edges are parallel to

the edges of Ω.

(b) Use part (a), together with the formulas (1.7) and (1.8) for the ECH

capacities of ellipsoids and polydisks, to verify that Equation (4.10) is

correct when XΩ is an ellipsoid or a polydisk.

Proof of Theorem 4.14. We first need to understand a bit about the

symplectic geometry of the domains XΩ . Define coordinates μ1, μ2 ∈ (0,∞)

and θ1, θ2 ∈R/2πZ on (C∗)2 by writing zk =
√

μk/πe
iθk for k = 1,2. In these

coordinates, the standard symplectic form on C
2 restricts to

(4.11) ω =
1

2π

2∑

k=1

dμk dθk.

A useful corollary of this is that

(4.12) vol(XΩ) = area(Ω).

Exercise 4.17. Use (4.11) to show that if Ω1 and Ω2 do not intersect the

axes, and if Ω2 can be obtained from Ω1 by the action of SL2Z and transla-

tion, then XΩ1
is symplectomorphic to XΩ2

.

Now suppose that Ω has smooth boundary, does not intersect the axes,

and is star-shaped with respect to some origin (η1, η2) ∈ int(Ω). This last

condition means that each ray starting at (η1, η2) intersects ∂Ω transversely.

We claim then that ∂XΩ is contact type, so that Ω is a Liouville domain.

Indeed,

ρ=

2∑

k=1

(μk − ηk)
∂

∂μk

is a Liouville vector field transverse to ∂XΩ , see Section 1.3.

To describe the resulting contact form λ= ıρω on ∂XΩ , suppose further

that Ω is strictly convex. Then ∂XΩ is diffeomorphic to T 3 with coordinates
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θ1, θ2, φ, where θ1, θ2 were defined above, and (cosφ, sinφ) is the unit tangent

vector to ∂Ω, oriented counterclockwise. The contact form is now

(4.13) λ=
1

2π

2∑

k=1

(μk − ηk)dθk,

and the Reeb vector field is

(4.14) R=
2π

‖(sinφ,− cosφ)‖∗

(

sinφ
∂

∂θ1
− cosφ

∂

∂θ2

)

.

Here ‖ · ‖∗ denotes the dual norm as above, defined using the translate of Ω

by −η. This means that λ has a circle of Reeb orbits for each φ for which

(sinφ,− cosφ) is a positive multiple of a vector (a, b) where a, b are relatively

prime integers, and the symplectic action of each such Reeb orbit is the dual

norm ‖(a, b)‖∗.

For example, if Ω is a disk of radius 1 centered at η, then the contact

form (4.13) agrees with the standard contact form (4.4) on T 3 (via the co-

ordinate change θ1 = 2πx, θ2 = 2πy, φ= θ+ π/2), and the norm ‖ · ‖∗ is the

Euclidean norm. So in this case, Theorem 4.14 follows from Proposition 4.10.

In the general case, by the arguments in [28, Prop. 10.15], the calculations in

Section 4.2 work just as well for the contact form (4.13), except that symplec-

tic action is computed using the dual norm ‖ · ‖∗ instead of the Euclidean

norm. This proves Theorem 4.14 whenever the boundary of Ω is smooth

and strictly convex. The general case of Theorem 4.14 follows by a limiting

argument. �

The key property of the contact form (4.13) that makes the above cal-

culation work is that the direction of the Reeb vector field (4.14) rotates

monotonically with φ. It is an interesting open problem to compute the ECH

capacities of XΩ when Ω is star-shaped with respect to some origin but not

convex. In this case the direction of the Reeb vector field no longer increases

monotonically as one moves along ∂Ω, so the calculations in Section 4.2 do

not apply, as there can be more than one circle of Reeb orbits in the same

homology class.

Polydisks. We now prove the formula (1.8) for the ECH capacities of a

polydisk P (a, b). Let Ω be a rectangle with sides of length a and b parallel

to the axes which does not intersect the axes. It follows from Theorem 4.14

and Exercise 4.16(b) that

ck(XΩ) =min
{

am+ bn |m,n ∈N, (m+ 1)(n+ 1)≥ k+ 1
}

.
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So to prove Equation (1.8) for the ECH capacities of a polydisk, it is enough

to show that

(4.15) ck
(

P (a, b)
)

= ck(XΩ).

Observe that XΩ is symplectomorphic to the product of two annuli of

area a and b. Also, an annulus can be symplectically embedded into a disk of

slightly larger area, and a disk can be symplectically embedded into an annu-

lus of slightly larger area. Consequently, for any ε > 0, there are symplectic

embeddings

P
(

(1− ε)a, (1− ε)b
)

⊂XΩ ⊂ P
(

(1 + ε)a, (1 + ε)b
)

.

It follows from this and the Monotonicity and Conformality properties of

ECH capacities that (4.15) holds. Indeed, any symplectic capacity satisfying

the Monotonicity and Conformality properties must agree on P (a, b) andXΩ .

5. Foundations of ECH

We now give an introduction to some of the foundational matters which

were skipped over in Section 3. The subsections below introduce foundational

issues in the logical order in which they arise in developing the theory, but

for the most part can be read in any order.

Below, fix a closed oriented three-manifold Y , a nondegenerate contact

form λ on Y , and a generic symplectization-admissible almost complex struc-

ture J on R× Y .

5.1. Proof of the Writhe Bound and the Partition Conditions

We now outline the proof of the writhe bound (3.9) and the partition condi-

tions in Section 3.9. One can prove this one Reeb orbit at a time. That is, let

C be a somewhere injective J -holomorphic curve, let γ be an embedded Reeb

orbit, and suppose that C has positive ends at covers of γ with multiplicities

a1, . . . , ak satisfying
∑k

i=1 ai =m. Let N be a tubular neighborhood of γ and

let ζ =C ∩ ({s} ×N) where s� 0. Let τ be a trivialization of ξ|γ . We then

need to prove the following lemma (together with an analogus lemma for the

negative ends which will follow by symmetry):
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Lemma 5.1. If s� 0, then ζ is a braid whose writhe satisfies

wτ (ζ)≤
m∑

i=1

CZτ

(

γi
)

−
k∑

i=1

CZτ

(

γai
)

,

with equality only if (a1, . . . , ak) = p+γ (m).

To sketch the proof of Lemma 5.1, we assume for simplicity that C con-

tains no trivial cylinders, although this assumption is easily dropped. We now

need to recall some facts about the asymptotics of holomorphic curves. To set

this up, identify N � (R/Z)×D2 so that γ corresponds to (R/Z)×{0}, and
the derivative of the identification along γ sends ξ|γ to {0}⊕C in agreement

with the trivialization τ . It turns out that a nontrivial positive end of C at

the d-fold cover of γ can be written using this identification as the image of

a map

u : [s0,∞)× (R/dZ)−→R× (R/Z)×D2,

(s, t) �−→
(

s,π(t), η(s, t)
)

where s0� 0 and π :R/dZ→R/Z denotes the projection.

We now want to describe the asymptotics of the function η(s, t). Under

our tubular neighborhood identification, the almost complex structure J on

ξ|γ defines a family of 2× 2 matrices Jt with J
2
t =−1 parametrized by t ∈

R/Z. Also, the linearized Reeb flow along γ determines a connection ∇t =

∂t + St on ξ|γ , where JtSt is a symmetric matrix for each t ∈ R/Z. If d is a

positive integer, define the “asymptotic operator” Ld on functions R/dZ→C

by

Ld = Jπ(t)(∂t + Sπ(t)).

Note that the operator Ld is formally self-adjoint, so its eigenvalues are real.

Lemma 5.2 [19]. Given an end η of a holomorphic curve as above, there

exist c,κ > 0, and a nonzero eigenfunction ϕ of Ld with eigenvalue λ > 0,

such that
∣
∣η(s, t)− e−λsϕ(t)

∣
∣< ce(−λ−κ)s

for all (s, t) ∈ [s0,∞)× (R/dZ).

To make use of this lemma, we need to know something about the eigen-

functions of Ld with positive eigenvalues.
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Lemma 5.3. Let ϕ : R/dZ→ C be a nonzero eigenfunction of Ld with

eigenvalue λ. Then:

(a) ϕ(t) �= 0 for all t ∈ R/dZ, so ϕ has a well-defined winding number

around 0, which we denote by windτ (ϕ).

(b) If λ > 0 then windτ (ϕ)≤ )CZτ (γ
d)/2*.

Proof. The eigenfunction ϕ satisfies the ordinary differential equation

∂tϕ=−(Sπ(t) + λJπ(t))ϕ.

Assertion (a) then follows from the uniqueness of solutions to ODE’s. Asser-

tion (b) is proved in [18, §3]. �

Example 5.4. Suppose γ is elliptic with monodromy angle θ with respect

to τ . We can then choose the trivialization τ so that

∇t = ∂t − 2πiθ.

Suppose J is chosen so that Jt is multiplication by i for each t. Then

Ld = i∂t + 2πθ.

Eigenfunctions of Ld are complex multiples of the functions

ϕn(t) = e2πint/d

for n ∈ Z, with eigenvalues

(5.1) λn =−2πn/d+ 2πθ

and winding number

(5.2) windτ (ϕn) = n.

It follows from (5.1) and (5.2) that λn > 0 if and only if windτ (ϕn) < dθ.

This is consistent with Lemma 5.3(b) since by (3.2) we have

⌊

CZτ

(

γd
)

/2
⌋

= )dθ*.

Now return to the slice ζ =C ∩ ({s}×N) where s� 0. The positive ends

of C at covers of γ determine loops ζ1, . . . , ζk in N transverse to the fibers

of N → γ. We conclude from Lemmas 5.2 and 5.3 that ζi has a well-defined
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winding number around γ with respect to τ , which we denote by windτ (ζi),

and this satisfies

(5.3) windτ (ζi)≤
⌊

CZτ

(

γai
)

/2
⌋

.

To simplify notation, write ρi = )CZτ (γ
ai)/2*.

In principle the loops ζi might intersect themselves or each other, but we

will see below that if s is sufficiently large then they do not, so that their

union is a braid ζ. Its writhe is then given by

(5.4) wτ (ζ) =

k∑

i=1

wτ (ζi) +
∑

i �=j

�τ (ζi, ζj).

Here �τ (ζi, ζj) is the “linking number” of ζi and ζj ; this is defined like the

writhe, except now we count crossings of ζi with ζj and divide by 2. The

terms on the right hand side of (5.4) are bounded as follows:

Lemma 5.5. If s� 0, then:

(a) Each component ζi is embedded and has writhe bounded by

(5.5) wτ (ζi)≤ ρi(ai − 1).

(b) If i �= j, then ζi and ζj are disjoint, and

�τ (ζi, ζj)≤max(ρiaj , ρjai).

Proof. An analogous result was proved in [21, §6] in an analytically sim-

pler situation. In the present case, parts of the argument require a result of

Siefring [51] which generalizes Lemma 5.2 to give “higher order” asymptotics

of holomorphic curves. We now outline how this works.

(a) If the integers windτ (ζi) and ai are relatively prime, then an elemen-

tary argument in [21, Lem. 6.7] related to Lemma 5.3(a) shows that ζi is a

torus braid, so that

(5.6) wτ (ζi) = windτ (ζi)(ai − 1).

The inequality (5.5) now follows from this and the winding bound (5.3).

When windτ (ζi) and ai have a common factor, one can prove that ζi is

embedded and satisfies (5.6) using the analysis of Siefring.

(b) Let λi and λj denote the eigenvalues of the operators Lai
and Laj

associated to the ends ζi and ζj via Lemma 5.2. If λi < λj , then it follows
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from Lemma 5.2 that the braid ζj is “inside” the braid ζi (assuming as always

that we take s sufficiently large), from which it follows that ζi and ζj do not

intersect and

(5.7) �τ (ζi, ζj) = windτ (ζi)aj ≤ ρiaj .

The proof that ζi and ζj do not intersect and satisfy (5.7) when λi = λj is

more delicate and uses the analysis of Siefring. �

Remark 5.6. When ρi and ai have a common factor one can strengthen

the inequality (5.5); optimal bounds are given in [52, §3.1]. We do not need

this strengthening when γ is elliptic, but it is needed for the proof of the

partition conditions when γ is hyperbolic, see [22, Lem. 4.16].

Proof of Lemma 5.1. We will restrict attention to the most interest-

ing case where γ is elliptic with monodromy angle θ. (See [22, §4] for the

proof when γ is hyperbolic.) By Equation (3.2) we have ρi = )aiθ*. So by

Equation (5.4) and Lemma 5.5, it is enough to show that

k∑

i=1

)aiθ*(ai − 1) +
∑

i �=j

max
(

)aiθ*aj , )ajθ*ai
)

≤
m∑

i=1

(

2)iθ*+ 1
)

−
k∑

i=1

(

2)aiθ*+ 1
)

,

with equality only if (a1, . . . , ak) = p+θ (m). We can write the above inequality

a bit more simply as

(5.8)

n∑

i,j=1

max
(

)aiθ*aj , )ajθ*ai
)

≤ 2

m∑

i=1

)iθ* −
k∑

i=1

)aiθ*+m− k.

To prove (5.8), following [22], order the numbers a1, . . . , ak so that

)a1θ*
a1

≥ )a2θ*
a2

≥ · · · ≥ )akθ*
ak

.

Let Λ be the path in the plane starting at (0,0) with edge vectors (a1, )a1θ*),
. . . , (ak, )akθ*) in that order. Let P denote the region bounded by the path Λ,

the horizontal line from (0,0) to (m,0), and the vertical line from (m,0) to

(m,
∑k

i=1)aiθ*). Let L denote the number of lattice points contained in P

(including the boundary), let A denote the area of P , and let B denote the

number of lattice points on the boundary of P .
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By dividing P into rectangles and triangles, we find that the left hand

side of (5.8) is twice the area of P , i.e.

(5.9) 2A=

n∑

i,j=1

max
(

)aiθ*aj , )ajθ*ai
)

.

Counting by vertical strips, we find that the number of lattice points enclosed

by P is bounded by

(5.10) L≤m+ 1+

m∑

i=1

)iθ*,

with equality if and only if the image of the path Λ agrees with the image of

the path Λ+
θ (m) defined in Section 3.9. In addition, the number of boundary

lattice points satisfies

(5.11) B ≥m+ k+

k∑

i=1

)aiθ*,

with equality if and only if none of the edge vectors of the path Λ is divisible

in Z
2. Now Pick’s formula for the area of a lattice polygon asserts that

(5.12) 2A= 2L−B − 2.

Combining (5.9), (5.10), (5.11), and (5.12), we conclude that the inequality

(5.8) holds, with equality if and only if Λ=Λ+
θ (m). �

Remark 5.7. Counts of lattice points in polygons have now arisen in two,

seemingly independent, ways in our story: first in the above proof of the

writhe bound and the partition conditions, and second in the calculation of

the ECH of T 3 and the ECH capacities of toric domains in Section 4.2 and

Section 4.3. We do not know if there is a deep explanation for this.

5.2. Topological Complexity of Holomorphic Curves

The definitions of the ECH differential and the U map do not directly spec-

ify the genus of the (nontrivial component of the) holomorphic currents to

be counted. However this is determined indirectly by the relative homology

class of the holomorphic current if one knows the trivial cylinder components,

as we now explain. This fact is useful for understanding the holomorphic cur-

rents (see e.g. [31, §4.5] and [37, Appendix] for applications), and also in the

compactness argument in Section 5.3 below.
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Let α = {(αi,mi)} and β = {(βj , nj)} be orbit sets in the homology

class Γ , and let Z ∈H2(Y,α,β). Define20

(5.13) J0(α,β,Z) =−cτ (Z) +Qτ (Z) +CZJ0
τ (α,β),

where

(5.14) CZJ0
τ (α,β) =

∑

i

mi−1∑

k=1

CZτ

(

αk
i

)

−
∑

j

nj−1
∑

k=1

CZτ

(

βkj
)

.

The definition of J0 is very similar to the definition of the ECH index in (3.4)

and (3.5); however the sign of the relative first Chern class term is switched,

and the Conley-Zehnder term is slightly different. More importantly, while I

bounds the Fredholm index of holomorphic curves, J0 bounds the “topological

complexity” of holomorphic curves.

To give a precise statement in the case that we will need to consider,

let C ∈M(α,β) be a holomorphic current. Suppose that C = C0 � C where

C0 is a union of trivial cylinders with multiplicities, and C is somewhere

injective. Let n+i denote “the number of positive ends of C at covers of α+
i ”,

namely the number of positive ends of C at α+
i , plus 1 if C0 includes the

trivial cylinder R× α+
i with some multiplicity. Likewise, let n−j denote “the

number of negative ends of C at covers of β−j ”, namely the number of negative

ends of C at β−j , plus 1 if C0 includes the trivial cylinder R× β−j with some

multiplicity. Write J0(C) = J0(α,β, [C]).

Proposition 5.8. Let α= {(αi,mi)} and β = {(βj , nj)} be generators of the
ECH chain complex, and let C = C0 �C ∈M(α,β) be a holomorphic current

as above. Then

(5.15) −χ(C) +
∑

i

(

n+i − 1
)

+
∑

j

(

n−j − 1
)

≤ J0(C).

If C is counted by the ECH differential or the U map, then equality holds in

(5.15).

For example, it follows from (5.15) that J0(C)≥−1, with equality only

if C is a plane with positive end at a cover of some Reeb orbit γ, and C0

20It is perhaps not optimal to denote this number by J0 since J usually denotes an almost
complex structure. However the idea is that J0 is similar to I and so should be denoted by
a nearby letter.
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does not contain any trivial cylinders over γ. Proposition 5.8 is proved in

[31, Lem. 3.5], using more general results from [22, §6].

Exercise 5.9. (See answer in Appendix.) Use the relative adjunction for-

mula (3.3) and the partition conditions in Section 3.9 to prove the following

special case of Proposition 5.8: If C ∈M(α,β) is an embedded holomorphic

curve which is counted by the ECH differential or the U map, then

−χ(C) +
∑

i

(

n+i − 1
)

+
∑

j

(

n−j − 1
)

= J0(C).

5.3. Proof that ∂ Is Well Defined

Assume now that the almost complex structure J on R× Y is generic. To

complete the proof in Section 3.5 that the ECH differential ∂ is well-defined,

we need to prove the following:

Lemma 5.10. If α and β are orbit sets, then M1(α,β)/R is finite.

To prove this we want to assume that M1(α,β) is infinite and apply

a compactness argument to obtain a contradiction. A relevant version of

Gromov compactness was proved by Bourgeois-Eliashberg-Hofer-Wysocki-

Zehnder [4]. To describe this result, say that a holomorphic curve u is “non-

trivial” if it is not a union of trivial cylinders; branched covers of trivial

cylinders with a positive number of branched points are considered nontriv-

ial. If u+ and u− are nontrivial holomorphic curves, define “gluing data”

between u+ and u− to consist of the following:

• A bijection between the negative ends of u+ and the positive ends of u−

such that ends paired up under the bijection are at the same (possibly

multiply covered) Reeb orbit γ.

• When γ above is multiply covered with degree m, then the negative end

of u+ and the positive end of u− each determine a degree m cover of

the underlying embedded Reeb orbit, and the gluing data includes an

isomorphism of these covering spaces (there are m possible choices for

this).

Finally, define a broken holomorphic curve to be a finite sequence (u0, . . . , uk),

where each ui is a nontrivial holomorphic curve in R× Y modulo R transla-

tion, called a “level”, together with gluing data as above between ui−1 and
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ui for each i = 1, . . . , k. It is shown in [4] that if {uν}ν≥0 is a sequence of

holomorphic curves with fixed genus between the same sets of Reeb orbits,

then there is a subsequence which converges in an appropriate sense to a

broken holomorphic curve.

Unfortunately we cannot directly apply the above result to a sequence

of holomorphic currents in M1(α,β)/R, because we do not have an a priori

bound on the genus of their nontrivial components. One can obtain a bound

on the genus of a holomorphic curve from Proposition 5.8, but this bound de-

pends on the relative homology class of the holomorphic curve. To get control

over the relative homology classes of holomorphic currents in M1(α,β)/R,

we will first use a second version of Gromov compactness which we now state.

If α and β are orbit sets, define a broken holomorphic current from α to

β to be a finite sequence of nontrivial J -holomorphic currents (C0, . . . ,Ck)
in R × Y , modulo R translation, for some k ≥ 0 such that there are orbit

sets α = γ0, γ1, . . . , γk+1 = β with Ci ∈M(γi, γi+1)/R for i = 0, . . . , k. Here

“nontrivial” means not a union of trivial cylinders with multiplicities. Let

M(α,β)/R denote the set of broken holomorphic currents from α to β.

We say that a sequence of holomorphic currents {Cν}ν≥0 in M(α,β)/R

converges to the broken holomorphic current (C0, . . . ,Ck) if for each i =

0, . . . , k there are representatives Ciν ∈ M(α,β) of the equivalence classes

Cν ∈M(α,β)/R such that the sequence {Ciν}ν≥0 converges as a current and

as a point set on compact sets to Ci, see Section 2.4.

Lemma 5.11.

(a) Any sequence {Cν}ν≥0 of holomorphic currents in M(α,β)/R has

a subsequence which converges to a broken holomorphic current

(C0, . . . ,Ck) ∈M(α,β)/R.

(b) If the sequence {Cν}ν≥0 converges to (C0, . . . ,Ck), then

k∑

i=0

[

Ci
]

= [Cν ] ∈H2(Y,α,β)

for all ν sufficiently large.

Proof. (a) The proof has three steps.

Step 1. For each ν, suppose that C∗ν ∈M(α,β) is a representative of the

equivalence class Cν ∈M(α,β)/R. We claim that {C∗ν}ν≥0 has a subsequence
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which converges as a current and a point set on compact sets to some holo-

morphic current Ĉ in R× Y .

To prove the claim, let a < b. We apply Gromov compactness via currents,

see Section 2.4, to the sequence of intersections C∗ν ∩ ([a, b]× Y ). To see why

this is applicable, note that [a, b]× Y is equipped with the symplectic form

ω = d(esλ) where s denotes the R coordinate, and J is ω-compatible. Assume

that C∗ν is transverse to {a} × Y and {b} × Y , which we can arrange by

perturbing a and b. Then by Stokes’s theorem,
∫

C∗
ν∩((−∞,a]×Y )

eadλ+

∫

C∗
ν∩([a,b]×Y )

ω+

∫

C∗
ν∩([b,∞)×Y )

ebdλ= ebA(α)− eaA(β).

The conditions on J imply that dλ is everywhere nonnegative on C∗ν . Thus
we obtain the a priori bound

∫

C∗
ν∩([a,b]×Y )

ω ≤ ebA(α).

Gromov compactness via currents now implies that we can pass to a subse-

quence so that the sequence {C∗ν ∩ ([a, b]×Y )}ν≥0 converges as a current and

as a point set to some holomorphic current in [a, b]× Y . By diagonalizing,

we can pass to a subsequence so that the sequence {C∗ν}ν≥0 converges as a

current and as a point set on compact sets to some holomorphic current Ĉ
in R× Y .

Steps 2 and 3 are a fairly standard argument which we will just outline.

See e.g. [21, Lem. 9.8] for details in a similar situation.

Step 2. By applying Step 1 to translates of Ĉ, one shows that Ĉ ∈
M(γ+, γ−), where γ+ and γ− are orbit sets with A(α)≥A(γ+)≥A(γ−)≥
A(β).

Step 3. One can now choose representatives C∗ν ∈M(α,β) of the equiva-

lence classes Cν so that the intersection of each C∗ν with {0} × Y contains a

point with distance at least ε from all Reeb orbits of action less than or equal

to A(α). One then applies Steps 1 and 2 to this sequence C∗ν . The limiting

current Ĉ must be nontrivial. If γ+ = α and γ− = β, then we are done. Oth-

erwise one applies the same argument to different choices of C∗ν to find the

other holomorphic currents Ci in the limiting broken holomorphic current.

(b) If this fails, then one uses arguments from the proof of part (a) to pass

to a further subsequence which converges to a broken holomorphic current

including C0, . . . ,Ck together with at least one additional level. But this is

impossible by symplectic action considerations. �
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We can now complete the proof that the differential ∂ is well-defined.

Proof of Lemma 5.10. Suppose to get a contradiction that there is an

infinite sequence {Cν}ν≥0 of distinct elements of M1(α,β)/R.

For each ν, by Proposition 3.7 we can write Cν = Cν,0�Cν,1, where Cν,0 is

a union of trivial cylinders with multiplicities, and Cν,1 is somewhere injective

with I(Cν,1) = ind(Cν,1) = 1. Since there are only finitely many possibilities

for the trivial part Cν,0, we can pass to a subsequence so that Cν,0 is the same

for all ν. There are then orbit sets α′ and β′ which do not depend on ν such

that Cν,1 ∈M1(α
′, β′) for each ν.

By Lemma 5.11, we can pass to a further subsequence such that the

holomorphic curves Cν,1 all represent the same relative homology class Z ∈
H2(Y,α

′, β′).

By Proposition 5.8, there is a ν-independent upper bound on the genus

of Cν,1 in terms of J0(α,β,Z). Thus we can pass to a further subsequence so

that the holomorphic curves Cν,1 all have the same genus.

Now we can apply the compactness result of [4] to pass to a further

subsequence so that the sequence of holomorphic curves {Cν,1}ν≥0 converges

in the sense of [4] to a broken holomorphic curve (u0, . . . , uk).

By the Additivity property of the ECH index, see Section 3.4, we have
∑k

i=0 I(u
i) = 1. By Proposition 3.7, one of the curves ui has I = 1, and the

rest of the curves ui have I = 0 and are unions of branched covers of trivial

cylinders.

We will now be a bit sketchy for the rest of the proof. By a similar addi-

tivity property of the Fredholm index which follows from (3.1), we also have
∑k

i=0 ind(u
i) = 1. It then follows from Exercise 3.14 that in fact there is no

level ui with I(ui) = 0. Hence the limiting broken holomorphic curve is a sin-

gle holomorphic curve u0, which is somewhere injective and has ind(u0) = 1.

Since J is generic, u0 is an isolated point in the moduli space of holomorphic

curves modulo translation. But this contradicts the fact that u0 is the limit

of the sequence of distinct curves {Cν,1}ν≥0. �

5.4. Proof that ∂2 = 0

The proof that ∂2 = 0 is much more subtle than the proof that ∂ is defined,

for reasons which we now explain.
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Fix a generic J . Let α+ and α− be generators of the chain complex

ECC∗(Y,λ,Γ,J). We would like to show that the coefficient 〈∂2α+, α−〉 =
0. To do so, consider the moduli space of I = 2 holomorphic currents

M2(α+, α−)/R.

Lemma 5.12. Any sequence {Cν}ν≥0 of holomorphic currents in

M2(α+, α−)/R has a subsequence which converges either to an element

of M2(α+, α−)/R, or to a broken holomorphic current (C+,C−) ∈
M2(α+, α−)/R with I(C+) = I(C−) = 1.

Proof. By Lemma 5.11, there is a subsequence which converges to a broken

holomorphic current (C0, . . . ,Ck), where by definition each Ci is nontrivial.

By the Additivity property of the ECH index,
∑k

i=0 I(Ci) = 2. By Proposi-

tion 3.7, I(Ci)≥ 1 for each i. The lemma follows from these two facts. �

The usual strategy now would be to add one point to each end of

M2(α+, α−)/R to form a compact one-manifold with boundary, whose

boundary points correspond to ends converging to broken holomorphic cur-

rents as above. In the present situation this is not quite correct; in fact

we do not even know a priori that the moduli space M2(α+, α−)/R has

only finitely many components21. Instead, one can truncate the moduli space

M2(α+, α−), i.e. remove holomorphic currents which are “close to breaking”

in an appropriate sense, to obtain a compact one-manifold with boundary

M′
2(α+, α−)/R. The boundary is equipped with a natural map

(5.16) ∂

(
M′

2(α+, α−)

R

)

−→
⊔

α0

M1(α+, α0)

R
× M1(α0, α−)

R

which sends a boundary point to the broken holomorphic current that it is

“close to breaking into”. The details of this truncation procedure are ex-

plained in [29, §1.3].

To complete the proof that 〈∂2α+, α−〉 = 0, we want to show that

〈∂2α+, α−〉 counts boundary points of M′
2(α+, α−)/R. For this purpose let

α0 be an orbit set and let (C+,C−) ∈ (M1(α+, α0)/R) × (M1(α0, α−)/R).

We then want to show the following:

21The compactness result of [4] does not imply that M2(α+, α−)/R has only finitely many
components, because of the failure of transversality of branched covers of trivial cylinders
that can arise as levels in limits of sequences of ind = 2 holomorphic curves.
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(1) If α0 is a generator of the chain complex ECC∗(Y,λ,Γ,J), then

(C+,C−) has 1 (mod 2) inverse image under the map (5.16).

(2) If α0 is not a generator of the chain complex ECC∗(Y,λ,Γ,J), i.e. if
α0 includes a hyperbolic Reeb orbit with multiplicity greater than one,

then (C+,C−) has 0 (mod 2) inverse images under the map (5.16).

The standard picture from symplectic field theory is that if (u+, u−)
is a broken holomorphic curve such that u+ and u− are regular and have

ind(u+) = ind(u−) = 1, then for each choice of gluing data between u+ and

u−, see Section 5.3, one can “glue” u+ and u− to obtain a unique end of the

moduli space of index 2 holomorphic curves.

To describe the proof of (1) and (2) above, let us restrict attention to the

case where α0 consists of a single pair (γ,m) where γ is an embedded Reeb

orbit and m≥ 1. Write C± = C±0 �C±
1 where C±0 is a union of trivial cylinders

with multiplicities and C±
1 is somewhere injective with ind(C±

1 ) = I(C±
1 ) = 1.

To further simplify the discussion, let us also assume that there are no trivial

cylinders involved, i.e. C±0 = ∅.

Gluing in the Hyperbolic Case. Suppose first that γ is positive hyper-

bolic. In this case, the partition conditions from Section 3.9 tell us that C+
1

has m negative ends at γ, and C−
1 has m positive ends at γ. It follows that

there are m! choices of gluing data between C+
1 and C−

1 , see Section 5.3.

Hence SFT gluing implies that C+
1 and C−

1 can be glued to obtain m! dif-

ferent ends of the moduli space of index 2 curves. The number of gluings m!

is odd (namely 1) when m= 1 and even when m> 1, which is exactly what

we want in order to prove (1) and (2) above.

Suppose next that γ is negative hyperbolic. Let k = )m/2*. Then by the

partition conditions in Section 3.9, the curve C+
1 (resp. C−

1 ) has k negative

(resp. positive) ends at the double cover of γ, together with one negative

(resp. positive) end at γ when m is odd. It follows that there are 2kk! choices

of gluing data between C+
1 and C−

1 . Again, this is odd (namely 1) when

m= 1 and even when m> 1, as desired.

Although we are using Z/2 coefficients here, we remark that in the proof

that ∂2 = 0 with Z coefficients, work of Bourgeois-Mohnke [3] implies that in

the above cases when m> 1, half of the gluings have one sign and half of the

gluings have the other sign, so that the signed count of gluings is still zero.

Gluing in the Elliptic Case. Suppose now that γ is elliptic. Ifm= 1 then

there is one gluing as usual. But ifm> 1, then it follows from Exercise 3.13(c)
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that p+γ (m) and p−γ (m) are disjoint, so the covering multiplicities of the

negative ends of C+
1 at covers of γ are disjoint from the covering multiplicities

of the positive ends of C−
1 at covers of γ. Hence, there does not exist any

gluing data between C+
1 and C−

1 . So how can we glue them?

It helps to think backwards from the process of breaking. If a sequence of

holomorphic currents inM2(α+, α−)/R converges to the broken holomorphic

current (C+
1 ,C

−
1 ), then as in the proof of Lemma 5.10, we can pass to a sub-

sequence which converges in the sense of [4] to a broken holomorphic curve

(u0, . . . , uk), with
∑k

i=0 ind(u
i) =

∑k
i=0 I(u

i) = 2. Since
∑k

i=0 ind(u
i) = 2, Ex-

ercise 3.14 implies that u0 = C+
1 , uk = C−

1 , and each ui with 0 < i < k is a

union of branched covers of trivial cylinders.

To reverse this process, let u+ and u− be any irreducible somewhere

injective holomorphic curves with ind = 1, but not necessarily with I = 1.

Suppose that u+ has negative ends at covers of the embedded elliptic orbit γ

of multiplicities a1, . . . , ak with
∑k

i=1 ai =m and no other negative ends, and

u− has positive ends at covers of γ of multiplicities b1, . . . , bl with
∑l

j=1 bj =

m and no other positive ends. We can try to glue u+ and u− to an ind = 2

curve as follows. First, try to find an ind = 0 branched cover u0 of R× γ of

degree m with positive ends at covers of γ with multiplicities a1, . . . , ak and

negative ends at covers of γ with multiplicities b1, . . . , bl; see Exercise 3.14

for a discussion of when such a branched cover exists. Second, try to glue u+,

u0, and u− to a holomorphic curve. There is an obstruction to gluing here

because u0 is not regular. However one can also vary u0. The obstructions

to gluing for various u0 comprise a section of an “obstruction bundle” over

the moduli space of all branched covers u0. The (signed) number of ways to

glue is then the (signed) number of zeroes of this section of the obstruction

bundle. See [30, §1] for an introduction to this analysis.

This signed count of gluings is denoted by #G(u+, u−) and computed in

[29, Thm. 1.13]. The result is that #G(u+, u−) = ±cγ(a1, . . . , ak|b1, . . . , bl),
where cγ(a1, . . . , ak|b1, . . . , bl) is a nonnegative integer which depends only

on (the monodromy angle of) γ and the multiplicities ai and bj . It turns

out that cγ(a1, . . . , ak|b1, . . . , bl) = 1 if (and only if) (a1, . . . , ak) = p−γ (m) and

(b1, . . . , bl) = p+γ (m), see [29, Ex. 1.29]. Thus, up to signs, the number of

gluings is 1 in the case needed to show that ∂2 = 0 (and in no other case).

5.5. Cobordism Maps

We now discuss what is involved in the construction of cobordism maps on

ECH, as introduced in Section 1.4.
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Holomorphic Curves in Exact Symplectic Cobordisms. We begin

with the nicest kind of cobordism. Let (Y+, λ+) and (Y−, λ−) be nondegener-

ate contact three-manifolds, and let (X,ω) be an exact symplectic cobordism

from (Y+, λ+) to (Y−, λ−). In this situation, one can define for each L ∈R a

cobordism map

(5.17) ΦL(X,ω) :ECHL(Y+, λ+)−→ECHL(Y−, λ−)

satisfying various axioms [32, Thm. 1.9]. Here

ECHL(Y,λ) =
⊕

Γ∈H1(Y )

ECHL(Y,λ,Γ ).

The first step in the construction of the map (5.17) is to “complete” the

cobordism as follows. Let λ be a primitive of ω on X with λ|Y± = λ±. If ε > 0

is sufficiently small, then there is a neighborhood N+ of Y+ in X , identified

with (−ε,0]×Y+, such that λ= esλ+ where s denotes the (−ε,0] coordinate.
The neighborhood identification is the one for which ∂/∂s corresponds to the

unique vector field ρ on X with ıρω = λ. Likewise there is a neighborhood

N− of Y− in X , identified with [0, ε)×Y−, on which λ= esλ−. We now define

the “symplectization completion”

X =
(

(−∞,0]× Y−
)

∪Y− X ∪Y+

(

[0,∞)× Y+
)

,

glued using the above neighborhood identifications.

Call an almost complex structure J on X “cobordism-admissible” if it

agrees with a symplectization-admissible almost complex structure J+ for λ+
on [0,∞)×Y+, if it agrees with a symplectization-admissible almost complex

structure J− for λ− on (−∞,0]× Y−, and if it is ω-compatible on X .

Given a cobordism-admissible almost complex structure J , one can con-

sider J -holomorphic curves in X with positive ends at Reeb orbits in Y+ and

negative ends at Reeb orbits in Y−, by a straightforward modification of the

definition in the symplectization case in Section 3.2. If J is generic, and if C is

a somewhere injective holomorphic curve as above, then the moduli space of

holomorphic curves near C is a manifold of dimension ind(C), where ind(C)

is defined as in (3.1), except that in the relative first Chern class term, the

complex line bundle ξ is replaced by det(TX).

Likewise, if α± are orbit sets for λ±, then there is a corresponding mod-

uli space M(α+, α−) of J -holomorphic currents in X . One can define the

ECH index I of a holomorphic current in X as in (3.4), again replacing ξ by



Lecture Notes on Embedded Contact Homology 471

det(TX) in the first Chern class term. The index inequality (3.8) then holds

for somewhere injective holomorphic curves C in X , by the same proof as in

the symplectization case, see [22, §4]. As in Section 3.5, let Mk(α+, α−)

denote the set of holomorphic currents C ∈ M(α+, α−) with ECH index

I(C) = k.

We have the following important generalization of (1.15): If there exists

C ∈M(α+, α−), then

(5.18) A(α+)≥A(α−).

The reason is that by Stokes’s theorem,

(5.19) A(α+)−A(α−) =

∫

C∩([0,∞)×Y+)
dλ+ +

∫

C∩X
ω+

∫

C∩((−∞,0]×Y−)
dλ−,

and the conditions on J imply that each integrand is pointwise nonnegative

on C.

The Trouble with Multiple Covers. One would now like to define a

chain map

φ :ECC(Y+, λ+, J+)−→ECC(Y−, λ−, J−)

by declaring that if α± are ECH generators for λ±, then 〈φα+, α−〉 is the

mod 2 count of I = 0 holomorphic currents in M0(α+, α−). The inequality

(5.18) implies that only finitely many α− could arise in φα+, and moreover

we would get a map on the filtered chain complexes

φL :ECCL(Y+, λ+, J+)−→ECCL(Y−, λ−, J−)

for each L> 0.

Unfortunately this does not work. The problem is thatM0(α+, α−) need

not be finite, even if J is generic. The compactness argument from Sec-

tion 5.3 does not carry over here, because the key Proposition 3.7 can fail in

cobordisms. In particular, multiply covered holomorphic currents may have

negative ECH index. We do know from [22, Thm. 5.1] that the ECH index

of a d-fold cover of a somewhere injective irreducible curve C satisfies

(5.20) I(dC)≥ dI(C) +
(
d2 − d

2

)
(

2g(C)− 2 + ind(C) + h(C)
)

,
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where g(C) denotes the genus of C, and h(C) denotes the number of ends

of C at (positive or negative) hyperbolic orbits22. If J is generic then the

index inequality implies that I(C)≥ 0; but I(dC)< 0 is still possible when

2g(C)− 2 + ind(C) + h(C)< 0.

To correctly define the coefficient 〈φα+, α−〉, one needs to take into ac-

count the entire “compactification” of M0(α+, α−), namely the set of all

broken holomorphic currents from α+ to α− with total ECH index 0. This

moduli space may have many components of various dimensions, and each

may make some contribution to the coefficient 〈φα+, α−〉. In fact, there is

a simple example in which the coefficient 〈φα+, α−〉 must be nonzero, but

there does not exist any I = 0 holomorphic current from α+ to α−; rather,
the contribution to 〈φα+, α−〉 comes from a broken holomorphic current with

two levels, one of which is an I =−1 double cover. The example is the cobor-

dism where X = [0,1]× Y which one obtains in trying to prove that ECH

is unchanged under a period-doubling bifurcation. Even more interestingly,

the orbit set in between the two levels is not a generator of the ECH chain

complex, because it includes a doubly covered negative hyperbolic orbit.

Because of the above complications, it is a highly nontrivial, and currently

unsolved problem, to define a chain map directly from the compactified mod-

uli space of I = 0 holomorphic currents.

Seiberg-Witten Theory to the Rescue. The definition of the cobordism

map (5.17) in [32] instead counts solutions to the Seiberg-Witten equations,

perturbed as in the proof of the isomorphism (1.11). The cobordism maps

satisfy a “Holomorphic Curves axiom” which says among other things that

for any cobordism-admissible J , the cobordism map is induced by a (non-

canonical) chain map φ such that the coefficient 〈φα+, α−〉 �= 0 only if there

exists a broken J -holomorphic current from α+ to α−. In particular, the co-

efficient 〈φα+, α−〉 �= 0 only if (5.18) holds, which is why the cobordism map

preserves the symplectic action filtration.

The Weakly Exact Case. If (X,ω) is only a weakly exact symplectic

cobordism from (Y+, λ+) to (Y−, λ−), see Section 1.4, then using Seiberg-

Witten theory as above, one still gets a cobordism map

ΦL(X,ω) :ECHL(Y+, λ+,0)−→ECHL(Y−, λ−,0)

22Note that the magic number 2g(C)− 2+ ind(C)+h(C) in (5.20) is similar to the normal
Chern number in (4.3).
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which satisfies the Holomorphic Curves axiom. The reason why this map

preserves the symplectic action filtrations is that a modification of the cal-

culation in (5.19) shows that in the weakly exact case, if there exists a holo-

morphic current C ∈M(α+, α−), and if moreover [α±] = 0 ∈ H1(Y±), then
the inequality (5.18) still holds, see [24, Thm. 2.3]. It is this inequality which

ultimately leads to all of the symplectic embedding obstructions coming from

ECH capacities.

6. Comparison of ECH with SFT

To conclude, we now outline how ECH compares to the symplectic field

theory (SFT) of Eliashberg-Givental-Hofer [14]. Although both theories are

defined using the same ingredients, namely Reeb orbits and holomorphic

curves, their features are quite different.

Dimensions. ECH is only defined for three-dimensional contact mani-

folds (and in some cases stable Hamiltonian structures) and certain four-

dimensional symplectic cobordisms between them. SFT is defined in all di-

mensions. It is an interesting question whether there exists an analogue of

ECH in higher dimensions, and what that would mean.

Multiply Covered Reeb Orbits. In an ECH generator, we only care

about the total multiplicity of each Reeb orbit. One can think of an ECH

generator as a “Reeb current”. In an SFT generator, one keeps track of indi-

vidual covering multiplicities of Reeb orbits. For example, if γ1 is an elliptic

Reeb orbit, and if γk denotes the k-fold multiple cover of γ1, then γ
2
1 and γ2

are distinct SFT generators which correspond to the same ECH generator

{(γ1,2)}. Likewise, the SFT generators γ31 , γ2γ1 and γ3 all correspond to the

ECH generator {(γ1,3)}.

Holomorphic Curves. The full version of SFT counts all Fredholm index

1 holomorphic curves (after suitable perturbation to make the moduli spaces

transverse). Other versions of SFT just count genus 0 Fredholm index 1

curves (rational SFT), or genus 0 Fredholm index 1 curves with one positive

end (the contact homology algebra).

ECH counts holomorphic currents with ECH index 1, without explicitly

specifying their genus (although the genus is more or less determined indi-

rectly by the theory as explained in Section 5.2). These also have Fredholm
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index 1, although the way we are selecting a subset of the Fredholm index 1

curves to count (by setting the ECH index equal to 1) is very different from

the way this is done in SFT (by setting the genus to 0, etc.).

Grading. SFT is relatively graded by the Fredholm index. ECH is rela-

tively graded by the ECH index, and has an absolute grading by homotopy

classes of oriented 2-plane fields.

Topological Invariance. ECH depends only on the three-manifold, if one

uses the absolute grading, as explained in Remark 1.7. SFT depends heav-

ily on the contact structure; for example, the basic versions are trivial for

overtwisted contact structures. On the other hand, ECH does contain the

contact invariant (the homology class of the empty set of Reeb orbits) which

can distinguish some contact structures, as explained in Section 1.4. The

ECH contact invariant is analogous to the unit in the contact homology

algebra.

Disallowed Reeb Orbits. In ECH, hyperbolic orbits cannot have mul-

tiplicity greater than 1. In SFT, “bad” Reeb orbits are thrown out; in the

three-dimensional case, a bad Reeb orbit is an even cover of a negative hy-

perbolic orbit. The reasons for discarding bad orbits in SFT are similar to

the reasons for disallowing multiply covered hyperbolic orbits in ECH, see

Section 2.7 and Section 5.4.

Keeping Track of Topological Complexity. In SFT, there is a formal

variable � which keeps track of the topological complexity of holomorphic

curves; whenever one counts a curve with genus g and p positive ends, one

multiplies by �
p+g−1. In ECH, topological complexity is measured by the

number J0 defined in Section 5.2. There is also a variant of J0, denoted by

J+, which is closer to the exponent of �, see [22, §6] and [37, Appendix].

U Maps. ECH has a U map counting holomorphic curves passing through

a base point, and also operations determined by elements of H1 of the three-

manifold, counting holomorphic curves intersecting a 1-cycle, see Section 3.8.

There are analogous structures on SFT, which can be more interesting for

higher dimensional contact manifolds with lots of homology.

Algebra Structure. SFT has some algebra structure (for example the

contact homology algebra is an algebra). ECH does not. There is a natural
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way to “multiply” two ECH generators, by adding the multiplicities of all

Reeb orbits in the two generators, but the differential and grading are not

well behaved with respect to this “multiplication”.

Legendrian Knots. SFT defines invariants of Legendrian knots by count-

ing holomorphic curves with boundary in R cross the Legendrian knot. No

analogous construction in ECH is known, although one can define invariants

of Legendrian knots using sutured ECH, see [7, §7.3].

Technical Difficulties with Multiply Covered Holomorphic Curves.

Both SFT and ECH have serious technical difficulties arising from multiply

covered holomorphic curves of negative Fredholm index or ECH index. In

SFT, it is expected that the polyfold theory of Hofer-Wysocki-Zehnder [20]

will resolve these difficulties. In ECH, we could manage these difficulties

to prove that ∂2 = 0 using holomorphic curves as outlined in Section 5.4.

Defining cobordism maps on ECH is harder, and it is not clear whether

polyfolds will help, but fortunately one can define ECH cobordism maps

using Seiberg-Witten theory, as described in Section 5.5.

Field Theory Structure. SFT can recover Gromov-Witten invariants

of closed symplectic manifolds by cutting them into pieces along contact-

type hypersurfaces. ECH can similarly recover Taubes’s Gromov invariant of

closed symplectic four-manifolds [26].

Symplectic Capacities. ECH can be used to define symplectic capacities.

Other kinds of contact homology or SFT can also be used to define symplectic

capacities, and this is an interesting topic for further research. For example,

one can define an analogue of ECH capacities using linearized contact ho-

mology, and these turn out to agree with the Ekeland-Hofer capacities, at

least for four-dimensional ellipsoids and polydisks, see Remark 1.5.

Appendix: Answers and Hints to Selected Exercises

1.4. We need to show that

(A.1) lim
k→∞

N(a, b)2k
k

= 2ab.
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Given nonnegative integers m and n, let T (m,n) denote the triangle in the

plane bounded by the x and y axes and the line L through (m,n) with slope

−b/a. Then N(a, b)k = am+ bn where T (m,n) encloses k + 1 lattice points

(including the edges). When k is large, the number of lattice points enclosed

by T (m,n) is the area of the triangle, plus an O(k1/2) error. The line L

intersects the axes at the points (a−1N(a, b)k,0) and (0, b−1N(a, b)k), so its

area is

area
(

T (m,n)
)

=
N(a, b)2k

2ab
.

Thus

k =
N(a, b)2k

2ab
+O

(

k1/2
)

.

This implies (A.1).

1.15. It is enough to show that

(A.2) 2vol(X,ω) = vol(Y+, λ+)− vol(Y−, λ−),

where vol(Y,λ) =
∫

Y λ∧ dλ. To prove (A.2), let λ be a primitive of ω on X .

Then by Stokes’s theorem,

2vol(X,ω) =

∫

Y+

λ∧ dλ+ −
∫

Y−

λ∧ dλ−.

Since dλ= dλ± on Y±, by Stokes’s theorem again we have
∫

Y±

λ∧ dλ± = vol(Y±, λ±).

2.9. We use an infinitesimal analogue of the proof of Lemma 2.6. Let ψ ∈
Ker(DC). Let ε > 0 be small and let C ′ be the image of the map C→ S1×Yφ
sending z �→ expz(εψ(z)). Then

∫

C′
ω = ε2

∫

C
ω(∂sψ,∇tψ)dsdt+O

(

ε3
)

.

Since C ′ is homologous to C, we have
∫

C′ ω = 0, so

(A.3)

∫

C
ω(∂sψ,∇tψ)dsdt= 0.

On the other hand, since ψ ∈Ker(DC), we have∇tψ = J∂sψ, so the integrand

above is

(A.4) ω(∂sψ,∇tψ) = ‖∂sψ‖2,



Lecture Notes on Embedded Contact Homology 477

where ‖ · ‖ denotes the metric on T vertY |γ determined by ω and J . It follows

from (A.3) and (A.4) that ∂sψ ≡ 0.

3.3. Given a Reeb orbit γ, the set of homotopy classes of trivializations of

ξ|τ is an affine space over Z. For an appropriate sign convention, shifting the

trivialization over γ±i by 1 shifts c1 by ∓1 and shifts CZτ (γ
±
i ) by 2.

3.3. For an appropriate sign convention, shifting the trivialization τ over

αi by 1 shifts c1 by −mi, shifts Qτ by m2
i , and shifts wτ by −mi(mi − 1).

3.11. Let T be the triangle in the plane which is bounded by the coordinate

axes together with the line through (m1,m2) with slope −a/b, cf. the answer
to Exercise 1.4. Then 1

2I(α) can be interpreted as the number of lattice points

in the triangle T (including the boundary) minus 1.

3.13. (a) Since the path Λ+
θ (m) starts at the origin and stays below the

line y = θx, the initial edge has slope less than θ. Since the path is the graph

of a concave function, every subsequent edge also has slope less than θ. Thus

b ≤ )aθ*. If b < )aθ* then there is a lattice point which is above the path

Λ+
θ (m) but below the line y = θx, contradicting the definition of Λ+

θ (m).

(b) Since the total vertical displacement of the path Λ+
θ (m) is )mθ*, it

follows from part (a) that

k∑

i=1

)qiθ*=
⌊

k∑

i=1

qiθ

⌋

.

Since )x*+ )y* ≤ )x+ y* for any real numbers x, y, we have

∑

i∈I
)qiθ* ≤

⌊
∑

i∈I
qiθ

⌋

,

∑

i∈{1,...,k}\I
)qiθ* ≤

⌊
∑

i∈{1,...,k}\I
qiθ

⌋

.

Adding the above two inequalities and comparing with the previous equation,

we see that both inequalities must be equalities.

(c) Suppose that such proper subsets I, J exist. Let m1 =
∑

i∈I qi =∑

j∈J rj and let m2 = m − m1. By part (b) applied to the subsets I ,

{1, . . . , k} \ I , and {1, . . . , k}, we have

)m1θ*+ )m2θ*= )mθ*.
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By the analogue of part (b) for p−θ (m), we have

+m1θ,+ +m2θ,= +mθ,.

Subtracting the above two equations gives 2 = 1.

3.14. (a) Without loss of generality C is connected. Let a1, . . . , ak denote

the covering multiplicities of the positive ends of u, and let b1, . . . , bl denote

the covering multiplicities of the negative ends of u. Let g denote the genus

of C. By the Fredholm index formula (3.1) and the Conley-Zehnder index

formula (3.2), we have

ind(u) = 2g− 2 + k+ l+

k∑

i=1

(

2)aiθ*+ 1
)

−
l∑

j=1

(

2)bjθ*+ 1
)

= 2

(

g− 1 +

k∑

i=1

+aiθ, −
l∑

j=1

)bjθ*
)

≥ 2
(

g− 1 + +mθ, − )mθ*
)

.

Since +mθ, − )mθ*= 1, it follows that ind(u)≥ 0.

(b) We need to check: (i) if p≥ q and q ≥ r then p≥ r, and (ii) if p≥ q
and q ≥ p then p= q.

Suppose u1 is a branched cover with positive ends corresponding to p

and negative ends corresponding to q, and u2 is a branched cover with pos-

itive ends corresponding to q and negative ends corresponding to r. Glu-

ing these together gives a branched cover u1#u2 (defined up to sliding the

branched points around) with positive ends corresponding to p and nega-

tive ends corresponding to r. It follows immediately from the index formula

(3.1) that ind(u1#u2) = ind(u1) + ind(u2). So if ind(u1) = ind(u2) = 0, then

ind(u1#u2) = 0 also, and this proves (i). Now suppose further that p = r.

Then q = r, because otherwise u1#u2 has at least two branch points, so its

domain has χ≤−2, so ind(u1#u2)≥ 2, a contradiction. This proves (ii).

(c) Let u be a connected genus 0 branched cover with positive ends

corresponding to p−θ (m) and negative ends corresponding to p+θ (m). Write

p−θ (m) = (a1, . . . , ak) and p
+
θ (m) = (b1, . . . , bl). By the calculation in part (a),

we have

ind(u) = 2

(
k∑

i=1

+aiθ, −
l∑

j=1

)bjθ* − 1

)

.
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By Exercise 3.13(b) we have
∑k

i=1+aiθ,= +mθ,, and by symmetry
∑l

j=1)bjθ*
= )mθ*. Hence ind(u) = 0.

(d) Suppose there exists a partition q with p+θ (m) > q. Write p+θ (m) =

(a1, . . . , ak) and q = (b1, . . . , bl). By Exercise 3.13(b) we have
∑k

i=1)aiθ* =
)mθ*. By the calculation in part (a) above we have

∑k
i=1+aiθ,= +mθ,. These

two equations imply that k = 1. Thus the path Λ+
θ (m) is just the line segment

from (0,0) to (m, )mθ*).

Now the calculation in part (a) above also implies that
∑l

j=1)bjθ* =
)mθ*. But this is impossible. To see why, order the numbers bj so that

)bjθ*/bj ≥ )bj+1θ*/bj+1. Let Λ
′ be the path in the plane that starts at (0,0)

and whose edge vectors are the segments (bj , )bjθ*) in order of increasing j.

Since (b1, . . . , bl) �= (m) and since there are no lattice points above the path

Λ+
θ (m) and below the line y = θx, it follows that the path Λ′ is below the

path Λ+
θ (m), with the two paths intersecting only at (0,0). Hence the right

endpoint of Λ′ is below the right endpoint of Λ+
θ (m), which means that

∑

j)bjθ*< )mθ*.

By symmetry, there also does not exist a partition q with q > p−θ (m).

4.3. By Exercise 3.10 we have cτ (C2) = 1. Since ind(C2) = 2, it follows from

(3.1) that

χ(C2) =CZ ind
τ (C2).

If ε is sufficiently small with respect to i, then CZτ (γ
i
1) = 2i− 1 when i > 0,

and CZτ (γ
i−1
2 ) = 2i−1 when i > 1. It follows that CZ ind

τ (C2) = 0 when i > 1,

and CZ ind
τ (C2) = 1 when i= 1.

4.4. Without loss of generality, C0 = ∅. We then compute that

CZ ind
τ (C2) =

⎧

⎪⎪⎨

⎪⎪⎩

i+ j − 1, i > 0, j > 1,

i+ 1, i > 0, j = 1,

j, i= 0, j > 1,

2, i= 0, j = 1.

On the other hand, letting g denote the genus of C2, we have

χ(C2) =

⎧

⎪⎪⎨

⎪⎪⎩

−2g− i− j − 1, i > 0, j > 1,

−2g− i− 1, i > 0, j = 1,

−2g− j, i= 0, j > 1,

−2g, i= 0, j = 1.
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Since cτ (C2) = 0 (by Exercise 3.10) and ind(C2) = 2, it follows from (3.1)

that

χ(C2) =CZ ind
τ (C2)− 2.

Combining the above three equations, we find that if i > 0 or j > 1 then

g < 0, which is a contradiction. Thus i = 0 and j = 1, and combining the

above three equations again we find that g = 0.

4.12. Otherwise g = 1. Then Equation (4.9) (together with the fact that C1

has at least one positive end) implies that C1 has exactly one positive end

at some hyperbolic orbit ha,b, and all negative ends of C1 are elliptic. Let

(a1, b1), . . . , (ak, bk) denote the vectors corresponding to the negative ends.

The action of ha,b is slightly less than
√
a2 + b2, and the sum of the symplectic

actions of the negative ends is slightly greater
∑k

i=1

√

a2i + b2i . Since the

differential decreases symplectic action,

k∑

i=1

√

a2i + b2i <
√

a2 + b2.

But this contradicts the triangle inequality, since
∑k

i=1(ai, bi) = (a, b), since

ha,b is homologous in T 3 to
∑k

i=1 eai,bi .

4.13. Let Λ be any polygonal path with edge vectors v1, . . . , vk. Then

�Ω(Λ) =

k∑

i=1

〈vi,wi〉

where wi ∈ ∂Ω′ is a point at which an outward normal vector to Ω′ is a

positive multiple of vi. (When wi is a corner of ∂Ω′, “an outward normal

vector” means a vector whose direction is between the directions of the limits

of the normal vectors on either side of wi.) If we replace Ω′ by its translate

by some vector η, then the above formula is replaced by

�Ω(Λ) =

k∑

i=1

〈vi,wi + η〉.

If Λ is a loop, then the two formulas for �Ω(Λ) agree since
∑

i vi = 0.

5.9. By the relative adjunction formula (3.3), and since equality holds in

the writhe bound (3.9), we have

−χ(C) =−cτ (C) +Qτ (C) +CZI
τ (C)−CZ ind

τ (C).
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So by the definition of J0 in (5.13) and (5.14), we need to show that

∑

i

(

n+i − 1
)

+
∑

j

(

n−j − 1
)

=CZJ0
τ (C)−CZI

τ (C) +CZ ind
τ (C).

This equation can be proved one Reeb orbit at a time. Namely, it is enough to

show that for each i, if C has positive ends at covers of αi with multiplicities

q1, . . . , qn+
i
where

∑n+
i

k=1 qk =mi, then

(A.5) n+i − 1 =−CZτ

(

αmi

i

)

+

n+
i∑

k=1

CZτ

(

αqk
)

,

and an analogous equation for each Reeb orbit βj .

To prove (A.5), first note that if αi is hyperbolic, then n
+
i =mi = 1 and

the equation is trivial. Suppose now that αi is elliptic with rotation angle θ

with respect to τ . Then (A.5) becomes

0 =−2)miθ*+
n+

i∑

k=1

2)qkθ*.

This last equation holds by the partition conditions and Exercise 3.13(b).
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A Topological Introduction to Knot

Contact Homology

LENHARD NG

1. Introduction

This article is intended to serve as a general introduction to the subject of

knot contact homology. There are two related sides to the theory: a geomet-

ric side devoted to the contact geometry of conormal bundles and explicit

calculation of holomorphic curves, and an algebraic, combinatorial side em-

phasizing ties to knot theory and topology. We will focus on the latter side

and only treat the former side lightly. The present notes grew out of lectures

given at the Contact and Symplectic Topology Summer School in Budapest

in July 2012.

The strategy of studying the smooth topology of a smooth manifold via

the symplectic topology of its cotangent bundle is an idea that was advo-

cated by V.I. Arnold and has been extensively studied in symplectic geom-

etry in recent years. It is well-known that if M is smooth then T ∗M car-

ries a natural symplectic structure, with symplectic form ω =−dλcan, where
λcan ∈Ω1(T ∗M) is the Liouville form; the idea then is to analyze T ∗M as a

symplectic manifold to recover topological data about M .

In recent years this strategy has been executed quite successfully by ex-

amining Gromov-type moduli spaces of holomorphic curves on T ∗M . For

instance, one can show that the symplectic structure on T ∗M recovers ho-

motopic information about M , as shown in various guises by Viterbo [41],

Salamon–Weber [40], and Abbondandolo–Schwarz [1], who each prove some
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version of the following result (where technical restrictions have been omitted

for simplicity):

Theorem 1.1 ([1, 40, 41]). The Hamiltonian Floer homology of T ∗M is

isomorphic to the singular homology of the free loop space of M .

Subsequent work has related certain additional Floer-theoretic construc-

tions on T ∗M to the Chas–Sullivan loop product and string topology; see for

example [2, 9].

In a slightly different direction, M. Abouzaid has used holomorphic curves

to show that the symplectic structure on T ∗M can contain more than topo-

logical information about M :

Theorem 1.2 ([3]). If Σ is an exotic (4k+1)-sphere that does not bound a

parallelizable manifold, then T ∗Σ is not symplectomorphic to T ∗S4k+1.

At the time of this writing, it is still possible that the smooth type of

a closed smooth manifold M (up to diffeomorphism) is determined by the

symplectic type of T ∗M (up to symplectomorphism), which would be a very

strong endorsement of Arnold’s idea. (See however [26] for counterexamples

when M is not closed.) For a nice discussion of this and related problems,

see [39].

In this survey article, we discuss a relative version of Arnold’s strategy.

The setting is as follows. Let K ⊂M be an embedded submanifold (or an

immersed submanifold with transverse self-intersections). Then one can con-

struct the conormal bundle of K:

LK =
{

(q, p) | q ∈K, 〈p, v〉= 0 for all v ∈ TqK
}

⊂ T ∗M.

It is a standard exercise to check that LK is a Lagrangian submanifold

of T ∗M .

One can work in one dimension lower by considering the cosphere (unit

cotangent) bundle ST ∗M of unit covectors in T ∗M with respect to some

metric; then ST ∗M is a contact manifold with contact form α = λcan, and

it can be shown that the contact structure on ST ∗M is independent of the

metric. The unit conormal bundle of K,

ΛK = LK ∩ ST ∗M ⊂ ST ∗M,

is then a Legendrian submanifold of ST ∗M , with α|ΛK
= 0. See Figure 1.
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Fig. 1. A schematic depiction of cotangent and conormal bundles. Only the disk bundle
portion DT ∗M of T ∗M is shown, with boundary ST ∗M . Note that both LK and the

zero section M are Lagrangian in T ∗M , and their intersection is K

By construction, if K changes by smooth isotopy inM , then ΛK changes

by Legendrian isotopy (isotopy within the class of Legendrian submanifolds)

in ST ∗M . One can then ask what the Legendrian isotopy type of ΛK re-

members about the smooth isotopy type of K; see Question 1.3 below.

For the remainder of the section and article, we restrict our focus by

assuming that M = R
3 and K ⊂ R

3 is a knot or link. In this case, ST ∗M
is contactomorphic to the 1-jet space J1(S2) = T ∗S2 ×R equipped with the

contact form dz − λcan, where z is the coordinate on R and λcan is the

Liouville form on S2, via the diffeomorphism ST ∗
R
3→ J1(S2) sending (q, p)

to ((p, q− 〈q, p〉p), 〈q, p〉) where 〈·, ·〉 is the standard metric on R
3.

In the 5-manifold ST ∗
R
3, the unit conormal bundle ΛK is topologically

a 2-torus (or a disjoint union of tori if K has multiple components). This

can for instance be seen in the dual picture in TR3, where the unit normal

bundle can be viewed as the boundary of a tubular neighborhood of K. The

topological type of ΛK
∼= T 2 ⊂ S2 × R

3 contains no information: if K1,K2

are arbitrary knots, then ΛK1
and ΛK2

are smoothly isotopic. (Choose a

one-parameter family of possibly singular knots Kt joining K1 to K2, and

perturb ΛKt
slightly when Kt is singular to eliminate double points.)

However, there is no reason for ΛK1
and ΛK2

to be Legendrian isotopic.

This suggests the following question.

Question 1.3. How much of the topology of K ⊂R
3 is encoded in the Leg-

endrian structure of ΛK ⊂ ST ∗
R
3? If ΛK1

and ΛK2
are Legendrian isotopic,

are K1 and K2 necessarily smoothly isotopic knots?

At the present, the answer to the second part of this question is unknown

but could possibly be “yes”. The answer is known to be “yes” if either knot

is the unknot; see below.

In order to tackle Question 1.3, it is useful to have invariants of Leg-

endrian submanifolds under Legendrian isotopy. One particularly powerful
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invariant is Legendrian contact homology, which is a Floer-theoretic count of

holomorphic curves associated to a Legendrian submanifold and is discussed

in more detail in Section 2.

Definition 1.4. Let K ⊂ R
3 be a knot or link. The knot contact homology

of K, written HC∗(K), is the Legendrian contact homology of ΛK .

Knot contact homology is the homology of a differential graded algebra

associated to a knot, the knot DGA (A, ∂). By the general invariance result

for Legendrian contact homology, the knot DGA and knot contact homology

are topological invariants of knots and links.

This article is a discussion of knot contact homology and its properties.

Despite the fact that the original definition of knot contact homology in-

volves holomorphic curves, there is a purely combinatorial formulation of

knot contact homology. The article [15], which does most of the heavy lifting

for the results presented here, derives this combinatorial formula and can be

viewed as the first reasonably involved computation of Legendrian contact

homology in high dimensions.

Viewed from a purely knot theoretic perspective, knot contact homology

is a reasonably strong knot invariant. For instance, it detects the unknot (see

Corollaries 4.10 and 5.10): if K is a knot such that HC∗(K)∼=HC∗(O) where
O is the unknot, then K =O. This implies in particular that the answer to

Question 1.3 is yes if one of the knots is unknotted. It is currently an open

question whether knot contact homology is a complete knot invariant.

Connections between knot contact homology and other knot invariants

are gradually beginning to appear. It is known that HC∗(K) determines the

Alexander polynomial (Theorem 3.18). A portion of the homology also has a

natural topological interpretation, via an object called the cord algebra that

is closely related to string topology. In addition, one can use HC∗(K) to

define a three-variable knot invariant, the augmentation polynomial, which is

closely related to the A-polynomial and conjecturally determines a special-

ization of the HOMFLY-PT polynomial. Very recently, a connection between

knot contact homology and string theory has been discovered, and this sug-

gests that the augmentation polynomial may in fact determine many known

knot invariants, including the HOMFLY-PT polynomial and certain knot

homologies, and may also be determined by a recursion relation for colored

HOMFLY-PT polynomials.

Knot contact homology also produces a strong invariant of transverse

knots, which are knots that are transverse to the standard contact structure
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conormal bundle
ΛK ⊂ ST ∗

R
3

LCH (§2)
knot DGA
(A, ∂) (§3)

Alexander polynomial
ΔK(t)

knot contact homology
HC∗(K) (§3) transverse homology (§6)

degree 0 knot contact
homology HC0(K)

augmentation polynomial
AugK(λ,μ,U) (§5)

string theory,
HOMFLY-PT polynomial,

knot homologies

cord algebra
HC0(K)|U=1 (§4)

2-var augmentation poly.
AugK(λ,μ) (§5)

A-polynomial
AK(λ,μ)

unknot
detection

Fig. 2. The knot invariants and interconnections described in this article

on R
3. For a transverse knot, the knot contact homology of the underlying

topological knot contains an additional filtered structure, transverse homol-

ogy, which is invariant under transverse isotopy. This has been shown to be

an effective transverse invariant (Theorem 6.9), one of two that are currently

known (the other comes from Heegaard Floer theory).

In the rest of the article, we expand on the properties of knot contact ho-

mology mentioned above; see Figure 2 for a schematic chart. In Section 2, we

review the general definition of Legendrian contact homology. We apply this

to knots and conormal bundles in Section 3 to give a combinatorial definition

of knot contact homology and present a few of its properties. In Section 4,

we discuss the cord algebra, which gives a topological interpretation of knot

contact homology in degree 0. Section 5 defines the augmentation polynomial

and relates it to other knot invariants; this includes a speculative discussion

of the relation to string theory. In Section 6, we present transverse homol-

ogy and consider its effectiveness as an invariant of transverse knots. Some

technical details (a definition of the “fully noncommutative” version of knot

contact homology, and a comparison of the conventions used in this article

to conventions in the literature) are included in the Appendix.

As this is a survey article, many details will be omitted in favor of what

we hope is an accessible exposition of the subject. (For more introductory ma-
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terial on knot contact homology, the reader is referred to two papers [12, 32];

note however that these do not contain recent developments.) There are ex-

ercises scattered through the text as a concrete, hands-on complement to the

main discussion. There is not much new mathematical content in this article

beyond what has already appeared in the literature, particularly [15, 16] on

the geometric side and [30, 31, 33, 34] on the combinatorial/topological side.

One exception is a representation-theoretic interpretation of some factors of

the augmentation polynomial that do not appear in the A-polynomial; see

Theorem 5.11. We have also introduced a number of conventions for com-

binatorial knot contact homology in this article that are new and, in the

author’s opinion, more natural than previous conventions.

2. Legendrian Contact Homology

In this section, we give a cursory introduction to Legendrian contact homol-

ogy and augmentations, essentially the minimum necessary to motivate the

construction of knot contact homology in Section 3. The reader interested in

further details is referred to the various references given in this section.

Legendrian contact homology (LCH), introduced by Eliashberg and Hofer

in [17], is an invariant of Legendrian submanifolds in suitable contact mani-

folds. This invariant is defined by counting certain holomorphic curves in the

symplectization of the contact manifold, and is a part of the (much larger)

Symplectic Field Theory package of Eliashberg, Givental, and Hofer [18].

LCH is the homology of a differential graded algebra (DGA) that we now

describe, and in some sense the DGA (up to an appropriate equivalence re-

lation), rather than the homology, is the “true” invariant of the Legendrian

submanifold.

In this section, we will work exclusively in a contact manifold of the form

V = J1(M) = T ∗M ×R with the standard contact form α= dz− λcan. LCH
can be defined for much more general contact manifolds, but the proof of

invariance in general has not been fully carried out, and even the definition

is more complicated than the one given below when the contact manifold

has closed Reeb orbits. Note that for V = J1(M), the Reeb vector field Rα

is ∂/∂z and thus J1(M) has no closed Reeb orbits.

Let Λ⊂ V be a Legendrian submanifold. We assume for simplicity that Λ

has trivial Maslov class (e.g., for Legendrian knots in R
3 = J1(R), this means

that Λ has rotation number 0), and that Λ has finitely many Reeb chords,

integral curves for the Reeb field Rα with endpoints on Λ. We label the Reeb
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chords formally as a1, . . . , an. Finally, let R denote (here and throughout the

article) the coefficient ring R = Z[H2(V,Λ)], the group ring of the relative

homology group H2(V,Λ).

Definition 2.1. The LCH differential graded algebra associated to Λ is

(A, ∂), defined as follows:

1. Algebra: A=R〈a1, . . . , an〉 is the free noncommutative unital algebra

over R generated by a1, . . . , an. As an R-module, A is generated by all

words ai1 · · ·aik for k ≥ 0 (where k = 0 gives the empty word 1).

2. Grading: Define |ai|=CZ(ai)−1, where CZ denotes Conley–Zehnder

index (see [14] for the definition in this context) and |r|= 0 for r ∈R.
Extend the grading to all of A in the usual way: |xy|= |x|+ |y|.

3. Differential: Define ∂(r) = 0 for r ∈R and

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(

sgn(Δ)
)

e[Δ]aj1 · · ·ajk

where M(ai;aj1 , . . . , ajk) is the moduli space defined below, sgn(Δ) is

an orientation sign associated to Δ, and [Δ] is the homology class1 of

Δ in H2(V,Λ).

Extend the differential to all of A via the signed Leibniz rule: ∂(xy) =

(∂x)y+ (−1)|x|x(∂y).

The key to Definition 2.1 is the moduli spaceM(ai;aj1 , . . . , ajk). To define

this, let J be a (suitably generic) almost complex structure on the symplec-

tization (R× V,d(etα)) of V (where α is the contact form on V and t is the

R coordinate) that is compatible with the symplectization in the following

sense: J is R-invariant, J(∂/∂t) =Rα, and J maps ξ = kerα to itself. With

respect to this almost complex structure, R× ai is a holomorphic strip for

any Reeb chord ai of Λ.

Let D2
k =D2 \ {p+, p−1 , . . . , p−k } be a closed disk with k+ 1 punctures on

its boundary, labeled p+, p−1 , . . . , p
−
k in counterclockwise order around ∂D2.

For (not necessarily distinct) Reeb chords ai and aj1 , . . . , ajk for some k ≥ 0,

let M(ai;aj1 , . . . , ajk) be the moduli space of J -holomorphic maps

Δ :
(

D2
k, ∂D

2
k

)

→ (R× V,R×Λ)

1To define this homology class, we assume that “capping half-disks” have been chosen in
V for each Reeb chord ai, with boundary given by ai along with a path in Λ joining the
endpoints of ai. Some additional care must be taken if Λ has multiple components.
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Fig. 3. A holomorphic disk Δ : (D2
k, ∂D

2
k)→ (R× V,R×Λ) contributing to

M(ai;aj1,...,ajk
) and the differential ∂(ai)

up to domain reparametrization, such that:

• near p+, Δ is asymptotic to a neighborhood of the Reeb strip R× ai
near t=+∞;

• near p−l for 1≤ l≤ k, Δ is asymptotic to a neighborhood of R×ajl near
t=−∞.

See Figure 3.

When everything is suitably generic, M(ai;aj1 , . . . , ajk) is a manifold of

dimension |ai| −
∑

l |ajl |. The moduli space also has an R action given by

translation in the R direction, and the differential ∂(ai) counts moduli spaces

M(ai;aj1 , . . . , ajk) that are rigid after quotienting by this R action.

Remark 2.2. If H2(V,Λ)∼=H2(V )⊕H1(Λ), as is true in the case that we

will consider, one can “improve” the DGA (A, ∂) to a DGA that we might

call the fully noncommutative DGA (Ã, ∂), defined as follows. For simplicity,

assume that Λ is connected; there is a similar but slightly more involved

construction otherwise. The algebra Ã is the tensor algebra over the group

ring Z[H2(V )], generated by the Reeb chords a1, . . . , an along with elements

of π1(Λ), with no relations except for the ones inherited from π1(Λ). Thus Ã
is generated as a Z[H2(V )]-module by words of the form

γ0ai1γ1ai2γ2 · · ·γk−1aikγk

where ai1 , . . . , aik are Reeb chords of Λ, γ0, . . . , γk ∈ π1(Λ), and k ≥ 0. Note

that A is a quotient of Ã: just abelianize π1(Λ) to H1(Λ), and allow Reeb

chords ai to commute with homology classes γ ∈H1(Λ).

To define the differential, let Δ be a disk in M(ai;aj1 , . . . , ajk). The pro-

jection map π :H2(V,Λ)→H2(V ) gives a class π([Δ]) ∈H2(V ). The bound-
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ary of the image of Δ consists of an ordered collection of k + 1 paths in Λ

joining endpoints of Reeb chords. By fixing paths in Λ joining each Reeb

chord endpoint to a fixed point on Λ, one can close these k + 1 paths into

k+ 1 loops in Λ. Let γ0(Δ), . . . , γk(Δ) denote the homotopy classes of these

loops in π1(Λ), where the loops are ordered in the order that they appear

in the image of ∂D2, traversed counterclockwise. Finally, define ∂(γ) = 0 for

γ ∈ π1(Λ) and

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(

sgn(Δ)
)

eπ([Δ])

× γ0(Δ)aj1γ1(Δ) · · ·ajkγk(Δ),

and extend the differential to Ã by the Leibniz rule.

Note that the quotient that sends Ã to A also sends the differential on Ã
to the differential on A. The fully noncommutative DGA (Ã, ∂) satisfies the
same properties as (A, ∂) (Theorem 2.3 below), with a suitable alteration of

the definition of stable tame isomorphism. For the majority of this article, we

will stick to the usual LCH DGA (A, ∂), which is enough for most purposes,

because it simplifies notation; see however the discussion after Theorem 4.8,

as well as the Appendix.

We now state some fundamental properties of the LCH DGA (A, ∂).
These began with the work of Eliashberg–Hofer [17]; Chekanov [7] wrote

down the precise statement and gave a combinatorial proof for the case V =

R
3 (see also [19]). The formulation given here is due to, and proven by,

Ekholm–Etnyre–Sullivan [14].

Theorem 2.3 ([7, 14, 17]). Given suitable genericity assumptions:

1. ∂ decreases degree by 1;

2. ∂2 = 0;

3. up to stable tame isomorphism, (A, ∂) is independent of all choices

(of contact form for the contact structure on V , and of J), and is an

invariant of Λ up to Legendrian isotopy;

4. up to isomorphism, H∗(A, ∂) =:HC∗(V,Λ) is also an invariant of Λ up

to Legendrian isotopy.

Here “stable tame isomorphism” is an equivalence relation between DGAs

defined in Definition 2.4 below, which is a special case of quasi-isomorphism;
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thus item 3 in Theorem 2.3 directly implies item 4. The homology HC∗(V,Λ)
is called the Legendrian contact homology of Λ.

Definition 2.4 ([7], see also [19]).

1. Let A=R〈a1, . . . , an〉. An elementary automorphism of A is an algebra

map φ : A→A of the form: for some i, φ(aj) = aj for all j �= i, and

φ(ai) = ai + v for some v ∈R〈a1, . . . , ai−1, ai+1, . . . , an〉.

2. A tame automorphism of A is a composition of elementary automor-

phisms.

3. DGAs (A = R〈a1, . . . , an〉, ∂) and (A′ = R〈a′1, . . . , a′n〉, ∂′) are tamely

isomorphic if there is an algebra isomorphism ψ = φ2 ◦ φ1 such that

φ1 : A → A is a tame automorphism and φ2 : A → A′ is given by

φ2(ai) = a′i for all i, and ψ intertwines the differentials: ψ ◦ ∂ = ∂′ ◦ψ.

4. A stabilization of (A = R〈a1, . . . , an〉, ∂) is (S(A), ∂), where S(A) =
R〈a1, . . . , an, e1, e2〉 with grading inherited from A along with |e1| =
|e2|+ 1, and ∂ is induced on S(A) by ∂ on A along with ∂(e1) = e2,

∂(e2) = 0.

5. DGAs (A, ∂) and (A′, ∂′) are stable tame isomorphic if they are tamely

isomorphic after stabilizing each of them some (possibly different) num-

ber of times.

Exercise 2.5.

1. Prove that H(S(A), ∂) ∼= H(A, ∂) and thus stable tame isomorphism

implies quasi-isomorphism.

2. Prove that if (A, ∂) is a DGA with a generator a satisfying |a|= 1 and

∂(a) = 1, then H(A, ∂) = 0. Conclude that quasi-isomorphism does not

necessarily imply stable tame isomorphism.

3. If all generators of A are in degree ≥ 0, and S is a unital ring, show that

there is a one-to-one correspondence between augmentations of (A, ∂)
to S (see Definition 2.6 below) and ring homomorphisms H0(A, ∂)→ S.

Find an example to show that this is not true in general without the

degree condition.

4. Find the stable tame isomorphism in Example 3.13 below.

We conclude this section by introducing the notion of an augmentation,

which is an important algebraic tool for studying DGAs.
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Definition 2.6. Let (A, ∂) be a DGA over R, and let S be a unital ring.

An augmentation of (A, ∂) to S is a graded ring homomorphism

ε :A→ S

sending ∂ to 0; that is, ε ◦ ∂ = 0, ε(1) = 1, and ε(a) = 0 unless |a|= 0.

Note that augmentations use the multiplicative structure on the DGA

(A, ∂). An augmentation allows one to construct a linearized version of the

homology of (A, ∂).

Exercise 2.7. Let (A, ∂) be the LCH DGA for a Legendrian Λ, and let ε

an augmentation of (A, ∂) to S.

1. Write A=R〈a1, . . . , an〉. The augmentation ε induces an augmentation

εS : S〈a1, . . . , an〉 → S that acts as the identity on S and as ε on the ai’s.

Prove that (ker εS)/(ker εS)
2 is a finitely generated, graded S-module.

2. Prove that ∂ descends to a map here: then

HC lin
∗ (Λ, ε) :=H∗

(

(ker ε)/(ker ε)2, ∂
)

is a graded S-module, the linearized Legendrian contact homology of Λ

with respect to the augmentation ε.

Remark 2.8. Here is a less concise, but possibly more illuminating, de-

scription of linearized contact homology. We can define a differential ∂S
on AS := S〈a1, . . . , an〉 by composing ∂ by the map R→ S induced by ε

(this map fixes all ai’s). Define an S-algebra automorphism φε :AS →AS by

φε(ai) = ai + ε(ai) for all i and φε(s) = s for all s ∈ S. Then the map

∂S,ε := φε ◦ ∂S ◦ φ−1
ε

is a differential on AS . Furthermore, if we define A+
S to be the subalgebra

of AS generated by a1, . . . , an, so that AS
∼= S ⊕A+

S as S-modules, then ∂S,ε
restricts to a map from A+

S to itself, and so it induces a differential from

A+
S /(A

+
S )

2 to itself. The homology of the complex (A+
S /(A

+
S )

2, ∂S,ε) is the

linearized contact homology of Λ with respect to ε.

Remark 2.9. Let Λ⊂ V have LCH DGA (A, ∂), and write R= Z[H2(V,Λ)]

as usual. Any augmentation ε of (A, ∂) to a ring S induces a map ε|R :R→ S,

since R⊂A. This motivates the following definition: define the augmentation



496 L. Ng

variety of Λ to S to be

Aug(Λ,S) =
{

ϕ :R→ S |ϕ= ε|R for some augmentation ε from (A, ∂) to S
}

⊂Hom(R,S).

It follows from Theorem 2.3 that Aug(Λ,S) is an invariant of Λ under Leg-

endrian isotopy.

In the simplest case, when V =R
3 and Λ is a Legendrian knot, one can

consider the augmentation variety

Aug(Λ,S)⊂Hom
(

Z[Z], S
)∼= S×

where S× is the multiplicative group of units in S. It can then be shown

(by upcoming work of Caitlin Leverson) that Aug(Λ,S) is either {−1} if Λ

has a (graded) ruling, or ∅ otherwise; the augmentation variety contains fairly

minimal information about Λ. However, in the main case of interest in this

article, where V = J1(S2) and Λ=ΛK , the augmentation variety contains a

great deal of information about ΛK . See Section 5.

Remark 2.10. A geometric motivation for augmentations comes from exact

Lagrangian fillings. Here is a somewhat imprecise description. Suppose that

the contact manifold V is a convex end of an open exact symplectic manifold

(W,ω); for instance, W could be the symplectization of V , or an exact sym-

plectic filling of V . Let L⊂W be an oriented exact Lagrangian submanifold

whose boundary is the Legendrian Λ⊂ V . Then L induces an augmentation

ε of the LCH DGA of Λ, to the ring S = Z[H2(W,L)], which restricts on the

coefficient ring to the usual map Z[H2(V,Λ)]→ Z[H2(W,L)]. This augmen-

tation is defined as follows: ε(ai) is the sum of all rigid holomorphic disks in

W with boundary on L and positive boundary puncture limiting to the Reeb

chord ai of Λ, where each holomorphic disk contributes its homology class

in H2(W,L). The fact that ε is an augmentation is established by an argu-

ment similar to the proof that ∂2 = 0 in Theorem 2.3 above, which involves

two-story holomorphic buildings.

3. Knot Contact Homology

In this section, we present a combinatorial calculation of knot contact homol-

ogy, which is Legendrian contact homology in the particular case where the

contact manifold is ST ∗
R
3 ∼= J1(S2) and the Legendrian submanifold is the

unit conormal bundle ΛK to some link K ⊂R
3. The version of knot contact
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homology we give here is a theory over the coefficient ring Z[λ±1, μ±1,U±1],

and has appeared in the literature in several places and guises,2 up to vari-

ous changes of variables (see the Appendix). Our presentation corresponds to

what is called the “infinity” version of transverse homology in [16, 34], and is

the most general (as of now) version of knot contact homology for topological

knots and links. Setting U = 1, one obtains an invariant called “framed knot

contact homology” in [33] and simply “knot contact homology” in [15]. If

we set U = λ= 1 and μ=−1, we obtain the original version of knot contact

homology from [30, 31].

For simplicity, we assume thatK ⊂R
3 is an oriented knot; see Remark 3.2

below for the case of a multi-component link. The unit conormal bundle

ΛK ⊂ J1(S2) is a Legendrian T 2. As discussed in the previous section, the

LCH DGA of ΛK is a topological link invariant. The coefficient ring for this

DGA is

R= Z
[

H2

(

J1
(

S2
)

,ΛK

)]∼= Z
[

λ±1, μ±1,U±1
]

,

where λ,μ correspond to the longitude and meridian generators of H1(ΛK)

and U corresponds to the generator of H2(J
1(S2)) =H2(S

2). Note that the

choice of λ,μ relies on a choice of (orientation and) framing for K; we choose

the Seifert framing for definiteness.

Definition 3.1. K ⊂ R
3 knot. The knot DGA of K is the LCH dif-

ferential graded algebra of ΛK ⊂ J1(S2), an algebra over the ring R =

Z[λ±1, μ±1,U±1]. The homology of this DGA is the knot contact homology

of K, HC∗(K) =HC∗(ST ∗
R
3,ΛK).

Remark 3.2. If K is an oriented r-component link, one can similarly define

the “knot DGA”, now an algebra over

Z
[

H2

(

J1
(

S2
)

,ΛK

)]∼= Z
[

λ±1
1 , . . . , λ±1

r , μ±1
1 , . . . , μ±1

r ,U±1
]

.

Here, as in the knot case, we choose the 0-framing on each link component

to fix the above isomorphism. The combinatorial description for the DGA in

the link case is a bit more involved than for the knot case; see the Appendix

for details.

We now return to the case where K is a knot. It follows directly from

Theorem 2.3 that knot contact homology HC∗(K) is an invariant up to R-

2The profusion of terms and specializations is an unfortunate byproduct of the way that
the subject evolved over a decade.
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algebra isomorphism, as is the knot DGA up to stable tame isomorphism.

What we describe next is a combinatorial form for the knot DGA, given

a braid presentation of K; this follows the papers [16, 34], which build on

previous work [15, 30, 31, 33]. The fact that the combinatorial DGA agrees

with the holomorphic-curve DGA described in Section 2 is a rather intricate

calculation and the subject of [15].

Let Bn be the braid group on n strands. Define An to be the free non-

commutative unital algebra over Z generated by n(n−1) generators aij with

1 ≤ i, j ≤ n and i �= j. We consider the following representation of Bn as

a group of automorphisms of An, which was first introduced (in a slightly

different form) in [29].

Definition 3.3. The braid homomorphism φ :Bn→AutAn is the map de-

fined on generators σk (1≤ k ≤ n− 1) of Bn by:

φσk
:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij �→ aij , i, j �= k, k+ 1

ak+1,i �→ aki, i �= k, k+ 1

ai,k+1 �→ aik, i �= k, k+ 1

ak,k+1 �→ −ak+1,k

ak+1,k �→ −ak,k+1

aki �→ ak+1,i − ak+1,kaki, i �= k, k+ 1

aik �→ ai,k+1 − aikak,k+1, i �= k, k+ 1.

This extends to a map on Bn (see the following exercise).

Exercise 3.4.

1. Check that φσk
is invertible.

2. Check that φ respects the braid relations: φσk
φσk+1

φσk
= φσk+1

φσk
φσk+1

and φσi
φσj

= φσj
φσi

for |i− j| ≥ 2.

3. For the braid B = (σ1 · · ·σn−1)
m ∈ Bn for m ≥ 1, calculate φB . (The

answer is quite simple.)

Remark 3.5. As a special case of Exercise 3.4(3), when B is a full twist

(σ1 · · ·σn−1)
n, φB is the identity map; thus φ : Bn→ AutAn is not a faith-

ful representation. However, one can create a faithful representation of Bn

from φ, as follows. Embed Bn into Bn+1 by adding an extra (noninteracting)

strand to any braid in Bn; then the composition

Bn ↪→Bn+1
φ→AutAn+1
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is a faithful representation of Bn as a group of algebra automorphisms of

An+1. See [31].

Before we proceed with the combinatorial definition of the knot DGA, we

present a possibly illustrative reinterpretation of φ that begins by viewing

Bn as the mapping class group of D2 \ {p1, . . . , pn}; this will be useful in

Section 4. To this end, let p1, . . . , pn be a collection of n points in D2, which

we arrange in order in a horizontal line.

Definition 3.6. An arc is a continuous path γ : [0,1] → D2 such that

γ−1({p1, . . . , pn}) = {0,1}; that is, the path begins at some pi, ends at some

pj (possibly the same point), and otherwise does not pass through any of

the p’s. We consider arcs up to endpoint-fixing homotopy through arcs:

two arcs are identified if, except at their endpoints, they are homotopic in

D2 \ {p1, . . . , pn}. Let Ã denote the tensor algebra over Z generated by arcs,

modulo the (two-sided ideal generated by the) relations:

1.

where each of these dots indicates the same point pi;

2. any contractible arc with both endpoints at some pi is equal to 0.

Remark 3.7. There is a notion of a framed arc that generalizes Defini-

tion 3.6, and a corresponding version of Ã in which 0 is replaced by 1− μ.
Framed arcs are used to relate knot contact homology to the cord algebra

(see Section 4), but we omit their definition here in the interest of simplicity.

See [33] for more details.

One can now relate the homomorphism φ with the algebra Ã generated

by arcs.

Theorem 3.8 ([31]).

1. For i �= j, let γij denote the arc depicted below (left diagram for i < j,

right for i > j):

Then the map sending aij to γij for i < j and −γij for i > j induces an

algebra isomorphism Φ :An
∼=→Ã.
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2. For any B ∈Bn and any i, j, we have

Φ
(

φB(aij)
)

=B ·Φ(aij),

where B acts on Ã by the mapping class group action: if a is an arc,

then B · a is the arc obtained by applying to a the diffeomorphism of

D2 \ {p1, . . . , pn} given by B.

As an illustration of Theorem 3.8(2), the braid B = σk sends the arc γki
for i > k+ 1 to

where the equality is in Ã and uses the skein relation in Definition 3.6; the

right hand side is the image under Φ of ak+1,i − ak+1,kaki = φσk
(aki).

We now proceed with the definition of the knot DGA. We will need

two n× n matrices ΦL
B,Φ

R
B that arise from the representation φ (or, more

precisely, its extension as described in Remark 3.5).

Definition 3.9 ([30]). Let B ∈Bn ↪→Bn+1, and label the additional strand

in Bn+1 by ∗. Define ΦL
B,Φ

R
B ∈Matn×n(An) by:

φB(ai∗) =
n∑

j=1

(

ΦL
B

)

ij
aj∗

φB(a∗i) =
n∑

i=1

a∗j
(

ΦR
B

)

ji

for 1≤ i≤ n.

Exercise 3.10.

1. For B = σ31 ∈B3, use arcs and Theorem 3.8 to check that

φB(a13) =−2a21a13 + a21a12a21a13 + a23 − a21a12a23.

2. Now view B = σ31 as living in B2. Verify:

ΦL
B =

(
−2a21 + a21a12a21 1− a21a12

1− a12a21 a12

)
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ΦR
B =

(
−2a12 + a12a21a12 1− a12a21

1− a21a12 a21

)

.

3. For general B, ΦL
B and ΦR

B can be thought of as “square roots” of φB ,

in the following sense. Let A and φB(A) be the n×n matrices defined

in Definition 3.11 below; roughly speaking, A is the matrix of the aij ’s

and φB(A) is the matrix of the φB(aij)’s. Then we have

(1) φB(A) =ΦL
B ·A ·ΦR

B;

see [33, 34] for the proof. Verify (1) for B = σ31 .

Definition 3.11 ([15, 34]3). Let K be a knot given by the closure of a braid

B ∈ Bn. The (combinatorial) knot DGA for K is the differential graded

algebra (A, ∂) over R= Z[λ±1, μ±1,U±1] given as follows.

1. Generators: A=R〈aij , bij , cij , dij , eij , fij〉 with generators

• aij , where 1≤ i, j ≤ n and i �= j, of degree 0 (n(n− 1) of these)

• bij , where 1≤ i, j ≤ n and i �= j, of degree 1 (n(n− 1) of these)

• cij and dij , where 1≤ i, j ≤ n, of degree 1 (n2 of each)

• eij and fij , where 1≤ i, j ≤ n, of degree 2 (n2 of each).

2. Differential: assemble the generators into n×n matrices A, Â,B, B̂,C,

D,E,F, defined as follows. For 1≤ i, j ≤ n, the ij entry of the matrices

C,D,E,F is cij , dij , eij , fij , respectively. The other matrices A, Â,B, B̂

are given by:

Aij =

⎧

⎪⎨

⎪⎩

aij i < j

−μaij i > j

1− μ i= j

Bij =

⎧

⎪⎨

⎪⎩

bij i < j

−μbij i > j

0 i= j

(Â)ij =

⎧

⎪⎨

⎪⎩

Uaij i < j

−μaij i > j

U − μ i= j

(B̂)ij =

⎧

⎪⎨

⎪⎩

Ubij i < j

−μbij i > j

0 i= j.

Also define a matrix Λ as the diagonal matrix

Λ= diag
(

λμwU−(w−n+1)/2,1, . . . ,1
)

,

3See the Appendix for differences in convention between our definition and the ones from
[34] and [15].
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where w is the writhe of B (the sum of the exponents in the braid

word).

The differential is given in matrix form by:

∂(A) = 0

∂(B) =A−Λ · φB(A) ·Λ−1

∂(C) = Â−Λ ·ΦL
B ·A

∂(D) =A− Â ·ΦR
B ·Λ−1

∂(E) = B̂−C−Λ ·ΦL
B ·D

∂(F) =B−D−C ·ΦR
B ·Λ−1.

Here ∂(A) is the matrix whose ij entry is ∂(Aij), φB(A) is the matrix

whose ij entry is φB(Aij), and similarly for ∂(B), etc. (For U = 1 as

in the setting of [33], we can omit the hats.)

The homology of (A, ∂) is the (combinatorial) knot contact homology

HC∗(K).

Remark 3.12. Combinatorial knot DGAs and related invariants are readily

calculable by computer. There are a number of Mathematica packages to this

end available at http://www.math.duke.edu/∼ng/math/programs.html.

Example 3.13. For the unknot, the knot DGA is the algebra over Z[λ±1,

μ±1,U±1] generated by four generators, c, d in degree 1 and e, f in degree 2,

with differential:

∂c= U − λ− μ+ λμ

∂d= 1− μ− λ−1U + λ−1μ

∂e=−c− λd

∂f =−d− λ−1c.

Up to stable tame isomorphism, this is the same as the DGA generated by c

and e with differential ∂c= U − λ− μ+ λμ, ∂e= 0. See Exercise 2.5(4).

The main result of [15] is that the combinatorial knot DGA of K, de-

scribed above, agrees with the LCH DGA of ΛK , after one changes ΛK by

Legendrian isotopy in J1(S2) in a particular way and makes other choices

that do not affect LCH. The proof of this result is far outside the scope of

http://www.math.duke.edu/~ng/math/programs.html
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this article, but we will try to indicate the strategy; see also [12] for a nice

summary with a bit more detail.

Theorem 3.14 ([15, 16]). The combinatorial knot DGA of K in the sense

of Definition 3.11 is the LCH DGA of ΛK in the sense of Definition 3.1.

Idea of proof. Braid K around an unknot U . Then ΛK is contained in a

neighborhood of ΛU
∼= T 2, and so we can view

ΛK ⊂ J1
(

T 2
)

⊂ J1
(

S2
)

by the Legendrian neighborhood theorem. Reeb chords for ΛK split into

two categories: “small” chords lying in J1(T 2), corresponding to the aij ’s

and bij ’s, and “big” chords that lie outside of J1(T 2), corresponding to the

cij , dij , eij , fij generators (which themselves correspond to four Reeb chords

for ΛU ). Holomorphic disks similarly split into small disks lying in J1(T 2),

and big disks that lie outside of J1(T 2). The small disks produce the sub-

algebra of the knot DGA generated by the aij ’s and bij ’s. The big disks

produce the rest of the differential, and can be computed in the limit degen-

eration when K approaches U . These disk counts use gradient flow trees in

the manner of [11]. �

It follows from Theorem 3.14 that the combinatorial knot DGA, up to

stable tame isomorphism, is a knot invariant, as is its homology HC∗(K). Al-

ternatively, one can prove this directly without counting holomorphic curves,

just by using algebraic properties of the representation φ and the matrices

ΦL
B,Φ

R
B .

Theorem 3.15 ([33] for U = 1, [34] in general). For the combinatorial knot

DGA:

1. ∂2 = 0 (see Exercise 3.16);

2. (A, ∂) is a knot invariant: up to stable tame isomorphism, it is invariant

under Markov moves.

Exercise 3.16.

1. Use (1) from Exercise 3.10 to prove that ∂2 = 0 for the combinatorial

knot DGA.
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2. Show that the two-sided ideal inA generated by the entries of any two of

the three matrices A−Λ ·φB(A) ·Λ−1, Â−Λ ·ΦL
B ·A, A−Â ·ΦR

B ·Λ−1

contains the entries of the third. (Note that these three matrices are

the matrices of differentials ∂(B), ∂(C), ∂(D) in the knot DGA.) This

fact will appear later; see Remark 4.2.

It is natural to ask how effective the knot DGA is as a knot invariant.

In order to answer this, one needs to find practical ways of distinguishing

between stable tame isomorphism classes of DGAs. One way, outlined in

the following exercise, is by linearizing, as in Exercise 2.7; another, which

we will employ and discuss extensively later, is by considering the space of

augmentations, as in Remark 2.9.

Exercise 3.17.

1. Show that the knot DGA has an augmentation to Z[λ±1] that sends

μ,U to 1, and another augmentation to Z[μ±1] that sends λ,U to 1. (In

general there are many more augmentations, but these are “canonical”

in some sense.) Hint: this is easiest to do using the cord algebra (see

Section 4) rather than the knot DGA directly.

2. Consider the right-handed trefoil K, expressed as the closure of σ31 ∈
B2. If we further compose the second augmentation from the previous

part with the map Z[μ±1]→ Z that sends μ to −1, then we obtain an

augmentation of the knot DGA of K to Z. This is explicitly given as the

map ε :A→ Z with ε(λ) = 1, ε(μ) =−1, ε(U) = 1, ε(a12) = ε(a21) =−2.
For this augmentation, show that the linearized contact homology

(see Exercise 2.7) HC lin
∗ (ΛK , ε) is given as follows:

HC lin
∗
∼=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z3 ∗= 0

Z⊕ (Z3)
3 ∗= 1

Z ∗= 2

0 otherwise.

3. By contrast, check that for the unknot (whose DGA is given at the

end of Example 3.13), there is a unique augmentation to Z with ε(λ) =

1, ε(μ) = −1, ε(U) = 1, with respect to which HC lin
0
∼= 0, HC lin

1
∼= Z,

HC lin
2
∼= Z. It can be shown (see [7]) that the collection of all linearized

homologies over all possible augmentations is an invariant of the stable

tame isomorphism class of a DGA. Thus the knot DGAs for the unknot

and right-handed trefoil are not stable tame isomorphic.
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We close this section by discussing some properties of the knot DGA,

which are proved using the combinatorial formulation from Definition 3.11.

Theorem 3.18 ([33]).

1. Knot contact homology encodes the Alexander polynomial: there is a

canonical augmentation of the knot DGA (A, ∂) to Z[μ±1] (see Ex-

ercise 3.17), with respect to which the linearized contact homology

HC lin
∗ (K), as a module over Z[μ±1], is such that HC lin

1 (K) determines

the Alexander module of K (see [33] for the precise statement).

2. Knot contact homology detects mirrors and mutants: counting augmen-

tations to Z3 shows that the knot DGAs for the right-handed and left-

handed trefoils and the Kinoshita–Terasaka and Conway mutants are

all distinct.

Remark 3.19. Since the knot DGA (A, ∂) is supported in nonnegative de-

gree, augmentations to Z3 (or arbitrary rings) are the same as ring homo-

morphisms from HC0(K) to Z3; see Exercise 2.5. Thus the number of such

augmentations is a knot invariant. Counting augmentations to finite fields is

easy to do by computer.

Remark 3.20. It is not known if there are nonisotopic knots K1,K2 whose

knot contact homologies are the same. Thus at present it is conceivable that

any of the following are complete knot invariants, in decreasing order of

strength of the invariant (except possibly for the last two items, which do

not determine each other in any obvious way):

• the Legendrian isotopy class of ΛK ⊂ ST ∗
R
3;

• the knot DGA (A, ∂) up to stable tame isomorphism;

• degree 0 knot contact homology HC0(K) over R= Z[λ±1, μ±1,U±1];

• the cord algebra (see Section 4);

• the augmentation polynomial AugK(λ,μ,U) (see Section 5).

Even if these are not complete invariants, they are rather strong. For in-

stance, physics arguments suggest that the augmentation polynomial may

be at least as strong as the HOMFLY-PT polynomial and possibly some

knot homologies; see Section 5.
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4. Cord Algebra

In the previous section, we introduced the (combinatorial) knot DGA. The

fact that the knot DGA is a topological invariant can be shown in two ways:

computation of holomorphic disks and an appeal to the general theory of

Legendrian contact homology as in Section 2 [15], or combinatorial verifica-

tion of invariance under the Markov moves [34]. The first approach is natural

but difficult, while the second is technically easier but somewhat opaque from

a topological viewpoint, a bit like the usual proofs that the Jones polynomial

is a knot invariant.

In this section, we present a direct topological interpretation for a signif-

icant part (though not the entirety) of knot contact homology, namely the

degree 0 homology HC0(K) with U = 1, in terms of a construction called

the “cord algebra”. Our aim is to give some topological intuition for what

knot contact homology measures as a knot invariant. It is currently an open

problem to extend this interpretation to all of knot contact homology.

We begin with the observation that HC∗(K) is supported in degree ∗ ≥ 0,

and that for ∗= 0 it can be written fairly explicitly:

Theorem 4.1. Let R= Z[λ±1, μ±1,U±1]. Then

HC0(K)∼= (An ⊗R)/
(

entries of A−Λ · φB(A) ·Λ−1, Â−Λ ·ΦL
B ·A,

A− Â ·ΦR
B ·Λ−1

)

.

Proof. Since the knot DGA (A, ∂) is supported in degree ≥ 0, all degree

0 elements of A, i.e., elements of An ⊗ R, are cycles. The ideal of An ⊗ R
consisting of boundaries is precisely the ideal generated by the entries of the

three matrices. �

Remark 4.2. In fact, one can drop any single one of the matrices A−Λ ·
φB(A) ·Λ−1, Â−Λ ·ΦL

B ·A,A−Â ·ΦR
B ·Λ−1 in the statement of Theorem 4.1.

See Exercise 3.16(2).

Remark 4.3. It does not appear to be an easy task to find an analogue of

Theorem 4.1 for HC∗(K) with ∗ ≥ 1, in part because not all elements of A
of the appropriate degree are cycles.

Although the expression for HC0(K) from Theorem 4.1 is computable

in examples, it has a particularly nice interpretation if we set U = 1, as we



A Topological Introduction to Knot Contact Homology 507

will do for the rest of this section. With U = 1, the coefficient ring for the

knot DGA becomes R0 = Z[λ±1, μ±1], and we can express HC0(K)|U=1 as

an algebra over R0 generated by “cords”.

Definition 4.4 ([31, 33]).

1. Let (K,∗)⊂ S3 be an oriented knot with a basepoint. A cord of (K,∗) is
a continuous path γ : [0,1]→ S3 with γ−1(K) = {0,1} and γ−1({∗}) =
∅.

2. Define AK to be the tensor algebra over R0 freely generated by homo-

topy classes of cords (note: the endpoints of the cord can move along

the knot, as long as they avoid the basepoint ∗).

3. The cord algebra of K is the algebra AK modulo the relations:

(a)

(b)

(c)

The “skein relations” in Definition 4.4 are understood to be depictions

of relations in R
3, and not just relations as planar diagrams. For instance,

relation (c) is equivalent to:

It is then evident that the cord algebra is a topological knot invariant.

Exercise 4.5. One can heuristically think of cords as corresponding to Reeb

chords of ΛK . More precisely:

1. Let K ⊂ R
3 be a smooth knot. A binormal chord of K is an oriented

(nontrivial) line segment with endpoints on K that is orthogonal to K

at both endpoints. Show that binormal chords are exactly the same as

Reeb chords of ΛK .

2. For generic K, all binormal chords are cords in the sense of Defini-

tion 4.4. Show that any element of the cord algebra of K can be ex-
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pressed in terms of just binormal chords, i.e., in terms of Reeb chords

of ΛK .

3. Prove that the cord algebra of a m-bridge knot has a presentation with

(at most) m(m− 1) generators. (It is currently unknown whether this

also holds for HC0 if we do not set U = 1.)

4. Prove that the cord algebra of the torus knot T (m,n) has a presentation

with at most min(m,n)− 1 generators, as indeed does HC0(T (m,n))

without setting U = 1. (For this last statement, see Exercise 3.4(3).)

Exercise 4.6. Here we calculate the cord algebra in two simple examples.

1. Prove that the cord algebra of the unknot is R0/((λ− 1)(μ− 1)).

2. Next consider the right-handed trefoil K, shown below with five cords

labeled:

In the cord algebra of K, denote γ1 by x. Show that γ2 = γ5 = x,

γ4 = λx, and γ3 = 1− μ. Conclude the relation

λx2 − x+ μ− μ2 = 0.

3. Use the skein relations in another way to derive another relation in the

cord algebra of K:

λx2 + λμx+ μ− 1 = 0.

4. Prove that the cord algebra of K is generated by x.

5. It can be shown that the above two relations generate all relations: the

cord algebra of the right-handed trefoil is

R0[x]/
(

λx2 − x+ μ− μ2, λx2 + λμx+ μ− 1
)

.
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Suppose that there is a ring homomorphism from the cord algebra of

K to C, mapping λ to λ0 and μ to μ0. Show that

(λ0 − 1)(μ0 − 1)
(

λ0μ
3
0 + 1

)

= 0.

The left hand side is the two-variable augmentation polynomial for the

right-handed trefoil (see Section 5 and Example 5.8).

We now present the relation between the cord algebra and knot contact

homology.

Theorem 4.7 ([31, 33]). The cord algebra of K is isomorphic as an R0-

algebra to HC0(K)|U=1.

Idea of proof. Let K be the closure of a braid B ∈Bn, and embed B in

S3 with braid axis L. A page of the resulting open book decomposition of S3

is D2 with ∂D2 = L, and D2 intersects B in n points p1, . . . , pn. Any arc in

D2 ⊂ S3 in the sense of Definition 3.6 is a cord ofK. Under this identification,

skein relations (c) and (a) from Definition 4.4 become relations 1 and 2 from

Definition 3.6 (at least when μ= 1; for general μ, one needs to use a variant

of Definition 3.6 involving framed cords, cf. Remark 3.7).

Any cord of K is homotopic to a cord lying in the D2 slice of S3. It

then follows from Theorem 3.8 that there is a surjective R0-algebra map

from An ⊗R0 to the cord algebra. Thus the cord algebra is the quotient of

An⊗R0 by relations that arise from considering homotopies between arcs in

D2 given by one-parameter families of cords that do not lie in the D2 slice. If

this family avoids intersecting L, we obtain the relations given by the entries

of ∂(B) = A − Λ · φB(A) · Λ−1. Considering families that pass through L

once gives the entries of ∂(C) = Â−Λ ·ΦL
B ·A and ∂(D) =A− Â ·ΦR

B ·Λ−1

as relations in the cord algebra. �

For various purposes, it is useful to reformulate the cord algebra of a

knot K in terms of homotopy-group information. In particular, this gives a

proof that knot contact homology detects the unknot (Corollary 4.10); in

Section 5, we will also use this to relate the augmentation polynomial to the

A-polynomial. Here we give a brief description of this perspective and refer

the reader to [33] for more details.

We can view cords of K as elements of the knot group π1(S
3 \K) by

pushing the endpoints slightly off of K and joining them via a curve parallel
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to K. One can then present the cord algebra entirely in terms of the knot

group π and the peripheral subgroup π̂ = π1(∂(nbd(K))) ∼= Z
2. Write l,m

for the longitude, meridian generators of π̂.

Theorem 4.8 ([33]). The cord algebra of K is isomorphic to the tensor

algebra over R0 freely generated by elements of π1(S
3 \ K) (denoted with

brackets), quotiented by the relations:

1. [e] = 1− μ, where e is the identity element;

2. [γl] = [lγ] = λ[γ] and [γm] = [mγ] = μ[γ] for γ ∈ π1(S3 \K);

3. [γ1γ2]− [γ1mγ2]− [γ1][γ2] = 0 for any γ1, γ2 ∈ π1(S3 \K).

If (A, ∂) is the knot DGA of K, then Theorem 4.8 (along with The-

orem 4.7) gives an expression for HC0(K)|U=1 = H0(A|U=1, ∂) as an R0-

algebra. One can readily “improve” this result to give an analogous expres-

sion for the degree 0 homology of the fully noncommutative knot DGA (Ã, ∂)
of K (see Remark 2.2 and the Appendix), which we write as

H̃C0(K)|U=1 =H0(Ã|U=1, ∂);

note that this is a Z-algebra rather than a R0-algebra, but contains R0 as a

subalgebra. Details are contained in joint work in progress with K. Cieliebak,

T. Ekholm, and J. Latschev, which is also the reference for Theorem 4.9 and

Corollary 4.10 below.

Theorem 4.9. Write π = π1(S
3 \ K) and π̂ = π1(∂(nbd(K))) = 〈m, l〉.

There is an injective ring homomorphism

H̃C0(K)|U=1 ↪→ Z
[

π1
(

S3 \K
)]

under which H̃C0(K)|U=1 maps isomorphically to the subring of Z[π] gener-

ated by π̂ and elements of the form γ −mγ for γ ∈ π. This map sends λ to

l and μ to m.

Idea of proof. The homomorphism is induced by the map sending λ to l,

μ to m, and [γ] to γ −mγ for γ ∈ π. �

Corollary 4.10. Knot contact homology, in its fully noncommutative form,

detects the unknot.
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Idea of proof. Use the Loop Theorem and consider the action of multi-

plication by λ on the cord algebra. �

For a proof that ordinary (not fully noncommutative) knot contact ho-

mology detects the unknot, see the next section.

5. Augmentation Polynomial

In this section, we describe how knot contact homology can be used to pro-

duce a three-variable knot invariant, the augmentation polynomial. We then

discuss the relation of a two-variable version of the augmentation polyno-

mial to the A-polynomial, and of the full augmentation polynomial to the

HOMFLY-PT polynomial and to mirror symmetry and physics.

The starting point is the space of augmentations from the knot DGA

(A, ∂) to C, as in Remark 2.9.

Definition 5.1 ([33, 34]). Let (A, ∂) be the knot DGA of a knot K, with

the usual coefficient ring Z[λ±1, μ±1,U±1]. The augmentation variety of K

is

VK =
{(

ε(λ), ε(μ), ε(U)
)

| ε an augmentation from (A, ∂) to C
}

⊂
(

C
∗)3.

When the maximal-dimension part of the Zariski closure of VK is a codi-

mension 1 subvariety of (C∗)3, this variety is the vanishing set of a reduced

polynomial4 AugK(λ,μ,U), the augmentation polynomial5 of K.

Remark 5.2. The augmentation polynomial is well-defined only up to

units in C[λ±1, μ±1,U±1]. However, because the differential on the knot

DGA involves only integer coefficients, we can choose AugK(λ,μ,U) to

have integer coefficients with overall gcd equal to 1. We can further stip-

ulate that AugK(λ,μ,U) contains no negative powers of λ,μ,U , and that

it is divisible by none of λ,μ,U . The result is an augmentation polynomial

AugK(λ,μ,U) ∈ Z[λ,μ,U ], well-defined up to an overall ± sign.

Conjecture 5.3. The condition about the Zariski closure in Definition 5.1

holds for all knots K; the augmentation polynomial is always defined.

4I.e., no repeated factors.
5Caution: the polynomial described here differs from the augmentation polynomial from
[34] by a change of variables μ �→ −1/μ. See the Appendix.
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A fair number of augmentation polynomials for knots have been

computed and are available at http://www.math.duke.edu/�ng/math/

programs.html; see also Exercise 5.5 below. We note in passing some sym-

metries of the augmentation polynomial:

Theorem 5.4. Let K be a knot and m(K) its mirror. Then

AugK(λ,μ,U)
.
=AugK

(

λ−1U,μ−1U,U
)

and

Augm(K)(λ,μ,U)
.
=AugK

(

λU−1, μ−1,U−1
)

,

where
.
= denotes equality up to units in Z[λ±1, μ±1,U±1].

The first equation in Theorem 5.4 follows from [34, Propositions 4.2, 4.3],

while the second can be proved using the results from [34, §4].

Exercise 5.5. Here are a couple of computations of augmentation polyno-

mials.

1. Show that the augmentation polynomial for the unknot is

AugO(λ,μ,U) = U − λ− μ+ λμ.

2. The cord algebra HC0|U=1 for the right-handed trefoil was computed

in Exercise 4.6. It can be checked directly from the definition of the

knot DGA that the full degree 0 knot contact homology is

HC0(RH trefoil)∼=R[a12]/
(

Ua212 − μUa12 + λμ3(1− μ),

Ua212 + λμ2a12 + λμ2(μ−U)
)

.

Use resultants to deduce the augmentation polynomial:

AugRH trefoil(λ,μ,U) =
(

U3 − μU2
)

+
(

−U3 + μU2 − 2μ2U + 2μ2U2

+ μ3U − μ4U
)

λ+
(

−μ3 + μ4
)

λ2.

From Theorem 5.4, we can then also deduce the polynomial for the

left-handed trefoil:

AugLH trefoil(λ,μ,U) =
(

μ3U2 − μ4U
)

+
(

U2 − μU2 − 2μ2U + 2μ2U2

− μ3U + μ4
)

λ+
(

−U2 + μU2
)

λ2.

http://www.math.duke.edu/~ng/math/programs.html
http://www.math.duke.edu/~ng/math/programs.html
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We next turn to the two-variable augmentation polynomial.

Definition 5.6 ([33]). If the U = 1 slice of the augmentation variety,

VK ∩ {U = 1} ⊂ (C∗)2, is such that the maximal-dimensional part of its

Zariski closure is a (co)dimension 1 subvariety of (C∗)2, then this subvariety

is the vanishing set of a reduced polynomial AugK(λ,μ), the two-variable

augmentation polynomial of K. As in Remark 5.2, AugK(λ,μ) can be chosen

to lie in Z[λ,μ].

Conjecture 5.7. The two-variable augmentation polynomial AugK(λ,μ) is

always defined, and the two augmentation polynomials are related in the ob-

vious way:

AugK(λ,μ) = AugK(λ,μ,U = 1).

The two-variable augmentation polynomial has a number of interesting

factors. For instance, it follows from Exercise 3.17 that

(λ− 1)(μ− 1) | AugK(λ,μ)

for all knots K.

Example 5.8. For the unknot and trefoils, the two-variable augmentation

polynomials are

AugO(λ,μ) = (λ− 1)(μ− 1)

AugRH trefoil(λ,μ) = (λ− 1)(μ− 1)
(

λμ3 + 1
)

AugLH trefoil(λ,μ) = (λ− 1)(μ− 1)
(

λ+ μ3
)

.

The polynomial for the right-handed trefoil follows from Exercise 4.6, while

the polynomial for the left-handed trefoil follows from the behavior of the

polynomial (and knot contact homology generally) under mirroring, cf. The-

orem 5.4.

The observant reader may notice that the two-variable augmentation

polynomials for the unknot and trefoils are essentially the same as another

knot polynomial, the A-polynomial. Recall that the A-polynomial is defined

as follows. Given an SL2C representation of the knot group

ρ : π1
(

S3 \K
)

→ SL2C,



514 L. Ng

simultaneously diagonalize ρ(l), ρ(m) to get ρ(l) = ( λ ∗
0 λ−1 ), ρ(m) = (

μ ∗
0 μ−1 ).

The (maximal-dimensional part of the Zariski closure of the) collection of

(λ,μ) over all SL2C representations is the zero set of the A-polynomial of

K, AK(λ,μ).

Theorem 5.9 ([33]). (μ2 − 1)AK(λ,μ) divides AugK(λ,μ2).

We outline the proof of Theorem 5.9 in Exercise 5.12 below.

Corollary 5.10. The cord algebra detects the unknot.

Proof. By a result of Dunfield and Garoufalidis [10], based on gauge-

theoretic work of Kronheimer and Mrowka [27], the A-polynomial detects

the unknot. It follows that when K is knotted, either AugK(λ,μ) is not de-

fined (if the augmentation variety is 2-dimensional), or AugK(λ,μ2) has a

factor besides (λ− 1)(μ− 1). In either case, the augmentation variety for K

is distinct from the variety for the unknot, which is {λ= 1} ∪ {μ= 1} (see

Example 5.8). �

Note that the statement of unknot detection in Corollary 5.10 differs

from, and is slightly stronger than, the statement from Corollary 4.10, be-

cause of the issue of commutativity. However, the proof of Corollary 4.10

uses only the Loop Theorem, rather than the deep Kronheimer–Mrowka re-

sult that leads to Corollary 5.10.

To expand on Theorem 5.9, it is sometimes, but not always, the case that

AugK
(

λ,μ2
)

=
(

μ2 − 1
)

AK(λ,μ).

In general, the left hand side can contain factors that do not appear in the

right hand side. For example,

AT (3,4)(λ,μ) = (λ− 1)
(

λμ12 + 1
)(

λμ12 − 1
)

AugT (3,4)(λ,μ) = (λ− 1)(μ− 1)
(

λμ6 + 1
)(

λμ6 − 1
)(

λμ8 − 1
)

,

and the last factor in AugT (3,4) has no corresponding factor in AT (3,4).

An explanation for (at least some of the) extra factors in the augmenta-

tion polynomial is given by the following result, which shows that represen-

tations of the knot group besides SU2 representations can contribute to the

augmentation polynomial.
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Theorem 5.11. Suppose that ρ : π1(S
3 \K)→GLmC is a representation

of the knot group of K for some m≥ 2, such that ρ sends the meridian and

longitude to the diagonal matrices

ρ(m) = diag(μ0,1,1, . . . ,1)

ρ(l) = diag(λ0,∗,∗, . . . ,∗)

where the asterisks indicate arbitrary complex numbers. Then there is an

augmentation of the knot DGA of K sending (λ,μ,U) to (λ0, μ0,1).

This result, which has not previously appeared in the literature, is proven

in the following exercise, and also implies Theorem 5.9.

Exercise 5.12. Here we give a proof of Theorems 5.9 and 5.11.

1. Suppose ρ : π1(S
3 \K)→GLmC is a representation as in Theorem 5.11.

Define a C-valued map ε by

• ε(μ) = μ0;

• ε(λ) = λ0;

• ε([γ]) = (1−μ0)(ρ(γ))11, where M11 is the (1,1) entry of a matrix

M , for all γ ∈ π1(S3 \K).

Show that ε extends to an augmentation of the cord algebra ofK, where

we use the description of the cord algebra from Theorem 4.8. Deduce

Theorem 5.11.

2. If ρ is an SU2 representation of π1(S
3 \K) with ρ(m) = (

μ 0
0 μ−1 ) and

ρ(l) = ( λ 0
0 λ−1 ), then show that

ρ̃(γ) = μlk(K,γ)ρ(γ)

for γ ∈ π1(S3 \K) defines a GL2(C) representation satisfying the con-

dition of Theorem 5.11 with μ0 = μ2 and λ0 = λ. (Here lk(K,γ) is the

linking number of K with γ, i.e., the image of γ in H1(S
3 \K) ∼= Z.)

Deduce Theorem 5.9.

3. For K = T (3,4) and λ0 = μ−8
0 with arbitrary μ0 ∈ C

∗, find a GL3(C)

representation of π1(S
3 \K) ∼= 〈x, y |x3 = y4〉 satisfying the condition

of Theorem 5.11. (Note that in this presentation, m = xy−1 and l =

x3m−12.) This shows that λμ8 − 1 is a factor of AugT (3,4)(λ,μ); as

discussed above, this factor does not appear in the A-polynomial of

T (3,4).
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We now turn to some recent developments linking the augmentation poly-

nomial to physics. Our discussion is very sketchy and imprecise; see [4, 5] for

more details. Recently the (three-variable) augmentation polynomial has ap-

peared in various string theory papers [4, 20], in the context of studying

topological strings for SUN Chern–Simons theory on S3. A very sketchy de-

scription of the idea, whose origins in the physics literature include [23, 36],

is as follows.

Start with a knot K ⊂ S3, with conormal bundle LK ⊂ T ∗S3. (Note

that this differs slightly from our usual setting of K ⊂ R
3, though not in a

substantial way, either topologically or contact-geometrically.) Collapse the

zero section of T ∗S3 to a point, resulting in a conifold singularity; we can

then resolve the singularity to a CP
1 to obtain the “resolved conifold” given

as the total space of the bundle

O(−1)⊕O(−1)→CP
1.

(In physics language, this conifold transition is motivated by placing N

branes on the zero section of T ∗S3 and taking the N → ∞ limit.) One

would like to follow LK through this conifold transition to obtain a spe-

cial Lagrangian L̃K ⊂O(−1)⊕O(−1). In [4], Aganagic and Vafa propose a

generalized SYZ conjecture by which L̃K produces a mirror Calabi–Yau of

O(−1)⊕O(−1) given by a variety of the form

uv =AK

(

ex, ep,Q
)

where (u, v,x, p)⊂C
4, Q is a parameter measuring the complexified Kähler

class of CP1, and AK is a three-variable polynomial that Aganagic and Vafa

[4] refers to as the “Q-deformed A-polynomial”.6

Surprisingly, we can make the following conjecture, for which there is

strong circumstantial evidence [5]:

Conjecture 5.13 ([4, 5]). The three-variable augmentation polynomial and

the Q-deformed A-polynomial agree for all K:

AK

(

ex, ep,Q
)

=AugK
(

λ= ex, μ= ep,U =Q
)

.

Although Conjecture 5.13 has yet to be rigorously proven, it would have

significant implications for the augmentation polynomial. By physical ar-

6In a related vein, Fuji, Gukov, and Sulkowski [20] have proposed a four-variable “super-
A-polynomial” that specializes to the Q-deformed A-polynomial.
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guments (see in particular [24] and [4]), AK satisfies a number of inter-

esting properties. In particular, AK encodes a large amount of information

about the knot K, possibly including the HOMFLY-PT polynomial as well as

Khovanov–Rozansky HOMFLY-PT homology [25] and other knot homologies

(or some portion thereof). The knot homologies appear in studying Nekrasov

deformation of topological strings and refined Chern–Simons theory [24].

Thus, assuming Conjecture 5.13, one can make purely mathematical pre-

dictions about the augmentation polynomial. One such prediction begins

with the observation (whose proof we omit here) that for any knot K,

AugK(λ= 0, μ= U,U) = 0

for all U . It appears that the first-order behavior of the augmentation variety

near the curve {(0,U,U)} ⊂ (C∗)3 determines a certain specialization of the

HOMFLY-PT polynomial:

Conjecture 5.14. Let K be any knot in S3. Let f(U) be the polynomial

such that near (λ,μ,U) = (0,U,U), the zeroes of the augmentation polynomial

AugK satisfy

μ= U + f(U)λ+O
(

λ2
)

(f(U) can be explicitly written in terms of the λ1 and λ0 coefficients of

AugK). Then

f(U)

U − 1
= PK

(

U−1/2,1
)

,

where PK(a, q) is the HOMFLY-PT polynomial of K (sometimes written as

PK(a, z = q− q−1)).

Conjecture 5.14 has been checked for all knots where the augmentation

polynomial is currently known, including many where the Q-deformed A-

polynomial has not been computed.

Exercise 5.15. Verify Conjecture 5.14 for the unknot and the right-handed

and left-handed trefoils, using the augmentation polynomials computed in

Exercise 5.5. Note that the HOMFLY-PT polynomials for the unknot and

the RH trefoil are 1 and −a−4 + a−2q−2 + a−2q2, respectively.

In a different direction, the physics discussion of AK in [4] also predicts

that the augmentation polynomial is determined by the recurrence relation

for the colored HOMFLY-PT polynomials:
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Conjecture 5.16. Let {PK;n(a, q)} denote the colored HOMFLY-PT poly-

nomials of K, colored by the n-th symmetric power of the fundamental rep-

resentation. Define operations L, M by L(PK;n(a, q)) = PK;n+1(a, q) and

M(PK;n(a, q)) = qnPK;n(a, q). These polynomials satisfy a minimal recur-

rence relation of the form

ÂK(a, q,M,L)PK;n(a, q) = 0,

where ÂK is a polynomial in noncommuting variables L, M and commut-

ing parameters a, q; see [22]. Then sending q→ 1 and applying an appropri-

ate change of variables sends ÂK(a, q,M,L) to the augmentation polynomial

AugK(λ,μ,U).

The precise change of variables depends on the conventions used for

PK;n(a, q). In the conventions of [20] (where their x, y are our M,L), a more

exact statement is that AugK(λ,μ,U) and

ÂK

(

a= U,q = 1,M = μ−1,L=
μ− 1

μ−U λ
)

agree up to trivial factors.

Conjecture 5.16 is a direct analogue of the AJ conjecture [21] (quantum

volume conjecture, in the physics literature) relating colored Jones polynomi-

als to the A-polynomial, with colored HOMFLY-PT replacing colored Jones,

and the augmentation polynomial replacing the A-polynomial. See also [20]

for an extended discussion of this topic.

6. Transverse Homology

In this section, we discuss a concrete application of knot contact homology

to contact topology, and in particular to transverse knots. Here one obtains

additional filtrations on the knot DGA that produce effective invariants of

transverse knots. So far our construction of knot contact homology begins

with a smooth knot in R
3; we now explore what happens if the knot is

assumed to be transverse to a contact structure on R
3 (note that this is

independent of the canonical contact structure on ST ∗
R
3!).

Definition 6.1. Let ξ = ker(α= dz + r2dθ) be the standard contact struc-

ture on R
3. An oriented knot T ⊂R

3 is transverse if α> 0 along T .
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One usually studies transverse knots up to transverse isotopy : isotopy

through transverse knots. There is a standard transverse unknot in R
3 given

by the unit circle in the xy plane. By work of Bennequin [6], any braid pro-

duces a transverse knot by gluing the closure of the braid into a neighborhood

of the standard unknot. Conversely, all transverse knots are obtained in this

way, up to transverse isotopy: the map from braids to transverse knots is

surjective. The following theorem precisely characterizes failure of injectiv-

ity.

Theorem 6.2 (Transverse Markov Theorem [37, 42]). Two braids produce

transverse knots that are transversely isotopic if and only if they are related

by:

• conjugation in the braid groups

• positive Markov stabilization and destabilization: (B ∈Bn)←→ (Bσn ∈
Bn+1).

Transverse knots have two “classical” invariants of transverse knots:

• underlying topological knot type

• self-linking number (for a braid, sl=w− n).

It is of considerable interest to find other, “effective” transverse invariants,

which can distinguish between transverse knots with the same classical invari-

ants. One such invariant is the transverse invariant in knot Floer homology

[28, 38]. This (more precisely, one version of it) associates, to a transverse

knot T of topological type K, an element θ̂(T ) ∈ ĤFK(m(K)). The HFK

invariant has been shown to be effective at distinguishing transverse knots;

see e.g. [35].

The purpose of this section is to discuss how one can refine knot contact

homology to produce another effective transverse invariant. Geometrically,

the idea is as follows (see [16] for details). Given a transverse knot T ⊂
(R3, ξ), one constructs the conormal bundle ΛT ⊂ ST ∗R3 as usual. Now the

cooriented contact plane field ξ on R
3 also has a conormal lift ξ̃ ⊂ ST ∗

R
3:

concretely, this is the section of ST ∗
R
3 given by α/|α| where α is the contact

form. Since T is transverse to ξ, ΛT ∩ ξ̃ = ∅.

One can choose an almost complex structure on the symplectization R×
ST ∗

R
3 (and change the metric on R

3 that determines ST ∗
R
3) so that R× ξ̃

is holomorphic. Given a holomorphic disk with boundary on R× ΛT as in
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the LCH of ΛT , one can then count intersections with R× ξ̃, and all of these

intersections are positive. Thus we can filter the LCH differential of ΛT :

∂(ai) =
∑

dimM(ai;aj1 ,...,ajk
)/R=0

∑

Δ∈M/R

(sgn)U#(Δ∩(R×ξ̃))e[∂Δ]aj1 · · ·ajk .

Here [∂Δ] is the homology class of ∂Δ in H1(ΛT ) and #(Δ ∩ (R × ξ̃)) is

always nonnegative. This gives a filtered version for the knot DGA for T ,

which is now a DGA over R0[U ] (recall that R0 = Z[λ±1, μ±1]).

Definition 6.3. The transverse DGA (A−, ∂−) associated to a transverse

knot T ⊂R
3 is the resulting DGA over R0[U ].

The minus signs in the notation (A−, ∂−) are by analogy with Heegaard

Floer homology.

When the transverse knot T is the closure of a braid B, there is a straight-

forward combinatorial description for the transverse DGA:

Definition 6.4. Let B be a braid. The combinatorial transverse DGA

for B is the DGA over R0[U ] with the same generators and differen-

tial as in Definition 3.11, but with Λ = diag(λμw,1, . . . ,1) rather than

diag(λμwU−(w−n+1)/2,1, . . . ,1).

With this new definition of Λ, the differential in Definition 3.11 contains

only nonnegative powers of U , and we indeed obtain a DGA over R0[U ]

(versus R0[U
±1] in Definition 3.11).

Theorem 6.5 ([16]). The transverse DGA and the combinatorial transverse

DGA agree.

We now have the following invariance result.

Theorem 6.6 ([16, 34]). Given a braid B, the DGA (A−, ∂−) over R0[U ],

up to stable tame isomorphism, is an invariant of the transverse knot corre-

sponding to B.

Theorem 6.6 follows from the general theory of Legendrian contact ho-

mology (and a few details that we omit here). Alternatively, one can prove

directly that the combinatorial transverse DGA is a transverse invariant by
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checking invariance under braid conjugation and positive braid stabilization,

and invoking the Transverse Markov Theorem; this approach is carried out

in [34]. In any case, the homology of (A−, ∂−) is also a transverse invariant

and is called transverse homology.

Remark 6.7. In fact, a transverse knot gives two filtrations on the knot

DGA, given by U and another parameter V ; what we have presented is the

specialization V = 1. One can extend this to a DGA over R0[U,V ] that, like

(A−, ∂−), has a combinatorial description. The generators of the DGA are

the usual ones from Definition 3.11, while the differential is given by:

∂(A) = 0

∂(B) =A−Λ · φB(A) ·Λ−1

∂(C) = Â−Λ ·ΦL
B · Ǎ

∂(D) = Ǎ− Â ·ΦR
B ·Λ−1

∂(E) = B̂−C−Λ ·ΦL
B ·D

∂(F) = B̌−D−C ·ΦR
B ·Λ−1.

Here Λ= diag(λμw,1, . . . ,1); A, Â,B, B̂,C,D,E,F are as in Definition 3.11;

and Ǎ, B̌ are defined by:

(Ǎ)ij =

⎧

⎪⎨

⎪⎩

aij i < j

−μV aij i > j

1− μV i= j

(B̌)ij =

⎧

⎪⎨

⎪⎩

bij i < j

−μV bij i > j

0 i= j.

Geometrically, the powers of V count intersections with the “negative” lift

of ξ to ST ∗
R
3, given by −α/|α|. The full DGA over R0[U,V ] has some nice

formal properties, such as its behavior under transverse stabilization, but for

known applications it suffices to set V = 1 and thus ignore V .

We now return to the transverse DGA (A−, ∂−) over R0[U ]. In a manner

familiar from Heegaard Floer theory, one can obtain several other flavors of

transverse homology from (A−, ∂−). Two particularly interesting ones are:

• The “hat version”: (Â, ∂̂), a DGA over R0 = Z[λ±1, μ±1], by setting

U = 0. This is a transverse invariant.

• The “infinity version”: (A, ∂), the usual knot DGA over R = R0[U
±1],

by tensoring (A−, ∂−) with R0[U
±1] and replacing λ by λU−(w−n+1)/2.

This is an invariant of the underlying topological knot, as usual.
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Fig. 4. Two braids B1,B2 whose closure is the knot m(76). To see that they produce the
same knot, note that their closures are related by a negative flype (the shaded regions)

Remark 6.8. Independent of the fact that the infinity version is the usual

knot DGA, we can see geometrically that the infinity version is a topological

knot invariant, as follows. If we disregard positivity of intersection, then

powers of U in the differential ∂ merely encode homological data about the

holomorphic disk Δ; a bit of thought shows that #(Δ∩ (R× ξ̃)) is equal to
the class of Δ in H2(S

2) ∼= Z. Thus this indeed reduces to the usual LCH

DGA of ΛK .

We now have the following result.

Theorem 6.9 ([16, 34]). The hat version of the transverse DGA, (Â, ∂̂), is

an effective invariant of transverse knots.

As one example, consider the transverse knots given by the closures of the

braids B1,B2 given in Figure 4, both of which are of topological type m(76)

and have self-linking number −1. For each braid, one can count the number

of augmentations of (Â, ∂̂) to Z3; this augmentation number is a transverse

invariant. A computer calculation shows that the augmentation number is 0

for B1 and 5 for B2. It follows that the transverse knots corresponding to B1

and B2 are not transversely isotopic.

One can heuristically gauge the relative effectiveness of various transverse

invariants by using the Legendrian knot atlas [8], which provides a conjec-

turally complete list of all Legendrian knots representing topological knots

of arc index ≤ 9. The atlas proposes 13 knots with arc index ≤ 9 that have
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at least two transverse representatives with the same self-linking number. Of

these 13:

• 6 (m(72), m(10132), m(10140), m(10145), m(10161), 12n591) have trans-

verse representatives that can be distinguished by both the HFK invari-

ant and by transverse homology;

• 4 (m(76), 944, 948, 10136) can be distinguished by transverse homology

but not the HFK invariant;

• 3 (m(945), 10128, 10160) cannot yet be distinguished by either HFK or

transverse homology.

Of these last 3, preliminary joint work with Dylan Thurston suggests that

m(945) and 10128 can be distinguished by naturality in conjunction with the

HFK invariant, but the third cannot.7 It is conceivable that some or all of

these last 3 can be distinguished by transverse homology, but they are related

by an operation known as “transverse mirroring” that is relatively difficult

to detect by transverse homology.

It appears that the two known effective transverse invariants, the trans-

verse HFK invariant and transverse homology, are functionally independent,

but it would be very interesting to know if there is some connection between

them.
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Appendix: Conventions and the Fully Noncommutative

DGA

In the literature on knot contact homology, a number of mutually inconsistent

conventions are used. The conventions that we have adopted in this article

are unfortunately different again from the existing ones, but we would like to

7The transverse representatives of m(76), 944, 948, 10136, and 10160 cannot be distinguished

by the transverse HFK invariant, with or without naturality, because ĤFK= 0 and HFK−

has rank 1 in the relevant bidegree.
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advocate these new conventions as combining the best qualities of previous

ones while avoiding some disadvantages that have become apparent in the

interim.

First we describe how to extend the definition of knot contact homol-

ogy from Section 3 in two directions: first, by allowing for multi-component

links, and second, by extending to the fully noncommutative DGA (see Re-

mark 2.2), in which homology classes do not commute with Reeb chords. The

result is a “stronger” formulation of (combinatorial) knot contact homology

than usually appears in the literature. After this, we will discuss how this

definition compares to previous conventions.

If K is a link given by the closure of a braid B ∈ Bn, we can define

a slightly more complicated version of the braid homomorphism φB from

Section 3 as follows. Let Ãn denote the tensor algebra over Z freely generated

by aij , 1≤ i �= j ≤ n, and by μ̃±1
i , 1≤ i≤ n. (Here the μ̃i’s do not commute

with the aij ’s, or indeed with each other, and the only nontrivial relations

are μ̃i · μ̃−1
i = μ̃−1

i · μ̃i = 1.) For 1≤ k ≤ n− 1, define φσk
: Ãn→Ãn by:

φσk
:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij �→ aij , i, j �= k, k+ 1

ak+1,i �→ aki, i �= k, k+ 1

ai,k+1 �→ aik, i �= k, k+ 1

ak,k+1 �→ −ak+1,k

ak+1,k �→ −μ̃kak,k+1μ̃
−1
k+1

aki �→ ak+1,i − ak+1,kaki, i �= k, k+ 1

aik �→ ai,k+1 − aikak,k+1, i < k

aik �→ ai,k+1 − aikμ̃kak,k+1μ̃
−1
k+1, i > k+ 1

μ̃±1
i �→ μ̃±1

i , i �= k, k+ 1

μ̃±1
k �→ μ̃±1

k+1

μ̃±1
k+1 �→ μ̃±1

k .

This extends to a group homomorphism φ :Bn→Aut Ãn and thus defines a

map φB ∈Aut Ãn.

Suppose that K has r components, and number the components of K

1, . . . , r. For i = 1, . . . , n, define α(i) ∈ {1, . . . , r} to be the number of the

component containing strand i of the braid B whose closure is K. If we now

define An to be the tensor algebra over Z freely generated by the aij ’s and

by variables μ±1
1 , . . . , μ±1

r , then it is easy to check that φB descends to an

algebra automorphism of An by setting μ̃i = μα(i) for all 1≤ i≤ n. We can
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define ΦL
B,Φ

R
B ∈Matn×n(An) as in Definition 3.9, with the important caveat

that the extra strand ∗ is treated as strand 0 rather than strand n+ 1; for

multi-component links, this makes a difference because of the form of the

definition of φσk
above.

Define A to be the tensor algebra over Z[U±1] freely generated by

μ±1
1 , . . . , μ±1

r along with the generators aij , bij , cij , dij , eij , fij as in Defini-

tion 3.11. Assemble n× n matrices A, Â,B, B̂,C,D,E,F, where C,D,E,F

are as in Definition 3.11, while

Aij =

⎧

⎪⎨

⎪⎩

aij i < j

−aijμα(j) i > j

1− μα(i) i= j

Bij =

⎧

⎪⎨

⎪⎩

bij i < j

−bijμα(j) i > j

0 i= j

(Â)ij =

⎧

⎪⎨

⎪⎩

Uaij i < j

−aijμα(j) i > j

U − μα(i) i= j

(B̂)ij =

⎧

⎪⎨

⎪⎩

Ubij i < j

−bijμα(j) i > j

0 i= j.

Also define a matrix Λ as follows: choose one strand of B belonging to each

component of the closure K, and call the resulting r strands leading ; then

define

(Λ)ij =

⎧

⎪⎪⎨

⎪⎪⎩

λα(i)μ
w(α(i))
α(i) U−(w(α(i))−n(α(i))+1)/2 i= j and strand i leading

1 i= j and strand i not leading

0 i �= j,

where n(α) is the number of strands belonging to component α and w(α) is

the writhe of component α viewed as an n(α)-strand braid (with the other

components deleted).

With this notation, one can now define the differential ∂ on A exactly as

in Definition 3.11. The resulting DGA has the same properties as in Theo-

rem 3.15: ∂2 = 0 and (A, ∂) is an isotopy invariant of the link K viewed as an

oriented link with numbered components, up to stable tame isomorphisms

that act as the identity on U and on each of λ1, . . . , λr, μ1, . . . , μr.

Note that the definition of the DGA given above is for the topological

knot/link invariant as discussed in Sections 2 and 3. This corresponds to

“infinity transverse homology” from [34] (also mentioned in [16]). There is

an analogous definition of transverse homology as in Section 6 or [16, 34] but

we omit its definition here.
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We now compare our definition to the two previous conventions for the

knot DGA: the convention from [15, 16] and the convention from [33, 34].

Note that all versions of the DGA from these references first quotient so

that homology classes λ1, . . . , λr, μ1, . . . , μr commute with all Reeb chords.

Also, the versions from [16] and [34] involve an additional variable V , but

we set V = 1 for this discussion; as explained in [34, §4], this does not lose

any information. Finally, the conventions from [15] and [33] agree with the

conventions from [16] and [34], respectively, after setting U = V = 1.

We claim that we can then obtain the knot DGAs in the conventions of

[16] and [34] from the knot DGA presented in this article, up to isomorphism,

as follows:

• for [16], replace λα �→ −λα and μα �→ −μα for each component α;

• for [34], which only considers the single-component case, keep λ as is,

and replace μ �→ −μ−1.

We check the claim for the convention of [16]; the claim for [34] then

follows from [34, §3.4].8 Note that negating each λα and μα causes our defini-

tions to line up precisely with the definitions from [16], except for Λ (denoted

in [16] by -λ), which differs by the presence or absence of a power of U , along

with some signs. But the power of U is merely a notational/framing issue

(cf. [34]), while the sign discrepancy disappears because it can be checked

that the products of the diagonal entries of Λ and −λ corresponding to

any particular link component are exactly equal including sign, whence the

DGAs given by the two conventions are isomorphic by the argument of [34,

Proposition 3.1].

Remark A.1. Except for the μ �→ μ−1 issue, all differences between con-

ventions consist just of negating some subset of {λ,μ}. This is explained by

the fact that the signs in the differential in Legendrian contact homology

depend on a choice of spin structure on the Legendrian submanifold Λ; see

[13] for full discussion. In our setting, if K is a knot, ΛK
∼= T 2 has four spin

structures, and changing from one spin structure to another sends λ �→ ±λ
and μ �→ ±μ. Thus the different choices of signs arise from different choices

of spin structure on ΛK .

8Note that [34], building on work from [33], uses an unusual convention for braids, so that a
positive generator σk of the braid group is given topologically as a negative crossing in the
usual knot theory sense. This has the effect of mirroring all topological knots and explains
the μ−1 difference in conventions.



A Topological Introduction to Knot Contact Homology 527

A summary of the relations between conventions in different articles is

as follows:

This article
λ�→−λ, μ �→−μ

μ �→−μ−1

[16]
U �→1

[15]

[34]
U �→1

[33]
λ�→1, μ �→1

[30, 31].

We close by noting that our current choice of conventions allows for

some cleaner results than the conventions from [16] or [34]. In particular,

our signs are more natural than the signs from either [16] or [34] when we

consider the relation to representations of the knot group as in Section 5.

For instance, our two-variable augmentation polynomials are divisible by

(λ − 1)(μ − 1) as opposed to (λ + 1)(μ + 1) in [16] or (λ − 1)(μ + 1) in

[33, 34], and AK(λ,μ) divides AugK(λ,μ2) in our convention rather than

AugK(−λ,−μ2) or AugK(λ,−μ2) in the other two.

There is another technical reason for preferring our signs or those from

[16] to the ones from [34], or more precisely to the extrapolation of [34] to

the link case. In either of the first two cases but not the third, we have the

following statement, which we leave as an exercise.

Proposition A.2. Let K be a link given by the closure of braid B, and let

K ′ ⊂K be a sublink given by the closure of a subbraid B′ ⊂ B obtained by

erasing some strands of B. Then the DGA for K ′ is a quotient of the DGA

for K, given by setting all Reeb chords aij , bij , etc. to 0 unless strands i and

j both belong to B′.

This result is used in [5] and is a special case of a general result relating

the Legendrian contact homology of a multi-component Legendrian to the

LCH of some subset of components.
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[38] P. Ozsváth, Z. Szabó, D. Thurston, Legendrian knots, transverse knots and combina-
torial Floer homology. Geom. Topol. 12(2), 941–980 (2008). arXiv:math/0611841

[39] T. Perutz, The symplectic topology of cotangent bundles. Eur. Math. Soc. Newsl.
(75), 30–33 (2010)

[40] D.A. Salamon, J. Weber, Floer homology and the heat flow. Geom. Funct. Anal.
16(5), 1050–1138 (2006). arXiv:math/0304383

http://arxiv.org/abs/arXiv:1211.6388
http://arxiv.org/abs/arXiv:hep-th/9811131
http://arxiv.org/abs/arXiv:hep-th/0412243
http://arxiv.org/abs/arXiv:math/0505056
http://arxiv.org/abs/arXiv:1209.3045
http://arxiv.org/abs/arXiv:1209.3045
http://arxiv.org/abs/arXiv:math/0312322
http://arxiv.org/abs/arXiv:0802.0628
http://arxiv.org/abs/arXiv:math/0302099
http://arxiv.org/abs/arXiv:math/0303343
http://arxiv.org/abs/arXiv:math/0412330
http://arxiv.org/abs/arXiv:math/0407071
http://arxiv.org/abs/arXiv:math/0407071
http://arxiv.org/abs/arXiv:1010.0451
http://arxiv.org/abs/arXiv:math/0703446
http://arxiv.org/abs/arXiv:hep-th/9912123
http://arxiv.org/abs/arXiv:math/0112207
http://arxiv.org/abs/arXiv:math/0611841
http://arxiv.org/abs/arXiv:math/0304383


530 L. Ng

[41] C. Viterbo, Functors and computations in Floer homology with applications.
II. Preprint (1996). Available at http://www.math.polytechnique.fr/cmat/viterbo/
Prepublications.html

[42] N.C. Wrinkle, The Markov theorem for transverse knots. arXiv:math/0202055

L. Ng (B)

Mathematics Department

Duke University

Durham, NC 27708

USA

e-mail: ng@math.duke.edu

url: http://www.math.duke.edu/�ng/

http://www.math.polytechnique.fr/cmat/viterbo/Prepublications.html
http://www.math.polytechnique.fr/cmat/viterbo/Prepublications.html
http://arxiv.org/abs/arXiv:math/0202055
mailto:ng@math.duke.edu
http://www.math.duke.edu/~ng/

	Contact and Symplectic Topology
	Contents
	Preface
	Proceedings of the Conferences Nantes, 2011 and Budapest, 2012


	Vladimir Igorevich Arnold and the Invention of Symplectic Topology
	1 First Step: A Deﬁnition (1986)
	2 October 27th 1965
	3 A Theorem of Geometry, 1912
	4 Back to Arnold and His Golden Sixties
	5 Problems of Present Day Mathematics, 1974
	6 Mathematical Methods in Classical Mechanics, 1974 (Our Golden Seventies)
	6.1 A Few Personal Remarks

	7 The Symplectic Community
	7.1 Symplectic Geometry/Topology

	8 Lagrangian Submanifolds, Statements of Arnold's Conjecture
	8.1 Sections of a Cotangent Bundle and Fixed Points
	8.2 Graphs of Symplectic Diffeomorphisms

	9 Generating Functions
	9.1 Caustics and Wave Fronts
	9.2 Crossbows…
	9.3 … and Tanks

	10 Generating Functions (Continuation)
	11 Twenty Years After… First Steps Again
	12 Epilogue (2012)
	References

	Topological Methods in 3-Dimensional Contact Geometry
	1 Introduction
	2 Local Theory
	2.1 Contact Structures as Rotating Plane Fields
	2.2 Examples
	2.3 Isotopies

	3 The Tight vs Overtwisted Dichotomy
	4 Convex Surfaces
	4.1 Characteristic Foliations of Surfaces
	4.2 Neighborhoods of Surfaces
	4.3 Reconstruction Lemmas
	4.4 Convex Surfaces
	4.5 Obstructions to Convexity
	4.6 Genericity of Convex Surfaces
	4.7 Giroux Criterion and Eliashberg-Bennequin Inequalities

	5 Bifurcations and First Classiﬁcation Results
	5.1 The Elimination Lemma
	5.2 Thickened Spheres and Eliashberg Uniqueness
	5.3 Bifurcation Lemmas
	5.4 Bennequin's Theorem

	References

	A Beginner's Introduction to Fukaya Categories
	1 Lagrangian Floer (Co)homology
	1.1 Motivation
	1.2 The Floer Differential
	1.3 Maslov Index and Grading
	1.4 Transversality and Compactness
	1.5 Sketch of Proof of Theorem 1.5
	1.6 The Floer Cohomology HF(L,L)

	2 Product Operations
	2.1 The Product
	2.2 Higher Operations
	2.3 The Fukaya Category

	3 Exact Triangles and Generators
	3.1 Exact Triangles and Mapping Cones
	3.2 Twisted Complexes
	3.3 Exact Triangles in the Fukaya Category
	3.3.1 Dehn Twists
	3.3.2 Lagrangian Connected Sums

	3.4 Generation and Yoneda Embedding
	3.4.1 Generators and Split-Generators
	3.4.2 Yoneda Embedding


	4 The Wrapped Fukaya Category, Examples and Applications
	4.1 The Wrapped Fukaya Category
	4.2 An Example
	4.3 Cotangent Bundles
	4.4 Homological Mirror Symmetry
	4.5 An Application to Heegaard-Floer Homology
	4.6 A Closing Remark

	References

	Geometric Decompositions of Almost Contact Manifolds
	1 Introduction
	2 Approximately Holomorphic Techniques
	2.1 The Quasi-contact Category
	2.2 The Symplectization of a Quasi-contact Structure

	3 Open Books in Contact Geometry
	4 Pencils in Quasi-contact and Contact Geometry
	4.1 Deﬁnitions
	4.2 Existence of Quasi-contact Pencils

	References

	Higher Dimensional Contact Topology via Holomorphic Disks
	1 Introduction
	1.1 Outline of the Notes
	1.2 Notation

	2 Lobs & bLobs: Legendrian Open Books and Bordered Legendrian Open Books
	2.1 Legendrian Foliations
	2.1.1 General Facts about Legendrian Foliations
	2.1.2 Singular Codimension 1 Foliations
	2.1.3 Local Behavior of Legendrian Foliations

	2.2 Singularities of the Legendrian Foliation
	2.2.1 Elliptic Singularities
	2.2.2 Singularities of Codimension 1

	2.3 Examples of Legendrian Foliations
	2.4 Legendrian Open Books
	2.5 Examples of bLobs

	3 Behavior of J-Holomorphic Disks Imposed by Convexity
	3.1 Almost Complex Structures and Maximally Foliated Submanifolds
	3.1.1 Preliminaries: J-Convexity
	The Maximum Principle
	Plurisubharmonic Functions
	Contact Structures as Convex Boundaries
	Legendrian Foliations in Convex Boundaries

	3.1.2 Preliminaries: omega-Convexity

	3.2 Holomorphic Curves and Legendrian Foliations
	3.2.1 Existence of J-Convex Functions Close to Totally Real Submanifolds
	3.2.2 J-Holomorphic Curves Close to Elliptic Singularities of a Legendrian Foliation
	Dimension 4
	The Higher Dimensional Situation

	3.2.3 J-Holomorphic Curves Close to Codimension 1 Singularities


	4 Moduli Spaces of Disks and Filling Obstructions
	4.1 The Moduli Space of Holomorphic Disks
	4.1.1 The Expected Dimension of M(D2, N;J )
	4.1.2 Transversality of the Cauchy-Riemann Problem
	4.1.3 The Bishop Family

	4.2 The Moduli Space of Holomorphic Disks with a Marked Point
	4.3 Compactness
	4.4 Proof of the Non-ﬁllability Theorem A
	4.5 Proof of Theorem B

	References

	Contact Invariants in Floer Homology
	1 Heegaard Floer Homology-A Very Quick Introduction
	2 Open Book Decompositions, Contact Structures and Convex Surfaces
	3 From Open Books to Contact Invariants
	4 Sutured Manifolds and Partial Open Books
	5 Gluing Theorem for Sutured Manifolds
	6 A TQFT Aspect of c(xi) and Fillability Obstructions
	References

	Notes on Bordered Floer Homology
	1 Introduction
	2 Combinatorial Representations of Surfaces and 3-Manifolds with Boundary. Formal Structure of Bordered Floer Homology. The Algebra Associated to a Surface
	2.1 Arc Diagrams and Surfaces
	2.2 Bordered Heegaard Diagrams for 3-Manifolds
	2.3 The Structure of Bordered Floer Homology
	2.3.1 The Connected Boundary Case
	2.3.2 Invariants of Arced Cobordisms
	2.3.3 Pairing Theorems without A Modules

	2.4 The Algebra Associated to a Pointed Matched Circle
	2.4.1 A Graphical Representation of Permutations
	2.4.2 The Algebra A(n,k)
	2.4.3 The Algebra Associated to a Pointed Matched Circle

	2.5 Exercises

	3 Modules Associated to Bordered 3-Manifolds
	3.1 Brief Review of the Cylindrical Setting for Heegaard Floer Homology
	3.1.1 A Quick Review of the Original Formulation of Heegaard Floer Homology
	3.1.2 The Cylindrical Reformulation

	3.2 Holomorphic Curves and Reeb Chords
	3.3 The Deﬁnition of CFD
	3.3.1 Reeb Chords and Algebra Elements
	3.3.2 The Deﬁnition of CFD
	3.3.3 Finiteness Conditions

	3.4 The Surgery Exact Triangle
	3.5 The Deﬁnition of CFDD
	3.6 Exercises

	4 Analysis Underlying the Invariants and the Pairing Theorem
	4.1 Broken Flows in the Cylindrical Setting
	4.2 The Codimension-One Boundary: Statement
	4.3 d-squared equals zero on CFD
	4.4 Deforming the Diagonal, CFA and the Pairing Theorem
	4.5 Exercises

	5 Computing with Bordered Floer Homology I: Knot Complements
	5.1 Review of Knot Floer Homology
	5.2 From CFK to CFD: Statement and Example
	5.3 Studying Satellites
	5.4 Exercises

	6 Computing with Bordered Floer Homology II: Factoring Mapping Classes
	6.1 Overview of the Algorithm
	6.1.1 Arc-Slides as Generators of the Mapping Class Groupoid

	6.2 The Invariant of a Particular Handlebody
	6.3 The DD Identity
	6.4 Underslides
	6.5 Exercises

	References

	Stein Structures: Existence and Flexibility
	1 The Topology of Stein Manifolds
	2 Constructions of J-Convex Functions
	3 Existence of Stein Structures
	4 Morse-Smale Theory for J-Convex Functions
	5 Flexibility of Stein Structures
	References

	Lecture Notes on Embedded Contact Homology
	1 Introduction
	1.1 Symplectic Embeddings in Four Dimensions
	1.2 Properties of ECH Capacities
	1.3 Overview of ECH
	1.4 Additional Structure on ECH
	1.5 Deﬁnition of ECH Capacities

	2 Origins of ECH
	2.1 Taubes's "SW=Gr" Theorem
	2.2 Holomorphic Curves in Symplectic Manifolds
	2.3 Deformations of Holomorphic Curves
	2.4 Special Properties in Four Dimensions
	2.5 Taubes's Gromov Invariant
	2.6 The Mapping Torus Example
	2.7 Two Remarks on the Generating Functions
	2.8 Three Dimensional Seiberg-Witten Theory
	2.9 Towards ECH

	3 The Deﬁnition of ECH
	3.1 Holomorphic Curves and Holomorphic Currents
	3.2 The Fredholm Index in Symplectizations
	3.3 The Relative Adjunction Formula
	3.4 The ECH Index
	3.5 The ECH Differential
	3.6 The Grading
	3.7 Example: The ECH of an Ellipsoid
	3.8 The U Map
	3.9 Partition Conditions

	4 More Examples of ECH
	4.1 The U Map on the ECH of an Ellipsoid
	4.2 The ECH of T3
	4.3 ECH Capacities of Convex Toric Domains

	5 Foundations of ECH
	5.1 Proof of the Writhe Bound and the Partition Conditions
	5.2 Topological Complexity of Holomorphic Curves
	5.3 Proof that  Is Well Deﬁned
	5.4 Proof that 2=0
	5.5 Cobordism Maps

	6 Comparison of ECH with SFT
	Appendix:  Answers and Hints to Selected Exercises
	References

	A Topological Introduction to Knot Contact Homology
	1 Introduction
	2 Legendrian Contact Homology
	3 Knot Contact Homology
	4 Cord Algebra
	5 Augmentation Polynomial
	6 Transverse Homology
	Appendix:  Conventions and the Fully Noncommutative DGA
	References


