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Preface

Thermoelectric materials have attracted much interest for decades because of the

application to electricity generation and cooling based on the famous Seebeck and

Peltier effects. Compared with traditional generators and refrigerators, thermoelec-

tric devices have several advantages, such as solid-state operation, zero radiation,

pollution-free performance, and long operating lifetime. However, interest from the

integrated circuit (IC) industry has lagged behind expectations since the potential of

these materials was first reported in the 1950s. One reason is that the figure of merit

for most thermoelectric materials and structures is quite low, and the other is that

the compatibility of the materials and processes with ICs is not satisfying.

About 20 years ago, the theoretical work of Lyndon Hicks and Mildred

Dresselhaus changed the situation. It was found that dimensionality had profound

implications for thermoelectric efficiency beyond initial expectations. In subse-

quent research, low-dimensional materials and structures were revealed to have a

much higher figure of merit than bulk materials because of size effects and quantum

confinement, which then stimulated research interest in nanoscale thermoelectric

materials and devices. To date, a variety of low-dimensional thermoelectric struc-

tures, such as superlattices, nanowires, nanotubes, and nanocomposites, have been

reported with improved performance.

This book explores the latest research results on the physics and materials

science, including low-dimensional characteristics, of thermoelectrics at the nano-

scale. Chapters 1–6 focus on the theoretical calculation of some nanoscale thermo-

electric materials. In Chap. 1, dimensionless figure of merit ZT, Seebeck coefficient,
electrical conductivity, and thermal conductivity are deduced for metals and semi-

conductors from the Boltzmann transport equation. Various nanoscale structures

embedded in bulk materials could enhance the thermoelectric energy conversion

efficiency, which is investigated in Chaps. 2 and 3. Chapter 2 focuses on the impact

of nanostructures on the electron transport in the host material, while Chap. 3

addresses the impact of particle shape and size on the composite thermal conduc-

tivity. Chapter 4 reviews some prominent techniques for fabricating the relevant

nanostructured materials systems. An overview of the concepts and techniques for

theoretical modeling of the charge carrier and phonon transport mechanisms in the
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interfacial regions is also presented. Chapter 5 reviews recent experimental and

theoretical advances in the study of thermal conductivity and thermoelectric prop-

erty of nanowires. Chapter 6 discusses how specific surface disorder structure can

enhance thermoelectric efficiency of nanowires.

Chapters 7–16 introduce various thermoelectric materials. Chapter 7 addresses

recent developments in Bi-based nanostructured thermoelectric materials, mainly

nanowires, nanotubes, and heterostructures. Bi88Sb12 alloy doped with Cerium,

Samarium, and Holmium is discussed in Chap. 8. The synthetic approaches used

to create skutterudite nanocomposites, and the effects of nanostructures on ther-

moelectric performance, are summarized in Chap. 9. Chapter 10 reports the high-

temperature thermoelectric properties of various skutterudites filled by various

group 13 elements, including Ga-filled CoSb3, TI-filled CoSb3, and In/TI double

filled CoSb3. Chapter 11 introduces several important oxide thermoelectric candi-

dates with specific focus on self-assembled nanocomposites of ZnO. The effects of

nanoscale inclusion in the Ca–Co–O system (Ca3Co4O9) and natural superlattices

in SrO/SrTiO3 are also discussed. Chapter 12 investigates the thermoelectric

properties of carbon nanotubes, graphene nanoribbons, and carbon nanowires

using nonequilibrium molecular dynamics simulations and nonequilibrium Green’s

function method. Graphene is subsequently discussed in Chap. 13. How to enhance

the thermoelectric properties in the 1D graphene-based nanostructures through the

geometry-decorated method is elucidated and some novel results are presented.

Chapter 14 describes the good potential of nanostructured silicon as a thermoelec-

tric material. A top-down process for the reliable fabrication of very complex and

large area arrays of silicon nanowires is shown and discussed. Chapter 15 investi-

gates the strain effect on the thermoelectric figure of merit of n-type Ge nanowire-Si
host nanocomposite materials. Finally, Chap. 16 reviews the most recent progresses

in Si1-xGex alloy nanowires with tunable Ge concentration, core-shell structures,

and multiple axial junctions.

The editors wish to thank all of the authors for their excellent chapters. We are

sure that this book will be a useful reference not only for scientists and engineers

exploring thermoelectrics at the nanoscale but also for graduate and postgraduate

students specializing in semiconductor physics and devices. We are also grateful to

Ms. Zhen Wang and Ms. Yangyang Qi for expert editorial assistance. Without their

warmhearted efforts from cold winter to hot summer, this book would not have

been completed so satisfactorily. We would also thank Springer staff for their

support. Finally, the editors are pleased to acknowledge the support of the National

Natural Science Foundation of China under Grant No. 61076077.

Beijing, China, People’s Republic Xiaodong Wang

Beijing, China, People’s Republic Zhiming M. Wang
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Chapter 1

Thermoelectric Effects: Semiclassical

and Quantum Approaches

from the Boltzmann Transport Equation

Andrés Cantarero and F. Xavier Àlvarez

Abstract The thermoelectric efficiency of a material depends on its electronic and

phononic properties. It is normally given in terms of the dimensionless figure of

merit Z T¼ σ S2T ∕ κ. The parameters involved in Z T are the electrical conductivity

σ, the Seebeck coefficient S, and the thermal conductivity κ. The thermal conduc-

tivity has two contributions, κ ¼ κe + κL, the electron thermal conductivity κe and
the lattice thermal conductivity κL. In this chapter all these parameters will be

deduced for metals and semiconductors, starting from the Boltzmann transport

equation (BTE). The electrical conductivity, the Seebeck coefficient, and the

electronic thermal conductivity will be obtained from the BTE for electrons.

Similarly, the lattice or phonon thermal conductivity will be given from the BTE

for phonons. The ab initio approaches to obtain both the electronic and phononic

transport via the BTE will also be analyzed. All the theoretical studies are based on

the relaxation time approximation. The expressions for the relaxation times for

electrons and phonons will be discussed. The results will be particularized to

nanostructures whenever is possible.

1.1 Introduction

Solid matter is composed basically by ions and electrons. Electrons move in a metal

or semiconductor through the laws of Quantum Mechanics, although for many

purposes they can be treated as classical particles. In a first approximation, electrons

move in a perfect lattice (Born–Oppenheimer approximation), within a periodic
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potential given by the crystal periodicity of the solid. Phonons are a consequence of

the ion movement and thus are related to the disorder or the lack of periodicity in

real lattices. They can also be treated as particles, actually called quasi-particles,

since we can assign a momentum or quasi-momentum �hq ¼ h=λph , λph being the

phonon wavelength. In a real lattice, electrons can interact with lattice imperfection

or boundaries, a phenomenon known as scattering. The main source of lattice

imperfections is temperature dependent, it is thus related to a thermodynamic

quantity, the temperature. At low temperature, the main source of electron scatter-

ing is the presence of impurities or the existence of boundaries, the last factor being

extremely important in nanometric size materials. The scattering of electrons by

impurities is elastic, i.e. there is momentum and energy conservation. At high

temperatures, electron–phonon interaction is the most important scattering process.

Scattering by acoustic phonons is elastic, while that by optical phonons is inelastic,

momentum is conserved but the electron after the scattering process absorbs (loses)

the phonon energy, i.e. the electron energy is not conserved in the scattering

process. In the analysis of electron–phonon scattering, phonons are necessarily

treated as quasi-particles. On the other hand, electrons are fermions and obey the

Fermi–Dirac statistics, the distribution function f0 being

f0 ¼ 1

eðεðkÞ�μÞ=kBT þ 1
; (1.1)

where ε(k) is the electron energy, μ the chemical potential (the Fermi energy at

0 K), kB the Boltzmann constant, and T the absolute temperature. The electronic

transport is governed by the changes in the distribution function. Phonon transport

also depends on Statistics Mechanics, since they can be treated as quasi-particles

obeying the Bose–Einstein statistics

N ¼ 1

e�hωðqÞ=kBT � 1
; (1.2)

where �hω(q) is the phonon energy. The variation of the phonon distribution function
giving rise to phonon transport is produced by a temperature difference and the

presence of scattering, no external forces can give rise to phonon transport. A real

phonon is not a normal mode of the lattice since it has a lifetime and amean free path

associated. Phonons interact with electrons, lattice imperfections, and other pho-

nons. There is an important difference between electron and phonon scattering.

In the case of electron scattering, a given electron with wave function jΨ n, k(r, t)⟩,
after the scattering process exchange momentum with, for instance, an impurity,

and the final electron state will be jΨ n0, k0(r, t)⟩. The electron is scattered at the point
r at the time t, and possibly it will change to a new band or subband (n ! n0) and
change the traveling direction (k ¼ k0, since the scattering is elastic). If the elec-

tronic transport is, to simplify, through a nanowire, the electrons entering in the

nanowire from the left will exit at the right end. In other words, the number of

electrons is a conserved quantity.

2 A. Cantarero and F.X. Àlvarez



The number of phonons in a transport experiment is not conserved. The phonon

population depends on the temperature and there are more phonons in the hot region

of a material than in the cold region. Thus, if there is a temperature gradient, there is

a phonon flux from the hot side to the cold side. During this transport, phonons are

scattered by impurities or other phonons. After a scattering process, a phonon

with wave number q1 and energy �hω1 is scattered, for instance, by an impurity

(wave number K), it is annihilated and a new phonon with wave number q2 and

energy ℏ ω2 is created. The energy is conserved in the scattering process, �hω1 ¼ �h
ω2, the total wave number is also conserved, q1 + K ¼ q2, and the number of

phonons. But in the case of phonon–phonon scattering, clearly the number of

phonons cannot be conserved.

In the analysis of material properties at equilibrium, most of the theoretical

approaches used nowadays to relate mechanical to thermodynamic magnitudes had

been developed in the first half of last century. When the systems apart from

equilibrium, the particles or quasi-particles behave differently depending on the

volume element where we look at some physical observable. If we are not so far

from equilibrium, the so-called local equilibrium hypothesis allows to generalize

the results obtained for equilibrium statistical mechanics, although additional terms

are needed depending on first or second derivatives in a similar mathematical

analog to a Taylor expansion.

However, the technological advances in the development of new materials and

nanostructures, and the accuracy in the measurement of physical observables will

put in evidence the fails in the theoretical models developed in the past. From the

thermodynamics point of view, many properties measured at the nanoscale apart

the system from local equilibrium since the imposed gradients are extremely large.

The locality should be revisited in order to completely understand the huge amount

of experimental data.

In this chapter we will analyze the main approaches, based on the Boltzmann

equation, to quantitatively describe transport phenomena related to thermoelectricity.

The electrical conductivity and the Seebeck coefficient are directly related to

the electronic transport. The electrons also carry energy or heat, contributing to the

thermal conductivity. Finally, the amount of heat transported by phonons is governed

by the lattice thermal conductivity. All these quantities will be analyzed here, on the

basis of the Boltzmann transport equation.

1.2 The Boltzmann Transport Equation for Electrons

The distribution function f(r, k, t) gives the probability of occupation of a state by

an electron located at rwith a wave number k at time t. Both r and k can be assumed

to be within a given interval Δr and Δk, respectively, in order to fulfill the

Heisenberg’s principle. The number of electrons occupying the volume element

d3k in r at t per unit volume of the crystal is [1]:

1 Thermoelectric Effects: Semiclassical and Quantum Approaches. . . 3



dnðrÞ ¼ 2

ð2πÞ3 f ðr; k; tÞd
3k; (1.3)

where the factor 2 assumes spin degeneracy. In equilibrium, the distribution

function can be written as:

f0ðr; kÞ ¼ 1

1þ e½εðkÞ�μðrÞ�=kBTðrÞ ; (1.4)

where the dependence on k is given by the electronic band structure of the solid (the
band index has been omitted for simplicity) and that on r via a possible gradient of
the temperature or carrier concentration (via the chemical potential). The distribu-

tion function can change in time due to the existence of internal or external forces.

The rate of variation of the distribution function can be written, using the chain

rule, as

df

dt
¼ rrf � dr

dt
þ 1

�h
rkf � dp

dt
þ @f

@t
¼ v � rrf þ 1

�h
rkf � Fa þ @f

@t
; (1.5)

Fa being the set of applied forces, which can be divided into external (F) and
internal forces (FD), that last due to the existence of impurities, defects, phonons,

etc. Since the total number of states is constant, df∕dt ¼ 0, the previous equation

can be written as:

v � rrf þ 1

�h
F � rkf þ 1

�h
FD � rkf ¼ � @f

@t
¼ � @f

@t

� �
drift

� @f

@t

� �
scatt

; (1.6)

divided into the time variation due to the presence of external fields (drift) and to

internal fields (scattering). Attending the origin of the forces, we can separate the

previous equation into two equations,

� @f

@t

� �
scatt

¼ 1

�h
FD � rkf (1.7)

and

� @f

@t

� �
drift

¼ v � rrf þ 1

�h
F � rkf _; (1.8)

1.2.1 The Scattering Integral

For the scattering term, an analytical expression can be derived, called scattering

or collision integral. The probability per unit time that a particle in a state (r, k)
goes to a state (r0, k0) due to a scattering event can be named W(r, k; r0, k0).

4 A. Cantarero and F.X. Àlvarez



Obviously, r � r0 since the scattering process will change the electron wave

number at a given position, i.e. W does not depend on r (in an homogeneous

medium): Wðr; k; r0; k0Þ ¼ Wðk; k0Þ � Wk0
k ; i.e. the scattering processes can be

analyzed in k space.

Considering two volume elements d3k and d3k0 around k and k0, the number of

occupied states within these volume elements is

fk
1

4π3
d3k and fk0

1

4π3
d3k0 (1.9)

while the number of empty states would be

1� fk½ � 1

4π3
d3k and 1� fk0½ � 1

4π3
d3k0 ; (1.10)

where we have also written fk instead of f(k) to save space. In d t, an electron with

wave number k is scattered and acquires a wave number k0; the number of occupied

states will change by an amount

dt �Wk0
k fk 1� fk0½ � þWk

k0 fk0 1� fk½ �
n o 1

4π3
d3k0

1

4π3
d3k_; (1.11)

Extending the integral to the whole Brillouin zone (BZ), and assuming that the

direct and inverse probabilities are equivalent (time reversal symmetry), Wk0
k ¼ Wk

k0,

the variation of the total number of occupied states in dt is:

dt
1

4π3
d3k

ð
Wk0

k fk � fk0½ � 1

4π3
d3k0_; (1.12)

On the other hand, the variation in the number of occupied states given by

fkd
3k ∕ 4π3 in dt due to scattering is

@f

@t

� �
scatt

dt
d3k

4π3
_; (1.13)

Comparing both equations, the scattering integral can be written as

@f

@t

� �
scatt

¼
ð
Wk0

k fk � fk0½ � 1

4π3
d3k0: (1.14)

In the stationary case

@f

@t
¼ @f

@t

� �
drift

þ @f

@t

� �
scatt

¼ 0 (1.15)
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and the Boltzmann equation reads

v � rrf þ 1

�h
F � rkf ¼ �

ð
Wk0

k fk � fk0½ � 1

4π3
d3k0_; (1.16)

The left side of this equation is related to the classical evolution of the system

due to the application of external fields. On the other hand, the right side of the

equation contains the probability that an electron be scattered and change its wave

number from k to k0. This probability can be calculated using Quantum Mechanics

techniques (scattering theory), once we know the scattering mechanism.

1.2.2 Relaxation Time Approximation

Since a quantum treatment of the scattering integral is a cumbersome problem, we

need to assume a simple hypothesis to deal with Eq. (1.16). If the external fields are

suppressed in t ¼ 0, the system will return to equilibrium due to the existence of

scattering. The drift term will disappear and the scattering will produce a random

movement of the electrons. In that case, the time evolution of f would be

@f

@t

� �
¼ @f

@t

� �
scatt

: (1.17)

If the system is not too far from equilibrium, the rate of evolution of the

distribution function can be assumed to be proportional to the difference between

the equilibrium and out of equilibrium distribution functions:

@f

@t

� �
¼ @f

@t

� �
scatt

¼ � f ðr; k; tÞ � f0ðr; kÞ
τðkÞ ; (1.18)

1∕τ(k) being the proportionality constant. The solution of this equation is

f ðr; k; tÞ � f0ðr; kÞ ¼ f ðr; k; 0Þ � f0ðr; kÞ½ �e�t=τðkÞ (1.19)

i.e. the relaxation time τ(k) indicates how fast the system returns to equilibrium

once the effect of the external fields has been removed. Since that

@f

@t

� �
scatt

¼
ð
Wk0

k fk � fk0½ � 1

4π3
d3k0 ¼ � f � f0

τðkÞ (1.20)
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In terms of τ(k), the Boltzmann equation can be written as

v � rrf þ 1

�h
F � rkf ¼ � f ðr; kÞ � f0ðr; kÞ

τðkÞ (1.21)

1.2.3 The Linearized Boltzmann Equation

The relaxation time approximation allows an analytical solution of the Boltzmann

equation for the stationary case. If we assumed Fa ¼ eE, and consider space

homogeneity, the Boltzmann equation can be written as

e

�h
E � rkf ¼ � f ðkÞ � f0ðkÞ

τðkÞ : (1.22)

Rewriting the equation in terms of f(k),

f ðkÞ ¼ f0ðkÞ � e

�h
τðkÞE � rkf : (1.23)

In principle, this equation can be solved iteratively, but, if we are interested in

linear phenomena on the electric field E, an approximated solution is obtained

replacing the distribution function f(k) by the equilibrium distribution function f0(k)
in the k derivative:

f ðkÞ � f0ðkÞ � e

�h
τðkÞE � rkf0: (1.24)

Thus, for a linear problem or weak electric fields, the Boltzmann equation can be

interpreted as a linear expansion of the distribution function around k. Since f(k) is
not far from equilibrium,

f ðkÞ � f0 k � e

�h
τðkÞE

� �
: (1.25)

The distribution function resulting from the application of an electric field E,
including the effect of scattering through τ(k) has been drawn in Fig. 1.1. The

difference with the equilibrium distribution function is concentrated in the region

around the Fermi energy μ, and it is described as a constant shift of eEλ, in energy

units. λ is the mean free path of the electron at the Fermi energy, λ ¼ vFτ(kF).
Another particular case of the Boltzmann equation is that corresponding to a

temperature gradient in the absence of applied fields. The BTE, in the relaxation

time approximation, can be written as
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v � rrf ¼ � f ðr; kÞ � f0ðr; kÞ
τðkÞ : (1.26)

Again, linearizing the equation,

f ðr; kÞ ¼ f0ðr; kÞ � @f0
@ε

ðε� μÞτðkÞv � r ln T: (1.27)

Writing the velocity in terms of the energy gradient and that in terms of the

gradient of the distribution function,

f ðkÞ � f0 k � τðkÞðε� μÞr ln T=�hð Þ: (1.28)

In Fig. 1.2, the equilibrium distribution function is represented as a black solid

line. The blue line is the perturbed distribution function in the presence of a

temperature gradient, in the linearized approximation. For energies above the

Fermi energy, the electron population is over the equilibrium value, while above

the Fermi energy is below equilibrium. There is an increase of the number of

carriers above the Fermi energy (and a depopulation below the Fermi energy) due

to the thermal gradient. If we change the sign of the thermal gradient, the shape of

curve will be the opposite, there will be an increase of the electron population below

the Fermi energy as a consequence of the fact that the region is colder.

Returning to the complete expression of the Boltzmann equation in the relaxa-

tion time approximation, Eq. (1.26), but writing it in the linearized form,

Fig. 1.1 Electron distribution in an electric field. The solid line, black, represents the equilibrium
distribution function, while the dotted red line is f0 shifted an amount Δk0 ¼ eτE ∕ ℏ (eEλ in

energy, as explained in the text)

8 A. Cantarero and F.X. Àlvarez



v � rrf0 þ e

�h
E � rkf0 ¼ � f ðr; kÞ � f0ðr; kÞ

τðkÞ � � f ð1Þðr; kÞ
τðkÞ : (1.29)

The label “(1)” in the distribution function may be interpreted as the first order

term in a Taylor expansion. The spatial derivative can be written as

rrf0 ¼ � eðε�μÞ=kBT

½1þ eðε�μÞ=kBT �2
1

kBT
�rrμ� ðε� μÞrr ln T½ �: (1.30)

This equation can be written in a simplified manner using the derivative ∂f∕∂ε:

rrf0 ¼ � @f0
@ε

rμþ ðε� μÞr lnT½ �: (1.31)

The gradient with respect to k can also be written, using the chain rule, as

rkf0 ¼ @f0
@ε

rkεðkÞ ¼ @f0
@ε

�hv: (1.32)

Thus, the Boltzmann equation, in the linear approximation, can be written as

Fig. 1.2 Electron distribution in the presence of a temperature gradient. The black solid line
represents the equilibrium distribution function, while the blue line represents the perturbed

distribution function. The energy shift due to the temperature gradient is, approximately,

λ(ε � μ) ∇ lnT, where λ is the electron mean free path at the Fermi energy
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f ð1Þðr; kÞ ¼ � @f0
@ε

τðkÞv � rðeϕþ μÞ þ ðε� μÞr ln T½ � ; (1.33)

where we have used the fact that the electric field, E ¼ � ∇ϕ, can be written in

terms of the electrostatic potential. It is convenient to leave the expression in terms

of ∂f∕∂ε, since this has a deltaic behavior around the Fermi energy at low temper-

atures. At higher temperatures, the shape of ∂f∕∂ε is similar to a Lorentzian,

restricting the integration to a small region around μ. In Fig. 1.3 we have

represented the behavior of f0, �∂f0∕∂ ε and ∂f0∕∂ T. The value of kBT ¼ 0.1 eV

(corresponding to �1,100 K) and μ ¼ 5 eV. Equation (1.33) can be written in

short as:

f ð1Þðr; kÞ ¼ � @f0
@ε

τðkÞv � Aðr; kÞ (1.34)

where

Aðr; kÞ ¼ rðeϕþ μÞ þ ðε� μÞr ln T½ �: (1.35)

If there is only an electric field present in the material, A ¼ e∇ϕ ¼ � eE is the

Coulomb force.

Fig. 1.3 The solid line (red online) represents the Fermi–Dirac distribution at kBT ¼ 0. 1 in units

of energy with μ ¼ 5. The dashed line (green online) is the derivative � ∂f∕∂E, while the dotted
line (blue online) is the derivative ∂f∕∂T
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1.2.4 The Effect of a Magnetic Field on the Boltzmann
Equation

Following Ziman [2], a magnetic field does not produce drift on the electrons

(it does not produce work), but deviates the electron path due to the Lorentz

force. Thus, the time variation of the distribution function due to the presence of

a magnetic field (the Lorentz force),

@f

@t

� �
B

¼ e

�h
v� B � rkf

ð1Þ (1.36)

cannot be included in the drift, but in parallel with the scattering terms: the

deviation of the electrons due to the magnetic field is equivalent to a scattering

process. However, we cannot linearized the previous equation since v �v �B ¼ 0

and the effect of the magnetic field is neglected. The Boltzmann equation, including

the effect of the magnetic field, is

v � rrf þ 1

�h
F � rkf ¼ � f ð1Þðr; kÞ

τðkÞ þ e

�h
v� B � rkf

ð1Þ: (1.37)

The solution for f (1)(r, k) can be assumed to have the same form as in Eq. (1.33),

but generalizing the A vector to a new amount, Ξ:

f ð1Þðr; kÞ ¼ � @f0
@ε

τðkÞv � Ξ : (1.38)

If there is no magnetic field, the solution must be reduced to Ξ ¼ A. The first

derivative of the distribution function can be found to be:

rkf
ð1Þ ¼ � @f0

@ε
τ�hM	�1Ξ ; (1.39)

M∗ being the effective mass tensor and a dependence of k through the energy has

been assumed for τ and Ξ. In that case, the derivative with respect to k would

contain the velocity, which is perpendicular to v �B. We arrive to the equation

Ξ ¼ rðeϕþ μÞ þ ðε� μÞr ln T þ eM	�1Ξ� B ¼ Aþ eM	�1Ξ� B_; (1.40)

Assuming an isotropic effective mass for simplicity, the solution is:

f ð1Þ ¼ �eτ
@f0
@ε

v � Aþ ðeτ=m	Þ2ðA � BÞBþ ðeτ=m	ÞA� B

1þ ðeτ=m	Þ2B2
(1.41)
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1.2.5 Current and Energy Flux Densities

The current density can be written as:

j ¼ e

4π3

ð
vf ðr; kÞd3k ¼ e

4π3

ð
vf ð1Þðr; kÞd3k (1.42)

Substituting the value of f (1)(r, k),

j ¼ e

4π3

ð
� @f0

@ε

� �
τvðv � ΞÞd3k: (1.43)

The movement of charged particles not only carries a current but also transfers

energy. The energy flux, i.e. the energy amount crossing a unit cross section per unit

time is given by the expression:

jQ ¼ 1

4π3

ð
εðkÞvf ð1Þðr; kÞd3k (1.44)

The expression, in terms of Ξ, is

jQ ¼ 1

4π3�h2

ð
� @f0

@ε

� �
εðkÞτv v � Ξð Þd3k: (1.45)

In the absence of magnetic fields,

Ξ ¼ eE�rμ� ε� μ

T
rT ¼ E�r μ

T
� ε

T
rT: (1.46)

The expression for the electric current becomes

j ¼ e

4π3

ð
� @f0

@ε

� �
τv v � E�r μ

T
� ε

T
rT

� �h i
d3k: (1.47)

For an isotropic medium,

j ¼ 4e

3m	

ð
� @f0

@ε

� �
τεDðεÞ eE�r μ

T
� ε

T
rT

� �
dε (1.48)

Introducing the notation

Lij ¼ 4

3m	

ð
� @f0

@ε

� �
τjεiDðεÞdε ; (1.49)
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the electrical current becomes

j ¼ eL11 eE� Tr μ

T

� �
� eL21r lnT; (1.50)

Similarly,

jQ ¼ eL21 eE� Tr μ

T

� �
� L31r ln T: (1.51)

From Eq. (1.48) and the definition of the transport coefficients, Eq. (1.49),

e2L11 ¼ σ ; (1.52)

the electrical conductivity. If there is no electrical current circulating through the

semiconductor (open circuit), j ¼ 0, and the electric field is

E ¼ 1

e
rμþ L21 � μL11

eL11T
rT (1.53)

If there are no gradients of concentration, from the definition of the Seebeck

effect, the Seebeck coefficient S ¼ dV ∕ dT is given by

S ¼ L21 � μL11

eL11T
: (1.54)

We can introduce in Eq. (1.51) the electrical current. The result is

jQ ¼ L21

eL11

j þ L2
21 � eL31L11

eL11

� �
rT ¼ Πj � κerT ; (1.55)

where the Peltier coefficient

Π ¼ L21

eL11

¼ ST (1.56)

and the electron thermal conductivity

κe ¼ L2
21 � eL31L11

eL11

: (1.57)

The opposite relations are

L11 ¼ σ

e2
; L21 ¼ σST

e
; L31 ¼ ST � κe: (1.58)
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1.2.6 Relaxation Times for Electron Scattering

The transport coefficients are, in general, second range tensors. In the absence of

magnetic fields,

Lγζ
ij ¼ 1

4π3

ð
� @f0

@ε

� �
τjvγvζε

i�1d3k: (1.59)

Although it is possible to deduce a general expression in tensorial form, we will

assume an isotropic semiconductor to escape from the tensor notation. The integral

in k can be split in the usual way in an integral in energy times the integral over a

surface of constant energy. The resulting expression after integration in dSε is

Lij ¼ 4

3m	

ð
� @f0

@ε

� �
DðεÞτjεidε ¼ 4

3kBTm	

ð
f0DðεÞτjεidε (1.60)

in a non-degenerate semiconductor (� ∂f0 ∕∂ε ¼ f0 ∕ kBT ). Since the electron con-

centration can be defined as

n ¼ 2

ð
f0DðεÞdε ¼

ð
dnðεÞ ; (1.61)

we can define the average

hεiτji ¼ 2

3nkBT

ð
εiτ

j
dnðεÞ (1.62)

and the transport coefficients can be written in terms of ⟨τ⟩ as:

Lij ¼ n

m	 hεiτ
ji: (1.63)

Very often, the relaxation time can be written as a function of the electron energy

in the way τ ¼ τ0ε
λ. In that case the average of the relaxation time

hτi ¼ τ0Γð5=2þ λÞ=Γð5=2Þ (1.64)

can be written in terms of the Γ-function. The exponent depends on the scattering

mechanism [3]: 3/2 for scattering by ionized impurities and � 1 ∕ 2 for acoustical

phonons. In the case of optical phonons, the electron scattering is not elastic and the

relaxation time approximation cannot be applied [1].
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1.2.7 The Thermal Conductivity in a Semiconductor

The expression for the electronic thermal conductivity, in terms of the transport

coefficients, is given by Eq. (1.57). An explicit expression can be obtained for a

semiconductor with some common assumptions. In semiconductors with parabolic

bands, the relaxation time can be written as

τ ¼ τ0ε
λ ; (1.65)

where λ is a exponent which depends on the scattering mechanism. In terms of

Eq. (1.63),

L11 ¼ n

m	 hετi ; L21 ¼ n

m	 hε2τi ; L31 ¼ n

m	 hε3τi: (1.66)

From Eq. (1.64) and following the expression for the electronic thermal con-

ductivity, it can be written explicitly in terms of Γ-functions:

κe ¼ n

m	
5k2BTτ0

4
7
Γð9=2þ λÞ
Γð9=2Þ � 5

Γ2ð7=2þ λÞΓð5=2Þ
Γ2ð5=2þ λÞΓð7=2Þ

� �
: (1.67)

The expression of κe contains the unknown factor τ0, which is also included in

the electrical conductivity. Actually, we can calculate the amount κe ∕ σ T � L, the
Lorentz number:

L ¼ κe
σT

¼ L31L11 � L2
21

e2L2
11T

2
¼ k2B

e2
ð5=2þ λÞ ; (1.68)

which is independent of τ0. Thus, the thermal conductivity can be written in terms

of the electrical conductivity and the Lorentz number:

κe ¼ σLT ¼ k2BT
2

e2
ð5=2þ λÞσ: (1.69)

In a semiconductor, the thermal conductivity of the electrons is proportional

to the electronic conductivity. The expression κe ∕ σ ¼ L T is known as

Wiedemann–Franz law. As it is well known, in the case of metals, or a degenerate

semiconductor, the Lorentz number is a constant:

L ¼ κe
σT

¼ π2

3

k2B
e2

; (1.70)

which is not the case in real metals. Actually, this was one of the drawbacks of

Drude’s model.
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1.2.8 The Seebeck Coefficient in a Semiconductor

In the case of a metal or a degenerate semiconductor, the transport coefficients

Lij ¼ 4

3m	

ð
� @f0

@ε

� �
τjεiDðεÞdε � 4e2

3m	 τ
jðεFÞεiFDðεFÞ (1.71)

and the Seebeck coefficient is zero. It is necessary to take the first term in the

development of the Fermi integral, giving

S ¼ π2

3

k2BT

e

@ ln σðεÞ
@ε

����
ε¼εF

¼ π2

3

k2BT

eεF
: (1.72)

The Seebeck coefficient for a typical metal, Cu (εF ¼ 7. 0 eV), is S ¼ 1. 05

μV∕K at 300 K.

For a semiconductor, assuming an energy dependence of the relaxation time as

τ(ε) ¼ τ0ε
λ, the expression of S can be rewritten as

S ¼ 1

eT

L21

L11

� ðμ� εcÞ
� �

¼ kB
e

5

2
þ λ� μ� εc

kBT

� �
: (1.73)

Instead of the chemical potential, it is more useful to write the expression in

terms of the electron concentration:

S ¼ kB
e

5

2
þ λ� ln

Nc

n

� �
: (1.74)

We can quantify the Seebeck coefficient for a typical semiconductor. At low

temperature, T � 100 K, kBT � 8. 64 meV. If we assume for simplicity that, at

this temperature, the chemical potential is 8.64 meV below the conduction

band, and that impurities are the dominant scattering mechanism,

S � 5kB ∕ e � 0. 4 meV∕K. Typical values are at least one order of magnitude

larger than in metals.

From Eq. (1.72) we can argue that the Seebeck coefficient, roughly, is propor-

tional to

S / @DðεÞ
@ε

����
ε¼εF

: (1.75)

This expression is fulfilled for a metal and looking at the function ∂f0 ∕∂ε as shown
in Fig. 1.3, it is a good approximation in the case of a semiconductor at low

temperatures. If the density of states changes around the chemical potential, the

Seebeck coefficient will be high. If the density of states is smooth around

the chemical potential, the Seebeck coefficient will be low. In semiconductor

nanostructures, mainly quantum wires and quantum dots, where the density of
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states can be very sharp (varying with energy as (ε � εn)
� 1 ∕ 2 or δ(ε � εn),

respectively, if the Fermi energy is around εn around a band or subband minimum

εn), a huge increase in the Seebeck coefficient is expected.

1.3 The Boltzmann Transport Equation for Phonons

The purpose of this section is to describe how phonons carry heat through the

material, i.e. to evaluate the phonon thermal conductivity (κL). The phonon thermal

conductivity varies two or three orders of magnitude in a wide temperature

range [4]. At high temperatures, the main factor limiting the thermal conductivity

is the phonon–phonon scattering. At low temperatures, however, size effects are

extremely important, even in macroscopic samples. Phonons can travel over mil-

limeters and are finally scattered by the boundary. As pointed out by Ziman [2], the

ultimate scattering mechanism at low temperatures is the boundary scattering, since

the phonon mean free path is very long.

The thermal conductivity in nanostructures at low temperatures departs from

bulk values due to size effects [5]. But at nanometer sizes, it is not clear if quantum

confinement could be more important than boundary. There are several approaches

in the literature trying to predict the thermal conductivity at all temperatures and

size ranges. Although in the case of quantum wires, it is clear that quantum

confinement is important for wire diameters of a few nanometers [6], most of the

theoretical works on thermal conductivity mix both perspectives (classic and

quantum) in a way that still remains unclear the origin of this reduction. Very

recently, the authors have published a work clarifying the limits of classical

models [5].

The reduction of the thermal conductivity due to the size effects is known from

the middle of last century, when researchers like Callaway [7], Holland [8], and

Guyer [9] measured and modeled the thermal conductivity of semiconductor

materials of millimeter sized samples. They observed how at temperatures below

10–20 K, the thermal conductivity started to decrease showing a T3 behavior. They
concluded that this behavior was due to the scattering of the phonons by the

boundaries, which is a constant, and thus the thermal conductivity behaves in

temperature like the specific heat. All the models developed in this period are

useful to understand boundary scattering.

Phonons are also scattered by impurities. In very pure samples, isotopic disorder

(also called mass-defect scattering) limits the thermal conductivity [4]. Since pho-

nons in general do not carry charge, an impurity produces the same effect that an

isotope. It is well known the increase of the thermal conductivity in isotopically

enriched samples [4]. Finally, the role of N- and U-processes must be deeply

studied to quantify their contribution in the thermal conductivity.
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1.3.1 Lattice Thermal Conductivity

The Boltzmann equation relates the changes in the distribution function due to the

drift to the changes in the distribution function due to scattering processes. The

general form of this equation in the stationary state is, as in the case of electrons,

@N

@t

� �
¼ @N

@t

� �
drift

þ @N

@t

� �
scatt

; (1.76)

where N is the phonon distribution function. The equilibrium distribution function

corresponds to a Bose–Einstein distribution function:

N0
νðqÞ ¼

1

e�hωνðqÞ=kBT � 1
; (1.77)

for phonons from the ν-branch with energy ℏ ων(q) and wave number q. Differently
from electrons, phonons cannot experience external forces (F ¼ 0). Thus, only

spacial variations of the distribution function must be taken into account. In that

case, Eq. (1.76) can be written as

vq � rrNq ¼ @Nq

@t

� �
scatt

; (1.78)

where vq ¼ ∇ωq is the phonon group velocity. The phonon branch index has been

omitted for clarity. The scattering integral depends on scattering processes due to

electrons, impurities, boundaries, and other phonons. In local equilibrium

approaches, the usual way to proceed is to consider the relaxation time approxima-

tion, in a parallel treatment as that shown for electron scattering. The rate of change

of the distribution function Nq depends on the difference of the distribution out of

equilibrium with that of equilibrium N0. In terms of the relaxation time τq,
Eq. (1.78) can be written as

vqrrNq ¼ �Nq � N0
q

τq
: (1.79)

If the inhomogeneities disappear, the distribution function will decay exponen-

tially to Nq
0 with a time decay τq. This approximation allows us to obtain a solution

for the thermal conductivity in terms of an integral expression depending on the

relaxation time.

Combining Eqs. (1.78) and (1.79) we can obtain the local equilibrium distribu-

tion function in terms Nq
0. Again, linearizing the equation, i.e. approaching

∇rNq ’ ∇rNq
0,

Nq ’ N0
q � τv � rrN

0
q : (1.80)
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The thermal conductivity can be obtained from Eq. (1.80) by using the definition

of energy flux, that is the integral over the phonon population of the energy times

the group velocity. In the general case, the thermal conductivity is a second rang

tensor and the direction of the current does not necessarily coincide with the

thermal gradient.

jQ ¼ �h

ð2πÞ3
ð
@N0

q

@T
ωqvq τqvq � rrT

	 

d3q_; (1.81)

The dot product vq �∇rT ¼ vq ∇ rTcosθq, θq being the angle between a given

velocity vq and the temperature gradient. In the particular case of an isotropic

medium, we have to select the velocity component along the thermal gradient

since the current will be along ∇rT. The final result is

jQ ¼ 1

ð2πÞ3
ð
@N0

q

@T
�hωqτqv

2
q cos

2θqd
3q

" #
rrT : (1.82)

The expression for the lattice thermal conductivity is

κL ¼ 1

ð2πÞ3
ð
@N0

q

@T
�hωqτqv

2
q cos

2θqd
3q

" #
; (1.83)

that can be expressed in terms of the frequency of the phonons by the use of the

density of states D(ω) (DOS) and phonon frequency specific heat Cph(ω):

κ ¼ 1

3

ð
v2τCphðωÞDðωÞdω: (1.84)

The phonon frequency specific heat is defined as

CphðωÞ ¼ � @N0

@T
�hω ¼ kB

�hω

kBT

� �2

N0ðN0 þ 1Þ_; (1.85)

The phonon branch ν and wave vector q is included through the definition of the

density of states:

DðωÞ ¼ 1

3N

X
ν;q

δðω� ωνqÞ ; (1.86)

N being the number of atoms in the crystal. In the case of phonon confinement, as in

a quantum wire, the number of branches in a real nanowire will depend on the

number of atoms in the section of the nanowires, since there is only translational
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symmetry along the wire (there will be only qz). If the nanowire has more than a few

nanometers, the confinement does not contribute differently to the thermal conduc-

tivity, the branches are so closed that the phonon subband can be considered as a

continuum (i.e. there is no difference with the bulk DOS).

In most phenomenological theories of the phonon thermal conductivity, the

relaxation time approximation has been extensively used. There are some important

differences with electron relaxation times that must be carefully analyzed.

1.3.2 Relaxation Time Approximation

Phonons can be scattered in a crystal by lattice imperfections, electrons, crystal

boundaries, or by other phonons. It is possible to describe the different scattering

processes by their corresponding relaxation times. In the case of electrons, the

relaxation time is a measure of the time the system needs to reach the equilibrium

once the external forces have been removed. In the case of phonons, however, no

external forces drive the phonon conduction, only temperature gradients (or differ-

ences in carrier concentration, which can modify the phonon–carrier interaction).

The relaxation time is basically the phonon lifetime, which contains the several

contributions mentioned above. There is another difference between an electron

scattering process and a phonon scattering process. In the case of an electron

scattering process, in most cases the energy is conserved (elastic scattering); the

exception being the electron–optical phonon interaction, where energy is not

conserved (inelastic scattering). Concerning the electron quasi-momentum �hk, it
is always conserved in a scattering process, independently if the scattering is elastic

or inelastic. The electron, after the scattering process, is the same electron, in

another quantum state. In a phonon scattering process however, a phonon is

annihilated and a new phonon is created. The total energy in the scattering process

is conserved, but there is not, in general, quasi-momentum conservation. For a

phonon–phonon scattering process (also known as phonon anharmonicity), the

quasi-momentum conservation law is:

q1 þ q2 ¼ q3 þ G ; (1.87)

where G is any reciprocal lattice vector. If G ¼ 0, the process is called normal,

N-process, while in the general case, G6¼0 and the process is called Umklapp (flip

over), U-process. In Fig. 1.4 we show the quasi-momentum conservation law for

phonons. Both N- and U-processes are shown. In the case of phonon scattering by

imperfections, the quasi-momentum distribution will be randomly distributed in the

space. Even if the initial phonon has a preferred direction due to a temperature

gradient, after the scattering process the direction could be whatever. The case of

U-processes is similar, when we add a reciprocal lattice vector distributed along any

possible direction in the space, the resulting direction of the phonon resulting from

the scattering is randomly oriented. Phonon-impurity scattering and U-scattering
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contribute to the thermal resistance in a similar way as electron scattering gives rise

to the electrical resistance. In the case of N-processes, if there is a temperature

gradient, the phonons are diffusing to the cooler region and the scattered phonon

will have a net quasi-momentum ℏq in the opposite direction of the temperature

gradient. The phonon quasi-momentum is transferred to the other phonons.

Most of the models describing the thermal conductivity were developed along

the sixties of last century. The same models are used nowadays to fit the experi-

mental results of the thermal conductivity in nanostructures. In particular, the

thermal conductivity in silicon nanowires has been calculated using the Callaway

model [7] and different approximations for the relaxation times. Unfortunately, the

Callaway model (CM) does not describe properly N-processes and the effort in

giving a good fit in a wide temperature region has moved the researchers to deal

with different approximation for the relaxation times, or even the introduction of

new relaxation times. We will limit our description of thermal conductivity models

to that of Callaway and the model developed by Guyer and Krumhansl [9] (GKM),

which gives a more realistic description of N-processes.

1.3.3 The Callaway Model

The Callaway model [7, 8, 10] is based on the BTE within the relaxation time

approximation. Callaway splits the scattering term into two, one depending on the

relaxation time of N-processes and the other related to the relaxation time of

resistive processes (the remaining scattering processes: U-processes, impurities,

boundary, and so on):

Fig. 1.4 Phonon wave number conservation in a plane square lattice. In an N-process, the wave

number q1 + q2 ¼ q3 is conserved, while in a U-process, any additional vector of the reciprocal

space is added in the conservation law: q1 + q2 ¼ q3 + G
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�hωq

kBT
N0
qðN0

q þ 1Þvq � r ln T ¼ Nq � N0
q0

τN
þ Nq � N0

q

τR
: (1.88)

The resistive scattering will relax the distribution function to that given by

Eq. (1.77), while in the case of N-processes, the relaxed distribution function is

given by

N0
q0
¼ 1

eð�hωðqÞþλ�q0Þ=kBT � 1
� N0

q þ N0
qðN0

q þ 1Þ λ � q0
kBT

: (1.89)

In terms of Nq
(1) ¼ Nq � Nq

0, the BTE can be written as:

N0
qðN0

q þ 1Þ �hωq

kBT
vq � r ln T þ 1

τN

λ � q0
kBT

� �
¼ N

ð1Þ
q

τc
; (1.90)

where

1

τc
¼ 1

τN
þ 1

τR
; (1.91)

τc being a combined relaxation time. The procedure of Callaway is to neglect the

second term containing the relaxation time for N-processes and compensate this

fact with the introduction of a overall relaxation time α. In this approximation,

Nð1Þ
q ¼ �αN0

qðN0
q þ 1Þ �hωq

kBT
vq � r ln T (1.92)

On the other hand, λ is a constant vector, in the opposite direction of the

temperature gradient. It can be written in terms of a constant β with dimensions

of relaxation time:

λ ¼ ��hβv2qr ln T_; (1.93)

Introducing this definition and the value of N(1) into Eq. (1.90), the value of α
can be obtained:

α ¼ τCð1þ β=τNÞ (1.94)

Finally, the thermal conductivity has the expression [10]

κ ¼ kB

2π2v

kBT

h

� �3 ðθ=T
0

dx
x4

4 sinh2x
β þ τc 1� β

τR

� �� �
(1.95)
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where β ¼ ⟨τc ∕ τN⟩ ∕ ⟨τc ∕ τRτN⟩ [10]. In the integral, the term in β represents the

drift and that on τc(1 � β ∕ τR) corresponds to the diffusive contribution. An

isotropic medium has been considered, v is the average group velocity, and θ the

Debye temperature. This model was extended later by Holland, incorporating

the transversal and longitudinal phonon branches [8].

The Callaway model leads to an overestimation of the thermal conductivity of

nanometric-size samples at room temperature due to the inclusion of spurious terms

in the conductivity expressions. Several authors have tried to reduce this over-

prediction introducing additional relaxation times or phonon confinement.

1.3.4 Guyer–Krumhansl Model

The BTE can be written in terms of operators acting over the occupation probability

Nq as

@

@t
þ vq � r � S

� �
Nq ¼ 0 ; (1.96)

where S is the scattering operator. The formal solution of the linearized BTE in the

steady-state is:

Nq ¼ S�1 �hωq

kBT
N0
qðN0

q þ 1Þvq � r ln T

� �
: (1.97)

The scattering operator can be written in terms of two operators, that dealing

with N-processes, and that which accounts for resistive processes:

S ¼ N þR (1.98)

Formally, if the complete solution (eigenvalues and eigenvectors) of the scat-

tering operators is known,

Sjμi ¼ gμjμi ) S ¼
X
μ

gμjμihμj ) S�1 ¼
X
μ

1

gμ
jμihμj ; (1.99)

we can calculate S�1 and Nq through Eq. (1.97). This information is not available.

However, in the low temperature limit when N-processes dominate (R 
 NÞ
we can assume S ffiN ). We have partial information on the properties of N .

In particular, we know that the distributions

NðδTÞ ¼ 1

e�hω=kbðTþδTÞ � 1
and NðλÞ ¼ 1

eð�hωþλ�qÞ=kbT � 1
(1.100)
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are unaffected by the operator N . If δT and λ are small, we can expand the

deviations and obtain

jη0i ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

q
(1.101)

and

jη1i ¼
1

kBT

λxqx

λyqy

λzqz

0
B@

1
CA ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N0ðN0 þ 1Þ
q

_; (1.102)

For an isotropic dispersionless medium the quantities μ and λ can be shown to be,
from the normalization conditions [9]:

μ2 ¼ kB
Cv

and λ2 ¼ 3kB�h
2v2

Cv
_; (1.103)

It is straighforward to show that these eigenvectors have null eigenvalues:

N jη0i ¼ 0jη0i and N jη1i ¼ 0jη1i ; (1.104)

the first due to energy conservations and the second due to translational symmetry.

The linearized BTE may be symmetrized by using N?
q ¼ Nq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
. In this

new basis the scattering and drift operators are self-adjoint:

½N ? þR?�N?
q ¼ DN?

q (1.105)

This equation can be solved by writing

jNqi ¼
X
μ

aμðr; tÞjημðqÞi (1.106)

The form of the matrices can be easily derived. SinceN ?
has four null eigenvalues,

the corresponding matrix must have the form

N ? ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

λ1
λ2

0 0 0 0 λ3
. .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�
0 0 0

0 0 0

0 0 N ?
22

0
@

1
A ; (1.107)
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written in short as a block matrix whose dimensions are 1, 3, and 1. The matrix is

diagonal. Concerning theℛ* matrix, although jη0⟩ is a null eigenvector, jη⟩ are not
eigenvectors of ℛ * due to the lack of quasimomentum conservation and ℛ * is

not diagonal. The final form of the BTE, in matrix representation, is:

0 0 0

0 0 0

0 0 N ?
22

0
@

1
Aþ

0 0 0

0 R?
11 R?

12

0 R?
21 R?

22

0
@

1
A�

D00 D01 0

D10 D11 D12

0 D21 D22

0
@

1
A

2
4

3
5 a0

a1

a2

0
B@

1
CA ¼ 0

(1.108)

where a0 is an scalar, a1 a vector, and the dimension of a2 is basically1. The set of

equations can be summarized as:

D00a0 þD01a1 ¼ 0

ðR11 �D11Þa1 þ ðR12 �D12Þa2 ¼ D10a0

ðR21 �D21Þa1 þ ðN 22 þR22 �D22Þa2 ¼ 0

(1.109)

The first equation can be expressed as

@ε

@t
þr � jQ ¼ 0 (1.110)

and it corresponds to the energy conservation (continuity equation). The other two

equations can be combined to eliminate the unknown quantity a2, giving rise to

@jQ
@t

þ v2

3
rε ¼ � 1

τ11
jQ (1.111)

representing the momentum conservation, where

1

τ11
¼ R11 � R12R21

N 22 þR22

(1.112)

is the phonon quasi-momentum relaxation operator. Equation (1.110) and the

homogeneous equation (1.111) represent a hydrodynamic wave. If there is a

temperature gradient, δ ε ¼ Cvδ T and Eq. (1.111) can be written as:

� 1

3
v2CvrT ¼ @jQ

@t
þ 1

τ11
jQ (1.113)

The steady-state thermal conductivity can be expressed as

κ ¼ 1

3
v2Cvτ11 (1.114)
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and τ11 can be calculated with a little algebra, from the derivation of the relaxation

times in particular limits. The matrix elements can be identified as

N ?
22 ¼ 1=τN

R?
11 ¼ hτ�1

R qi
R?

22 ffiR?
11

½R?�1�11 ¼ hτRðqÞi

(1.115)

From these definitions, the momentum relaxation time can be written as

τ11 ¼ hτRi τN þ hτ�1
R i�1

τN þ hτRi (1.116)

If we call

Σ ¼ hτRi
τN þ hτRi ; (1.117)

the thermal conductivity can be written as

κ ¼ 1

3
Cvv

2 hτRið1� ΣÞ þ hτ�1
R i�1Σ

	 

(1.118)

When N-processes are dominant (low temperature), τN ! 0 and the switching

factor Σ ¼ 1. The second term dominates. Oppositely, the normal processes are

negligible (high temperature), Σ ¼ 0 and the first term dominates.

In a later work [11], the authors introduce a geometrical factor G(R) in the

previous equation, applicable to wires (cylindrical shape). The final expression for

the thermal conductivity reads

Σ ¼ hτRi
τN þ hτRi (1.119)

the thermal conductivity can be written as

κ ¼ 1

3
Cvv

2 hτRið1� ΣÞ þ hτ�1
R i�1GðRÞΣ	 


(1.120)

where R is the radius of the wire and the function G(R) can be written in terms of

cylindrical Bessel functions.
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1.3.5 Non-equilibrium: Extended Irreversible
Thermodynamics

The GKM represents a first approximation in the introduction of non-equilibrium

effects at a microscopic level. Their arguments can be extended in order to take into

account higher-order terms in the derived expressions. This extension can be useful

to obtain a general expression of the thermal conductivity valid for general geom-

etries and sizes. Non-equilibrium theories have not been widely used in nanoscale

transport modeling, but when the size of a device is reduced, before the observation

of quantum phenomenology, non-equilibrium effects influence transport properties

as shown in the GKM. These changes have been widely observed in microfluidics,

where the roughness at the boundaries can lead the system out of equilibrium.

The generalization of the approach considered in the GKM can be done using

Extended Irreversible Thermodynamics (EIT). Extended irreversible thermody-

namics predicts the inclusion of non-localities and memory in the transport equa-

tions when the system is out of equilibrium. Extended irreversible thermodynamics

proposes a hierarchy of evolution equations for the successive increasing tensorial

order fluxes (J0, J1, J2, . . .). In the case of thermal transport, these fluxes are the

inverse of temperature for the zero tensorial order (J0 ¼ T � 1), the heat flux for

the first order (J1 ¼ jQ ¼ ⟨�hωv), the flux of the heat flux for the second order

(J2 ¼ ⟨ℏ ωv � v⟩), and so on. The first order transport equation is

rT�1 � α1
@jQ
@t

þ β1r � J2 ¼ μ1jQ; (1.121)

and that for the successive orders it can be expressed as

βn�1

@Jn�1

@t
� αn

@Jn
@t

þ βnr � Jnþ1 ¼ μnJn: (1.122)

where μn, αn, and βn are phenomenological coefficients related to the transport

coefficients, relaxation times and correlation lengths, respectively. The set of

Eq. (1.122) can be Fourier analyzed. A Fourier component of the heat flux is

simply [12]

jQðω; qÞ ¼ �jkκðω; qÞT̂ðω; qÞ ; (1.123)

T̂ ¼ rT=jrTj, and κ(ω, q) represents a Fourier component of the thermal conduc-

tivity. Particularizing for ω ¼ 0 and dividing by the bulk thermal conductivity, the

following form factor can be derived:

Fð‘=LeffÞ ¼ κðω ¼ 0; 2π=LeffÞ
κ0

¼ 1

2π2
L2eff
‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π2

‘2

L2eff

s
� 1

 !
; (1.124)
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where Leff is the effective size of the sample and it depends on the geometry. By

simple considerations it can be deduced that Leff ¼ D for wires of diameter D, Leff

¼ ffiffiffiffiffiffiffiffi
π=2

p
L for square wires of size L and Leff ¼ 2. 25h for thin layers of thickness h.

The expression (1.124) has several advantages in comparison with that proposed by

Guyer and Krumhansl [11]: it is a simple analytical expression, it can be used for

different geometries by only changing the effective size of the sample and it takes

automatically into consideration the degree of non-equilibrium present in the

sample depending on the normal and resistive relaxation times. In terms of F(L ),
the thermal conductivity, within the Guyer–Krumhansl model, can be finally

written as:

κ ¼ κkð1� ΣÞ þ κzFðLÞΣ_; (1.125)

This expression will be used later in the calculation of the thermal conductivity

of silicon nanostructures. Here we have named κk and κz to the thermal conductivity

in the kinetic and Ziman regime, respectively.

1.3.6 Phonon Relaxation Times

Once an expression for the thermal conductivity has been established, it is

important to determine the relaxation mechanisms present in the studied system.

In the model of Guyer and Krumhansl, for instance, two phonon–phonon relaxation

times are distinguished, those conserving momentum (N-processes) and those

non-conserving momentum (resistive processes). The last category includes

U-processes, phonon-impurity (or mass defect) scattering, phonon-boundary scat-

tering, and all possible scattering mechanisms which do not conserve momentum.

Boundary scattering is important, as pointed out by Ziman [2], at very low

temperatures. As it has been previously discussed, at very low temperatures, the

presence of N-processes gives rise to an infinite thermal conductivity, the thermal

conductivity is limited by the presence of the boundary, i.e. the phonon mean free

path is limited by the sample size (λ ¼ v τ  Leff). Actually, the expression for the

boundary relaxation time can be written in terms of the phonon group velocity as:

τ�1
B ðqÞ ¼ vðqÞ

Leff
; (1.126)

where Leff represents the effective dimensions of the sample. Lowering the sample

size we decrease the thermal conductivity since the boundary relaxation time is

smaller (the scattering is more important). The scattering of phonons by mass

defects (isotopic disorder) is the most important mechanisms by imperfections in

very pure samples. The expression was firstly deduced by P. G. Klemens [13]:
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τ�1
I ðqÞ ¼ Aω4ðqÞ � V0g

4π

ω4ðqÞ
v3ðqÞ ; (1.127)

where V0 is the volume of the primitive cell and

g ¼
X
i

fi
Δmi

mi

� �2

(1.128)

is the mass defect factor, fi being the fraction of the corresponding isotope i and Δmi

the difference between the average mass and that of the corresponding isotope.

The relaxation times for phonon–phonon scattering can be extracted from a

recent work of A. Ward and D. A. Broido [14]. They fitted their ab initio calcula-

tions for Si and Ge in the 100–800 K temperature range with a single functional

dependence � T[1 � exp( � 3T ∕ ΘD)], ΘD being the Debye temperature. In the

case of N-processes the energy dependence is � ω2, while for U-processes, it

is � ω4. These expressions must be modified to be valid in the low temperature

region. In order to keep a ωaT5 � a law, as argued by C. Herring [15], an extra term

must be added in the expression of the relaxation time for N-processes proposed by

Ward and Broido [14]:

τ�1
N ¼ 1

BNT
þ 1

B0
NT

3

� �
�1ω2½1� e�3T=ΘD �_; (1.129)

This expression is valid in the whole temperature range. At high temperatures,

the term containing T3 can be neglected and the expression proposed by Ward and

Broido can be recovered. At low temperatures, the term in T3 provides the right

temperature dependence (Debye-law). The expression for U-processes may also be

modified to be valid at low temperatures. Since, at low temperatures, only phonons

with small q-vector and small energy participate in the scattering processes,

U-processes cannot take place, because the combination of several phonon wave

numbers is much smaller than a reciprocal lattice vector. Following Ziman [2], the

relaxation time for U-processes must grow exponentially at low temperatures and

the exponential expansion approaches linearly to 1. It is necessary to include a term

of the form exp(ΘU ∕ T), where ΘU is some cutoff temperature, which can be

derived from the dispersion relations. The relaxation time for U-processes becomes:

τ�1
U ¼ BUω

4Te�ΘU=T ½1� e�3T=ΘD � (1.130)

At low temperatures, the term exp(ΘU ∕ T ) ! 1 and U-processes do not contribute

to the scattering, while at high temperatures exp(ΘU ∕ T) ! 1 and the expression

proposed by Ward–Broido is recovered.
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1.3.7 Application: Silicon Thermal Conductivity

One of the key points in the calculation of the phonon thermal conductivity is an

accurate knowledge of the phonon dispersion relation. Not only the density of states

(DOS) is important, the group velocity corresponding to the different branches is

also needed for the calculation of the thermal conductivity. In most of the works

published in the literature, the Debye model is assumed, and many times two

different cutoff frequencies are considered. In order to calculate the thermal

conductivity of silicon, as an example, we will use here the bond charge model

(BCM), as proposed by Weber [16], since the calculated eigenvalues and eigen-

vectors agree very well with the experiment. The advantage of the BCM is that the

dispersion relations can be obtained with only four force parameters and it can

be successfully extended for other tetrahedrally bounded semiconductors [17].

Figure 1.5a shows the dispersion relations obtained for Si bulk using the BCM.

The curves fit satisfactorily the experimental data [18] and are similar to those

obtained with ab initio methods by Ward and Broido [14]. Additionally, the BCM

has the advantage of reproducing very well the TA phonon branches in the BZ

boundary. The use of complete dispersion relation includes the role of the optical

phonon branches, which are neglected in most of the calculations where the Debye

approximation is considered. The parameters used in the calculation of the

dispersion relations shown in Fig. 1.5a are that given in the original work of

Weber [16]. Figure 1.5b shows the corresponding density of states.

In this section, we will apply the expression deduced in the previous section to

silicon nanostructures. In Fig. 1.6a the thermal conductivity κ (solid line) obtained

from (1.125) is compared with Si bulk experimental data given by [19]. We have

also included the terms κzG(μ) (dotted) and κk (dashed) corresponding to the kinetic
and Ziman contributions. Both curves are affected by the boundary scattering

a b

Fig. 1.5 (a) Phonon dispersion relation for silicon along high-symmetry directions calculated in

the frame of the bond charge model and compared to experimental data from [18]. (b) Phonon

density of states D(ω) calculated from bond charge model phonon dispersion relation
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noticed by the reduction of the conductivity in the low temperature region. This

reduction is due to the phonon mean free path included in the kinetic term while

in the Ziman term the reduction is due to the form factor. It can be observed how

thermal conductivity switches over from κz in the high temperature region to κk in
the low temperature region. The parameters obtained from the fitting of natural

silicon are: BU ¼ 9 �10 � 47 s3K, BN ¼ 4 �10 � 19 sK, B 0
N ¼ 1. 7 �10 � 23 s2K while

A can be calculated from its definition, Eq (1.127), A ¼ 0. 7�10 � 45 s3 and the

effective size used is that given in the original paper [19]: Leff ¼ 7. 1 mm.

At the lowest temperatures, the boundary scattering present in τRB is always

dominant with respect to τN (τB 
 τN) and this makes Σ ¼ 1. In the high temper-

ature regime, near the Debye temperature, Umklapp is expected to be more

important than the normal scattering (τU 
 τN) so that in this region Σ ¼ 1. It is

only between these limits that N-processes can be dominant. Due to its high Debye

temperature, silicon at room temperature is within this region, the thermal conduc-

tivity is mainly described by the Ziman regime, providing lower values than those

given by the usual kinetic term. This is the main reason for the reduction of the

thermal conductivity; the CM overpredicts κ since the Ziman term is not considered

in the theory. In a recent work [23], a parameter F, related to the specularity of the

boundary, is included as a multiplying factor for the effective length (Leff ! F Leff)
to reduce the thermal conductivity and obtain theoretical values closer to the

observed data. Considering the GKM which properly considers the role of

N-processes makes unnecessary the addition of spurious factors.

In Fig. 1.6 we show the remarkable results given by (1.125) for Si bulk, thin

films, and nanowires [5]. The relaxation times used in the calculation of thin films

and nanowire at the same as that obtained from the fitting of the bulk. The changes

in the thermal conductivity are only due to the effective size of the samples. It can

be observed that all the curves are in agreement with the experimental values with

the exception of the thinnest nanowire (20 nm) and in some mid temperature region

for the 30 nm wire. From this plot we can see that GKM+EIT is able to correctly

describe thermal conductivity of general geometry and sizes without the inclusion

of confinement effects to an effective size of 30 nm. In the calculation of the

thermal conductivity of thin films and nanowire, the bulk dispersion relation has

been used.

1.4 Transport Coefficients from First-Principles

The thermoelectric efficiency is given by the figure of merit Z ¼ σ S2 ∕ κ, where σ is
the electrical conductivity, S the Seebeck coefficient, and κ the thermal conductiv-

ity. If only the electronic part is considered, κ ¼ κe. In the previous sections the

transport coefficients are given in a parametric way with empirical inputs, obtained

from a fitting with the experiment. The problem of the empirical approaches is the

lack of predictability in the exploration of new thermoelectric materials since the

information provided by the phenomenological models will be of difficult
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projection. A different approach is to calculate the transport coefficients for a given

material, alloy or nanostructure from first principles or, at least, to reduce the

empirical information as much as possible. From the solution of the Boltzmann

equation, in the relaxation time approximation, the transport coefficients can be

written as [24]

σ ¼ e2
ð
dε � @f0

@ε

� �
ΞðεÞ ;

S ¼ ekB
σ

ð
dε � @f0

@ε

� �
ΞðεÞ ε� μ

kBT
; and

κe ¼ k2BT

ð
dε � @f0

@ε

� �
ΞðεÞ ε� μ

kBT

� �2

_;

(1.131)

Ξ(ε) is called transport distribution. In tensorial form,

Ξ ¼
X
k

vk � vkτk (1.132)

a b

Fig. 1.6 (a) The circles are the experimental data corresponding to natural silicon [19] and the

black solid line the fit using the expression (1.125) for the thermal conductivity, and the BCM. The

red and blue lines represent the kinetic (κk) and the Ziman (κzG(μ)) contributions, respectively.
(b) The experimental data [19–22] are: TF4.5 μm (red filled circle), TF1.6 μm (green filled
square), TF830 nm (blue open triangle), TF420 nm (magenta filled star), TF100 nm (cyan open
square), TF30 nm (yellow open diamond), NW115 nm (red filled circle), NW 56 nm (green filled
square), NW37 nm (blue open triangle), and NW22 nm (magenta filled star). TF refers to thin

film and NW to nanowire. The corresponding lines (calculations) are: for TFs, solid (red online),
dash (green online), dotted (blue online), dashed dot (magenta online), dash dot dot (cyan online),
and short dash (yellow online), respectively. For NWs, solid (red online), dash (green online), dot
(blue online), and dash dot (magenta online), respectively
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The transport distribution needs the electron velocity, which can be obtained

from the derivative of the energy. But the approach followed by Scheidemantel

et al. [24] is to calculate the velocity as

vn;k ¼ 1

m
pn;k ¼

1

m
hψn;kjp̂jψn;ki (1.133)

i.e. from the intraband optical matrix elements. They use the WIEN2k-package [25]

to calculate the transport coefficients in Bi2Te3. Doping is introduced within the

rigid-band model approximation, i.e. the bands are considered unchanged (the

same effective masses), independently of the doping level. The relaxation times

are assumed to be constant, τ ¼ 2�10 �14 s, which seems to give a good agreement

with the experiment. In principle, besides some assumptions, the only parameter

used in the model is the relaxation time, chosen to fit the experimental data. Ir order

to get some more information on the behavior of the Seebeck coefficient, taking

into account that the integral is limited to a small region given by ∂ f0∂ ε � 5 kBT,
the transport density has been approximated by

ΞðεÞ ¼ aðε� μÞ þ b (1.134)

and the power factor P F ¼ σ S2 can be calculated as

σS2 ¼ a2

b
(1.135)

The power factor increases quadratically with the slope of the transport density.

The optimum power factor is around 50 meV above the conduction band for n-type
doping and 100 meV below the valence band for p-type Bi2Te3. The problem is that

in highly doped materials the thermal conductivity also increases. Actually, the

highest Z T is obtained for p-type doping and is of the order of 0.8. The theoretical

model fails for heavily doped Bi2Te3. The reason could be the failure of the rigid-

band approximation.

In a more recent work, D. J. Singh [26] calculated the doping dependence

thermopower in lead telluride. He uses a computer code, BOLTZTRAP, developed

for the integration of the transport coefficients within the BZ. The first principle

calculations are also done with WIEN2k and the rigid-band approximation is

considered through the whole doping variation. Figure 1.7a shows the calculated

thermopower of PbTe [26], together with the experimental data provided by

[27–29], where PbTe and some nanostructures with different doping levels are

analyzed. Figure 1.7b shows the predicted Seebeck coefficient for n-type doping

and the approximation given by Harman [30].
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1.5 Phonon BTE Using Ab Initio Methods

In the last few years, the calculation of phonon thermal conductivity using ab initio
techniques has also become possible. The first stage to the calculation of thermal

properties due to phonons is the knowledge of the phonon dispersion relations. The

dispersion relations are the solutions of the equation

X
βκ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
MκMκ0

p Dαβðκ; κ0; qÞeβκ0 ðqÞ¼ ω2eακðqÞ ; (1.136)

where Dα β(κ, κ 0; q) is called dynamical matrix and eακ the phonon eigenvectors

(atomic displacements corrected with the square root of the atomic masses). The

dynamical matrix has the form
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Fig. 1.7 Comparison of the

calculated Seebeck

coefficient at 300 K [26]

with available experimental

data (a) for p-type and (b)

n-type doping, a function of

the doping level. The

experimental data used for

the comparison in (a) are

from [27–29] and the

dashed line in (b) is a fit

given by Harman [30]
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Dαβðκ; κ0; qÞ ¼
X
l0

Φαβðlκ; l0κ0Þeiq�ðRl�Rl0 Þ: (1.137)

The interatomic force constants (IFC) Φα β(l κ, l
0 κ0) can be directly calculated

from density functional theory. The procedure followed byWard and Broido [31] is

the following: the IFCs in the direct space are calculated using the fast Fourier

transform technique on a set of IFCs determined in an uniform grid in the reciprocal

space. The matrix of reciprocal space harmonic IFCs is a combination of an

electronic and an ionic part:

~Φαβðκκ0; qÞ ¼ ~Φel
αβðκκ0; qÞ þ ~Φion

αβ ðκκ0; qÞ ¼
1

N

@2εtot
@u	κ;αðqÞ@uκ0;βðqÞ

(1.138)

and are given by the second derivative of the total energy with respect to the

displacements in the reciprocal space (eigenvectors divided by the square root of

the masses). The third order anharmonic IFCs can be evaluated first in the recipro-

cal space,

~Φαβγðκκ0κ00; qq0q00Þ ¼ @3εtot
@uκ;αðqÞ@uκ0;βðq0Þ@uκ00;γðq00Þ : (1.139)

The anharmonic IFCs are symmetric in the three sets fκ; α; qg and can be

expanded into six terms. As stated by the “2n + 1” theorem, it is enough to keep

terms in first order perturbation theory in the calculation of second order terms.

Once we have the IFCs in the reciprocal space, we can build the IFCs in the real

space within the given approximation.

1.5.1 Linearized Boltzmann Transport Equation

The lattice thermal conductivity can be calculated using the linearized Boltzmann

transport equation:

vλ � rN0;λ ¼ vλ � rT
@N0;λ

@T

� �
¼ @Nλ

@t

� �
scatt

(1.140)

where λ � ν, q, ν being the phonon branch. Three phonon scattering rates are

calculated using the Fermi-golden rule:

W�
λλ0λ00 ¼

�hπ

4N
N0;λ N0;λ0 þ

1

2
� 1

2

� �
N0;λ00 Φ�

λλ0λ00
�� ��2 δðωλ � ωλ0 � ωλ00 Þ

ωλωλ0ωλ00
(1.141)
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and the phonon-impurity via

Wimp

λλ0 ¼ π

2
gωλωλ0N0;λðN0;λ0 þ 1Þ

X
κ

eκλeκλ0j j2δðωλ � ωλ0 Þ ; (1.142)

where g, the mass defect parameter has been already defined in (1.128). The total

scattering rate is

Wλ ¼
X
λ0λ00

Wþ
λλ0λ00 þ

1

2
W�

λλ0λ00

� �
þ
X
λ0

Wimp

λλ0 (1.143)

and a relaxation time τλ can be defined as

τλ ¼ N0ðN0 þ 1Þ
Wλ

_; (1.144)

The lattice thermal conductivity can be calculated through the expression

κL ¼ 1

3

1

ð2πÞ3
X
ν

ð
Cðων;qÞvν;qτν;qd3q ; (1.145)

where C(ωλ), the phonon heat capacity, has already been defined in Eq. (1.85).

Even when the solution of the Boltzmann equation for phonons is more complex

than for electrons, it is also possible to analyze thermal transport by phonons in

nanostructures using the BTE. Recently, W. Li et al. [32] have calculated the

phonon thermal conductivity in silicon and diamond nanowires using the theory

described above. The additional difficulty comes from the fact that the nanowires

are limited in the space. Several approximations have been made. First, only

phonon–phonon scattering and boundary scattering have been considered. The

boundaries are assumed to be completely rough, the specularity parameter being

p ¼ 0. Finally, an average of the relaxation time in the section of the nanowire is

considered. Figure 1.8 shows the results of the calculations for several diamond and

silicon nanowires are shown. Obviously, the thermal conductivity decreases with

decreasing diameter and size effects are more important in diamond. The thermal

conductivity is larger in the [001] direction, while in silicon they are similar and

actually the larger thermal conductivity is temperature dependent. Finally, the

maximum in the thermal conductivity in diamond is around 200 K, while in silicon

is around 70 K. This is due to the fact that phonons are more energetic in diamond

and a higher temperature is needed to have a similar phonon–phonon scattering rate

in comparison with silicon. This result can be also related to the different Debye

temperatures, looking at the expressions of the relaxation times for N- and

U-processes given by Eqs. (1.130) and (1.129).

In conclusion, we have analyzed the thermal properties of semiconductors and

metals in bulk and some semiconductor nanostructures, based on the Boltzmann
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transport equation. A similar treatment can be assumed in the transport of electrons

and phonons, based on the relaxation time approximation. Some ab initio

approaches have also been considered to calculate thermal properties related to

electron and phonon transport. Although first principles are still far from giving a

complete physical approach to the problem, it helps to understand the origin of the

increase or reduction in the thermal conductivity in nanostructures.
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Chapter 2

Electron Transport Engineering

by Nanostructures for Efficient

Thermoelectrics

Je-Hyeong Bahk and Ali Shakouri

Abstract We theoretically investigate nanoscale structures such as nanoparticles

embedded in bulk materials as a means of improving the thermoelectric energy

conversion efficiency. We focus on the impact of such nanostructures on the

electron transport in the host material, and discuss the enhancement of the thermo-

electric power factor and thus the figure of merit. Nanostructures embedded in

thermoelectric materials can create potential variations at the nanoscale due to

the hetero-interfaces, which can alter the transport of charge carriers in the host

material to enhance the Seebeck coefficient and the power factor. The energy-

dependent electron scattering times induced by nanoparticles are calculated using

the partial wave method. Thermoelectric transport properties are then calculated

based on the linearized Boltzmann transport theory with the relaxation time

approximation for various thermoelectric materials such as ErAs:InGaAs, PbTe,

and Mg2Si. The effects of different kinds of nanoparticles including single-phase

ionized metallic nanoparticles and core–shell nanoparticles embedded in semicon-

ductors are investigated in these semiconductors. Finally the electron energy

filtering scheme is discussed to further enhance the thermoelectric energy conver-

sion efficiency.

2.1 Introduction

In the past few decades, thermoelectric energy conversion has drawn keen attention

as a viable candidate for waste heat recovery and hotspot cooling applications

[1, 2]. More than 55 % of energy generated in the society is rejected as a form of

heat [3]. Thermoelectric (TE) devices directly convert heat energy into electricity
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or vice versa, so they can be used in conjunction with heat engines such as in

automobiles and enhance the fuel efficiency greatly. However, one of the reasons

that TE devices have not been largely employed in many practical applications is

their low energy conversion efficiency primarily limited by the inherent thermo-

electric properties of the materials used. The thermoelectric efficiency is deter-

mined by the unitless figure of merit of the TE material, ZT ¼ S2σT/(κlat + κelect),
where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute

temperature, and κlat and κelect are the lattice and electronic thermal conductivities,

respectively. Conventional TE materials have ZT ~ 1 in their optimal temperature

range. Recently, significant enhancements of ZT have been reported for various

nanostructured TE materials [4–6]. This breakthrough is mainly due to significant

reduction of the lattice thermal conductivity of the TE materials via effective

phonon scattering at the boundaries of nanostructures.

However, there have not been many reports so far on the enhancement of the

numerator of ZT, the so-called power factor, S2σ. Since the power factor is related to
charge carrier transport while the lattice thermal conductivity is to phonon trans-

port, the enhancement of power factor requires completely different approaches.

Also, the well-known trade-off relation between the Seebeck coefficient and the

electrical conductivity renders such enhancement of power factor to be very

difficult. Recently, band engineering through alloying and doping has been reported

to be an effective way of achieving significant enhancement of power factor over

the conventional bulk materials. Pei et al. [7] showed that the band convergence of

more than 12 valence valleys in doped p-type PbTe1�xSex alloys can achieve a large

power factor enhancement and thus ZT ~ 1.8 at 850 K. Band convergence enhances

the Seebeck coefficient by increasing the electronic density of states near the Fermi

level without much sacrificing the carrier mobility. The effect of band convergence

has also been demonstrated in n-type Mg2Si1�xSnx alloys, in which Sn contents of

0.6–0.7 showed the highest power factor, and achieved ZT ~ 1.3 at 700 K along

with a reduction of lattice thermal conductivity by enhanced phonon alloy scatter-

ing [8]. Resonant impurities such as Tl in PbTe can also modify the density of states

(DOS) in the bulk to enhance the power factor [9]. The Tl impurity levels create

resonances within the valence band of PbTe, and these resonant states are

non-localized to contribute to the density of states. The sharp feature in DOS by

the resonances increases the asymmetry in DOS around the Fermi level, so the

Seebeck coefficient could be greatly enhanced. Another interesting strategy for

power factor enhancement that was recently reported is the modulation doping in

bulk nanocomposite materials. Zebarjadi et al. [10] demonstrated that by separating

a carrier-donating nanograin phase from the bulk phase, they were able to confine

the impurity scattering centers within the nanograins while carriers are transported

through the rest of the material with less scattering, so that the electrical conduc-

tivity of the nanocomposite was greatly enhanced with a relatively small reduction

of the Seebeck coefficient.

In this chapter, we investigate various nanostructures as additional carrier scatter-

ing centers in bulk materials as a way to modify the electron transport and enhance

the power factor. This work is based on, but not limited to, a series of the authors’
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previous papers: Refs. [11–14]. In Sect. 2.2, we summarize the fundamental electron

transport theory based on the Boltzmann transport with relaxation time approximation

for thermoelectric transport properties calculations. The calculations of electron scat-

tering time off of spherical nanoparticles based on the partial wave method are also

discussed in this section. In Sect. 2.3, we investigate single-phase nanoparticles having

a potential offset at the hetero-interface with the host matrix. Unionized and ionized

cases of nanoparticles with and without the Coulomb potential around them are

discussed for power factor enhancement over a wide temperature range. ErAs semi-

metal nanoparticles in InGaAlAs III–V semiconductors are highlighted as an example

later in the section. In Sect. 2.4, core–shell structured nanoparticles that create reso-

nances with free electrons in the band are discussed for power factor enhancement at

low temperatures. In Sect. 2.5, we discuss the electron energy filtering scheme as a

means of improving the Seebeck coefficient over a wide temperature range, and

show detailed calculation results for several well-known TE materials such as PbTe

and Mg2Si. Finally we conclude the chapter in Sect. 6.

2.2 Electron Transport in Semiconductors

2.2.1 Boltzmann Transport and Thermoelectric Properties

In thermal equilibrium, the distribution of electrons is given by the Fermi–Dirac

distribution,

f 0 r; kð Þ ¼ 1

1þ exp
E kð Þ � EF rð Þ

kBT rð Þ
� � (2.1)

where kB is the Boltzmann constant, EF(r) is the Fermi level referenced to the band

edge, and T(r) is the local temperature. The distribution function is a function of the

position r, and wave vector k. This equilibrium distribution is altered by the

existence of external fields, diffusion forces (∇EF), and temperature gradient

(∇T ). The transport of electrons is affected by collisions in the material.

Assuming the transport process is much slower than the relaxation process, and

employing the relaxation time approximation, the nonequilibrium distribution of

electrons, f(r,k), is determined by the Boltzmann transport equation [15, 16],

� f r; kð Þ � f 0 r; kð Þ
τ kð Þ ¼ v �∇rf þ eF

ħ
�∇k f , (2.2)

where τ(k) is the relaxation time, which is assumed to be only dependent on

momentum or energy, and thus independent of position. No magnetic field is

assumed from here on.
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To evaluate the position and momentum derivatives of the distribution function

under the assumption that the local deviation from equilibrium is small,

∇rf � ∇rf 0 ¼
∂f 0
∂EF

∇EF þ ∂f 0
∂T

∇T ¼ �∂f 0
∂E

∇EF � ∂f 0
∂E

E� EF

T

� �
∇T,

∇k f � ∇k f 0 ¼
∂f 0
∂E

∂E
∂k

¼ ∂f 0
∂E

ħv:

Then, (2.2) is rewritten as

f r; kð Þ ¼ f 0 r; kð Þ þ τ kð Þv �∂f 0
∂E

� �
� �E kð Þ � EF

T
∇T � e Fþ 1

e
∇EF

� �� �
:

(2.3)

The last term in (2.3) indicates the combined effect of the drift and diffusion

forces.

A variety of transport flux densities can be calculated using the nonequilibrium

distribution function. The electron number flux density JN(r), the electric current

density Je(r), and the energy flux density JU(r) are given for a single band

by [14]

JN rð Þ ¼
ð
d3k

4π3
v kð Þf r; kð Þ, (2.4)

Je rð Þ ¼
ð
d3k

4π3
�eð Þv kð Þf r; kð Þ, (2.5)

JU rð Þ ¼
ð
d3k

4π3
E kð Þv kð Þf r; kð Þ, (2.6)

and the thermal (heat) flux density JQ(r) is obtained from the Euler relation in

thermodynamics, JQ ¼ JU � EFJN [17],

JQ rð Þ ¼
ð
d3k

4π3
E kð Þ � EF rð Þ½ �v kð Þf r; kð Þ: (2.7)

Substituting (2.3) into (2.5) and (2.7) leads to

Je rð Þ ¼ e2L0F
0 � e

T
L1 �∇Tð Þ, (2.8)

JQ rð Þ ¼ �eL1F
0 þ 1

T
L2 �∇Tð Þ, (2.9)
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where F0 ¼ F + ∇EF/e is the net electric field combining the external electric field

and the electric field induced by the gradient of Fermi level or chemical potential,

and the transport coefficients Ln are defined by the following integral:

Ln ¼
ð
d3k

4π3
τ kð Þv2 kð Þ E kð Þ � EF½ �n �∂f 0

∂E

� �
: (2.10)

From the expressions for Je and JQ, various thermoelectric parameters such as

the electrical conductivity, the Seebeck coefficient, the electronic contribution to

the thermal conductivity, and the Peltier coefficient can be calculated and expressed

with the transport coefficients.

The electrical conductivity σ is defined as the proportionality constant between

the electrical current density and the electric field including the diffusion forces due

to the Fermi level gradient under the condition of uniform temperature such that,

Je ¼ σF
0
: (2.11)

By comparing (2.11) with (2.8), the electrical conductivity is found to be

σ ¼ e2L0: (2.12)

The Seebeck coefficient S is the proportionality constant between the net electric
field and the temperature gradient under the condition of no electric current such

that

F
0 ¼ S∇T

��
Je¼0

: (2.13)

From (2.8) under the condition that Je ¼ 0, the Seebeck coefficient is found

to be

S ¼ � 1

eT
L0

�1L1: (2.14)

The Peltier coefficient Π is defined as the proportionality constant between the

thermal current density and the electric current density under the condition of

uniform temperature such that

JQ ¼ ΠJej∇T¼0: (2.15)

By comparing (2.8) and (2.9) with ∇T ¼ 0, the Peltier coefficient becomes

Π ¼ � 1

e
L0

�1L1: (2.16)
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From (2.14) and (2.16), the Seebeck coefficient and the Peltier coefficient are

related as

Π ¼ TS: (2.17)

The electronic thermal conductivity κelect is defined as the proportionality con-

stant between the thermal current density and the temperature gradient under the

condition of no electric current,

JQ ¼ κelect �∇Tð ÞjJe¼0: (2.18)

From (2.8), (2.9), and (2.18),

κelect ¼ 1

T
L2 � L1L0

�1L1
� �

: (2.19)

All the transport coefficients can be rewritten as integrals over the electron

energy using the relation of ρDOS(E)dE ¼ dk/4π3, where ρDOS(E) is the density

of states as a function of energy, such that

Ln ¼ 1

e2

ð
σd Eð Þ E� EF½ �ndE, (2.20)

where the differential conductivity is defined as

σd Eð Þ ¼ e2τ Eð Þv2 Eð ÞρDOS Eð Þ �∂f 0
∂E

� �
: (2.21)

It is convenient to rewrite all the thermoelectric properties as integrals over the

electron energy with the differential conductivity as follows,

σ ¼
ð
σd Eð ÞdE, (2.22)

S ¼ � 1

eT

ð
σd Eð Þ E� EFð ÞdEð

σd Eð ÞdE
, (2.23)

κelect ¼ 1

e2T

ð
σd Eð Þ E� EFð Þ2dE� S2σT: (2.24)

The differential conductivity is a contribution of electrons at energy E to the

total conductivity. It is also called the transport distribution [18]. In order to

increase the electrical conductivity, the differential conductivity within the Fermi
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level window (∂f0/∂E) should be as large as possible. In other words, the Fermi

level should be as high as possible. On the other hand, in order to increase the

Seebeck coefficient, the asymmetry in the differential conductivity around the

Fermi level should be as large as possible, i.e., larger σd for E > EF and smaller

σd for E < EF. However, it is difficult to increase both S and σ at the same time

because the asymmetry in the differential conductivity becomes smaller as the

Fermi level increases in energy in typical bulk semiconductors, so that the

Seebeck coefficient decreases, and the electrical conductivity increases with

increasing Fermi level.

2.2.2 Band Structure and Multi-band Transport

In typical semiconductors, the dispersion relation in each band can be approximated

near the band extremum by modified Kane model [19],

E 1þ αEð Þ ¼ ħ2k2

2m� , (2.25)

where α is non-parabolicity, and m* is the effective mass. For low electron energies,

the conduction band can be assumed to be parabolic with α ¼ 0. But for high carrier

density and high temperature transport modeling it is important to use a

non-parabolic band because a large amount of carriers could fill up the band to

high energies and thus the parabolic band model is no longer valid.

The density of states (DOS) for a non-parabolic band is given by

ρDOS Eð Þ ¼
ffiffiffi
2

p
m�ð Þ3=2
π2ħ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ αE2

p
� 1þ 2αEð Þ: (2.26)

The electron velocity in one direction v(E) used in the differential conductivity

for a non-parabolic band is given by

v2 Eð Þ ¼ 1

3

1

ħ
∂E
∂k

� �2

¼ 2

3m�
E 1þ αEð Þ
1þ 2αEð Þ2 : (2.27)

For small band-gap semiconductors, or in the case of high temperature transport

where intrinsic carriers are significant, both the conduction band and the valence

band need to be taken into account when transport properties are calculated. Also,

many semiconductor materials have multiple valleys for conduction or valence

bands. Figure 2.1 shows the band structure of PbTe at 300 K as an example. PbTe

has a direct band gap of 316 meV at the L valley in the Brillouin zone at 300 K, and

has a secondary valence band at the Σ valley.
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For multiple bands, electron density n and hole density p are obtained by the

summation of each valley’s carrier density as

n ¼
X
i

ð1
0

ρDOS, i Eð Þf 0, i Eð ÞdE, (2.28)

p ¼
X
j

ð1
0

ρDOS, j Eð Þf 0, j Eð ÞdE: (2.29)

where f0,i(E) ¼ 1/[1 + exp((E � EF,i)/kBT )] is the Fermi–Dirac distribution of the

i-th conduction valley with the relative position of Fermi level EF,i referenced to the

i-th valley edge, and ρDOS,i(E) is the density of states of the i-th conduction valley.

For the valence valleys, an index j is used. For example, as shown in Fig. 2.1, the

first valence band of PbTe at L valley has its relative Fermi level at 36 meV from its

band edge, and the second valence band has its relative Fermi level at –8 meV from

its band edge for 1 � 1019 cm�3 hole density at 300 K, since the band offset

between the two valence bands is 44 meV.

If there are total ND
+ ionized donors and total NA

� ionized acceptors in the

material, the charge neutrality gives

nþ N�
A ¼ pþ Nþ

D : (2.30)

Conventionally, (ND
+ � NA

�) is called the doping density for n-type semicon-

ductors, and (NA
� � ND

+) is called the doping density for p-type semiconductors.

If the doping density is known, one can determine the Fermi level by an iterative

search that satisfies (2.30) with calculations of n and p using (2.28) and (2.29).

Once the Fermi level is determined, the electrical conductivity, the Seebeck

coefficient, and the electronic thermal conductivity for each carrier type (subscript e

for electrons and h for holes), can be calculated by

σe ¼
X
i

ð
σd, i Eð ÞdE, (2.31)

Fig. 2.1 Band structure of

PbTe at 300 K [20]. Fermi

level (dotted line) for hole
density of 1 � 1019 cm�3 is

also displayed
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σh ¼
X
j

ð
σd, j Eð ÞdE, (2.32)

Se ¼ �
X
i

1

eT

ð
σd, i Eð Þ E� EF, ið ÞdE

σe
, (2.33)

Sh ¼ þ
X
j

1

eT

ð
σd, j Eð Þ E� EF, j

� �
dE

σh
, (2.34)

κelect, e ¼
X
i

1

e2T

ð
E� EF, ið Þ2 σd, i Eð ÞdE�Se

2σeT, (2.35)

κelect, h ¼
X
j

1

e2T

ð
E� EF, j

� �2
σd, j Eð ÞdE�Sh

2σhT, (2.36)

where σd,i (σd,j) is the differential conductivity of the i-th conduction valley (the j-th
valence valley) calculated with the Fermi level referenced to its valley extremum.

Then, the total electrical conductivity and the total Seebeck coefficient in the

bipolar transport are obtained by

σ ¼ σe þ σh, (2.37)

S ¼ σeSe þ σhSh
σe þ σh

: (2.38)

The electronic thermal conductivity is not only the sum of the partial electronic

thermal conductivity of each type in bipolar transport. Another bipolar term due to

the bipolar thermodiffusion effect must be added, which is given by [21]

κbi ¼ σeσh
σe þ σh

Se � Shð Þ2T: (2.39)

This bipolar electronic thermal conductivity can be significantly large particu-

larly at high temperatures even if the intrinsic carrier densities are much lower than

the doping density because the Seebeck coefficients of the two types have opposite

signs, so they are added up in (2.39). Also κbi increases proportionally with

temperature.

The total electronic thermal conductivity is thus obtained as

κelect ¼ κelect, e þ κelect, h þ κbi: (2.40)

The electronic thermal conductivity can be a limiting factor in ZT at high

temperatures and at high doping densities, especially when the lattice thermal

conductivity was significantly reduced by nanostructures.
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2.2.3 Electron Scattering by Spherically
Symmetric Potentials

The scattering time, or relaxation time, τ(E) is a function of energy, and determined

by multiple distinct scattering mechanisms that have different energy dependencies.

The acoustic phonon deformation potential scattering τAC(E), the ionized impurity

scattering τII(E), the polar optical phonon scattering τPOP(E), alloy scattering

τAL(E), and defect scattering τD(E) are important scattering mechanisms in most

semiconductors. Their reciprocals, or scattering rates, are arithmetically added to

make the total scattering rate such that

1

τ Eð Þ ¼
1

τAC Eð Þ þ
1

τII Eð Þ þ
1

τPOP Eð Þ þ
1

τAL Eð Þ þ
1

τD Eð Þ þ � � � (2.41)

In this chapter, we are particularly interested in adding a new scattering mech-

anism by spherical nanoparticles. For this, an accurate calculation of the nanopar-

ticle scattering time is necessary, which can then be added to the total scattering

time in (2.41) to study their effects on the transport properties such as Seebeck

coefficient, electrical conductivity, and electronic thermal conductivity.

Here, we assume that the nanoparticle scattering is elastic, i.e., momentum and

energy are conserved by the scattering. In an elastic scattering, the scattering time τ
can be expressed in terms of the total scattering cross section σm, the concentration
of scatterers, i.e., nanoparticle density Np, and the carrier velocity v, which together
yield a scattering rate as

1

τ
¼ Npvσm, (2.42)

Since we are particularly interested in the “momentum” scattering time,

which is the average time interval that electron momentum is altered by the

scattering, the total momentum scattering cross section σm is used in (2.42) and is

given by [22]

σm ¼
ðð

D θð Þ 1� cos θð ÞdΩ ¼ 2π

ðπ
0

D θð Þ 1� cos θð Þ sin θdθ, (2.43)

whereD(θ) is the differential scattering cross section that is a function of the angle θ
between the incident and the final wave vectors as shown in Fig. 2.2, and

dΩ ¼ dφdθ from the spherical coordinates (r, θ, φ). Note that the differential

scattering cross section is independent of the azimuthal angle φ. The (1 � cosθ)
term in the integrand of (2.43) is a weighting factor that quantifies the degree to

which the incident carrier has its incident momentum deflected.

The differential scattering cross section is defined for a given angle between the

incident wave vector k1 and the final vector k2 as
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D θð Þ ¼ 1

8π3v

ð1
0

R12k2
2dk2, (2.44)

where k2 is the magnitude of k2, and R12 is the transition rate from k1 to k2.

In the Born approximation, the calculation of the transition rate R12 between the

two states is based on the Fermi’s Golden rule and the energy conservation before

and after the transition such that

R12 ¼ 2π

ħ
Hk1, k2

�� ��2δ U k2ð Þ � U k1ð Þ½ �: (2.45)

The delta function in (2.45) is the energy conversion before and after the

transition. The matrix element or the perturbation Hamiltonian Hk1,k2 is defined

by the usual quantum-mechanical expectation value for a potential V(r) as

Hk1, k2 ¼ ψk2


 ��V rð Þ ψk1

�� �
, (2.46)

where ψki is the wave function that satisfies the Schrödinger equation for the

potential V(r). In the assumption that collisions with a small momentum transfer

dominate scattering and the overlap factor is close to unity, then these matrix

elements can be solved as

HBorn
k1, k2

¼
ð
V rð Þei k1�k2ð Þ�rd3r: (2.47)

As seen in (2.47), the matrix element is the Fourier transform of the potential V(r)
from the spatial coordinate to momentum space in the Born approximation. For an

arbitrary potential V(r) that is only a function of radial position, the momentum

scattering rate is finally calculated in Born approximation using (2.42) along with

(2.43)–(2.47) as

Fig. 2.2 Schematic of an

electron scattering off a

nanoparticle with a

momentum change from

wave vector k1 to k2 with

angle θ between them, and

the wave function change

from ψk1 to ψk2. V(r) is the
spherical electrostatic

potential around the

nanoparticle
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1

τBorn
¼ 8π �m�Np

ħ3
1

k3

ð2k
0

ð1
0

V rð Þ � r sin xrð Þ
x

dr

� �2
x3dx: (2.48)

The partial wave (PW) method gives the exact solution to the scattering problem

for a spherically symmetric potential V(r) that either vanishes beyond a certain

distance or decrease exponentially with r [22, 23]. In the large r region where the

potential V(r) can be neglected, the wave function that satisfies the time-

independent Schrödinger equation must have both the incident wave ψ in(r) and

the scattered wave ψ sc(r),

ψ rð Þ ! ψ in rð Þ þ ψ sc rð Þ as r ! 1, (2.49)

And the scattered wave function ψ sc must represent an outward radial flow of

carriers in the form of

ψ sc rð Þ ¼ f k; θð Þ e
ikr

r
, (2.50)

where the amplitude f of the outgoing spherical wave r�1exp(ikr) is called the

scattering amplitude, and depends on the magnitude of the wave vector k and the

radial direction θ (but independent of the azimuthal angle because the system is

completely spherically symmetric). This scattering amplitude determines the dif-

ferential scattering cross section as

D θð Þ ¼ f k; θð Þj j2: (2.51)

It is noted that the differential scattering cross section is not only a function of

the angle between the incident and scattered wave vectors θ, but also a function of

k or energy.
For a spherically symmetric potential, the solution to the Schrödinger equation

can be expanded in series of Legendre polynomials, which form a complete set in

the interval �1 � cos θ � 1, as

ψ r; θð Þ ¼
X1
l¼0

Rl k; rð ÞPl cos θð Þ, (2.52)

where l is the angular momentum quantum number, Pl(x) is the l-th Legendre

function. Each term in the series in (2.52) is known as a partial wave. Now solving

the Schrödinger equation is reduced to find the partial wave amplitude Rl(k,r) for
each l.

However, one does not have to find all the partial wave amplitude in order

to calculate the scattering amplitude f(k, θ), and the scattering cross section.

Instead, one needs to find a parameter called the phase shift δl(k) for each l. The
phase shift can be determined by the numerical solution of the Schrödinger
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equation inside the nanoparticles and the boundary conditions using the shooting

method [24].

Once the phase shift is found, then the scattering amplitude can also be expanded

in a series of the partial waves as [23]

f k; θð Þ ¼ 1

k

X1
l¼0

2lþ 1ð Þeiδl sin δlPl cos θð Þ, (2.53)

which depends only on the phase shift δl(k). The differential scattering cross section
is obtained from (2.51) and (2.53) as

D θð Þ ¼ 1

k2

X1
l¼0

2lþ 1ð Þeiδl sin δlPl cos θð Þ
�����

�����
2

: (2.54)

The total momentum scattering cross section is given from (2.43) and (2.54)

to be

σm θð Þ ¼ 4π

k2

X1
l¼0

2lþ 1ð Þ sin 2δl �
X1
l¼0

2l cos δl � δl�1ð Þ sin δl sin δl�1

" #
: (2.55)

Finally the partial wave method can give the exact momentum scattering rate

using (2.42) and (2.55) for any spherically symmetric potential V(r).

2.3 Single-Phase Nanoparticles

2.3.1 Scattering Potential Around Nanoparticles

Since nanoparticles can donate electrons to the matrix, they can be locally posi-

tively charged. The charge neutrality principle may not be observed at small

scale around localized charge sources. Due to the positive charge inside the

nanoparticles, a coulomb potential is induced outside the nanoparticle, which is

proportional to the charge Q inside the nanoparticle, and 1/r where r is the radial

distance from the center of the nanoparticle. This coulomb potential makes the band

edge near the nanoparticle bend upward locally, and makes the potential inside the

nanoparticles lower than the surrounding potential.

This band bending, however, attracts a small number of electrons toward the

interface because of the coulomb attraction. This charge redistribution is

nonuniform with the distance from the interface, but a larger density of electrons

is accumulated at closer distance from the interface. The perturbation in potential

δV(r) due to the local charge redistribution δn(r) is governed by the Poisson
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equation in a spherical coordinate, assuming only dependence on the radial

distance r,

1

r2
d

dr
r2
dδV rð Þ
dr

� �
¼ e

εSε0
δn rð Þ, (2.56)

where εs is the static relative dielectric constant of the matrix. The δn is then related
to δV as

δn ¼ ∂n
∂V

δV ¼ ∂n
∂EF

∂EF

∂V
δV ¼ ∂n

∂EF

eδV, (2.57)

where EF is the Fermi level, and in the last step, the fact that the Fermi level, which

is relative to the conduction band edge, is proportional to the potential such as

EF ¼ const. + eV(r), has been used. The δn/δEF in the farthest right hand side of

(2.57) is determined by the Fermi–Dirac distribution f0 as

∂n
∂EF

¼
ð1
0

ρDOS Eð Þ df 0
dEF

� �
dE: (2.58)

By plugging (2.57) into (2.56),

1

r2
d

dr
r2
dδV rð Þ
dr

� �
¼ e2

εSε0

∂n
∂EF

δV ¼ δV

L2D
, (2.59)

where the last step defines the screening length LD, such that

LD ¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εSε0

∂n=∂EF

r
, (2.60)

The solution to (2.59) is

δV ¼ A

r
e�r=LD : (2.61)

The electric field at the interface of the nanoparticle that has a charge Q inside is

determined by the Gauss’s law as jE(r ¼ a)j ¼ Q/(4πr2εsε0), which is in the radial

direction. This value of electric field gives a boundary condition for the potential

described in (2.61) at r ¼ a, which leads to the determination of the proportionality

factor A as A ¼ Q/(4πεsε0) · LDe
a/LD/(a + LD). It is noted that A becomes simply

Q/(4πεsε0) for point-like charge sources (a ! 0). The correction factor, LDe
a/LD/

(a + LD), in A is, however, typically close to unity because the screening length is

much larger than the size of nanoparticles.

Inside the nanoparticle, potential is assumed to be constant to the first approx-

imation as we assume all net charge lies on the boundary r ¼ a. With the potential
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offset, V0, at the hetero-interface between the ErAs nanoparticle and the matrix, the

potential profile becomes

V rð Þ ¼ V0 � Q

4πεsε0
� LD
a aþ LDð Þ ¼ const:

�
0 < r < a

�
:

¼ � Q

4πεsε0

LDe
a=LD

aþ LD
� 1
r
e�r=LD a <ð Þ:

(2.62)

The potential offset (or band offset) V0 is readily determined as the difference

between the Fermi level in the ErAs nanoparticle and the conduction band mini-

mum in the matrix, or the Schottky barrier height. When the nanoparticle Fermi

level is higher than the conduction band minimum in the matrix, V0 is positive

(potential barrier). V0 is negative (potential well) when the Fermi level in the

nanoparticle is lower than the conduction band minimum.

Figure 2.3 shows several potential profiles around nanoparticles with Q ¼ 0, 1e
and 2e in InGaAs lattice matched to InP. For unionized nanoparticles (Q ¼ 0),

there is no band bending, and the potential is step-like within the size of nanopar-

ticle. When one charge per particle is transferred to the matrix or Q ¼ 1e, the
potential outside the nanoparticle is very similar to that of an ionized impurity as

the correction factor LDe
a/LD/(a + LD) is close to unity. Nanoparticles have a finite

potential inside, while ionized impurities have a potential diverging to�1 near the

charge center as an ionized impurity is a point charge.

2.3.2 Nanoparticle Scattering Time

Now the electron-nanoparticle scattering time can be calculated for the potential

profile given by (2.62), using (2.48) in Born approximation, or using the partial

wave method described in Sect. 2.2.3. Here we use the partial wave method for the

Fig. 2.3 Potential profile

V(r) around a nanoparticle

with varying Q ¼ 0

(unionized), 1e, and 2e and
a fixed potential offset

V0 ¼ 50 meV. The

screened Coulomb potential

by an ionized impurity is

also shown for comparison
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exact scattering calculations. For weak band bending, small band offset, or small

size of nanoparticles, the Born approximation is still a good approximation. It has

been found that the Born approximation produces the same results as the partial

wave method within 5 % errors for the 2.4 nm diameter nanoparticles of 0.6 %

volume fraction in InGa(Al)As with band bending as large as 200 meV, and the

band offset at the interface as large as 	200 meV. Also, one of the advantages of

the Born approximation is that it can easily include a non-parabolic band in the

scattering calculations, which is very hard to include in the partial wave method.

The partial wave method used in this chapter assumed a parabolic band for the

scattering time calculations.

Figure 2.4 shows the calculated nanoparticle scattering times as a function of

energy for various potential profiles in the case of no band bending with no

ionization of the nanoparticles. Thus, these nanoparticles have only a potential

offset at the interface with the host matrix. Two parameters are adjustable for these

unionized nanoparticles: one is the potential offset V0, and the nanoparticle radius a.
As one can see in Fig. 2.4a, the larger the magnitude of the potential offset is, the

stronger the nanoparticle scattering is. According to the Born approximation from

(2.48), the scattering time is inversely proportional to jV0j2. In the partial wave

method, this is roughly true, but the scattering time also depends on the sign of the

potential offset. When the potential is a well, i.e., a negative sign of V0, the

scattering is stronger (the scattering time is smaller) than those when the potential

is a barrier of the same magnitude but with a positive sign. Since the energies of free

electrons are positive above the conduction band minimum, the potential height of a

barrier that an electron of positive energy experience is smaller than the potential

depth of a well of the same magnitude jV0j from the electron energy. Therefore, a

potential well scatters electrons stronger than a potential barrier does as shown in

Fig. 2.4 Nanoparticle scattering times as a function of electron energy: (a) for varying potential

offset (V0) with a fixed nanoparticle radius a ¼ 1 nm, and (b) for varying nanoparticle radius

a with a fixed potential offset. InGaAs lattice matched to InP with electron effective mass of

0.041 m0 and the nanoparticle density of 1 � 1018 cm�3 were assumed for all the curves
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Fig. 2.4a. However, the Born approximation does not capture this difference

between a well and a barrier, and typically the scattering time calculated using

the Born approximation falls in between the exact scattering times calculated by the

partial wave method for the well and barrier [23].

Also, the scattering is stronger when the size of the nanoparticle is larger as

evidenced by Fig. 2.4b. The scattering rate increases rapidly with the nanoparticle

size. For example, from Fig. 2.4b, the scattering time is approximately proportional

to 1/a5 for the radius range from 1 to 2 nm. This is close to the Rayleigh scattering

regime, which has a 1/a6 dependency. Note that the nanoparticle density was fixed

to be 1 � 1018 cm�3 for all the sizes in Fig. 2.4b. The nanoparticle density is

proportional to 1/a3 for a fixed volume fraction of nanoparticle material, and the

scattering time is proportional to the density. Therefore, if we fix the volume

fraction of nanoparticles instead of the density, the scattering time becomes pro-

portional to 1/a2. In other words, if one uses the same volume fraction of material to

form nanoparticles, and finds that different sizes of nanoparticles are formed under

different growth conditions, then the larger-size nanoparticle material should have a

lower mobility of electron due to the stronger nanoparticle scattering in proportion

to the square of the nanoparticle size.

Another important characteristic of unionized nanoparticle scattering time is

that the scattering time decreases with increasing energy as shown in Fig. 2.4. In

the energy range of interest, the de Broglie wavelengths of electrons are on the

order of 100 nm in typical semiconductor materials, which is much larger than

the size of nanoparticles of 2–4 nm in diameter. In such a case, the scattering is

Rayleigh-like, and the scattering rate becomes approximately proportional to 1/λ4.
Since the electron wavelength is inversely proportional to the energy E, the

scattering rate is thus proportional to E4, or the scattering time is proportional

to 1/E4 in the Rayleigh scattering regime. This energy dependency is well observed

in Fig. 2.4.

When a nanoparticle is ionized, electrons are transferred from the nanoparticle to

the host matrix, so that a Coulomb potential is created around the nanoparticle just

like ionized impurities as shown in Fig. 2.3. This Coulomb potential is slowly

varying in space in contrast to the sharp offset at the interface. These two distinct

features, the slowly varying Coulomb potential and the sharp potential offset,

determine the scattering time in different energy regions.

From (2.44) and (2.45), the differential scattering cross section is proportional to

the magnitude of the matrix element. Also, the matrix element is the Fourier

transform of the potential V(r) from the spatial coordinate to the momentum

space in Born approximation according to (2.47). For the screen Coulomb potential

of an ionized impurity V(r), which is

V rð Þ ¼ � Q

4πεsε0

1

r
e�r=LD , (2.63)
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the matrix element becomes from (2.47)

Hk1,k2 ¼
Q

εrε0 1=LDð Þ2 þ 2k sin θ=2ð Þð Þ2
h i , (2.64)

where k1 and k2 have the same magnitude of k, and θ is the angle between the two

momentum. Equation (2.64) tells that the matrix element decreases with increasing

magnitude of momentum or increasing energy, and also decreases with increasing

angle from 0 to π. This indicates that the ionized impurity scattering becomes weaker

as the electron energy increases, and favors a small angle scattering. This is because,

by the 3D Fourier transform relation between the potential profile and the matrix

element, the slowly varying potential in space is transformed into the low-frequency

(low-energy) components of the matrix element. On the other hand, the sharp

potential offset is transformed into the high-frequency components of the matrix

element. As a result, the scattering by the Coulomb potential is dominant in the

low-energy region, while the scattering by the potential offset at the interface is

dominant in the high-energy region for the ionized nanoparticle scattering.

The comparison of differential scattering cross sections for an unionized nano-

particle (Q ¼ 0) and an ionized nanoparticle (Q ¼ 1e) reveals the distinct features
of the two scatterings as a function of electron energy and scattering angle. As

shown in Fig. 2.5a, an unionized nanoparticle scatters higher-energy electrons more

strongly than lower-energy ones, and the strength of the scattering is relatively

uniform over a wide range of scattering angle. On the other hand, an ionized

nanoparticle scatters lower-energy electrons more strongly than higher-energy

ones, and only small scattering angles is preferred as shown in Fig. 2.5b. In

particular, the low-energy scattering by the Coulomb potential around the nano-

particle is quite much stronger than the scattering by the potential offset as one can

see the clear difference in the magnitude of differential cross section by comparing

the color bars of the two figures in Fig. 2.5.

Figure 2.6 shows the calculated nanoparticle scattering time as a function

of energy for various Q and sizes. In Fig. 2.6, the same carrier density (Ne) of

1 � 1018 cm�3 is used for every curve. For a given Q, the required density of

nanoparticles (Np) is obtained from the definition of Q as Q ¼ e(Ne/Np). When Q is

larger than 1e, indicating that a nanoparticle donates more than one electron, the

nanoparticle scattering becomes stronger than the ionized impurity scattering at the

same doping density due to the stronger Coulomb potential. However, for Q ¼ 1e,
the nanoparticle scattering is weaker than the ionized impurity scattering as shown

in Fig. 2.6. This is because the nanoparticle potential does not possess the very deep

well near the scattering center that strongly attracts electrons to ionized impurities.

When the nanoparticle radius is smaller than 0.5 nm, more of the impurity well is

present and its scattering time is almost identical to the ionized impurity scattering

time. For larger nanoparticles, the scattering time increases with increasing radius

over most of the energy range of interest. However, for radii 2.0 nm and larger the

scattering time starts to roll over at high energies due to the effect of the potential

offset at the hetero-interface, which becomes stronger as the radius increases.
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2.3.3 Power Factor Enhancement in III–V Semiconductors

In this section, we show that the power factor can be enhanced by ionized

nanoparticles with Q ¼ 1e. These ionized nanoparticles can replace the ionized

impurities with weaker scatterings, so that the electrical conductivity can be

enhanced with a relatively small sacrifice of Seebeck coefficient to enhance the

power factor. For Q larger than 1e, the ionized nanoparticle scattering is stronger

Fig. 2.5 Differential

scattering cross section in

units of πa2 (cross section of
the nanoparticle) as a

function of electron

momentum (polar angle and

magnitude) for (a) an

unionized (step-potential)

nanoparticle (Q ¼ 0) and

(b) an ionized nanoparticle

(Q ¼ 1e). V0 ¼ 0.2 eV and

a ¼ 1 nm for both figures

Fig. 2.6 Nanoparticle

scattering times as a

function of electron energy

for varying Q and radius

a in InGaAs lattice matched

to InP. (Figure from

Ref. 11)
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than the ionized impurity scattering. Therefore, the electrical conductivity and

power factor are not enhanced over the bulk with conventional ionized single-

atom dopants. If the nanoparticles are not ionized, i.e., Q ¼ 0, the ionized impuri-

ties are still needed to dope the semiconductor, and thus the nanoparticles are only

additional scattering centers for carriers, reducing the electrical conductivity. The

Seebeck coefficient is not enhanced either because the unionized nanoparticle

scattering has its strength increasing with energy. Hot electrons are scattered

more than cold electrons in this case, so that the entropy transport per carriers is

suppressed, thereby reducing the Seebeck coefficient.

Figure 2.7 shows that the electrical conductivity, and Seebeck coefficient of

In0.53Ga0.47As as a function of carrier density at 300 K for various nanoparticle

sizes with ionization Q ¼ 1e, calculated based on the Boltzmann transport equation

under the relaxation time approximation described in Sect. 2.2.1. It has recently

been reported that rare-earth doped InGaAlAs has achieved a ZT ~ 1.3 at 800 K

[13]. In the III–V semiconductor, the ionized impurity scattering can be a dominant

scattering in the material so that the replacing nanoparticle scattering can make a

big impact in mobility. However, for materials such as PbTe in which phonon

scattering is dominant, the nanoparticle scattering effect may not be very large.

Other major scattering mechanisms such as polar optical phonon scattering, acous-

tic phonon scattering, and alloy scattering are included in the total scattering

calculation [25]. The relevant material-specific scattering constants are carefully

chosen to fit temperature-dependent experimental mobility of bulk Si-doped

In0.53Ga0.47As. A non-parabolic band model is used for the host material.

Over most of the range of interest, the electrical conductivity is enhanced with

nanoparticle scattering compared to the case of ionized impurity scattering. At large

degenerate carrier concentrations, the diminished electrical conductivity in mate-

rials with large nanoparticles of a ¼ 2.0 and 2.5 nm is expected from the scattering

time curves in Fig. 2.6, since Rayleigh-like scattering figures prominently for the

Fig. 2.7 (a) Electrical conductivity and (b) Seebeck coefficient as a function of electron density for

n-type InGaAs with embedded ionized nanoparticles of varying radius a and a fixed Q ¼ 1e at

300 K. Bulk values without nanoparticles are shown together for comparison. (Figure from Ref. 11)
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high-energy electrons near the Fermi surface which dominate conduction. Mean-

while, the Seebeck coefficient is only slightly reduced or even slightly increased for

the nanoparticles of 0.5–1.5 nm. This is due to the increase in scattering parameter

from nanoparticle scattering.

The power factors calculated using the two properties at 300 K are shown in

Fig. 2.8a. The maximum power factor is obtained to be 26 μW/cmK2 for the particle

size of 2.0 nm at the carrier density of 1 � 1018 cm�3 at 300 K. This is a 30 %

enhancement compared to the maximum power factor, 20 μW/cmK2, obtained

without nanoparticles at this temperature.

At higher temperatures, the enhancement of power factor is still possible with

ionized nanoparticles. Figure 2.8b shows the power factors for InGaAs with

embedded nanoparticles at 600 K. The maximum power factor at 600 K is obtained

to be 43.5 μW/cmK2 for the particle size of 1.5 nm at the carrier density of

2.5 � 1018 cm�3, which is a 26 % enhancement over the bulk maximum,

34.5 μW/cmK2. The optimum power factor for the material with nanoparticles

with a radius of 2.0 nm becomes smaller than that of 1.5 nm radius at this high

temperature, because the Rayleigh scattering has a more substantial contribution at

high temperatures for larger nanoparticles. The percentage of enhancement in

power factor gradually decreases from 30 to 26 %, and to 15 % with temperature

increasing from 300 to 600 K, and to 800 K due to the increased phonon scattering

rate at high temperature, which reduces the relative importance of nanoparticle

scattering in the total scattering time.

The electronic thermal conductivity also increases at almost the same rate as the

electrical conductivity. With the optimal particle size at the optimal carrier density,

the electronic thermal conductivity is calculated to increase from 0.6 to 0.8 W/mK

at 300 K, while the lattice thermal conductivity is considered fixed at 5 W/mK.

Thus, the total thermal conductivity rises from 5.6 to 5.8 W/mK, corresponding to

Fig. 2.8 Power factors at (a) 300 K and (b) 600 K as a function of electron density for n-type
InGaAs with embedded ionized nanoparticles of varying radius a and a fixed Q ¼ 1e. Bulk values
without nanoparticles are shown together for comparison. (Figure from Ref. 11)
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an increase of just 4 %. Since this change is much smaller than the power factor

enhancement of 30 %, the overall ZT enhancement remains 25 %. Note that this ZT
enhancement does not include the lattice thermal conductivity reduction by the

nanoparticles. Therefore, the overall ZT enhancement could be much larger in

nanoparticle materials.

2.3.4 ErAs Nanoparticles in InGaAlAs

ErAs is a semi-metal that has a cubic rock salt structure with the lattice constant of

0.574 nm close to that of InGaAs by 2 % mismatch. An ErAs layer can be grown

epitaxially on arsenide semiconductors of the zinc blend structure [26]. Recently,

composites of ErAs nanoparticles embedded in epitaxial InGaAs lattice matched to

InP substrate or in GaAs have been grown successfully by either overgrowing

nanometer sized islands of ErAs, or co-depositing Er during the semiconductor

growth using molecular beam epitaxy (MBE) technique [27–29] (Fig. 2.9).

Semi-metal nanoparticles incorporated into a semiconductor can have a large

effect on the properties of the semiconductor host. The particles can act as dopants

[30, 31], buried Schottky barriers [32], deep states for carrier recombination [33], or

enhanced tunneling [34], and phonon scattering centers [35]. This section explores

the effect of the ErAs nanoparticles on the thermoelectric properties of InGaAlAs

III–V semiconductor alloys over a wide temperature range.

In order to understand the electrical properties of the ErAs:InGaAlAs

nanocomposites, the carrier density information of the material is crucial.

Figure 2.10 shows the temperature-dependent electron density of 0.3 and 0.6 %

ErAs:(InGaAs)0.8(InAlAs)0.2 lattice-matched to InP obtained by the Hall effect

measurements over a temperature range from 20 to 400 K. They are all n-type.

Fig. 2.9 High-resolution

cross-sectional transmission

electron micrograph

(HR-TEM) of randomly

distributed ErAs

nanoparticles embedded in

In0.53Ga0.47As. The

nanoparticles are seen as

almost perfect spheres, and

the size of nanoparticles is

observed to be 1 ~ 3 nm

in diameter. (Figure from

Ref. 29)
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Unlike the conventionally doped InGaAlAs by Si, which has a carrier density

constant over a wide temperature range, the ErAs:InGaAlAs nanocomposites

exhibit increasing carrier density with temperature. Also, they have unfrozen

carriers even at ultra-low temperature. Typically, this kind of carrier donation

behavior is seen when there are multiple types of donors. For example, with two

types of carriers, one shallow donor and one deep donor, the temperature-dependent

carrier density can be modeled as

n ¼ NDDexp �EDD

kBT

� �
þ NSD, (2.65)

where NDD is the high temperature limit density of the deep donors, EDD is the deep

donor energy level below the conduction band minimum, and NSD is the carrier

density by the shallow donors. The carriers donated by shallow donors are not

frozen at low temperatures, but remain constant over the temperature range.

Deep donors are responsible for the increase of carrier density with temperature.

ErAs:InGaAlAs nanocomposites have EDD ~ 50 meV for various Al compositions

[36]. Although the carrier density by deep donors increases exponentially with

temperature according to (2.65), a linear increase assumption of carrier density with

temperature is still a good approximation for a small donor energy level. In

Fig. 2.10, we extrapolated the carrier density assuming a linear temperature depen-

dence above 400 K for theoretical calculations of the thermoelectric properties.

Figure 2.11 shows the experimental electrical conductivity, Seebeck coefficient,

thermal conductivity, and ZT as a function of temperature for 0.3 and 0.6 % ErAs:

(InGaAs)0.8(InAlAs)0.2 and their theoretical fitting calculated by the Boltzmann

transport formalism. Since the carrier densities of the ErAs nanocomposites are

lower than that of the Si-doped control at room temperature, the electrical conduc-

tivity stays lower at low temperatures, but increases with temperature as the carrier

Fig. 2.10 Electron density

as a function of temperature

for 0.3 and 0.6 % ErAs:

(InGaAs)0.8(InAlAs)0.2 and

a Si-doped control sample.

Symbols are experimental

data from 20 to 400 K, and

curves are linear fits above

400 K
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density increases. The electrical conductivity slowly reaches a maximum and

begins to decrease as temperature nears 800 K. This is due to the decrease in

mobility with increased phonon scattering, as temperature increases.

Around 800 K, the carrier densities of the Si-doped control and the 0.6 % Er

sample are comparable, and also their electrical conductivities are very close to

each other. This indicates that the electron mobility in the nanocomposite remains

similar to that of the control around this temperature. It was expected that the

mobility could be enhanced due to the nanoparticle scattering in the nanocomposite

materials, but it turns out that the effect of the nanoparticle scattering was negligi-

bly small in this material. In fact, individual background Er atoms can act as donors

in InGaAlAs. Thus, it is uncertain how much carriers of the total number of carriers

comes from the ErAs nanoparticles, and how many from the background Er atoms.

Also, how many electrons per nanoparticle are donated is also unclear. These

uncertainties regarding the donation mechanism of ErAs nanoparticles in this

Fig. 2.11 (a) Electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) ZT
as a function of temperature for ErAs:(InGaAs)0.8(InAlAs)0.2 nanocomposites. A Si-doped

(InGaAs)0.8(InAlAs)0.2 with no ErAs at 1.9 � 1018 cm�3 doping density is compared. Symbols

are experimental data, and curves are theoretical fits. In (c), both the lattice and (calculated)

electronic components of thermal conductivity are also separately plotted
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semiconductor need to be clearly understood in order to study the effect of

nanoparticle scattering on the electrical properties.

As shown in Fig. 2.11b, the Seebeck coefficients of the nanocomposites are

measured higher than that of the control, mainly due to the reduced electrical

conductivity. The power factor is increased by 6 % at 800 K. Once the ErAs

nanoparticle scattering is fully understood in this nanocomposite material, further

optimization may be possible in terms of power factor, and ZT.
An enhancement of ZT is obtained for 0.6 % ErAs:InGaAlAs over the Si-doped

counterpart mainly due to thermal conductivity reduction. As shown in Fig. 2.11c,

the thermal conductivity for the 0.6 % ErAs:InGaAlAs was measured to be

1.8 W/mK at 800 K, while the thermal conductivity of the control was

2.5 W/mK. The reduction in thermal conductivity by 0.7 W/mK came from the

reduction of the lattice contribution of thermal conductivity by the additional

phonon scattering at the interfaces. The electronic thermal conductivities were

very similar between the two samples. As a result, the figure of merit was increased

to 1.3 at 800 K for this nanocomposite compared to ZT ~ 0.9 of the Si-doped

control at the same temperature. The measurements were performed only up to

800 K, but according to the prediction by theory, the figure of merit of the

nanocomposite is expected to reach 1.6 at 900 K, and 1.9 at 1000 K.

Further material optimization is possible by varying Al content in the host

semiconductor. As the Al content increases in this material, the band gap increases

and the effective mass also increases. As a result, the mobility decreases with Al

content, and thus the electrical conductivity is reduced. Figure 2.12 shows this trend

clearly: ErAs:InGaAs with no Al showed the highest electrical conductivity, and

40 % Al showed the lowest among the three different Al contents. The power factor

was highest for the ErAs:InGaAs with no Al due to its much higher electrical

conductivity with slightly lower Seebeck coefficient than other compositions over

Fig. 2.12 (a) Electrical conductivities and (b) Seebeck coefficients as a function of temperature

for ErAs:(InGaAs)1�x(InAlAs)x with various Al contents, x ¼ 0, 0.2 and 0.4. The ErAs fraction

was selected for optimal power factors for each Al content. Symbols are experimental data, and

curves are theoretical fits
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the entire temperature range. If the thermal conductivity reduction due to the

phonon-nanoparticle scattering is similar, then InGaAs with embedded ErAs

nanoparticles can achieve higher ZT than that of the 0.6 % ErAs:InGaAlAs with

20 % Al shown in Fig. 2.11.

2.4 Core–Shell Resonant Nanoparticles

2.4.1 Resonant Scattering by Core–Shell Nanoparticles

Core–shell nanoparticles embedded in bulk semiconductors can work as resonant

scattering centers to suppress conduction in a narrow band of energies and thereby

enhance the Seebeck coefficient and thermoelectric power factor. Figure 2.13

shows the three-dimensional structure of resonant core–shell nanoparticles and

the potential profile around them in the radial direction, r. The core region

(r < a) forms a potential well with the well depth V0 below the band minimum

of the host material, and the shell region (a < r < b) forms a potential barrier

around the core with the finite barrier height V1 above the host band minimum.With

the proper selection of materials for the effective masses of the core and shell

regions, quasi-bound states can be formed within the core with evanescent tails

that resonantly couple to the continuum of free electron states in the host

conduction band.

The use of core–shell nanoparticles has several advantages over the resonant

impurities. First, the position and width of resonant levels can be controlled by

parameters including the core and shell sizes, the material band offsets which

determine the height of the potential barrier and the depth of the inner potential

Fig. 2.13 (a) Three dimensional schematic of the proposed core–shell nanoparticle structure, and

(b) the potential profile around the nanoparticles in radial direction. The core region (r < a) has
heavier effective mass (i.e., 1–1.2 m0) than those of the shell region and the host material.

(Figure from Ref. 12)
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well, and the effective masses of the constituent materials. In addition, controlling

the size distributions of the core–shell nanoparticles provides an additional degree

of freedom in designing the width of resonances via inhomogeneous broadening.

Exact quasi-bound states for the potential profile presented in Fig. 2.13b can

be obtained by numerically solving the three-dimensional Schrödinger equation

with wave-matching boundary conditions. However, a simple model with infinite

barrier width (b ! 1) can be conveniently used to design the barrier height

VB (¼V1 � V0) in order to have at least one bound state below the barrier. When

the core has an effective mass m�
in, and the shell and the host matrix have the same

effective mass m�
out, then the minimum barrier height is given by [22],

1� α ¼ γ � cot γ, (2.66)

where α ¼ m∗
in/m

∗
out is the effective mass ratio, and γ is the dimensionless barrier

height defined by

γ2 ¼ 2a2

ħ2
m∗

in � VB: (2.67)

Figure 2.14 shows the minimum barrier height obtained by (2.66) as a function

of the effective mass ratio for three distinct values of the core radius, a. Here, we
fixed the shell and host effective mass to the DOS effective mass of PbTe at 80 K,

m∗
out ¼ 0.053 m0 [20], where m0 is the electron mass, and varied the core effective

mass m∗
in to find the minimum barrier height. Larger core effective mass and larger

core size results in lower bound state energy, so the minimum barrier height

Fig. 2.14 The minimum

barrier height required to

have at least one bound state

as a function of the effective

mass ratio, α ¼ m∗
in/m

∗
out

with varying core effective

mass m∗
in, and fixed

m∗
out ¼ 0.053m0. Results are

shown for several core radii,

a ¼ 1, 1.5, and 2 nm, and

are based on a simple model

for infinite barrier width

described by (2.66)
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decreases as the effective mass ratio and the core size increase as shown in

Fig. 2.14. For example, if one wants the core effective mass to be 10m∗
out ¼ 0.53 m0

and the core radius to be 1.5 nm, then we need to use the barrier height higher than

0.25 eV in order to have at least one bound state, according to Fig. 2.14. For finite

barrier widths, the minimum barrier height resulting in a bound state is lower than

the constraint obtained by (2.66), since the coupling of the quasi-bound state to the

continuum lowers its energy.

The scattering properties of the core–shell nanoparticles are calculated using the

partial wave method. Figure 2.15 shows the energy-dependent scattering times of

the core–shell nanoparticles for varying well depth (V0) calculated using the partial

wave method. All the parameters for the core–shell nanoparticles are carefully

chosen to have one quasi-bound state between the matrix conduction band mini-

mum and the barrier height based on (2.66). We used 1.2 m0 for the core effective

mass, and 0.053 m0 for the shell and host material. The size of the core radius a is

chosen to be 1.5 nm, and the shell width (b�a) to be 1.5 nm as well. The barrier

height V1 is 0.2 eV, and the well bottom V0 is varied to control the position of the

quasi-bound state. For the core material, metals that have large effective masses

around 1–1.2 m0 can be used. The shell material can be an alloy of the host material

with small stoichiometric difference so that the band offset is limited to 0.2 or

0.3 eV, and the effective mass remains similar to the host mass.

In Fig. 2.15, strong scattering dips are observed at the quasi-bound energy levels,

which shift to higher energy as V0 goes up. These sharp scattering dips are clear

evidence of the strong resonance between free electrons and the quasi-bound state

inside the core–shell nanoparticle. Near the resonance, the energy-dependence of

the scattering rate is approximately Lorentzian [37]. The minimum of the resonant

dip in scattering time is inversely proportional to the density of the core–shell

nanoparticles. The width of the resonant dip comes from the homogeneous

Fig. 2.15 Scattering time

of 1 � 1018 cm�3

core–shell nanoparticles as

a function of electron

energy for varying well

bottom in the core from

V0 ¼ �0.24 eV to

�0.12 eV with a step size of

0.02 eV. Other parameters

of the core–shell

nanoparticles are all

assumed to be constants as

V1 ¼ 0.2 eV, a ¼ 1.5 nm,

b ¼ 3 nm, m∗
in ¼ 1.2m0,

and m∗
out ¼ 0.053m0.

(Figure from Ref. 12)
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broadening of the resonant level due to the finite lifetime of electron in the quasi-

bound state. Electrons remain in the localized quasi-bound state for a certain

amount of time, i.e., the state’s lifetime, and are ejected out of the state with a

randomized momentum. As the electron is confined in the state more weakly,

i.e., by thinner and lower barriers, shallower well depth, and/or smaller core size,

this lifetime decreases. By the energy–time uncertainty principle, the shorter

lifetime in the state results in larger uncertainty of the energy level, and the

resonance becomes wider.

The scattering time at energies far away from the resonant levels is determined

predominantly by non-resonant scatterings of electrons, such as interface scattering

at the potential boundaries. The presence of this additional non-resonant scattering

is an important difference between core–shell nanoparticles and impurities that

similarly lead to resonant scattering. The sharp potential boundary is associated

with the scattering of high energy electrons through the Fourier transform in the

Born approximation as described in Sect. 2.3.2. Moreover, since the range of the

nanoparticle sizes of interest falls in the Rayleigh scattering regime, the scattering

time monotonically decreases with increasing energy for the non-resonant scatter-

ing as shown at the energies far away from the resonant dips in Fig. 2.15. Note that

another bound state with energy just below the host band edge may dominate over

non-resonant scattering at low energies as when V0 ¼ �0.12 eV in Fig. 2.15. The

non-resonant scattering rates vary slowly with energy, and diminish the slope of the

energy-dependent scattering time at the shoulders of the resonance dips, thereby

reducing their enhancement of the Seebeck coefficient. As a result, it is necessary to

keep the non-resonant scattering weak with the barrier height sufficiently low

(<0.3 eV in most cases) and the size of core–shell nanoparticles sufficiently

small (a few nm) in order to gain a large Seebeck enhancement by resonant

scattering. This provides a guideline for the selection of the constituent materials

and their sizes.

The comparison of the differential scattering cross sections as a function of

electron momentum in Fig. 2.16 reveals clear distinction between the resonant

scattering and the Rayleigh-like non-resonant scattering. The non-resonant scatter-

ing has slowly varying differential scattering cross section with energy and angle.

Electrons of greater energy are scattered more, and scattering is primarily by small

angles. On the other hand, the resonant scattering is very strong only near the

resonant level, and the electron is scattered both forward and backward with almost

equal probability since the resonant state is sharply localized in real space.

2.4.2 Power Factor Enhancement in PbTe

Figure 2.17 shows the thermoelectric transport properties of PbTe embedded

with the core–shell nanoparticles of 1 � 1018 cm�3 density at 80 K, calculated

based on the Boltzmann transport theory under the relaxation time approximation

described in Sect. 2.2. The core–shell nanoparticle scattering as well as other
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major scattering mechanisms in PbTe such as polar optical phonon scattering,

nonpolar optical phonon and acoustic phonon deformation potential scatterings,

alloy scattering, and the screened Coulomb impurity scattering are all included in

the calculations using the band and scattering parameters given by the previous

literature [20, 38, 39]. We have included the strong dielectric screening effect

in the phonon scattering calculations for the IV-VI semiconductor [39]. A

non-parabolic band model is used for the bulk PbTe. PbTe is selected as the

host material because it has large power factors over a wide temperature range. In

addition, the ionized impurity scattering rate in this material is negligibly small

even for very high carrier densities, compared to phonon scattering, such that its

mobility is relatively unchanged even with strong doping. These characteristics

allow us to probe the effects of core–shell nanoparticle scattering over a wide

range of doping densities without the need to make idealized assumptions about

additional electron scattering processes.

As can be seen in Fig. 2.17c, the Seebeck coefficient sharply increases in a

narrow carrier density range for the core–shell nanoparticle materials indicating

more than a tenfold enhancement over the bulk value with the equivalent carrier

density. As the carrier density is changed from low to high, the Fermi level

increases in energy accordingly; when the Fermi level passes by the energy window

in which the resonant scattering time has a sharp positive slope, i.e., at the high

energy end of the resonant dip, the Seebeck coefficient is drastically enhanced.

This is due to the highly selective carrier scattering which allows higher energy

electrons to conduct better than lower energy ones, so that the average electron

Fig. 2.16 Differential

scattering cross section in

units of πa2 (cross section of
core region) as a function of

final electron momentum

(polar angle and magnitude)

for core–shell nanoparticles

with (a) non-resonant

scattering and (b) resonant

scattering with resonant

energy level at ~0.07 eV.

The incident wave

propagates to

the + x-direction from

left to right. (Figure from

Ref. 12)
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energy and thus the Seebeck coefficient are increased. This effect is less significant

at higher temperatures because the energy distribution of electrons participating in

electrical conduction is broader at higher temperatures, proportional to kBT,
according to the Fermi–Dirac distribution, so that a larger portion of electrons

may not see the much sharper resonance and not benefit from the selective resonant

carrier scattering at higher temperatures. In fact, the peak of the Seebeck coefficient

in Fig. 2.17c slightly increases with V0, indicating that further broadening could

actually improve the material’s power factor. As V0 increases, the resonant level

shifts up and broadens at the same time, so the maximum Seebeck coefficient may

keep increasing with increasing V0 until the broadening of the resonance exceeds

the optimal width.

The mobility and the electrical conductivity are suppressed at the resonances due

to the strong scattering. However, when the Fermi level is aligned properly at the

high-energy shoulder of the resonance, the scattering time retains a large slope

Fig. 2.17 (a) Mobility, (b) electrical conductivity, (c) Seebeck coefficient, and (d) power factor of

PbTe with 1 � 1018 cm�3 embedded core–shell nanoparticles in comparison with bulk PbTe

values as a function of carrier density at 80 K. (Figure from Ref. 12)
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which enhances the Seebeck coefficient, but the scattering time remains sufficiently

high across the Fermi window to keep overall mobility high as well. This alignment

maximizes the power factor as a function of doping. As shown in Fig. 2.17d, the

power factor is enhanced to 65 μW/cmK2 or higher when the well bottom V0 is

higher than �0.2 eV, which is a more than 80 % enhancement over the maximum

bulk power factor 36 μW/cmK2. The maximum power factor will keep increasing

with increasing V0 until the broadening of the resonance starts to decrease the

Seebeck enhancement, or the suppression of mobility at the optimal carrier density

outweighs the diminishing Seebeck enhancement.

2.4.3 Effect of Size Distribution

The size distribution of core–shell nanoparticles leads to inhomogeneous broaden-

ing of the resonance due to the variation in the resonant energy level. In general, the

position of the resonant level is very sensitive to the core size a few nm in average.

Figure 2.18 shows the inhomogeneous broadening of the resonant scattering time

due to the size distribution. A Gaussian distribution is used for the core radius with a

mean value of 1.5 nm and various standard deviations from 0.05 to 0.3 nm as shown

in the inset in Fig. 2.18. The shell width (b � a) is kept constant. Even with very

small standard deviation of 0.05 nm, inhomogeneous broadening dominates and the

FWHM (full width at half maximum) of the resonant dip increases approximately

fivefold from 0.01 to 0.05 eV. As a result, the enhancement of the Seebeck

coefficient is reduced due to the decreased slope of the broadened scattering time;

accordingly the power factor is also reduced as shown in Fig. 2.19. With larger

standard deviation of 0.1 and 0.3 nm, the sharp resonant dip almost disappears, and

the non-resonant scattering of the nanoparticles result in a power factor worse than

that of bulk PbTe. This implies that the core–shell resonant nanoparticles could

work only when the size uniformity is very high. However, since the sensitivity of

the resonance to the size variation can be largely varied depending on the selection

of the materials and the potential profile, further study on the effect of size

distribution is necessary.

If proper manipulation of size distribution with extreme sensitivity could be used

to filter out the lower half side of the distribution, the power factor could be

enhanced beyond that of a material with single-sized core–shell nanoparticles. As

shown in Fig. 2.18, with half-Gaussian distribution, the scattering time becomes

sharper and stays higher on the high-energy side of the resonance compared to the

case of uniform single-sized nanoparticles so that both the Seebeck coefficient and

the electrical conductivity can be enhanced further. This effect is related to the

electron energy filtering effect, in which electrons having lower energies below the

cutoff energy experience stronger resonant scattering by the core–shell

nanoparticles, while higher-energy electrons are affected less. The electron energy

filtering effect will be discussed in detail later in Sect. 2.5. As shown in Fig. 2.19,

the maximum power factor by the half Gaussian distribution is obtained to be
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94 μW/cmK2, which is a 160 % enhancement from the optimal bulk power factor

36 μW/cmK2 at this temperature.

At room temperature, we obtain a 11 % power factor enhancement from the

optimal bulk value of 35–39 μW/cmK2 for 5 � 1018 cm�3 single-sized core–shell

nanoparticles in PbTe with V0 ¼ �0.1 eV, V1 ¼ 0.2 eV, a ¼ 1.5 nm, b ¼ 2.5 nm,

m∗
in ¼ 1.0 m0, and m∗

out ¼ 0.079 m0 (PbTe effective mass at 300 K). A shallower

Fig. 2.18 Scattering time for various Gaussian size distributions of the core–shell nanoparticles

with mean core radius of 1.5 nm with various standard deviations (s.t.d.) of 0 (single-sized), 0.05,

0.1, and 0.3 nm, and for a special half-Gaussian distribution with standard deviation of 0.05 nm, with

the smaller half of the particles removed. All the size distributions are normalized with the total

nanoparticle density of 1 � 1018 cm�3. (Inset: the normalized size distributions are displayed.)

Fig. 2.19 Power factor of

PbTe with core–shell

nanoparticles with various

size distributions from

Fig. 2.18 as a function of

carrier density in

comparison with bulk PbTe

values
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potential well and a narrower shell width than those at 80 K are used in order to

form a wider resonant dip in the energy-dependent scattering time, which is

necessary for large Seebeck enhancement at higher temperatures because electrons

are distributed over a wider energy range due to thermal excitation at higher

temperatures. Also, a larger nanoparticle density is required in order to make

resonant nanoparticle scattering the dominant scattering mechanism over phonon

scattering, which is stronger at higher temperatures. This power factor enhancement

at room temperature has not been fully optimized yet, and a systematic study on the

effect of various conditions of the core–shell resonant scattering at high tempera-

tures is necessary.

2.5 Electron Energy Filtering

The idea behind the electron energy filtering scheme is to increase the entropy

transport per unit electric current flow by only allowing high-energy or hot elec-

trons to transport while preventing low-energy or cold electrons from participating

in the transport. The increased entropy transport results in the increase of Seebeck

coefficient. A potential barrier is typically used to block cold electrons to realize the

filtering effect, so the electrical conductivity can be reduced at the same time.

Optimization of barrier height and carrier density is therefore necessary to maxi-

mize the power factor or the figure of merit.

The concept of electron energy filtering was originally proposed in thermionic

energy conversion devices. In 1994, vacuum thermionic coolers that utilize a

potential barrier between electrode and vacuum were proposed by Mahan

[40]. The work function required for efficient cooling at room temperature in

the thermionic device was, however, too small (0.3 ~ 0.4 eV) to be practically

achieved. Shakouri and Bowers proposed in 1997 to use semiconductor

heterostructures for the selective emission of hot electrons over a barrier layer to

enhance the cooling performance [41]. By controlling the band offsets in

heterostructures, the barrier height was optimized to achieve high cooling power

density in the nonlinear thermionic transport regime. Later, Shakouri et al. proposed

that tall barrier, highly degenerate multilayers could achieve thermoelectric power

factors an order of magnitude higher than bulk values [42].

In the case of electron transport perpendicular to planar barriers, the lateral

momentum component is conserved during transport over the barriers analogous

to the light refraction in multilayers. This is called lateral momentum

conservation. The transverse momentum component needs to be larger than a

certain value determined by conduction band offset for the electron to go over the

potential barrier. Vashaee and Shakouri [43] found that the key requirement for a

large thermoelectric power factor enhancement in planar barrier materials is that

the lateral momentum conservation is relaxed, such that the momentum criterion

for the transport at the interfaces is replaced by the energy criterion depicting that

most of the electrons having energies greater than the cutoff energy are allowed to
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participate in transport over the barrier. This lateral momentum non-conservation

allows a much larger number of hot electrons to participate in the emission process,

so that the suppression of electrical conductivity by barriers is significantly allevi-

ated while a large enhancement of the Seebeck coefficient by hot electron filtering

is still achieved. However, Kim et al. [44] recently found that the enhancement in

emission current due to the lateral momentum nonconservation could be modest

because the smallest number of modes in the well and barrier layers limits the

emission current.

Due to these complications in the planar carrier filtering scheme, it is desired to

realize a nonplanar carrier energy filtering without extended planar potential bar-

riers, but instead with embedded discrete nanoparticles or impurities. In the latter

case, the lateral momentum is not conserved since there is no translational invari-

ance, and thus the power factor can be enhanced in bulk materials.

Figure 2.20 presents an ideal energy-dependent scattering time for the realiza-

tion of nonplanar electron energy filtering. The scattering time is only a function of

energy, independent of the direction of electron momentum, if the scatterers are

spherically symmetric in their shape and potential profile. Below a certain energy

called the cutoff energy EC that is slightly above the Fermi level, the scattering time

is zero, or the scattering rate is infinitely large, in an ideal case, so that the carriers

below the cut-off energy are completely blocked from participating in conduction.

The width of the scattering region below the cut-off energy must be sufficiently

large, or at least larger than the half width of the Fermi window. Above the cutoff

energy, it is ideal that there is no additional scattering other than those that exist

naturally in the bulk material such as phonon scatterings.

In this section, we discuss a general theory on electron energy filtering with a

cutoff energy in the Boltzmann transport theory under the relaxation time approx-

imation for bulk materials. Power factor enhancement by the electron filtering with

an optimal cutoff energy is obtained as a function of the scattering parameter, Fermi

level, and temperature. Variations of the electronic thermal conductivity, Lorenz

number, and the Hall factor by the filtering effect are also discussed and quantified

as functions of the aforementioned parameters. Then the proposed theory is applied

to real TE material, PbTe and Mg2Si, with non-parabolic bands and realistic

energy-dependent scattering times taken into account. Later in Sect. 2.5.5, the use

of distributed resonant scatterings in Lorentzian shapes is discussed to partially

realize the nonplanar electron energy filtering in bulk materials.

Fig. 2.20 Ideal energy-

dependent scattering time

for the nonplanar electron

energy filtering
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2.5.1 Electron Transport with a Cutoff Energy

In an ideal case of nonplanar energy filtering, the modeling of carrier transport

becomes simply having a cutoff energy level in the bulk transport calcu-

lations, below which all the electrons are completely blocked from participating

in conduction. With a cutoff energy level, EC, the calculations of the transport

properties are reduced to the integrals over energy from EC to infinity such that,

σ ¼
ð1
EC

σd Eð ÞdE, (2.68)

S ¼ � 1

eT

ð1
EC

σd Eð Þ E� EFð ÞdEð1
EC

σd Eð ÞdE
: (2.69)

For a parabolic band and τ(E) ¼ τ0E
r, where τ0 is a constant, and r is called the

scattering parameter, (2.68) and (2.69) can be simplified as

σ ¼ C1F0 ECð Þ, (2.70)

S ¼ C2

F1 ECð Þ
F0 ECð Þ � EF

� �
, (2.71)

and thus the power factor becomes

S2σ ¼ C1C
2
2

F1 ECð Þ � EFF0 ECð Þ½ �2
F0 ECð Þ (2.72)

where C1 ¼ 23/2e2(m*)1/2τ0/(3π2�h3) and C2 ¼ 1/(eT) are all constants, and

Fs ECð Þ ¼
ð1
EC

E

3
2
þ r þ s

�∂f 0
∂E

0
@

1
AdE,

¼ 3

2
þ r þ s

0
@

1
Að1

EC

E

1
2
þ r þ s

f 0 Eð ÞdEþ E

3
2
þ r þ s

C f 0 ECð Þ, (2.73)

with s ¼ 0, 1, or 2. Note that the first term in the second line of (2.73) is an

incomplete Fermi–Dirac integral of the order of (½ + r + s).
The scattering parameter r manifests the dominant scattering mechanism in a

material. For example, r is �0.5 for the acoustic phonon deformation potential

scattering, r ¼ 1.5 for the ionized impurity scattering, and r � 0.5 for the polar
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optical phonon scattering. In general, more than a single scattering mechanism are

combined together to make the total scattering time. For most semiconductors, r is
not a constant, but dependent on energy and temperature, typically ranging from

�0.5 to 0.5. Therefore, the constant scattering parameter assumption may not be

valid for wide ranges of carrier density and temperature.

The electronic thermal conductivity with a cutoff energy is given by

κe ¼ C1

e2T
F2 ECð Þ � F1 ECð Þ½ �2

F0 ECð Þ

" #
: (2.74)

The electronic thermal conductivity is related to the electrical conductivity via

the Lorenz number L by the Wiedemann-Franz law, which is defined as

L ¼ κe
σT

: (2.75)

Thus, from (2.70) and (2.74), (2.75) becomes

L ¼ 1

e2T2

F2 ECð Þ
F0 ECð Þ �

F1 ECð Þ
F0 ECð Þ

� �2
" #

: (2.76)

The Lorenz number is a function of EF, although it becomes a constant to be

L0 ¼ (πkB)
2/(3e2) � 2.44 � 10�8 W Ω K�2 for metals or in the degenerate limit

(EF >> 0) in the bulk (EC ¼ 0). L deviates from L0, monotonically decreasing, as

EF goes down, or the carrier density decreases in semiconductors. Also the Lorenz

number monotonically decreases with increasing EC, and saturates as EC goes very

high for a given EF. More details about this are discussed in Sect. 2.5.3.

The Hall effect measurements can be used to obtain the effective carrier density

ne by measuring the Hall coefficient RH in the case of one-type carrier transport

from [45]

RH ¼ α
1

neq
, (2.77)

where α is the Hall factor, and q is �e for electrons, and + e for holes. The Hall

factor is given by [46]

α ¼ < τ2 >

< τ>2
¼ F0

r¼2r ECð ÞF0
r¼0 ECð Þ

F0 ECð Þ½ �2 , (2.78)

where F0
r¼2r(EC) and F0

r¼0(EC) are F0(EC) defined by (2.73) with s ¼ 0, but with

r replaced by 2r, and 0, respectively. The Hall factor is close to unity for the

materials with �0.5 � r � 0.5. The effective carrier density measured by the Hall
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effect measurements does not include the carriers below the cutoff energy because

their overall displacement becomes zero by the cutoff. Thus,

ne ¼
ð1
EC

ρDOS Eð Þf 0 Eð ÞdE, (2.79)

which decreases with increasing EC.

In nonideal or practical cases of the energy filtering, the modeling can be more

complicated than just having a cutoff energy in the transport calculations. For

example, nonplanar potentials created by embedded nanoparticles or impurities of

various kinds in a bulk material can be used to modify the transport of charge

carriers via energy-dependent scattering times to realize the energy filtering. If these

additional energy-dependent scatterings by nanoparticles or impurities are exclu-

sively targeted at the carriers in a specific energy region only, those carriers can be

effectively prevented from participating in conduction by the extensive scatterings

while others are not affected and allowed to transport, so the energy filtering is

realized. In such non-ideal filtering cases, the carriers under strong scatterings may

not be completely filtered out of the transport. Instead, their mobilities are slowed

down drastically by the extensive scatterings, so that their contribution to transport

is significantly reduced compared to those of relatively unaffected higher-energy

carriers. Hence the filtering is partially realized. It is noted that in this case, the Hall

effect measurements may not thoroughly exclude those carriers under strong scat-

terings in the measurement of carrier density because their mobilities are not

completely zero. Rather, it is possible that the measured carrier density can remain

the same as before the filtering effect is included.

2.5.2 Power Factor Enhancement

Figure 2.21 shows the enhancement of power factor by the electron energy filtering

as a function of cutoff energy. The Seebeck coefficient monotonically increases

with the cutoff energy, while the electrical conductivity monotonically decreases.

Due to this trade off, the power factor has a maximum, which is about 250 % larger

than the bulk value, when the cutoff is at 0.135 eV in the case of Fig. 2.21.

The optimal cutoff energy, EC,opt, that maximizes the power factor for a given

Fermi level, scattering parameter, and temperature can be found by differentiating

(2.72) with respect to EC and matching the derivative to zero, which reduces simply

to [14]

F1 EC,opt

� �
=F0 EC,opt

� � ¼ 2EC,opt � EF: (2.80)

Although one can obtain this optimal cutoff energy by numerically solving

(2.80) under various conditions, in general the optimal cutoff energy is about one
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or two kBT higher than the Fermi level, depending on the temperature and the

scattering parameter.

Figure 2.22 shows the enhancement of power factor by the optimal electron

filtering as a function of Fermi level for scattering parameters, r ¼ �0.5 and 0.5, at

300 K. For the calculation of the optimal power factors, the optimal cutoff energy

obtained from (2.80) for each Fermi level was applied, while no cutoff was assumed

for the bulk power factor, i.e., EC ¼ 0. The optimal power factor increases almost

linearly with Fermi level for r ¼ �0.5, and achieves a factor of 3.5 enhancement

Fig. 2.21 Enhancement

factors of Seebeck

coefficient (S), electrical
conductivity (σ), and power

factor (PF) over their bulk

counterparts as a function of

cutoff energy. EF ¼ 0.1 eV,

r ¼ �0.5 and T ¼ 300 K

Fig. 2.22 Enhancement of

power factor by optimal

filtering as a function of

Fermi level for scattering

parameter r ¼ �0.5 and

0.5 at 300 K. All the power

factor values are normalized

to the maximum bulk value

for each r
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over the maximum bulk value at the Fermi level ~ 0.2 eV, and a factor of 6

enhancement at the Fermi level ~ 0.4 eV. The optimal power factor increases

with Fermi level for r ¼ 0.5 as well, but at a slower rate than for r ¼ �0.5 at the

low Fermi level region due to the smaller bulk values. However, as the Fermi level

goes further up, the increasing rate for r ¼ 0.5 becomes faster than that for

r ¼ �0.5, and achieves a factor of 10 enhancement over the maximum bulk

value at the Fermi level ~ 0.4 eV. In general, a material with a lower scattering

parameter can achieve a larger power factor enhancement in the low Fermi level

region by the optimal energy filtering condition, but if the Fermi level is high

enough, a larger power factor enhancement is possible for a higher scattering

parameter material.

Seebeck enhancement factor by optimal filtering is approximately proportional

to 1/T for a fixed Fermi level. This indicates that the effect of the electron filtering

on power factor becomes weaker at higher temperatures, following ~1/T.

2.5.3 Electronic Thermal Conductivity, Lorenz Number,
and Figure of Merit

Electronic thermal conductivity is lowered from its bulk value by electron energy

filtering since the carrier density contributing to the thermal conduction is reduced,

similarly as the electrical conductivity is reduced by the filtering. Figure 2.23 shows

the electrical conductivity and the electronic thermal conductivity normalized to

their bulk values as a function of cutoff energy for r ¼ �0.5 at 300 K. It is clearly

seen that the electronic thermal conductivity decreases more rapidly than the

Fig. 2.23 Reduction of the

electrical conductivity (σ)
and the electronic thermal

conductivity (κe) from their

bulk counterparts by energy

filtering as a function of

cutoff energy for Fermi

level EF ¼ 0.1 and 0.2 eV,

and scattering parameter

r ¼ �0.5 at 300 K
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electrical conductivity does as EC increases. At the optimal cutoff (EC,opt ¼ 0.23

eV) for E
F
¼ 0.2 eV, κe is merely a 13 % of the bulk value, while σ becomes a 30 %

of the bulk value. The Lorenz number has been reduced to a 43 % of the bulk value

in this case, which accounts for the difference between the reduction factors of κe
and σ such that (13 %) ¼ (30 %) � (43 %).

Figure 2.24 shows the Lorenz number given by (2.76) as a function of cutoff

energy for two different scattering parameter r ¼ �0.5 and 0.5, and two different

Fermi levels, EF ¼ 0, 0.1, and 0.2 eV, at 300 K. Lorenz number rapidly decreases

when the cutoff energy falls into the range of the Fermi window around the Fermi

level. When EC goes much higher than the Fermi level, the variation of Lorenz

number with EC becomes small, and L saturates to a certain value that depends on

the scattering parameter. At higher temperatures, the high cutoff energy limit of

Lorenz number slightly increases.

At the optimal cutoff, Lorenz number already becomes significantly lower than

the bulk value. As shown in Fig. 2.24, L ¼ 1.0 � 10�8 W Ω K�2 when the optimal

cutoff energy level EC,opt ¼ 0.23 eV is used for EF ¼ 0.2 eV and r ¼ �0.5 at

300 K, which is about 43 % of the bulk value, 2.3 � 10�8 W Ω K�2. At 600 K,

this Lorenz number at optimal cutoff slightly increases to 1.06 � 10�8 W Ω K�2

with EC,opt ¼ 0.27 eV, which is about 49 % lower than the bulk value,

2.09 � 10�8 W Ω K�2.

Since the electronic thermal conductivity is suppressed significantly by the

optimal filtering to about a 10–20 % of the bulk value, the lattice thermal conduc-

tivity can dominate the total thermal conductivity in most cases when the optimal

cutoff is applied. In this case, the total thermal conductivity in the denominator of

ZT becomes almost a constant, and thus the optimal cutoff energy that maximizes

the power factor also becomes optimal for maximizing ZT. However, it is still

possible that the electronic thermal conductivity dominates over the lattice one in

Fig. 2.24 Lorenz number

as a function of cutoff

energy for Fermi level

EF ¼ 0, 0.1 and 0.2 eV,

and scattering parameter

r ¼ �0.5 and 0.5 at 300 K
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those materials in which the lattice thermal conductivity is enormously suppressed

by effective phonon scatterings by nanostructuring. In this case, since the electronic

thermal conductivity decreases more rapidly than the electrical conductivity with

increasing cutoff energy level, ZT will keep increasing as the cutoff energy further

increases. Then, the upper limit of ZT will be determined when the lattice thermal

conductivity limits the decreasing rate of the total thermal conductivity with EC to

be slower than that of the power factor.

2.5.4 Electron Energy Filtering in PbTe and Mg2Si

A very large ZT, greater than 3, can be possible when an appropriate cutoff energy

is realized in a good TE material such as PbTe and Mg2Si. The enhancement comes

from two sides: a large enhancement of Seebeck coefficient, and a large reduction

of electronic thermal conductivity. Recent advances in material synthesis and

growth techniques have enabled the synthesis of novel nanostructured materials

with great precision and controllability in their thermoelectric properties. Signifi-

cant reduction of lattice thermal conductivity has been achieved in these nanostruc-

tured materials without much sacrifice in the electron transport part, the power

factor from their bulk counterparts, thereby enhancing ZT greatly. Recently, the

spark-plasma-sintered p-type Na-doped PbTe:SrTe nanocomposites achieved a

ZT ~ 2.2 at 915 K with a significant reduction of lattice thermal conductivity

down to 0.5–0.6 W/mK at the high temperature with comparable power factors

with bulk PbTe [47]. A n-type Mg2Si was alloyed with Sn to form natural

nanostructures, which reduced the lattice thermal conductivity down to 1 W/mK,

in conjunction with the enhanced power factor by the band convergence to achieve

a ZT ~ 1.3 at 700 K [8].

In this section, we attempt to predict a further enhancement of ZT in these two

materials, PbTe and Mg2Si by incorporating the carrier energy filtering effect. First,

we modeled complicated band structures of these bulk materials with multiple

non-parabolic bands to precisely simulate their bulk properties such as the Seebeck

coefficient and electrical conductivity. We have successfully matched the previ-

ously reported experimental data with our theoretical model for various composi-

tions and doping densities over a wide temperature range. For PbTe, both n-type

and p-type bulk properties were fitted successfully from 300 to 900 K based on the

experimental data reported in Refs. [20, 38, 39, 47]. For n- and p-type Mg2Si and its

alloys with Sn, the experimental data from Refs. [8, 48–51] and others were fitted

successfully with our model.

Figure 2.25 shows the resulting ZT enhancement as a function of doping density

in p-type PbTe at 900 K by the carrier energy filtering with optimized cutoff

energies at each doping density. A lattice thermal conductivity of 0.5 W/mK is

assumed and fixed in this calculation, which is adapted from Ref. 46. The bulk ZT of

p-type PbTe can reach 2.0 at 2 � 1020 cm�3 doping density. With the optimized

filtering, the ZT can be enhanced beyond 4.0 at doping densities higher than
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1 � 1021 cm�3. The optimal cutoff energy as a function of doping density is given

in Fig. 2.25 as well. The optimal cutoff energy that maximizes ZT at the doping

densities is about 0.19 eV higher than the Fermi level of each doping density, which

is slightly higher than the optimal cutoff energy that maximizes the power factor

obtained from (2.80). This is because by further increasing the cutoff energy level,

the electronic thermal conductivity is further reduced, so that even with a slightly

sacrifice of the enhancement of power factor, ZT was enhanced more. More details

about the effect of the optimal cutoff energy on the Seebeck coefficient, the

electrical conductivity, and the electronic thermal conductivity are shown in

Fig. 2.26.

As shown in Fig. 2.26a, the Seebeck coefficient is greatly enhanced over the bulk

value at a given doping density, and maintained as high as 300 μV/K at very high

doping densities by the optimal filtering. The electrical conductivity is suppressed

significantly at the same time by the filtering, but the power factor remains higher

than the bulk value due to the greater enhancement of Seebeck coefficient than the

reduction of the electrical conductivity as shown in Fig. 2.26b. At this high

temperature, 900 K, the electronic thermal conductivity rapidly increases with

doping density. The bipolar electronic thermal conductivity is also very high at

the high temperature, and dominant at low doping density region below

1 � 1020 cm�3. Thus, the minimum electronic thermal conductivity including the

bipolar term was estimated to be 0.74 W/mK for p-type PbTe at 900 K. This high

electronic thermal conductivity becomes a limiting factor that prevents the ZT of

this material from further enhancing. The optimal filtering can tackle this problem,

and suppress the electronic thermal conductivity as low as 0.3 W/mK at high doping

densities. In combination of the power factor enhancement, ZT can be enhanced

beyond 4 with cutoff energies higher than 0.4 eV at doping densities higher than

1 � 1021 cm�3 as shown in Fig. 2.25.

Fig. 2.25 Figure of merit

ZT by the optimal filtering

(left y-axis), the Fermi level,

and the optimal cutoff

energy (right y-axis) as a
function of doping density

in p-type PbTe at 900 K
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Similarly, the electron filtering can be applied to n-type Mg2Si to enhance the

ZT. The bulk Mg2Si can reach ZT ~ 0.8 at 5 � 1019 cm�3 doping density at 700 K

if the lattice thermal conductivity of 1.2 W/mK is used at this temperature. By the

optimal cutoff energy, this ZT can be greatly enhanced beyond 2.0 at doping

densities higher than 4 � 1020 cm�3 at 700 K as shown in Fig. 2.27. The optimal

cutoff energy is found to be about 0.14 eV higher than the Fermi level at each

doping density of the range, which is again, higher than the optimal cutoff energy

that maximizes the power factor, in order to utilize the further reduced electronic

thermal conductivity.

The detailed effects of the optimal filtering on the Seebeck coefficient, electrical

conductivity, and electronic thermal conductivity are presented in Fig. 2.28.

Fig. 2.26 (a) Seebeck coefficient (left y-axis) and electrical conductivity (right y-axis), (b) power
factor (left y-axis) and electronic thermal conductivity (right y-axis) as a function of doping density
by the optimal carrier energy filtering that maximizes ZT at each doping density in p-type PbTe at

900 K

Fig. 2.27 Figure of merit

ZT by the optimal filtering

(left y-axis), the Fermi level

and the optimal cutoff

energy (right y-axis) as a
function of doping density

in n-type Mg2Si at 700 K
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The Seebeck coefficient was greatly enhanced over the bulk value at each doping

density and maintained as high as �300 μV/K by the optimal electron energy

filtering. The reduction of the electrical conductivity was relatively small, so that

the power factor was significantly enhanced over the maximum bulk value,

24 μW/cmK2 at high doping densities. The electronic thermal conductivity was

significantly reduced down to 0.5 W/mK. As a result, ZT could be enhanced beyond

2.0 at this temperature for n-type Mg2Si. It is expected that a higher ZT can be

achieved for Mg2Si1�xSnx alloys since their bulk power factor is higher than the

binary Mg2Si, and the lattice thermal conductivity is lower with additional phonon

alloy scattering.

2.5.5 Realization of Nonplanar Electron Filtering

Now, we turn to a basic and important question: how can we realize the electron

energy filtering practically in the materials? One possible way of suppressing

electron transport within a certain energy range to realize the desired energy-

dependent scattering time shown in Fig. 2.20 is to put an extensive amount of

scatterings in that particular energy range, so that electrons experience very slow

mobility within the energy region and thus are predominantly prevented from

contributing to conduction. Scatterings cannot completely block the electron trans-

port in reality because they cannot be infinitely strong. But a sufficient selectivity in

energy can mimic the ideal filtering. Another important requirement for electron

filtering is a sharp cutoff in energy selection. Since most of the electrons that

participate in conduction are near the Fermi level, only a very sharp edge near the

Fermi level in transport can effectively achieve strong energy selection and thus

significant Seebeck enhancement.

Fig. 2.28 (a) Seebeck coefficient (left y-axis) and electrical conductivity (right y-axis), (b) power
factor (left y-axis) and electronic thermal conductivity (right y-axis) as a function of doping density by
the optimal carrier energy filtering thatmaximizes ZT at each doping density in n-typeMg2Si at 700K
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A single-phase nanoparticle can have a potential offset at the hetero-interface

with the host material, which can act as a barrier to filter out electrons having

energies below the barrier height. However, this filtering by a 3D step potential

does not sharply select electron energy, because the electrons having higher ener-

gies than the barrier height are still affected by the existence of the barrier due to the

wave nature of electron. Thus, the filtering is not completely on or off, but

continuously and slowly modifies the transport. Also, if the nanoparticles are very

small, i.e., a few nm in diameter, much smaller than the wavelengths of electrons,

then electrons may not be affected much by the potential of the nanoparticle even if

their energies are below the barrier height, because the scattering is in Rayleigh

regime [11]. That said, an appropriate requirement for sufficient energy filtering by

a 3D potential barrier is that the size of the nanoparticle is sufficiently large,

typically a few tens nm. However, the nanoparticle cannot be too large, because

then the quantum mechanical interaction between the particle and electron becomes

negligibly small, and the tranport is bulk-like in the effective composite medium. In

fact, Bergman and Levy [52] showed that the effective ZT of a composite can never

exceed the largest ZT value of its components.

One can find energetically sharp scattering times from resonances. The

core–shell structured nanoparticles discussed in Sect. 2.4 can have sharp resonant

scattering times at the quasi-bound energy states formed inside the core region. The

width and position of the resonant scattering dip can be controlled by the well depth

in the core region. However, the existence of non-resonant scatterings by potential

offsets at the hetero-interfaces can limit the depth of the scattering dip relative to the

background level of scattering time near the dip.

A very deep and narrow resonant scattering time can be obtained by resonant

impurities. In the 1950s, Friedel found that transition metal impurities can induce a

sharp increase of resistivity in a small energy region by their resonant electron

scattering [53]. Group III elements such as Tl, and group IV elements such as Sn

have also been found to create resonant levels in the band structures of IV–VI

semiconductors [54], and Bi2Te3 [55], respectively. More thorough review on

resonant impurities is found in Ref. [56].

Since the impurities have infinitesimally small sizes, there is no additional

non-resonant scattering by potential offsets in contrast to the core–shell nano-

particles, and thus the scattering time can be approximated by the bell-shaped

Lorentzian function given by [37]

τres Eð Þ ¼ τ0, res 1þ E� Eres

γres=2

� �2
" #

, (2.81)

where Eres is the resonant energy level of the impurity, γres is the full width at half

maximum (FWHM) of the resonance, and τ0,res is the minimum scattering time

reached at E ¼ Eres. The parameter τ0,res is inversely proportional to the concen-

tration of the resonant impurities. This sharp and deep resonant impurity scattering

is a good candidate for creating a sharp cutoff edge near the Fermi level. Also, if
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different kinds of resonant impurities with different resonant energy levels are put

together with appropriate depths and widths and distributed in energy at appropriate

positions in a bulk material, a suppression of electron transport over a wide energy

range along with a sharp cutoff is possible. A single sharp resonant dip may not be

effective in modifying the transport at room temperature or higher, because its

width in energy is typically much narrower than that of the Fermi window at high

temperatures, so that the major portion of the distribution of conducting electrons is

not affected by the resonance. By using multiple resonant dips distributed in energy

that cover the half width of the Fermi window, the most of the conducting electrons

distributed in the lower-energy half of the Fermi window below the Fermi level

could be filtered out to enhance the power factor at high temperatures.

In Fig. 2.29, we show two examples of using distributed resonant scatterings as a

means to partially realize the electron filtering. With five 5 meV wide resonances

evenly spaced between 0.1 and 0.2 eV as shown in Fig. 2.29a, most of the

low-energy half of the Fermi window at 300 K can be effectively covered to

suppress electron transport in that energy range. There are local peaks of scattering

time between the resonances where the scattering time is much higher than the

minimum, such that electron filtering is weak there. In addition, using only two

resonances, partial electron filtering is possible as shown in Fig. 2.29b. In this case,

the first resonance at the lower energy region can be wider (γ ¼ 15 meV) than the

second resonance at the higher energy region (γ ¼ 5 meV). The spacing between

the two is selected to be larger (50 meV) than that in the case of five resonances

(25 meV) to cover as much space as possible with a fewer number of resonances.

Figure 2.30 shows the resulting power factor in n-type PbTe at 300 K for the two

cases of distributed resonant scatterings described in Fig. 2.29 in comparison with

an ideal electron filtering with a fixed cutoff at 0.2 eV, and with the bulk values.

Large enhancements of power factor are achieved using these distributed resonant

Fig. 2.29 Examples of using distributed resonant scatterings as a means to realize the electron

energy filtering by suppressing electron transport in the left half of the Fermi window at 300 K,

with (a) five resonances and (b) two resonances. The total scattering curves includes all other

relevant scattering times such as phonon scatterings in PbTe. (Figure from Ref. 14)
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scatterings, mainly due to the enhancement of the Seebeck coefficients. However,

these enhancements are lower than the enhancement obtained by ideal electron

filtering with a similar cutoff energy at 0.2 eV. This is due to the incomplete

suppression of electron transport below the cutoff energy by the resonant scatter-

ings, in particular, at the local peaks of scattering time between the resonances.

These uncovered energy regions are wider when a smaller number of resonant

scatterings are used. As a result, the power factor enhancement can be lower for a

smaller number of resonant scatterings. The Fermi window is wider at higher

temperature, proportional to T. Hence, a larger number of wider resonant scatter-

ings might be needed to sufficiently cover the lower-energy half of the Fermi

window at higher temperatures.

One important note is; if the scattering spectrum is significantly modified to form

a band pass or stop, the density of states and dispersion curves can be modified as

well. For example, Heremans et al. [9] used a 2 % atomic fraction of Tl impurities in

PbTe to enhance the power factor by the modification of the density of states. In

order to utilize the resonant scatterings without a significant modification of the

band structure, one may need to use a lower amount of impurities than 2 %. When

the density of states is modified, the local effective mass at the energy region is also

increased, which in turn, may, simultaneously, reduce the mobility and electrical

conductivity. Thus, special care might be necessary to achieve a large power factor

enhancement at high impurity concentrations.

In addition, the resonant scatterings must be sufficiently stronger than the

phonon scatterings to be effectively used at high temperatures. The strength of

phonon scatterings increases with temperature as there are increased numbers of

phonons at higher temperatures. The main reason that the effect of resonant

scatterings was negligibly small at high temperatures is that they are much weaker

than the phonon scatterings at the elevated temperatures. Increasing the strength of

Fig. 2.30 Power factor

enhancement in n-type

PbTe at 300 K as a function

of carrier density for the two

cases of distributed resonant

scatterings described in

Fig. 2.29. For comparison,

the properties by an ideal

electron filtering with a

0.2 eV cut off, and the bulk

values (curve with filled
circles) are also presented.

(Figure from Ref. 14)
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resonant scattering may be possible by increasing the number of resonant centers.

The amount of impurities to be used must be experimentally determined to be

effective at the target temperature, and the effect of the modification of band

structure by extensive amount of impurities must also be carefully considered for

the realization of the carrier energy filtering.

2.6 Summary and Outlook

In this chapter, we have discussed various nanostructures including nanoparticles as

additional carrier scattering centers, and investigated their effects on the thermo-

electric properties of various bulk materials. The partial wave method was used to

accurately calculate the nanoparticle scattering time, and the transport properties

were calculated based on the Boltzmann transport formalism as discussed in detail

in Sect. 2. A single-phase nanoparticle has a potential offset at the interface with the

host material, which alters the transport of carriers by energy-dependent scatterings.

The scattering by a step-like potential offset was stronger at higher carrier energy

due to the Fourier transform relation between the spatial potential profile and

the differential cross section in momentum space. This scattering cannot enhance

the Seebeck coefficient because it reduces the entropy transport per current by

scattering hot electrons more strongly than cold electrons. However, when the

nanoparticles are ionized by donating carriers to the host material, they can replace

the conventional impurity dopants to control the doping density. The ionized

nanoparticle scattering turns out to be weaker than the ionized impurity scattering

due to the lack of strong Coulomb potential near the particle center. Therefore, they

are able to enhance the carrier mobility by replacing the impurity dopants and thus

enhance the power factor over a wide temperature range.

Core–shell nanoparticles can create a resonant state within the band with appro-

priate potential profile and the effective mass control of the constituent materials.

This resonant state can effectively scatter electrons in a very narrow energy range

near resonant energy level, creating a strong scattering dip. When the Fermi level is

aligned at the energies where the resonant scattering time is quickly rising with

energy, then the Seebeck coefficient can be greatly enhanced at low temperatures.

At high temperatures, this effect may be small due to the much wider electron

distribution than the width of the resonance.

Lastly, we discussed the electron energy filtering with nonplanar potentials to

further enhance the power factor over a wide temperature range. We found that ZT
higher than 2 ~ 3 can be achieved in PbTe and Mg2Si semiconductors when an

appropriate cutoff energy is realized to filter out the low-energy electrons in the

transport to enhance the power factor and suppress the electronic thermal conduc-

tivity. A partial realization of electron energy filtering may be possible using

multiple distributed resonant scatterings. The power factor enhancement was

smaller than that of the ideal filtering, due to the incomplete filtering by the resonant

scatterings, but still a large power factor enhancement by more than 50 % can be
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achieved using five resonances well distributed in the energy space according to the

calculations.

Nanostructured materials thus far have shown a promising future for the ther-

moelectric energy conversion applications. By combining the excellent control of

both phonon and electron transport by using the nanostructures, the realization of a

large ZT that can compete with conventional heat engines may be possible. Yet, we

will have many experimental challenges in realizing such nanostructured materials

to meet the theoretical predictions in the future. Interdisciplinary collaborative

efforts to tackle those various challenges from various disciplines in science and

technologies may only be the solution for the bright future of thermoelectrics.
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Chapter 3

Thermal Conductivity of Particulate

Nanocomposites

Jose Ordonez-Miranda, Ronggui Yang, and Juan Jose Alvarado-Gil

Abstract The modeling of the thermal conductivity of composites made up of

metallic and non-metallic micro/nanoparticles embedded in a solid matrix is

discussed in detail, at both the dilute and non-dilute limits of particle concentra-

tions. By modifying both the thermal conductivity of the matrix and particles, to

take into account the strong scattering of the energy carriers with the surface of the

nanoparticles, it is shown that the particle size effect shows up on the thermal

conductivity of nanocomposites through: (1) the collision cross-section per unit

volume of the particles and, (2) the mean distance that the energy carriers can travel

inside the particles. The effect of the electron–phonon interactions within metallic

particles shows up through the reduction of the thermal conductivity of these

particles with respect to its values obtained under the Fourier law approach. The

thermal conductivity of composites with metallic particles depend strongly on

(1) the relative size of the particles with respect to the intrinsic coupling length,

and (2) the ratio between the electron and phonon thermal conductivities. The

obtained results have shown that the size dependence of the composite thermal

conductivity appears not only through the interfacial thermal resistance but also by

means of the electron–phonon coupling. Furthermore, at the non-dilute limit, the

interaction among the particles is taken into account through a crowding factor,
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which is determined by the effective volume of the particles. The proposed

crowding factor model is able to capture accurately the effect of the interactions

among the particles for concentrations up to the maximum packing fraction of the

particles. The predictions of the obtained analytical models are in good agreement

with available experimental and numerical data and they can be applied to guide the

design and improve the thermal performance of composite materials.

3.1 Introduction

Composites based on the dispersion of a discontinuous phase of particles embed-

ded in a continuous matrix, have been used for more than a hundred years, due to

their outstanding properties that often cannot be obtained with single-phase mate-

rials [1, 2]. In many applications ranging from mechanical structures to electronics,

it is common to engineer material properties by combining the most useful proper-

ties of two or more phases. The prediction and understanding of the composite

properties has been a complex subject of research since the properties of composite

materials depend on a number of structural parameters and physical/chemical

properties including the volume fraction, size, shape and orientation of the particles

as well as the interfacial characteristics between the particles and matrix. The two

basic configurations of the particles in composites are defined by the random and

aligned distribution of particle inclusions, as shown in Fig. 3.1a, b, respectively. The

overall thermal conductivity of the first composite can be considered as isotropic,

while the thermal conductivity of the second one could be anisotropic.

Since Maxwell [3] who presented a theoretical basis for calculating the effective

thermal conductivity of particulate composites, a considerable amount of theoretical

and empirical approaches have been employed to analyze the thermal conductivity

of composites, as summarized in the books by Milton [1] and Torquato [2], and

references therein [4–15], in which most analysis has been performed based on an

effective medium approximation (EMA), under the framework of the Fourier law of

heat conduction. One of the most widely-used models was recently derived by Nan

et al. [8], who considered spheroidal inclusions with interfacial thermal resistance

and generalized the previous results of Benveniste [4], and Hasselman and Johnson

[5], for spherical, cylindrical and flat-plate inclusions. These EMA models can

predict reasonably well the thermal conductivity of composites with small volume

fraction of macro/micro-sized particles where heat conduction is governed by the

Fourier law.

However, the EMA models developed earlier have not considered the details of

heat-carrying carriers and their interaction with microstructures. As a consequence,

there are three major drawbacks of these classical models based on the Fourier’s

law: (1) They are not appropriate for predicting the thermal conductivity of

nanocomposites where the particle size could be of the order or smaller than the

mean free path of the energy carriers [13, 16, 17]. (2) They do not consider the

effect of the electron–phonon coupling and therefore they are not applicable for
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composites with metallic particles, where the heat conduction is due to the flow of

the electron and phonon gases and their interactions. (3) They do not consider the

effect of the interaction among the particles and therefore they are not applicable

for high concentration of particles (typically larger than 15 %).

In this chapter, we present in detail the modeling of the thermal conductivity of

composites made up of metallic and non-metallic micro/nanoparticles embedded in

a solid matrix, at both the dilute and non-dilute limits of particle concentrations,

which essentially addresses the above drawbacks. Before we present the detailed

modeling, we summarize in the rest of this section the basic physics behind the

drawbacks identified above. Section 3.2 is dedicated to address the size effects of

energy carriers in nanocomposites. A thermal conductivity model for metal-

nonmetal composites is developed in Sect. 3.3, which takes into account the effects

of both electron–phonon coupling and thermal boundary resistance. In Sect. 3.4, a

crowding factor model is presented that can be utilized to extend the thermal

conductivity models at the dilute limit to high concentrations. Section 3.5 concludes

this chapter.

3.1.1 On the Nanocomposites

Significant interest has recently been given to composites with nano-sized particles

(nanocomposites), due to their importance in electronics, structural and energy

applications [16]. In contrast to the composites with micro-sized particles, the

heat conduction through nanocomposites is expected to be strongly determined

by the interface/surface effects. The energy carriers (electrons and phonons) in

composites experience multiple scattering processes, which ultimately determine

the effective thermal conductivity of the material. One of these scattering

Fig. 3.1 Schematics of a composite with (a) random and (b) aligned distribution of particles
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mechanisms is defined by the collision of the energy carriers with the surface of the

embedded particles and its effects are strongly determined by the relative size of the

particles with respect to the intrinsic mean free path (MFP) associated with

the scattering among carriers and carriers with natural impurities. When the size

of the particles is much larger than the intrinsic MFP, the collisions of the energy

carriers with the surface of the particles is quite infrequent in comparison with the

other scattering processes, and therefore their effects can be neglected. By contrast,

if the size of the particles is of the order of the MFP or smaller, these collisions can

be very frequent and hence their contribution to the heat conduction is significant.

Considering that the MFP of electrons and phonons are in the order of a few

nanometers to hundreds of nanometers, in a wide variety of materials at room

temperature, the effects of the size of the particles are expected to be negligible for

micro-sized or bigger particles and become significant for nano-sized particles.

3.1.2 On the Composites with Metallic Particles

Metals usually have much higher thermal conductivities than ceramic or polymer

materials. It is expected that metallic nanoparticles can significantly enhance the

thermal conductivity of the matrix material [1]. Despite of its importance and

practice in using metallic fillers for composite materials, currently there exist no

models that can correctly describe the heat transport through nanocomposites with

metallic particles in dielectric materials. Heat transport through metallic particles,

in contrast to that in nonmetallic materials, is not only due to the phonon gas but

also due to the electron gas and their interactions [18]. In addition to the

electron–electron and phonon-phonon scatterings, the electron–phonon interactions

are also present in metals. In fact, the coupling between electrons and phonons

inside the metallic particles and their interaction with the matrix has a dominant

role in the heat transport through the composites. In addition, as the size of the

particles reduces to nanoscale, the frequent collisions of the electrons and phonons

with the surface of the embedded particles significantly shortens their effective

mean free path, as shown in Fig. 3.2, which further complicates the modeling of the

effective thermal conductivity of metal-nonmetal composite.

3.1.3 On the High Particle Concentrations

Most existing models for thermal conductivity of composites have assumed that the

volume fraction of the particles is small enough (typically smaller than 15 %) that

the interactions among the particles can be neglected. In such dilute limit, the heat

flux lines generated by one particle are not distorted by the presence of the

neighboring particles when the distance between neighboring particles is much

larger than their size, as shown in Fig. 3.3a. However, for higher particle
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concentrations, the distance between neighboring particles can be of the order of the

particle size or smaller and the interaction among particles have to be considered,

which results in distortion in heat flux that is different from the prediction of single

particle assumption, as shown in Fig. 3.3b. Due to this particle interaction, the

modeling of the thermal conductivity of composites at the non-dilute limit has been

a challenging research problem.

Fig. 3.2 Schematics of the different scattering processes of the energy carriers inside the

nonmetal matrix and the metallic particles of a composite

Fig. 3.3 Schematics of the lines of the heat flux inside a composite with a (a) dilute and (b)

non-dilute concentration of particles

3 Thermal Conductivity of Particulate Nanocomposites 97



3.2 Size Effects in Nanocomposites

Theoretical models predicting the thermal conductivity of nanocomposites and

explaining how the nanoscale structures influence the bulk thermal properties are

scarce. Models for thermal conductivity of semiconductor and dielectric

nanocomposites just start to emerge. By calculating the scattering cross section

and the relaxation time due to a single particle, Khitun et al. [9] derived an

expression for the thermal conductivity of a composite with periodically arranged

nanoparticles. Even though they reported a particle-size dependence of the effective

thermal conductivity, their approach is limited to elastic scattering inside the

particles and specular scattering at the interfaces. More recently, based on the

phonon Boltzmann transport equation (BTE), Yang et al. [14–16, 19–21] studied

the phonon thermal conductivity of a variety of nanocomposites. Their simulations

showed that the temperature profiles in nanocomposites are very different from

those in conventional composites due to the ballistic phonon transport at nanoscale.

This indicates that the dependence of the thermal conductivity on the particle size

and volume fraction in nanocomposites can be significantly different from that of

macro/micro-composites. Along the same line, Prasher [11, 22] derived semi-

analytical expressions for the effective thermal conductivity of nanocomposites

with aligned nanowires. More recently, Minnich and Chen [13] proposed a modi-

fied EMA formulation based on Nan et al. model [8] by considering the interfacial

scattering of phonons in nanocomposites. The predictions of this modified EMA for

the thermal conductivity of composites reinforced with spherical and cylindrical

particles, as a function of the interface density, are in good agreement with the

numerical approaches based on the BTE and Monte Carlo (MC) simulations. We

have recently extend the formalism proposed by Minnich and Chen [13] for

nanocomposites with spheroidal inclusions. Our results exhibit an explicit depen-

dence of the composite thermal conductivity on the collision cross-section per unit

volume of the particles and the average distance that the energy carriers can travel

inside the particles.

3.2.1 Modified Effective Medium Approximation (MEMA)
Model

In general, the thermal conductivity k of composites can be written as,

k ¼ k km; kI; f ;Pð Þ, (3.1)

where km and kI are the thermal conductivities of the matrix and the particles,

respectively; f is the volume fraction of the particles and P stands for other

properties as the particles size, shape and orientation, and the interfacial thermal

resistance. The classical models [4, 5, 8, 12] derived under the framework of the
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Fourier law of heat conduction have the form of (3.1), and they consider km and kI as
the bulk thermal conductivity of the constituents. To take into account the particle

size effects, the thermal conductivity of the matrix and the particles needs to be

modified, by determining the effective mean free path of the energy carriers

associated with all the scattering processes. These calculations have been proposed

and developed by Minnich and Chen [13] for spherical and cylindrical

nanoparticles, and subsequently they have been extended for spheroidal particles

by Ordonez-Miranda et al. [23].

According to the kinetic theory [24], the thermal conductivity of a material is

given by

kξ ¼ 1

3

ð
Cξ εð Þvξ εð Þlξ εð Þdε, (3.2)

where Cξ, vξ and lξ are the volumetric heat capacity per unit energy, the group

velocity and the total MFP of electrons (ξ ¼ e) or phonons (ξ ¼ p). For a compos-

ite as shown in Fig. 3.4a, the MFP of the energy carriers in the matrix is not only

determined by the intrinsic carrier-carrier scatterings but also by the carrier-

boundary collisions. According to the Matthiessen rule [24], the effective MFP

lξ,m of the energy carriers in the matrix can be written by

1

lξ,m
¼ 1

lξξ,m
þ 1

lξI,m
(3.3)

Fig. 3.4 Schematics showing the scattering process of an energy carrier inside (a) the matrix and

(b) the spheroidal particle
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where lξI,m is the MFP associated with the collisions of the energy carriers with the

outer surface of the particles, and it is assumed to be independent of the intrinsic

scattering of the energy carriers represented by lξξ,m.
To determine lξI,m, let us define A⊥ as the collision cross-section (the effective

area of collision) between an energy carrier and a particle, and n as the number of

particles per unit volume of them (the density of particles). If V is the volume of one

particle, the volume fraction of particles is f ¼ nV. Now if one energy carrier

travels a distance L, it collides with particles within the cylindrical swept volume

A⊥L, which contains nA⊥L particles (see the dashed lines in Fig. 3.3a). The MFP

lξI,m due to particle inclusions can be thus written as

lξI,m ¼ L

nA⊥L
¼ 1

nA⊥
¼ 1

σ⊥ f
, (3.4)

where σ⊥ ¼ A⊥/V is the collision cross-section per unit volume of one particle.

After replacing (3.3) and (3.4) into (3.2), it is found that the thermal conductivity kξ,m
of the electron (ξ ¼ e) or phonon (ξ ¼ p) gases in the matrix material are given by

kξ,m ¼ Kξ,m

1þ lξξ,mσ⊥ f
, (3.5)

where Kξ,m is the bulk thermal conductivity of the matrix given by (3.2) with the

replacement lξ ! lξξ,m, which, for the sake of simplicity, has been represented by

its average value. Equation (3.5) indicates that the size dependence of the effective

thermal conductivity kξ,m of the matrix is related by the collision cross-section per

unit volume (σ⊥ ¼ A⊥/V ) and not through the total surface area per unit volume of

the particles, as was suggested by other researchers [15, 21].

The effective thermal conductivity of the particles can be found similarly. Based

on the Matthiessen rule, the effective mean free path lξ,I of the energy carriers

within the particles is given by

1

lξ, I
¼ 1

lξξ, I
þ 1

c
: (3.6)

where c is the average distance traveled by the energy carriers inside the particles,

independently of the intrinsic carrier scattering associated with the MFP lξξ,I. After
replacing (3.6) into (3.2) and assuming that lξξ,I can be represented by its average

value, the following thermal conductivity kξ,I of the particles is obtained

kξ, I ¼ Kξ, I

1þ lξξ, I=c
, (3.7)

where Kξ,I is the bulk thermal conductivity of the particles, defined by (3.2) with the

replacement lξ ! lξξ,I. Equation (3.7) shows that the effective thermal conductivity

of the particles can be considerably smaller than its bulk value when c � lξξ,I, and it
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reduces to its bulk counterpart for c � lξξ,I. This is expected given that the distance
c is directly proportional to the size of the particles, as shown below.

If the particles are aligned spheroids as the one shown in Fig. 3.4b, and the heat

flux is in the z-direction (the resultant net direction of the energy carriers), the

energy carriers of the matrix “see” an effective area of collision A⊥ ¼ πa2, which
implies that σ⊥ ¼ πa2/(4πba2/3) ¼ 3/4b. Due to the symmetry of the problem, the

characteristic length c ¼ cz, can be calculated conveniently using prolate (if a < b)
or oblate (if a > b) spheroidal coordinates (η, ξ, ϕ) [25]. The oblate spheroidal

coordinates are related to the Cartesian coordinates (x, y, z) as follows

x ¼ p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ2

� �q
cosϕ, (3.8a)

y ¼ p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ2

� �q
sinϕ, (3.8b)

z ¼ p

2
ηξ, (3.8c)

where p is the interfocal distance, as shown in Fig. 3.5. These oblate spheroidal

coordinates are defined within the intervals 0 � ξ < 1, � 1 � η � 1, and 0 � ϕ
< 2π, such that the surface of the spheroid is defined by ξ ¼ contant ¼ ξ0, the
plane xy and the z axis are given by η ¼ 0 and jηj ¼ 1, respectively [25]. According

to these definitions and (3.8a)–(3.8c), the lengths of the axes of the spheroid are

determined by 2a ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ20

q
and 2b ¼ pξ0.

To calculate the mean distance c, we are going to assume that the energy carriers

undergo diffusive scattering at the inner surface of the spheroidal particles. This

means that the electrons and phonons are reflected from the boundary surfaces with

equal probability to any direction, as is the case of rough interfaces, which are

usually found in practical applications. In presence of a heat flux along the z axis the
distance c ¼ cz, is therefore determined by the average value of 2z0 ¼ pηξ0 (see

Fig. 3.5), that is to say

Fig. 3.5 Geometry of the

cross-section of an oblate

spheroid (a > b) with
r2 ¼ x2 + y2
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cz ¼ pξ0
A

ð
A

ηdA, (3.9)

where, according to (3.8a)–(3.8c), the differential element of area over the surface

of the spheroid is given by dA ¼ p=2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ξ2

p
dηdϕ. The integration in

(3.9) has to be performed over the total area A of the spheroid, and its result is

cz ¼ 4b

3ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p 3 � 1

ε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p þ arcsinh εð Þ , (3.10)

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=bð Þ2 � 1

q
is the eccentricity of the oblate spheroids. For spherical

particles, the characteristic length in (3.10) reduces to the radius of the spheres

(cz ¼ b ¼ a), which is consistent with its definition of mean distance. On the other

hand, for flat-plate particles (a � b), (3.10) becomes cz ¼ 4b/3 � 1.33b.
According to (3.7), this indicates that the thinner the particle, the smaller its thermal

conductivity across its plane, as expected.

If the heat flux is parallel to the xy-plane, the cross-section is given by A⊥ ¼ πab
and hence σ⊥ ¼ πab/(4πba2/3) ¼ 3/4a. Furthermore, according to Fig. 3.4, the

distance c ¼ cxy traveled by the energy carriers inside the oblate spheroids is given

the average value of 2y0 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ20

� �q
sinϕ , over the surface of the

spheroid. The final results is

cxy ¼ 8a

3πε

1þ ε2ð ÞD �ε2ð Þ � 1� ε2ð ÞE �ε2ð Þ
ε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p þ arcsinh εð Þ , (3.11)

where D and E are the complete elliptic integrals of the first and second kind [26],

respectively. For spherical particles, (3.8b) predicts cxy ¼ b ¼ a, which agrees with
(3.10). On the other hand, for flat-plate particles (3.11) yields cxy ¼ 8a/3π � 0.85a,
which is independent of the minor semi-axis and increases linearly with the major

semi-axis of the spheroid. By comparing the values cz ¼ 1.33b and cxy ¼ 0.85a, for
a flat-plate particle (a � b), it is clear that its thermal conductivity along its plane is

much larger than the one across its plane (see (3.7)).

By using the prolate spheroidal coordinates and following a similar procedure

than the one performed for oblate spheroids, a direct calculation shows that for

prolate spheroids (a < b), (3.10) and (3.11) remains valid after the substit-

ution ε ! iε, where i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit and the new eccentricity is

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=bð Þ2

q
. Therefore, for cylindrical inclusions (a � b), (3.10) and

(3.11) reduces to cz ¼ 8b/3π � 0.85b and cxy ¼ 32a/3π2 � 1.08a, which

indicate that the thermal conductivity along the axis of the particles can be

much larger than the one across its axis, as is the case of carbon nanotubes [27],

for instance. Figure 3.6a shows that for a fixed semi-axis b, the characteristic
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length cz is bounded and increases with the equatorial radius a of the spheroids.

On the other hand, for a given semi-axis a, the characteristic length cxy is also

bounded and increases with b. These behaviors are because of the average

distance that the energy carriers can travel inside the particles increases with

their dimensions. This is confirmed by Fig. 3.6b, which indicates that for prolate

spheroids (a < b), cxy < cz; while for oblate ones (a > b), cxy > cz; as expected.
By replacing the bulk thermal conductivities Kξ,m and Kξ,I involved in a Fourier-

law-based model for the thermal conductivity of composites with a defined distri-

bution of particles, with their corresponding modified values given by (3.5) and

(3.7), it is expected that the its validity can be extended for composites with nano-

sized particles, as is the case of nanocomposites. Given that the modified thermal

conductivities are smaller than their corresponding bulk values, it is expected that

the modified thermal conductivity of the whole composite is smaller than its

unmodified value.

3.2.2 Applications

Now let us consider a composite made up of aligned Si particles embedded in a Ge

matrix, where the main heat carriers are the phonons. A suitable model for this case,

was derived by Nan et al. [8], who proposed that the components ki of the thermal

conductivity of the composite, along the principal axes (i ¼ x, z) of the aligned

spheroidal particles are given by

ki ¼ Km
1þ βi 1� Lið Þ f

1� βiLi f
, (3.12)

where Km is the bulk thermal conductivity of the matrix, 2Lx + Lz ¼ 1, and

Fig. 3.6 (a) Normalized characteristic lengths and (b) characteristic length ratio cxy/cz as a

function of the aspect ratio a/b of spheroidal particles
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βi ¼
σi � Km

Km þ Li σi � Kmð Þ , (3.13a)

σi ¼ KI

1þ RLiKI 2=aþ 1=bð Þ , (3.13b)

Lx ¼ p2

2 p2 � 1ð Þ �
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p 3
arccosh pð Þ, (3.13c)

where KI the thermal conductivity of the inclusions, R the interfacial thermal

resistance and p ¼ b/a. According to (3.5) and (3.7), the modified thermal conduc-

tivity of the inclusions and the matrix are kI ¼ KI/(1 + lpp,I/c) and km ¼ Km/

(1 + 3lpp,mf/4d), respectively; where d ¼ a (b) for oblate (prolate) spheroids.

After replacing these two results into (3.12), (3.13a) and (3.13b), the modified

EMA model is obtained.

Figure 3.7a shows the thermal conductivity k ¼ kx ¼ kz of the nanocomposite as

a function of the volume fraction f for different values of the radius a ¼ b of

spherical particles, in comparison with numerical results obtained from the

Boltzmann transport equation [13, 15, 21]. Here, the cubic particles studied numer-

ically [21] are represented approximately by spherical particles. The calculations

were performed using the data shown in Table 3.1, for the modified (M) and

unmodified (UM) models.

Note that the predictions of the modified model are in good agreement with the

MC simulations, especially for a ¼ 5 and 25 nm, which are much smaller than the

phonon MFP, and therefore the interfacial scattering plays an important role.

A similar behavior is shown in Fig. 3.7b, for the thermal conductivity of composites

in the direction perpendicular to the aligned cylindrical particles (a � b), where

the predictions of the modified model again agree with the numerical results based

on the BTE. A remarkable disagreement between the predictions of the modified

and unmodified models is shown in Fig. 3.7a, b, for both spherical and cylindrical

particles, respectively. As the size of the particles increases (a ¼ 100 nm) and

becomes of the same order of magnitude than the MFP, this difference decreases, as

a consequence of the reduction of the boundary scattering of phonons.

Furthermore, the modified EMA model can also be used to predict anisotropic

thermal conductivity of nanocomposites with spheroidal particles. Figure 3.8a, b

show the anisotropic thermal conductivities kx and kz of nanocomposites as a

function of the volume fraction for three different particles sizes of a ¼ 5,

50, 300 nm and b ¼ 5a.
Figure 3.8a shows that kx has a similar decreasing trend than the one for spherical

particles shown in Fig. 3.7a. By contrast, Fig. 3.8b shows that the thermal conduc-

tivity of the composite can also increase with the volume fraction for a ¼ 300 nm.

According to (3.12), the increasing (decreasing) of the composite thermal conduc-

tivity when the volume fraction increases is determined by β > 0 (β < 0). Based on

this remark and according to (3.13a) and (3.13b), the thermal conductivity of a

composite will decrease independently of the value of the thermal conductivity of
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the particles, when the volume fraction of the particles increases, if the geometry of

the particles fulfills the condition

2

a
þ 1

b

� �
Li >

1

aK
, (3.14)

where aK ¼ RKm is the so-called Kapitza radius of the composite. Equation (3.14)

represents the selection rule to minimize the thermal conductivity of composite

Fig. 3.7 Thermal conductivity of a Si/Ge nanocomposite reinforced with (a) spherical and (b)

cylindrical nanoparticles, as a function of the volume fraction and the particle radius. Calculations

were performed with the data reported in Table 3.1

Table 3.1 Material properties used in the calculations [21]

Material

Bulk thermal

conductivity (W/mK) MFP (nm)

Interfacial thermal

resistance (m2K/W)

Si 150 268 6.8 � 10�9

Ge 51.7 171

Fig. 3.8 Thermal conductivities (a) kx and (b) kz of a Si/Ge nanocomposite reinforced with prolate

spheroids with semi-axes b ¼ 5a. Calculations were performed with the data reported in Table 3.1
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materials by arranging the size and shape of the spheroidal particles properly. For

spherical and cylindrical particles of radius a, (3.14) reduces to aK > a, which
agrees with the results shown in Fig. 3.7a, b.

3.3 Metal-Nonmetal Composites

In metal-nonmetal composites, heat is conducted by different carriers in the parti-

cles and in the matrix. The energy is transport by both electrons and phonons in

metallic particles and then coupled to the phonons in the matrix. Both the

electron–phonon coupling in the metallic particle and the energy coupling across

material interface become important factors that determines the thermal conduc-

tivity of composites, especially when the particle size is in the order of the

electron–phonon coupling length. In this section, the two-temperature model of

heat conduction [28] originally proposed by Kaganov et al. [29] and Anisimov

et al. [30] is used to take into account the electron–phonon interactions and to

determine the effective thermal conductivity of composites with spheroidal metallic

particles embedded in a nonmetallic matrix. The interfacial thermal resistance that

accounts for the phonon mismatch between the two phases is included in this

model. Our results generalize those obtained by Nan et al. [8] under the framework

of the Fourier law of heat conduction and show that the effective thermal conduc-

tivity depends strongly on (1) the relative size of the spheroidal particles with

respect to the electron–phonon coupling length, and (2) the ratio between the

electron and phonon thermal conductivities. It is shown that the composite thermal

conductivity has upper and lower bounds, which are determined by the particle size

in comparison with the electron–phonon coupling length. For the limiting case of

perfect electron–phonon coupling, the proposed model reduces to various previ-

ously reported results. This study could be useful for guiding the design of partic-

ulate composites with metallic inclusions from macro/micro- to nano-scales.

3.3.1 Theoretical Model

Figure 3.9a shows the particulate composite under consideration, in which coated

spheroidal particles with the orientation and geometry shown in Fig. 3.9b are

embedded in a dielectric matrix of thermal conductivity k3. The metallic core of

the spheroidal particles has electron and phonon thermal conductivities ke and kp
respectively, and it is covered by a dielectric layer of thermal conductivity k2 with
variable thickness. Note that the composite shown in Fig. 3.9a, b is a three-phase

composite, which can be used to model two-phase composite when the thickness of

the dielectric coating goes to zero and the coating is used to represent a finite

interfacial thermal resistance. The derivation of the effective thermal conductivity

of this composite will be based on finding the temperature profile outside the
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particle shown in Fig. 3.9b, when it is exposed to a constant heat flux q
!
0 . This

method is based on the approach developed by Maxwell for an analogous electro-

statics problem [3].

In the metallic core, the TTM of heat conduction is used to describe the coupled

heat transport due to the electron and phonon gases [31]. This model describes the

spatial evolution of electron temperature Te and the phonon temperature Tp by the

following coupled differential equations [28, 31]

∇2Te � G

ke
Te � Tp

� � ¼ 0, (3.15a)

∇2Tp þ G

kp
Te � Tp

� � ¼ 0, (3.15b)

where G is the electron–phonon coupling factor, which takes into account the

electron–phonon interactions. Note that if the electron gas is in thermal equilibrium

with the phonon gas (Te ¼ Tp), both (3.15a) and (3.15b) reduces to the Laplace

equation, which indicates that the difference between TTM and the Fourier law is

due to the non-equilibrium state between electrons and phonons inside the metallic

particles. According to (3.15a) and (3.15b), the thermal equilibrium between

electrons and phonons is reached when G ! 1 (perfect coupling), which indicates

that in this limit, the predictions of the current approach should reduce to the results

obtained under the Fourier law, as shown below.

We point out that the electron–phonon coupling G in nanostructures is

temperature-dependent and could be remarkably different from that in the bulk

materials [32–34]. However, many reported results have shown that the predictions

Fig. 3.9 Schematics of (a) the composite with aligned coated spheroidal particles and, (b) the

geometry of one of those particles made of a metallic core with electron thermal conductivity ke,
phonon thermal conductivity kp and electron–phonon coupling factor G; and a nonmetallic coating

layer with thermal conductivity k2. The semi axes a2 and b2 of the outer confocal spheroid satisfy

the relation a22 � b22 ¼ a21 � b21
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of the TTM with an average constant value of G are in good agreement with

experimental data [31–33]. Based on these results and with the objective of keeping

solvable the problem, we are going to consider that the coupling factor can be

represented by an average constant value to illustrate the importance of G in

modeling the thermal conductivity of composites. Phonons dominate the heat

conduction in the nonmetallic coating layer and in the matrix and therefore the

Fourier law of heat conduction can describe their temperature.

By subtracting (3.15a) and (3.15b), the electron and phonon temperature

difference ψ ¼ Te � Tp can be found by

∇2ψ � 1

d2
ψ ¼ 0, (3.16)

where d is the electron–phonon coupling length of metals defined by

d2 ¼ ka
G
, (3.17a)

1

ka
¼ 1

ke
þ 1

kp
, (3.17b)

where ka is the half of the harmonic mean of the electron and phonon thermal

conductivities. It was found that d ~ 10�7 m, for a wide variety of metals (as copper,

silver, gold and others) at room temperature [28, 31].

Due to the symmetry of the problem, we can use the prolate (b1 > a1) or oblate
(b1 < a1) spheroidal coordinates (η, ξ, ϕ) to simplify the solution of the problem.

Let us now first consider that the uniform heat flux q
!
0 shown in Fig. 3.9b is applied

in the z-direction. Then, based on the Fourier law and in the relations among the

oblate spheroidal coordinates with the Cartesian coordinates defined in

(3.8a)–(3.8c), the temperature T3 far away from the influence of the coated particle,

apart from an additive constant, is given by

T3 zj j ! 1ð Þ � T0 ¼ � q0
k3

z ¼ � q0p

2k3
ηξ, (3.18)

Taking into account the azimuthal symmetry of the problem, the method of

separation of variables indicates that the difference of the electron and phonon

temperature can be written as ψ(η,ξ) ¼ S(η)R(ξ). After replacing this expression

into (3.16), it is found that the functions S(η) and R(ξ) satisfy the following

differential equations

d

dη
1� η2
� � dS

dη

� �
þ λ� c2η2
� �

S ¼ 0, (3.19a)
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d

dξ
1þ ξ2
� � dR

dξ

� �
� λþ c2ξ2
� �

R ¼ 0, (3.19b)

where λ is a separation constant and c ¼ p/(2d ). Note that for c ¼ 0 (d ¼ 1), the

well-behaved solution of (3.19a) and (3.19b) can be expressed in terms of the first

and second Legendre polynomials Pl and Ql, respectively [26]. In this case (c ¼ 0),

(3.16) reduces to the Laplace equation and therefore it yields the solution for the

temperature T under the Fourier law description. Taking into account that Ql(μ) /
Pl(μ)Fl(μ) [35], the general solution for T, can be written as follows

T η; ξð Þ ¼
X1
l¼0

AlPl ηð ÞPl iξð Þ 1þ BlFl iξð Þ½ 	, (3.20)

where Al and Bl are constant that depend on the boundary condition of the problem,

i is the imaginary unit, and

Fl μð Þ ¼
ð1
μ

dx

x2 � 1ð Þ Pl xð Þ½ 	2: (3.21)

The temperature profile in the nonmetallic coating layer T2, and in the matrix T3,
can be therefore written as (3.20), which is a particular case (c ¼ 0) of the general

solution of (3.19a) and (3.19b).

For the case of c 6¼ 0 (d 6¼ 1) the solution of (3.19a) is determined by the

spheroidal angular functions S ¼ S0l(c,η), which are similar to the well-known

spherical harmonics and can be expanded in term of Legendre polynomials

[25]. Analogously, the solution of (3.19b) is given by the spheroidal radial functions

R ¼ R0l(c,iξ), which have a known expansion in terms of spherical Bessel functions

[25]. We can therefore write the general solution of (3.16) as follows

ψ η; ξð Þ ¼
X1
l¼0

ClS0l c; ηð ÞR0l c; iξð Þ, (3.22)

where Cl are numerical constants. According to (3.15a), the electron temperature Te
satisfies

∇2Te ¼ G

ke
ψ , (3.23)

which is an inhomogeneous partial differential equation, whose general solution is

given by the superposition of its complementary (Tec) and particular (Tep) solutions
(Te ¼ Tec + Tep) [26]. Taking into account that ∇2Tec ¼ 0, the solution for Tec is
given by (3.20). Furthermore, the combination of ∇2Tep ¼ ψG/ke with (3.16)

yields Tep ¼ ψka/ke. In this way, the general solution of (3.23) is
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Te η; ξð Þ ¼ T η; ξð Þ þ ka
ke

ψ η; ξð Þ: (3.24)

The phonon temperature Tp ¼ Te � ψ is then found to be

Tp η; ξð Þ ¼ T η; ξð Þ � ka
kp

ψ η; ξð Þ: (3.25)

Note that (3.24) and (3.25) shows that the temperature profiles predicted by the

TTM are given by the superposition of the Fourier law prediction (the common

term) and a non-equilibrium term, which takes into account the effects of the

coupling among the electrons and phonons of the metallic core of the particle

shown in Fig. 3.9b.

After writing out the solutions for temperature distributions inside the particle

[(3.24) and (3.25)], in the coating layer and in the matrix [(3.20)], we now need

to specify interface and boundary conditions to find the required specific solutions.

In general, there are two possible pathways for energy transport across metal-

nonmetal interfaces, namely: (1) coupling between electrons and phonons within

the metal, and then subsequently coupling between phonons of the metal and phonons

of the nonmetal, and (2) coupling between electrons of the metal and phonons of the

nonmetal through anharmonic interactions at the metal–nonmetal interfaces.

Even though the direct electron–phonon coupling at metal-nonmetal interfaces is

always present (pathway 2), experimental or theoretical methodologies to quantify

its contribution are scarce [28, 36]. The description of this channel of heat transport

is complicated, and the mechanism is not well understood, especially when the

electrons of the metal are not in equilibrium with the phonons of the dielectric

material [37, 38]. The authors of these latter works also suggested that contribution

of the pathway 2 to the total heat flux through the metal-dielectric interface could be

small in comparison to that of the phonon-phonon interactions for a wide variety of

metals. Based on these facts and for keeping the problem analytically solvable, we

only consider the pathway 1 in this chapter.

Given that the metallic particles are embedded in a nonmetallic matrix, it is

reasonable to consider that the electrons are mainly isolated inside the particles. We

therefore assume that the electrons inside the core particle do not interact directly

with phonons in nonmetals and focus our study on the effect of electron–phonon

coupling on the effective thermal conductivity of the composite. Under this condi-

tion, the boundary conditions for the temperature and heat flux continuity at the

interfaces, can be written as

∂Te

∂ξ

				
ξ¼ξ1

¼ 0, (3.26a)

Tp

		
ξ¼ξ1

¼ T2jξ¼ξ1
, (3.26b)
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kp
∂Tp

∂ξ

				
ξ¼ξ1

¼ k2
∂T2

∂ξ

				
ξ¼ξ1

, (3.26c)

T2jξ¼ξ2
¼ T3jξ¼ξ2

, (3.26d)

k2
∂Tp

∂ξ

				
ξ¼ξ2

¼ k3
∂T3

∂ξ

				
ξ¼ξ2

, (3.26e)

where ξ1 and ξ2 represent the surfaces of the inner and outer spheroids, respectively.
The boundary conditions expressed in (3.18) and (3.26a)–(3.26e) determine the

temperature profiles everywhere in the space. An enormous amount of algebraic

calculations can be saved during the evaluation of these boundary conditions, by

recognizing that the general form of the temperature profiles is dictated by the form

of the external thermal excitation [39]. Given that (3.18) has a linear dependence on

η, the response of the materials should also have the same dependence, which

implies that l ¼ 1 in (3.20) and (3.22). Therefore (3.20), (3.24) and (3.25) can be

written as

Te η; ξð Þ ¼ AT0 η; ξð Þ 1þ B
ka
ke

i1 cξð Þ
ξ

� �
, (3.27a)

Tp η; ξð Þ ¼ AT0 η; ξð Þ 1� B
ka
kp

i1 cξð Þ
ξ

� �
, (3.27b)

T2 η; ξð Þ ¼ CT0 η; ξð Þ 1þ DF ξð Þ½ 	, (3.27c)

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ EF ξð Þ½ 	, (3.27d)

where T0 is defined by (3.18), F(ξ) ¼ iF1(iξ), i1() is the modified spherical Bessel

function of the first kind and order one, and A, B, C, D and E are constants, which

are determined by substituting (3.27a)–(3.27d) into the five boundary conditions

given in (3.26a)–(3.26e). For the purposes of this work, just the temperature T3
outside of the spheroid is required and its explicit expression is

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ β33
F ξð Þ

ξ2F
0 ξ2ð Þ

� �
¼ T0 η; ξð Þ 1� β33L

2ð Þ
33

F ξð Þ
F ξ2ð Þ

� �
, (3.28)

where the prime (0) indicates derivative of F with respect to its argument, and

β33 ¼
k33 � k3

k3 þ k33 � k3ð ÞL 2ð Þ
33

, (3.29a)

k33
k2

¼
1þ α33 1� L

2ð Þ
33


 �
ν

1� α33L
2ð Þ
33 ν

, (3.29b)
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α33 ¼ k1 � k2

k2 þ k1 � k2ð ÞL 1ð Þ
33

, (3.29c)

k1 ¼ ke þ kp
χ

, (3.29d)

χ ¼ 1þ ke
kp

d

b1

i1 b1=dð Þ
i
0
1 b1=dð Þ , (3.29f)

L
jð Þ
33 ¼ 1þ e�2

l

� �
1� arctan ej

� �
ej

� �
, (3.29g)

where ν ¼ a21b1/a
2
2b2 is the volume fraction of the core spheroid relative to the total

volume of the coated particle, ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj=bj
� �2 � 1

q
is the eccentricity of the j ¼ 1, 2

oblate spheroid (aj > bj) and all other parameters have been defined before. In

deriving (3.29a)–(3.29g), the relations aj ¼ pj=2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2j

q
and bj ¼ pjξj/2 have

been used [25]. It is worthwhile to point out the following remarks on

(3.29a)–(3.29g): (1) In absence of the coating layer (ν ¼ 1) and without consider-

ing the interfacial thermal resistance, the thermal conductivity k33 reduces to the

thermal conductivity of the inner spheroid (k33 ¼ k1). This indicates that in pres-

ence of the coating layer, the thermal conductivity k33 can be considered as the

effective thermal conductivity of the coated spheroidal particle. (2) The effect of

the electron–phonon coupling appears in the parameter χ through the ratio between
the minor semi-axis of the inner spheroid and the coupling length d defined in

(3.17a). Thus, the relative size of the particles with respect to the coupling length

plays an important role in the process of heat conduction. (3) Equation (3.29g)

defines the well-known geometrical factor [39], along the minor z axis of the oblate
spheroids.

The effective thermal conductivity of the composite can be derived using the

temperature profile given by (3.28). To do that, let us consider a large spheroid with

semi-axes a0 and b0, and surface ξ ¼ ξ0, composed by N aligned small spheroids

(see Fig. 3.9a), with the geometry and thermal conductivities shown in Fig. 3.9b,

embedded in a matrix of thermal conductivity k3. Assuming that the volume

fraction of the N spheroids f ¼ Na22b2/a
2
0b0 is small enough to neglect the interac-

tion among them (dilute limit), at distances much larger than the major semi-axis

a0, the heat flux (and therefore the temperature) is simply the superposition of the

heat fluxes due to each small spheroid. Under this condition, (3.28) indicates that

the temperature profile due to the system of N particles can be written as follows

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ Nβ33
F ξð Þ

ξ2F
0
ξ2ð Þ

� �
: (3.30a)

By considering the large spheroid as a homogeneous spheroid with effective

thermal conductivity K33 along its minor axis (z-direction), the temperature profile

generated at a large distance is
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T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ β
33
F ξð Þ

ξ0F
0
ξ0ð Þ

� �
, (3.30b)

where β
33 is defined by (3.29a) with the replacement k33 ! K33. After equating

(3.30a) with (3.30b), it is found that β
33 ¼ β33f, where f ¼ Nξ0F0(ξ0)/ξ2F0(ξ2) is the
volume fraction of the N particles. The solution of the former equation for K33

yields

K33

k3
¼

1þ β33 1� L
2ð Þ
33


 �
f

1� β33L
2ð Þ
33 f

: (3.31)

Note that (3.31) has a similar mathematical form as (3.29b), which indicates that

the effective thermal conductivities of the composite and the coated particles are

determined by the same mathematical equation with different physical parameters.

So far, the calculations have been performed considering that the applied heat

flux q
!
0 is along the z axis of the aligned oblate spheroidal inclusions. When this heat

flux is parallel to the x or y axis, we can follow a similar procedure to find the

effective thermal conductivities K11 and K22, along the x and y axes, respectively.
Indeed we find that K11 ¼ K22, as expected; due to the symmetry of the coated

spheroids and they are given by (3.31) with the replacement of the all subscripts

33 ! 11, while the geometrical factors L
ðjÞ
11 satisfy the relation

2L
jð Þ
11 þ L

jð Þ
33 ¼ 1, (3.32)

which implies that none of the (positive) geometrical factors of the spheroidal

particles is larger than the unity.

If the particles are prolate coated spheroids (b1 > a1), we can derive the effec-

tive thermal conductivities K11 ¼ K22 and K33 of the anisotropic composite along

the principal axes of the aligned spheroids using the prolate spheroidal coordinates

[25] and following a similar procedure as that we have performed for the oblate

spheroids. The results are indeed still given by equations of the form of (3.31), with

minor changes on the geometrical terms defined in (3.29f) and (3.29g) that are

specified below.

In summary, the effective thermal conductivities of the particulate composite

along the principal axes of the aligned oblate or prolate coated spheroids can be

written as follows

Kii

k3
¼

1þ βii 1� L
2ð Þ
ii


 �
f

1� βiiL
2ð Þ
ii f

, (3.33a)
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βii ¼
kii � k3

k3 þ kii � k3ð ÞL 2ð Þ
ii

, (3.33b)

kii
k2

¼
1þ αii 1� L

2ð Þ
ii


 �
ν

1� αiiL
2ð Þ
ii ν

, (3.33c)

αii ¼ k1 � k2

k2 þ k1 � k2ð ÞL 1ð Þ
ii

, (3.33d)

k1 ¼ ke þ kp
χ

, (3.33e)

χ ¼ 1þ ke
kp

d

b1

i1 b1=dð Þ
i
0
1 b1=dð Þ , Oblate spheroids

d

a1

i1 a1=dð Þ
i
0
1 a1=dð Þ , Prolate spheroids

8>>>><
>>>>:

(3.33f)

L
jð Þ
33 ¼

1þ e�2
j


 �
1� arctan ej

� �
ej

0
@

1
A, Oblate spheroids

1� e�2
j


 �
1� arctan h ej

� �
ej

0
@

1
A, Prolate spheroids

8>>>>>><
>>>>>>:

(3.33g)

where ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj=bj
� �2 � 1

q
for oblate spheroids and ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aj=bj

� �2q
for prolate

spheroids, and the prime (0) indicates derivative of i1() with respect to its argument. It

is important to note that as a result of the electron–phonon interactions at themetallic

particle, its total thermal conductivity (electron + phonon contributions) is reduced

by the factor χ, which can bemuch larger than the unity when the size of the particles

is of the same order of magnitude than the coupling length, as established in (3.33f).

This reduction is reasonable, given that these interactions represent a scattering

process between the electrons and phonons, which reduces their total mean free path

and therefore the corresponding thermal conductivity [24, 40].

When the applied heat flux q
!
0 is not parallel to any of the principal axes of the

coated spheroids, we can generalize (3.33a)–(3.33g). In this case, the heat flux q
!

3

due to the temperature T3 outside of the spheroids is determined by the principle of

superposition and can be written as follows

q
!

3 ¼ �k3 x̂
∂T3

∂x

				
β11,q0,11

þ ŷ
∂T3

∂y

				
β22,q0,22

þ ẑ
∂T3

∂z

				
β33,q0,33

 !
, (3.34)
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where q0,ii for i ¼ 1, 2, 3 are the components of q
!

0 relative to the coordinate system

(x, y, z) defined as the principal axes of the coated spheroids, and T3 is given by

(3.28), for the appropriate parameters specified as subscripts. The components of the

heat flux vector q
!

3 relative to the (x
0,y0,z0) coordinate system, where the applied heat

flux vector q
!
0 is parallel to the z0 axis (for example), can be obtained with the

equation q
!
3


 �0
¼ M q

!
3


 �
, whereM is the transformationmatrix and the parenthesis

indicate that the heat flux vector is written in matrix form [41]. Note that this latter

equation represents the way in which the coordinates of any vector transform from

its original coordinate system to a rotated one. This relation together with (3.34)

implies that the parameters βii and βiiL
ð2Þ
ii (see (3.28)) transform according to [41]

βð Þ0 ¼ M βð ÞM�1, (3.35a)

βL 2ð Þ

 �0

¼ M βL 2ð Þ

 �

M�1, (3.35b)

where

βð Þ ¼
β11 0 0

0 β11 0

0 0 β33

0
@

1
A, (3.36a)

βL 2ð Þ

 �

¼
β11L

2ð Þ
11 0 0

0 β11L
2ð Þ
11 0

0 0 β33L
2ð Þ
33

0
B@

1
CA: (3.36b)

Let us now consider that the z axis of the coated spheroids forms an angle θ with
the direction of propagation of the applied heat flux (z0 direction), as shown in

Fig. 3.10. When the coated spheroids are randomly distributed in the plane x0y0, this
angular displacement between the z and z0 axes can be described by a single rotation
along the x axis. Therefore the transformation matrix M takes the form [41]

M ¼
1 0 0

0 cos θ sin θ
0 � sin θ cos θ

0
@

1
A: (3.37)

After inserting (3.36a), (3.36b) and (3.37) into (3.35a) and (3.35b), the param-

eters β0ii and (βL(2))
0
ii can be found. The substitution of these latter results into

(3.33a) shows that the components of the effective thermal conductivity K

ii along

the x0, y0 and z0 axes (the laboratory coordinate system) are determined by

K

11

k3
¼ K


22

k3
¼

2þ β11 1� L
2ð Þ
11


 �
1þ γð Þ þ β33 1� L

2ð Þ
33


 �
1� γð Þ

h i
f

2� β11L
2ð Þ
11 1þ γð Þ þ β33L

2ð Þ
33 1� γð Þ

h i
f

, (3.38a)
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K

33

k3
¼

1þ β11 1� L
2ð Þ
11


 �
1� γð Þ þ β33 1� L

2ð Þ
33


 �
γ

h i
f

1� β11L
2ð Þ
11 1� γð Þ þ β33L

2ð Þ
33 γ

h i
f

, (3.38b)

where γ ¼ cos 2θ. Note that when θ ¼ 0 (γ ¼ 1), (3.38a) and (3.38b) reduces to

(3.33a), as expected. Equations (3.38a) and (3.38b) determine the effective thermal

conductivity of particulate composites that are isotropic in the perpendicular direc-

tions to the applied heat flux and anisotropic under the heat flux direction. Thus, the

obtained results involve the effects of the coupling length, size, shape, orientation

and volume fraction of the particles.

We point out that the primary constituents of the composites under consideration

are the matrix and the metallic particles, which are separated by a coating layer, as

shown in Fig. 3.9b. This coating layer, as mentioned before, has been introduced to

model the lack of thermal coupling at the interface between the matrix and metallic

particles [42, 43]. Many experimental results have shown that this phenomenon

establishes a discontinuity on the temperature between two dissimilar materials

[42]. This temperature jump characterizes the interfacial resistance to the thermal

flow and is usually described by means of the interfacial thermal resistance

R defined by

R ¼ lim
δ ! 0

k2 ! 0

δ

k2
, (3.39)

where δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � a2

1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b2

1

q
(see the caption of Fig. 3.9). Note that (3.39)

differs slightly from the usual definition of R, where the parameter δ is the constant

Fig. 3.10 Local (x, y, z) and
global (x0, y0, z0) coordinate
systems of a coated

spheroid
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thickness of the coating layer [8]. In the present case, even though the modeling of

the particles as confocal spheroids (see Fig. 3.9b) has allowed us to determine the

temperature profiles and the effective thermal conductivity of the composites

analytically, the thickness of the coating layer is not constant. Therefore despite

(3.51) provides a convenient form of introducing the interfacial thermal resistance,

it introduces a small variation in R due to the generic geometry of the particles we

chose in this study. Equation (3.51) combines the geometry and the thermal

conductivity of the coating layer in just one parameter, which takes into account

the interfacial mismatch between the phonons of the matrix and metallic particles.

Under these conditions, the coating layer disappears, the inner and outer spheroids

have the same geometry, and therefore they have the same geometrical factors

(L
ð1Þ
ii ¼ L

ð2Þ
ii � Lii), the phases of the composite shown in Fig. 3.9a, b decrease to

only two constituents, and (3.33c) reduces to

kii ¼ k1
1þ Rk1Lii 2=a1 þ 1=b1ð Þ , (3.40)

which, in absence of the interfacial thermal resistance, is equal to k1. The combi-

nation of (3.33b) and (3.40) yields

βii ¼
1� akγLiið Þk1 � k3

1þ akγ 1� Liið Þ½ 	k1 þ 1� Liið Þk3 , (3.41)

where γ ¼ 2/a1 + 1/b1 and aK ¼ Rk3 is the so-called Kapitza radius [8, 44]. This

radius aK can be interpreted as the equivalent thickness of a layer of the matrix

around the spheroidal particles, with a thermal resistance R ¼ aK/k3. It is important

to note that in this limit and in absence of the effect of the electron–phonon coupling

(χ ¼ 1) (3.38a) and (3.38b) reduce to the results derived by Nan et al. [8].

To have further insights on the predictions of (3.38a), (3.38b), (3.40) and (3.41),

we analyze the following four limiting cases of potential interest:

3.3.1.1 Spherical Particles: a1 ¼ b1

In this case, L11 ¼ L33 ¼ 1/3, and both (3.38a) and (3.38b) become independent of

the direction parameter γ and reduce to

K

11

k3
¼ K


22

k3
¼ k1 1þ 2rð Þ þ 2k3 þ 2 k1 1� rð Þ � k3½ 	f

k1 1þ 2rð Þ þ 2k3 � k1 1� rð Þ � k3½ 	f , (3.42)

where k1 ¼ (ke + kp)/χ and r ¼ aK/a1. In absence of the coupling factor (χ ¼ 1),

(3.54) reduces to the result derived by Hasselman and Johnson [5] and Nan

et al. [8].
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3.3.1.2 Aligned Cylindrical Particles: a1 � b1

For large cylinders aligned parallel to the z axis (θ ¼ 0), L11 ¼ 1/2, L33 ¼ 0 and

(3.38a) and (3.38b) take the form

K

11

k3
¼ K


22

k3
¼ k1 1þ rð Þ þ k3 þ ks 1� rð Þ � k3½ 	 f

k1 1þ rð Þ þ k3 � ks 1� rð Þ � k3½ 	 f , (3.43a)

K

33 ¼ k3 1� fð Þ þ k1f , (3.43b)

In the absence of the coupling factor ( χ ¼ 1), (3.43a) reduces to the results

presented by Hasselman and Johnson [5] and Nan et al. [8], and (3.43b) is just the

simple mixture rule for inclusion arranged in series, as shown by Torquato [2].

Note that a common feature of the effective thermal conductivities of compos-

ites reinforced with spheres and cylinders ((3.42) and (3.43a)) is that they both

reduce the thermal conductivity of the matrix, independently of the volume fraction

of the particles, for a critical radius a1 ¼ ac defined by k1=k3 ¼ 1= 1� rð Þja1¼ac
.

This relation implies

rc � aK
ac

¼ 1� χc
k3
ks
, (3.44)

where ks ¼ ke + kp and χc is defined in (3.33f) for a1 ¼ ac. In terms of the critical

ratio rc, both (3.42) and (3.43a) can be rewritten in the following compact form

K


k3
¼ 1þ σλf

1� λf
, (3.45)

where σ ¼ 1 and 2, for cylinders and spheres, respectively; and

λ ¼ 1� rð Þχc � 1� rcð Þχ
1þ σrð Þχc þ σ 1� rcð Þχ , (3.46)

Equations (3.44)–(3.46) express that the thermal conductivity of composites

reinforced with spheres or cylinders, is totally ruled by the relative radius of these

particles with respect to their critical radius ac, the Kapitza radius aK and the

coupling length d, involved in the parameters χ and χc. This shows explicitly that

the behavior of K* is determined by the size scale of the particles. Note that

in absence of the interfacial thermal resistance (r ¼ rc ¼ 0), (3.46) reduces to

λ ¼ (χc � χ)/(χc + σχ), which; in contrast to the models developed under the

Fourier law approach [1, 2, 4, 5, 12], still depends on the particle size. This

reaffirms that not only the interfacial thermal resistance but also the coupling

term has an important effect on the thermal conductivity of composites.

The critical radius ac is determined by (3.44), which in general cannot be solved

analytically (see (3.33f)). However if ac � d, χc � 1 + ke/kp and (3.44) yields
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rc � ak
ac

¼ 1� k3
ks

1þ ke
kp

� �
, (3.47a)

which indicates that the critical radius ac is independent of the coupling length

d, and is greater than the Kapitza radius ak (ac > ak). On the other hand, for

ac � d, χc � 1 + (ke/kp)/(ac/d � 1) and (3.44) roughly reduces to

ac ¼ 1

ks=k3 � 1

ks
k3

aK þ ke
kp

d

� �
: (3.47b)

Equation (3.47b) shows a linear dependence of the coupling length d and

suggests that ac can be interpreted as a weighted average between the Kapitza

radius ac, and d; where the weights are determined by the ratios of thermal

conductivities. In general, (3.47a) and (3.47b) establish the minimal and maximum

values of the critical radius, respectively.

3.3.1.3 Aligned Flat Plates: a1 � b1

When the particles are laminate flat plates oriented perpendicular to the z axis

(θ ¼ 0), L11 ¼ 0, L33 ¼ 1, and (3.38a) and (3.38b) becomes

K

11 ¼ k3 1� fð Þ þ ks

χ
f , (3.48a)

1

K

33

¼ 1� f

k3
þ χ þ ρð Þ f

ks
, (3.48b)

where ρ ¼ Rks/b1. Without taking into account the effect of the coupling factor

(χ ¼ 1), the (3.48a) and (3.48b) are identical to the results derived by Torquato [2]

and Nan et al. [8].

It is important to note that even though the coupling factor G could be different

for spherical, cylindrical and flat plates particles, the obtained results remains valid

when an average value of G is used, for each case; as explained in the text

underneath (3.15b).

3.3.1.4 Randomly Oriented Spheroidal Particles

This case can be modeled by averaging the direction parameter γ over all possible
orientations of the spheroidal particles (0 � θ � π/2). The calculation of this

average is straightforward and is found to be < γ > ¼ 1/3. After inserting this

value into (3.38a) and (3.38b), both equations reduces to
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K


k3
¼ 3þ 2β11 1� L11ð Þ þ β33 1� L33ð Þ½ 	f

3� 2β11L11 þ β33L33½ 	f , (3.49)

which is the generalization of the Maxwell result [3], for isotropic composites with

spheroidal particles. Given that the leading coefficients of the volume fraction f (the
quantities in square brackets) in the numerator and denominator of (3.49) are

different, the concept of critical radius as was defined by spherical and cylindrical

particles, cannot be applied to the case of general spheroidal particles.

3.3.2 Numerical Results and Discussions

First of all, we would like to note the validity of our model. Given that the

microscopic electron–phonon interactions requires a space to take place, in general,

the TTM is suitable to study the heat conduction in materials with a physical size

greater than the mean free path (MFP) of the energy carriers (2a1, 2b1 > MFP).

This constraint was the assumption made by Qiu and Tien [31] to derived this

model from the Boltzmann transport equation, by evaluating its scattering term

using quantum mechanical and statistical considerations. It was found that the

coupling length d for a wide variety of metals (as the copper, silver, gold and

others) is of the order of hundreds of nanometers (10�7 m) [28, 31], and the mean

free path of the energy carriers is of the order of nanometers (10�9 m) [18] at room

temperature. Usually the phonon mean free path, in the order of a few nanometers to

tens of nanometer, [45–47] is much longer than the electron mean free path, which

could pose constraints on the validity of the model. However, by taking into

account the interfacial phonon thermal resistance, the TTM could be extended

into a validity regime for spheroidal particles with sizes as small as 5 � 10�9 m

[48, 49]. We thus can conclude that the model could be useful for studying the

impact of electron–phonon coupling effect on the thermal conductivity of metal-

nonmetal materials with a thickness as small as a few nanometers.

The results presented in Sect. 3.3.1 indicate that the major differences of thermal

conductivity of metal-nonmetal composites with previously published results is

given by the parameter χ, which introduces the effects of the electron–phonon

coupling through: (1) the ratio between one semi-axis (size) of the spheroids and

their associate coupling length, and (2) the ratio between the electron and phonon

thermal conductivities (see (3.33f)). For the limiting case where the particles are

nonmetallic, ke/kp < < 1 or d ! 1 (G ! 0), χ reduces to unity (χ ¼ 1), which is

its value used under the Fourier approach, and (3.42)–(3.49) reduce to the results

obtained by Nan et al. [8]. However, when the particles are metallic (χ > 1),

(3.42)–(3.49) exhibit remarkable differences with those results.

Figure 3.11 shows the coupling term χ as a function of the relative size of the

particles. Note that the effects of the coupling factor G can only be neglected

(χ ! 1) if the dimensions of the spheroidal particles are much larger than the
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coupling length (a � d ). However, as size of these particles becomes of the same

order or smaller than the coupling length (a � d ), the coupling term increases and

tends to the limit of χ ! 1 + ke/kp, when a � d. This indicates that the effects of χ
should be considered, especially when the electron thermal conductivity is much

greater than the phonon thermal conductivity (ke > > kp), as is the case of metallic

particles. Taking into account that for most metals the coupling length is of the

order of hundreds of nanometers (d ~ 10�7 m) [28, 31], Fig. 3.11 shows that the

Fourier law-based models fail when one is dealing with composites with metallic

nanoparticles. Another important parameter that determines the effective thermal

conductivity of composites involving spherical and cylindrical particles is given by

the critical radius ac, defined in (3.44). Figure 3.12 shows that ac increases with the
Kapitza radius and decreases when the ratio ks/k3 of thermal conductivities

increases. ac reaches its minimal value ac,min ¼ aK when ks/k3 ! 1. This behavior

of ac with ak indicates that the composites thermal conductivity decreases as ac
increases.

Figure 3.13 shows the influence of the relative particle size with respect to the

coupling length on the effective thermal conductivity as a function of the volume

fraction of spherical particles. Even though the derived formulas are likely not valid

for high volume fractions (f ! 1), the lines for the entire range of values of the

volume fraction has been plotted simply for completeness. Note that the thermal

conductivity of the composite increases when the normalized radius a/d of the

spheres increases, such that for a/d ! 1, the thermal conductivity reaches its

maximum values, which is predicted by the Fourier law (see Fig. 3.11). As the

normalized radius is scaled down, the thermal conductivity of the composite

decreases, and it reaches its minimal value for a/d ¼ 0. The change of the com-

posite thermal conductivity due to the relative size of the spheres with respect to the

coupling length is bounded by K*ja/d ¼ 0 � K* � K*ja/d ¼ 1, for any value of the

volume fraction. These bounds are determined by the two asymptotic values of

Fig. 3.11 The normalized

coupling term χ as a

function of the relative size

of the spheroidal particles,

for different kep ¼ ke/kp
values. a ¼ a1 for prolate

spheroids, and a ¼ b1 for
oblate spheroids
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the coupling term χ ¼ 1, 1 + ke/kp. Note that K* > k3 for a > ac, K* < k3 when
a < ac, and K* ¼ k3 at a ¼ ac, for any volume fraction. These features of the

effective thermal conductivity are true for any value of the critical and Kapitza radii

(see Fig. 3.14a), and they are not only valid for the case of spheres but also for

cylinders, as can be shown from (3.45) and (3.46). This indicates that to increase the

thermal conductivity of the matrix, the thermal and geometrical properties have to

be selected such that, the radius of the particles is larger than their critical radius.

The normalized thermal conductivity of composites with spherical particles as a

function of their normalized radius and Kapitza radius is shown in Fig. 3.14a, b,

respectively; by comparing the predictions of the proposed approach in pre-

sence (solid lines) and absence (dashed lines) of the electron–phonon coupling

Fig. 3.12 Normalized

critical radius ac/d, as a
function of the normalized

Kapitza radius ak/d and the

ratio ks3 ¼ ks/k3.
Calculations were

performed for ke/kp ¼ 4

Fig. 3.13 Normalized

thermal conductivity of

composites with spherical

particles as a function of

their volume fraction, for

different values of the

normalized radius a/d.
Calculations were

performed using ac ¼ 5d,
ak ¼ 2d and ke ¼ 3kp
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factor G ( d ¼ ffiffiffiffiffiffiffiffiffiffiffi
ka=G

p
). Figure 3.14a shows that the thermal conductivity of

composites is strongly determined by the size of the particles and the Kapitza

radius with respect to the coupling length. For a particle radius of the order of the

coupling length (a ~ d ), the effects of G show up remarkably when the Kapitza

radius is comparable or smaller than the coupling length (aK � d ). On the other

hand, according to Fig. 3.14a, b, for a fixed Kapitza radius aK > d, those effects

become remarkable for a particle radius inside the interval d � a � 10d, and they

reduce for other particles sizes. Based on these remarks, it is clear that

the contribution of the coupling factor, for particles sizes within this interval

(d � a � 10d ), is not only present for a small Kapitza radius (aK � d ) but also
for large values (aK > d). Taking into account that the typical values of the

coupling length and Kapitza radius are d ~ aK ~ 10�7 m for metal-dielectric inter-

faces; this indicates that the effect of the electron–phonon coupling on the thermal

conductivity of composites could be observed for the case of micro-sized metallic

particles, and possibly be overshadowed by the interfacial thermal resistance for

nanoparticles.

Figure 3.15a–c show the effective thermal conductivity as a function of the

volume fraction of the particles. The comparison of the effective thermal conduc-

tivity k of a composite, predicted by the current approach, the models by Nan

et al. [8] and by Duan and Karihaloo [12] is shown in Fig. 3.15a, for two relative

values of the coupling length dwith respect to the radius a of the spherical particles.
For a fixed particle radius, k increases when the coupling length decreases, such that
for d � a, it approaches to the predictions of the Nan et al. and Duan and Karihaloo
models. Figure 3.15b, c show that the change of the composites thermal conduc-

tivity with the volume fraction of randomly oriented oblate (pancake-shaped) or

prolate (cigar-shaped) spheroids, respectively. Note that, as in the case of spherical

Fig. 3.14 Normalized thermal conductivity of composites as a function of (a) the normalized

radius of the spherical particles, and (b) the normalized Kapitza radius, for different values of the

Kapitza and particle radius, respectively. The continuous and dashed lines correspond to the

predictions of the proposed model in presence and absence of the electron–phonon coupling,

respectively. Calculations were performed for ks ¼ 5k3, ke ¼ 3kp and f ¼ 20 %
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particles (Fig. 3.13), the effective thermal conductivity is still bounded by its lower

values at a1/d ¼ 0, and higher values at a1/d ¼ 1. This means that the effective

thermal conductivity increases when the electron–phonon coupling factor

G increases (d ! 0). The corresponding bounds associated with the oblate spher-

oids are higher than those of the prolate spheroids for any volume fraction. This

points out that the composites with randomly oriented oblate spheroids have higher

thermal conductivities than those with prolate spheroids.

The effect of the normalized thermal resistance ρ ¼ Rks/b1, on K*/k3 for oblate
(b1/a1 < 1) and prolate (b1/a1 > 1) spheroids is shown in Fig. 3.16a, b, respectively.

Note that when the interfacial thermal resistance is large enough, the thermal con-

ductivity may not only increases but also decreases with the volume fraction, no

matter whether the value of b1/a1 is 1/5 or 5. The effective thermal conductivity is

largest when the interface thermal resistance is negligible, i.e. ρ ¼ 0. According

to Figs. 3.15b, c, and 3.16a, b, both the coupling length and the interface thermal

resistances impose bounds for the maximum and minimum values of the thermal

conductivity of the composite. However, while the thermal conductivity K* of the

Fig. 3.15 Normalized thermal conductivity of composites as a function of the volume fraction of

(a) spherical particles, and (b) and (c) ellipsoidal particles with aspect ratios of b1/a1 ¼ 1/5, and

b1/a1 ¼ 5/1, respectively. Calculations were performed using ks ¼ 25k3, ke ¼ 3kp and a ¼ 5aK
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composite just increases with the volume fraction, for any value of the coupling

length (for ks > k3), the interfacial thermal resistancemay lead to an effective thermal

conductivity of the composite that is lower than the one of the matrix (K* < k3), as
was reported by in the literature [8, 23, 50]. This latter feature represents a key

difference between the contributions of the interfacial thermal resistance and the

coupling length.

Figure 3.17 shows the thermal conductivity of composites as a function of the

aspect ratio b1/a1 of randomly oriented spheroidal particles and the normalized

interfacial thermal resistance ρ. When ρ ¼ 0, the thermal conductivity of composites

with oblate spheroids is larger than the one with prolate spheroids. The thermal

conductivity reaches its minimum value when the particles are spherical (b1/a1 ¼ 1).

Fig. 3.16 Normalized thermal conductivity of composites as a function of volume fraction for

different values of the normalized interfacial thermal resistance and aspect ratios of (a) b1/a1 ¼ 1/5,

and (b) b1/a1 ¼ 5/1. Calculations were performed using ks ¼ 25k3, ke ¼ 3kp and a1/d ¼ 1/2

Fig. 3.17 Normalized

thermal conductivity of

composites as a function of

the aspect ratio b1/a1, for
different values of the

normalized interfacial

thermal resistance.

Calculations were

performed using ks ¼ 25k3,
ke ¼ 3kp, f ¼ 20 % and a1/
d ¼ 1/2
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This suggests that the thermal conductivity can be maximized if laminate flat plates

are used instead of cylinders or spheres. On the other hand, in presence of the

interface thermal resistance (ρ > 0) and for a wide range of its values, the effective

thermal conductivity increases when the aspect radio b1/a1 decreases. However, this
trend may be inverted when the interfacial thermal resistance is large enough. K*/k3
can be significantly modified by the shape and relative size of the particles with

respect to the coupling length, and the Kapitza radius, as shown in Fig. 3.16a, b.

3.4 Composites with High Concentration of Particles

The discussions of Sects. 3.2 and 3.3 are applicable only when the interactions among

the particles can be neglected. In such dilute limit, the heat flux lines generated by one

particle are not distorted by the presence of the neighboring particles when the

distance between neighboring particles is much larger than their size. However, for

higher particle concentrations, the distance between neighboring particles can be of

the order of the particle size or smaller and the interaction among particles have to be

considered, which results in distortion in heat flux that is different from the prediction

of the single particle assumption.

One of the first tries to address the problem of the non-dilute concentration of

particles was reported by Nielsen [51], who proposed an empirical model for the

thermal conductivity of composites based on the analogy between the elastic and

thermal properties, which is claimed to be valid for volume fractions of particles up to

their maximum packing fraction. One of the key features of this model is the

introduction of the maximum volumetric packing fraction of particles, whose effects

on the thermal conductivity of the composites increases with the volume fraction of

the particles [51–53]. Even though the predictions of this model are in good agree-

ment with a wide variety of experimental data involving composites with spherical

and cylindrical particles [51, 52], its semi-empirical nature does make it difficult to

explain how the model takes into account the particle interactions, which are strongly

present at high particle concentrations. On the other hand, by using the differential

effective medium theory proposed by Bruggeman [54], Norris et al. [55], Every

et al. [56], and more recently Ordonez-Miranda et al. [57, 58] have reported different

models that can potentially be used for the prediction of thermal conductivity in

composites with high volume fractions of particles. These Bruggeman theory-based

models explain clearly how the composite can be built up by means of a process of

incremental homogenization, provided that the matrix remains as a continuous

medium and the particles are disconnected. These models agree reasonably well

with the experimental data for thermal conductivity of various composites [55–58]

and porous media [59], even when the particles are non-uniform as long as the

particles do not form large clusters [2, 58]. However, the Bruggeman-based models

do not involve the maximum packing fraction of the particles, which plays an

increasingly important role on the thermal conductivity of composites with high

volume fractions of particles [51, 52]. Despite the limitations of these two approaches,
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Nielsen [51] and Bruggeman-based models [55–57], represent the major efforts to

describe the thermal conductivity of composites with high concentrations of particles.

Thus, a more general approach that takes into account the particle interactions and the

maximum packing fraction of the particles is highly desirable.

3.4.1 A Crowding Factor Model

To extend the applicability of the model developed in Sects. 3.2 and 3.3 to higher

concentrations, we have recently used the concept of crowding factor to take into

the particle interactions [60]. The concept of crowding factor has been introduced in

economy as a population density to explain the flow of capital in open and closed

economies [61]. In this area of research, the crowding factor determines how

different economical agents such as the government and private entities crowd

each other with similar solutions to a particular financial problem. Furthermore,

the crowding factor is also involved in crowding theory of viscosity of a concen-

trated suspension of spherical particles [62, 63]. To take into account the particles

interactions, in this theory the crowding factor γ is defined as the effective volume

fraction of the suspended particles, such that spheres with a partial concentration f1
crowd other spheres into the remaining free volume fraction 1 � γf1. The analytical
results of this theory and its generalization have shown good agreement with

experimental and simulation data reported in the literature for both low and high

concentrations of suspended spherical particles [63]. We extend the use of the

crowding factor to describe the thermal conductivity of composites made up of

particles with an arbitrary size, shape and orientation within the matrix. The effect

of this factor is expected to be important at high particle concentrations, where the

crowding among particles is strongly present.

As shown in Fig. 3.18, the composite with volume fraction f of particles can be

viewed as embedding particles successively into the matrix with two volume fractions

f1 and f2, i.e. f ¼ f1 + f2. We can then analyze the effect of such a homogeneous

addition. The addition of the first fraction f1 of particles increases (or decreases) the
thermal conductivity of the matrix by the factor k1/km ¼ F(f1), where k1 and km are

the thermal conductivities of the matrix in presence and absence of particle inclusions,

respectively.When f1 ! 0, the functionF should reduce to a dilute-limit model. If the

second fraction f2 is added beyond the first fraction, the thermal conductivity will have

a further increase (or decrease). This second addition of particles with respect to

the first one is to homogeneously place particles with volume fraction f2 in the

available space not occupied by the particles with concentration f1. By defining the

crowding factor γ as the effective volume of particles per unit “real” volume of them,

such as γV1 is the effective volume of the particles in V1, which is “seen” by the

particles in V2. Therefore, the second addition of f2 fraction of particles further

changes the effective thermal conductivity to k/k1 ¼ F(f21), where f21 ¼ V2/(VT �
γV1) ¼ f2/(1 � γf1) is the volume fraction of V2 in the accessible volume VT � γV1,

whereVT is the total volume of the composite. The contribution of the crowding factor
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γ is particularly clear for high volume fractions of particles. For instance, given that a

particle of V2 does not fit in between particles i and ii (see Fig. 3.18), the effective

volume of the particles should be slightly larger than its “real” volume. Therefore, it is

expected that the parameter γ depends strongly on the geometry and maximum

packing volume fraction of particles.

Taking into account that the introduction of f2 also reduces the free volume

available for f1, the crowding factor for fractions f1 and f2 is mutual and therefore

the effective concentration of f1 in the composite is f12 ¼ f1/(1 � γf2). To account

for this mutual effect, the function F(f1) must be replaced by F( f12). We can then

determine the normalized thermal conductivity k/km ¼ (k1/km)(k/k1) of the com-

posite with a total concentration f ¼ f1 + f2 of particles by

F f 1 þ f 2ð Þ ¼ F
f 1

1� γf 2

� �
F

f 2
1� γf 1

� �
, (3.50)

which is a functional equation for the function F( f ) ¼ k/km. Equation (3.50)

establishes that this function satisfies these two conditions: F(0) ¼ 1 and F
(2x) ¼ F2(x/(1 � γx)) > 0, which implies that F( f ) is always positive. The

solution of (3.1) can be determined by noting that: (1) For the limiting case of

γ ! 0, (3.1) reduces to Cauchy’s exponential equation [64], whose solution is

given by F(x) ¼ exp(Cx), where C is an arbitrary constant. (2) Based

on this asymptotic solution and on the Wentzel-Kramers-Brillouin-Jeffreys

method [65], which is usually applied to solve the one-dimensional

Fig. 3.18 Diagram of the

composite under

consideration with a total

volume of particles V1 + V2
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Schrodinger equation with a position-dependent potential, the general solution

of (3.1) when γ 6¼ 0 can be written as

F fð Þ ¼ exp CfG fð Þð Þ, (3.51)

where the function G( f ) reduces to the unity when the parameter γ ¼ 0. By com-

bining (3.50) and (3.51), it is found that G satisfies a functional equation, which for

f1 ¼ f2 ¼ x, takes the form

G 2xð Þ ¼ 1

1� γx
G

x

1� γx

� �
: (3.52)

Since G( f ) should be a well-behaved function of f, we can seek a solution for

(3.52) in the form of

G xð Þ ¼
X1
n¼0

An γxð Þn, (3.53)

where A0 ¼ 1 to guarantee that (3.51) reduces to the solution of the Cauchy’s

exponential function for γ ¼ 0. Equation (3.53) represents the well-known power

series method, which is usually applied to find the solution of second-order ordinary

differential equations [26, 66]. After inserting (3.53) into (3.52), the following

relation is found for the coefficients An,

X1
n¼0

An 2γxð Þn ¼
X1
n¼0

An γxð Þn
1� γxð Þnþ1

: (3.54)

By applying the binomial theorem to expand the factor (1 � γx)�(n + 1) in the

power series of γx, and rearranging the resulting double series in (3.54), one finds

that An are determined by the following recurrence relation,

2nAn ¼
Xn
l¼0

n!Al

l! n� lð Þ!, A0 ¼ 1: (3.55)

Based on mathematical induction, it is easy to find that all the coefficients

determined by (3.55) are given by An ¼ 1. This simple result transforms the right-

hand side of (3.53) into a geometric series [26], which allows writing the solution of

(3.52) in the closed form G(x) ¼ (1 � γx)� 1. Thus, the general solution for the

function F( f ) of (3.50) is given by

F fð Þ ¼ k

km
¼ exp

Cf

1� γf

� �
, (3.56)

where C is a constant that should depend on the thermal properties and the geometry

of matrix and particles. Based on (3.56), it is easy to verify that
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F fð Þ ¼
YN
n¼1

F
f n

1� γ f � f nð Þ
� �

, (3.57)

if the volume fraction f is divided intoN small fractions, such that f ¼ f1 + f2 . . . + fN.
This means that the functional form of (3.56) is independent of the number of small

volume fractions used to derive it.

Equation (3.56) establishes that the effect of the crowding factor γ increases

with the volume fraction f of the particles, as expected. Taking into account that

the heat conduction through composites depends on the thermal, geometrical and

interfacial properties of their components, (3.56) indicates that the combined

effect of these properties can be unified in two parameters γ and C, which are

usually proportional, as shown in the next section. Furthermore, according to

(3.56), a higher crowding factor is expected when the thermal conductivity of the

particles is higher than that of the matrix and the interfacial thermal resistance

between the matrix and particles is not so high, as shown below. This is physically

reasonable, given that in this case, the particles represent favorable pathways for

the heat conduction through them.

The crowding factor γ should vary with f, because the physical process of filling
the matrix with particles depends on their volume fraction. We can therefore

re-write the crowding factor as γ( f ) ¼ γ0ψ( f ), such that γ(0) ¼ γ0 (ψ(0) ¼ 1).

However, the constants C and γ0, should then be determined by comparing (3.56)

with a dilute-limit model, as shown in the next sub-section, to find the final form of

the effective thermal conductivity at the non-dilute limit.

3.4.2 Applications

We apply the generalized crowding factor approach, as derived above, to specific

model systems where a dilute-limit model of effective thermal conductivity of

composites is available. After finding constants C and γ0 for specific models, this

generalization will extend the applicability range of the existing dilute-limit

model for both low and high volume fractions of particle inclusions. Two com-

posites of potential interest are dielectric or metallic particles embedded in a

dielectric matrix.

3.4.2.1 Dielectric/Dielectric Composites

Typical examples of dielectric/dielectric materials are ceramic and semiconductor

particles/fillers in polymer matrix. For these composites with a low volume fraction

of spherical particles (dilute limit), the experimental data on the thermal conduc-

tivity agree well with the model derived by Nan et al. [8], whose result can be

written as
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k

km
¼ 1þ 2Af

1� Af
, (3.58)

where

A ¼ 1� km=kp þ aK=a
� �

1þ 2 km=kp þ aK=a
� � , (3.59)

where aK ¼ Rkm is the so called the Kapitza radius [8], R is the interfacial thermal

resistance between the matrix and the particles of radius a. Note that the composite

thermal conductivity depends equally on the ratios km/kp and aK/a of thermal

conductivities and particle size with the Kapitza radius, respectively.

By expanding (3.56), for a first-order approximation (low volume fractions of

particles) and comparing the obtained result with (3.58), it is found that C ¼ 3A and

γ0 ¼ A. Therefore the thermal conductivity of the dielectric/dielectric composites

for both low and high volume fractions of particles is determined by

k

km
¼ exp

3Af

1� Aψ f

� �
: (3.60)

The function ψ( f ) in (3.60) should also satisfy the following limiting values:

ψ(0) ¼ 1 and ψ(f0) ¼ f�1
0 , where f0 is the maximum packing fraction of the

particles. The values of f0 are reported in literature for different types of particles

and packing [51]. For instance, for spherical particles with a random distribution,

f0 ¼ 63.7%. The first of these conditions ensures the agreement between (3.58) and

(3.60), at low volume fractions (f � f0); and the second one guarantees the max-

imum increase (or decrease) of the thermal conductivity of the composite is at

f ¼ f0 [51, 53]. This last fact can be seen in the denominator of the exponential

function in (3.60), which indicates that the maximum (A > 0) or minimum (A < 0)

value of the composite thermal conductivity occurs for ψ(f0)f0 ¼ 1. The simplest

function that satisfies both conditions is given by the equation of a straight line, as

follows

ψ ¼ 1þ 1� f 0ð Þ
f 20

f : (3.61)

Equation (3.61) shows that the effect of the maximum packing fraction of the

particles on the thermal conductivity of the composite appears through the function

ψ . Even though this function is not unique, under the current approach, it is expected
that (3.61) represents a good approximation given that the crowding factor γ( f ) ¼
γ0ψ( f ) depends slightly on the volume fraction f, as was shown by Lewis and Nielsen
[52], to modify the Kerner equation. Note also that the first-order approximation of

(3.60) resembles to the semi-empirical model of these last researchers, which
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indicates that the proposed approach provides a consistent extension of Nan et al. [8]

and Lewis and Nielsen [52] models, who also generalize previous results.

Figure 3.19a, b shows the comparison of the predictions of the current crowding

factor model, a Bruggeman-based model [57] and the model by Nan et al. [8] for the

thermal conductivity of dielectric/dielectric composites with spherical particles, as

a function of their volume fraction and normalized Kapitza radius, respectively.

Note that for low volume fractions of particles (f < 15 %), the predictions of

the three models are in good agreement. For higher particles concentrations

(f > 15 %), however, the predictions of the crowding factor model are larger

than the ones of the Bruggeman-based model and the model by Nan et al.,

especially when the ratio a/aK between the particle and Kapitza radii increases.

This is expected for kp > km (in this case kp ¼ 15km), given that the current model

takes into account the interactions among the particles through the crowding

factor, which increases the overall thermal conductivity of the composite. For a

particles radius of the order of or smaller than the Kapitza radius (a/aK ¼ 2, 1/3,

in Fig. 3.19a), the predictions of the Bruggeman-based model and the model by

Nan et al. are almost overlapped, due to the strong effect of the interfacial thermal

resistance. Both the Bruggeman-based model and the crowding factor model take

into account the particle interactions. However, both Fig. 3.19a, b show that

predictions of the crowding factor model are larger than the ones of the

Bruggeman-based model, which suggests that the crowding factor model con-

siders a stronger contribution of the particles interactions than that of the

Bruggeman-based model.

For aK/a < 1 � km/kp (aK/a > 1 � km/kp), Fig. 3.9b shows that the composite

thermal conductivity predicted by the three models increases (decreases) when

the volume fraction of the particles increases, as reported in the literature

[7, 40]. On the other hand, the composite thermal conductivity becomes

Fig. 3.19 Comparison of the predictions of the crowding factor model, a Bruggeman-based model

[57] and the model by Nan et al. [8] for the thermal conductivity ratio of composites with spherical

dielectric particles as a function of their (a) volume fraction and (b) normalized Kapitza radius.

Calculations were performed for kp ¼ 15km and f0 ¼ 64 %
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independent of f and equals to the matrix thermal conductivity, for aK/a ¼ 1 �
km/kp(¼1 � 1/15, in Fig. 3.19b).

Figure 3.20a–c shows the experimental data reported for the thermal conductiv-

ity of silica/epoxy [67], alumina/epoxy [67], and aluminum nitrate/polyimide [68]

composites as a function of the volume fraction f f, in comparison with the

theoretical predictions of the crowding factor model in (3.60), the Bruggeman-

based model [57], the models by Nielsen [51] and Nan et al. [8]. The required

physical properties at room temperature of each phase used for the calculations are

given in Table 3.2. The radius of the spherical particles reported here stands for the

average value.

Based on Fig. 3.20a–c, it is clear that the predictions of the three models reported

in the literature remarkably underestimate the composite thermal conductivity,

while the crowding factor model shows much better agreement with the experi-

mental data. We also note that better agreements are found in Fig. 3.20a and that in

Fig. 3.20c, especially for the experimental point of highest volume fraction. We can

attribute the discrepancy to the fact that the aluminum nitrate particles were not

Fig. 3.20 Comparison of the theoretical curves and experimental data [67, 68] for the thermal

conductivity of (a) silica/epoxy, (b) alumina/epoxy and (c) aluminum nitride/polyimide compos-

ites, as a function of the volume fraction of the spherical particles
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totally spherical. The effect of particles shape becomes stronger as the volume

fraction of particles increases. The good general agreement of the crowding factor

model with experimental data at low as well as at high volume fractions of particles

shows that this model represents a remarkable improvement with respect to the

dilute-limit models, which are not able to describe the thermal conductivity of

composites at high volume fractions of particles.

3.4.2.2 Metal-Nonmetal Composites

To extend the validity of the results obtained in the Sect. 3.3 to concentrations of

particles up to the maximum packing fraction, we need to apply the developed

crowding factor model. This can be done by equating the first-order expansion

k/km ¼ 1 + Cf/(1 � γ0f ) of the crowding factor model in (3.56) with the dilute

limit model expressed in (3.38a) and (3.38b), to find the constants C and γ0.
For the case of spherical metallic particles uniformly distributed within a

dielectric matrix, this comparison applied to (3.42) and (3.56) yields C ¼ 3A and

γ0 ¼ A, where the parameter A is determined by

A ¼ 1� χk3=ks þ aK=að Þ
1þ 2 χk3=ks þ aK=að Þ , (3.62a)

χ ¼ 1þ ke
kp

d

a

i1 a=dð Þ
i
0
1 a=dð Þ , (3.62b)

Therefore, according to (3.56), the thermal conductivity of the metallic/dielec-

tric composite for both low and high volume fractions of particles is given by

k

k3
¼ exp

3Af

1� Aψ f

� �
, (3.63)

which has the same mathematical form than (3.60), derived for dielectric/dielectric

composites, but with a different parameter A.
The thermal conductivity of composites with spherical metallic particles as a

function of their volume fraction and normalized radius is shown in Fig. 3.21a, b,

respectively. The continuous lines correspond to the predictions of the present

crowding factor model and the dashed ones to the dilute-limit result in (3.42).

As expected, the predictions of the current model are larger than the ones of the

Table 3.2 Material properties used in the calculations [50, 67, 68]

Properties kp (W/mK) km (W/mK) a (μm) aK (μm)

Silica/Epoxy 1.5 0.195 13.5 1.89

Alumina/Epoxy 36 0.195 13.5 1.34

Al nitrate/Polyimide 200 0.22 2 0.146

134 J. Ordonez-Miranda et al.



dilute limit model, especially when the volume fraction of the particles increases.

Taking into account that the thermal conductivity of the metallic particles is usually

much larger than the ones of the dielectricmatrix (in this case ks ¼ 15k3), this increase
over the predictions of the dilute limit approach is due to the particle interactions,

whose contribution is considered in (3.63). According to both Fig. 3.21a, b, the dilute

and non-dilute approaches predict that the composites thermal conductivity increases

with the particles volume fractions and size, when a/d > (1 � χk3/kp)
� 1aK/d(�1.5,

in this case) (see (3.62a) and (3.63)). On the other hand, for a/d < (1 � χk3/kp)
� 1

aK/d, the composites thermal conductivity decreases when the particles radius

decreases and/or the particles volume fraction increases.

3.5 Conclusions

The thermal conductivity of composites made up of metallic and non-metallic micro/

nanoparticles embedded in a solid non-metallic matrix has been modeled and ana-

lyzed at both the dilute and non-dilute concentrations of particles. Taking into

account the strong scattering of the energy carriers with the surface of the embedded

nanoparticles, the thermal conductivity of nanocomposites has been determined in

the dilute limit, by modifying both the thermal conductivity of the matrix and

particles, accordingly. It has found that the particle shape and size dependence of

the composite thermal conductivity shows up through the collision cross-section per

unit volume of the particles and the mean distance that the energy carriers travel

inside the particles.

The effect of the electron–phonon interactions within metallic particles shows up

through the reduction of the thermal conductivity of these particles with respect to its

Fig. 3.21 Comparison of the predictions of the crowding factor model and the dilute-limit model

for the thermal conductivity of composites with spherical metallic particles as a function of their

(a) volume fraction and (b) normalized radius. Calculations were performed for ks ¼ 15k3,
ke ¼ 5kp, aK ¼ d and f0 ¼ 64 %
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values obtained under the Fourier law approach. The thermal conductivity of com-

posites with metallic particles depend strongly on (1) the relative size of the particles

with respect to the intrinsic coupling length, and (2) the ratio between the electron and

phonon thermal conductivities. The obtained results have shown that the particle size

dependence of the composite thermal conductivity appears not only through the

interfacial thermal resistance but also by means of the electron–phonon coupling.

The applicability of the proposed approach for the dilute limit has been further

extended to describe the thermal conductivity of composites with particle concentra-

tions up to the maximum packing fraction of the particles. This has been achieved by

considering the particle interactions by means of the crowding factor, which is

determined by the effective volume of particles. The comparison of the predictions

of the crowding factor model with other non-dilute models reported in the literature

has shown that this model not only generalize those models but also capture accu-

rately the effect of the particle interactions. The predictions of the two analytical

approaches proposed to describe the particle size and particle interaction effects are in

good agreement with experimental and numerical data reported in the literature.
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Chapter 4

Nano Bulk Thermoelectrics: Concepts,

Techniques, and Modeling

Nikhil Satyala, Payam Norouzzadeh, and Daryoosh Vashaee

Abstract The beneficial effects of nanostructured material systems have provided a

significant momentum to accomplish high-efficiency thermoelectric materials for

power generation and cooling applications. The quantum size effects have been

widely explored in order to shrink the contribution of lattice thermal conductivity of

the thermoelectric systems, thereby enhancing the overall figure-of-merit. Modifying

the nanoscale level structural features and the creation of additional phonon scattering

sites in the form of grain boundary interfaces became the basis for fabrication of

nanostructured materials. The requirement of specific physical features in nanostruc-

tured thermoelectrics also brought a variety of changes to the fabrication processes. In

this chapter, we review some of the prominent techniques for fabrication of such

nanostructured material systems. An overview of the concepts and techniques for

theoretical modeling of the charge carrier and phonon transport mechanisms in the

interfacial regions is presented. Further, the constructive effects of nanostructuring in

thermoelectric materials are discussed based on a theoretical approach via Boltzmann

transport equation under the relaxation time approximation. The calculations are used

to demonstrate the advantages and disadvantages of nanoscale effects in the well-

known material systems of SixGe1�x and Mg2Si.

4.1 Introduction

The unique technique of harvesting waste heat energy for power generation by

means of thermoelectric (TE) materials was originally discovered by T. J. Seebeck

in 1821 [1]. This effect was later enriched by J. C. A. Peltier and Lord Kelvin via
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their discoveries of the Peltier and Thomson effects, respectively [2, 3]. The Seebeck

effect promoted the power generation characteristics of the thermoelectric materials

whereas the Peltier effect stimulated the development of the materials and devices

for cooling applications. The Thomson effect introduced a comprehensive interre-

lationship between the Seebeck and the Peltier effects via thermodynamically

related coefficients [3]. The thermocouple may have been the most widely used

thermoelectric device where a voltage difference generated across the terminals of

an open circuit made of two dissimilar metals is used to measure the temperature.

A quantitative characterization of the Seebeck coefficient and the electrical

conductivity also paved a path for the identification of many suitable materials

for thermoelectric device fabrication [4]. Material systems such as Bi2Te3, PbTe,

Si1�xGex, etc. were originally found to have favorable characteristics for develop-

ing high-efficiency thermoelectric materials. However, the initially identified mate-

rial systems were not adequately efficient for major application areas such as heat

engines and refrigeration systems. The pursuit of developing high-efficiency ther-

moelectric materials was boosted greatly by the emergence of the concept of

the dimensionless figure-of-merit (ZT), introduced by A. F. Ioffe in 1949 [5, 6].

The figure-of-merit mathematically relates the fundamental properties such as the

electrical conductivity (σ), Seebeck coefficient (S), the thermal conductivity due to

carriers (κe) and the lattice (κl) of the TE material, and is defined as [5],

ZT ¼ σS2

κe þ κl
T (4.1)

The introduction of the figure-of-merit led to the design and development of

numerous optimization techniques for thermoelectric materials that primarily

focused on maximizing the (σ/k) ratio while maintaining a substantial Seebeck

coefficient. Figure 4.1 illustrates the recently reported ZT versus corresponding

temperature ranges for various high-performance bulk TE materials [6, 7]. The

state-of-the-art bulk TE material systems include many compounds that are suitable

for low and medium temperature ranges. However, as indicated by the vertical

line in Fig. 4.1, a dearth of high-performance TE materials systems is markedly

observed at high temperatures.

4.1.1 Methods to Enhance Efficiency of Thermoelectric
Materials

Material systems based on alloys were largely promoted to reduce the lattice thermal

conductivity (κl) via enhanced scattering of phonons at point defects [5, 8, 9].

Therefore, alloying was employed as the initial technique for thermoelectric mate-

rial optimization. Later, Slack and Mahan independently defined that in the optimal

form the chemical characteristics of a good thermoelectric material essentially
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include phonon–glass/electron–crystal type features [10, 11]. These features include

optimum band gap, high mobility, multiple valleys near the Fermi surface, and low

thermal conductivity. Such discoveries led to the evolvement of numerous other

techniques for optimization of thermoelectric material systems.

The technique of alloying for reducing thermal conductivity was originally

proposed in the 1950s [8]. Alloying of compounds with similar band structure was

found to reduce the thermal conductivity significantly without disrupting the elec-

trical properties of the compounds. Other methods of introducing point defects

through nanoinclusions were also found to have a significantly positive impact on

the thermoelectric figure-of-merit. In addition to alloying, further optimization

techniques based on material characteristics were also instigated. Techniques such

as microstructure modifications [12], bulk nanostructuring [13, 14], energy filtering

techniques [15, 16], resonant energy levels [15], quantum wells and superlattices

[17], complex material systems [18], etc. have been subsequently introduced.

The nanostructured systems primarily rely on the reduction of lattice and elec-

tronic thermal conductivity by enhanced scattering of phonons at the grain bound-

aries of the same material system. Nanocomposites fundamentally implement the

same principle of scattering of phonons; however, the scattering locations are

created by nano-sized grains of more than one material compacted to the locations

next to each other. Well-known material systems like nanostructured SixGe1�x and

BixSb2�xTe3 were reported to benefit from very low thermal conductivities ensuing

in high figure-of-merit over a wide range of temperatures [13, 19, 20]. However,

recent theoretical estimations also revealed that the same nanostructuring techniques

could prove to be detrimental to the thermoelectric characteristics of some materials

systems such as Mg2Si owing to the losses incurred in electrical conductivity

[21–23].

The techniques of nanostructuremodificationswere also successfully implemented

in material systems like p-type Bi0.52Sb1.48Te3 by means of embedding nanocrystal-

line domains in an amorphous matrix of the host material [13]. The nanostructure,
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also comprised nanocrystals with fine and coherent grain boundaries, and resulted

in enhanced electrical conductivity via promoting of selective phonon scattering.

The unique structural properties lead to a figure-of-merit of 1.56 at 300 K [13].

Energy filtering methods were also found to enhance the Seebeck coefficient by

means of increasing the average energy of the carriers as a result of scattering of low

energy carriers at grain boundaries. This type of preferential low energy carrier

scattering via energy filtering techniques was employed on materials systems like

InGaAs/InGaAlAs superlattices and bulk nanostructured PbTe [16, 24]. A significant

enhancement in the power factor (S2σ) of the superlattices was attained; however,

nanostructured PbTe suffered loss in mobility due to scattering of carriers at grain

boundaries.

Modifications in electronic properties such as band structure and density of states

(DOS) for optimization of the thermoelectric properties were also reported. It was

theoretically demonstrated that sharp features in the DOS close to the Fermi energy

result in superior thermoelectric power factor [17]. An impurity-activated resonant

level in the DOS is an analogous technique by which additional energy states

are generated near to the conduction or valence band edges. The additional states

are expected to contribute to the carrier transport and boost the magnitude of the

Seebeck coefficient when the Fermi level is considerably close to these states. The

enhancement in the Seebeck coefficient by means of impurity-activated resonant

levels was reported by Heremans et al. for Tl-doped PbTe [25]. A figure-of-merit of

twice that of the undoped bulk PbTewas achieved in Tl-doped PbTe as a direct result

of the enhancement of the Seebeck coefficient due to the resonant states created by

Tl near to the valence band. Combining the two concepts of bulk nanostructuring and

resonant levels can potentially result in both low thermal conductivity and enhanced

power factor to make more promising TE materials systems.

Quantum confinement techniques were also explored in the form of

low-dimensional quantum wells and superlattices. The methods predominantly

aimed at dramatically improving the figure-of-merit by means of controlling the

electron and phonon energy spectra via structural alterations. Significant reduction

in thermal conductivity and a subsequent enhancement in the figure-of-merit were

reported in superlattice structures such as Bi2Te3/Sb2Se3 and PbTe/PbTeSe

quantum-dot superlattices [26, 27]. Other complex material systems such as quan-

tum wires, clathrates, and skutterudites have also been reported to help achieve

better thermoelectric properties.

In the recent years, the nanoscale effects in techniques such as nanostructuring

and quantum confinement have significantly contributed to the advancement of

thermoelectric material systems. Therefore, a thorough understanding of the nano-

scale effects pertaining to the structural modifications is required. The emphasis of

this chapter is to provide a methodical insight into the nanoscale effects in state-of-

the-art thermoelectric materials. In this chapter, the bulk nanostructured material

systems will be referred with a new terminology, namely, Nano Bulk.
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4.2 Comparison of Bulk and Thin Film Thermoelectrics

With the new stimuli of the research community in the thermoelectric (TE) area, TE

research has continued in two general directions: (1) theoretical models that predict

TE properties and offer superior materials and structural designs and (2) experi-

mental efforts in finding new materials or structures that show enhanced TE

properties. The follow-ups to these efforts have been in two main directions. One

direction has been in finding new bulk materials and their advanced engineering to

achieve a higher ZT [28, 29]. Complex crystal structures that yield low lattice

thermal conductivity such as FeCo3Sb12 [30], Yb14MnSb11 [31], Ba8Ga16Ge30 [32],

Zn4Sb3 [33], or Ag9TlTe5 [34] are several examples of this direction. Other

examples of this direction include engineered energy band structures with increased

number of energy band minima close to the Fermi surface such as PbTe0.85Se0.15:

Na or with sharp features in the density of states close to the band edge such as

Tl0.02Pb0.98Te [25] that result in the enhancement of the TE power factor [35].

The second direction has been in the use of nanostructures to reduce the thermal

conductivity more than the electrical conductivity through the scattering of phonons

at interfaces [26, 36]. It has also been possible to maintain or improve the TE power

factor through quantum size effects [27, 36, 37] or interface energy filtering [38, 39]

while the thermal conductivity was reduced. Some examples of this group are

Bi2Te3/Sb2Te3 superlattices (SL) [27], and PbTe/PbSeTe quantum dot superlattices

(QDSL) [26]. The main reason for the improvement in ZT in these structures comes

from the reduction of the phonon thermal conductivity. For some other cases such

as ErAs:InGaAs/InGaAlAs SLs [40], the enhancement in ZT was due to the

increase of the Seebeck coefficient due to the hot carrier energy filtering [16, 39]

and the reduction of the thermal conductivity. Bulk nanostructured Bi0.5Sb1.5Te3
[41], Si0.8Ge0.2 [42, 43], and PbTe-SrTe [44] materials have also shown high ZT
resulting from the reduction of the thermal conductivity due to the increase of the

phonon interface scattering.

With the rising demand on new applications of TE materials both for power

generation and cooling functions, there is an increasing interest in material struc-

tures that are synthesized with cost effective approaches from earth-abundant and

environmentally friendly elements. For this reason, superlattice structures made

with thin film deposition techniques are usually too expensive for large scale

applications and their use is limited to niche applications such as thermal manage-

ment of telecommunication lasers or micro-power generators for medical or military

applications. However, nano bulk materials made with the powder processing and

sintering approaches are potentially inexpensive to synthesize and are appropriate

for batch processing [20, 39]. They increase the figure-of-merit of the bulk materials

typically based on the same principle as in superlattices, that the scattering of

phonons should be enhanced relative to electrons. Hence, prior investigations of

low-dimensional superlattices have now evolved into research and development

of bulk materials containing nanostructured features.
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Furthermore, the irreversible losses due to the electrical and thermal contact

resistances become predominant factors when the thickness of the TE device is

usually less than 100 μm. Thin film superlattices grown by vacuum deposition

techniques are typically 5–20 μm thick, versus 200 μm for the thinnest thermoelec-

tric devices based on bulk materials [45]. As a result, TE devices made from bulk

materials, even when sliced to a few hundred microns, have shown larger efficiency

than the ones made by thin film deposition.

The fabrication of TE modules from thin films also still suffers from a low yield

due to the sensitivity to the height variation for making the electrical contacts [46].

Nevertheless, thin film TE devices can address certain thermal management prob-

lems in microelectronics that are not often possible through bulk devices. Thermal

stabilization of laser diodes, infra-red detectors, charge-coupled devices (CCD),

light-emitting diodes (LED), and other optoelectronic devices are among applica-

tions that can benefit from a faster response time and cooling power density of

on-chip micro-thermoelectric refrigerators.

4.2.1 Significance of the Nano Bulk TE Materials

Bulk material systems such as Bi2Te3, Sb3Te3, PbTe, Si1�xGex, etc. profited

majorly in their nano bulk structured forms. For the case of Bi0.5Sb1.5Te, the

improvement in TE performance was possible owing to the significantly beneficial

effect of nanostructuring in this material as shown in Fig. 4.2 [14]. It can be

observed from Fig. 4.2a that nano bulk Bi0.5Sb1.5Te demonstrates an approximate

50 % drop in lattice thermal conductivity compared to the bulk crystalline form

over a wide range of temperature.

Nano Bulk SixGe1�x is also well known for its superior TE properties compared

to its bulk crystalline form [47, 48]. The ZT of p-type bulk alloy of Si0.8Ge0.2 was

enhanced from 0.65 (bulk) to 0.95 at 800 �C with the help of nanostructuring.

A significant drop in thermal conductivity was demonstrated by nano bulk

phosphorous-doped n-type Si0.8Ge0.2 resulting in a ZT of 1.5 at 900 �C [48]. The

thermal and electrical performance of nano bulk Si0.8Ge0.2 was recently reported to

show significant dependence on the average crystallite size [42]. Theoretical cal-

culations performed on bulk and nano bulk Si0.8Ge0.2 demonstrated that the lattice

part of the thermal conductivity makes up for 80 % of the total thermal conductivity

as shown in Fig. 4.2b. Images from the scanning electron microscopy of the

fractured surface of the as-pressed sample and the transmission electron micros-

copy of the powder are shown in Fig. 4.3a, b, respectively, depicting the crystallite

sizes in the nano bulk Si0.8Ge0.2 which lead to the low thermal conductivities of less

than 3.0 W/mK. Similarly, other highly efficient techniques such as nanoparticle-

in-alloy were explored theoretically and a figure-of-merit that is nearly 2.5 times the

value of the bulk system of SiGe alloys was predicted [49]. The nanoscale effects

owing to the crystallite sizes have been theoretically and experimentally substan-

tiated in many recent reports [19, 42].
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For a superior synopsis of the recent advances in TE materials through

nanostructuring, the readers could refer to the CRC Handbook of Thermoelectrics
[50] and published review articles [6, 15]. However, within the scope of this chapter,

the primary focus will be on the effects of bulk nanostructuring comprehended by

means of a theoretical approach as will be discussed in further sections. In order

to thoroughly provide insight into the effects of bulk nanostructuring on the TE

properties of materials, a simulation based assessment of the TE characteristics of

SixGe1�x and Mg2Si follows. In the upcoming sub-sections of this chapter a sys-

tematic discussion of the experimental methods for making nano bulk materials,

electronic properties of these materials, theoretical approaches to nanostructuring

mechanisms, modeling strategies, carrier transport properties, phonon scattering

mechanisms and the effect of grain sizes on the TE properties in SixGe1�x and

Mg2Si is presented. As the end, the simulation results are critically discussed in order

to conclusively show that in certain material systems detrimental effects due to

nanostructuring may diminish the overall benefits.

Fig. 4.2 (a) Thermal conductivity versus temperature of Bi0.5Sb1.5Te3—state-of-the-art (SOA)

bulk ingot compared to nanocrystalline sample [14]; (b) Effect of bulk nanostructuring on thermal

conductivity of Si0.80Ge0.2 [42]

Fig. 4.3 (a) Scanning Electron Microscopy (SEM) and (b) Transmission Electron Microscopy

(TEM) images of nanostructured Si0.8Ge0.2 [42]
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4.3 Fabrication of Nano Bulk Thermoelectrics

Fabrication of nanostructured materials through a bulk process is challenging, but

modification of bulk process conditions so that the ZT is enhanced is even more

difficult. The modification process does not always lead to improved thermoelectric

efficiency. Thermal stability of the devices made by nanostructured materials at high

temperatures is another influencing factor as the nanoscale features may be removed

due to the diffusion and energies of the interfaces. There are two major approaches

via top-down and bottom-up methods to fabricate nano bulk thermoelectrics and

each of them can be divided in to several branches. These methods are introduced in

the following sections and their advantages and disadvantages are briefly discussed.

4.3.1 Top-Down Approach

The top-down methods start from a bulk material and the corresponding nanostruc-

tured features are obtained by structural deformations. There are two commonly

used techniques which are based on sever plastic deformation (SPD) or thermal

processing.

4.3.1.1 Sever Plastic Deformation (SPD)

The basis of the SPD method is to increase the free energy of the polycrystals and

generate many more defects and grain boundaries in various nonequilibrium pro-

cesses so that the microstructure is transformed into nano-sized crystallites while

the structure of the coarse-grained material remains unchanged without any asso-

ciated changes in the cross sectional dimensions of the samples [51]. Key principles

of SPD are increasing dislocation density by heavily deforming materials, forming

dislocation walls, and making transformation of dislocation walls into grain bound-

aries. Some known methods in this category are listed below:

• High pressure torsion: A small thin disk is placed between two massive anvils

under high pressure and intense shear strain is introduced by rotating the two

anvils with respect to each other. In this method, the applied hydrostatic pressure

is high; therefore, the fracture is suppressed and thus the method is applicable to

hard and less ductile materials.

• Equal channel angular pressing (extrusion) [52, 53]: In equal channel angular

pressing (ECAP) the billet is placed in a die and a high pressure is exerted to it

through a punch. It is one of the SPD methods for producing ultra-fine grain

structures in nanoscale which applies a large amount of shear strain into the

materials without changing the shape or dimensions of the billets.

• Accumulated roll bonding [54, 55]: This is another SPD process to produce

ultra-fine grain structures in nanoscale which is applicable for continuous
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production of the nanostructured materials. In this method 50 % rolled material

is cut in two, stacked to make the initial dimension, and then rolled again. By

repeating the deformation and bonding processes, the nanostructured materials

can be produced.

4.3.1.2 Thermal Processing

Thermal processing techniques have widely been applied to induce nanoscale

precipitates [56–58]. In order to fabricate such nanostructures in a metastable

solid-solution the starting material is subjected to a thermal processing procedure

like spinodal decomposition, nucleation, or the growth mechanism [56]. In the

thermal process of matrix encapsulation the liquid mixture is cooled rapidly so that

the insoluble minority phase is precipitated, and the embedded nanoparticles in the

host material are created [57]. This technique has been applied for n-type AgPbTe2/

PbTe [58] and Pb1�xSnxTe/PbS [56] and p-type Na1�xPbmSbyTem+2 [59] and

NaPbTe-SrTe [60].

4.3.2 Bottom-Up Processes

This type of method starts from atoms and molecules as building blocks and the

bulk materials are subsequently assembled from elemental constituents. Bottom-up

methods are used to assemble nanoparticles into dense solid phases to attain a

nanostructured material. The main technique frequently applied for thermoelectric

materials consists of powder processing and subsequent consolidation.

4.3.2.1 Powder Processing

The powder characteristics facilitate low temperature sintering, which is a prereq-

uisite for mitigating grain coarsening during the sintering process. The power can be

synthesized by a chemical or physics method. The nanoparticles should be prefer-

ably non-agglomerating and uniform in size and shape or preferably monodispersed

to result in a dense nano bulk material after consolidation. Non-agglomerated

nanoparticles are made by wet chemical methods which are usually expensive

procedures. The physical method is mainly based on mechanical milling which

often results in agglomerated nanoparticles of different sizes in an inexpensive way.

• Chemical methods: Several chemical methods have been developed to fabricate

metal nanostructuredmaterials with different shapes such as silver (Ag) nanoplates

[61], silver nanodisks [62, 63], gold(Au) nanoplates [64], and gold nanodisks [65].

It has been shown that a high-temperature organic solution approach and a

hydrothermal process can be used to prepare hexagonal nanoplates of Bi2Te3
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and Bi2Se3 respectively [66]. High-yield two-dimensional micrometer-sized

hexagonal nanoplates of Sb2Te3 using a solution-based synthesis method have

been also produced [67].

• Mechanical milling: In this process the powder is milled with different techniques

during which the particles are cold welded and fractured many times resulting in

ultimate fineness. The most commonly used milling method has been ball milling

where the powdermixture is placed in the ball mill and is subjected to high energy

collision from the balls. Among these, vibratory ball mills, planetary ball mills,

and attritor mills have been common equipment for ball milling.

4.3.2.2 Consolidation

• Hot pressing [41, 47, 68, 69]: It is a pressure assisted method for compacting

nanopowders to obtain bulk nanostructured materials, which is usually accom-

panied by sintering at various times, temperatures, and atmospheres. The method

of ball milling and hot pressing is cost effective, applicable for many material

systems, and can produce nano bulkmaterials which are thermally stable. Several

research groups have reported the implementation of this technique for n-type

and p-type Si0.8Ge0.2 and some types of BixSb2�xTe3 [41, 42, 70]. Spark plasma

sintering [71–73] is a newer technique compared with conventional sintering

approach where the heat is provided by an external source. In this method the heat

is generated by passing a pulsedDC current through a die and conductive powder.

This method creates a very high heating rate (100–1,000 K/min) which leads to a

fast sintering process. In a similar approach, a DC current is used for heating the

material [41]. The high heating rate allows sintering the material with reducing

the grain growth therefore attaining smaller gains in the bulk material.

4.3.3 Theory of Charge Carrier and Phonon Transport
at Interfaces

Theoretical studies of phonon transport in superlattices showed that reduction in

lattice thermal conductivity does not need a well-defined geometry or a perfect

interface at atomistic level [74]. The only requirement is having a high density of

interfaces which is present in nano bulk structures. To enhance the ZT, the phonons
have to be scattered more efficiently than charge carriers. Therefore, as a rule of

thumb, the size of nanostructures should be smaller than the phonon mean free path

and larger than the charge carrier mean free path. In practice, charge carriers have

narrower spectrum than that of phonons. The interface spacing below which the

electrical conductivity is reduced considerably can be estimated through the spec-

trum of the mean free path. If the interface size is larger than a single scattering

site, it will have deteriorative impact on charge transport and decreases the ZT.
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Continued reduction in characteristic lengths in nanostructures has led to increasing

importance of interfaces in transport properties of materials. In fact, a large portion

of the advances in enhancing ZT for nanostructured materials comes from the

beneficial effects of the interfaces.

4.3.3.1 Interface Definition and Types

The region in a crystalline or polycrystalline material that separates two crystallites

is called interphase boundary or simply interface. The interface represents a discon-

tinuity with a minimum thickness of two atoms. The neighboring grains may have

different orientations. A random connection of two different crystallites may lead to

dangling bonds, large crystallographic discrepancies, or voids in the interface region.

If the crystallites’ chemical composition and lattice parameters are the same, the

interface is called phase boundary; and if the crystallites belong to differentmaterials,

the interface is called heterophase boundary. In an interface, the atoms are shifted

from their regular positions as compared to a perfect crystal and introduce defects into

crystal structure. Interfaces play an important role in determining the properties of

the nano bulk structure due to the large relative fraction of atoms that are present in

the interphase boundary. Interfaces decrease the electrical and thermal conductivities

of the material and provide preferred places for the precipitation of the new phases

from the solid.

To get a sense of the atomic arrangement of the neighboring crystals at an

interface, the interfaces can be divided into four classes:

1. Coherent interface: There is a perfect match between two nanocrystals across the

interface.

2. Strained coherent interface: Imperfect matching between two nanocrystals causes

some strain at the interface, which increases with the size of the crystallites.

3. Semi-coherent interface: Although dislocations contribute to the energy of the

system, they reduce the strain energy. The coherent interface with strain is likely

to be transformed to a semi-coherent interface with dislocations.

4. Incoherent interface: There is no lattice match between the crystallites across the

interface.

As the matching between the crystallites improves, the interfacial free energy

becomes smaller. In incoherent interfaces atoms that have more freedom to move

are considered mobile, so they have higher energy. Liu et al. [75] established that

the coherent interfaces generally exist in nanocrystalline composites, and according

to the experimental results, they are largely unaffected by the fabrication process.

It is rational that the coherent interfaces play a key role in assembling the composite

nanostructures because the coherent interfaces require that the crystal planes from

the two adjacent crystallites to have similar basal spacing and that the crystallites

bind tightly to form interfaces which are thermodynamically stable. There is

currently very little known about the effect of nanoscale coherent interface on

energy transport. Nonetheless, some researchers have reported excellent ZT for
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Ag1 � xPbmSbTe2 + m with m ¼ 10 and 18 (2.1 at 800 K) which consist coherent

interfaces [58]. The observation of coherent nanointerface in a PbTe/GeTe

nanocomposite was also reported at the atomic level and atomistic modeling was

applied to characterize the local chemical composition and crystalline structure and

the coherency of interfaces was confirmed [76]. It was found that the large value of

ZT was attributed to the nanoscale coherent interfaces that improved phonon

scattering while having minimal effect on the charge carrier transport [76]. The

coherent nanointerfaces between the matrix and nanoscale inclusions offer three

advantages in thermal design for ZT improvement:

(a) The nanoscale inclusions significantly reduce the mean free path of the pho-

nons, thereby reducing the lattice thermal conductivity.

(b) The strain at the coherent interface considerably enhances phonon scattering

and causes a large thermal resistance at the interface, which helps to further

reduce the overall thermal conductivity.

(c) Electron scattering remains largely unaffected by the coherent interfacial struc-

ture, which leads to a very little decrease in the electrical conductivity. Such a

combined effect is very favorable for enhancing ZT.

Charge carriers and phonons encounter different resistances across an interfacial

region. The charge carrier boundary resistance originates from the impact of the

charge carriers to a coulomb potential at the interface. This potential depends on the

band structure and doping concentration of the interfacial materials. Both a poten-

tial barrier and a well can scatter charge carriers due to the disruption of the periodic

potential. Charge carriers can tunnel through the barrier or be thermally excited

over it depending on the width and height of the barrier [77]. Phonons lose their

memory after encountering the interface. The reflectivity or transmission of pho-

nons is determined by density of states and phonon velocities of different modes.

The reflected phonons form the phonon boundary resistance which depends on the

available energy states at both sides of the interface [78]. The charge carrier and

phonon resistances at interfaces lead to nonequilibrium transport properties near the

interface and at a distance from the interface, named energy relaxation length, they

reach to a new thermal equilibrium.

4.3.3.2 Nano Bulk Structures

In a nano bulk material, grains and interfacial structures may have three distinct

types as depicted in Fig. 4.4. Type 1 (Fig. 4.4a) is a nanocrystalline structure made

of a single material composition. Type 2 (Fig. 4.4b) consists of embedded

nanoparticles inside the lattice. Figure 4.4c is a nanocrystalline structure made

from mixture of two or more of different materials or phases. In this structure the

grains and/or the grain boundary regions are made from different materials. Exper-

imentally, a nano bulk thermoelectric material may have a structure similar to any

of these types or a combination of them. For example, a peak ZT of 1.4 at 100 �C
was achieved in a p-type nanocrystalline Bi0.5Sb1.5Te3 bulk alloy using the type
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1 interface, which separates single phase crystallites [41]. Also, the p-type PbTe

nanostructured bulk with SrTe precipitates, which demonstrated a ZT value of 2.2 at

615 �C, took advantage of the combination of Type 1 and 2 structures to more

effectively scatter heat carrying phonons across the integrated length scales [44]. A

combination of Type 3 with 1 and/or 2 can make various other structures such as

core–shell nanoparticle doped structures, or nanocrystalline structures with embed-

ded nanoparticles. There is yet no report of enhanced ZT through Type 3 nano bulk

structure.

4.3.3.3 Interfacial Effects on Charge and Phonon Transport

The interface in a nano bulk material is characterized by mismatch in bulk properties

and irregularities in the region near the interface. Different carriers of charge and heat

encounter different resistances across this interfacial region. Charge carriers encoun-

ter a coulomb potential at the interface resulting in the carrier boundary resistance,

and phonons hit the interface and lose their memory. The probability of phonon being

scattered to one side of the interface or the other is related to the density of states and

the phonon group velocity of each vibrational mode. These interfacial resistances at

an interface region result in electron and phonon thermal nonequilibrium near the

interface, which can affect the thermoelectric properties significantly. The schematic

diagram of Fig. 4.5 lists the interfacial effects on charge and heat carriers transport

parameters and their connections with the thermoelectric properties.

4.3.3.4 Charge Transport at Interface

There are three major challenges in analyzing the charge transport in nano bulk

materials. First, the characteristic lengths in a nano bulk material can become

smaller than the charge carrier wavelength as the grains become too small. This

will reduce the accuracy of the Boltzmann Transport Equation results as the BTE is

valid only if the charge carrier mean free path is much larger than the wavelength

[79, 80]. The second difficulty arises from the unknown properties and the compo-

sition of the interfaces. As the density of the interfaces increases in the nano bulk

a b c

Fig. 4.4 Three types of nano bulk structures: (a) single component nanocrystalline material,

(b) bulk material with embedded nanoparticles, (c) multicomponent nanocrystalline material
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material, their volume fractions become comparable with that of the host material;

therefore, the transport properties of the material should be derived not just from the

scattering processes, but from a new phase of charge and phonon transport making

the determination of the interface properties a cumbersome problem.

Interfaces can influence the Seebeck coefficient, electrical conductivity, and the

electronic thermal conductivity. In fact, interfaces have negative and positive

effects on carrier transport. Although the interface scattering reduces the charge

mobility, it can be exploited to improve the Seebeck coefficient through energy

filtering and reduce the ambipolar thermal diffusion through preferential scattering

of the minority carriers. The following is a brief description of how different

concepts and quantities can change the contributions of the interfaces in charge

transport properties.

Seebeck Coefficient

As can be seen from the Mott’s relation,

S ¼ π2k2BT

3eσ

∂σ
∂E

� �
Ef ¼ π2k2BT

3e

∂ln g Eð Þ
∂E

þ ∂ln τ Eð Þv Eð Þ2
∂E

 !
Ef (4.2)

in which g(E) is the electronic density of states and v is the charge group velocity,

the interfaces can be beneficial to Seebeck coefficient by three effects as listed

below.

• Quantum size effects can cause sharp changes in the density of states g(E) which
in turn improves S and enhances ZT [37].

• Interfaces can introduce potential barriers that can scatter carriers and affect the

thermoelectric efficiency. In the presence of such potential barriers, carriers that

are passed over the barriers have higher average energy than carriers far from the

barriers. Carrier energy distribution function becomes that of the bulk material in

a length equal to the energy relaxation length lE from the barrier. If the grain sizes

does not exceed lE, the carrier distribution function does not return to that of the
bulk between GBs, and thus the effective Seebeck coefficient of the nano bulk

material is higher than that of the parent single crystalline bulk material. Also, if

the momentum relaxation length is much shorter than the distance between the

GBs, the behavior of the carriers with energies greater than that of the barrier may

be similar to that of carriers in the bulk. In other words, for carriers with energies

above those of barriers, the differential conductivity σ(ε) of a material with

potential barriers can be approximated by that of the material without potential

barriers if lm << l. Therefore, under the condition of lm << l < lE, the energy
filtering mechanism can increase the effective material Seebeck coefficient. It is

also understood that since such defects can reduce the electron mobility, the

overall effect appears in the power factor S2σ.
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Figure 4.6a shows the asymmetric contribution of electrons with different

energies around the Fermi energy to the conduction process (differential conduc-

tivity). A more asymmetric differential conductivity would result in higher Seebeck

coefficient. While the Seebeck coefficient is relatively high, the number of con-

duction electrons is small as the Fermi energy is close to the band edge. Figure 4.6b

shows that when the Fermi energy is deep inside the conduction band, the differ-

ential conductivity is more symmetric with respect to the Fermi energy resulting in

a small Seebeck coefficient. Removing low energy carriers by a potential barrier

can lead to an improvement in Seebeck coefficient as shown in Fig. 4.6c. The new

scattering mechanism introduced by the interface potential scatters low energy

carriers and reduces their contribution to the transport properties so the Seebeck

coefficient is increased. The successful implementation of this strategy has been

reported for InGaAs/InGaAlAs superlattice [17] and PbTe-based nanostructured

materials [18, 81].

Energy filtering improves the Seebeck coefficient through the reduction of

bipolar effect too. To this end, the minority carriers which have lower energy are

affected by fabricating a nanostructure which scatters them more strongly than the

majority carriers. Such a reduced bipolar effect has been reported for nanostruc-

tured Bi0.5Sb1.5Te3 [41].

• Any change in the dielectric constant caused by the strain or the change of the

lattice constant at the interface can appear in ionized impurity, polar optical-

mode phonon, and nonpolar optical-mode phonon scattering times [82]. Changes

in these scattering times directly affect the Seebeck coefficient according to the

Mott’s relation.

Fig. 4.6 Schematic representation of electron filtering. (a) Low doped (b) highly doped (c) energy

filtered highly doped
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Electrical Conductivity

Interfaces form two-dimensional networks or line charges in juxtaposition. Inter-

faces change the electrical conductivity through several possibilities such as:

• Interface roughness scattering at the interface decreases the electron mobility in

the material [83]. However, the roughness scattering can lead to a significant

increase in the thermionic current. A rough interface scattering conserves the

energy but not the transverse momentum of the charge carriers. Therefore, the

scattering at a rough interface mixes the planar motion of the charge carriers with

the longitudinal motion perpendicular to the interface. In this case, the transmis-

sion probability depends on the total kinetic energy of the electrons rather than

only the perpendicular component to the barrier. This will increase the number of

electrons that are transmitted over the barrier, which can significantly increase the

electrical conductivity. Non-conservation of transverse momentum does not

significantly change the Seebeck coefficient; therefore, optimizing the material

parameters (such as doping and barrier height) to gain an overall benefit from the

interface roughness scattering is possible. For an accurate treatment of the

interface scattering, one needs to develop a comprehensive model that includes

all the important effects on the charge mobility and the transmission probability

at the interface.

• There are several mechanisms for the existence of an interfacial potential. One is

the accumulation of charges at the interface, namely, the space charge electric

potential. The broken bounds at the interfaces attract free carriers and form a

space charge. The high density of states at interfaces and a space charge on either

side of the interface represents a double Schottky barrier at the boundary thereby

a high resistance to the lateral current flow. Early works on modeling of the

interfaces in polycrystalline materials used a double diode or a two back-to-back

diodemodel [84]. Since then there have beenmany different models for the effect

of the interface space charge on electrical conductivity [85].

• Another mechanism is due to the different orientations of the adjacent grains or

simply crystallite rotation. Apart from the space charge potential barrier, electrons

may experience a potential barrier (or well) due to the rotation of the adjacent

grains. For example, an electron moving in L valley in one grain has to enter the Σ
valley in the next grain. In a nano bulk material, the grains are randomly distrib-

uted with a random orientation. Electrons with sufficiently large energies can pass

over the barrier and enter a different valley in the adjacent grain. Electrons with

smaller energies may encounter an intervalley scattering and enter an equivalent

valley in the adjacent grain (Fig. 4.7). This can happen through electron scattering

by phonons or the interface roughness potential. Such scatterings reduce the

boundary resistance as they provide alternatemeans for electron transport between

the grains.

• Dielectric constant can be changed due to the permanent dipoles which are

induced by the electric field in the interfacial regions. The change in the dielectric
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constant leads to the change in polar optical-mode phonon and nonpolar optical-

mode phonon scattering times which in turn alters the electrical conductivity [82].

• Deformation potential theory is a band model to describe the charge transport

and works well if the electron–phonon coupling is weak [86]. Deformation

potential impacts on the electrical conductivity as well as the total phonon

relaxation time. Local deformations in the crystal lattice caused by the interfaces

can form an effective electric potential due to the strain and its effects on the

band structure. Therefore, the changes in the lattice constant in the interfacial

region can also affect the electrical conductivity through the change in the

deformation potential [87].

Electronic Thermal Conductivity

The charge carriers also transport heat and add to the thermal conductivity. At first

glance it seems that reducing the thermal conductivity through the reduction in the

charge mobility or concentration is not favorable as it would adversely affect the ZT
through electrical conductivity. However, the key is the different value of the Lorenz

number inmany thermoelectrics.Moreover, the ambipolar diffusionmechanisms can

favorably behave differently at the presence of the interfaces.Wiedemann–Franz law
states that the electronic thermal conductivity ke and electrical conductivity σ in a

metal or degenerate semiconductor are directly proportional as:

ke ¼ LσT (4.3)

where L is the Lorenz number with the value L ¼ 2.45 � 10� 8 WΩ/K2,

σ is the electrical conductivity, and T is the absolute temperature. Therefore,

Wiedemann–Franz law affects the electronic thermal conductivity in two ways.

First, ke is decreased due to the deteriorative effect of the interfaces on the charge

Fig. 4.7 Pictorial depiction of the grain boundary interfaces and intervalley transitions. L–L and

X–X lines demonstrate the equivalent intervalley scattering between adjacent grains. L–X line

shows transition to a different valley that would disturb the energy spectra of the charge carrier
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carrier mobility. Second, ke is a function of the Lorenz number which itself is a

function of the relaxation time. Therefore, it is possible to reduce the contribution of

carriers in thermal conductivity by reducing the Lorenz number.

If a temperature difference is maintained across a thermoelectric material,

a positive concentration gradient of thermally excited electron–hole pair in the

direction of the temperature increment occurs. Diffusion causes a net flux of these

electron–hole pairs towards the cold side of the material and their subsequent

recombination that would heat up the lattice. This process is known as ambipolar

thermal diffusion whose strength depends on the band gap and the balance of the

electron and hole conductivities. Interfaces can preferentially scatter minority

carriers more than majority ones due to the difference in their energy. For example,

since the minority carriers have less energy than the majority ones in a bulk

material, the former ones are scattered more strongly by the interface potential

barriers resulting in an imbalance between the electron and hole electrical conduc-

tivities; hence, reducing the ambipolar diffusion.

4.3.3.5 Phonon Transport at Interface

According to the following relation, which is derived from a simple kinetic theory

and neglects the normal phonon–phonon interactions, the lattice thermal conduc-

tivity can be calculated from [88, 89]:

klatt ¼ 1

3

ðωc

0

C ωð Þvg ωð Þ2τ ωð Þdω (4.4)

where C is the heat capacity, vg is the phonon group velocity, τ is the total relaxation
time, and ωc is the cutoff frequency. It is expected that the interfacial resistance of

the grains in a nano bulk material should reduce the lattice thermal conductivity

either through the reduction of the group velocity of the phonons or the reduction of

the relaxation time. The reduction in relaxation time corresponds to the reduction

in phonon mean free path. In nano bulk materials, the reduction of the phonon

relaxation time can be achieved through point defects and/or grain boundary

scatterings. Due to the complicated interplay of phonon scattering, group velocity,

and heat capacity, a frequency dependent analysis of klatt is crucial to design low

thermal conductivity thermoelectrics. Some of the main mechanisms affecting the

lattice thermal conductivity are introduced briefly in the following.

Group Velocity

The one-dimensional Born–von Karman model, as a chain of atoms connected by

springs with linear restoring forces to investigate the effect of the reduction in

phonon group velocity on the spectral lattice thermal conductivity, indicates that

the decrease in vg which decreases the klatt(ω) occurs in three ways: [90]
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• As the mass contrast increases, the optical mode flattens, and if Umklapp

scattering dominates, klatt(ω) is proportional to vg(ω)
2; therefore, the klatt(ω) is

reduced significantly [91].

• As the number of atoms in the primitive unit cell increases, due to their low

velocity of optical modes, the vg(ω)
2 is decreased considerably; hence, the

klatt(ω) is decreased [92, 93].

• In open framework compounds (such as clathrates and skutterudites) the avoided

crossing effect in the vicinity of the guest atom vibrational modes reduces vg(ω)
2

through the reduction of the acoustic contribution to klatt(ω); hence, klatt(ω) is
decreased [94, 95].

Relaxation Time

Interfaces can scatter phonons via several different possibilities:

• Regular reflection and refraction, arising from the difference of the phonon

group velocities in the adjacent grains.

• Diffusive scattering due to the corrugation of the interface, caused by impurities

or interface roughness.

• Diffraction of waveswhen the wavelength is comparable to the particle size. If the

interface region is much smaller than the wavelengths of the excited phonons, the

problem should be treated as a diffraction process (Rayleigh scattering).
• Anharmonic effects are also able to extremely decrease the lattice thermal

conductivity as reported by Morelli et al. [96]. Anharmonic bands are character-

ized by Grüneisen parameter γ. Good thermoelectric materials require large γ.
Hopkins et al. [97] suggested a newmodel for thermal conductivity that takes into

account the anharmonic coupling, or inelastic scattering events, at the interface of

two grains. This is achieved by considering specific ranges of phonon frequency

interactions and the conservation of the phonon number density. Their suggested

model considered the contributions of the inelastically scattered phonons to the

thermal conductivity and provided a good agreement with the experimental

results at the Pb–diamond and Au–diamond interfaces.

• Strain can be caused by the change of the lattice constant at the interface. The

strain affects the vibrational modes and changes the relaxation time [98].

• Deformation potential: This potential represents the interaction of charge car-

riers with phonons. The deformation potential theory has been developed and

applied by many researchers [87, 99, 100]. Lattice mismatch at the interfaces can

cause a lattice strain that would alter the deformation potential. Therefore,

interfaces can affect the lattice thermal (and electrical) conductivity indirectly

through the deformation potential.

Figure 4.8 depicts the schematic representation of the scattering mechanisms for

phonons. For regular reflection and refraction, the relaxation time has no depen-

dency on angular frequency. If the wavelength is comparable with the particle or
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the interface size, the relaxation time will be a function of ω2(λ ~ d, τ(ω2)) and if

the wavelength is much larger than the particle or the interface size, the relaxation

time will be proportional to ω4 (λ � d, τ(ω4)).

As the characteristic lengths of the nano bulk materials approach the phonon

mean free paths, the effect of scattering mechanisms at interfaces becomes much

more important than inside the bulk material. Phonon reflection at a boundary leads

to the Kapitza resistance, a phenomenon that has been known for a long time but has

escaped quantitative description except at very low temperatures when the phonon

wavelength is long so that the reflection can be treated based on acoustic wave

theory. At room temperature, it is difficult to calculate the phonon reflectivity

mainly because of the diffuse phonon reflection as well as the phonon spectrum

mismatch between the two sides of the interface.

Phonons have a large range of frequency and relaxation time. Phonons with

different frequencies have different effects. Phonons may behave like a plane wave

if the interfacial roughness is small compared with the phonon wavelength. They

may behave like a particle if their wavelengths are much smaller than the interfacial

roughness. Microstructural obstacles like inclusions and precipitates have great

effect on the lattice thermal conductivity. Until now, no model has been able to

predict the interface thermal conductance except at very low temperatures. The

Fourier heat conduction theory, as a common approach to model the effect of

interfaces in thermal conductivity, underpredicts the effect of the interfacial scat-

tering. This is mainly because this approach is based on the diffusion picture while

the phonon mean free path is longer than the characteristic lengths of the interface

region. Phonon transmission and reflectivity are crucial parameters to model the

heat conduction in thermoelectric materials. In the case of the nano bulk materials,

two major theoretical problems are known for understanding of the phonon trans-

port. First, nano bulks show a lattice thermal conductivity lower than that of their

alloy limit. Second, it is not clearly understood how the interface affects the phonon

transport. The first problem can be explained by determining the amount of

contribution of each wavelength of the phonons to the thermal conductivity.

Phonons with short wavelength are strongly scattered by point defects but phonons

with long wavelength have a long mean free path. Nevertheless, the contribution of

the long wavelength phonons in thermal conductivity is small [101]. If the involved

structures have larger characteristic length than that of alloy point defects, inter-

faces scatter long wavelength phonons that would further reduce the lattice thermal

conductivity beyond the alloy limit. Moreover, some researchers believe that the

τ(ω2)

τ(ω4)

τ

Fig. 4.8 Schematic

representation of the

scattering mechanisms for

phonons from interfaces
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low limit of thermal conductivity in nano bulk materials is smaller than that of bulk

materials modeled by isotropic scattering mechanisms due to the highly anisotropic

interfacial scattering in the nanostructures.

Nanoparticles in a host material have multiple interfaces and knowing the

amount of the reflected or transmitted phonons from a single interface is crucial

for designing nano bulks with reduced thermal conductivity. Available theories do

not predict phonon reflectivity and transmission at an interface accurately as they

do not clarify the contribution of the phonon scattering inside a nanoparticle or the

role of the interface roughness.

4.4 Methods for Modeling Charge Carrier and Phonon

Transport at Interfaces

4.4.1 Modeling by BTE

The BTE has been used extensively to model the thermoelectric properties of bulk

materials. As long as all the scattering mechanisms are elastic and the relaxation

time approximation is valid, electrical and thermal properties can be expressed as

integrals of the relaxation times [79, 80]. To model the effect of interfaces, one can

add an interface scattering time to the scattering times existent in the bulk material

using Matthiessen’s rule. Therefore, the only thing that one needs is an expression

for the interface or the grain boundary scattering, and the general algorithm to solve

the BTE is unchanged. Modeling of the interface scattering, however, is not

accurate at this stage.

A particular implementation of the BTE is the acoustic mismatch model (AMM)

which can be considered as the most simplified and widely used method to treat the

phonon transport at the interfaces. AMM compares the impedance ratios at an

interface of two crystals. Since this model has been designed for specular elastic

scattering of phonons at abrupt interfaces, it is proper for low temperature. The

AMM, like other BTE-based models, does not account for the wave nature of the

phonon transport that is driven by the underlying lattice dispersion and the boundary

conditions on either side. Moreover, it does not take into account the nonequilibrium

status of the region between the two thermal reservoirs. In addition, extending this

model to cover multiple scattering phenomena in nanostructured materials has not

been formulated yet.

4.4.2 Modeling by Molecular Dynamics (MD)

MD simulation can provide a deep insight of the mechanisms responsible for

phonon transport in nanostructured materials. This method has been extensively

developed and has found applications in research on thermal transport in nanoscale
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interfaces [102, 103]. After the pioneering work of Maiti et al. [104] using the

nonequilibrium molecular dynamics (NEMD) for studying the Kapitza resistance

across an interphase boundary, several studies on the interfaces between different

phases [105] and nanostructures [106] have been performed. Additionally some

researchers have used MD to calculate the thermal conductivity of some thermo-

electric materials such as Bi2Te3 [107], Pb1�xSnxTe [108], Pb1�xGexTe [108], and

Si/Ge nanocomposites [109]. Although MD provides some atomistic details, since

it is mainly based on empirical potentials, it gives poor estimates of the thermal

transport properties.

4.4.3 Modeling by Nonequilibrium Green’s Functions
(NEGF)

The Nonequilibrium Green’s Functions (NEGF) formalism has been extensively

used to study the electron transport in nanostructured materials [110–112]. It has

been used mainly for structures where characteristic wavelengths of the charge

carriers become comparable to, or larger than, the sample size. The method can be

readily developed to include the incoherent scattering and the electron–phonon

correlation effects. In this method, a two probe system is defined and divided into

three regions, left electrode, central region, and right electrode. It is assumed that the

electrodes have bulk properties. First, the properties of the electrodes using standard

density functional theory (DFT) techniques for periodic systems are calculated. The

solution for the electrodes determines boundary conditions for the central region,

and then in the second step, DFT equations for the central region are solved self-

consistently. The charge carrier transport properties are calculated by using the

Kohn–Sham Hamiltonian for propagating each electron.

The NEGF method has been also applied to treat phonon transport across the

interfaces in nanostructures. First, some ab initio methods like tight binding, DFT,

or MD are used to relax the crystal structures across the interface and to determine

the interatomic force constants between the atoms. The computational unit cell

should be large enough to get a sufficient number of nearest neighbor interactions.

Then the phonon Green’s function is computed based on the extracted force

constants. Moreover, the converged semiclassical Poisson electrostatic potential

is used to calculate the transport properties. For example, the method has been

applied to investigate the phonon transport in carbon nanotubes with defects and

isotope scattering in carbon and boron-nitride nanotubes [113–115]. It is notable

that the strength of the NEGF is its ability to include more complicated incoherent

scatterings such as anharmonic phonon mechanisms.
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4.5 Nanostructuring in SixGe1�x and Mg2Si

As discussed earlier in Sect. 4.1, nanostructuring techniques have steered the

performance of many thermoelectric (TE) compounds towards attaining a ZT > 1

in the room to medium temperature ranges. Optimization of device performance

was widely achieved through additional scattering mechanisms in the form of grain

boundaries and interfaces created via nanostructuring techniques. Nanostructuring

techniques were principally designed to scatter mid to long wavelength phonons, a

feat that could not be effectively achieved through alloy or point-defect scattering

[116]. Consequently, the alloy limit to the reduction of thermal conductivity was

overcome by means of restricting the grain sizes to those comparable with the

characteristic lengths of phonons.

4.5.1 Properties and Modeling of Silicon Germanium
and Magnesium Silicide Nano Bulks

The binary compounds of SixGe1�x and Mg2Si hold favorable thermoelectric

(TE) properties for power generation in the high (900–1,100 K) and medium

temperature ranges (500–800 K), respectively [43, 117–120]. In addition to being

cost efficient and allowing for scalable synthesis methods, both compounds were

characterized for having high mobilities, electrical conductivities, Seebeck coeffi-

cients, and low lattice thermal conductivities [43, 50, 120]. Table 4.1 shows the

important electronic and material properties of silicon germanium (SixGe1�x) and

magnesium silicide (Mg2Si).

A favorable feature of Si1�xGex is its ability to facilitate band structure engi-

neering through variation in the alloy composition (x) of the elements. The alloy

Table 4.1 Properties of SixGe1�x and Mg2Si [43, 50, 120]

Property SixGe1�x Mg2Si

Energy gap (eV) 1.12 � 0.41x + 0.008x2 0.77

Lattice constant (Å) at 300 K 5.43(1�x) + 5.66x 6.34

Dielectric constant 11.7 + 4.5x 20

Density (g/cm3) 2.329 + 3.493x � 0.499x2 1.880

Debye temp. (K) 640 � 266x 417

Melting point (K) 1,685 � 738x + 263x2 1,375

Thermal conductivity (W/m/K) at 300 K 4.6 + 8.4x 7.9

Specific heat (J mol/K) 19.6 + 2.9x 68

Effective mass: ml*/mt*(me), x ¼ 0.8 X: 0.92/0.19
L: 1.59/0.08

X1: 0.86

X3: 0.14

Mobility (cm2/V/s) at 300 K μn: 1,396–4,315x
μp: 450–865x

μn: 405
μp: 65

Semiconductors onNSM, http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/index.html, Accessed

21st March 2012
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composition and the temperature affect both the electrical and thermal properties.

Additionally, the similarities between the chemical and the physical properties of Si

and Ge make the processing of Si1�xGex relatively simple. Si1�xGex crystallizes

with a diamond lattice structure under atmospheric pressure. The type of the

conduction and the carrier concentration in Si1�xGex could be controlled by doping

with phosphorous (n-type) or boron (p-type). Si1�xGex is an indirect band-gap

material with the primary conduction energy gap between the X and L valleys

being ~0.8 eV [43, 50].

Among the materials suitable for thermoelectric power generation in the

medium temperature range, Mg2Si stands apart due to the distinctive features of

its elemental constituents. The elements of Mg and Si are nontoxic, widely avail-

able in nature, and are suitable for making light-weight and recyclable compounds.

Additional related intermetallic compounds such as Mg2Ge and Mg2Sn are also

suitable for thermoelectric power generation in the medium temperature range.

Mg2Ge and Mg2Si possess semiconducting properties due to the valence electrons

in these compounds being equal to the number of states in the Brillouin zone [120].

Mg2Sn has a very low energy gap and is considered as a semimetal.

Similar to Si1�xGex, the bulk crystalline form of Mg2Si possesses a high melting

point, low thermal conductivity, and high electrical conductivity as shown in

Table 4.1. Numerous experimental techniques such as mechanical alloying,

hot-pressing, and spark plasma sintering have been reported for the preparation

and synthesis of Mg2Si-based thermoelectric materials [121–125]. Recent reports

also demonstrate novel methods such as microwave processing to fabricate nano

bulk structures of SixGe1�x and Mg2Si [126, 127].

Elements such as antimony, aluminum, and bismuth are typical dopants for

synthesis of n-type Mg2Si. However, the synthesis of p-type Mg2Si requires

dopants such as silver or copper [125, 128]. As cited in the previous subsections,

well-known techniques such as mechanical alloying, hot-pressing, and spark

plasma sintering have been used to fabricate nano bulk compounds of SixGe1�x

and Mg2Si. In some cases, the thermal processing methods such as solid-state

reactions were also implemented. Methods to fabricate nano bulk compounds of

Mg2Si were also widely implemented recently [129–132]. In these TE compounds,

although a reduction in the thermal conductivity was obtained as a result of

nanostructuring, the ZT remained lower than one. Unlike compounds such as

Si1�xGex, the performance trend of nano bulk Mg2Si illustrated only meager

enhancements. In order to understand the physical reasoning behind this unex-

pected trend, a detailed examination of the electron and phonon transport in these

nanostructures is necessary. The primary parameters that are affected by bulk

nanostructuring are the phonon mean free path (PMFP) and charge carrier mean

free path (CMFP). The mean free path is defined as the distance travelled by the

phonon or charge carrier between consecutive scattering events. The PMFP effec-

tively determines the maximum distance of heat transport for each phonon. It is

mathematically represented as the product of the phonon relaxation time (τ) and
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group velocity (vg). On the other hand, the lattice thermal conductivity (κl) is the
magnitude of thermal transport that occurs via the crystal lattice vibrations of the

TE material and depends on τ, vg, and the phonon wavelength. The lattice thermal

conductivity is affected by various physical characteristics of the material such as

point defects in the lattice, ionized impurity sites, grain boundaries, etc. In particular,

as the crystallite size reduces to feature sizes of the electrons and phonons in the

nanocrystalline materials, interfacial sites and barrier potentials at the grain bound-

aries modify the typical behavior of the transport mechanisms by affecting the

phonon and electron mean free paths. It should also be noted that the electrical

transport properties are also a function of the defect density, impurity concentration,

and the size of the crystallite in the TE material systems. Therefore, the effects of

nanostructuring could be perceived by a reduction in both the electrical and the lattice

thermal conductivities due to enhanced interface scatterings. Additional effects of

nanostructuring may include selective carrier filtering which increases the Seebeck

coefficient. In order to quantitatively comprehend the electrical and thermal transport

properties of the nanostructured TE materials, semiclassical theoretical models have

been implemented under the relaxation time approximation [43].

An effective calculation methodology to describe the nano bulk effects in Mg2Si

and Si1�xGex is based on solving the Boltzmann transport equation coupled with the

relaxation time approximation [21, 22]. The Debye model can further be applied

simultaneously in order to determine the thermal conduction properties of the two

materials being discussed. Such a rigorously simulation-tested modeling method-

ology was presented in detail in [22] and [43] for Mg2Si and Si1�xGex, respectively.

4.5.2 Modeling Methodology

For the material systems in discussion, a multiband transport mechanism is taken

into account in order to efficiently estimate the thermoelectric properties [22, 120].

The sequence of the steps included in the modeling and simulation strategy are

shown in Fig. 4.9. Under the assumption that the band structure-related and

electronic properties of the material are supplied, the calculation methodology

primarily includes the following stages:

1. Under the assumption of the charge conservation, calculation of the Fermi level,

EF, based on (4.5a and 4.5b).

2. Calculation of the charge carrier and phonon relaxation times based on scatter-

ing mechanisms.

3. Estimation of the charge carrier mobility, Seebeck coefficient, and electrical

conductivity.

4. Estimation of the electronic and bipolar thermal conductivities.

5. Determination of the lattice thermal conductivity based on the Debye model.
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no ¼
ð1
0

f o E;Efð ÞD Eð ÞdE (4.5a)

f o ¼ exp
E� Ef

kBT

� �
þ 1

� ��1

(4.5b)

Where no is the charge carrier concentration. For a given temperature and doping

concentration, the Fermi level is determined by solving (4.5a and 4.5b). The

Matthiessen’s rule shown in (4.6) determines the total relaxation times for phonon

and carriers where i in represents the type of scattering mechanism [120].

1

τ
¼
X

i

1

τi
(4.6)

The model is strongly established on the material parameters related to the

physical properties such as the lattice properties and the band structure parameters.

Mg2X-based compounds, where X ¼ Si, Ge, or Sn, are known to have face

centered cubic lattice structure. The forbidden energy gap for Mg2Si is indirect

(Г15–X3) with E
in
g ¼ 0.77 eV and forms the primary energy gap [133]. Themultiband

assumption for Mg2Si is justified from the fact that Mg2Si has three conduction band

minima located atX3,X1, and L1 points [80]. However, there is only one valence band
maximumwhich is located at Г15. The inter-band distances such as the X1 and X3 gap

(0.4 eV) and the X3–L1 separation of 0.5 eV are also provided as the input based on

the band structure [133]. Band structural features such as the non-parabolicity

are considered for all bands and are implemented under a modified E(k) relation
shown in (4.7) [43],

Solve for Fermi level, Ef

Estimate phonon and charge
carrier relaxation times (τ)

Calculate charge carrier mobility
(μ), electrical conductivity (σ),

and Seebeck coefficient (S)

Calculate the electronic and
bipolar thermal conductivities

Calculate the lattice thermal
conductivity

Fig. 4.9 Flow diagram of

the methodology of

modeling of TE properties
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(4.7)

where kl and kt are the longitudinal and transverse components of the electron

wavevector, respectively; ml and mt are the longitudinal and transverse components

of the effective mass of each valley, and α is the non-parabolicity coefficient.

Analogous to the parameters for Mg2Si, the calculation model for Si0.8Ge0.2 was

built based on the band structure properties, physical and structural characteristics,

and electronic and lattice parameters [43]. The simulation parameters for both

materials are summarized in Table 4.2.

4.5.2.1 Scattering Mechanisms

The doped compound of bulk Si0.8Ge0.2 is known to accommodate phonon scatter-

ings due to acoustic phonon, intravalley phonon, ionized impurities, and point

defects. In the nano bulk structures, the calculations account for an additional

scattering mechanism in the form of grain boundary scattering. Similarly, in the

crystalline form of doped bulk Mg2Si, scattering mechanisms are dominated by

acoustic phonons and ionized impurities in the lattice. The energy dependent

relaxation times can be estimated based on the Brooks–Herring formula via

Thomas–Fermi approximation defined in (4.8) [80],

1

τIIS Eð Þ ¼
z2e4nI

16πε2
ffiffiffiffiffiffiffiffi
2m�p E�3

2 log 1þ 8m�λ2sE
ħ2

� �
� 8m�λ2sE=ħ

2

1þ 8m�λ2sE=ħ
2

" #
(4.8)

where λs is the Debye screening length and is defined as,

Table 4.2 Parameters for simulation of TE properties of Si0.8Ge0.2 and Mg2Si [21, 22]

Parameter Mg2Si Si0.8Ge0.2

Energy gap Eg (eV) 0.77 0.8

Temp. dependence of Eg, (eV/K) α ¼ �3.5 � 10�4

β ¼ 0

α ¼ 4.7 � 10�4

β ¼ 636(Si), 235(Ge)

Conduction band effective mass mt ¼ 0.86, ml ¼ 0.14

(X1 and X3)

X: ml ¼ 0.92, mt ¼ 0.19

L: ml ¼ 1.59, mt ¼ 0.082

Conduction band non-parabolicity (e/V) X1: 1.0, X3: 1.0 X: 1.2

Valence band effective mass mlh ¼ 1.00, mlh ¼ 2.00 mlh ¼ 1.20, mlh ¼ 1.55

Valence band non-parabolicity 0 1.25

Debye temp. (K) 417 640

Acoustic phonon deformation potential (eV) Dc ¼ 12, Dv ¼ 4.5 Dc ¼ 10.5, Dv ¼ 4.8

Strain parameter 7 39

Grüneisen parameter 1.4 0.9

Higher order phonon scattering 1.5 1.4

GB potential, Pg (meV) 100 100
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λ�2
s ¼ 4πe2z

ε1

ð1
0

�∂f o
∂E

� �
D Eð ÞdE (4.9)

where nI is the number of ions, E is the energy relative to the band edge, z is

ionization number, m* is the effective mass, e is the charge of electron, fo is the
Fermi–Dirac distribution obtained from (4.5b), ε is the low frequency dielectric

constant, ε1 is the high frequency dielectric constant, and ħ is the Planck’s constant.
Likewise, the intravalley acoustic and optical phonon deformation potential scatter-

ing rates can be estimated using the equations [80],

τ�1
DP ¼ τ�1

o 1� αE

1þ 2αE
1� Dv

DA

� �� �2

� 8

3

αE 1þ αEð ÞDv

1þ αEð Þ2DA

( )
(4.10)

τ�1
o ¼ πkBTD

2
A

ρv2sħ
D Eð Þ (4.11)

where E is the energy relative to the band edge, DA and Dv are acoustic phonon

deformation potentials for the scattering of electrons and holes, respectively. T is

the temperature, α is the non-parabolicity parameter, D(E) is the density of states,

ρ is the density, and vs is the speed of sound.

For the calculations of TE properties of nano bulk systems, a potential barrier due

to the presence of the grain boundary (GB) locations and/or due to the presence of the

nanoparticles can be considered as shown in Fig. 4.10. The shaded circles schemat-

ically indicate the situations where nanoparticle doping such as nanoparticles dis-

persed in the host matrix is applicable. The randomly oriented lines in Fig. 4.10

specify the additional interfaces created due to the crystallite boundaries. These

boundaries act as scattering regions for phonons and charge carriers. The potential

barrier in these two cases can be modeled as shown in Fig. 4.10. The grain boundary

Fig. 4.10 The schematic of the potential barriers due to the grain boundaries (cylindrical) and
nanoparticle (circular) scattering zones
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region can be modeled as a location consisting of a space charge region with a

cylindrical symmetry and width indicated by the height of the cylinder (z-axis).
The barrier potential can be modeled to be exponentially decaying towards the

edges of the space charge region. Themathematical functions that define the variation

of the potential barriers in the direction perpendicular to the grain boundary and/or

the nanoparticle are shown in (4.12) and (4.13), respectively. In (4.12) and (4.13),Uc

andUs is the heights of the grain boundary potential and ro is a constant in the order of
the screening length. The Fermi’s Golden rule can be applied in order to estimate the

effective scattering rate for a chosen grain boundary potential. The grain boundary

potentials typically vary in the range of tens of meV to eV. As shown in Table 4.2,

a constant value of 100 meV was assumed in these calculations for both material

systems to emulate the effect of nanostructuring.

U r; zð Þ ¼ Uce
� zj j

zcθ r � rcð Þ (4.12)

U rð Þ ¼ Use
� r

rs (4.13)

An effective implementation of this model accounts for the assumption of

coherent carrier scattering at the grain boundaries. It is known that in typical nano

bulk TE material systems, the crystallite sizes vary in a wide range. In order to

estimate the TE characteristics efficiently, a Gaussian distribution of grain sizes with

a certain average crystallite size can be considered. In the calculation results to be

discussed in the next sub-sections, a Gaussian distribution of grain sizes with an

average size of 20 nm was implemented.

4.5.2.2 Relaxation Time

In order to account for the effect of phonon and carrier energies in conjunction to

the type of scattering mechanisms, the energy dependent scattering rates for each

scattering mechanism were individually estimated. The scattering rates were then

combined using the Matthiessen’s rule. Figure 4.11 shows the variation of the

relaxation times for various scattering mechanisms in Mg2Si. As indicated by

Fig. 4.11, the acoustic phonons dominate in the scattering of electrons with energies

higher than 0.1 eV. The ionized impurity scattering (IIS) is only dominant at lower

energy levels.

It is indicative from Fig. 4.11 that the grain boundary scattering mechanism

introduces additional scattering and is relatively dominant for carriers with lower

(<0.1 eV) energies. Analogous to this situation, for carriers with energies greater

than 0.1 eV, the ionized impurity and acoustic phonon scattering are dominant.

It can also be inferred from Fig. 4.11 that in highly doped systems the mechanism of

grain boundary scattering may be ineffective for a majority of carriers due to their

high energy ranges.
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4.5.2.3 Estimation of Lattice Thermal Conductivity

The thermal conductivity characteristics for both Mg2Si and Si0.8Ge0.2 can be

calculated accurately under the contributions of the phonon scattering mechanisms

such as 3-phonon, phonon–electron, alloy scattering, and grain boundary scattering.

The relaxation times can be estimated for each scattering mechanism and the lattice

thermal conductivity, κl, the electronic contribution to thermal conductivity, κe, and
bipolar thermal conductivity can be estimated using (4.14)–(4.19) [21, 22, 43, 120]

kl ¼ kB
2π2vs

kBθD
ħ

� �3

I1 þ I22
I3

� �
(4.14)

I1 ¼
ð1
0

τx2
v2x2evx

exp vxð Þ � 1ð Þ2 dx (4.15)

I2 ¼ β

ð1
0

τ

τU
x2

v2x2evx

exp vxð Þ � 1ð Þ2 dx (4.16)

I3 ¼ β

ð1
0

1

τU
1� βτ

τU

� �
x2

v2x2evx

exp vxð Þ � 1ð Þ2 dx (4.17)

kc ¼ kB
e

� �2

T
X

i
Liσi (4.18)

kb ¼ T
X

i, j
σiσj Si � Sj
� �2

(4.19)
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Fig. 4.11 Calculated

relaxation time versus

energy for various

scattering mechanisms in

n-type Mg2Si [21]
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in which x ¼ ω/ωD, where ωD is the Debye frequency, v ¼ (θD/T )
η, θD is the

Debye temperature, η is a fitting parameter to incorporate the effect of higher

order phonon scattering (see Table 4.2), β is the ratio of Umklapp to normal-

mode scattering, τ and τU are the total and Umklapp relaxation times, respectively,

T is absolute temperature, i, j are the valleys indices, σ is the conductivity, and S is

the Seebeck coefficient. L is the carrier concentration dependent Lorentz number

that can be numerically calculated to estimate the electronic part of the thermal

conductivity as discussed earlier via (4.3). Lastly, the total thermal conductivity

ktotal can be estimated as the sum of all three components κtotal ¼ κl + κc + κb.
Figure 4.12 shows the variation of the calculated phonon mean free path (PMFP)

in n-type Mg2Si plotted versus the inverse of the phonon wavelength that is propor-

tional to the phonon energy. It is indicative from the plot that the slope of PMFP

varies with phonon energy. It is also known that PMFP is a function of the scattering

type [21]. At very low energies of phonons, it is known that electron–phonon (e–p)

scattering is dominant and PMFP has a frequency dependency of 1/ω. With the

increasing energy of phonons, the slope sharply increases with 1/ω2 dependency as

the 3-phonon (3-p) scattering dominates. At higher energies, the PMFP has a 1/ω4

dependency due to the dominancy of the point defect scattering [21]. Figure 4.12

also shows the dependency of the accumulated lattice thermal conductivity, κl, on
the phonon energy. The κl remains at a very low magnitude for low energy phonons,

but increases rapidly with phonon energy after a certain energy. The effect of

nanostructuring on the PMFP and κl is comprehensively shown in Fig. 4.12. The

calculations were performed after assuming an average crystallite size of 20 nm.

It can be observed in Fig. 4.12 that at very low phonon energies, the PMFP saturates

to approximately the chosen size of the grains. The line labeled GB PMFP also

suggests the dominance of the grain boundary scattering resulting in such saturation.

The resultant drop in κl in the nano bulk Mg2Si is also presented in comparison with

the bulk crystalline system.
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4.5.2.4 Estimation of the Electrical Conductivity and the Seebeck

Coefficient

In the multiband transport model for both Mg2Si and Si0.8Ge0.2, the electrical

conductivity and Seebeck coefficient assume the forms shown in (4.20–4.22).

σtot ¼
X

i
σi (4.20)

σ ¼ q
X

i
μniniþ

X
j
μpjpj

	 

(4.21)

Stot ¼
X

i
σiSiX
i
σi

(4.22)

In Equations (4.20–4.22), i and j represent the valleys; q is the charge of the

carrier; μn and μp are the carrier mobilities for electrons and holes, respectively;

n and p indicate the electron and hole concentrations, respectively.

4.5.3 The Effect of the Grain Size on the TE Properties
of Mg2Si and Si0.8Ge0.2

To better understand the benefits and secondary effects of nanostructuring, the

thermoelectric characteristics of bulk (solid lines) and nano bulk (dashed lines)

n-type Si0.8Ge0.2 and n-type Mg2Si are calculated with the best fitting models

shown in Table 4.2. The predicted accumulated electrical conductivity (σ) and

lattice thermal conductivity (κl) plotted as a function of wavelength in n-type

Si0.8Ge0.2 (calculated at T ¼ 1,300 K) and n-type Mg2Si (calculated at 850 K) are

shown in Fig. 4.13a, b. A grain size of 20 nm and a GB potential of 100 meV were

assumed for both the material systems.

Figure 4.13a, b shows a comparison of the effects of nanostructuring in both the

material systems. As can be observed from Fig. 4.13a, the electrical conductivity

(σ) in Mg2Si suffers significantly with a drop of nearly 40 % in the nano bulk system

as compared to the bulk crystalline system. Such an unfavorable effect in nano bulk

Mg2Si is a result of the loss in carrier mobility as will be discussed later in this

section. In the corresponding calculations for Si0.8Ge0.2 the deterioration in electri-

cal conductivity (σ) is a mere ~10 % of the bulk crystalline system.

The lattice thermal conductivity depicted in Fig. 4.13b shows that the short

wavelength phonons carry most of the heat. It can be observed that phonons with

wavelengths in the range of 0.5–10 nm contribute significantly to κl in both

Si0.8Ge0.2 and Mg2Si. The thermal conductivity increases rapidly with cumulative

contribution from the short wavelength phonons and remains almost unchanged

with adding the contribution of the long wavelength phonons. However, the limi-

tation of grain size to 20 nm leads to ~60 % reduction in κl of Si0.8Ge0.2, whereas the
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same in Mg2Si is only ~35 %. Considering the loss in σ for the same range of grain

size in Mg2Si, the corresponding loss in power factor could nearly cancel out the

effect of the reduction in κl, eventually leading to little or no improvement in the ZT.
The detrimental effect of the nanostructuring in Mg2Si is primarily due to the

reduction of charge carrier mobility due to the enhanced scattering at the grain

boundaries. Such an effect is the result of the PMFP and CMFP falling in the same

range for Mg2Si [21]. In order to carefully perceive this effect, the differential

electrical conductivity and differential lattice thermal conductivity plotted versus

energy for both the material systems are shown in Fig. 4.14a, b. The area under each

curve is indicative of the corresponding total contribution of each component.

It can be observed from Fig. 4.14a that more than 50 % drop in differential

electrical conductivity is resulted from restricting the grain size to 20 nm. This

magnitude of drop is less than that of Si0.8Ge0.2 shown in Fig. 4.14b. Similarly, the

magnitude of the reduction in differential thermal conductivity is not comparable to

Si0.8Ge0.2 as indicted by the green lines in Fig. 4.14a, b.

Carrier filtering effects, which result in the increase of the average energy of the

carriers, were seen from the predicted electrical conductivity plots. A slight

increase in the Seebeck coefficient was estimated using (4.23) where ΔE is the

change in the energy of the carrier and T is the temperature. The estimated increase

of the Seebeck coefficients was 15 μV/K and 13 μV/K for Mg2Si and Si0.8Ge0.2,

respectively [22].

ΔS ¼ ΔE eVð Þ
T Kð Þ (4.23)

Figure 4.15a, b shows a comparison of the calculated Hall mobility versus

temperature in bulk and nano bulk Mg2Si and Si0.8Ge0.2 at selected optimum
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doping concentrations for n-type and p-type systems, respectively. The carrier

mobility linearly decreases with temperature pertaining to the carrier scattering

by acoustic phonons which increases with temperature. The introduction of the

grain boundaries worsens the magnitude of the mobility, particularly in both n-type

and p-type Mg2Si. In comparison, the n-type and p-type Si0.8Ge0.2 suffer a lower

magnitude loss in mobility and the loss is much lower at high temperatures where

the acoustic phonons are dominant carrier scatterers. Subsequently, an Mg2Si

system gets adversely affected over the entire temperature range.
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Figure 4.16 shows the electrical and thermal conductivity of Mg2Si plotted

against the grain size. It is estimated from Fig. 4.16 by means of a sudden descent

at grain sizes less than 20 nm that the electrical conductivity is affected more

severely compared to the reduction in thermal conductivity in nano bulk Mg2Si. An

unfavorable 35 % drop in electrical conductivity was predicted as a result of the

decrease in the grain size from 20 to 5 nm. Such deterioration in the electrical

conductivity is expected to affect the power factor negatively given the fact that the

carrier filtering effect also leads to a very slight increase in the Seebeck coefficient

as discussed earlier via Fig. 4.14.
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Figure 4.17a, b depicts the predicted ZT versus doping concentration for bulk

and nano bulk systems in n-type and p-type Mg2Si. The results are shown in

comparison to n-type and p-type Si0.8Ge0.2. It is evident from Fig. 4.17a that the

nanostructuring does not show any significant effect on the maximum attainable ZT
of Mg2Si over the chosen doping concentration range. Similar calculation for the

p-type materials shows that nanostructuring of p-type Mg2Si enhances the ZT to a

maximum value of 0.9 at an optimum carrier concentration of 4.3 � 1020 cm�3.

4.6 Future Directions

A fundamental understanding of the transport properties of the charge carriers and

phonons in nanoscale can lead to more practical developments and better material

designs. A proper theory should be able to explain how the nanoscale structure or

structural dependencies at atomistic level such as the crystallite size, crystallite

orientation, energy band discontinuity, and the randomness associated with these

parameters in nanocrystalline structures affect the bulk properties. Moreover, the

calculations of the dispersion curves, momentum, and energy relaxation times are

necessary. The enhancement of ZT in nano bulk materials has been achieved through

the reduction in thermal conductivity below that of the bulk material, so the next

improved materials will feature both the reduction in thermal conductivity and

improvement in power factor. It is also necessary to quantify the contribution of

different geometries of the nanostructures in the reduction of the lattice thermal

conductivity and the improvement of the power factor. This effort should address the

role of nanostructures, grain and nanoparticle sizes, grain and nanoparticle size

distributions, and finally grain and nanoparticle orientations.

It is expected that the theoretical calculations have a major role in providing

techniques for the design and optimization of the new materials and their synthesis
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processing parameters. Material synthesis parameters should allow for prevention

of the grain growth during processing andmaintaining the properties of the materials

at their working temperature or other required working conditions.
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Chapter 5

Control Thermal Conductivity

of Semiconductor Nanowires:

Phononics Engineering

Gang Zhang and Yong-Wei Zhang

Abstract The field of nanoscale thermoelectrics has progressed enormously

recently because of the strong global demand for pollution-free forms of energy

conversion. Rapid development and exciting innovative breakthroughs in the field

over the last decades have occurred in large part due to newly emerged nanoscale

materials with reduced thermal conductivity, and newly developed physical con-

cepts, which make it possible to modify the thermal conductivity of nanoscale

materials. We review recent experimental and theoretical advances in the study of

thermal conductivity and thermoelectric property of nanowires. We first present

several theoretical and experimental results on the reduction of thermal conductiv-

ity and the improvement of the thermoelectric figure of merit, including size effect,

roughness effect, isotopically doped impurity, surface and interface phonon scat-

tering. We then discuss coherent phonon resonance in core–shell nanowires and its

impact on thermal conductivity. Finally, we highlight the importance of these

effects on the figure of merit of nanowires.

5.1 Introduction

It is commonly believed that the world is heading towards energy crisis due to the

fact that the world’s power demands are expected to rise and the availability of

conventional energy sources is expected to decline rapidly. A possible way to
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alleviate or even solve the global energy crisis is to enhance the utilization effi-

ciency of energy. Today, approximately 80 % of the world’s power is generated by

heat engines that use fossil fuel combustion as a heat source [1], which is believed

to be responsible for a large fraction of carbon dioxide (CO2) emissions worldwide.

The heat engines used in most thermal power stations typically operate at 30–40 %

efficiency. This means that roughly 10 TW of heat energy is lost to the environment.

Thermoelectric modules can potentially convert part of the wasted heat directly into

electricity, reducing the usage of fossil fuels and lowering carbon emission.

In addition to waste heat harvesting, thermoelectric materials also can be applied

in solar energy conversion. More solar energy hits the earth in 1 h than all the

energy consumed by the world in a year. The development of affordable solar cells

is therefore one of the most promising long term solutions to the energy crisis. To

increase efficiency of the light-harvesting process in converting solar energy to

electricity, it is important that the materials used are able to capture a large fraction

of the solar spectrum. However, most solar cell materials absorb solar energy only

in the visible wavelength range. Therefore, a large fraction (more than 50 %) of the

solar spectrum in the near infrared region is not captured, and thus lost as heat

energy, leading to low efficiencies. Thermoelectric materials can potentially con-

vert part of the solar heat directly into a high grade form of energy such as

electricity.

Moreover, microelectronic processors generate a huge amount of heat in very

small areas (called hotspots). Traditionally, this heat is considered as waste and may

lead to the partial or total loss of the functionality of the processors. Power

dissipation issues have recently become one of the greatest challenges for inte-

grated electronics, which limits the performance of a wide range of electronics from

handheld devices to massive data centers, and it is also becoming a bottleneck for

the further development of smaller and faster devices. For instance, the energy use

of information technology infrastructure in the USA is currently in excess of

20 GW, or 5–10 % of the national electricity capacity. More importantly, the

energy consumption in data centers has doubled in the past 5 years. Currently, for

every kilowatt-hour of energy consumed by a computer in a data center, another

kWh is needed for cooling [2].

In existing commercial silicon chips, hot spot removal is a key for the future

generation of IC chips. Circulated liquid cooling is one of current available cooling

technologies, which moves heat sink away from the processors by increasing the

surface area. However, reliability is a big concern if the liquid hose is leaking. The

other widely used technology is thermoelectric (TE) modules. Thermoelectric

cooling is a silent and environment friendly solution. However, the hot spots in

microprocessors are normally in the order of 300–400 μm in diameter, and thus

even the smallest commercial cooling module is still too large to be used in spot

cooling. In addition, as the silicon stacked chips or three-dimensional (3D) chips are

introduced, this can create even smaller and hotter spots. Nanoscale cooler with
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high efficiency is a key enabler to remove small hot spots in IC chips and for the

improvements of future IC thermal management.

The performance efficiency of thermoelectric material is best measured by the

figure of merit: ZT ¼ S2�σ
κ T [3], here S is the Seebeck coefficient, σ is the electrical

conductivity, T is the absolute temperature, and κ is the thermal conductivity.

κ ¼ κe + κp, where κe and κp are the electron and phonon (lattice vibration)

contributions to the thermal conductivity, respectively. In order to make a material

competitive for thermoelectric purposes, the ZT of the material must be larger than

three. However, the road to achieve this goal has not been very smooth so far. There

are several ways to do this. The first approach is to increase the Seebeck coefficient

S. However, for general materials, simply increasing S will lead to a simultaneous

decrease in electrical conductivity. The second approach is to increase the electrical

conductivity. This has also proven to be ineffective, because electrons are also

carriers of heat and an increase in the electrical conductivity will also lead to an

increase in the thermal conductivity. The ideal case is to reduce the thermal

conductivity without affecting the electrical conductivity. It is possible to achieve

this in nanoscale materials. Nanoscale materials have been proposed to enhance

ZT [3–5] due to their reduced thermal conductivity. Because of the large surface

area to volume ratio, the strong phonon surface scattering in nanowires can result in

a low thermal conductivity compared to their bulk counterparts [6].

In the novel nanoscale TE materials, silicon nanowires (SiNWs) are appealing

choices because of their small sizes and ideal interface compatibility with conven-

tional Si-based technology [7–9]. In SiNWs, the electrical conductivity and electron

contribution to Seebeck coefficient are similar to those of bulk silicon, but they

exhibit 100-fold reduction in thermal conductivity [6], showing that the electrical

and thermal conductivities can be decoupled. Recent experiments [10, 11] have

provided direct evidence that an approximately 100-fold improvement of the

ZT values over bulk Si are achieved in SiNWs over a broad temperature range.

This large increase of ZT is attributed to the decrease of thermal conductivity. This

has raised the exciting prospect that SiNWs can be applied as novel nanoscale

thermoelectric materials.

It is obvious that the systematic applications of nano thermoelectric materials

depend on how well we understand their material properties. Thermal property in

nanostructures differs significantly from that in macrostructures because the char-

acteristic length scales of phonons are comparable to the characteristic length of

nanostructures.

A large variety of studies on thermal conductivity of nano materials have been

undertaken in the past decade, and many quite unexpected phenomena have

been observed. This book chapter is to review the recent advances in the study of

thermoelectric property of an important class of one-dimensional materials, Si

nanowires, focusing on the theories and applications. For comprehensive review

of nanoscale thermal conductivity, please refer to the articles [12–21].
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5.2 Modify Thermal Conductivity of Silicon Nanowires:

Incoherent Mechanism

SiNWs have attracted a great attention in recent years because of their excellent

electrical and mechanical properties [22] and their potential applications in many

areas including biosensors [23, 24], electronic devices [25], and solar PVs [26].

The size effect on the low temperature thermal conductance of SiNWs has been

demonstrated experimentally [6]. Donadio and Galli studied the heat transport in

SiNWs systematically, by using molecular dynamics simulation, lattice dynamics,

and Boltzmann transport equation calculations [27]. It was demonstrated that the

disordered surfaces, nonpropagating modes analogous to heat carriers, together

with decreased lifetimes of propagating modes are responsible for the reduction

of thermal conductivity in SiNWs. In this section, we discuss various incoherent

mechanisms that can lead to reduction in thermal conductivity of SiNW.

5.2.1 Size and Surface Roughness Effects

Due to the size effect and high surface to volume ratio, the thermal conduction

properties of silicon nanostructures differ substantially from those of their bulk

counterparts. Volz and Chen investigated the thermal conductivity of SiNWs based

on molecular dynamic simulations using the Green–Kubomethod, and found that the

thermal conductivity of individual SiNWs is more than 2 orders of magnitude lower

than the bulk value [28, 29]. Li et al. [6] have experimentally demonstrated a

significant reduction of thermal conductivity in SiNWs compared to the thermal

conductivity in bulk silicon, and a strong diameter dependence was observed as

shown in Fig. 5.1. The room temperature thermal conductivity of bulk silicon is

140W/m K. However, thermal conductivity of SiNWwith diameter of 50 nm is only

about 20 W/m K, and thermal conductivity decreases with decreasing diameter. This

is due to the following facts. Firstly, the low frequency phonons, whose wave lengths

are longer than the length of nanowire, cannot survive. Therefore, the low frequency

contribution to thermal conductivity, which is very substantial and significant in bulk

material, is largely reduced. Secondly, because of the large surface to volume ratio,

the boundary scattering in quasi-1D structure is also significant.

The surface area to volume ratio (SVR) increases as the system scales down.

It thus plays a more and more important role when the device becomes smaller and

smaller. It has also been shown that SVR affects the physical properties of nano

materials remarkably. The SVR dependence of thermal conductivity of [100]

SiNWs with different cross-sectional areas and geometries have been investigated

[30]. Figure 5.2a–c shows the thermal conductivity κ versus SVR at different

temperatures. For simplicity, NWs with rectangular, circular, and triangular

cross-sectional shapes are named as rect-SiNWs, cir-SiNWs, and tri-SiNWs,

respectively. At each temperature, thermal conductivity decreases monotonically
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Fig. 5.1 Measured thermal

conductivity of Si

nanowires (SiNWs) with

different diameters. For

details please refer to [6]

Fig. 5.2 Thermal conductivity (κ) of SiNWs versus surface-to-volume ratio for different temper-

atures: (a) 300 K, (b) 500 K, and (c) 1,000 K. The black squares, red circles, and green triangles
denote thermal conductivity of rect-SiNWs, cir-SiNWs, and tri-SiNWs, respectively. (d ) Exper-

imental results at 300 K from [6]
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with the increase of SVR, which is a consequence of the enhanced surface scatter-

ing when SVR increases. More interestingly, for different cross-sectional geome-

tries, thermal conductivity follows the same linear dependence on SVR when the

cross-sectional area is greater than certain threshold of about 20 nm2 (Fig. 5.2). This

important feature suggests that SVR can serve as a universal gauge for thermal

conductivity of SiNWs, regardless of the specific cross-sectional geometry.

For very thin SiNWs with cross-sectional area below the threshold, the depen-

dence of thermal conductivity on SVR deviates from the universal linear fitted line.

We refer to the cross-sectional area above and below this threshold as the “universal

region” and “non-universal region,” respectively. The threshold in cross-sectional

area is found to be about 20 nm2, which only corresponds to about 5 nm in diameter

for SiNWs with circular cross-sectional shape. This dimensional scale for the

threshold is very close to the smallest diameter that the current experimental

fabrication technique can achieve. Therefore, from practical point of view, SVR

can be used as a universal gauge without any restriction of cross-sectional area.

In the universal region, the linear dependence of thermal conductivity on SVR

holds for all temperatures above 300 K, while the absolute value of the slope for the

linear best fit decreases with the increase of temperature. When the temperature

increases from room temperature, κ decreases as a consequence of stronger

anharmonic phonon–phonon scattering at high temperatures. The higher SVR value

can induce a stronger surface scattering and thus result in more localized phonon

modes. The introduction of phonon localization can weaken the temperature depen-

dence of thermal conductivity. As a result, thermal conductivity of the nanowire with

a lower SVR decreases more than that of the one with a higher SVR, leading to a

decrease in the absolute value of the linear slope with the increase in temperature.

Figure 5.2d shows the thermal conductivity versus SVR relation based on the

experimental results from [6] for cir-SiNWs at 300 K. The SiNWs used in [6] are

single crystalline with the length of several microns and cross-sectional area up to

1 � 104 nm2. A good linear dependence of thermal conductivity on SVR also

appears from these results. The good agreement of experimental results with the

linear fit line further supports the fact that the linear relation between thermal

conductivity and SVR is an intrinsic phenomenon in NWs.

An analytical formula including the surface scattering and the size confinement

effects of phonon transport is proposed by Liang and Li to describe the size

dependence of thermal conductivity in NWs and other nanoscale structures. For

SiNWs with length in micrometer scale, the thermal conductivity increases with

increasing diameter remarkably until the diameter is larger than about hundreds of

nanometers [31]. The quantitative formula for the size-dependent thermal conduc-

tivity of SiNW is [31]:

κ

κb
¼ p exp � d0

D

� �
exp

� α� 1ð Þ
D=λ� 1

� �� �3=2
(5.1)

Here κ is the thermal conductivity of SiNW, κb is the thermal conductivity of

bulk silicon. The details about this formula can be found in [31].
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5.2.2 Effects of Random Doping

It is indispensable to reduce the thermal conductivity of SiNWs further in order to

achieve higher thermoelectric performance. Yang et al. have proposed to dope

SiNWs with isotope impurity randomly to reduce thermal conductivity of SiNWs

[32]. In silicon isotopes, 28Si is of the highest natural abundance (92 %), followed

by 29Si and 30Si with 5 % and 3 %, respectively.

Figure 5.3 shows the effect of randomly distributed isotopic atoms on the

thermal conductivity of 28Si NWs. The curve of thermal conductivity decreases

first to reach a minimum and then increases as the percentage of isotope impurity

atoms increases. At a low isotopic percentage, a small ratio of impurity atoms can

induce a large reduction in thermal conductivity. In contrast to the high sensitivity

at the two ends, the thermal conductivity versus isotopic concentration curves are

almost flat at the central part as shown in Fig. 5.3, where the value of thermal

conductivity is only 77 % of that of isotopically pure 28Si NW. The calculated

thermal conductivity of SiNW with natural isotopic abundance, 5 % 29Si and 3 %
30Si is around 86 % of pure 28Si NW, which is close to the experimental results of

bulk Si. The similar effect of impurities on the thermal conductivity of SiNWs was

also reported by using first-principles calculations [33].

The growth of isotopically controlled SiNWs by the vapor–liquid–solid mech-

anism has been performed successfully [34]. The growth is accomplished by using

silane precursors 28SiH4,
29SiH4 and 30SiH4 synthesized from SiF4 isotopically

Fig. 5.3 Thermal conductivity of SiNWs versus the percentage of randomly doping isotope atoms

at 300 K. The results by Nosé–Hoover method coincide with those by Langevin methods

indicating that the conclusions are independent of the heat bath used. Details are given in [32]
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enriched in a centrifugal setup. In addition, the effect of isotope doping on longi-

tudinal optical phonon has also been investigated. The corresponding experimental

measurement of thermal conductivity is currently on-going [34].

5.2.3 Interface and Surface Phonon Scattering

It has been shown [35, 36] that superlattice is an efficient structure to achieve ultra

low thermal conductivity. However, for structures built from different crystalline

materials, the relatively high interface energy will limit the stability of these

structures. The isotopic-superlattice (IS) is a good example that the thermal con-

ductivity can be reduced without destroying its stability. The thermal conductivity

of IS structured NWs, which consist of alternating 28Si/29Si layers along the

longitudinal direction, is shown in Fig. 5.4. As expected, the thermal conductivity

decreases as the period length decreases, or the number of interface increases. The

thermal conductivity reaches a minimum when the period length is 1.09 nm. This is

consistent with the fact that increasing the number of interface for a fixed length

will enhance the interface scattering, giving rise to the reduction of the thermal

conductivity.

It is seen from Fig. 5.4 that when the period length is smaller than 1.09 nm, the

thermal conductivity increases rapidly as the period length decreases. This anom-

alous increase in thermal conductivity can be understood from the phonon density

of states (DOS) as shown in Fig. 5.5. When the period length is 2.17 nm, there is an

obvious mismatch in the DOS spectra, both at the low frequency band and high

frequency band, resulting in a very low thermal conductivity. On the contrary, the

DOS spectra overlap perfectly for IS structured SiNW whose period length is

0.27 nm. The good match in the DOS comes from the collective vibrations of

different mass layers, which are harder to be built in superlattice structures with a

Fig. 5.4 Thermal

conductivity of the

superlattice SiNWs

versus the period length

at 300 K. Details of the

chosen parameters can

be found in [32]
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larger period. The match/mismatch of the DOS spectra between the different mass

layers controls the heat current. The similar phenomenon is also observed in Si/Ge

superlattice structured nanowires [37].

In addition to the interface scatterings of phonon, thermal conductivity of NWs

can be reduced further obviously by introducing more surface scattering, for

example, by making hallow SiNWs with inner surface, i.e., silicon nanotubes

(SiNTs) [38]. Figure 5.6 shows the room temperature thermal conductivity of

SiNWs and SiNTs versus cross-sectional area. Even a very small hole, for example,

a 1 % reduction in the cross-sectional area, can induce a reduction of thermal

conductivity of 35 %. Moreover, with further increasing the hole size, a linear

dependence of thermal conductivity on cross-sectional area is observed.

The reduction of thermal conductivity can be understood from the analysis of

phonon participation ratio ( p-ratio) (Fig. 5.7). The p-ratio measures the fraction of

atoms participating in a given mode, and effectively indicates the localized modes

with O(1/N) and delocalized modes with O(1). There is a reduction of p-ratio in

SiNTs for both low and high frequency phonons, compared with SiNWs. Figure 5.7

shows the normalized energy distribution on the cross-sectional plane for SiNWs

and SiNTs at 300 K. For those localized modes with p-ratio less than 0.2, it is

clearly seen that the intensity of localized modes is almost zero in the center of the
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Fig. 5.5 Average normalized density of states of phonons of different mass atoms (28Si or 42Si)

along the longitude direction for superlattice SiNW structures. (a) The period length of superlattice

NW is 2.17 nm. This structure has a low conductivity of 0.42 W/m K. (b) The period length of

superlattice NW is 0.27 nm. This structure has a high conductivity of 0.85 W/m K

5 Control Thermal Conductivity of Semiconductor Nanowires. . . 193



Fig. 5.6 Thermal

conductivity of SiNWs and

SiNTs versus cross-

sectional area at 300 K. The

red dots and black triangles
denote SiNWs and SiNTs,

respectively. The cross-

sectional areas for these two

SiNWs are 7.37 nm2 and

4.72 nm2, respectively. The

blue line is drawn to guide

the eyes

Fig. 5.7 Normalized energy distribution on the cross-sectional plane for SiNWs and SiNTs at

300 K. Intensity of the energy is depicted according to the color bar. (a) Energy distribution of

SiNWs for modes with P < 0.2; (b) energy distribution of SiNTs for modes with P < 0.2;

(c) energy distribution of SiNWs for modes with P > 0.6; (d) energy distribution of SiNTs for

modes with P > 0.6
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NW, while it has a finite value at the boundary. Due to the introduction of inner

surface in SiNTs, energy localization also shows up around the hollow region.

These results provide direct evidence that localization takes place on the surface

region. For those delocalized modes with p-ratio greater than 0.6, the majority of

energy is distributed inside SiNWs and SiNTs as shown in Fig. 5.7c, d, except for

the hollow region in SiNTs. Therefore, from the spatial distribution of delocalized

modes, we can conclude that energy is localized on the boundary (surface) region.

Since SiNTs are constructed from SiNWs, the density is approximately the same

for these two structures. For SiNWs and SiNTs with the same cross-sectional area

and same length, the total number of eigen modes is the same for SiNTs and

SiNWs. Compared with SiNWs, SiNTs have a larger surface area, which corre-

sponds to a higher SVR. As a result, there are more modes localized on the surface,

which increases the percentage of the localized modes to the total number of modes.

In heat transport, the contribution to thermal conductivity mainly comes from the

delocalized modes rather than the localized modes. Due to the increased SVR in

SiNTs, which induces more localized modes, the percentage of delocalized modes

decreases, leading to a reduction of thermal conductivity in SiNTs compared with

SiNWs.

5.3 Reduce Thermal Conductivity of Silicon Nanowires:

Coherent Mechanism

Most of the above approaches to reduce thermal conductivity, such as introduction

of rough surface and defect scatterings, are based mainly on incoherent mecha-

nisms, which cause phonons to lose coherence. In the following, we discuss the

phonon coherent resonance to tune thermal conductivity [39].

The coherence of phonons can be described by the heat current autocorrelation

function (HCACF). Figure 5.8a shows the typical time dependence of normalized

Fig. 5.8 Time dependence of normalized heat current autocorrelation function (HCACF). (a)

Normalized HCACF for SiNWs (dashed line), SiNTs (dotted line), and Ge/Si core–shell NWs with

Lc/L ¼ 0.65 (solid line). (b) Long-time region of (a)
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heat current autocorrelation function in Ge/Si core–shell NWs, SiNWs, and SiNTs.

For both SiNWs and SiNTs, there is a very rapid decay of HCACF at the beginning,

followed by a long-time tail with a much slower decay. However, a nontrivial

oscillation up to a very long time appears in HCACF for core–shell NWs. The

long-time region of HCACF reveals that this nontrivial oscillation is not random but

rather periodic.

Figure 5.9 shows the long-time regime of normalized HCACF for Ge/Si

core–shell NWs with different core–shell ratios at 300 K. When the core-size

increases, the resonance effect becomes stronger, reaches its maximum, and then

decreases. Obviously, this resonance effect in core–shell NWs is structure-

dependent. Moreover, for a given core–shell structure, the oscillation amplitude is

temperature-dependent and becomes larger at lower temperature. This nontrivial

oscillation suggests that there exists a coherent mechanism in core–shell NWs, which

can cause phonons to have the long-lasting correlation in such heterostructure.

Figure 5.10 shows the fast Fourier transform (FFT) of normalized HCACF for

core–shell NWs. The FFT amplitude for Ge/Si core–shell NWs exhibits a dominant

peak (f0) and multiple high frequency resonant peaks with much smaller amplitude.

The FFT spectrum of SiNWs and SiNTs looks completely different from that of

Ge/Si core–shell NWs: there is no dominant peak over the entire frequency regime,

Fig. 5.9 Structure and temperature dependence of the oscillation effect in Ge/Si core–shell NWs.

(a) Lc/L ¼ 0.15, Lc/L ¼ 0.35, and Lc/L ¼ 0.45 at 300 K. (b) Lc/L ¼ 0.55, Lc/L ¼ 0.65, and

Lc/L ¼ 0.85 at 300 K. (c) Lc/L ¼ 0.65 at 100, 300, and 1,000 K. (d) Oscillation amplitude versus

core–shell ratio Lc/L at 100, 300, and 1,000 K
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and the FFT amplitude is more than 2 orders of magnitude smaller than the

dominant peak amplitude for Ge/Si core–shell NWs. These two aspects are the

typical characteristics of the noise spectrum.

These multiple resonant peaks observed in core–shell NWs are very similar to

the frequency spectrum of the coherent resonance effect of the acoustic wave in a

confined structure. For a wire with the square cross section and side length L, the
eigen-frequency in such confined structure calculated from the elastic medium

theory is given by:

f mn ¼
ωmn

2π
¼ C

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mπ

L

� �2

þ nπ

L

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
f 0, (5.2)

where fmn is the eigen-frequency specified by two integer number m and n, C is the

speed of sound, and f0 ¼ C/2L is the lowest eigen-frequency. As shown in

Fig. 5.10b, the theoretical prediction for the high frequency eigen-modes according

to (5.2) agrees quite well with the resonant peaks calculated by the actual FFT of the

oscillation signal. This good agreement of resonant frequency suggests that the

nontrivial oscillation is caused by the phonon coherent resonance effect in the

transverse direction.

Fig. 5.10 Amplitude of the fast Fourier transform (FFT) of the long-time regime of normalized

HCACF. (a) Ge/Si core–shell NWs. (b) The high frequency oscillation peaks for Ge/Si core–shell

NWs. (c) and (d) show the amplitudes of the FFT of the long-time regime of normalized HCACF

for SiNWs and SiNTs, respectively
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In core–shell NWs, atoms on the same cross-sectional plane have different sound

velocities in the longitudinal direction. As a result, atoms near the core–shell

interface are stretched due to the different sound velocities. This induces a strong

coupling of vibrational motions (modes) between the longitudinal and transverse

directions. However, for SiNWs, this mode coupling is weakened because all

Si atoms have the same sound velocity. This coupling picture explains that the

coherent resonance effect in the transverse direction can indeed manifest itself in

HCACF along the longitudinal direction in Ge/Si core–shell NWs, while the same

effect is absent in SiNWs and NTs. As the resonance effect of acoustic wave is a

coherent process that requires long-time correlation, the stronger anharmonic

phonon–phonon scattering at high temperature causes phonon to lose coherence,

and leads to the vanishing of the resonance effect at high temperature. When

phonons transport along core–shell NWs, their energies are dispersed to the trans-

verse direction due to the coherent resonance effect and mode coupling, which can

significantly hinder the heat transport in the longitudinal direction. Therefore, the

resonance effect can be used to tune the thermal conductivity.

Very recently, the direct connection between thermal conductivity reduction and

coherent resonance was reported [40] in Ge/Si core–shell NWs. The configuration

of Ge/Si core–shell NW is shown in Fig. 5.11a. The GeNW is with side length

(diameter) denoted byDGe, and the coating thickness denoted byDcoating. As shown

in Fig. 5.11b, it is obvious that for each GeNW, the coating of Si layers can reduce

the thermal conductivity. Further coating leads to an increase of thermal conduc-

tivity. When the coating thickness is greater than certain critical value, thermal

conductivity of the resultant Ge/Si core–shell NWs becomes larger than that of

pristine GeNW without coating. Increasing coating thickness has two opposite

effects on thermal conductivity. On the one hand, the creation of core–shell

structures will induce the phonon resonance between the transverse and

Fig. 5.11 Coating configuration and thermal conductivity. (a) Cross section of (100) GeNWs with

Si-coating shell. (b) Thermal conductivity of GeNWs and Ge/Si core–shell NWs for different DGe

at room temperature
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longitudinal modes, thus offering a coherent mechanism to reduce thermal conduc-

tivity. On the other hand, the coating layers increase the entire cross-sectional area

and thus the resultant core–shell NWs can contain more phonons contributing to

thermal conductivity. Therefore, thermal conductivity of Ge/Si core–shell NWs is

determined by these two competing effects. When the coating thickness is less than

certain critical value, the suppression of the longitudinal phonon transport is the

dominating factor, corresponding to the reduction of thermal conductivity.

However, when the coating layer thickness increases further beyond the critical

thickness, the phonon enhancement effect dominates the thermal transport, leading

to an enhanced thermal conductivity compared to that of pristine GeNW.

The above finding shows that in practical applications, one can control thermal

conductivity of NWs by coating with other materials. This approach offers a novel

avenue and more flexibility for the design of nanostructures for thermal manage-

ment. For instance, small diameter NWs are favorable for thermoelectric applica-

tions due to their low thermal conductivity, but it is more challenging to synthesize

such NWs. Through coating, the low thermal conductivity feature close to a very

thin NW can be obtained from a much thicker NW. For instance, thermal conduc-

tivity of pristine GeNWs with DGe ¼ 9.0 nm is close to that of coated GeNWs with

DGe ¼ 11.3 nm and Dcoating ¼ 2.7 nm. The resultant core–shell NW has a cross-

sectional side length of 16.7 nm, which is almost twice of the cross-sectional side

length for pristine GeNW with the similar thermal conductivity. As this coating

thickness is achievable with atomic layer deposition technology, it offers a practical

approach to tune thermal conductivity.

In practical conditions, the interface between the NW and its coating layer is not

smooth at the atomistic scale. The interface roughness does not change the quali-

tative dependence of thermal conductivity on coating thickness, but it can further

reduce the thermal conductivity of Ge/Si core–shell NW at a given coating thick-

ness. Moreover, this additional reduction of thermal conductivity increases mono-

tonically with increasing interface roughness.

Figure 5.12 compares the participation ratio ( p-ratio) for each eigen-mode in

pristine GeNWs, Ge/Si core–shell NWs with perfect interface, and Ge/Si core–shell

NWs with rough interface. In the low frequency regime, there is a reduction of

p-ratio in coated NW compared to pristine GeNWs. This phonon localization effect

is caused by the resonance effect induced by coupling between the transverse and

longitudinal phonon modes in core–shell nanostructures. As the strongest resonance

peak is related to the eigen-mode with the lowest frequency in the transverse

direction, the localization is remarkable for phonons with long wavelength (larger

than the NW diameter). The polarization-resolved participation ratio for the longi-

tudinal acoustic (LA) phonons near the Brillouin zone center is shown in Fig. 5.12b.

The participation ratio in core–shell NWs shows an overall reduction for very low

frequency LA phonons. More importantly, an obvious dip of the participation ratio

is observed at around 0.5 THz, which is consistent with the resonance frequency

found in FFT of HCACF along the longitudinal direction and thus provides strong

evidence that phonon resonance in core–shell NWs leads to localization for low

frequency phonons.
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The p-ratio of the low-frequency phonons is almost unaffected by interface

roughness. More interestingly, the additional reduction of p-ratio in the high

frequency regime (>10 THz) is observed in core–shell NWs with rough interface

(Fig. 5.12c, d), that is, the modes with the wavelength less than the NW diameter are

localized by rough edges. Thus, core–shell induces localization for low frequency

phonons (wavelength comparable to diameter), while interface roughness localizes

the high frequency phonons (wavelength much less than diameter). Thus, the

core–shell structure offers the unique opportunity to further reduce thermal con-

ductivity of low thermal conductivity material even coated with high thermal

conductivity material. This offers novel avenues and more flexibility for the design

of nanostructures. Experimentally, the reduction in thermal conductivity in

core–shell NWs has been verified [41].

5.4 Thermoelectric Property of Silicon Nanowires

5.4.1 Thermoelectric Figure of Merit of Silicon Nanowires

Predicting nanoscale effects on the thermoelectric properties of a specific system

requires quantitative calculations of the system. Here we consider the diffusive

regime, and σ, S, and κe are evaluated by only considering elastic scattering

processes. The electrical conductivity σ, the electron thermal conductivity κe, and

Fig. 5.12 (a) Participation ratio for different phonon modes in GeNWs before and after coating.

(b) The polarization-resolved participation ratio for the LA phonon near the Brillouin zone center in

GeNWs (black) and Ge/Si core–shell NWs with perfect interface (red). (c and d) Participation ratio
for different phonon modes in core–shell NWs with perfect and rough interface, respectively
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the Seebeck coefficient S, are obtained from the electronic structure with the

solution of one-dimensional Boltzmann transport equation as [42]:

σ ¼ Λ 0ð Þ

κe ¼ 1

e2T
Λ 2ð Þ � Λ 1ð Þ Λ 0ð Þ

� ��1

Λ 1ð Þ
� �

S ¼ 1

eT
Λ 0ð Þ

� ��1

Λ 1ð Þ

Λ nð Þ ¼ e2τ
2

m�
X
Ek

ΔE
β exp β Ek � μð Þð Þ

1þ exp β Ek � μð Þð Þð Þ2

2
4

3
5D Ekð ÞEk Ek � μð Þn

(5.3)

Here e is the charge of carriers, T is the temperature, Ek is the electron energy,

τ is the relaxation time, m* is the effective mass of the charge carrier, μ is the

electron chemical potential, and D(Ek) is the density of states.

Figure 5.13a, b shows the size effects on σ and S with different electron

concentrations. σ increases slightly as the diameter increases, while the Seebeck

coefficient S decreases remarkably. The size dependence arises from the effect of

Fig. 5.13 (a) Electrical conductivity versus cross-sectional area with different carrier concentra-

tions. (b) S versus cross-sectional area with different carrier concentrations. (c) Thermal power

factor of SiNW versus carrier concentration with three different transverse dimensions. (d)

Maximum power factor versus cross-sectional area
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quantum confinement on the electronic band structure of SiNWs. The electron band

gap converges quickly as the transverse dimension increases, and thus the elec-

tronic conductivity only has an obvious size dependence in very small size, and it

depends on transverse size weakly when cross-sectional area is larger than 5 nm2. In

contrast to the weak size dependence of electronic conductivity, Seebeck coeffi-

cient S decreases with increasing the transverse size remarkably. Besides the

electronic band gap, Seebeck coefficient S also depends on the detailed band

structure, in which a narrow DOS distribution is preferred. In a bulk material, the

continuous electron energy levels give rise to a wide distribution of carrier energies.

However, the DOS of SiNW differs dramatically from that of bulk silicon. The

large number of electronic states in narrow energy ranges can lead to a large S. With

increasing the transverse dimension, the sharp DOS peaks widen, reducing S.
In thermoelectric application, the power factor P, which is defined as P ¼ S2σ, is

an important factor influencing the thermoelectric performance directly.

Figure 5.13c shows the power factor versus carrier concentration for SiNWs with

different cross-sectional areas. Increasing carrier concentration has two effects on

power factor. On the one hand, the increase of carrier concentration will increase

the electrical conductivity. On the other hand, the increase of carrier concentration

will suppress the Seebeck coefficient S. The power factor is determined by these

two competing effects. Therefore, there exits an optimal carrier concentration,

which yields the maximum attainable value of Pmax. With increasing SiNW diam-

eter (cross-sectional area), the maximum attainable power factor Pmax decreases

(as shown in Fig. 5.13d). Power factor is contributed by both Seebeck coefficient

S and electrical conductivity σ. S decreases remarkably with increasing size, while

σ increases slowly. So in power factor, the slow increase of σ is offset by obvious

decrease in S (P ~ S2), as a result, the power factor reduces with increasing size.

When the area increases from about 1 to 18 nm2, the maximum power factor

decreases from about 6,800 to 1,400 μW/m K2.

The power factor is directly related to the cooling power density (PD) of a

thermoelectric cooler. In practical application, the cooling effect at the junction is

opposed by Joule heating in the nanowire and by heat conducting from the hot end.

The maximal cooling power density is given by [7]:

PDmax ¼ 1

2

S2σ

L
T2, (5.4)

where T is the environment temperature around the SiNW, and L is the length of the

SiNW. If we consider SiNW with length of 1 μm, which is readily fabricated by

current nanofabrication techniques, for thick SiNW with cross-sectional area of

17.8 nm2, the maximal cooling power density, 6.4 � 103 W/cm2, is about 6 times

larger than that of an SiGeC/Si superlattice cooler, 10 times larger than that of an

Si/SixGe1�x thin film cooler, and 600 times larger than that of a commercial TE

module [3–5].

For SiNWs with length in micrometer scale, the phonon thermal conductivity

increases remarkably with increasing diameter until the diameter is larger than
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about hundreds of nanometers [6, 28–31]. This reflects the fact that scattering at the

surface introduces diffuse phonon relaxation in the transverse cross section. After

the diameter reaches large values, the portion of phonons experiencing boundary

scattering becomes much smaller, as a result, the thermal conductivity tends to be

constant and is close to the value of bulk silicon. Combining the size dependence of

the power factor as shown in Fig. 5.13d, we can conclude that ZT will decrease

when the NW diameter increases. Thus, thin SiNWs are preferred for thermoelec-

tric applications.

Isotopic impurities can also enhance the figure of merit. The dependence of

thermoelectric figure of merit of SiNW on isotope concentration is shown in

Fig. 5.14 [42]. ZT increases with 29Si concentration, reaches a maximum and then

decreases. This phenomenon is due to the isotope effect on lattice thermal conduc-

tivity. At a low isotopic percentage, a small ratio of isotope atoms can induce a large

increase in ZTmax. For instance, in the case of 28Si0.8
29Si0.2 NW, namely, about

20 % 29Si, its ZTmax increases with 15 % from that of pure 28Si NW. And with 50 %
29Si doping (28Si0.5

29Si0.5 NW), the ZTmax can increase from 0.81 to 1.06. Thus,

isotope doping is a promising method to further enhance ZT of nanoscale materials.

5.4.2 Composite-Dependent Thermal Conductivity of SiGe
Nanowires and Nanocrystals

In addition to isotopic doped semiconductor, compound semiconductor is another

possible structure that can lower thermal conductivity. Silicon germanium alloys

have long been used in thermoelectric modules for deep-space missions to convert

radioisotope heat into electricity. Silicon and germanium can form a continuous

series of substitutional solid, Si1�xGex over the entire compositional range of

0 � x � 1. These semiconductor alloys offer a tunable system with a wide range

of crystal lattices and band gaps, leading to fascinating electrical and optical

Fig. 5.14 Isotopic

concentration-dependent

thermoelectric figure of

merit, ZT, for SiNWs
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properties. Recently, single crystalline Si1�xGex NWs have been successfully

grown and their electronic band gap modulation with composition has been

reported [43]. These Si1�xGex NWs provide intriguing opportunities for the devel-

opment of novel nano devices.

Figure 5.15 shows the thermal conductivity κ of Si1�xGex NWs versus Ge

content at room temperature [37]. The lowest κ is 0.59 W/m K calculated with

Langevin heat bath, which is 18 % of that of pure SiNW calculated with the same

heat bath. At the two ends of the curves, the thermal conductivity shows a very

sensitive dependence on x and follows an exponential decay, which is caused by the
localization of high frequency phonons by the impurity. It is quite interesting that

the thermal conductivity can be reduced by 50 % with only 5 % Ge atoms

(Si0.95Ge0.05 NW).

From the calculated low thermal conductivity, it is shown in Fig. 5.16 that the

maximal obtainable figure of merit can be increased by a factor of about 4–5 in

Si0.5Ge0.5 NWs, compared with the corresponding values in pure SiNWs. Combin-

ing with the experimental measured ZT of n-type SiNW, which is about 0.6–1.0, it

is most likely that we may obtain a high ZT value of about 2.4–4.0 in n-type

Si1�xGex NWs [44].

In addition to SiGe nanowires, it has been observed experimentally that when the

Ge content in Si1�xGex nanocomposites increases from 5 to 20 %, the thermal

conductivity of both p-type SiGe alloy [45] and n-type SiGe alloy [46] decreases

obviously. It is found that nano size interfaces are not as effective as point defects in

scattering phonons with wavelengths shorter than 1 nm. Figure 5.17 shows that only a

5 at.% Ge replacing Si is very efficient in scattering phonons with wavelength shorter

than 1 nm, giving rise to a further thermal conductivity reduction by a factor of 2.

Fig. 5.15 The thermal

conductivity versus Ge

content x at 300 K. Here κ is
the thermal conductivity of

Si1�xGex NWs, and κ0 is the
corresponding thermal

conductivity of pure Si NW
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5.4.3 High Thermoelectric Figure of Merit in Silicon-
Germanium Superlattice Structured Nanowires

Superlattice structured nanowires have recently attracted broad interest due to their

fascinating applications in photonics, electronics, and phononics. The superlattice

NWs are attractive especially in thermoelectric applications because the interface

between two different materials can scatter the phonons strongly, thus reducing the

thermal conductivity. Very recently, the thermoelectric property of p-type SiNWs

with axial Ge heterostructures was calculated based on a combination of density-

functional theory and interatomic potentials [47]. In addition, thermoelectric per-

formance for both n-type and p-type SiGe superlattice NWs were also investigated

on the same footing [48].

Fig. 5.17 Temperature

dependent thermal

conductivity of

nanostructured Si (filled
squares), nanostructured
Si95Ge5 ( filled circles) and
bulk Si model

Fig. 5.16 ZTSi1�xGex=ZTSi

versus the Ge content x for
n-type Si1�xGex nanowires
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For the charge transport, a combination of the DFT and NEGF calculations has

been used to obtain the electronic transmission. The electronic conductance can be

written as [48]:

G ¼ e2L 0ð Þ μð Þ (5.5)

The electronic contribution to thermal conductance is:

λe ¼ 1

T
L 2ð Þ μð Þ � L 1ð Þ μð Þ L 0ð Þ μð Þ

h i�1

L 1ð Þ μð Þ
� �

(5.6)

And the Seebeck coefficient is:

S ¼ 1

eT
L 0ð Þ μð Þ

� ��1

L 1ð Þ μð Þ
� �

(5.7)

with

L mð Þ μð Þ ¼ 2

h

ð1
0

dETe Eð Þ E� μð Þm � ∂f
∂E

� �
, (5.8)

where e is the charge, μ is the chemical potential, h is the Planck constant, T is

absolute temperature and E is the electron energy. Te(E) and f(E) are the charge

transmission coefficient and the Fermi–Dirac distribution, respectively.

The lattice thermal conductance is calculated in an analogous way to the

electronic conductance, by segmenting the system into a “lead-conductor-lead”

model. The phonon thermal conductance is:

λp ¼ ℏ2

2πkBT
2

ð1
0

dωω2Tph ωð Þ e
ℏω
kBT

e
ℏω
kBT � 1

� �2
(5.9)

where ω is phonon frequency, Tph(ω) is phonon transmission.

Figure 5.18a shows the Pmax versus periodic length L for both p-type and n-type

NWs. For n-type superlattice NWs, the Pmax curves firstly increase, reach the

maximum value at L ¼ 0.54 nm, then decrease. The similar behaviors have been

also found in p-type counterparts, but the value of Pmax for p-type NWs is only

about 40 % of that of n-type NWs. Moreover, Pmax for pristine SiNWs is larger than

that for superlattice NWs. The larger Pmax achieved in SiNWs comes from the

higher transmission compared with that in the superlattice NWs.

Figure 5.18b shows themaximum value of ZT (ZTmax) versus the periodic length L.
The ZTmax curves firstly increase, reach the maximum value at the periodic length

L ¼ 0.54 nm and then decrease with the further increase of the periodic length. The

achievable ZTmax for n-type NWs is about twice of its p-type counterparts.
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Moreover, the values of ZTmax for the superlattice NWs are much larger than

those of pristine SiNWs because of their ultralow thermal conductance. The max-

imum value of ZTmax for n-type NWs is 4.7 at the period length L ¼ 0.54 nm,

which is fivefold increase as compared to the equivalent pristine SiNWs

(ZTmax ¼ 0.94); and the maximum value of ZTmax for p-type NWs is 2.74 with the

same periodic length, which is 4.6 times larger than that of p-type SiNWs

(ZTmax ¼ 0.6) [48].

5.4.4 Defect Effect on Thermal Conductivity
and Thermoelectric Property of NWs

Nanostructures such as nanowires often consist of both natural and artificial defects.

These defects can lead to the localization of acoustic modes in their vicinity,

causing additional scattering to the phonon transport, and a change of the thermal

conductance deviating from the ballistic phonon transport. By using the scattering-

matrix method, Chen et al. studied the low temperature thermal conductance in

nanowire [49]. It was found that the behavior of the thermal conductance versus

temperature is qualitatively different for different types of defects. When the defect

is void, the universal quantum thermal conductance and the decrease of thermal

conductance at low temperature can be clearly observed. However, when the

structural defect consists of clamped material, the quantized thermal conductance

cannot be observed, and the thermal conductance increases monotonically with

increasing temperature.

Based on atomistic simulations of electron and phonon transport, Markussen

et al. [50] found that the presence of an alkyl molecule or a nanowire branch can

lead to a reduction of both the thermal conductivity δκ and the electronic

Fig. 5.18 (a) Pmax versus periodic length for p-type and n-type Si0.5Ge0.5 superlattice NWs. (b)

Dependence of ZTmax on periodic length for p-type and n-type Si0.5Ge0.5 superlattice NWs. The

dotted lines in (b) are for the p-type and n-type pristine SiNWs
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conductivity δσ. At room temperature, the ratio δκ/δσ > 50 for the alky

functionalized SiNWs and δκ/δσ > 20 for a nanotree. By engineering the SiNW

surfaces, it is possible to reduce the phonon thermal conductivity while keeping the

electronic conductivity almost unaffected. Thus, the surface-decorated SiNWs are

promising candidates for nanoscale thermoelectric applications. Moreover, surface

passivation with nitrogen can also reduce the thermal conductivity of

nanowires [51].

5.5 Conclusions and Outlook

In this chapter, we have presented the state-of-the-art of thermoelectric properties

and related fundamental phonon transport theories of nanowires. Clearly, the study

of thermal property of nanowires is an emerging new research topic, which is

potentially important for many thermoelectric and thermal management applica-

tions, such as waste heat energy harvesting and on-chip cooling. Note that although

we mainly focus on SiNWs in this article, the physics discussed here is not limited

to this system.

In particular, we have surveyed and discussed various physical mechanisms that

are exploited to modify thermal conductivity of nanowires: namely, incoherent and

coherent mechanisms. We have firstly reviewed the recent theories and experiments

focusing on thermal conductivity of nanowires. Then, we have provided an over-

view of various effects on thermal conductivity of nanowires, including size effect,

roughness effect, isotopically doped impurity, surface and interface phonon scat-

tering. Then coherent phonon resonance in core–shell nanowires and its impact on

reduction in thermal conductivity have also been discussed. Finally, we have

summarized direct atomistic simulations used to predict the thermoelectric property

of nanowires.

Currently, although we have much better understanding on thermal conductivity

and thermoelectric property in nanoscale materials, clearly, there are still many

open questions and challenges deserving further experimental and theoretical

studies.

Experimentally, the primary challenge is how to measure and ultimately get rid

of the thermal contact resistances. Currently, a technique called noncontact electron

beam heating method was introduced to measure the thermal contact resistance

between multilayer graphene and substrate [52]. Theoretically, a comprehensive

transport theory for nano-composites is still lacking. In particular, a theory which

includes the important long range effect of the Coulomb interaction and other

important effects are highly desirable [53–58]. Furthermore, a theoretical model

for interfacial thermal resistance arising from incorporating the anomalous thermal

conduction is still lacking. Therefore, it is necessary to establish an improved theory

to describe thermal transport in practical thermoelectric devices, including interface

and complex long range interactions. More experimental and theoretical studies on

these fundamental issues are necessary to further advance this fascinating field.
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Chapter 6

Thermoelectric Efficiency of Nanowires

with Long Range Surface Disorder

Gursoy B. Akguc

Abstract Thermoelectric efficiency of nanowires is shown to be enhanced when

they have disordered surfaces with long range correlations. To show this effect, one

needs to solve Schrödinger equation in a surface disordered waveguide geometry as

a model for nanowires and employ the resulting transmission to analyze nanowires

as feasible heat engines. Using the linear response theory in determining the

efficiency of the possible heat engine device based on silicon nanowires is although

useful to point out the overall behavior with respect to the continuous incident

electron energy, it says nothing about its performance as a heat engine. A nonlinear

response theory is proved to be necessary to find out the specific energies at which

the nanowire has greater efficiency at max power as a thermoelectric device.

The efficiency at the maximum power shows that some nanowires with specific

surface disorder structure is more appropriate to use as a heat engine than the others.

The possibility of engineering the transmission of electrons in the nanowires to

increase their efficiency maybe an answer to the demand of highly efficient

thermoelectric semiconductor materials in future.

6.1 Introduction

The model system we use for a long nanowire having a rough surface as a heat

engine is illustrated in Fig. 6.1 as a scattering system. Although our approach is

pretty general, we will be using silicon nanowires as our model thermoelectric

device. A hot electron reservoir with temperature Th and Fermi–Dirac distribution
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of electron density fh is connected through a scattering region to a cold electron

reservoir with its own temperature Tc and distribution function fc. Fermi–Dirac

distribution function is given in general,

fc=h ¼ 1þ exp
E� μc=h
kBTc=h

� �� ��1

(6.1)

where μc ∕ h is the chemical potential of either cold or hot electrons, respectively. We

plot a typical Fermi–Dirac distribution function for hot and cold electrons on the

reservoirs, and their difference is shown in the scattering region. We apply a

negative potential bias between the hot and the cold ends of the nanowire, and it

set symmetrically as �V and +V as depicted in Fig. 6.1. Therefore, we have a

symmetrical chemical potential μc=h ¼ μ� V while the average μ can be adjusted

according to the incident electron energy by using a back gate potential. When there

is no electron temperature difference, the electrons flow in the direction of potential

(from right to left in Fig. 6.1). In the same way, if no bias applied, then there is a net

flow of the electrons from the hot electron to the cold electron reservoir (from left to

right in Fig. 6.1) because of the difference in the occupation number density on both

sides. Finally, if both temperature difference and a potential bias applied, then there

can be a net electron flow to the one of either directions, and the result can be

described as the heat engine or the refrigerator regime. When the hot electron moves

against to the potential difference (from left to right in Fig. 6.1) hence makes work, it

is the heat engine regime, and when the reverse is true (from right to left in Fig. 6.1)

the system works as refrigerator, namely a potential difference supplied to the

system to make it colder. In this work, we are interested in the heat engine regime.

The silicon nanowires with rough surfaces are shown to perform about 100 times

better compared to their bulk form as thermoelectric materials [1, 2]. Electrons in

the constricted geometries such as nanowires do not obey the Wiedemann–Franz

Fig. 6.1 The model of the quantum wire with hot (red) and cold (blue) reservoirs. The potential
bias, + V and � V, and the temperatures of cold, (Tc) and hot, (Th) reservoirs are indicated. The
Fermi–Dirac distribution function of hot ( fh) and cold ( fc) electrons on the corresponding

reservoirs and their difference ( fh � fc) on the nanowire with respect to energy, E, are illustrated
for a typical case. The incident and the outgoing waves of the electrons illustrated by arrows
labeled as a, b and c, d used to form the scattering matrix, S, where j S12 j2 element of the

scattering matrix yields transmission
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rule which states that the electron conductance is proportional to the electron

thermal conductance; however, it is generally valid for bulk materials. Conse-

quently, the thermoelectric efficiency described partly as the ratio of these two

conductances can be improved better. Furthermore, the significance of the surface

randomness is shown to be prominent in both of the experimental and the theoret-

ical studies. Moreover, long range correlations on the surface randomness can be

used to engineer the electron transmission spectrum of silicon nanowires [3].

Likewise, the random surface scattering is important in the manipulation of the

phonon scattering, and consequently the control of heat conduction, [4, 5]. Accord-

ingly, there are several studies reporting the increase of the overall thermoelectric

efficiency in silicon wires [6, 7] and graphene ribbons [8].

The transport of electrons under a thermal gradient can be utilized to convert

the heat energy to the electrical energy, i.e. working as a heat engine [9–11], or

by supplying the electrical energy to cool the electrons, i.e. as a cooler [12, 13].

The efficiency of a heat engine depends on the electron transmission through the

structure and the chemical potential of the electron reservoirs. It is possible

to achieve the theoretically maximum efficiency, i.e., the Carnot efficiency, η ¼ 1

�TC=THwhere TH and TC are the hot and the cold reservoir temperatures, respec-

tively, at the opening of a new channel in a nanowire [14]. It has been shown that

the maximum thermoelectric efficiency can be obtained by adjusting the chemical

potential with respect to the incident energy such a way that the transport of

electrons without leading to any entropy change [15, 16]. Anyhow, the problem

with the heat engine working under adiabatic condition is that it only describes a

system with zero power output, hence it does not have practical value. The

thermoelectric efficiency therefore needs to be redefined for the finite time pro-

cess [17–19]. One possible way to do this is to define the efficiency at the maximum

power [20, 21]. The efficiency of a heat engine is shown universally approach to

η ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
TC=TH

p
also known as Curzon–Ahlborn limit [17, 22]. In this context, it

is interesting to see how efficient to use nanowires as a heat engine depending on

the electron transmission spectra.

We model a silicon nanowire with a rough surface as a scattering problem

connecting two electron reservoirs at different temperatures. We solve this scatter-

ing problem using the reaction matrix method and calculate all the transport

coefficients and the efficiency using the Landauer–Buttiker formulation [23–25]

of the linear response theory for this system [26]. The efficiency obtained in this

way will not give any information about the feasibility of working condition of

the wire as a heat engine. A more explicit description involves the calculation of the

power generated in the system when it is connected to an external load. We can

achieve this using a nonlinear thermodynamic approach [27]. We obtained the

efficiency and the power which are both function of the incident electron energy

and the applied bias this way. The efficiency at the maximum power is discussed

for this system at different regions of operation depending on the transmission of

the electrons. Previously, a comparison of the dimensionality has been made for the

quantum dots, the perfect quantum wires, and the thermionic materials using
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nonlinear thermodynamic methods [27, 28]. Here, we examine the quantum wire

case when the electronic transmission can be modulated by adding long range

correlation to the surface roughness [3, 5]. We compare two transmission profiles,

one being a single window reduced transmission and the other is double window of

the reduced transmission in their respective spectrum. It is customary to define

figure of merit ZT as dimensionless parameter proportional to the efficiency. We

find that the double window transmission has up to ZT ¼ 3 efficiency peaks away

from the threshold energy of the nanowire. In general, the surface engineered

nanowires show thermoelectric efficiency larger than ZT ¼ 2. We compare the

linear response efficiency and the efficiency at the maximum power using nonlinear

methods. We discuss in general how the transmission profile effects the efficiency

and the details of the calculation of the nonlinear thermodynamic result including

the effect of nonlinear temperature differences.

The transmission probability of the electrons, t, in the scattering region is crucial
to define the device characteristics. We find the scattering matrix for electrons

from the nanowire and extract the transmission probability, t ¼ jS12j2, from it. The

S-matrix connects the amplitudes of the incoming plane waves a, c to the outgoing

ones, b, d, as (b, d )T ¼ S(a, c)T where we use transpose of arrays. We use the

reaction matrix approach [29] to find S matrix. We give some details of this

method next.

6.2 Scattering in Rough Waveguides

We will start with describing a formalism to obtain scattering matrix, hence

conductance for a quite general system as sketched in Fig. 6.2. It consists of a flat

wave guide of width w that supports N open modes (or channels) with a rather

X−Y plane 
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y=Q(x)x=0

x=L
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v=1
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u=L

an

bn

cn

dn
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b
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Fig. 6.2 (a) An open

billiard of length L. (b)
the scattering cavity is

transformed to a rectangular

region in u–v plane
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general scattering region of length L. The specific method we develop requires

two leads (openings are in principle also possible) at opposing ends of a

scattering region. We shall arbitrarily fix them to be on the right and on the left,

as in the figure. The scattering region between the leads or openings shall be

described by two single-valued functions of a coordinate say x defined between

the two leads. No additional scatterers in the so defined cavity are allowed.

We will assume that the leads have equal width. The latter is not essential for the

method but simplifies notation. The scattering problem will be defined in terms of

a 2N �2N scattering matrix S. Having nano structures in mind we can rewrite the

S-matrix as

S ¼ r t0

t r0

 !
; (6.2)

where r (r
0
) and t (t

0
) are the reflection and transmission matrices for incidence on

the left (right) of the scattering region. The dimensionless conductance is obtained

from S as

T ¼ trðttyÞ: (6.3)

Our calculations will be based on the traditional R-matrix approach [30, 31].

This formalism has been adapted to obtain the Smatrix for a wave guide in previous

works [32–34]. Until now only a restricted choices of scattering regions have been

investigated. For example only one of the walls was taken of sinusoidal shape while

the other one was kept flat (ripple billiard). We want to generalize this approach to a

generic open two-lead cavity without obstacles, where one can choose any unique

differentiable function of P(x) and Q(x) in Fig. 6.2a to represent the upper and

lower walls of the scattering cavity.

We wish to remind the reader that the R-matrix approach relates the S-matrix to a

matrix R determined by boundary conditions relating internal and external func-

tions at the edges, where the leads are connected to the scattering region, such that

ψ jΓ ¼ Rrψ jΓ (6.4)

at x ¼ Γ as in of the boundaries represented as dotted lines in Fig. 6.2. R-matrix

can be generalized for number of lead connection and number of modes in the leads.

R-matrix can be related to S-matrix,

S ¼ 1� ikR

1þ ikR
(6.5)

Rather than recalling the details of R-matrix theory we will evoke the spirit of the

method by presenting a trivial one-dimensional example:
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In Fig. 6.3 we show the 1D example we want to solve using R-matrix method.

In this example we have two asymptotes as in the general case we discuss but the

r and t are functions instead of a matrices as in the 1 mode case for the real cavity

problems. The exact S-matrix can be found in this case and the transmission

probability is given by

TexactðEÞ ¼ 1

1þ V2
0

ðEðE�V0ÞÞð2sinðkÞÞ2
� �� � (6.6)

for a constant potential step of height V0 and length 1.

Numerically we use a basis for the Reaction region, (R in Fig. 6.3), which is

given by cos(m π x), m ¼ 0, 1, . . . 1. xl ¼ 0 and xr ¼ 1 have been chosen. Using

this basis, the R-matrix elements are given by,

Rrr ¼ 1

E� V0

þ
X1
m¼1

2

E� m2π2 � V0

¼ Rll

Rrl ¼ 1

E� V0

þ
X1
m¼1

2 cosðmπÞ
E� m2π2 � V0

¼ Rlr: (6.7)
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Fig. 6.3 Scattering from a 1D barrier. The solid line shows the transmission probability as a

function of energy and stars are the numerical calculations. In the inset the geometry of the

scattering system is shown. I indicates the interaction region, A the asymptotic regions
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This series should be truncated at some finite value for a numerical calculation;

m ¼ 1, 000 is used in Fig. 6.3. The S matrix is obtained from R matrix as

S ¼ 1 0

0 e�ik

 ! 1 0

0 1

 !
� ik

Rrr Rrl

Rlr Rll

 !

1 0

0 1

 !
þ ik

Rrr Rrl

Rlr Rll

 ! 1 0

0 e�ik

 !
(6.8)

Using this S matrix we plot the transmission probability, jS1, 2j2 in Fig. 6.3. We

note that generalizing the potential in this example to any shape can be done by

using a finite difference method [35].

The method to obtain the S-Matrix thus proceeds in two steps: First obtain the

solution of the boundary value problem inside the scattering region with Neumann

and Dirichlet boundary conditions at lead connections and cavity walls, respec-

tively. Second connect the known solution in the asymptotic region(leads) to the

one obtained for the scattering region by imposing continuity of the solution.

In the numerical method we present, the most time consuming part will be to obtain

a complete set of function to expand the scattering wave function inside the cavity

region, which is a prerequisite to the first step.

6.3 An Efficient Method for the Scattering Problem

We shall thus start by presenting a very efficient method to deal with the problem

inside the scattering region. This method can also be applied to closed cavities, as

we will point out further down. As we will use transformed coordinates the second

step will not be entirely trivial and will be presented once we have the internal

solutions.

6.3.1 Cavity Region

We want to solve the Schrödinger equation in the cavity with specific boundary

conditions, namely Neumann conditions at the open boundaries, and Dirichlet

conditions at the walls of the billiard. In other words, the derivative of the wave

function is set to be zero at the dotted line in Fig. 6.2 and the wave function itself is

set to zero at surface of the billiard. Thus we have the equation

HjΨðx; yÞ >¼ � ℏ2

2m
ðr2

x þr2
yÞΨðx; yÞ ¼ EnΨðx; yÞ; (6.9)
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with the boundary conditions rxΨðx; yÞjx¼0 ¼ 0, rxΨðx; yÞjx¼L ¼ 0, Ψðx; yÞjy¼PðxÞ
¼ 0 and Ψðx; yÞjy¼QðxÞ ¼ 0. The eigenvalues and eigenvectors of this equation are

used to represent the scattering dynamics inside the cavity.

The solution of the Schrödinger equation in the coordinates x, y is complicated

due to the arbitrary shape of the boundaries so we use the following transformation

to new coordinates u, v.

u ¼ x

v ¼ y� QðxÞ
PðxÞ � QðxÞ (6.10)

This change of variable transforms the complicated boundary to a simple one, i.e. a

rectangular region. The price we pay is that the form of the Schrodinger equation

becomes more complicated. The Hamiltonian operator in the u–v plane can be

obtained by using the above transformation and complete derivatives. The final

result is

H ¼ r2
u þ

1þ ðQu þ vJuÞ2
J2

 !
r2

v � 2
Qu þ vJu

J

� �
ru;v

� Qu;u þ vJu;u
J

� �
rv þ 2

ðQu þ vJuÞJu
J2

� �
rv (6.11)

where J is defined as J ¼ P� Q and subscripts indicate partial derivatives. In this

form the symmetric nature of Hamiltonian is not obvious. Therefore we will

represent the same equation in the following matrix form [36],

H ¼ 1

J
rαJg

α;βrβ

	 

α ¼ u; v β ¼ u; v (6.12)

where g is a metric and equivalent to,

g �
1

�ðQu þ vJuÞ
J

�ðQu þ vJuÞ
J

1þ ðQu þ vJuÞ2
J2

0
BB@

1
CCA (6.13)

The meaning of J becomes clear when we notice it is related to the determinant of

the metric. It plays the role of Jacobian of the transformation from the x–y to the u–v
plane. The wave function in the u–v plane can be expanded in terms of a basis
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Ψkðu; vÞ ¼
X
n;m

Bk
n;mψn;m

¼
X
n;m

Bk
n;m

1ffiffiffi
J

p 2ffiffiffi
L

p cos
mπu

L

� �
sinðnπvÞ (6.14)

which satisfies the boundary conditions at u ¼ 0; u ¼ L and v ¼ 0; v ¼ 1 automat-

ically. To determine the unknown coefficients Bn, m
k we will use the orthonormality

condition. In the original coordinates plane waves are orthonormal; in terms of u,v
they must be orthonormal with a weight function given by the metric

< ΨjΨ >�
ð ð

dudvJΨkðu; vÞΨk0 ðu; vÞ ¼ δk;k0 (6.15)

After multiplying the eigenvalue equation with another eigenfunction and integrat-

ing we obtain the matrix equation,X
l

X
l0

Hll0B
k
l0 ¼ Bk

l (6.16)

where we use new indices such that (n, m) ! l and (n0, m0) ! l0. Eigenvalues Ek

correspond to energy and eigenvectors contain the unknown coefficients Bl
k of the

wave function. Using the matrix form of H we haveð ð
dudvJψ l

1

J
rαJg

αβrβψ l0 ¼ Ekδl;l0 : (6.17)

we can integrate by parts. The surface terms are zero due to the boundary condition

we have chosen. We thus find

�
ð
rαψ lJg

αβrβψ l0 ¼ Ekδl;l0 : (6.18)

Since the metric is symmetric, the matrix obtained from this equation is real

symmetric and positive definite which guarantees positive energy eigenvalues.

Once the eigenvalue equation is solved one can obtain scattering wave function

for any energy within the range of wave length we allow. This makes the method

efficient compared to direct integration of the differential equation by some

mesh-based methods like finite element [33]. The cutoff on the number of basis

states determines the accuracy and range of validity of the method. In practice it

is necessary to decide how many modes to choose in u and v direction.

A corresponding integrable geometry gives an idea about these numbers. Also

one needs to choose only the lower part of the eigenvalue spectrum in the bound

region to ensure that truncation wont bring errors due to poor solutions of the

bounded problem. For example, m ¼ 90, n ¼ 50 and using the first 3,000 eigen-

values of the 4,500 � 4,500 matrix is suitable for a rectangular region with length
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twice its width. The limit of the highest wavelength that can be attained in leads is

connected to the lead size to the scattering size. If the size of the scattering region is

much bigger than the size of the leads, then the method is limited to only couple of

modes in leads due to the cutoff on the number of eigenvalues that has to be done in

cavity region. For a nanowire this is not the case since leads size is same with

scattering region. Note also that due to the large number of modes used in the

scattering direction, the Fourier transform techniques developed in [29] are espe-

cially helpful.

6.3.2 Leads and Scattering Matrix

With the knowledge of states in the cavity region it is possible to couple known

asymptotic, such as leads to the cavity. The corresponding solution on the left and

on the right leads to

Ψn
L ¼ anffiffiffiffiffi

kn
p eiknx � bnffiffiffiffiffi

kn
p e�iknx

� �
sin

nπy

w

� �

Ψn
R ¼ cnffiffiffiffiffi

kn
p e�iknx � dnffiffiffiffiffi

kn
p eiknx

� �
sin

nπy

w

� �
(6.19)

where w is the lead width, an, bn, cn and, dn are scattering amplitudes and the wave

vector is given by

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nπ

w

� �2
� 2mE

ℏ2

r
: (6.20)

we here assume propagating modes but it is possible to add evanescent modes with

complex k vectors to the calculation. Their effect is discussed in [34].

As shown in [32–34] the energy eigenfunctions jE > of the total scattering

system have contributions from both cavity and leads.

< x; yjE >¼
X1
j¼1

γjϕjðx; yÞ þ
X1
n¼1

ΓL
nΨ

n
L þ ΓR

nΨ
n
R

	 

(6.21)

where ϕj are basis states calculated for the cavity alone.

The continuity of scattering wave functions at the lead boundary gives the

connection between the leads and the cavity region:

Ψα
n ¼

X1
n0¼1

RαLðn; n0ÞrxΨα
n jxL

�
X1
n0¼1

RαRðn; n0ÞrxΨα
n jxR (6.22)
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where

Rαβðn; n0Þ ¼ ℏ2

2m

X1
j¼1

ϕj;nðxαÞϕj;n0 ðxβÞ
E� γj

(6.23)

is the (n, n’)th matrix element of the R matrix. Here ϕj, n is the overlap between

cavity states and lead functions and given by

ϕj;nðxαÞ ¼
ffiffiffi
2

L

r ð1
0

dyϕjðxαÞ sin
nπy

w

� �
(6.24)

where α � L, R and xL ¼ 0, XR ¼ L in Fig. 6.3.

6.4 Waveguides with Colored Surface Disorder

We treat quantum wires as a long 2D waveguide as illustrated in Fig. 6.4b. The

scattering coordinate is denoted x and the transverse coordinate is denoted y.
The width of the waveguide is denoted w and the length is denoted L. In all the

calculations L ¼ 100w and w is set to be unity. That is, we scale all length by

the waveguide width. The upper and lower boundaries of the waveguide are

described by y ¼ P(x) and y ¼ Q(x). The case in Fig. 6.4b represents a situation
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Fig. 6.4 Schematic plot of a 2D rough waveguide that models rough quantum wires. (a) The

generation of a rough surface is illustrated using M ¼ 4 random shifts in the transverse direction.

(b) One waveguide geometry with a straight upper boundary y ¼ PðxÞ ¼ 1 and a rough lower

boundary y ¼ Q(x). Scattering occurs in region I (gray area) and region II denotes the left and

right leads. Arrows indicate the direction of incoming and outgoing electron waves. An, Bn, Cn, and

Dn are quantum amplitudes
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where the upper boundary is a straight line (P(x) ¼ 1) and the lower boundary is

rough. As in our other studies of rough waveguides [29, 37], we form a rough

waveguide boundary in three steps. First, we divide a rectangular waveguide into

M pieces of equal length L ∕ M. Second, the end of each piece is shifted in

y randomly, with the random y-displacement, denoted η, satisfying a Gaussian

distribution. Third, we use spline interpolation to combine those sharp edges to

generate a smooth curve η(x) for either the upper or the lower waveguide boundary.
For the sake of clarity, Fig. 6.4a depicts this procedure with the number of random

shifts being as small as M ¼ 4. In all our calculations below we set M ¼ 100.

In Fig. 6.5a we show one realization of the surface roughness function η(x).
The function η(x) may be characterized by its ensemble-averaged mean η and its

self-correlation function Cη(x � x0), i.e.,

η ¼ hηðxÞi ¼ 0;

hηðxÞηðx0Þi ¼ σ2Cηðx� x0Þ; (6.25)

where σ is the variance of η(x). In the limit of white noise roughness, Cη(x � x0) is
proportional to δ(x � x0). But more typically, Cη(x � x0) decays at a characteristic
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Fig. 6.5 (a) One realization of the surface roughness function η(x), with the method described in

detail in the text. (b) The associated autocorrelation function Cη(x). (c) Surface structure factor

χη(k) obtained from the Cη(x) shown in panel (b). (d) A function ρ(x) that will be used to introduce
additional correlations via convolution. (e) The Fourier transform of the ρ(x) shown in panel (d).

(f) The structure factor χ~ηðkÞ obtained from a convolution between ρ(x) and η(x). (g) The new

surface roughness function ~ηðxÞ, with correlations that are absent in η(x)
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length scale, called the correlation radius Rc. For our case here, because the

randomness is introduced after dividing the waveguide into M ¼ 100 pieces, the

correlation length Rc of the η(x) we construct here is of the order of L ∕ M � w. This
length scale is comparable to the wavelength of the scattering electrons in the

one-mode regime.

One tends to characterize the strength of the surface roughness by the variance σ
defined above. However, in practice it is better to use the maximal absolute value of

η(x), denoted jηmaxj, to characterize the roughness strength. This is because

for strong roughness with a given variance, there is a possibility that some of

the random displacements become too large such that the waveguide may be

completely blocked. Recognizing this issue, we first set a value of jηmaxj and
then, after having generated a roughness function η(x) based on spline interpolation,
rescale η(x) such that its maximal absolute value is given by jηmaxj.

The roughness function η(x) obtained above does not have any peculiar features.
There are a number of ways to introduce some structure to the correlation function

Cη(x � x0). In [38] a filtering function method was proposed to produce a

power-law decay of Cη(x � x0) from white noise. Here we adopt the approach

used in [39, 40], which is based on the convolution theorem of Fourier trans-

formations. In particular, the discrete form of autocorrelation function of η(x) is
defined as

Cη
mL

N

� �
¼ c

XN�m�1

n¼1

η
ðnþ mÞL

N

� �
η

nL

N

� �
(6.26)

wherem ¼ �N þ 1; � � � ;�1; 0; 1; � � � ;N � 1and c is a normalization constant such

that Cη(0) ¼ 1. In Fig. 6.5b we show the autocorrelation function for the surface

roughness function depicted in Fig. 6.5a. The autocorrelation drops from its peak

value to near zero at a scale of Rc � 0. 7w.
As will be made clear in what follows, it is important to consider the Fourier

transform of Cη(x), i.e., the autocorrelation function in the Fourier space. This

important quantity is denoted χη(k), where k is the wavevector conjugate to x.
Using the Fast Fourier transform of Cη(x), χη(k) can be evaluated as follows:

χηðkÞ ¼
X2N
j¼1

Cη
jL

2N

� �
exp

�i2πðj� 1Þðm� 1Þ
2N

� �
; (6.27)

where k ¼ ð2ðm=2NÞ � 1Þð2πN=2LÞ . In our calculations we choose N ¼ 1, 024.

Note that χη(k) is a real function due to the evenness of Cη(x). The real function

χη(k) is called below the structure factor of the surface roughness. Figure 6.5c

shows the structure factor χη(k) obtained from the correlation function shown in

Fig. 6.5b.

Additional correlations in the surface disorder can now be generated by modu-

lating the structure factor χη(k). Because the structure factor χη(k) is equivalent to
the square of the Fourier transform of η(x), we may imprint interesting structures
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onto χη(k) by convoluting η(x) with some filtering function. Consider then the

function ρ0ðxÞ ¼ sinðaxÞ=ax with a > 0. Its Fourier transform is a step function

of jkj [39, 40], with a height π ∕ a and the step edge located at jkj ¼ a. The
Fourier transform (denoted χρ(k)) of a combination of such functions, i.e.,

ρðxÞ ¼
X
n

An
sinðjarnjxÞ � sinðjalnjxÞ

jarnjx
: (6.28)

will be π ∕ An if an
r > jkj > an

l or an
r < jkj < an

l; and zero otherwise. If we now

consider the following roughness function,

~η
mL

N

� �
¼
X
n

ρ
nL

N

� �
η

ðm� nÞL
N

� �
; (6.29)

then according to the convolution theorem, we have

jχ~ηðkÞj1=2 � jχρðkÞjjχηðkÞj1=2; (6.30)

where χ~ηðkÞ is the structure factor for the new surface roughness function ~ηðxÞ .
As such, the structure of χρ(k) is directly imprinted on χ~ηðkÞ. That is, computation-

ally speaking, arbitrary modulation can be imposed on the structure factor by

filtering out the unwanted components and magnifying other desired structure

components. Below we apply this simple technique to create different kinds of

surface roughness correlation windows and then examine the conductance proper-

ties. In Fig. 6.5d we show one example of ρ(x). Its Fourier transform amplitude, as

shown in Fig. 6.5e, displays two windows. As shown in Fig. 6.5f, this double-

window structure is passed to χ~ηðkÞ due to (6.30). Finally, in Fig. 6.5g we show the

surface roughness function ~ηðxÞ, which obviously contains more correlations than

the old surface roughness function η(x) shown in Fig. 6.5a.

With the mapping between the scattering problem in 2D waveguide and 1D

Anderson’s model [41, 42], early theoretical work [39–41] established that the

localization length Lloc of the 2D waveguide problem is given by

L�1
loc ¼

σ2π
4

w6

χð2kÞ
ð2kÞ2 ; (6.31)

where χ(2k) is either the structure factor χη(2k) or the new structure factor χ~ηð2kÞ
after a convolution procedure. If Lloc > L, a transmitting state is expected and if

Lloc << L, then the electron can only make an exponentially small contribution to

the conductance. As such, one expects transmitting states when the structure factor

χ(2k) is essentially zero; and negligible conductance if χ(2k) is significant and if σ is
not too small. This suggests that the conductance properties can be manipulated by

realizing different surface roughness functions. Equation (6.31) is obtained under
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a weak electron scattering approximation (Born approximation). As such, the

theoretical result of (6.31) may not be valid if σ is not small as compared with

w or if the scattering electron is close to the threshold value of channel opening.

Another assumption in the theory is that Lloc should be much greater than Rc, the

radius of the surface correlation function Cη(x).
However, in our computational studies we will examine some interesting cases

that are evidently beyond the validity regime of the theory. For example, the

strength of the surface disorder may not be small and the scattering energy may

be placed in the vicinity of a shifted channel opening energy.

In Fig. 6.6a we show conductance results averaged over three realizations of a

rough waveguide, with a flat upper boundary P(x) ¼ 1 and a rough lower boundary

Q(x) ¼ η(x). The strength of the surface disorder is given by σ ¼ 0. 0779w, which
is chosen based on a pre-set value of jηmaxj ¼ 0. 2w. As is clear from Fig. 6.6a,

there exists a threshold k � 0. 6π ∕ w beyond which the system becomes transmit-

ting (this threshold will be explained below). In the transmission regime the

conductance shows a systematic trend of increase as the wavevector k increases.

The inset of Fig. 6.6a shows χη(2k), one key term in (6.31). The characteristic

magnitude of χη(2k) for the shown regime of k is �0.3. Using (6.31), one

obtains that the localization length Lloc is comparable to L ¼ 100w. This prediction
is hence consistent with our computational results that demonstrate considerable

transmission.

Next we exploit the convolution technique described above to form new rough

surfaces described by ~ηðxÞ. In particular, the inset of Fig. 6.6b shows two sample
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Fig. 6.6 (a) Conductance of rough waveguides versus k ¼ k1 (see (6.9)). The upper boundary is

flat, i.e., P(x) ¼ 1, and the lower boundary is given by Q(x) ¼ η(x), with a surface disorder

strength characterized by σ ¼ 0. 0779w or jηmaxj ¼ 0. 2w. Inset on the right shows the structure

factor of the surface roughness in one single realization. (b) Same as in panel (a), but two cases

with different surface structure factor obtained from a convolution approach are plotted, using

solid and dashed lines. All conductance curves here are averaged over three realizations
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cases with distinctively different surface structure factors. In one case (dotted line)

χ~ηð2kÞ has significant values in the interval 0. 67 < kw ∕ π < 0. 8. Indeed, during

that regime the value of χ~ηð2kÞ is many times larger than the mean value of χη(2k) in
the case of Fig. 6.6a. In the other case (solid line) χ~ηð2kÞ is large only in the regime

of 0. 75 < kw ∕ π < 0. 9. For these regimes, the theory predicts that the localiza-

tion length to be much smaller than the waveguide length and hence vanishing

conductance. This is indeed what we observe in our computational study. As shown

in Fig. 6.6b, either the dotted or the solid conductance curve displays a sharp dip in

a regime that matches the main profile of χ~ηð2kÞ.
In addition, similar to what is observed in Fig. 6.6a, b also displays a

transmission threshold. Take the dotted line in Fig. 6.6b as an example. For

kw ∕ π < 0. 55, there is no transmission at all, even though χ~ηð2kÞ in that regime

is essentially zero. This suggests that this threshold behavior is unrelated to surface

roughness details. Rather, it can be considered as a non-perturbative result that is

not captured by (6.31). To qualitatively explain the observed threshold, we realize

that due to the relatively strong surface roughness, the effective width of the

waveguide decreases and as a result, the effective mode opening energy increases.

For jηmaxj ¼ 0. 2w, we estimate that the effective width of the waveguide is given

by weff ¼ w� jηmaxj ¼ 0:8w. Hence, the corrected mode opening energy E is now

given by ðℏ2=2m�Þðπ=0:8wÞ2. Using (6.20), this estimate gives that, regardless of the

surface roughness details, the threshold k value for transmission is � 0. 75π ∕ w,
which is close to what is observed in Fig. 6.6. Such an explanation is further

confirmed below. This also demonstrates that the maximal value of jη(x)j is an

important quantity to characterize the surface roughness strength.

The results in Fig. 6.6 show that even when the surface roughness is strong

enough to significantly shift the threshold energy for transmission, the surface

structure factor may still be well imprinted on the conductance curve. Moreover,

the resultant windows of the conductance curves in Fig. 6.6 are seen to match the

location of the structure factor peak.

As we explain in next section the form of the transmission plays important

role in efficiency of nanowires as a thermoelectric device. We establish that it is

possible to manipulate the transmission curve by introducing long range correlation

into the surface disorder of nanowires, now we look at the effect of two possible

surfaces with two different long range correlations on the efficiency of thermoelec-

tric heat engine.

6.5 Efficiency of a Silicon Nanowire Working

as a Heat Engine

We use the Landauer approach to calculate the electron transport coefficient for this

system. Since the parasitic heat flow decreases the efficiency of the wire as a heat

engine drastically when there is more than one mode, we restrict ourselves to the
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case where there is only one propagation mode in the nanowire. General quantities

governing the transport in the system are the heating and the cooling rates of

contacts and the electrical current as a response to the thermal and the potential

gradients. They are described for a nanowire with one propagating mode as follows

I ¼ 2e

h

ð
tðEÞðfh � fcÞdE (6.32)

Iqh ¼
2

h

ð
tðEÞðE� μhÞðfh � fcÞdE (6.33)

Iqc ¼
2

h

ð
tðEÞðE� μcÞðfh � fcÞdE (6.34)

where Iqh and Iqc are the heating and the cooling rates of the hot and the cold

contacts, respectively, h is the Planck constant, t(E) is the transmission, and fh and fc
are the equilibrium Fermi–Dirac distributions for the contacts. First, we look at the

linearized form of these equations to find the transport coefficient. After that, we

calculate the efficiency and the power without using the linear approximation.

6.5.1 Linear Response Theory

In the linear response regime, IqH 	 IqC � Iq and we have following approximation

I ¼ GΔV þ SGΔT; (6.35)

Iq ¼ �TSGΔV � κΔT (6.36)

where ΔT is the temperature difference between the contacts, G is the electric

conductance, κ is the heat conductance, S is the Seebeck coefficient, and T is the

temperature. We set μ ¼ μh and f ¼ fh, and the transport coefficients in the

Landauer–Buttiker formulation are expressed as follows

G ¼ � 2e2

h

ð1
0

dE
@f

@E
tðEÞ (6.37)

S ¼ 1

G

2e2

h

kB
e

ð1
0

dE
@f

@E
tðEÞðE� μÞ=kBT (6.38)

K

T
¼ � 2e2

h

kB
e

� �2 ð1
0

dE
@f

@E
tðEÞ½ðE� μÞ=kBT
2 (6.39)

where f is the Fermi–Dirac distribution function and kB is the Boltzman constant.

Note that the heat conduction is given in terms of K as
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κ ¼ �K 1þ S2GT

K

� �
(6.40)

we present these transport coefficients in Fig. 6.7 for two different electron

transmission spectra. We characterize them according to the transmission hole in

energy with one having single well as in Fig. 6.7b and the other has double well of

minimal transmission as in Fig. 6.7a. For a perfect wire, the transmission spectrum is

unity for the energy range shown here.We have a plateau starting atE ¼ 1. 4E1 for a

white noise surface transmission with an average amplitude of 0.2 in terms of the

wire width taken as unity, see [3]. For the double well transmission spectrum, we use

a convolving function,ρdðxÞ ¼ ðsinð1:2πxÞ � sinð0:6πxÞÞ=ð1:2πxÞ þ ðsinð2:2πxÞ �
sinð1:8πxÞÞ=ð2:2πxÞ with corresponding surface structure factor ~ζd , and for the

single well spectrum, we have ρsðxÞ ¼ ðsinð1:8πxÞ � sinð0:6πxÞÞ=ð1:8πxÞ with

corresponding surface structure factor ~ζs . It has also been averaged over several

generated surfaces for each cases. We use energy units as the opening energy of first

channel which is given by E ¼ ℏ2=2mðp2=w2Þ where the width set to w ¼ 1;

however, the system is scale invariant. We choose the length of the wire as

100 times of the width, and the temperature is chosen as kBT ¼ 0. 05E1.

We can find the efficiency of the thermoelectric silicon wire from the transport

coefficient. First, we define a related quantity known as figure of merit or (ZT) as

ZT ¼ GTS2=κ. Accordingly, the efficiency of the thermoelectric material is related

to the ZT by

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

−0.5

0

0.5

1

1.5

G
,T

,κ
 (

2e
2 /h

)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

−0.5

0

0.5

1

1.5

E/E1

G
,T

,κ
 (

2e
2 /h

)

t

G
κ
S

S(kB/e)

S(kB/e)

a

b

Fig. 6.7 (a) Transmission probability (thick, blue), t, electron thermal conductance (dotted,
black), κ, electron conductance (dashed, magenta) G in units of conductance quanta, 2e2 ∕ h2,
are shown with respect to the incident energy of electrons in units of first mode threshold energy,

E1. Thermal power (red), S, is also displayed in units of kB ∕ e. The transmission probability has

two windows of transmission dips in energy corresponds to the long range correlated surface ~ζd (b)
same as in (a) but with a transmission probability which contains single window of transmission

dip which corresponds to the correlated surface described by the ~ζs
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ηmax ¼ ηC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTþ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTþ 1

p þ 1
(6.41)

hence the Carnot limit, ηC, is reached when ZT ! 1. We present the performance

of these two nanowires with different surface structures as thermoelectric material

ZT for the double well transmission spectrum in Fig. 6.8a and for the single well

spectrum in Fig. 6.7b. The ZT has a peak at about 3.3 in the double well spectrum

whereas it is about 1.8 in the single well case. In both cases, the ZT goes to very

high values at the opening of the first channel. But, we will see that these are not

always the best region to make the heat engine work because of negligible power

output.

6.5.2 Efficiency at Maximum Power

Linear response theory results a continuous efficiency valid for each incident

energy, but the feasibility of these efficiencies should be decided based on the

power output for a given incident electron energy. For this reason, we use general

transport equations without introducing linear approximations. The first parameter

we need to set for the model is the temperature difference, ΔT. The temperature

should be set accordingly in order to demonstrate the effects we have been seeing in

these systems. If we choose very high temperatures for the cold and the hot

reservoirs, then the detailed features of the transmission spectrum might be totally
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Fig. 6.8 (a) The figure of merit ZT (black) and the transmission probability are shown for

windows of two transmission dips described by the surface structure factor ~ζd . (b) same as in

(a) but for the case when the transmission contains single transmission dip with the surface

structure factor ~ζs
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washed up because of the temperature averaging, and we hardly observe an increase

in the thermoelectric efficiency. Also, the temperature difference has nonlinear effect

on the overall performance of the device, if it is chosen very large. In Fig. 6.9,

we present several choices of the temperature difference, and the resulting

maximum heat production rate, Qmax ¼ IqH � IqC , calculated from (6.5) and (6.6).

We choose T1 ¼ 0. 06E1 and T2 ¼ 0. 04E1 where E1 is the channel threshold energy

of the waveguide. Note that we choose T ¼ 0. 05E1 for the linear response approach.

We see that the peak rate obtained for this temperature difference at a value close to

the step function transmission spectrum (valid for a perfect wire), and this is compa-

rable to the width of the transmission wells in the spectrum of the disordered silicon

nanowires we used. The peak shifts to the lower energies with the increasing temper-

ature difference, and the heat rate becomes too low for very small energy difference.

Next, we find the power generation and the efficiency for the two systems

with different spectra using the temperature differences set at kTH ¼ 0. 06E1 and

kTC ¼ 0. 04E1. First, we need to locate the region of power generation. We find

the regions of positive power production bounded by open circuit potential, Voc, to

determine the region of potential where the heat engine produce work. We deter-

mine Voc from

IqH � IqC ¼ ΔVI (6.42)

where ΔV is the potential difference produced due to the temperature difference of

two reservoirs. We can produce power in the system until this potential balanced

by the applied bias. We show the power generation, P ¼ IV, in Fig. 6.10a, and

the efficiency, η=ηC ¼ P=IqH in Fig. 6.10b for the case of one well of low trans-

mission in the spectrum. We show the corresponding transmission spectrum in

Fig. 6.10b. The limiting thick black curves in Fig. 6.10a, b denote the open circuit

potential, Voc and it is a nonlinear function of Fermi–Dirac distribution and trans-

mission curves as well as the temperature difference. As described earlier, we
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Fig. 6.9 Heat generation rate with varying chemical potential is shown for different temperature

differences pointed by arrows in the figure. A perfect wire with step function transmission

probability has been used, and it has been shown here in units of conductance quanta at the

right axis
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change the chemical potential by supplying a potential bias to the system with

respect to the incident electron energy assuming the average chemical potential can

be changed in energy with a back gate potential. There are three regions of high

power generation right at the discontinuities of the transmission spectrum. Note that

the discontinuities in transmission spectrum is the only way to produce power, for

instance a perfect wire there will be no power generation except at the openings

of new channels. The sharp increase or decrease in the transmission results in

the generation of the heat and the power and increasing the efficiency in general.

In the first case, we see the best possible working condition as a heat engine is just

before the opening of the channel energy, since at this place both the high power

and the efficiency can be achieved.

In Fig. 6.11, we show a similar graph for the second case, i.e. the silicon wire

with a surface disorder arranged to produce two transmission wells in the spectrum.

The power generation and the efficiency corresponding to the transmission spec-

trum shown in Fig. 6.11b are plotted with respect to the changing chemical

potentials. Yet again, we have peak positions of the power generations near the

transmission discontinuities. In this case, we observe that the working condition of

a heat engine is actually different than the channel opening but near the second well

as shown with arrow 3 in Fig. 6.11a. At this region, the power generation is

much higher than the channel opening pointed by arrow 1 in the Fig. 6.11a, and

the efficiency is comparable.

Fig. 6.10 Nonlinear analysis of the case in which the transmission probability contains a window

of single dip as a result of used surface structure factor ~ζs . (a) The power generation, P, and the

potential, V in units of E1 are shown with varying chemical potential, μ. Arrows show each of the

local power maximums. (b) Normalized efficiency, (η ∕ ηC), is shown for same variables. Thin
black curve is the transmission probability in units of the conductance quanta. In both graphs, thick
black boundary curve is the open circuit potential difference, Voc, calculated as described in

the text
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We present loop plots of the power versus the efficiency at those incident

chemical potentials, μ ∕ E1, shown with arrows in Fig. 6.10a and in Fig. 6.11a in

Fig. 6.12a, b, respectively. Here, we can see the efficiency at local maximum

powers. We observe the power buildup and increasing of the efficiency at the
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Fig. 6.12 (a) The power versus the efficiency at constant μ values shown with arrows in Fig. 6.10
with varying potential, (b) same as in (a) but at the location of arrows in Fig. 6.11

Fig. 6.11 The power generation and the efficiency are shown for the case in which the transmis-

sion probability contains windows of two transmission dips produced by surface structure factor
~ζd: (a) Positive power regions are shown as a function of potential and energy. (b) corresponding

normalized efficiency as a function of potential and energy are shown. Thin black curve represents

the spectrum for this case. Same parameters are used as in Fig. 6.5
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location of 3rd arrow in Fig. 6.11a. Comparison of the efficiencies at the maximum

power is in proportion and close to the efficiency one get from the linear response

theory. The nanowire with a surface correlation producing double gap near

the transmission threshold could be used with an efficiency given by ZT number

close to 3.

In this study, we confine our analysis to a simplified system with no thermal

effects coming from phonons, and also the electron–electron interaction is not

included. It is noteworthy to remark about the connection between our results and

the traditional figure of merit for thermoelectric systems

ZT ¼ GTS2

κe þ κp
¼ ZTe

κe
κp þ κe

� �
(6.43)

where T is the average temperature, and κe is the electronic and κp is the phononic
heat conductances. In our calculation, we find the electronic figure of merit ZTe

which is higher than the traditional ZT. Moreover, the electron–phonon interaction

causes a further decrease of the electronic conductance due to the phonon drag

effect. Interestingly, it has been shown that the phonon drag contributes positively

to thermopower with decreasing temperature [2]. The phonon drag contribution is

of the form as Sph / 1
κpμT

� �
where μ is electron mobility. If we neglect the electronic

contribution and consider only phononic part, then we haveZT / n
μTκ3p

which shows

that ZT increase with decreasing temperature. This behavior has been found

consistent with the experimental results for temperatures around T ¼ 200K for

silicon nanowire [2]. Thermopower contribution of phonon drag decreases again

for temperatures below T ¼ 200 K. Therefore, our results are valid for tempera-

tures much less than T ¼ 200 K; however, they underestimate ZT for temperatures

around T ¼ 200 K. Moreover, since the effect we observe here is mainly due to the

increasing thermopower as a result of jumps in the conduction curves, we do not

expect significant changes in our results due to an overall decrease in electron

conduction.

Another important effect in determining the thermoelectric efficiency is due to

the electron–electron interaction. We have not included the electron–electron inter-

action in our calculations. We give some remarks about this before leaving it to the

future work. It has been shown that the conductance dependence on temperature

changes with the electron–electron interaction for a perfect wire, and one cannot use

simple Onsager relations to find electronic thermal conductance [43]. For low

temperatures, Friedel oscillations, Luttinger liquid behavior and 0.7 conductance

anomaly can also be observed due to electron–electron interaction. However, the

temperature increase undermines these effects due to screening of electron–electron

interaction, i.e., V ¼ e2

4πEr e
�r=L with a screening length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EkBT=ðe2nÞ
p

valid for

low temperatures. Screening is less effective at high temperatures because of the

smaller fractional change of the energy of the electrons. For the silicon wire with a

density of electrons as n ¼ 1019 cm�3, the screening length becomes large for
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temperatures greater than T ¼ 10 K [44]. Consequently, we can use Onsager rela-

tions in our model for temperatures larger than T ¼ 10 K and our results remain

valid there. Nevertheless, our focus point in this study is the improvements in the

thermoelectric efficiency due to the surface changes. Since the effect inherently

comes from the rate of change of the transmission probability curve and this can be

maintained by changing the surface correlations even in a system with

electron–electron interaction, our conclusions are still sound. However, further

work is necessary along these lines including the electron–electron interaction.

6.6 Concluding Remarks

Surface randomness with long range correlations introduced to the silicon

nanowires increases the thermoelectric efficiency. We find the figure of merit, ZT

can be increased by manipulating the transmission spectra of nanowire. It is

possible to produce silicon nanowire heat engines by applying an electrical load.

We characterize such a system and discussed two cases with different transmission

spectrum as a result of two different long range correlations included in their

surface generation. The characterization requires the efficiency at a given power

generation. We find several of those at the local maximum of power generations.

In the case where transmission has double window, we can get better efficiency at

maximum power in higher energies than channel opening energy.

There are a variety of ways to manipulate the transmission spectrum. Some

examples might be the nanowires with periodic surface potentials resulting gaps in

the spectrum or some specific structures with fano resonance type of transmission

spectrum [45, 46]. Since the surface randomness is almost unavoidable at nano

scale, it should be tried to control by mixing some smooth function with the

disorder or one should check the possible correlation on the surface structure to

see their effect in transmission spectrum. Nano heat engines can be improved in

these structures by looking at the local power maximums and the corresponding

efficiencies.
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Chapter 7

One-Dimensional Bi-Based Nanostructures

for Thermoelectrics

Liang Li and Guanghai Li

Abstract Bi and its alloys are important thermoelectric materials for solid-state

refrigeration and power generation. An increase in the thermoelectric figure of merit

is predicted due to quantum confinement and phonon scattering at interfaces for

one-dimensional (1D) nanostructured thermoelectric materials. This chapter addresses

recent developments in Bi-based nanostructured thermoelectric materials focused

mainly on nanowires, nanotubes, and heterostructures. In addition, current challenges

in preparation and measurement of 1D nanostructured thermoelectric materials are

discussed.

7.1 Introduction

Thermoelectric materials, which can generate electrical power from thermal energy

or convert electrical power into heating or cooling, are expected to play an increas-

ingly important role in meeting the energy challenge of the future [1–3]. Generally,

the performance of thermoelectric materials is qualified by the figure of merit

ZT ¼ S2σT/κ, where S, σ, T, and κ refer to the Seebeck coefficient, electrical

conductivity, temperature, and thermal conductivity, respectively. ZT determines

the fraction of Carnot efficiency, and in order to compete with traditional energy

conversion technologies which work at 30–40 % Carnot efficiency, thermoelectric

materials theoretically should have a ZT � 3 [4]. Unfortunately, thermoelectric

materials have long been too inefficient and their ZT is still too low for fully scalable

applications. Therefore, increasing ZT is still the core issue in thermoelectric field.

The key to obtain a higher ZT is to increase the Seebeck coefficient and electrical

conductivity and reduce the thermal conductivity simultaneously. However, these
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three quantities interrelated to each other for conventional three-dimensional crys-

talline systems which limit the further increase of ZT for the best conventional

thermoelectric materials. According to Wiedemann–Franz law, an increase in

S usually results in a decrease in σ, and a decrease in σ leads to a decrease in the

electronic contribution to κ [2, 5]. Normally, two different approaches were devel-

oped to increase ZT: one is to use new families of advanced bulk thermoelectric

materials—the main motivation of this method is to maximize the power factor

(S2σ); another focus is mainly on reducing phonon-based thermal conductivity by

using low-dimensional material systems [2, 6–8].

Hicks and Dresselhaus, who were regarded as the pioneers of low-dimensional

thermoelectric materials, predicted a larger ZT in low-dimensional systems [9, 10];

since then, one-dimensional (1D) nanostructures have become a hot topic in

thermoelectric field. As a class of most widely used thermoelectric materials, Bi

and its alloys with some special nanostructures, including nanowires, nanotubes,

and 1D heterostructures, could be applicable for commercial applications after

further optimizing their ZT and thus have been broadly studied.

In this chapter, we review the latest advance in Bi-based nanostructured thermo-

electric materials focused mainly on nanowires, nanotubes, and heterostructures. The

chapter is organized into four sections. The following section discusses some fabri-

cation strategies of 1D thermoelectric nanostructures, along with physical model on

1D thermoelectric materials. Section three evaluates the thermoelectric properties of

1D thermoelectric materials, including ensemble properties of arrays and thermo-

electric properties of single nanowires. At the end, we give some remarks on current

challenges in 1D thermoelectrics.

7.2 Fabrications and Characterizations

of 1D Nanostructures

In this section, we focus mainly on electrodeposition method. Besides, a new method

of 1D nanostructure fabrication, similar to chemical vapor deposition, which is called

stress-induced method, is also introduced.

7.2.1 Template-Assisted Electrodeposition

The template-assisted electrodeposition is one of the most cost-effective techniques

for the fabrication of 1D nanostructured materials. Compared with other synthetic

routes, this method possesses various advantages such as low cost, high deposition

rate, low temperature operation, and easy controllability [11].

238 L. Li and G. Li



7.2.1.1 Nanowires

For nanowires, the density of states is increased due to the two-dimensional confine-

ment of electrons which in turn increases the thermoelectric power factor. In addition,

the increased phonon scattering from the surface of the wire gives rise to the reduction

of lattice thermal conductivity.

Anodic aluminum oxide (AAO) template with highly ordered pores has attracted

much attention for nanowire fabrication. Bi, Bi1-xSbx, Bi2Te3, (Bi1-xSbx)2Te3, and

Bi2(TexSe1-x)3 have been successfully deposited in AAO template by potentiostatic

electrodeposition [12–17]. In the fabrication of Sb-related nanowires, it should be

noted that Sb salt is very difficult to dissolve in aqueous solutions; high concentra-

tions of complexing agents such as tartaric and C6H8O7·H2O and low pH should be

used or switch to organic solvent [13]. Besides AAO template, polymer templates

are another attractive membrane for the fabrication of thermoelectric nanowires.

Compared to AAO template, polymer templates, such as polycarbonate and

polyimide-based Kapton, have a lower thermal conductivity and therefore could

be potentially used to build nanowire-based thermoelectric device [18–20].

As one of the mostly used electrodeposition techniques, pulsed electrodeposition

has been considered as an effective way for the growth of uniform and single-crystal

nanowires for a long time [21, 22]; recently this technique aroused great attention in

fabrication of high-quality thermoelectric nanowires [23]. The added “off” time in

pulsed electrodeposition compared to conventional direct current electrodeposition

allowed the recovery of ion concentration in growth front during deposition making

the nanowire growth uniform and homogeneous. Our group developed this technol-

ogy for the synthesis of single-crystal Bi, Bi1-xSbx, and Bi2Te3 nanowires [24–28]. By

adjusting the pore diameter of AAO template, pulsed parameters such as deposition

potential, “on” and “off” time, and pH of the electrolyte, Bi nanowires with different

diameters and growth orientations were obtained. Bi1-xSbx nanowires with controlled

composition and growth direction were fabricated via the pulsed technology. The

growth of the nanowires follows the 3D-to-2D mode. We found that the effective

deposition potential which is defined as Ueff ¼ Ton/(Ton + Toff)U affects not only the

alloy composition but also the diameter of the nanowires. A typical figure is shown in

Fig. 7.1. Bi2Te3 nanowires with a preferential orientation along the [015] direction

also have been fabricated in aqueous solutions by our group [28]. By carefully

modulating the ion concentration of the solution and deposition potential, stoichio-

metric Bi2Te3 nanowires were obtained. In order to study the influence of electro-

chemical process on the microstructure of the Bi2Te3 nanowires, Lee and co-workers

did a systematic research on the fabrication of Bi2Te3 nanowires by using the pulsed,

galvanostatic and potentiostatic electrodeposition and found that Bi2Te3 nanowire

arrays deposited by pulsed voltage have a highly oriented crystalline structure and

were grown uniformly as compared to those grown by other two techniques [29].

Recent works are focused on tuning the size, geometrical, composition, and

crystallographic of thermoelectric nanowires simultaneously [30, 31]. Although

much work has been done in fabrication unitary and binary nanowires, fabrication
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of high-quality ternary alloy such as (Bi1-xSbx)2Te3 and Bi2(TexSe1-x)3 with con-

trollable composition and geometrical is still very difficult [11], and further work

needs to be done.

7.2.1.2 Nanotubes

Compared to nanowires, the structural feature of both hollow tube channels and

two-dimensional tube walls in nanotubes has a stronger phonon blocking effect,

which will result in a reduced lattice thermal conductivity and different electronic

transport behaviors.

A facile and general method was presented by our group for the fabrication of

nanotubes using AAO template [32, 33]. Figure 7.2 shows a typical procedure for the

fabrication of Bi nanotubes. The core to obtain nanotubes is to form a mesh-like Au

layer on one planar surface of the AAO template before electrodeposition. By tuning

the thickness of the coated Au layer and parameters of the current densities, the Bi

nanotubes with controlled thickness could be realized [34]. Using this simple method,

Bi2Te3 and Sb2Te3 nanotubes were also fabricated in the following years by other

groups [35–37]. However, in the fabrication of Bi-Sb alloy nanotubes, our group

found an abnormal growth of the nanotubes during the electrodeposition [38]. As can

be seen from Fig. 7.3 the growth of the polycrystalline nanotubes is terminated by

Fig. 7.1 SEM images of Bi1-xSbx alloy nanowire arrays with different diameters deposited at

potentials of (a, b) 0.18 (nanowire diameter: 60 nm) and (c, d) 0.25 V (nanowire diameter:

28 nm). The insets are the corresponding TEM image of a single nanowire. Reproduced with

permission from [27] Copyright 2006 Am. Chem. Soc
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polycrystalline nanowires abruptly and then followed by single-crystalline nanowires.

We assume that the initial formation mechanism of the nanotubes followed a 3D

growth mode, and the transition from the polycrystalline nanotube to polycrystalline

nanowire takes place abruptly due to an abnormal grain growth, which is due to the

competitive growth of different grains. The change from polycrystalline nanowire to

single-crystalline nanowire follows the common 3D-to-2D transition process.

Fig. 7.2 Schematic illustration of the growth processes of Bi nanotube arrays: (1) sputtering thin

Au electrode film, (2) electrodepositing Bi nanotube, and (3) removing AAM. Adapted with

permission from [33]. Copyright 2006 American Institute of Physics

Fig. 7.3 (a) TEM image of

a nanotube–nanowire

junction. (b–e) HRTEM

images of the area marked

with the rectangles 1–4

shown in (a). (f, g) 2D FFT

of (b) and (c). (h, h0) The
FFT of the area marked with

the rectangles 1 and

2 shown in (d). (i) The

SAED pattern of (e).

Reproduced with

permission from [38]

Copyright 2008

Am. Chem. Soc
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7.2.1.3 1D Superlattice

Superlattice nanowires (SLNWs) are the structure which integrates the advantages

of both quantum wires and quantum dots, and the electronic transport along the wire

axis is made possible by the tunneling between adjacent quantum dots, while the

uniqueness of each quantum dot and its zero-dimensional characteristics is

maintained by the energy difference of the conduction or the valence bands between

different materials [39, 40]. The lattice thermal conductivity of the SLNWs is

reduced by blocking the phonon along the wire axis due to the abundance of

heterogeneous interfaces between the nanodots, while the periodic potential pertur-

bation may be beneficial to the electrical conduction [39]. These features make the

SLNWs especially attractive for thermoelectric applications.

Template-assisted electrochemical method is widely used in fabricating SLNWs.

A variety of thermoelectric SLNWs, such as Bi/Sb, Bi/BiSb, Bi2Te3/Sb, and

Bi2Te3/BiSbTe, have been fabricated in a single bath using pulsed electrodeposition

in AAO templates [40–43]. Among these, our group developed an effective process

to synthesize Bi/BiSb SLNWs with controllable and very small bilayer thickness

and sharp segment interface by adopting a charge-controlled pulse electrodeposi-

tion [40, 44], in which we use millisecond potentiostatic pulses during the electro-

deposition of each segment. As well known, the ZT of SLNWs generally increases

with a decrease in both wire diameter and the segment length before the alloy limit

is reached [39]; our synthetic method may play an important role in fabricating

high-quality thermoelectric materials. In addition, three different growth modes of

the nanowires such as 2D plane growth mode, tilted plane growth mode, and curved

plane growth mode were first observed by our group [40], as shown in Fig. 7.4, in

which a single-crystal Bi/BiSb nanowire has three different interfaces. We assumed

that the 2D plane growth mode is controlled predominantly by thermodynamics,

while the tilted plane growth and the curved plane growth modes are controlled

mainly by kinetics. An interested thing found in electrodeposited Bi2Te3-related

SLNWs is that without post-processing the fabricated Bi2Te3-related SLNWs are

Fig. 7.4 TEM images of (a) 2D plane growth mode; (b) tilted plane growth mode; (c) curved

plane growth mode. Adapted with permission from [40] Copyright 2008 Am. Chem. Soc
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polycrystalline. A nanoconfined precipitation reaction was developed by Wang and

co-workers for the spontaneous formation of Bi2Te3/Te multilayered nanowires in

which each segment was single crystalline in AAO template [45]. In this method,

the electrodeposited Te-rich supersaturated BixTe1-x nanowires imbedded in AAO

were annealed under different conditions, the heterogeneous structure formed due

to the confined effect of the nanochannel during the Te crystal growth [45].

7.2.2 Stress-Induced Method

Recently, a novel stress-induced method termed as on-film formation of nanowires

(OFF-ON) was proposed by Lee’s group for the fabrication of single crystalline Bi

and Bi2Te3 nanowires [46, 47]. This synthesized technology is based on the mismatch

of the thermal expansion between the substrate and the film. When annealing at an

appropriate temperature, this mismatch acts as a thermodynamic driving force driving

the mass flow along grain boundaries to grow nanowires. Figure 7.5a shows the

Sputtering Bi thin film (TF)

Annealing

Bi

Si
SiO2

Compressive stress induced in Bi TF

Completion of Bi NW growth onto Bi TF

Cooling

c

ba

Fig. 7.5 Growth mechanism and structural characteristic of the Bi nanowires. (a) A schematic

representation of the growth of Bi nanowires by OFF-ON. (b) A SEM image of a Bi nanowire

grown on a Bi thin film. (c) A low-magnification TEM image of a Bi nanowire: the ED pattern

(top right) and a high-resolution TEM image (bottom right) of the Bi nanowire. Reproduced with

permission from [46] Copyright 2009 Am. Chem. Soc
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OFF-ON process for the fabrication of Bi nanowires. A Bi thin film was initially

deposited onto a thermally oxidized silicon substrate. Then the film was heated to

about 270 �C and kept at this temperature for about 10 h to generate thermal stress.

As can be seen from Fig. 7.2b, c, single-crystal Bi nanowire with [001] orientation

was obtained after annealing. The diameter of nanowires is tunable by controlling

the mean grain size of the film, which is dependent upon the thickness of the film.

However in the growth of Bi2Te3 nanowires by the same mechanism, the nanowires

are single crystalline but with [110] growth orientation. These results demonstrate

that the OFF-ON technique can be used to grow wires with different

compositions [47].

Bi-Te core/shell nanowires and Bi/Bi14Te6 axial heterostructure nanowires were

also fabricated by using this OFF-ON method combined with post-processing

[48, 49]. For the synthesis of Bi-Te core/shell heterostructure nanowires, Bi

nanowires was first growth from a Bi thin film using the OFF-ON method men-

tioned above, then Te film with 30 nm in thickness was deposited in situ onto the Bi

nanowires using radio frequency magnetron sputtering at room temperature, Bi-Te

core/shell nanowires with smooth or rough interface can be achieved just by

changing the substrate temperature and the power of radio frequency magnetron

sputtering. For the growth of Bi/Bi14Te6 axial heterostructure nanowires, a thin Te

layer (in their experiment, the total volume of Te with respect to Bi is limited to

approximately 20 %) was first deposited on the fabricated Bi nanowires by tilting

and rotating the sample during low power deposition. Next, the Te-coated Bi

nanowires were annealed at 310 �C. Bi/Bi14Te6 multi-segmented nanowires were

formed based on the thermodynamics of supersaturated phase.

7.2.3 Other Methods

Although the abovementioned two methods are simple and inexpensive in fabri-

cating 1D nanostructures, the low-yield nature of them makes it difficult in the

measurement of the thermoelectric property and blocks the further commercial

applications. Consequently, the exploration of other methods with large-scale

production is needed. Many researchers have devoted to fabricate high-output

and high-performance 1D nanostructured materials. For example, Zhang

et al. focused their research on Bi2Te3-related nanomaterials and developed an

ethylene glycol-mediated solution-phase method, and Bi2Te3 nanotubes, ultrathin

n-Type Bi2Te3 nanowires with 5 nm in diameter, and Te-based nanowire

heterostructures have been obtained [50–52]. Our group also developed a simple

solvothermal for the preparation of large-scale Bi nanowires [53]. However, we are

not going to introduce these methods in details; readers can realize these from

references [11, 54, 55].
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7.3 Thermoelectric Properties of 1D Bi-Based

Nanostructures

There are two different methods in measuring thermoelectric properties of 1D

Bi-based nanostructures, i.e., the ensemble measurement on 1D nanostructure arrays

and measurement on individual 1D nanostructure. Measurements on a single 1D

nanostructures are important in studying quantum and classical size effects, while

ensemble measurements promote the ultimately realization of the benefits of nano-

structured components in thermoelectric devices.

7.3.1 Semimetal-to-Semiconductor Transition

Theoretical investigation reveals a semimetal-to-semiconductor transition appeared

in Bi nanowires when the wire diameter shrinks to the order of 40–50 nm at 77 K,

which depends on the crystalline orientation of the wires [56]. Consequently, Bi

nanowire arrays with different diameters were fabricated in order to investigate the

semimetal-to-semiconductor transition phenomenon in Dresselhaus’ group, and they

found a semimetal-to-semiconductor transition at a diameter of around 65 nm [57],

which coincides with the modelling calculations. Temperature-dependent measure-

ments of the resistance of single-crystalline Bi nanowire arrays also were performed

by our group, and a clear transition was observed when the diameter of Bi nanowires

decreased from 90 to 50 nm [58]. Systematic studies on the physical properties of

individual single-crystalline bismuth nanowires are very difficult due to the oxidation

nature when the wires are released from the template [59]. Recently, Lee and

co-workers grew single-crystalline Bi nanowires with small diameters down to

20 nm by their OFF-ON method, and the measurements of the electrical transport

property of individual nanowires and the temperature-dependent resistance of indi-

vidual Bi nanowires indicate a semimetal-to-semiconductor transition when the

diameter of Bi wires turns to 63 nm [60]. Transport measurements on 65 nm Bi1-xSbx
show a complex behavior in R(T)/R(270 K) as a function of x and T, providing a

signature of the semimetal-to-semiconductor transition in Bi-based systems [61].

Semimetal-to-semiconductor transition phenomenon was also observed in Bi

nanotubes by our group [33]. The temperature dependence of the resistance R(T ) of
Bi nanotube arrays is shown in Fig. 7.6. From Fig. 7.6a, one can see that all the three

kinds of nanotubes that have the same wall thickness but different diameters exhibit

obvious negative temperature coefficient of resistance, indicating a semiconductor

character. From Fig. 7.6b, one can see that a typical semimetal–semiconductor

transition occurs as the wall thickness of Bi nanotubes decreases from 100 to 15 nm.

Our following theoretical calculation work conforms to our experiment results

nicely [62]. The calculations are based on the Boltzmann transport equation in

the constant-relaxation-time approximation. The results predicate a phase diagram

of the semimetal-to-semiconductor transition, as shown in Fig. 7.7, in which the
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dependence of the critical thickness on diameter was demonstrated for Bi nanotubes

oriented along 10�11½ � growth direction at 77 K. From this figure, one can see that

the critical thickness of the transition from semimetal to semiconductor for Bi

nanotube first increases and then decreases as the diameter varies from 48.7 to

270 nm, where 48.7 nm is the critical diameter of the transition from semimetal

to semiconductor for Bi nanowires oriented along the 10�11½ � direction at 77 K.

Fig. 7.6 Temperature dependence of the normalized electronic resistances of Bi nanotube arrays

(a) with the same wall thickness 15 nm and different diameters and (b) with the same diameter of

250 nm and different wall thicknesses. Reproduced with permission from [33]. Copyright 2006,

American Institute of Physics

Fig. 7.7 Phase diagram of the semimetal-to-semiconductor transition of Bi nanotubes oriented

along the 10�11½ � growth direction at 77 K. The solid circles represent the experimental results, the

dotted lines are two assistant lines, and the symbol * refers to the position of 48.7 nm diameter

nanowires in which the semimetal-to-semiconductor transition occurs for Bi nanowires.

Reproduced with permission from [62]. Copyright 2011, American Institute of Physics
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7.3.2 Ensemble Measurements on 1D Nanostructure Arrays

7.3.2.1 Measurements of Seebeck Coefficient

The Seebeck coefficient (S) is defined as S ¼ ΔV/ΔT, where ΔT is the temperature

gradient of the sample, and ΔV is the thermal electromotive force generated by ΔT.
Seebeck coefficient measurements on arrays are in theory as similar as single 1D

nanostructure measurements since the S measurement is intrinsically independent of

the number of nanowires or nanotubes contributing to the signal [61]. A typical

measurement on arrays for Bi2Te3 nanowires is shown in Fig. 7.8 [63]. Briefly, a

gold layer is sputtered for an enhanced electrical and thermal contact. The embedded

AAO template is placed between two copper blocks where a temperature gradient

is applied. After reaching a constant gradient, the voltage along the nanowires is

measured. Using this method, the Seebeck coefficients of Bi, Bi0.95Sb0.05 and Bi2Te3
nanowire arrays were measured [29, 61, 63–65]. However, an enhancement of

Seebeck coefficient in the nanowire arrays could not be observed so far.

7.3.2.2 Thermal Conductivity

Thermal conductivity of Bi-based nanowire arrays has also been studied by some

groups. Conventionally, the thermal conductivity of the filled template and empty

template are both obtained, and then, the thermal conductivity of nanowire arrays

can be calculated using an effective medium mode: kc ¼ x kNW + (1-x) km where

x is the area packing density of the nanowire array and kc, kNW, and km are the

thermal conductivity of filled template, nanowire arrays, and empty template,

respectively. Different methods were used to characterize the thermal properties.

For example, Chen et al. used laser flash equipment to measure the thermal

diffusivity; the thermal diffusivity of Bi2Te3 nanowires was calculated based on

modified effective medium theory model, the heat capacity was determined by a

differential scanning calorimeter, and finally the thermal conductivity of the

nanowire arrays was calculated by κ ¼ λρ Cp where λ, ρ, and Cp are, respectively,

the thermal diffusivity, density, and heat capacity of the nanowires [63]. They got a

smaller κ ¼ 0.75 W/mK at 300 K for nanowires, which is about one-third of that of

bulk. In order to reach a nanometric lateral spatial resolution, Rojo et al. performed

a versatile and straightforward technique called 3ω-SThM method to measure

Fig. 7.8 Schematic setup

for Seebeck coefficient

measurements on nanowire

array of AAO. Adapted with

permission from [63]

Copyright 2010

Am. Chem. Soc
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composite sample which made of a Bi2Te3 nanowires array embedded in an

alumina matrix equivalent thermal resistance [66], using the effective medium

model shown above, they estimate the thermal conductivity of the nanowires to

be 1.37 � 0.20 W/mK. Considered that the thermal conductivity of AAO template

is comparable to that of the Bi2Te3 nanowire array, Biswas et al. replaced the AAO

matrix with SU-8 to minimize the parasitic thermal conduction [67]. The fabrica-

tion details can be found in ref. [67]. Using a photoacoustic technique, the thermal

conductivity of the nanowire array composites was measured. The effective thermal

conductivity of the Bi2Te3 nanowires in the composite is calculated to be

1.45 � 0.09 W/mK.

7.3.2.3 Harman’s Technique for ZT Measurement

Harman’s technique is a simple method for the direct measurement of the figure of

merit (ZT). This technique was first used to measure the thermal conductivity using

the Peltier effect by Harman et al. [68]; now it has been developed by many groups

as a preliminary method for the measurement of ZT. In this technique, a constant

current is run through the sample until a constant voltage is observed. Due to the

Peltier effect a temperature difference is established across the sample which in turn

establishes a Seebeck voltage in addition to the Ohmic voltage. The total voltage

across the sample is the sum of electrical voltage of Ohm’s law and Seebeck

voltage. When the current is turned off, the Ohmic voltage disappears instanta-

neously, while the Seebeck voltage drops slowly because of the heat dissipation and

heat capacity of the materials. The ratio of the Seebeck voltage and the electrical

voltage provides ZT [37, 69]. Using this method, Jennifer Keyani and Angelica

M. Stacy get a ZT ¼ 0.12 at room temperature for hybrid Bi0.3Sb0.7 nanowire

array–Bi0.4Sb1.6Te3 bulk thermoelectric device [70], while Penner et al. obtained

a maximum ZT ¼ 0.82 for a single Bi2Te3 nanowire [69].

It should be noted that Harman’s technique is not a precise method due to the

thermal loss of the nanowires and the restriction in accuracy of the instrument.

7.3.3 Thermoelectric Properties of Individual Nanowires

Along with the advance of the micro-processing techniques, substantial progress has

been achieved in the thermoelectric measurements on the individual nanowires

[1, 71–76]. Among these techniques, the suspended microelectromechanical system

(MEMS) technique developed by Shi et al. arousedmuch attention [71, 74]. Figure 7.9

shows the microdevice for characterization of single-wire thermoelectric [75]. The

device is a suspended structure consisting of two adjacent low-stress SiNx mem-

branes, each suspended with six SiNx beams. A platinum resistance thermometer

serpentine is designed on each membrane connected to four Pt electrodes. Two

additional Pt electrodes are designed on each membrane to provide electrical contact
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to the nanowire. An individual nanowire can be placed between the two membranes

of the suspended device and on top of the four pre-patterned Pt electrodes with a sharp

probe, or dropping a nanowire solution for measurements. One common challenge in

the microfabrication process is to ensure reliable thermal and electrical contact

between the nanowire and electrodes. Focused ion beam (FIB) technique is usually

used to remove oxides of the nanowire and deposit small metal pads on top of the

nanowire–electrode contacts in order to improve thermal and electrical contact.

A reduction of thermal conductivity in individual 1D Bi-based nanostructure is

reported in many studies. For example, Moore et al. find that the thermal conduc-

tivity of a single-crystal bismuth nanowire with a diameter of 232 nm is 3–6 times

smaller than their bulk counterpart [77]. Their findings also reveal that the crystal

structure influences the nanowire thermal conductivity [77]. In order to demonstrate

the influence of the growth direction on the nanowire thermal conductivity, Lee and

co-workers determined the thermal conductivity of single-crystal Bi nanowires with

two different growth directions prepared via OFF-ON method [78]. Their findings

show that the thermal conductivity of the Bi nanowires with a growth direction of

[110] is about fourfold lower than that of the Bi nanowires with a growth direction

of �102½ � [78]. They also investigated the reduction of the lattice thermal conduc-

tivity of Bi-Te core/shell nanowires with rough interfaces by comparison study of

the thermal conductivity of Bi-Te core/shell nanowires with smooth and rough

interfaces [48]. Their results show that the thermal conductivity can be reduced to

0.43 W/m K by using rough interface Bi-Te core/shell nanowires [48]. In recent

research, they demonstrate that a low thermal conductivity of 0.92 W/m K

exhibited in 100 nm diameter Bi/Bi14Te6 multi-segmented nanowires [49].

Although a reduction of the thermal conductivity is observed by many

researchers, reported values on the thermoelectric power factor of individual

Bi-based nanowires are far below the corresponding bulk values. This was mainly

attributed to difficulties in controlling the chemical composition of nanowires.

Experimentally determined ZT values are only 0.02 at 300 K for 88 nm diameter

single-crystalline BixTe1�x nanowire and 0.13 at 411 K for 55 nm diameter

polycrystalline BixTe1�x nanowire [73, 75].

Fig. 7.9 A typical

prominent measurement

microdevice for individual

nanowire thermoelectric

characterization.

Reproduced with

permission from

[75]. Copyright 2009,

American Institute of

Physics
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7.4 Conclusions and Outlook

During the last decade, significant progresses have been achieved in thermoelectric

materials for energy conversion both in theory and experiment. 1D nanostructured

materials are considered to be a promising strategy for achieving high efficiency.

Numerous thermoelectric materials have been developed in recent years. Among

them, Bi-based materials are still a dominating material system in thermoelectrics.

Although great progress has been achieved in thermoelectric performance, there

are at least three pressing challenges for one-dimensional nanostructured materials.

The first and most immediate one is to obtain materials with ZT values higher than

their bulk counterpart with lower cost [55], since ZT determines the conversion

efficiency and cost dictates the future commercialization. To address this challenge,

novel strategies and synthesis routes should be developed. The second challenge is

to measure individual nanowire in a more accurate, convenient, and economic way.

The last one is to study and optimize long-term stability, interdiffusion, and

coarsening of nanostructures [79], as the thermoelectric materials generally work

at high temperatures and temperature gradients.
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Chapter 8

Cerium-, Samarium-, Holmium-Doped

Bi88Sb12

Cyril P. Opeil and Kevin C. Lukas

Abstract Bi88Sb12 alloy has been doped with 0, 0.066, 0.66, 1.32, and 3.91 % Sm

and prepared under two different fabrication conditions. The first being ball milled

for 12 h and hot pressed at 240 �C and the second ball milled for 6 h and hot pressed

at 200 �C. The results are in agreement with previously studied Ce and Ho samples

prepared under similar conditions. A slight ZT enhancement is seen due to doping

which is an effect of an enhanced Seebeck coefficient as a result of a decrease in the

carrier concentration. The enhancement does not appear to be caused by the magnetic

moments of Ce, Sm, and Ho based on the similar change to the gap size with the

widely varyingmagneticmoments of the dopants. In addition, lattice thermal transport

in these materials was investigated experimentally and theoretically where phonon

dispersions were obtained from first principle calculations, and semiclassical models

were used to calculate phonon lifetimes. We have not observed a strong thermal

conductivity dependence on the type of the impurity.

8.1 Introduction

This chapter discusses the electrical and thermal transport properties of Sm-doped

Bi88Sb12. Similar studies were done with the addition of both Ce and Ho and show

comparable effects on the transport properties.

Bismuth–antimony alloys have long been noted for their beneficial thermoelec-

tric properties below room temperature since the initial measurements by Smith and

Wolf [1, 2]. Thus far they have the highest figure of merit, ZT, below 200 K making

them the best candidate for the n-type leg of thermoelectric refrigeration

devices [3].
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As group V semimetals bismuth and antimony form a solid solution over the entire

composition range leading to many interesting physical features [4]. Lenoir

et al. described in detail the changes in electronic band structure depending on the

antimony content for Bi1-xSbx alloys [4]. The band structure for bulk Bi1-xSbx is

shown in Fig. 8.1. The solid solution is semimetallic when the Sb concentration

is x < 0.07 and x > 0.22, while the alloy is semiconducting inside the region 0.07 <
x < 0.22 [4–9]. The best thermoelectric properties are found for single crystals, with

0.09 < x < 0.16, when measured parallel to the trigonal axis [4, 10, 11]. The very

small bandgap in the semiconducting region, specifically the direct energy gap at the

L point, along with the quasi-ellipsoidal electron Fermi surface leads to small electron

effective masses, high electron mobilities, and a non-parabolic dispersion relation

[3]. The small direct energy gap at the L point leads to the dependence of the

band structure on many different physical parameters including alloy composition

[5, 12, 13], temperature [14], magnetic field [15, 16], and pressure [17, 18].

Single crystals exhibit the best transport properties, but they are difficult to grow

and are mechanically weak making them unlikely candidates for commercial use.

Several techniques for synthesizing polycrystalline BiSb have been studied, but

none demonstrate a higher value for ZT than single crystals. These methods include

arc plasma [19], quenching [10], mechanical alloying [20], powder metallurgy [21],

and doping [22, 23]. Devaux et al. [19] studied the effects of grain size on the

thermoelectric properties, specifically investigating the decrease of the lattice

component of the thermal conductivity with the reduction of grain size. While the

thermal conductivity was reduced due to phonon scattering, there was no benefit to

ZT due to increased resistivity, as has also been seen in nanosized grains

[24, 25]. Though it was initially thought that doping BiSb alloys would not enhance

the transport properties, it was demonstrated in a few previous studies that doping

impurities into BiSb can be another method for ZT enhancement [26].

We doped Ce, Sm, and Ho into Bi88Sb12 to study the effects of introducing a

magnetic impurity into BiSb alloys [27]. While the ultimate goal was to study the
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magnetotransport properties, a slight enhancement was discovered in zero magnetic

field. As mentioned above the band structure of BiSb alloys is very sensitive to

different physical parameters, and changes at low temperatures have been

interpreted as arising from lattice distortion as well as from varying spin–orbit

interactions that arise from alloying [4]. Both Ho and Ce have a relatively large

magnetic moment which could affect the spin–orbit interaction and therefore the

band structure leading to enhanced transport properties. Samarium has a smaller

magnetic moment while having an ionic mass in between that Ho and Ce. Therefore

any difference in transport properties due to the differences in magnetic moment

should be readily noticeable. The present study includes Sm-doped Bi88Sb12 alloys

synthesized under similar conditions and doping percentages for both Ho- and

Ce-doped Bi88Sb12. The data for the Ce- and Ho-doped samples are similar to the

Sm samples prepared under the same fabrication conditions.

8.2 Experimental

Nano-polycrystalline Bi88Sb12 samples were prepared by ball milling and dc

hot-pressing techniques described previously [27]. Two sets of samples were

prepared using elemental chunks of bismuth (Bi) (99.99 %, Alfa Aesar), antimony

(Sb) (99.99 %, Alfa Aesar), samarium (Sm) (99.9 %, Alfa Aesar), cerium

(Ce) (99.9 %, Alfa Aesar), and holmium (Ho) (99.9 %, Alfa Aesar) according to

the atomic composition Bi88Sb12Cey (y ¼ 0, 0.07, 0.7, and 4.2), Bi88Sb12Smy

(y ¼ 0, 0.066, 0.66, 1.32, and 3.93), and Bi88Sb12Hoy (y ¼ 0, 1, and 3). One set

of Sm samples was prepared, identically to the Ho-doped samples, by ball milling

elemental chunks with the proper stoichiometric ratio for 12 h to form a powder

which was hot pressed at 240 �C, thereby creating a disk approximately 4 mm thick

and 12 mm in diameter. For simplicity these samples are labeled 0.06Sm, 0.6Sm,

1Sm, and 3Sm. The second set of samples was prepared, just as the Ce-doped

samples, by melting the constituent elements in quartz tubes for 6 h at 450 �C and

then quenching the solution in water to form an ingot. The ingot was then placed in

a high-energy ball mill for 6 h and then pressed at a temperature of 200 �C.
From the pressed disks, two samples were cut to measure the thermoelectric

properties where all transport properties were measured perpendicular to the press-

ing direction (parallel to the disk face). Samples cut in dimensions 2 � 2 � 4 mm

were then polished, chemically etched in a bromine solution, and metallic contacts

were sputtered onto the faces. Gold-coated oxygen-free high conductivity (OFHC)

copper disks provided by quantum design were soldered to the sputtered metallic

contacts. Thermoelectric transport properties including the Seebeck coefficient (S),
electrical resistivity (ρ), and thermal conductivity (κ) were measured in the standard

two-probe method, from 5 to 350 K using the thermal transport option of the

physical property measurement system (PPMS) from quantum design (QD).

A second sample was used to determine the Hall coefficient (RH). The Hall

coefficient was also determined using the PPMS under a magnetic field of 9 T
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and a current of 20 mA. The Hall samples were rotated 180o in field using the

QD-PPMS AC rotator option, thereby averaging out any anomalous effects on the

measurement due to the field. Platinum wires (2 mil) were spark welded to the Hall

samples, with typical dimensions of 1 � 2 � 11 mm, in a five-wire configuration.

The carrier concentration (n) was determined directly from the Hall coefficient

using the relation RH ¼ 1/nq where q is the electronic charge. Resistivity was

measured using a standard four-point probe technique, with the same sample and

orientation used to attain the Hall coefficient, and Hall mobility (μH) was calculated
from RH/ρ. X-ray diffraction was performed (Bruker AXS) to ensure that the

powders were alloyed into a single phase, and SEM (JEOL 7001 F) images were

taken from freshly fractured surfaces to observe the effects of grain growth during

pressing. The magnetic susceptibility (χ) was measured in a magnetic field of

0.1 T using a vibrating sample magnetometer (VSM) in the PPMS by our collab-

orators at the National Magnet Lab in Florida and Los Alamos National Laboratory.

The lattice portion of the thermal conductivity was measured directly using a

classically large magnetic field to completely suppress the electronic portion of κ,
as previously described [37].

8.3 Discussion

Sm-doped samples were prepared at various doping concentrations and through

both fabrication methods. The 240 �C hot-pressed samples will be discussed in

detail in this chapter, and it can be shown that the data matches quite well with the

similarly prepared Ho-doped samples. Second the transport properties of the 200 �C
hot-pressed samples can be shown to correlate well with what was seen in the study

of Ce-doped Bi88Sb12. A qualitative analysis similar to that used previously will be

given since both the non-parabolic energy-momentum dispersion relation and the

narrow bandgap make a quantitative analysis of the transport properties of BiSb

alloys very difficult [3, 4].

Figure 8.2 shows the XRD pattern for the samples hot pressed at 240 �C and

demonstrates that the material is single phase within the resolution of the system.

SEM images are shown in Fig. 8.3 where it is seen that all doping concentrations,

other than 3Sm, have similar grain sizes. The highest doping concentration has a

much different microstructure where the grains appear to be much smaller. This

difference was also seen in the highest percentage of the Ce-doped samples

[28]. The difference at the highest doping concentration could be due to the low

solubility of Sm in Bi, based on the Bi-Sm phase diagram; therefore, it is reasonable

that the solubility would be low in the Bi-rich alloy Bi88Sb12.

The magnetic susceptibility of the Ce- and Ho-doped samples is plotted against

temperature in Fig. 8.4. The magnetic susceptibility is measured to ensure that the

proper ratio of magnetic impurities is, in fact, in the sample. Problems arose in the

VSM with our collaborators when trying to measure the Sm samples; based on

the results of the Ce and Ho samples shown in Fig. 8.4 and the similarity between
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the Ce-Bi, Sm-Bi, and Ho-Bi phase diagrams, it is reasonable to assume as a first

approximation that the intended percentage of Sm actually was incorporated into

the sample. BiSb is typically diamagnetic; however, it can be seen that the values

for χ in Fig. 8.4 are in fact positive demonstrating that the sample is paramagnetic.

The shift to paramagnetism is due to the increased number of free carriers; as

discussed below, free electrons are known to enhance paramagnetism [29]. The

susceptibility is found to increase with increasing Ce and Ho doping concentration,

as is expected from the introduction of magnetic impurities, demonstrating that Ce

Fig. 8.3 SEM images for samples Bi88Sb12 (a), 0.06Sm (b), 0.6Sm (c), 1Sm (d), and 3Sm (e)
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and Ho are in fact assimilated into the solid solution. High enough temperatures

could not be reached to perform an accurate Curie–Weiss fit for the magnetic

susceptibility. However, it is interesting to note that we can still fit the data, though

inaccurately, using the Curie–Weiss expression [29]:

χ ¼ χm þ C

θ � T
(8.1)

where χm is the diamagnetic susceptibility, θ is the Curie temperature, T is the

absolute temperature, and C is a constant dependent upon the atomic mass of the

magnetic impurity, the total J spin state, and concentration of magnetic impurities

in the sample. The atomic mass is constant, and the value for J should remain

unchanged, leading C to depend only on the impurity concentration. If Fig. 8.4 is fit

using (8.1), the values for C can be calculated. While the fit is poor (1/χ vs. T is

nonlinear), the value for C scales with the Ce and Ho impurity concentration. This

observation gives confidence that these impurities are not only assimilating into the

BiSb solid solution but also being incorporated in the solid solution according to the

desired atomic ratios.

Electrical resistivity values for all samples are plotted versus temperature in

Fig. 8.5. From 5 K to approximately 100–200 K (depending on doping concentra-

tion), values of ρ for all samples, except 3Sm, increase with increasing temperature.

This typical metallic-like behavior is due to an impurity band located in the

conduction band; this impurity band has been experimentally measured and

described by Lenoir et al. [3, 4]. The impurity density dominates ρ values up to a

maximum at which point the temperature becomes high enough to excite carriers

from the valence band to the conduction band across the thermal energy gap [4].

In this regime the intrinsic carrier concentration begins to dominate and all samples

exhibit classical semiconducting behavior.
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Values for ρ increase as the doping concentration is increased. Using a similar

analysis to that of Lenoir, the thermal energy gap can be estimated using Arrhenius’

law [4]:

ρ ¼ ρo exp � ΔEg

2kBT

� �
(8.2)

where ρo is the zero temperature resistivity, kB is Boltzmann’s constant, T is the

absolute temperature, and ΔEg is the thermal gap size. Table 8.1 includes gap sizes

from Sm samples as well as the previously studied Ho and Ce samples. It should

be noted that the energy gaps for the parent compounds of both the Ce- and

Ho-doped samples, 32 meV, are in agreement with previously determined gap

sizes for similar stoichiometries [3, 4]. The parent compounds for the Sm-doped

samples, however, exhibit more semimetallic behavior and have a negligible gap

size. One possible explanation is that the sample is slightly off the desired Bi88Sb12
stoichiometry, and, as previously discussed, the band structure of BiSb is highly

dependent on Sb concentration [5, 12, 13]. In the present study, it is the relative

change that is important, and for that reason each independently prepared set of
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Table 8.1 Estimated thermal energy gap, Eg, using (8.2) for Ce, Sm, and Ho doped samples under

different fabrication conditions for ball milling (BM) time and hot pressing (HP) temperature

Doping
%

0
Sm

0.066
Sm

0.66
Sm

1.32
Sm

3.93
Sm

0
Sm

.066
Sm

.66
Sm

1.32
Sm

3.93
Sm

0
Ce

.07
Ce

.7
Ce

34.2
Ce

0
Ho

1
Ho

3
Ho

BM (hours) 12 12 12 12 12 6 6 6 6 6 6 6 6 6 12 12 12

HP (oC) 240 240 240 240 240 200 200 200 200 200 200 200 200 200 240 240 240

Eg(meV) - 17 40 40 47 - 40 47 44 45 32 41 42 44 30 40 47
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samples (Ho, Ce, Sm) are doped from the same initial batch and the parent for each

set is always measured. The addition of the smallest amount of Sm increases the gap

size, and the energy gap is further increased with increasing Sm doping, reaching a

maximum value of 47 meV for sample 3Sm. Similar results are found for both the

Ce- and Ho-doped samples as shown in Table 8.1.

The Hall coefficient is negative for all samples over the entire temperature range,

signifying that the dominant carriers are electrons. The carrier concentrations and

mobilities plotted in Fig. 8.6 are in agreement with the impurity band model. The

carrier concentration values are relatively constant at lower temperatures, where

charge transfer is dominated by an impurity band, and the carrier density due to

impurities should be independent of temperature. At higher temperatures kBT is

near the energy required to excite carriers from the valence to the conduction band,

and electronic conduction is due to both electrons and holes in this intrinsic region

of the semiconductor, where values for ρ begin to decrease as the temperature is

increased. In the intrinsic region the single-carrier expression for the Hall coeffi-

cient, RH ¼ 1/nq, is no longer valid and must be replaced by the two-carrier

expression RH ¼ 1/(n + p)q [30]. The carrier concentration is much higher than

previously reported values for single crystals at low temperatures [31] which leads

to positive χ values as discussed above. The carrier concentration is slightly

decreased with the addition of 0.066 % Sm doping and further decreased with

0.66 % and slightly further with 1.32 % Sm addition. The widening of the bandgap

explains the decrease in carrier concentration. Sample 3Sm has a carrier concen-

tration slightly greater than the parent compound which is due to the fact that there

is an increased number grain boundaries, as seen in Fig. 8.3, and this increase in

grin boundaries leads to an increased number of carriers [34].

The magnitude of the mobility at lower temperature is very high due to the

non-parabolic band structure and quasi-ellipsoidal Fermi surfaces of Bi-rich BiSb

alloys [4]. From lower temperature, in the metallic-like regime, the mobility

slightly decreases as the temperature increases, which leads to increasing values

for ρ with T. The mobility is unchanged by the addition of 0.066 % Sm and

decreased by the addition of 0.66 and 1.32 % Sm. The introduction of 3.93 % Sm

drastically reduces the mobility which could be due to both increased

0 100 200 300 400

5.0x1018

1.0x1019

1.5x1019

2.0x1019 Bi88Sb12

Bi88Sb12Sm0.066

Bi88Sb12Sm0.66

Bi88Sb12Sm1.32

Bi88Sb12Sm3.93

C
ar

rie
r 

C
on

ce
nt

ra
tio

n 
(c

m
-3

)

Temperature (K)
10 100

1000

10000

M
ob

ili
ty

 (
cm

2 V
-1

s-1
)

Temperature (K)

Fig. 8.6 Carrier concentration (left) and carrier mobility (right) for all Sm-doped samples plotted

against temperature

262 C.P. Opeil and K.C. Lukas



electron–electron interactions from the higher carrier concentration as well as the

decreased carrier mean free path due to the smaller grain sizes as seen in the SEM

images. It is interesting to note that there is a slight peak in the μH versus T plot for

samples 0.6Sm and 1Sm, which could be an evidence of a change in the scattering

parameter since μH is proportional to Ts-1 where s is the scattering parameter. Another

possible explanation for the peak in the mobility, which is found in the temperature

range where the electrical conduction is intrinsic, is that there is a slight alteration of

the band structure due to the Sm doping; as shown in Table 8.1 the gap size increases

with increasing Sm doping. It is possible that initially only highly mobile carriers

from the L valence band [4] contribute to electrical transport, and then as the

temperature rises above 175 K the other heavier valence H and T bands [4] begin

to contribute holes leading to identical mobility values as the parent compound.

There are identical peaks in the optimally doped Ho and Ce Bi88Sb12 [27, 28].

The Seebeck coefficient versus temperature is plotted in Fig. 8.7 and is negative

over the entire temperature range, confirming that electrons are the dominant

carriers. The data qualitatively agrees quite well with the impurity band model.

At lower temperatures the thermopower for all samples varies linearly with T which

is typical of a degenerate system and is expected based on the metallic-like

temperature dependence of the resistivity. The Seebeck coefficient increases with

decreasing carrier concentration as the doping concentration is altered from 0.06Sm

to 1Sm, typical of diffusive transport. As the temperature increases, carriers from

the valence band are excited into the conduction band and the intrinsic semicon-

ducting properties begin to dominate leading to a maximum in the S vs. T plot.

While in the intrinsic region the electrical conductivity can be written as the simple

sum of the hole and electron conductivities, the Seebeck coefficient is given as

S ¼ Shσh þ Seσe
Sh þ Se

(8.3)
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where Sh and Se are the hole and electron contributions to the Seebeck coefficient

and σh and σe are the hole and electron contributions to the electrical conductivity,

respectively. The fact that S remains negative even at higher temperatures is

evidence that the hole conductivity is not the dominant contribution to the total

electrical conductivity; this is in agreement with previous studies which demon-

strate that the hole mobilities are much lower in alloyed BiSb than in pure Bi [4].

The temperature dependence of the total thermal conductivity (κtotal) is plotted in
Fig. 8.8 for all samples where κtotal decreases with increasing Sm doping concen-

tration due to the Sm atoms scattering phonons, and for sample 3Sm the reduction

in κ is due to the increased number of grain boundaries as well. The total thermal

conductivity is given by the sum of the individual contributions from the lattice and

the carriers. For semiconducting materials the carrier contribution is given by the

sum of both unipolar and bipolar terms [32]. Therefore κtotal can be written as [32]

κtotal ¼ κι þ κe þ κb (8.4)

where κι, κe, and κb are the lattice, electronic, and bipolar thermal conductivities,

respectively. The total thermal conductivity rises from lower temperatures up to a

maximum at around 20 K and then decreases down to a minimum before rising

again as temperature continues to increase. The maximum at lower temperatures is

typical of the interplay between different phonon scattering mechanisms [33]. The

increase in κtotal at higher temperatures is due to the bipolar contribution and can be

seen to occur at the same temperature at which the magnitude of the Seebeck

coefficient begins to decrease.

ZT is plotted in Fig. 8.9 for all Sm-doped samples, and ZT increases with

increasing Sm doping for all samples except 3Sm. The enhancement comes from

the slight decrease in thermal conductivity as well as the increased Seebeck

coefficient which is a result of the decreased carrier concentration. Sample 3Sm
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has a ZT value that is drastically lower than all samples which is completely due to

the reduced mobility which both increases ρ and decreases S.
Figure 8.10 plots all transport data for the Sm-doped samples prepared via ball

milling for 6 h and hot pressing at 200 �C. The results are similar to the Sm samples

that were ball milled for 12 h and presented in Figs. 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8,

and 8.9 and can be analyzed in the same manner. The electrical resistivity, shown in

Fig. 8.10a, increases with increasing Sm concentration; the largest change in the

resistivity is due to the lowest doping concentration. Figure 8.10b plots the tem-

perature dependence of the Seebeck coefficient where the largest enhancement in

the magnitude of S is due to the lowest doping concentration along with a shift

in the peak of S to lower temperature. The total thermal conductivity is plotted in

Fig. 8.10c and is seen to decrease with increasing Sm doping. The overall effect on

ZT is plotted in Fig. 8.10d where there is a slight enhancement at the lower doping

concentrations based on the enhancement in S and reduction in κtotal. The main

difference between the two sets of Sm samples lies in that the transport properties

are most drastically changed by the lowest doping concentration for the 200 �C
hot-pressed samples.

The results in Fig. 8.10 are identical to those of the Ce-doped samples prepared

under the same conditions [28], while the results for the Sm-doped samples prepared

by ball milling for 12 h and hot pressing at 240 �C are the same as the Ho-doped

samples [27]. The difference in the transport properties between the two different

preparation methods is most likely due to the difference in ball milling time. It is

known that high-energy ball milling enhances the solubility of materials [34]. Also,

there is no solubility at room temperature of Ce, Ho, and Sm in Bi according to the

phase diagrams. It is likely that Bi-rich Bi88Sb12 will have a solubility close to that

of pure Bi, and therefore it is reasonable that the transport properties are enhanced at

a higher doping concentration with longer ball milling times.

The present study of Ce-, Sm-, and Ho-doped Bi88Sb12 shows similar enhance-

ments in thermoelectric transport properties. From the current study it is believed
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that the differences in the effects of doping percentage are due to the difference in

ball milling times. As mentioned previously Ce, Sm, and Ho all have quite different

magnetic moments with effective Bohr magneton moments of 2.4, 1.5, and 10.4,

respectively [35]. The fact that the transport properties are all similarly affected

seems to lead to the conclusion that it is not the magnetic moment that is responsible

for this enhancement. Fe has a similar moment to that of Ce and was also doped into

the Bi88Sb12 alloy. While the resistivity increases, there is no enhancement of the

Seebeck coefficient which further confirms that the change in transport properties is

not due to the magnetic moments of the impurities. From this study it seems

probable that the changes seen in the Ce-, Sm-, and Ho-doped samples are due to

some other effect, likely a mass effect, though further investigation is required.

8.4 Separation of κlattice and κcarrier

At lower temperatures, T < 100 K, the bipolar contribution is negligible and κtotal
is the sum of κcarrier and κlattice. Because the mobility is so high in BiSb alloys, the

condition for a classically large magnetic field μB >> 1 is satisfied for an

0 100 200 300 400
0

2

4

6

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

m
-1

K
-1

)

Temperature (K)

0 100 200 300 400

-150

-100

-50

0

S
ee

be
ck

 C
oe

f. 
(μ

V
K

-1
)

Temperature (K)

0 100 200 300 400

1.0x10-5

2.0x10-5

3.0x10-5 Bi88Sb12

Bi88Sb12Sm0.066

Bi88Sb12Sm0.66

Bi88Sb12Sm1.32

Bi88Sb12Sm3.93

R
es

is
tiv

ity
 (
Ω

m
)

Temperature (K)

0 100 200 300 400

0.0

0.1

0.2

0.3

Z
T

Temperature (K)

a b

dc

Fig. 8.10 The temperature dependence of the resistivity (top left), Seebeck coefficient (top right),
thermal conductivity (bottom left), and ZT (bottom right) for all Sm-doped samples prepared at a

hot pressing temperature of 200 �C

266 C.P. Opeil and K.C. Lukas



experimentally accessible magnetic field of 9 T, and κcarrier and κlattice can be

separated using a magnetic field. This technique, described in detail previously

[37], is used to directly measure κl below 100 K. At higher temperatures, due to

large electron–phonon coupling and low electron mobility, it is challenging to

separate the contributions of the electrons and phonons. The data are fitted using

a methodology which is previously described by Zebarjadi et al. [36]. The model

uses the full phonon dispersion calculated from first principles and combines that

with phenomenological models to calculate phonon lifetimes. We have discussed

before that such modeling is advantageous to Debye-type modeling and gives more

reliable estimation of the phonon mean free path. For the phonon dispersion of the

BiSb alloy, first principle and virtual crystal approach were used. First, we calculated

force-displacement data in 4 � 4 � 4 supercells of pure Bi and Sb using ABINIT

package [38]. Because of strong spin–orbit interaction in Bi and Sb, spin–orbit

interaction was included with HGH pseudopotential [39]. Convergence of the results

with respect to supercell size, cutoff energy (15 Ha), and k mesh (4 � 4 � 4) was

carefully checked. Then, harmonic force constants of pure Bi and Sb were extracted

from the force-displacement data sets [40]. Finally, using the virtual crystal approx-

imation, harmonic force constants in BiSb alloy were obtained by interpolating

harmonic force constants in pure Bi and Sb [41]. The group velocities (v) were

calculated from the dispersion, and they were used to estimate the phonon lifetimes.

Three scattering mechanisms are included to calculate the frequency-dependent

relaxation times including phonon–phonon scattering (τph) [42], boundary scattering
(τBC), and isotope or mass fluctuation scattering (τiso) [43]:

τ�1 ¼ τ�1
BC þ τ�1

iso þ τ�1
ph ¼ v

lg
þ Ax4T4 þ Bx2T2exp

θD
2T

� �
; x ¼ ħω

kBT
(8.5)

where lg is the average grain size, kB is the Boltzmann constant, and A and B are

fitting parameters representing the impurity scattering strength and the

phonon–phonon coupling, respectively.

Figure 8.11 plots the lattice thermal conductivity as a function of temperature

along with the different phonon scattering mechanisms for both the parent com-

pound as well as sample 1Sm. From the plot it is seen that for both samples grain

boundary scattering dominates at lower temperatures (T < 10 K) while phonon

scattering is dominant at much higher temperatures (T > 100 K). In most of the

relevant temperature range (10 < T < 90 K) the impurity scattering from the

parent atom is dominant. This is themain reasonwhy the lattice thermal conductivity

is not sensitive to the additional dopants. In fact the parent BiSb has too many defects

and impurities in it so that the additional dopants only increase the impurity level

slightly, resulting in a minor change in the thermal conductivity. Theminor change is

still visible; note that Fig. 8.11 has logarithmic axis. Refer to Fig. 8.8 for comparing

the effect. We found that by slightly changing the impurity scattering strength, we

can explain the results for different Sm dopants. This is plotted in Fig. 8.12.

Theoretical fits have been shown with solid lines. Numbers in front of the theory

indicate the relative strength of the impurity scattering taking the first fit as one.
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Fig. 8.11 Temperature dependence of the lattice thermal conductivity plotted along with the

different phonon scattering mechanisms

Fig. 8.12 Theoretical fits to thermal conductivity data
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Again, the numbers are not directly proportional to the Sm impurity concentration

because of the presence of background impurities originally presented in the BiSb

parent sample. Results are similar for both the Ce- and Ho-doped samples and are

therefore not shown.

8.5 Conclusion

The Bi88Sb12 alloy has been doped with 0, 0.066, 0.66, 1.32, and 3.93 % Sm and

prepared under two different fabrication conditions, the first being ball milled for

12 h and hot pressed at 240 �C and the second being ball milled for 6 h and hot

pressed at 200 �C. The results are in agreement with Ce and Ho samples prepared

under similar conditions. A slight ZT enhancement is seen due to doping which is

the effect of an enhanced Seebeck coefficient as a result of a decrease in the carrier

concentration, most likely caused by a widening bandgap. The alteration of the

bandgap does not appear to be caused by the magnetic moments of Ce, Sm, and

Ho based on the similar change to the gap size with the widely varying magnetic

moments of the dopants.
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Chapter 9

Thermoelectric Properties of p-Type

Skutterudite Nanocomposites

Chen Zhou, Long Zhang, and Jeffrey Sakamoto

Abstract Skutterudite is a new family of compounds identified to be a promising

candidate for thermoelectric applications. Since the early 1990s, skutterudite-based

materials have undergone substantial technological development, making its way to

the next generation of thermoelectric devices for power generation and waste heat

recovery. Nanostructuring is one approach that could enable significant improve-

ments in thermoelectric performance by reducing the thermal conductivity while

maintaining the electronic properties. In this chapter, we present progress towards

realizing the potential of bulk skutterudites utilizing low dimensionality and

nanostructures with an emphasis on p-type skutterudites. We summarized the syn-

thetic approaches used to create skutterudite nanocomposites, namely, ball milling,

melt spinning, in situ formation, high-pressure torsion, and solvothermal and hydro-

thermal synthesis. The effect of nanostructuring on the thermal and electron transport

is also discussed.
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9.1 Introduction

Thermoelectric (TE)materials are those that utilize electrons and holes as the working

fluid to enable direct energy conversion between heat and electricity. There are

numerous benefits offered by TE technology: TE power generators can recover

waste heat into useful electricity, thus improving the overall efficiency of energy

utilization; TE coolers are silent, reliable, and free of toxic refrigerants and their

efficiency is size independent, which means that they can be miniaturized to provide

local cooling in places like integrated circuits and car seats.

From a material perspective, the efficiency of TE devices is closely related to the

dimensionless TE figure of merit (FOM) ZT, which is defined as

ZT ¼ S2σ

κ
T ¼ S2σ

κl þ κe
T (9.1)

where S is the Seebeck coefficient (also known as the thermopower), σ the electrical

conductivity, κ the thermal conductivity (κl: lattice thermal conductivity; κe: elec-
tronic thermal conductivity; κ ¼ κl + κe), and T the temperature. Thus, the higher the

ZT, the greater the TE performance. The benchmark of a promising TE material is

related to many factors. But in terms of ZT, materials with a ZT ¼ 1 are generally

considered good TE materials. However, nowadays it is not uncommon to find

materials with ZT > 1 in bulk materials from several material systems [1–11] and

even up to ZT ¼ 2.2 in Na-doped p-type PbTe that utilizes multiple-scale phonon

scattering strategy [12]. The physical quantities of S, σ, and κ are intricately related to
each other, which makes increasing ZT much more complicated than the appearance

of (9.1). For example, insulators may have a large Seebeck coefficient and low

thermal conductivity but have low electrical conductivity; on the other hand, metals

are good electrical conductors, but they also conduct heat well and suffer a low

Seebeck coefficient of only a few μVK�1. It is found that semiconductors have the

best compromise and tunability among S, σ, and κ in order to achieve a high ZT value.

For this reason, good TE materials are usually heavily doped semiconductors.

The skutterudite is an example of a semiconductor that was identified as a good

candidate for TE applications in the early 1990s [13, 14] and has since progressed

into numerous working prototypical systems for waste heat recovery and thermo-

electric generators for NASA [15, 16]. The name “skutterudite” originates from a

small mining town “Skutterud” in Norway [17] where a common form of skutterudite

(CoAs3) is mined. Unfilled skutterudites are binary compounds of the form MA3,

whereM is a metal such as Co, Rh, or Ir and A is As, P, or Sb. CoSb3 and IrSb3 have a

high carrier mobility and a large effective mass, which result in power factors

comparable to and even exceeding the state-of-the-art heritage materials such as

Bi2Te3 and PbTe [18, 19]. Their thermal conductivities, however, are relatively too

large to make them useful TE materials [13, 20].

An early and key finding was the discovery of approaches to significantly reduce

the thermal conductivity through doping with filler atoms. In 1980, Braun and
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Jeitschko conducted a detailed structural study of compounds with the prototypical

LaFe4P12-type structure [21–23] (shown in Fig. 9.1). Although they did not measure

the TE properties of these compounds, they did identify several light rare-earth

elements from La to Eu, the first of the kind that could be inserted into the empty

cages found in the skutterudite unit cell. In 1994, Morelli and Meisner experimentally

showed that the thermal conductivity of CeFe4Sb12 was reduced by nearly an order of

magnitude compared to the unfilled skutterudites CoSb3 and IrSb3. They concluded

that the reduction was at least partially due to the phonon scattering from the filler

atom Ce [13]. Following research has found out that the foreign atom confined in the

cage exhibits an Einstein-like mode that provides additional phonon scattering to

dampen the lattice thermal conductivity [13, 24, 25]. Creating filled skutterudites has

achieved great success especially in reducing the lattice thermal conductivity of this

type of material. Today, the filler atoms have expanded from rare-earth, alkali-metal

to alkaline-earth elements, and it is not unusual to find double-filled skutterudites with

ZT greater than 1.3 [5] and triple-filled skutterudites exhibiting ZT as high as 1.7 [9].

Unfilled skutterudite CoSb3 exhibits p-type conduction. Adding filler atoms into

the void of the skutterudite structure introduces extra electrons and converts the

material to n-type semiconductors. In order to create a p-type material, an element

with fewer electrons than Co, like Fe, is used to substitute for Co to create holes into

the valence band. The resultant chemical formula of p-type skutterudites is usually

in the form of RyFexCo4-xSb12 where R represents one or multiple rare-earth, alkali-

metal and alkaline-earth elements. The range for y and x is determined by the

electronegativity, charge states, and structural stability of the filler atoms. For

detailed discussion on this topic, the readers are encouraged to read articles by

Shi, Chen, and Meisner [20, 26–28]. Here we offer a succinct illustration using

p-type skutterudite YbyFexCo4-xSb12 as an example (shown in Fig. 9.2) [29]. Other

rare-earth filler atoms are expected to follow a similar trend.

Themaximum filling fraction for Yb in CoSb3 at ambient pressure was found to be

around 0.2 [30]. Fully filled skutterudite has the formula of YbFe4Sb12
[31]. According to Meisner et al. [32], YbyFexCo4-xSb12 could be considered a solid

Fig. 9.1 Crystal structure of a filled skutterudite viewed from different perspectives
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solution of α mol% of (YbFe4Sb12) and (1 � α) mol% of Co4Sb12. The empirical

equation for the maximum Yb filling fraction is y ¼ αþ 0:2 1� αð Þ ¼
x
4
þ 0:2 1� x

4

� �
. The lower boundary for the minimum filling fraction is constructed

by connecting the filling fraction of unfilled skutterudite “y ¼ 0” and that of

YbFe4Sb12 “y ¼ 1” in Fig. 9.2. Table 9.1 uses YbyFexCo4-xSb12 as an example to

demonstrate the change of conduction type from n-type to p-type by varying the

amount of Yb filling and Fe substitution for Co.

Further optimization of ZT relies on new mechanisms that can (1) reduce the

lattice thermal conductivity κl and (2) increase the power factor S2σ. In both direc-

tions, introducing discontinuities in the long-range atomic order at the nanometer

scale, known as “nanostructuring,” could be an effective approach. The κl reduction
by introducing nanostructures is not hard to understand as the myriad nano-interfaces

would offer additional phonon scattering and cap the phonon mean free path.

Theoretical calculations on composites of SixGe1-x containing Si nanowire have
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Fig. 9.2 Filling fraction as

a function of Fe substitution

in RyFexCo4-xSb12 where

R ¼ Yb. Other rare-earth

fillers are expected to have

similar effects

Table 9.1 Some physical properties of YbyFexCo4-xSb12 at 300 K demonstrating the change of

conduction type by varying the Yb filling fraction “y” and Fe substitution for Co “x.” Reprinted

from reference [29]. Copyright 2011 with permission from Elsevier

Sample composition

y ¼ 0.2,

x ¼ 0

y ¼ 0.4,

x ¼ 1

y ¼ 0.6,

x ¼ 2

y ¼ 0.8,

x ¼ 3

y ¼ 1,

x ¼ 4

Estimated carrier/f.u. �0.6 ~ �0.4 �0.2 ~ 0.2 0.2 ~ 0.8 0.6 ~ 1.4 1 ~ 2

Observed carrier/f.u. �0.07 0.06 0.235 0.325 0.84

Conduction type n-type p-type p-type p-type p-type

Carrier density (�1020 cm�3) 1.90 1.48 6.03 8.54 21.5

Carrier mobility (cm2 V�1 s�1) 53.9 29.0 14.0 17.3 9.53
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shown that the thermal conductivity is significantly reduced in the nanocomposites

compared to bulk samples of the same composition [33, 34]. Such results have later

been confirmed in nanostructured Si–Ge alloys due to the much reduced thermal

conductivity [35]. Similar ZT enhancement arising from thermal conductivity reduc-

tion has also been found in nanostructured Bi–Te alloys [36]. To understand the

enhancement of S2σ, it is helpful to express the Seebeck coefficient according to the

Mott and Jones equation [37]:

S ¼ π2k2T

3e

d lnσ Eð Þ
dE

0
@

1
A
������
E¼EF

¼ π2k2T

3e

d lng Eð Þ
dE

þ d lnv2 Eð Þ
dE

þ d lnτ Eð Þ
dE

0
@

1
A
������
E¼EF

(9.2)

where v is the average electron drift velocity and τ is the relaxation time. For free

electrons, g(E) / E1/2, v2 / E, and τ / Es. The first term d ln g(E)/d E suggests

that a large S is possible if the Fermi level is positioned near a sharp spike in the

density of state (DOS). Theoretical calculations show that the DOS becomes

discontinuous when the dimension of the constituent is reduced as illustrated in

Fig. 9.3 [33]. This mechanism has been corroborated by the large power factor

enhancement in PbTe quantum well structures [38, 39], Si/Ge superlattice [40],

PbSeTe-based quantum dot superlattice (ZT ~ 1.3–1.6) [41], and Bi2Te3/Sb2Te3
superlattice (ZT ~ 2.4) [42]. The third term d ln τ(E)/d E indicates that it is also

possible to enhance the Seebeck coefficient by tweaking the scattering parameter

s (also known as the energy filtering effect [43]). In fact, this method has been

proposed by Ioffe and his co-workers as a way to search for new TE materials with

ionic bonding [44]. Heremans et al. demonstrated that the enhanced Seebeck

coefficient is the result of a greater scattering parameter s caused by resonant

scattering in PbTe nanostructures [45].

Fig. 9.3 Electronic density of states (DOS) for a bulk 3D crystalline semiconductor, a 2D

quantum well, a 1D nanowire or nanotube, and a 0D quantum dot [33]
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9.2 Fabrication of Bulk Nanostructured Skutterudites

Making nanostructured bulk TE materials that are chemically, thermally, and

mechanically stable has proven to be difficult. There are many challenges that

researchers often encounter during synthesis. For example, creating nano-sized par-

ticles that fall into the desirable size range is difficult. Other examples include

preventing agglomeration, removing surface ligands, suppressing grain growth dur-

ing sintering, and identifying suitable nanoparticles with the appropriate physical

properties. Here, we briefly introduce a few synthesis methods commonly used for

creating skutterudite-based nanocomposites, although most of these methods are

applicable to other TE material systems as well.

9.2.1 Ball Milling and Hot Pressing

Ball milling (BM) is one of the most widely used techniques for producing submi-

cron and nano-sized grains. In the ball milling process, the particle size of the

grinding materials is reduced as a result of attrition and impact from the grinding

media. During the milling process, many parameters can affect the microstructure

of the product, such as the type of mill, milling speed, milling time, ball-to-powder

weight ratio (BPR), ball materials, size distribution of the balls, milling environ-

ment, process control agent(s), and milling temperature [46].

The technique of BM followed by hot pressing is especially relevant to

skutterudites [47–53]. The targets are usually to (1) incorporate precipitates to

skutterudite host matrix in order to improve TE performance and retard grain growth

[54–61]; (2) obtain nano- or submicron-sized grains and imperfections; and (3) obtain

bulk samples of high density and good mechanical properties.

Planetary ball milling is the most popular BM to prepare skutterudite powder.

Figure 9.4 shows the schematic illustration of the planetary BM. The shock power

P can be expressed as P ¼ f � Ek, where f is shock frequency and Ek is the kinetic

energy per hit [62]. f and Ek are functions of the main disk rotation speed, vial rotation

speed, ball mass, and radius of disk, vials, and balls [62]. Higher kinetic energy is not

necessarily ideal to produce nano-sized skutterudite grains as high kinetic energy

could lead to decomposition of skutterudite phase. It is, therefore, very important to

optimize the milling conditions. Here we look into how the planetary ball mill works

in the context of the formation and decomposition of the skutterudite.

Starting with elemental Co and Sb, CoSb3 was formed after only 2 h of milling

when the following conditions were applied: 10 mm balls, main disk rotation speed

Rs ¼ 300 rpm, and BPR ¼ 40%. Figure 9.5 illustrates the formation of CoSb3 under

various milling conditions (the volume percentages were estimated from Rietveld

refinement) [61]. When larger balls (diameter ∅b ¼ 10 mm) were used, a similar

tendency was observed. The quantity of CoSb3 increases with ball milling time,

reaching a maximum value between 2 and 6 h. The influence of BPR is obvious:
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the percentage of skutterudite phase increases with decreasing BPR. In the case of the

small balls with∅b ¼ 1.6 mm, almost no skutterudite was observed, thus indicating

that there is insufficient kinetic energy to form CoSb3 [62]. In both cases no pure

CoSb3 can be achieved from mechanical alloying (MA). Therefore, BM from

pre-reacted skutterudite is normally the way for solid-state nanostructuring. The

investigation of decomposition of skutterudite is of critical importance. The

influences of milling conditions on decomposition of CoSb3 (performed in

PULVERISETTE 4, Fritsch; two chambers with tungsten carbide vessels) have

been described in detail in reference [61], including Rs, planetary ratio (PR),

Fig. 9.4 Schematic illustration of a planetary BM

Fig. 9.5 Formation of CoSb3 and volume percentage from Rietveld refinement of CoSb3.

Reprinted from reference [61], Copyright 2009 with permission from Elsevier
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∅b, BPR, and a process control agent (PCA). The following is a summary of the key

parameters.

1. When Rs changes from 70 to 360 rpm in steps of 10–30 with the increase of

milling time, CoSb3 decomposes for the combination of Rs > 200 rpm and

∅b ¼ 1.6 mm, but no decomposition occurs for ∅b ¼ 10 mm.

2. When PR is higher than a critical value, the decomposition is substantial,

e.g., PR ¼ �3.3.

3. Smaller ball diameter achieves finer powder faster. Nevertheless, milling with

small balls leads to greater decomposition compared to big balls.

4. Increasing the BPR accelerates the decomposition.

5. Liquid PCA significantly prevents the decomposition of CoSb3 in addition to

preventing oxidation and adhesion compared to PCA evolving gases. In other

words, liquid PCA reduces kinetic energy.

In conclusion, only moderate milling conditions can achieve nano-sized

skutterudites, i.e., Rs ¼ 200 rpm, PR ¼ �2.5,∅b ¼ 10 mm, and PCA ¼ cyclohex-

ane for a milling time of 0, 5, 10, 15, and 20 h. The resulting crystallite size as shown

in Fig. 9.6 (evaluated from X-ray powder diffraction) continuously decreases until

the saturated minimum is reached after a milling time of 15 h. The dislocation

density, however, remains constant at about 1012 m�2 regardless of the prolonged

milling time.

Similar nano-sized skutterudites have also been obtained in a series of p-type

samples EyFe4Sb12 and EyFe3CoSb12 where E stands for Ba, Ca, didymium (DD),

and mischmetal (MM), respectively [63].

Fig. 9.6 Crystallite size distribution for CoSb3 ball milled for different periods of time. Reprinted

from reference [61], Copyright 2009 with permission from Elsevier
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9.2.2 Melt Spinning (MS) and Pulsed Electric
Current Sintering (PECS)

Melt spinning is a rapid solidification technique that is key to many advanced

functional materials [64, 65]. In a typical laboratory melt spinner, as shown in

Fig. 9.7, the molten metal is ejected by an inert gas onto a rotating copper wheel

and then spun off in the form of ribbon. The assembly is usually enclosed in an inert

gas environment. The quench rate is controlled by the surface velocity of the wheel

and can be on the order of 104–107 K/s [66]. The fast quench rate makes it possible to

produce fine nano-grain or even amorphous materials and obtain the desired phase

without involving the time-consuming annealing process. Li and Tang have reported

the synthesis of several nanostructured Yb-filled skutterudites YbxCo4Sb12,

Yb0.2Co4Sb12+y, and Yb0.3Co4Sb12+y by using the melt spinning technique

[3, 67, 68]. These workers have shown that in melt-spun Yb0.2Co4Sb12 the grain

size on the free face ribbons decreases from 100–200 nm at vs ¼ 10 m/s to 20–50 nm

at vs ¼ 30 m/s. The contact face has a much higher cooling rate that results in an

amorphous skutterudite at vs ¼ 30 m/s [67]. After melt spinning, ribbons were loaded

into the graphite die and consolidated by the PECS. PECS, also known as the spark

plasma sintering (SPS), is a fast sintering technique that utilizes the joule heating

effect by passing pulsed DC current through the graphite die and conductive samples.

Compared to hot pressing that relies on the heat convection from the external heating

filaments, PECS can achieve a very fast heating rate of 1,000 K/min, which is crucial

to suppress grain growth. Li and Tang have shown that the final bulk Yb0.2Co4Sb12
sample prepared by MS + PECS is in fact a nanocomposite consisting of two length

scales of 100 nm and 10–20 nm size nanocrystals [67].

Fig. 9.7 Schematic

illustration of melt spinning
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9.2.3 In Situ-Formed Nanocomposites

In situ synthesis of nanocomposites utilizes the naturally occurring oxidation, pre-

cipitates of metastable filler atom, and secondary phase to form the nano-inclusions.

Compared to other nano-synthesis approaches, in situ synthesis excels at simplicity

of sample preparation as the nano-inclusions form during certain stage in the

solidification or post heat treatment steps. Once formed, these nano-inclusions

have already been embedded into the matrix materials and form natural composites.

Because the formation of the nano-inclusions is driven by the thermodynamics, they

tend to be chemically stable and their heterogeneous nature with respect to the

matrix materials makes them less prone to grain growth at elevated temperatures.

Several authors and research groups have reported preparation of skutterudite

nanocomposites by the in situ synthesis approach. Zhao et al. have prepared

Yb0.21Co4Sb12/Yb2O3 nanocomposites where Yb2O3 was formed by grinding the

composite samples containing unreacted Yb in air for 30 min [70]. Li et al. have

reported in situ-formed InxCeyCo4Sb12 nanocomposites by melt spinning and

PECS, where metastable In filler has led to the formation of InSb nano-

inclusions [4]. From the same train of thought, Xiong et al. have synthesized

Yb0.26Co4Sb12/yGaSb, where the Ga is driven out of the cage and forms GaSb

due to the reduced solubility below the melting point [10]. Turning now to p-type

skutterudite nanocomposites, Zhou et al. have reported Co0.9Fe0.1Sb3-based

skutterudite nanocomposites with FeSb2 nano-inclusions [69]. FeSb2 is a chem-

ically stable secondary phases found in p-type skutterudites. The nanocomposite

samples have chemical formulae of Co0.9Fe0.1+xSb3+2x where x ¼ 0.05, 0.1, and

0.02. These samples contain less Sb than the normal skutterudite stoichiometry

in order to facilitate the formation of FeSb2 during the rapid solidification.

Figure 9.8 shows the high-resolution field emission scanning electron micros-

copy (FESEM) images on the fractured surface of the bulk Co0.9Fe0.1+xSb3+2x
nanocomposites. The inset of Fig. 9.8a shows the zoomed-in observation of the

circle region where nano-sized particles can be found. The amount of

nanoparticles approximately scales with the nominal content “x” FeSb2 intro-

duced from (a) to (c). Figure 9.8d shows the reference sample Co0.75Fe0.25Sb3
having the same Fe/Co ratio as x ¼ 0.2 sample but has the normal skutterudite

composition MA3. It is very interesting to note that the nanoparticles found in

(a)–(c) have almost disappeared and grain boundaries in (d) are much cleaner,

which suggests that either Fe atoms were absorbed to form skutterudite or some

FeSb2 nanoparticles have grown to the micron size. The same idea was later

applied to Yb-filled p-type skutterudite nanocomposites where similar micro-

scopic features have been found [71].
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9.2.4 High-Pressure Torsion

High-pressure torsion (HPT) has recently been studied and applied to skutterudites

by a research group at University of Vienna, Austria. This method is capable of

directly producing ultrafine nano-grains and lattice defects in a bulk sample via

severe plastic deformation [72, 73]. During the HPT experiment (apparatus shown

in Fig. 9.9), a disk specimen of 10 mm in diameter and 0.8 mm in thickness is

clamped in the cavities of the upper and lower anvils. The cavities prevent the

loaded specimens from dislodging under high pressure. The upper and lower anvils

rotate to apply torsional force while exerting high hydrostatic pressure to prevent

cracking [74] and retain the deformation-induced defects that are crucial for the

formation of dislocation-induced grain boundaries [73, 75, 76]. The shear strain γ is
related to the number of revolution n, specimen radius r, and thickness t by

γ ¼ 2πnr

t
(9.3)

In addition, induction heating can be integrated into the system to induce more

shear strain at elevated temperature [72].

Fig. 9.8 High-resolution FESEM images on fractured surface of nanocomposite samples

Co0.9Fe0.1Sb3 + xFeSb2 and control sample Co0.75Fe0.25Sb3. (a) x ¼ 0.05, the inset image zooms

in the circled area to reveal the nano-sized particles; (b) x ¼ 0.1; (c) x ¼ 0.2; (d) Co0.75Fe0.25Sb3.

Reprinted from reference [69], Copyright 2011 American Institute of Physics
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The nanoscopic grain boundaries and dislocations induced by HPT are effective

in scattering the phonons and hence reduce the lattice thermal conductivity.

Although the electrical resistivity is also expected to increase after HPT, the

formation of nano-grains may result in an enhanced Seebeck coefficient possibly

due to the discontinuities in the DOS.

However, since skutterudites will operate at elevated temperature, the effect of

recrystallization and grain growth cannot be dismissed. One approach to improve

the microstructural stability is through “orientation pinning,” which utilizes brittle

nanoparticles precipitated along the grain boundaries and junctions to suppress

grain growth [77]. Typical nanoparticles that can serve this purpose are rare-earth

oxides. It should be noted, though, that high-volume fraction of oxides may impede

sintering and lead to low-density samples, which will in turn affect the electron and

phonon transport [61].

9.2.5 Solvothermal/Hydrothermal Synthesis

Solvothermal/hydrothermal (we will use the term “solvo/hydrothermal” in the

remaining paragraphs for conciseness) synthesis is a solution-based synthesis tech-

nique that is capable of directly precipitating fine crystals at elevated temperature and

pressure. Compared to other nano-synthesis techniques, solvo/hydrothermal synthesis

boasts the following merits: (1) it can directly precipitate nanocrystals from the

solutions without fully melting the reactants and complicated post-processing; (2) it

has better control of the particle size andmorphology; (3) it has been proven to be very

adaptable to synthesize a wide range of inorganic and organic materials, both conven-

tional and novel, provided one can find suitable reactants, solvents, and appropriate

thermodynamic and kinetic parameters; (4) because of the abovementioned points,

solvo/hydrothermal consumes less energy, has higher throughput, and is relatively

inexpensive, which really make it suitable for industrial production [78, 79].

Fig. 9.9 High-pressure

torsion (HPT) apparatus
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In a general solvo/hydrothermal synthesis, the first step is selection of

appropriate chemical precursors and solvents based on the final product. The

concentration of precursors could affect the crystallite shape [80], and the type of

solvents employed takes an important role in the reaction mechanisms [79]. The

second step is to select thermodynamic parameters based on the combination of

precursors and solvents, which include pressure, temperature, and time. The under-

lying mechanisms for controlling crystallite size are nucleation and growth rate and

that for morphology is the competitive growth rate along principal direction. For

instance, higher temperature and pressure will increase the precursor concentration

in solvents, which in turn creates conditions favorable for growth. In addition,

non-thermodynamic variables such as stirring can also influence the synthesis

outcome [78].

Several research groups have reported solvo/hydrothermal synthesis of nano-

structured skutterudites. Mi and co-workers have reported synthesis of CoSb3 using

CoCl2∙6H2O and SbCl3 as the precursors and NaBH4 as the reductant. The reactants

were dissolved in ethanol and reacted in autoclave at a temperature between 190 and

270 �C for 24–72 h. The influence of temperature is significant as CoSb3 phase is

absent in the sample reacted at 190 �C for 24 h but begins to be visible in samples

reacted at 220 �C. Samples reacted at 250–270 �C show greatly enhanced

skutterudite phase intensities. Extending the reaction time also increases the

skutterudite phase. Nearly single-phase CoSb3 was obtained for samples heated at

250 �C for 72 h. SEM images showed that the solvothermal prepared CoSb3
powders were composed of a mixture of small particles of tens of nanometers and

larger aggregates of several hundreds of nanometers [54]. Li et al. have conducted

similar solvothermal experiments on CoSb3 and Co4-xFexSb12 where they used a

different reagent of triethylene glycol. These authors claimed that they have

obtained single-phase skutterudite with well-controlled particle size of 10–20 nm

at a reaction temperature of 250 �C for only 12 h [81]. Lu et al. have studied the

effect of solvents on the solvo/hydrothermal synthesis of filled p-type LaFe3CoSb12,

where four aqueous solutions of ethylenediamine-tetra-acetic disodium salt

(EDTA), cetyltrimethylammonium bromide (CTAB), ethylenediamine (EDA),

and ethylene glycol (EG) were used. They concluded that different solvents not

only affected the skutterudite phase formation but also had influence on the mor-

phology of the products. For example, EDTA and CTAB created similar mixture of

nanoparticles of 80–100 nm and nanorods of 100–120 nm in diameter and

800–2,000 nm in length. DTA could only create nanorods about 70 nm in diameter,

and EG only created nanoparticles of 200 nm [82].

Although the solvo/hydrothermal synthetic approach has many advantages for

preparing nanoscale materials over other methods, it unavoidably uses many

solvents, reductants, and additives, whose constituents can become contaminants

that affect the electronic properties. For example, Mi et al. observed that

solvothermally synthesized CoSb3 exhibited n-type conduction, in contrast to the

p-type conduction reported in single-crystal CoSb3 [18, 54].
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9.3 Effects of Nanostructures on Thermoelectric

Performance

The introduction of low-dimensional and heterogeneous nanoparticles has demon-

strated the efficacy in improving the thermal and electronic properties of several TE

materials. In this section, we discuss the reduction in thermal conductivity and

enhancement in TE power factor achieved through various synthesis approaches.

9.3.1 Effects of Nanostructures on Thermal Conductivity

The introduction of nano-interfaces could provide additional phonon scattering that

is anticipated to reduce the lattice thermal conductivity κl. The lattice thermal

conductivity is usually obtained by subtracting the electronic thermal conductivity

κe from the total thermal conductivity κ. In most cases, κe can be estimated

by Wiedemann–Franz law κe ¼ LσT, where L is the Lorenz number. Since most

TE materials are heavily doped semiconductors and semimetals, a value of

L ¼ 2.44 � 10�8 WΩK�2 has been assumed in most cases. But the actual Lorenz

number is related to the scattering mechanism and the doping level and may deviate

from the abovementioned value. If this is the case, a more accurate calculation of

Lorenz number can be found in the reference [44].

The lattice thermal conductivity κl can be expressed by the Debye–Callaway

model:

κl ¼ kB
2π2v

kB
ħ

0
@

1
A
3

T3

ðϑD=T
0

τc
x4ex

ex � 1ð Þ2dx

v ¼ kBϑD

ħ 6π2Nð Þ1=3
, x ¼ ħω

kBT

(9.4)

where kB is the Boltzmann constant, �h the reduced Planck constant, θD the Debye

temperature, ω the phonon frequency, and v the sound velocity. The various phonon
scattering mechanisms have been reflected in the term of the phonon relaxation

time τc, which can be expressed as [83]

τ�1
c ¼ τ�1

N þ τ�1
U þ τ�1

E þ τ�1
B þ τ�1

D (9.5)

where τN represents the phonon–phonon normal scattering, τU is the phonon–phonon

Umklapp scattering, τE is the phonon–electron scattering, τB is the boundary scatter-
ing, and τD is the defect scattering. The terms pertinent to the nanostructuring are the

τB and τD. The boundary scattering rate can be expressed as

τ�1
B ¼ v=d (9.6)
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where d is the grain size of the polycrystalline materials. So the smaller the grain

size, the smaller the value of κl. The defect scattering rate τD can be written as

τ�1
D ¼ τ�1

dis þ τ�1
str

τ�1
dis / ND

r4

v2
ω3, τ�1

str / ND
γ2B2

Dω

2π
(9.7)

where τdis is the relaxation time of phonon-dislocation scattering, τstr is the phonon-
strain scattering, ND is the number of dislocation lines per unit area, r is the core

radius, and BD is the Burgers vector of the dislocation. Thus more lattice defects

would offer stronger phonon scattering as well.

Zhang et al. have prepared Mm0.68Fe3CoSb12 by ball milling followed by hot

pressing. In contrast to the hand-ground powders that have a grain size of

20–100 μm, the ball-milled powders have a much finer grain size of only

100–300 nm. In addition, the ball-milled powders often contain small quantities

of impurity phases such as Mm2O3, MmSb2, FeSb2, and Sb. In the temperature

range over the Debye temperature (around 300 K for filled skutterudites [84]), the

high-frequency phonons are strongly scattered by point defects while the

low-frequency phonons are suppressed by grain boundaries [85]. Consequently,

the thermal conductivity of ball-milled materials can be 15 % lower than that of

hand-ground sample as shown in Fig. 9.10 [61]. The same effects on skutterudites

are also shown in [48, 53, 58, 85].

Zhou et al. have achieved significant thermal conductivity reduction in the in situ-

formed Co0.9Fe0.1Sb3 nanocomposites with FeSb2 as the nano-inclusions. As shown

in Fig. 9.11, the lattice thermal conductivities of the nanocomposites have been

greatly reduced in the whole temperature range compared to the reference sample

x ¼ 0. Such low κl values exhibited in the nanocomposites are even comparable to

Fig. 9.10 Thermal

conductivity κ of bulk
p-type skutterudite

Mm0.68Fe3CoSb12 prepared

from ball-milled (BMS,

circles) and hand-ground

(HGS, triangles) powders
followed by hot pressing
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some of the filled skutterudites [86]. It is believed that the reduced thermal conduc-

tivities arise from the phonon scattering effect of the FeSb2 nanoparticles [69].

Significant thermal conductivity reduction has also been achieved in the

HPT-treated samples. In a given example of DD0.6Fe3CoSb12, the dislocation density

has been increased by almost an order of magnitude, and the crystallite size has been

reduced from 152 to 53 nm, a factor of three reduction after HPT. As a result, the

thermal conductivities were greatly reduced, and in the case of DD0.4Fe2.8Co1.2Sb12
(Fig. 9.12), the thermal conductivity after HPT is nearly half the value before

HPT [72].

Fig. 9.11 Lattice thermal

conductivity κl as a function
of temperature for

skutterudite nanocomposite

Co0.9Fe0.1+xSb3+2x. Both

samples of x ¼ 0 and

Co0.75Fe0.2Sb3 have the

nominal skutterudite

stoichiometry of MA3 and
serve as the reference

formulation. Reprinted from

reference [69], Copyright

2011 American Institute of

Physics

Fig. 9.12 Temperature-

dependent thermal

conductivity of

DD0.4Fe2.8Co1.2Sb12 before

and after HPT. Reprinted

from reference [72],

Copyright 2012 with

permission from Elsevier
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9.3.2 Effects of Nanostructures on Electronic Properties

Improving the electronic properties by nanostructuring has been proven to be more

difficult compared to reducing the thermal conductivity. The increased grain

boundaries and heterogeneous nanoparticles embedded in the matrix materials

would scatter the charge carriers as well as the phonons and in general increase

the electrical resistivity. However, several authors and research groups have dem-

onstrated that it is possible to increase the power factors by enhancing the Seebeck

coefficient.

Zhou et al. have reported enhanced Seebeck coefficients in nanocomposites

Co0.9Fe0.1+xSb3+2x (Fig. 9.13). The nanocomposite Seebeck coefficients first

increase with increasing FeSb2 nano-inclusions up to x ¼ 0.1 and then start to

decrease. The samples with x ¼ 0.05 and 0.1 exhibit a higher Seebeck coefficient

compared to the reference x ¼ 0 sample above 250 K. The nanocomposite samples

also possess higher electrical resistivities (Fig. 9.14) at low temperature; however,

they appear to be saturated at high temperature and are thus lower than the reference

sample x ¼ 0 above 500 K. As a result, the overall power factor has been enhanced

from 10 � 10�6 Wcm�1 K�2 in x ¼ 0 to 17 � 10�6 Wcm�1 K�2 in x ¼ 0.05

using this nanocomposite approach.

Dramatic enhancement of the Seebeck coefficient has also been realized in the

DD0.4Fe2.8Co1.2Sb12 after HPT. As it is shown in Fig. 9.15, the Seebeck coefficient

of the sample that has undergone the most strain during HPT has increased by

nearly a factor of two compared to the control sample without HPT. The authors

Fig. 9.13 Seebeck coefficient as a function of temperature for skutterudite nanocomposite

Co0.9Fe0.1+xSb3+2x. Both samples of x ¼ 0 and Co0.75Fe0.2Sb3 have normal skutterudite stoichi-

ometry ofMA3 and serve as the reference samples. Reprinted from reference [69], Copyright 2011

American Institute of Physics
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attribute the enhancement of Seebeck coefficient to the quantum confinement from

the reduced crystallite size [72].

In the abovementioned two examples, we have shown that under certain condi-

tions, the existence of nanostructures indeed can enhance the Seebeck coefficient in

p-type skutterudites. However, one should always keep in mind that the impurities or

additional elements introduced during the synthesis could potentially dope the matrix

material and affect the Seebeck coefficient. To verify whether the enhancement of

Fig. 9.14 Electrical resistivity as a function of temperature for skutterudite nanocomposite

Co0.9Fe0.1+xSb3+2x. Both samples of x ¼ 0 and Co0.75Fe0.2Sb3 have the nominal skutterudite

stoichiometry of MA3 and serve as the reference samples. Reprinted from reference [69], Copy-

right 2011 American Institute of Physics

Fig. 9.15 Seebeck

coefficient as a function of

temperature for

DD0.4Fe2.8Co1.2Sb12 before

and after HPT. A, B, and C

represent samples sectioned

at different distance away

from the center of HPT disk,

with A being near the rim,

and C near the center.

Reprinted from reference

[72], Copyright 2012 with

permission from Elsevier
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the Seebeck coefficient truly arises from the introduction of nanostructures or simply

from the doping effect, it is necessary to plot Seebeck coefficient as a function of

carrier concentration, known as the “Pisarenko relation” [87]. For degenerate semi-

conductors, the Seebeck coefficient can be expressed as [87]

S ¼ k

e
sþ 2þ ln

2 2πm∗kTð Þ
h3n

� �
(9.8)

where s is the carrier scattering parameter, m* the density of state effective mass,

and n the carrier concentration. For bulk semiconductors, with similar composi-

tions, s and m* usually have comparable values; thus the Seebeck coefficient is

proportional to the logarithm of the inverse carrier concentration. Experimentally,

the Pisarenko plot can be constructed by fitting a series of bulk samples of identical

chemical compositions but different carrier concentrations. If the enhancement of

S is from a different carrier scattering parameter s or a change in the DOS that is

reflected as m*, then S must deviate from the base line constructed by the bulk

samples (more specifically, exhibit a higher Seebeck coefficient at the same carrier

concentration level).

An example is given in Yb0.6Fe2Co2Sb12/xFeSb2 nanocomposites as shown in

Fig. 9.16. A series of skutterudites YbyFe4-xCoxSb12 with different hole concentra-

tions form a linear relation between S and ln (n) as suggested by (9.8).

Nanocomposites of Yb0.6Fe2Co2Sb12/xFeSb2 with x ¼ 0.05(1) and x ¼ 0.05

(2) show higher Seebeck coefficients than those projected by the fit.

The specific contribution of scattering parameter s and the density of state

effective mass m* to the change of Seebeck coefficient can be calculated from

Fig. 9.16 Pisarenko relation of Yb0.6Fe2Co2Sb12/xFeSb2 nanocomposites where x ¼ 0.05, 0.1,

and 0.2. The blue diamonds represent polycrystalline YbyFe4-xCoxSb12 of different hole concen-
trations. The fit line serves as an aid to the eye [71]. With kind permission from Springer Science

+Business Media: Journal of Electronic Materials 41(6), 1030–1035 (2012), Zhou, C., Sakamoto, J.,

Morelli, D. Fig. 7
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four experimentally measured physical quantities, namely, the Seebeck coefficient

S, the electrical conductivity σ, the Nernst coefficient N, and Hall coefficient RH.

This method is known as “the method of four coefficients” and is well documented

in the literature. The details of the theoretical derivation can be found elsewhere

[88]. Here we only offer the key calculation results based on a generalized

non-parabolic band structure following Heremans et al.’s work [45, 89, 90]. γ(E)
describes the non-parabolic energy of carriers given by (9.9), and Eg is the bandgap:

γ Eð Þ ¼ ħ2k2

2mv
� ¼ E 1þ E

Eg

0
@

1
A

γ
0 ¼ 1þ 2

E

Eg

γ
00 ¼ 2

Eg

(9.9)

The carrier concentration, carrier mobility, Seebeck coefficient, and Nernst

coefficient can be expressed by (9.10)–(9.13):

n pð Þ ¼ 2m� E ¼ 0ð Þγ Eð Þ½ �32
3π2ħ3

� 1

RHe
(9.10)

μ ¼ RHσ ¼ σ

n pð Þe (9.11)

S ¼ � π2

3

k

e
kT sþ 1ð Þ γ

00

γ
� 2

γ
00

γ 0

� �
(9.12)

N ¼ μ
π2

3

k

e
kT s� 1

2

� �
γ
0

γ
� 2

γ
00

γ 0

� �
(9.13)

These equations can be fitted by using mathematical software or solved explic-

itly as a function of measured parameters to yield Fermi energy EF, scattering

parameter s, and DOS effective mass m*(EF) from (9.14)–(9.16):

EF¼Eg

2

�Aþπ2k2T

eEg

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�π2k2T

eEg

� �2
þ2

π2k2T

eEg
A

s

A
, A¼S�N

μ
(9.14)

s ¼ 1

2
þ

3N

μEg
π2k2T
eEg

þ 4
Egþ2EF

1þ 2 EF

Eg

0
@

1
AEF 1þ EF

Eg

� �
(9.15)

m� EFð Þ ¼ m� E ¼ 0ð Þγ 0
EFð Þ (9.16)
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The non-parabolic band model described by (9.9) has been used to study the band

structure of CoSb3 [91–93], so it appears to be valid to apply it to the example of

Yb0.6Fe2Co2Sb12/xFeSb2 nanocomposites. The bandgap Eg has adopted the

literature-reported value of 0.5 eV from similar composition of YbFe4Sb12
[94, 95]. Therefore, we can calculate s and m*(EF). As it can be seen in Fig. 9.17,

the DOS effective masses for samples x ¼ 0.05(1) and x ¼ 0.05(2) are three to four

times greater than the effective mass for the reference sample x ¼ 0. From classical

physics, the DOS g(E) / (m*)3/2, so the energy dependence of m* can be viewed at

least as a qualitative reflection of the shape of g(E). The large effective mass obtained

in the nanocomposite samples implies that the presence of nanoparticles may have

induced a localized sharp peak in the DOS as depicted in the conceptual model in

Fig. 9.18, which leads to the enhancement of Seebeck coefficient. The scattering

parameter s, on the other hand, does not offer a positive contribution to the Seebeck

Fig. 9.17 DOS effective

mass mv*/m0 and carrier

scattering parameter s as a
function of the reduced

Fermi energy for

Yb0.6Fe2Co2Sb12/xFeSb2
nanocomposites [71]. With

kind permission from

Springer Science+Business

Media: Journal of

Electronic Materials 41(6),

1030–1035 (2012), Zhou,

C., Sakamoto, J., Morelli,

D. Fig. 8

Fig. 9.18 Conceptual

model of DOS for

nanocomposites
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coefficient. Thus, based on the results from the method of four coefficients, we have

shown that in this example, it is the effective mass rather than the scattering parameter

that results in an enhanced Seebeck coefficient and hence power factors for the

nanocomposites.

9.4 Conclusions and Outlook

In this chapter, we have focused our discussion mainly on the underdeveloped

p-type skutterudites and briefly described several most commonly used synthesis

approaches, namely, ball milling, melt spinning, in situ formation, high-pressure

torsion, and solvo/hydrothermal synthesis that have been successfully applied to

prepare skutterudite nanocomposites. Introducing nanoparticles or reducing the

crystallite size has demonstrated promise in offering additional phonon scattering

and therefore effectively reducing the thermal conductivity. Under certain condi-

tions, the presence of the nanoparticles could also enhance the Seebeck coefficient

to compensate for the reduction in electrical conductivity.

Figure 9.19 illustrates the progress towards higher ZT in p-type skutterudites by

combining nanostructuring with the conventional void filling strategy. Starting from

the basic binary skutterudite variant Co0.9Fe0.1Sb3, nanocomposite Co0.9Fe0.1+xSb3+2x
enhances the ZT by almost 100 %. Additionally, using Yb a single filler element

also achieves a ZT enhancement by almost 100 % in Yb0.6Fe2Co2Sb12, and creating

Yb0.6Fe2Co2Sb12 nanocomposite with antimonide nano-inclusions further improve

ZT by 23 %. The total ZT enhancement from Co0.9Fe0.1Sb3 to Yb0.6Fe2Co2Sb12
nanocomposite represents a 150 % improvement. Table 9.2 summarizes recent ZT
enhancement of skutterudite nanocomposites over their relative matrix materials

that have been prepared by various synthesis techniques.

We also like to point out that although thermal conductivity reduction has been the

major contributing factor that governs ZT enhancement, the lattice thermal conduc-

tivity cannot be reduced indefinitely. The minimum κl is estimated to be around

0.2 Wm�1 K�1 for skutterudites assuming a phonon mean free path equal to one

interatomic spacing. On the other hand, filled p-type skutterudites that exhibit high

ZTs are generally very conductive, with an electrical resistivity typically below

1 mΩcm. In some cases, the electronic thermal conductivity is a significant contri-

bution to the total thermal conductivity, sometimes even exceeding 50 %. This

implies that the room for further ZT enhancement by reducing the lattice thermal

conductivity is very limited. Therefore future work needs to seek new materials that

exhibit higher Seebeck coefficient S:

ZT ¼ S2σ

κl þ κe
T ¼ S2σ

κl þ LσT
T ) S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

� �
LT þ ρκlð Þ

s
(9.17)

To explicitly show what Seebeck coefficient is needed for certain lattice thermal

conductivity and resistivity in order to get a ZT ¼ 1, we start from the definition of ZT
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and express the Seebeck coefficient S as a function of electrical resistivity ρ and lattice
thermal conductivity κl as shown in (9.17). If we assume ZT ¼ 1 at 800 K and the

Lorenz number L ¼ 2.44 � 10�8 V2 K�2, we plot the projected Seebeck coefficient

as a function of electrical resistivity ρ and lattice thermal conductivity κl as shown in
Fig. 9.20. Figure 9.21 shows the minimum Seebeck coefficients needed to attain a

certain ZT assuming that κl is at minimum theoretical value 0.2 Wm�1 K�1. Taking

ZT ¼ 1, for example, if we assume ρ ¼ 1 mΩcm, then a S > 164 μVK�1 is needed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800

Z
T

Temperature (K)

CoSb3
CoSb3 nano
Yb SKD
Yb SKD nano

Fig. 9.19 Progress of ZT for p-type skutterudites via nanostructuring and void filling. CoSb3
represents Co0.9Fe0.1Sb3, and Yb SKD represents Yb0.6Fe2Co2Sb12. Nano represents

nanocomposites with antimonide nano-inclusions. Data are excerpted from references [69] and [71]

Table 9.2 ZT enhancements in skutterudite nanocomposites over their relative matrix materials

prepared by various synthesis techniques

Nanocomposite

systems

Conduction

type

Matrix

ZT

Nanocomposite

ZT

Percentage of

improvement

(%) References

YbxCo4Sb12/Yb2O3 n-type 1 1.3 30 [70]

Yb0.3Co4Sb12
melt spin

n-type 1 1.22 22 [67]

InxCeyCo4Sb12/InSb n-type ~1.15 1.43 24 [4]

Yb0.26Co4Sb12/yGaSb n-type ~1.3 1.45 12 [10]

Co0.9Fe0.1Sb3/xFeSb2 p-type 0.30 0.59 97 [69]

Yb0.6Fe2Co2Sb12/

xFeSb2

p-type 0.60 0.74 23 [71]

Mm0.68Fe3CoSb12 BM p-type 0.78 0.86 10 [61]

DD0.6Fe3CoSb12 HPT p-type 1.2 1.3–1.45 8–21 [72]
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In conclusion, nanostructuring has been proven to provide significant benefits to

the thermoelectrics, especially in terms of the thermal conductivity reduction.

Future work needs to focus on improving the electronic properties by multiple

approaches including nanostructuring so that reproducible ZT > 2 can ultimately

be achieved in a variety of bulk material systems. In addition, the long-term

stability of the nanocomposites has not been validated yet. Last but not least, it is

crucial to evaluate the feasibility of transferring the exciting advances produced in

the laboratory to thermoelectric generators for space and terrestrial technologies.
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Chapter 10

Thermoelectric Properties of CoSb3 Based

Skutterudites Filled by Group 13 Elements

Ken Kurosaki, Adul Harnwunggmoung, and Shinsuke Yamanaka

Abstract Thermoelectric (TE) generators can directly generate electrical power

from waste heat, and thus could be an important part of the solution to future power

supply and sustainable energy management. The main obstacle to the widespread

use of TEs in diverse industries, e.g., for exhaust heat recovery in automobiles, is the

low efficiency of materials in converting heat to electricity. The conversion effi-

ciency of TEmaterials is quantified by the dimensionless figure of merit, ZT, and the
way to enhance ZT is to decrease the lattice thermal conductivity (κlat) of the

material, while maintaining a high electrical conductivity, i.e., to create a situation

in which phonons are scattered but electrons are unaffected. Various concepts have

been used in the search for this situation, e.g., the use of rattling of atoms weakly

bonded in crystals and nanostructuring of materials. Here we report TE properties of

skutterudites filled by group 13 elements, i.e., Ga, In, and Tl. Our group has

examined the high-temperature TE properties of various skutterudites filed by

group 13 elements, viz., Ga-filled CoSb3, Tl-filled CoSb3, and In/Tl double-filled

CoSb3. All systems exhibit relatively high TE figure of merit, especially,

Tl0.1InxCo4Sb12 achieves a dramatic reduction of κlat, resulting in the ZT ¼ 1.20 at

700 K—very high for a bulk material. We have demonstrated that the reduction of

κlat in Tl0.1InxCo4Sb12 is due to the effective phonon scattering both by rattling of

two atoms: Tl and In and by naturally formed nano-sized In2O3 particles (<50 nm).
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Since the combined approach of double filling and self-formed nanostructures could

be applicable to various clathrate compounds, our results suggest a new strategy in

the improvement of bulk TE materials.

10.1 Introduction

Thermoelectric (TE) materials can convert waste heat into electrical power, which is

an effective way to reduce greenhouse gas emissions and contribute substantially to

future power supply and sustainable energy management [1–6]. The main obstacle

to the widespread use of TEs in diverse industries, e.g., for exhaust heat recovery in

automobiles, is the low efficiency of materials in converting heat to electricity. The

efficiency of a material used in TE devices is determined by the dimensionless figure

of merit, ZT ¼ S2Tρ�1κ�1, where S is the Seebeck coefficient, T is the absolute

temperature, ρ is the electrical resistivity, and κ is the total thermal conductivity

(κ ¼ κlat + κel, where κlat and κel are the lattice and electronic contributions, respec-
tively). Since the S, ρ, and κel in bulk materials are interrelated, it is very difficult to

control them independently. Therefore, the reduction of κlat is essential to enhancing
ZT. The ZT value of the materials currently used in commercial cooling devices is

still limited to about 1 or less over the entire operating temperature range,

corresponding to a device efficiency of several percent. Recent improvements in

TE materials have led to many advances, and enhanced ZT values have been

reported for several classes of bulk materials, including filled skutterudites.

The name of skutterudite is derived from a naturally occurring mineral with

CoAs3 structure, which was firstly discovered in Skutterud (Norway). The general

formula of skutterudite compounds isMX3, whereM is one of the group 9 transition

metals such as Co, Rh, or Ir and X is a pnictogen atom such as P, As, and Sb. These

compounds are body-centered-cubic structure that contains 32 atoms in the unit cell

with space group Im3. The most important point of the skutterudite structure is that

there are two voids in the unit cell which can be filled by filler atoms with an ionic

radius lower than the cage radius. This generates a so-called filled skutterudite with

formula RM4X12, where R is electropositive element like rare earth or alkaline earth.

Figure 10.1 displays the filled skutterudite structure where the R, M, and X are

shown in red, blue, and green spheres, respectively.

Early investigations on unfilled skutterudites dates back to the mid-1950s.

Among skutterudites, CoSb3 has attracted the greatest interest in waste heat to

electricity conversion applications due to its reasonable band gap of ~0.2 eV, high

carrier mobility, and the fact that it is composed of inexpensive and environmen-

tally benign constituent elements as compared to other skutterudites such as CoAs3.

However, the κlat of the pure binary CoSb3 is too high, which leads to low ZT and

thus poor conversion efficiency for TE applications.

In 1977 La-filled [7] and in 1991 Ba-filled [8] skutterudites were synthesized.

However, it has not become popular. In 1994, Slack [9] proposed the concept of

“phonon–glass electron–crystal” (PGEC) as one of the desirable features a material
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should possess to maximize the ZT, in which a material conducts heat like a glass but

behaves like a good crystal for the electronic properties. The typical example of the

PGEC concept is filled skutterudites, such as CeFe4Sb12 [10]. Filled skutterudites

realize the PGEC concept through the following strategies: a semiconductor-like

behavior may lead to large S and low ρ; in addition, the loosely bound filler atoms in

the skutterudite cages act as rattlers and thereby reduce the κlat [11].
It has been reported that a large variety of guest atoms can be filled, such as rare

earth elements [12–16], alkaline earth elements [17–19], alkali metals [20, 21], and

others [22–26]. The filling atoms are loosely bound to the other atoms in the

intrinsic cages, leading to strong phonon scattering and significant reduction of

the κlat [27, 28]. In addition to the single-filled system, a double-filling approach has

recently been attracting increasing attention. Introducing two filler types from

different chemical groups into the cages of CoSb3 could introduce two distinctive

filler vibrational frequencies for a broader range lattice phonon scattering, leading

to a further reduction of κlat [29, 30]. As the results, the maximum ZT values were

improved to 1.3–1.4 in double-filled skutterudites as shown in Fig. 10.2 [12, 14,

16–21, 30–34].

As described above, it has been widely reported that the voids in CoSb3 can be

fully or partially filled with a variety of different atoms. However, reports on the TE

properties of skutterudites filled by group 13 elements, such as Ga, In, and Tl, have

been limited. Here we review the TE properties of CoSb3-based skutterudites filled

by group 13 elements, which are mainly obtained in our group. In particular, the TE

properties of the single-filled system: TlxCo4Sb12 and GaxCo4Sb12 and the double-

filled system: Tl0.1InxCo4Sb12 will be discussed.

Fig. 10.1 Filled-

skutterudite structure of

RM4X12. R, M, and X are

shown in red, blue, and
green spheres, respectively
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10.2 Thermoelectric Properties of Tl-filled skutterudite:

TlxCo4Sb12 [26]

Among CoSb3-based skutterudites filled by group 13 elements, the authors have

focused on Tl-filled skutterudites: TlxCo4Sb12, because of the following reasons.

First, the electronegativity of Tl is close to that of Sb, which suggests that it may

have a small effect on the electrical transport properties of CoSb3. Second, the

radius of the void in a 12-coordinated site is close to the radius of Tl1+. Finally, Tl is

heavier than other elements that have been recognized as compatible R atoms in

RCo4Sb12. However, there is only one report [22], of Tl-filled skutterudites in which
the TE properties below room temperature have been systematically investigated.

In addition, in [22], it has been reported that Tl-filled skutterudites readily formed

and up to around 22 % of the voids in CoSb3 could be filled with Tl. Therefore, the

authors prepared the polycrystalline samples of TlxCo4Sb12 (x ¼ 0, 0.05, 0.10,

0.15, 0.20, and 0.25) and examined their high-temperature TE properties from

room temperature to 750 K [26].

Figure 10.3 shows powder x-ray diffraction (XRD) patterns of the polycrystalline

samples of TlxCo4Sb12 (x ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25) prepared in our group,

together with the peak positions calculated from the crystal structure of CoSb3.
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Basically, all samples are identified as skutterudite compounds, although they

contain negligible amounts of CoSb2 as an impurity phase. The lattice parameters

of TlxCo4Sb12 increase almost linearly with the increase in the Tl content up to

x ¼ 0.20 and the lattice parameter of Tl0.25Co4Sb12 is almost identical with that of

Tl0.20Co4Sb12, as shown in Fig. 10.4. Therefore, it can be concluded that the

Tl-filling limit in CoSb3 is between 20 and 25 at.%, which is consistent with the

literature data [22].

Figure 10.5 shows the temperature dependence of (a) the electrical resistivity,

ρ and (b) Seebeck coefficient, S for polycrystalline samples of TlxCo4Sb12. The

magnitude of ρ for CoSb3 is approximately 11 � 10�5 Ω m at 330 K and decreases

with increasing temperature. On the other hand, the ρ values of TlxCo4Sb12 are

rather low (1–3 � 10�5 Ω m at 330 K) and indicate slight-positive temperature

dependency. The magnitude of ρ for TlxCo4Sb12 decreases with increase in the Tl

content x. S for all samples is negative, which indicates that a majority of charge

carriers are electrons. The absolute S of CoSb3 is 330 μV K�1 at 330 K and remains

constant up to around 450 K, then decreases gradually with increasing temperature.

The absolute S of TlxCo4Sb12 decreases with increase in the Tl content x. The
results for both ρ and S imply that Tl-filling leads to an increase of the electron
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Fig. 10.3 Powder XRD patterns of polycrystalline samples of TlxCo4Sb12 (x ¼ 0, 0.05, 0.10,

0.15, 0.20, and 0.25), together with the peak positions calculated from the crystal structure of

CoSb3
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carrier concentration. Room temperature values of Hall carrier concentration (nH)
and Hall mobility (μH) for TlxCo4Sb12 are summarized in Table 10.1 and plotted in

Fig. 10.6, as a function of the Tl content x. nH for TlxCo4Sb12 increases with

increasing Tl content, viz. nH for Tl0.25Co4Sb12 (23.9 � 10�19 cm�3) is more than

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Fig. 10.4 Lattice parameters of polycrystalline samples of TlxCo4Sb12 (x ¼ 0, 0.05, 0.10, 0.15,
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ten times that of CoSb3 (1.56 � 10�19 cm�3). On the other hand, the TlxCo4Sb12
samples exhibits similar μH values at all Tl-filling contents. These results indicate

that the Tl-filling increases the nH, but has no significant influence on μH.
The thermal conductivity (κ) for TlxCo4Sb12 are significantly reduced by Tl-filling,

as shown in Fig. 10.7a. Tl0.25Co4Sb12 exhibits the lowest κ over the entire temperature

range; at room temperature, κ for Tl0.25Co4Sb12 is 3.4 Wm�1 K�1, which is less than
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Fig. 10.6 The Hall carrier concentration, nH and Hall mobility, μH at 300 K of polycrystalline

samples of TlxCo4Sb12, as a function of the Tl filling fraction, x
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half that of CoSb3. Figure 10.7b shows the temperature dependence of the lattice

thermal conductivity (κlat) for TlxCo4Sb12. κlat was obtained by subtracting the

electronic thermal conductivity (κel ¼ LσT, L ¼ 2.45 � 10�8 W Ω K�2) from the

total (measured) thermal conductivity κ. κlat for TlxCo4Sb12 significantly decreases

with increase in the Tl content. However, as summarized in Table 10.1, the experi-

mental results for average sound velocity (vave), Young’s modulus (E), and Debye

temperature (θD) obtained from the sound velocity measurements are similar at

all Tl-filling contents, despite κlat being significantly reduced by Tl-filling. These

results imply that Tl in CoSb3 has no direct effect on the strength of the interatomic

bonding, but that Tl is weakly bonded with the other atoms, which results in a

reduction of κlat by rattling within the cage.
The low κ, compared with CoSb3, results in large TE figure of merit (ZT) for

Tl-filled CoSb3, as shown in Fig. 10.8. In particular, Tl0.25Co4Sb12 exhibits the best

ZT values; the maximum value of 0.90 is obtained at 600 K.

10.3 Thermoelectric Properties of Ga-Filled Skutterudite:

GaxCo4Sb12 [35]

There have been various reports on the TE properties of skutterudites filled by

various elements, such as Ba-, K-, Na-, Ca-, Nd-, Sr-, Eu-, Yb-, In-, and Tl-filled

skutterudites [12, 14, 16–22, 26, 36–38]. Although the TE properties of In-, and

Tl-filled skutterudites have been investigated, the Ga-CoSb3 system has been

scarcely investigated. Recently, Xiong et al. [39] has reported the TE properties

of the Yb0.26Co4Sb12/yGaSb system, where only very small amount of Ga can fill
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into the crystal voids of CoSb3. Additionally, very recently, Qiu has reported that

Ga atoms occupy both the void and Sb sites in CoSb3 and couple with each other

and the ZT quickly increases to 0.7 at a Ga doping content as low as 0.1 per Co4Sb12
[40]. Here, the authors show the TE properties of polycrystalline samples of

GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) in the temperature range

from room temperature to 750 K, which are obtained in the author’s group [35].

The powder XRD patterns of the polycrystalline samples of GaxCo4Sb12
(x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) are shown in Fig. 10.9. All the peaks in

the XRD patterns are identified as the peaks derived from the skutterudite phase.

However, in the XRD patterns of the samples of x ¼ 0.05, 0.10, and 0.15, negligible

peaks of CoSb2 as the impurity phase can be observed. The lattice parameters

calculated from the XRD patterns are plotted in Fig. 10.10, together with the data

for Tl-filled CoSb3 [26]. The lattice parameters of the Ga-CoSb3 samples slightly

increase with Ga-addition up to around x ¼ 0.05, and after that keep a constant. In

contrast, the lattice parameters of the Tl-CoSb3 samples increase almost linearly with

increasing Tl-addition up to x ¼ 0.20 and after that keep a constant. These results

imply that Tl can be filled up to around x ¼ 0.20 in TlxCo4Sb12 but the maximum

filling ratio of Ga in CoSb3 is lower than x ¼ 0.05 in GaxCo4Sb12. This result is well

consistent with the other Ga-filled skutterudite reported by Xiong et al. [39], in which
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only very small amount of Ga can fill into the crystal voids of CoSb3. In addition,

in [40], it has been reported that the maximum filling fraction of Ga in the voids of

CoSb3 is around 8 %.

In order to confirm the filling limit of Ga into CoSb3, the field emission scanning

electron microscopy (FE-SEM) and energy dispersive x-ray (EDX) analysis was

performed on the surface of the hot-pressed samples. The XRD pattern, FE-SEM

image, and EDX mapping images of Ga0.30Co4Sb12 are shown in Fig. 10.11. As

shown in Fig. 10.11a, no peaks corresponding to GaSb are observed in the XRD

pattern. Since the main peak position of Ga metal is close to a peak of CoSb3, it is

unclear that whether Ga metal exists or not in the sample. On the other hand, as

shown in Fig. 10.11b, the area that Ga concentrated in small pores is observed in the

FE-SEM image and the EDX mapping images. Therefore, it can be concluded that

most of Ga exists as metal state in the Ga0.30Co4Sb12 sample. This result is not

consistent with the other Ga-filled skutterudite reported by Xiong et al. [39], in

which some evidence of impurity phase of GaSb but not metallic Ga has been

shown. At this point, the reason of the differences between our data and the

literature data has not been clearly understood. From the quantitative EDX analysis,

the amount of Ga in the matrix phase is confirmed to be approximately 0.1 at.%, i.e.,

x ¼ ~0.02 in GaxCo4Sb12. Therefore, it can be said that the maximum filling ratio

of Ga into CoSb3 is x ¼ 0.02 in GaxCo4Sb12, and when exceeding the filling limit,

Ga exists as metal state. This is clearly different from the cases of In- and Tl-filled

CoSb3, in which both In and Tl can be filled up to approximately 0.05 < x < 0.1 in

Fig. 10.10 Lattice parameters of polycrystalline samples of GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15,

0.20, 0.25, and 0.30), together with the data of polycrystalline samples of TlxCo4Sb12
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InxCo4Sb12 [41] and x ¼ 0.2 in TlxCo4Sb12 [26], respectively. The Ga metal may

exist as liquid phase during high-temperature TE properties measurements.

In order to verify the maximum filling limit of Ga and Tl into CoSb3, we

performed low-temperature heat capacity analyses on the Co4Sb12, Ga0.2Co4Sb12,

and Tl0.2Co4Sb12 samples. At low temperature (below 7 K), standard plots of CP/T
versus T2 was linear for Co4Sb12 sample and yielded Debye temperature of 306 K.

This result is well consistent with the literature value (307 K for single crystals of

Co4Sb12 reported by Caillat et al. [42]). The contribution of the filling atoms to the

heat capacity would emerge as a form of excess heat capacity (ΔC). In the present

case, we considered the following two values of ΔC: ΔC1 ¼ C of Ga0.2Co4Sb12 �
C of Co4Sb12, and ΔC2 ¼ C of Tl0.2Co4Sb12 � C of Co4Sb12. Figures 10.12 and

10.13 plot ΔC1 and ΔC2 as a function of temperature, respectively. ΔC is well

approximated by an Einstein contribution:

ΔC ¼ CE Tð Þ ¼ 3Ry
θE
T

� �2
exp θE=Tð Þ

exp θE=Tð Þ � 1ð Þ2 , (10.1)

where R is the gas constant, y is the content of the filling atom in the formula of

GayCo4Sb12 or TlyCo4Sb12, and θE is the Einstein temperature. Below 20 K, both

ΔC1 and ΔC2 are well described by (10.1), in which we set two unknown param-

eters: y and θE. In the case of ΔC1, y and θE were found to be 0.02 and 35 K,

respectively. On the other hand, in the case of ΔC2, y and θE were found to be 0.15

and 56 K, respectively. Thus, it can be said that Ga or Tl can be filled up to y ¼ 0.02
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in GayCo4Sb12 and y ¼ 0.15 in TlyCo4Sb12, respectively. Note that the obtained

Einstein temperature of 56 K is close to the value of 52 K estimated from the atomic

displacement parameters for Tl0.22Co4Sb12 [22] indicating the substantial rattling of

Tl in the skutterudite structure. Similarly, in the case of Ga-CoSb3 system, the

maximum filling limit was calculated to be y ¼ 0.02 in GayCo4Sb12, well consistent

with the XRD and FE-SEM/EDX results as described above.

Temperature dependences of the electrical resistivity (ρ) and the Seebeck coef-

ficient (S) of the polycrystalline samples of GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20,

0.25, and 0.30) are shown in Fig. 10.14a, b, respectively. The ρ of all the samples

decrease with temperature, showing semiconductor behavior. By adding Ga to

CoSb3, the ρ values increase with increasing x up to x ¼ 0.15, and then decrease.

The S values are negative for all the samples, indicating that the majority of charge

carriers are electrons. The absolute S of all the samples are almost constant up to
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around 500 K, and decrease rapidly with increasing temperature, which is due to the

thermal excitation of the charge carriers. At around room temperature, all the

samples show the similar S values. However, at high temperatures, the absolute

S decrease with increasing x in GaxCo4Sb12 up to x ¼ 0.15, and then increase. As

summarized in Table 10.2, the nH slightly increases with increasing the amount of

Ga, while the μH decreases, which is due to the combination of the Ga-filling into the

voids in the CoSb3 crystal and precipitation of Ga metal. In contrast to the Tl-filled

CoSb3, the nH of theGa-added CoSb3 is not sufficiently increased because only a few
Ga is filled into CoSb3. The nH of Tl0.25Co4Sb12 is 23.90 � 1019 cm�3 [26], which is

almost ten times larger than that of Ga0.25Co4Sb12 (3.42 � 1019 cm�3).
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Fig. 10.14 Temperature dependences of (a) the electrical resistivity, ρ and (b) the Seebeck

coefficient, S of polycrystalline samples of GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30)

Table 10.2 Lattice parameter a, sample bulk density d, Hall carrier concentration nH (300 K), and

Hall mobility μH (300 K) for polycrystalline samples of GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20,

0.25, and 0.30)

x a (nm) d (g cm�3) nH (1019 cm�3) μH (cm2 V�1 s�1)

0.05 0.90363 7.65 1.51 27.8

0.10 0.90364 7.65 1.07 31.9

0.15 0.90368 7.64 2.06 24.5

0.20 0.90368 7.66 2.67 19.9

0.25 0.90369 7.63 3.42 15.9

0.30 0.90367 7.64 3.33 15.0
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Temperature dependences of the κ and the κlat for polycrystalline samples of

GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) are shown in Fig. 10.15a, b,

respectively. The κ decreases with increasing temperature first and then increases

from around 550 K. This temperature dependence can be attributed to a bipolar

conduction in semiconductors. The κlat of GaxCo4Sb12 drastically decreases with

Ga-addition. Ga0.25Co4Sb12 exhibits the lowest κlat (3.52 W m�1 K�1 at 500 K).

These results imply that not only the filled Ga but also the precipitated Ga lead to

the effective reduction of κlat.
Temperature dependence of the ZT for polycrystalline samples of GaxCo4Sb12

(x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30) is shown in Fig. 10.16. Although Ga can

be filled only up to x ¼ ~0.02 in GaxCo4Sb12, significant reduction of κlat is
achieved, leading to enhancement of ZT. In particular, Ga0.25Co4Sb12 exhibits the

maximum ZT value of 0.18 at around 500 K. This value is lower than those of In-

and Tl-filled skutterudites [22, 26, 37, 38]. This low ZT of the Ga-CoSb3 system is

likely due to the unoptimized carrier concentration. In case of the Tl-CoSb3 system,

the Tl-filling into CoSb3 increases carrier concentration [26]. However, in case of

the Ga-CoSb3 system, the carriers are not sufficiently doped because only a few Ga

is filled into CoSb3. Nonetheless, since Ga-adding to CoSb3 is effective method for

reduction of κlat.
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Fig. 10.15 Temperature dependences of the thermal conductivity of polycrystalline samples of

GaxCo4Sb12 (x ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30); (a) total thermal conductivity, κ and (b)

lattice thermal conductivity, κlat
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10.4 Thermoelectric Properties of Tl- and In Double-Filled

Skutterudite: Tl0.1InxCo4Sb12 [43]

Skutterudites filled by group 13 elements, of Ga-, In-, and Tl-filled systems, have

attracted much attention recently as high-performance TE materials. Among the

compounds in the Tl-filled system, our group has examined the high-temperature

TE properties of TlyCo4Sb12 and obtained a maximum ZT of 0.90 at 600 K for

Tl0.25Co4Sb12 [26]. The maximum ZT values for In- and Tl-filled skutterudites have

been obtained at the compositions of the maximum filling limit [26, 37]. Thus,

the enhancement of the ZT of these filled skutterudites is restricted by the filling

limit of atoms into the voids of the skutterudite structure. In the case of In-filled

skutterudites, there are a few reports in which In naturally forms nano-sized InSb

inclusions when it exceeds the filling limit, and these nano-inclusions appear to play

an important role in significantly reducing κlat [34, 44]. However, there have been a
number of reports where no such nano-inclusions were observed in the same In-filled

system [38, 45]. Thus, it remains unclear whether any nanostructures form in

In-filled skutterudites.

Here, we review the results on the dramatically reduced κlat, and thus enhanced

ZT, for CoSb3-based skutterudites by a combined approach of double filling of

group 13 elements (Tl and In) and self-forming of nanostructures [43].

In the XRD patterns of polycrystalline samples of Tl0.1InxCo4Sb12 (x ¼ 0.1, 0.2,

and 0.3), all the peaks indicate a skutterudite structure with the space group Im3,
and there are no notable peaks corresponding to impurities as shown in Fig. 10.17.

The XRD patterns confirm that all samples have nearly the same lattice parameter
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values, as summarized in Table 10.3. According to Vegard’s rule, under the

assumption that Tl is fully filled while In is partly filled, the lattice parameter a of

Tl0.1InxCo4Sb12 can be written as:

a of Tl0:1InxCo4Sb12 ¼ a of Co4Sb12 þ Δa1 þ Δa2, (10.2)

where a of Co4Sb12 is 0.9034 nm [26], Δa1 ¼ a of Tl0.1Co4Sb12 � a of Co4Sb12,

and Δa2 ¼ a of InxCo4Sb12 � a of Co4Sb12. The values of Δa1 and Δa2 can be

calculated from the changes in the lattice parameters of Tl- and In-filled CoSb3
using the filling ratio obtained by the present authors’ group. By fitting the calcu-

lated lattice parameter to the experimental one, we obtained x ¼ 0.09. This indi-

cates that the maximum filling limits of Tl and In in Tl0.1InxCo4Sb12 are 0.1 and

0.09, respectively. Therefore, it is believed that a secondary phase composed

mainly of In may exist in addition to the skutterudite phase after exceeding the

maximum filling limit of In.
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Fig. 10.17 Powder XRD patterns of polycrystalline samples of Tl0.1InxCo4Sb12 (x ¼ 0.15, 0.20,

0.25, and 0.30), together with the peak positions calculated from the crystal structure of CoSb3

Table 10.3 Lattice parameter a, sample bulk density d, Hall carrier concentration nH (300 K),

and Hall mobility μH (300 K) for polycrystalline samples of Tl0.1InxCo4Sb12 (x ¼ 0.15, 0.20, 0.25,

and 0.30)

x a (nm) d (g cm�3) nH (1019 cm�3) μH (cm2 V�1 s�1)

0.15 0.9047 7.75 23.61 35.21

0.20 0.9048 7.76 34.17 28.01

0.25 0.9048 7.78 34.13 27.43

0.30 0.9049 7.76 40.00 25.03
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The FE-SEM and EDX mapping images of the hot-pressed Tl0.1In0.3Co4Sb12
sample are shown in Fig. 10.18. In these images, an In-rich region can be clearly

observed mainly at the grain boundaries, implying that In added after exceeding the

maximum filling limit precipitates as a secondary phase. Since the particle size of

the secondary phase is too small, the peaks of this impurity phase cannot be

observed in the XRD patterns.

In order to identify the chemical state of the In-based secondary phase, we

performed transmission electron microscopy (TEM) and X-ray absorption fine struc-

ture (XAFS) analyses on the Tl0.1In0.3Co4Sb12 sample. TEM image taken from a

single grain of a sintered pellet of Tl0.1In0.3Co4Sb12 is shown in Fig. 10.19a.

Nanoparticles (<50 nm) can be clearly observed. They have mostly formed along

the grain boundaries. It is thought that they are composed mainly of In present in

excess of its filling limit. The nanoparticles were analyzed by electron diffraction

techniques. The electron diffraction patterns obtained are shown in Fig. 10.19b, c.

The incident beam was focused to a diameter of ~10 nm. The electron diffraction

patterns are entirely consistent with In2O3 (space group: Ia-3) viewed along the [110]

and [112] directions.

To identify the chemical state of In within the sample, In L3-edge x-ray absorp-

tion near edge structure (XANES) measurements were performed on a

Tl0.1In0.3Co4Sb12 bulk sample at the Synchrotron Light Research Institute, Thailand.

Figure 10.19d compares the measured In L3-edge spectra of this Tl0.1In0.3Co4Sb12
bulk sample and the reference In metal and In2O3 powder. Clearly, all the features of

the XANES In L3-edge spectrum of the Tl0.1In0.3Co4Sb12 bulk sample agree very

well with those of the reference In2O3 powder. This indicates that the In added in

excess of the filling limit within the sample is in the form of In2O3. Thus, the XANES

measurements confirm that the Tl0.1In0.3Co4Sb12 sample contains In2O3.

Temperature dependences of the electrical resistivity (ρ) and the Seebeck coef-

ficient (S) of the polycrystalline samples of Tl0.1InxCo4Sb12 (x ¼ 0.15, 0.20, 0.25,

and 0.30) are shown in Fig. 10.20a, b, respectively. The ρ of all the samples

decrease dramatically with In-addition. By adding Tl and In to CoSb3, the ρ values

Fig. 10.18 FE-SEM and EDX mapping images of the polycrystalline sample of Tl0.1In0.3Co4Sb12
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Fig. 10.19 (a) TEM image taken from a single grain of the sintered pellet of Tl0.1In0.3Co4Sb12;

(b) and (c) electron diffraction patterns obtained with the electron beam aligned along the [110]

and [112] directions, respectively; (d) comparison of the measured In L3-edge normalized spectra

of a Tl0.1In0.3Co4Sb12 bulk sample with the reference In metal and In2O3 powder
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of all the samples are below 1.25 � 10�5Ωm at room temperature and increase with

elevated temperature, typical of heavily doped semiconductors. TheTl0.1In0.3Co4Sb12
sample exhibits the lowestρ value, 7.5 � 10�6Ωmat room temperature. The S values
are negative for all the samples, indicating that the majority of charge carriers

are electrons. The absolute S of all the samples increases up to around 700 K, and

decreases with increasing temperature. As summarized in Table 10.3, there is a large

increase in nH, while μH shows a minimal increase with increasing total filling

fraction, which means that Tl/In addition leads to a net increase in conduction

electrons but has no significant influence on the scattering of carriers. As shown in

Fig. 10.21, all the samples show the constant and large values of the power factor

(S2ρ�1) in the whole temperature range investigated in the present study. The

Tl0.1In0.3Co4Sb12 sample exhibits the highest power factor, around 5.0 mWm�1 K�2

in relatively wide temperature range from 600 to 750 K.

Temperature dependences of the κ and the κlat for polycrystalline samples of

Tl0.1InxCo4Sb12 (x ¼ 0.15, 0.20, 0.25, and 0.30) are shown in Fig. 10.22a, b,

respectively. The κ decreases with increasing temperature first and then increases

from around 600 to 700 K. This temperature dependence can be attributed to a

bipolar conduction in semiconductors. The κlat of Tl0.1InxCo4Sb12 drastically

decreases with In-addition due to the phonon scattering by Tl- and In-rattling and

nano-sized In2O3 precipitated at grain boundaries.

The temperature dependences of the κlat of polycrystalline samples of CoSb3,

Tl0.1Co4Sb12, Tl0.1In0.1Co4Sb12, and Tl0.1In0.3Co4Sb12 are shown in Fig. 10.23. A

comparison between the κlat values of CoSb3 and Tl0.1Co4Sb12 reveals a significant
reduction of κlat. This is due to the effective phonon scattering by the rattling of

Tl. Moreover, filling with In in addition to Tl yields a further reduction of κlat in the
Tl0.1In0.1Co4Sb12 sample, suggesting that the double-filling approach is effective
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for phonon scattering, and hence in reducing κlat. Furthermore, it can be confirmed

that the κlat of the Tl0.1In0.3Co4Sb12 sample is much lower than those of the other

samples. This implies that the rattling of Tl/In, as well as the In2O3 nanoparticles

formed at the grain boundaries, scatter heat-carrying phonons, leading to the
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Fig. 10.22 Temperature dependences of the thermal conductivity of polycrystalline samples of

Tl0.1InxCo4Sb12 (x ¼ 0.15, 0.20, 0.25, and 0.30); (a) total thermal conductivity, κ and (b) lattice

thermal conductivity, κlat

300 400 500 600 700 800
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Z
T

T (K)

x = 0.15
x = 0.20
x = 0.25
x = 0.30

Fig. 10.23 Temperature

dependences of the

dimensionless figure of

merit, ZT of polycrystalline

samples of Tl0.1InxCo4Sb12
(x ¼ 0.15, 0.20, 0.25,

and 0.30)

10 Thermoelectric Properties of CoSb3 Based Skutterudites Filled. . . 321



dramatic reduction of κlat. Owing to the very low κlat, the Tl0.1In0.3Co4Sb12 sample

exhibits an excellent ZT; its maximum value is 1.20 at around 700 K, as shown in

Fig. 10.24.

We can conclude that the Tl/In-double-filled skutterudite exhibits the excellent

TE properties. Tl and In are filled up to x ¼ ~0.09 in Tl0.1TlxCo4Sb12 when

exceeding the filling limit, In existed as nano-sized In2O3 (<50 nm) at grain

boundaries. By investigating the TE properties of Tl- and In-double-filled CoSb3-

based skutterudites, we demonstrate that the reduction of κlat is due to the effective

phonon scattering induced both by the rattling of Tl and In and by the naturally

formed In2O3 nanoparticles (<50 nm). This yields a dramatic enhancement of ZT to

be 1.20 at 700 K. The combined approach of double filling and self-formed

nanostructures might be applicable to various clathrate compounds. Thus, these

results point to a new strategy in the improvement of bulk TE materials.

10.5 Summary

In this chapter, we reviewed the TE properties of CoSb3-based skutterudites filled

by group 13 elements, i.e., the systems of TlxCo4Sb12, GaxCo4Sb12, and

Tl0.1InxCo4Sb12. The temperature dependence of ZT of the best materials in the

individual system is summarized in Fig. 10.25.

Tl can be filled in CoSb3 up to around x ¼ 0.2 in TlxCo4Sb12. Since the valence

state of Tl in CoSb3 can be considered to be Tl
1+, the Tl-filling yields net increase in

electron carriers. Therefore, the carrier concentration of CoSb3 can be controlled by

Tl-filling. On the other hand, Tl filled in CoSb3 can act as rattlers and scatter heat

carrying phonons efficiently. Therefore, Tl-filled CoSb3 exhibits low κlat with
optimized carrier concentration, and hence high ZT value; the maximum ZT value

is 0.90 at 600 K obtained for Tl0.25Co4Sb12.
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In contrast to Tl-filled CoSb3, Ga can be filled in CoSb3 up to only x ¼ 0.02 in

GaxCo4Sb12, and when exceeding the filling limit, Ga exists as metal states mainly

at grain boundaries in the polycrystalline samples of GaxCo4Sb12. Due to this low

filling limit of Ga in CoSb3, carriers are not sufficiently doped by Ga-filling.

Nonetheless, not only very small amount of filled Ga but also precipitated Ga

metals may scatter heat carrying phonons, leading to the reduction of κlat. Mainly

due to the reduced κlat, the ZT is slightly enhanced by Ga-adding to CoSb3; the

maximum ZT value is 0.18 at 500 K obtained for Ga0.25Co4Sb12.

In case of the double-filling system, i.e., Tl0.1InxCo4Sb12, all Tl is filled but In

can be filled up to around x ¼ 0.09 in Tl0.1InxCo4Sb12. In added in excess of the

filling limit within the samples is in the form of In2O3 which is naturally formed as

nanoparticles (<50 nm) mainly at the grain boundaries of the polycrystalline

samples. Effective phonon scattering occurred both by the rattling of Tl and In

and by the naturally formed In2O3 nanoparticles yield significant reduction of κlat
and thereby dramatic enhancement of ZT. Tl0.1In0.3Co4Sb12 exhibits the maximum

ZT of 1.20 at around 700 K, which is very high for bulk materials.

We consider the following two studies are important in this research for future.

The first one is further enhancement of ZT by nanostructuring. Recently, various

nanocrystalline bulk materials have been prepared by ball-milling followed by

hot-pressing or spark plasma sintering and the enhancement of ZT have been

achieved [46, 47]. The method is considered to be applied to the CoSb3-based

skutterudites. The second one is to develop p-type CoSb3-based skutterudites filled

by group 13 elements. Although the CoSb3-based skutterudites filled by group

13 elements reported here have high ZT values, all the samples are n-type, i.e.,

they indicate negative S values. However, for a powerful TE module, the similar

performances in both n-type and p-type TE materials is required. Therefore, the

p-type CoSb3-based skutterudites filled by group 13 elements should be developed.

Very recently, our group has demonstrated that TlxFeyCo1�ySb12 exhibit p-type

characteristics and relatively high ZT values. The details of the results will be

reported in near future.
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Chapter 11

Nanoscale Self-assembled Oxide Bulk

Thermoelectrics

Yu Zhao, Ashok Kumar, Céline Hin, and Shashank Priya

Abstract Thermoelectric materials directly convert thermal energy into electric

energy through Seebeck effect. The nanostructured approach for these materials has

led to significant improvements in the figure of merit mainly by tailoring the lattice

thermal conductivity. In this chapter, we provide an overview of the strategies

adopted for phonon scattering and its confinement in the nanostructures with the

goal of reducing the thermal conductivity. We discuss the approaches that are being

adopted for developing cost-effective thermoelectrics and identify the promise

offered by oxide materials. Compared with the alloy-based thermoelectric mate-

rials, oxide thermoelectrics have many advantages including abundance of raw

materials, low cost, non-toxicity, and thermal stability. Several important oxide

thermoelectric candidates are introduced with specific focus on ZnO. Self-

assembled nano-composites of ZnO have been shown to exhibit reduction in

thermal conductivity by a factor of about three mainly due to the phonon scattering

by uniformly distributed nanoprecipitates (ZnAl2O4) and large grain boundary area.

The effects of nanoscale inclusion in Ca-Co-O system (Ca3Co4O9) and natural

superlattices in SrO/SrTiO3 are also discussed. Several self-assembly techniques

are discussed which are promising for fabrication of oxide thermoelectrics.
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11.1 Introduction

Thermoelectric devices can be used as heat and electricity exchangers. Basic

understanding of these devices has been developed over several decades since the

discovery of Seebeck effect in 1821. These devices offer several distinct advantages

over other alternatives such as silent operation, long lifetime, no harmful gaseous

components or other materials that may require periodic replenishment, reversible

heat-pumping direction, precise control of temperature (�0.1 �C) and capable of

working in high temperature, radioactive, or constrained environments [1]. As a

result thermoelectric devices have found wide-ranging applications in military,

aerospace, and industrial or commercial products, which can be classified into

three categories, e.g., coolers (or heaters), power generators, and thermal sensors

[2]. Recently, interest has surged in applications of thermoelectrics for energy

harvesting from wasted heat available in the environment such as transportation,

manufacturing plants and human body. A wristwatch using thermoelectric gener-

ator was reported in late 1990s that extracted the temperature gradient between

human body heat and environment. In automobiles, the thermoelectrics could

replace belt-driven alternators, air conditioning units, seat cooling, and harvest

energy from exhaust gases [3]. The role of thermoelectrics in powering the distrib-

uted wireless sensor networks (WSNs) has gained significant attention as well.

These nodes are highly desired for the powering the sensors in structural health

monitoring (SHM) tasks on variety of platforms such as engine, industrial process

monitoring, and gas exploration. The use of thermoelectrics to power aerospace

sensors has been demonstrated by European Aeronautic Defense and Space Com-

pany N.V. (EADS) [4]. Figure 11.1 provides the description of some commercially

reported low power thermoelectric energy harvesters.

11.1.1 Materials Review

Thermoelectric (TE) materials for high temperature applications should have good

reliability and exhibit high figure of merit (zT) in the desired operating regime. One

composition will not fit for all the applications as zT varies with the temperature.

Table 11.1 lists the thermoelectric materials extensively investigated in literature

exhibiting reasonable figure of merit. The commonly used TE materials, such as

chalcogenide compounds represented as Bi(Sb)Te [5, 6], PbTe [7] and related

alloys, show good figure of merit at low and medium temperature range

(room temperature to 800 K). Skutterudites represented by general formulation

Co4Sb12 [8] and SiGe [9] compounds have shown good performance in the

medium-to-high temperature range (800–1,200 K). Recently, metal oxides, such

as NaCoO2 [10], Ca3Co4O9 [11], ZnO [12], and SrTiO3 [13], have been investi-

gated mainly as a cost-effective rare-earth free substitute. Oxides have inherent
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advantage of high temperature oxidation resistance and exhibit promising figure of

merit in the high temperature range.

In past decades, significant interest has been placed on investigation

of nanostructures in semiconducting thermoelectric alloys. Both low-dimension

nanostructured alloys (e.g., superlattice structures, quantum dots superlattice, and

nanowire) and bulk alloys with nanoscale features in the microstructure

(e.g., nanodots and nanograins) have been designed and studied as summarized in

Table 11.1 and further discussed in Sects. 11.2.2 and 11.2.3. However, scarcity of

elements (Te), complex synthesis techniques (thin film deposition processes, such as

MBE; spark plasma sintering, hot press), and poor durability at elevated tempera-

tures (oxidation) limits the potential of many of these alloy compositions. Fig-

ure 11.2 provides the summary on the availability of the raw materials in the near

future. The main element “Te” used in both Bi2Te3 and PbTe based alloys belongs to

the critical material category that is in short supply. Silver, which is used for

inducing nanoprecipitates in PbTe is preciousmetal. Some other rare earth elements,

such as Yb, La, Ce, are also in short supply. Further certain elements are harmful for

both human body and environment, such as Pb and Tl. These considerations and

restrictions imposed upon the design of TE materials limit the options severely.

Fig. 11.1 (a) Tellurex Corporation, tPOD5 (http://www.buytpod.com/) 5 V DC, 500 mA, Diam-

eter: 178 mm, Height: 95 mm; 2 lbs 14 oz; (b) Marlow, EHA-PA1AN1-R02-L1 (http://www.

marlow.com/), Dimension—74 � 36 � 38 mm, Weight—1 g, Power at ΔT ¼ 60 �C: 2.3 mW;

Power at ΔT ¼ 10 �C: 0.3 mW; (c) Micropelt, MPG-D651 (http://www.micropelt.com), Dimen-

sions top side—2.5 � 2.5 mm, bottom side—3.375 � 2.5 mm; Seebeck voltage at 23 �C—
75 mV K�1, thickness—1.09 mm; (d) Nextreme, eTEG™ HV37 (http://www.nextreme.com/),

Output power levels of 1.0 mW and an open circuit voltage of 170 mV at aΔT of 10 K, and 24 mW

and 850 mV respectively at a ΔT of 50 K, Dimension: 2.1 mm � 2.9 mm � 0.6 mm;

(e) Biothermal power source: (www.biophan.com/); (f) Seiko Thermic: (http://www.

seikowatches.com/)
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Combined with the requirement of high temperature operation, we can see that the

choices become severely restricted and only simple oxides such as ZnO, NaCoO2,

Ca3Co4O9, etc. emerge as the potential candidates. These materials employ cheap

nontoxic elements that are available abundantly. Further, they have excellent high

temperature durability in air. The oxide thermoelectrics could provide cheaper and

environmentally friendly alternative to the tellurides and other alloy compositions.

Comparing thermal and electrical transport properties of alloy and oxide based TE

materials (Table 11.1), the main challenges for polycrystalline oxides are their

relatively high thermal conductivity and low electrical conductivity, and therefore

they exhibit performances half or one-third of the efficiency of alloys. Nanostruc-

tured approach promises to address these challenges and offers the opportunity to

improve the performance of these cost-effective materials.

11.1.2 Strategies for Improving the Figure of Merit

In order to obtain high conversion efficiency, TE materials are required to exhibit

good thermopower (Seebeck coefficient α) and electrical conductivity (σ), and low

thermal conductivity (κ ¼ κph + κel). But it is difficult to control these parameters

individually (α and σ; σ and κ). Semiconductors are considered as good

Fig. 11.2 Medium-Term (2015–2025) criticality matrix. Taken from: DOE’s 2011 Critical

Materials Strategy [112]
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thermoelectrics due to their excess electron or hole density and carrier density

alterability, and therefore exhibit larger thermopower than conductors. In addition,

their moderate carrier concentration leads to relatively low κ values (larger κph
compared to κel). Generally low thermal conductivity is related to the complex

structure or heavy elements [14], which is one guideline for finding and designing

new TE materials. For example, skutterudites and clathrates have crystal frame-

work with cages, which are filled by heavy elements, resulting in reduced thermal

conductivity [14]. Another scheme for achieving high figure of merit relies on

modification of power factor (α2σ) by using band structure engineering. The power
factor is the product of Seebeck coefficient and electrical conductivity, both of

which are determined by carrier density, but the dependence on carrier density is

opposite. There is a maximum in power factor in the carrier concentration range of

1019 to 1021 cm�3. Heremans had predicted and proved that a distortion (resonant

levels close to the Fermi level) of the electronic density of states by Tl doping

enhances the Seebeck coefficient [15]. Although calculations on presence of reso-

nant levels using other doping elements have been published as well, few experi-

mental results are available to validate these predictions.

In the 1990s, theoretical predictions [16] were made that zT could be enhanced

by formation of nanostructures. In the optimum range of carrier density, the

contribution of electrical thermal conductivity is only about 10 % of the total

thermal conductivity. Hence large fraction of the heat is carried by phonons through

the lattice; as a result phonon scattering from interfaces could be an effective

method to lower the lattice thermal conductivity. When the scale of structure is

close to the phonon mean free path (which is a function of the phonon velocity and

phonon wavelength), phonon confinement is possible to be obtained resulting in

significantly reduced lattice thermal conductivity. Based upon this underlying

concept, the thermal conductivity was successfully decreased and zT larger than

1 was achieved [17]. The high density of interfaces and boundaries could be barriers

for the electrons. The electron mean free path is usually shorter than that of phonon,

so that the negative influence on electrical conductivity is not severe. Further

quantum-confinement phenomenon enhances Seebeck effect and controls S and σ
somewhat independently. In nanostructures, Seebeck coefficient is enhanced

mainly due to preferential scattering of low-energy electrons at grain

boundaries [18].

In Sect. 11.2, we will provide an overview of the recent developments on

nanoscale structures and discuss its fundamental role towards controlling phonon

transport. Several technologies utilized for the formation of nanostructures and

self-assembled methods will be introduced. We will mainly focus on self-

assembled oxide nanostructures and discuss their function in reducing the thermal

conductivity, especially with respect to ZnO.
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11.1.3 Modeling of Thermoelectric Materials

In thermoelectric materials, the figure of merit is calculated using a multiscale

approach, combining the investigation of phonon and electron transport. Different

theoretical approaches are used to study the phonon transport in thermoelectric

materials: the Boltzmann transport equation [19, 20], the lattice dynamic theory,

and the molecular dynamic combined with the Green–Kubo autocorrelation decay

method. The Boltzmann transport equation is primarily used to study large system,

but the input parameters depends on the experiment data. Consequently, molecular

dynamic is preferred to determine the thermal conductivity in thermoelectric

materials. The electron transport is calculated using first-principles calculation

coupled with the Boltzmann transport theory [21–23].

11.1.3.1 Phonon Transport in Thermoelectric Materials

Equilibrium molecular dynamics method is commonly used to determine the

thermal conductivity. The thermoelectric material system evolving without con-

straint will ultimately reach thermodynamic equilibrium after a certain number of

steps. Consequently, the thermal conductivity can be derived from the fluctuation-

dissipation theorem of the linear response theory, which links the transport prop-

erties to instantaneous fluctuations in the system. The thermal conductivity can be

deduced from the variations of the instantaneous heat flux density of the system at

equilibrium using the Green–Kubo relation [24–28]:

κ ¼ V

3kBT
2

Z 1

0

w 0ð Þ � w tð Þh idt (11.1)

where T is the temperature, V is the volume of the system, and w is the instantaneous

flux density in the system that is given by:

w tð Þ ¼
XN
i¼1

viEi � 1

2

XN
i, j¼1

rijviFij (11.2)

The first and the second terms are the kinetic energy and the potential energy

carried by each atom having a velocity vi, respectively. In thermoelectric materials,

the first term is generally negligible compared to the second term, which represents

the potential energy of the lattice. rij is the distance between atom i and atom j, Ei is

the total energy of one atom, and Fij is the force of interaction between two atoms.

Suitable interatomic potentials are the key to reproduce correctly the experimental

thermal conductivity. For example, some potentials for the Bi2Te3 system fit to

experimental data does not reproduce the lattice conductivity because of the

anharmonic terms that have not been taken into account in the development of
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the potentials [29, 30]. Alternative approaches such as the lattice dynamics theory

have been successfully applied to determine the lattice conductivity in PbTe [31],

Si [32], and half-Heuslers [33] thermoelectric materials.

11.1.3.2 Electron Transport in Thermoelectric Materials

In order to improve the power factor using band structure engineering, structure

optimizations, total energies, and electronic structures are calculated using first-

principles calculations. To determine the Seebeck coefficients, and the electrical

conductivities, the density of states are used as an input of the Boltzmann transport

theory [21–23]. A code, for calculating semi-classical transport coefficients, has

even been developed, enabling systematic calculations of electrical conductivities

and Seebeck coefficients. This code relies on the assumption that the scattering time

is constant since it does not vary a lot with energy on the range of kT. It is however
possible in certain cases to determine scattering relaxation time using the Kane

model [34] to determine all the scattering mechanisms that include the scattering by

deformation potential of acoustic phonons, scattering by polar-optical phonons,

scattering by deformation potential of optical phonons, scattering by Coulomb

potential of vacancies, and scattering by short-range deformation potential of

vacancies. Using the BoltzTrap code and the calculated scattering relaxation

time, studies in PbTe, and BiSbTe alloys give a general good accuracy between

the theoretical power factor and the experiments [35, 36]. Theoretical approaches

can also bring new concepts, such as demonstrated by Parker where he stated that

low dimensional electronic structure can appear in bulk materials PbTe, PbSe, PbS,

and SnTe [37]. More studies highlight that the doping levels seems to play a major

role in the enhancement of the thermopowers in many different thermoelectric

materials [36, 38, 39].

11.2 Role of Nanostructure in Improving Thermoelectric

Properties

11.2.1 Fundamental Understanding of Influence of
Nanostructure on Thermal Conductivity Through
Phonon Transport

The phonons are the quanta of excitations of the normal modes of lattice vibrational

motion, which transport the heat through the materials (depending on the polariza-

tion they are termed as acoustic and optical phonons). In long wave approximation,

acoustic phonons display linear dispersion unlike the optical phonons, which are

almost dispersion-less with a small group velocity. Therefore, acoustic phonons

mainly contribute towards thermal conductivity. At low temperatures, contribution
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from transverse acoustic (TA) phonons is dominant, while longitudinal acoustic

(LA) phonons prevail at higher temperatures [40]. A bulk material containing

n atoms per unit cell exhibits 3n phonon dispersion modes corresponding to each

value of wave vector; three acoustic and 3(n � 1) optical. One can easily calculate

the total number of acoustic and optical branches. For example, the GaAs has two

atoms in their basis, and therefore, displays total of six phonon branches with three

acoustic and three optical.

Thermal conductivity (κ) describes the property of a material to conduct heat,

which is essentially determined by the phonon distribution. Phonons have a spec-

trum of wavelengths, which contribute to the total κ. Phonons encounter the

resistance due to various scattering processes, such as scattering by other phonons,

lattice disorders (vacancies, interstitials, and dopants), boundaries, and charge

carriers, which restricts the phonon mean free path and leads to a finite thermal

conductivity. Phonons with short wavelength are scattered by impurity atoms while

interfaces scatter mid-to-long- wavelength phonons. According to specific heat of

solids, the κ can be expressed by the following relation [41]:

κ ¼ Cv2τ (11.3)

where C and v denote the specific heat and velocity of sound at macroscopic level.

Phonon relaxation time τ, which results from various scattering processes, can be

expressed by Matthiessen’s rule:

τ�1
c ¼

X
i
τ�1
i (11.4)

As atoms vibrate around their equilibrium positions and interact with neighbor-

ing atoms, it is easy to find the wavelength and amplitude of such vibrations.

Further, the phonon mean free path is an important variable to understand the

thermal conductivity. Considering the boundary scattering of phonons, Casimir

obtained the following equation for κ [41]:

κ ¼ 1

3
Cvl; l�1

c ¼
X

i
l�1
i (11.5)

which defines the mean free path l that represents the distance between “collisions”
through which phonons are randomly scattered. Phonon scattering through various

processes govern the phonon mean free path (l ) and the relaxation time (τ), which,
in turn, modifies the phonon group velocity (vg ¼ l/τ) and their propagation direc-

tion. Both the parameters l and τ are closely related to microscopic properties. For

electron, the mean free path is shorter than phonon. Therefore, suitable strategies

are possible, where we can selectively scatter phonons without strongly affecting

electrons. Below, we will discuss the phonon scattering in nanostructure (low

dimension) systems.
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The nanostructuring in thermoelectrics can lead to the spatial confinement of

phonons, and in turn, influence the phonon dispersion. The structures larger than the

mean free path of phonons do not influence their movement. However, if feature

size is around the mean free path of the phonons, the acoustic phonons can be

scattered. Nanostructures (the high density of interfaces) modify the

phonon–electron, phonon–defects (vacancies, interstitials, and dopants), and

phonon–phonon interaction which results in restriction of the phonon mean free

path. Thereby mid-to-long- wavelength phonons (low-frequency) would be

inhibited from transport, and only high-frequency phonons would be allowed to

propagate. Nanoscale systems have length-scale-directional limitations, e.g., as in

0D systems all longitudinal and transverse phonons are confined, phonon move-

ment in 1D systems is restricted in two directions, and in 2D systems one of the

dimensions acts as constraint for phonon movement. This directional constraint can

significantly reduce the phonon transport in the constrained direction, if the

constrained length scale is less than the mean free path (which is nanoscale) of

the phonons (3D structures). The dimensional constraints for phonon propagation

are shown in Fig. 11.3.

The surface roughness (δ) of nanostructure boundary also plays a critical role in

reducing the thermal conductivity. For a nanowire of diameter “d” with specular

scattering parameter ( p), the mean free path due to the boundary scattering is

expressed as [42]:

lb ¼ 1þ pð Þd= 1� pð Þ (11.6)

where, p is given by Ziman’s relation p ¼ exp(�16π3δ2/λ2) in which δ is the

surface roughness and λ is the phonon wavelength [42]. It is obvious that the

thermal conductivity values are reduced with the reduced dimensions and increased

surface roughness; however, the definite understanding behind this phenomenon

has not been achieved. The thermal conductivity values investigated by

Fig. 11.3 0D, 1D, 2D, and

3D systems showing the

directional constraints for

phonon propagation
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Martin et al. [43] were found to have (d/δ)2 dependence. The strong phonon

confinement could be achieved in the nanostructures coated with elastically dis-

similar materials [21].

Several studies have been conducted to examine the influence of nanostructures

on electron scattering [40]. At macroscopic level the electronic contribution to heat

capacity can be given by following relation [44]:

κel ¼ π2k2b
Nf

EfT
(11.7)

where Nf is the number of free electrons, kb is the Boltzmann constant, Ef is the

Fermi energy level and T is the absolute temperature. The ratio of electronic

thermal conductivity to phonon thermal conductivity can be expressed as [44]:

κel=κph ¼ 5NfΘ3
D=24π

2NT2Tf (11.8)

where Nf/N is the average number of free electrons contributed by each atom, Tf is
Fermi temperature, and ΘD is Debye temperature. As the temperature increases, the

contribution of lattice to thermal conductivity increases. If one examines the

temperature (To ¼ √ (5Nf Θ3
D/24 π2NT2Tf)), when the electrons have significant

effect on thermal conductivity say κel ¼ κph, the temperature value is only a few

percent of Debye temperature. This indicates that electron contribution to thermal

conductivity can only be realized at very low temperatures.

Therefore, lattice thermal conductivity, which accounts for the major part of the

overall thermal conductivity, can be reduced by strong phonon scattering resulting

from the presence of high density of interfaces in nanostructure materials. The first

experimental evidence confirming this effect resulted from the studies on

low-dimensional materials. The breakthroughs in zT values (larger than 2) have

been mostly realized through the study of low-dimensional (2D superlattice—

Fig. 11.4a, 0D + 2D quantum dots superlattice—Fig. 11.4b and 1D nanowire)

TE materials [5, 45–59], well summarized in a recent review paper [60].

These studies have provided fundamental understanding of the effect of

Fig. 11.4 Types of

nanostructures: (a)

superlattice, (b) quantum

dots superlattice, (c) bulk

with nanodots, (d) bulk with

nanograins (the sizes of

x are all in nanoscale)
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nanostructure on TE properties. Nevertheless, most low-dimensional TE materials

are fabricated by slow and complex thin film deposition techniques (such as

chemical and physical vapor deposition, molecular beam epitaxy), which prevent

them from being implemented in mass applications. One of the important outcomes

of the above studies has been a push towards developing the strategies for achieving

nanostructured bulk materials. There are two types of bulk nanostructures

(nanodots—Fig. 11.4c and nanograins—Fig. 11.4d) and both have been extensively

investigated in recent years [61–78].

11.2.2 Nanostructures in Low Dimensional Materials:
Superlattice, Quantum Dots Superlattice and
Nanowire

As early as 1990s, theoretical calculations were made on Bi2Te3 quantum-well

superlattice structures (Fig. 11.4a ultrathin multilayers) predicting significant

enhancement in zT due to the highly anisotropic effective-mass tensor [79]. In

order to achieve this enhancement in practice, the current must flow along the high

in-plate (carrier mobility axis) and it was assumed that the lattice thermal conduc-

tivity would be unaffected when the thickness is larger than 1 nm. No direct

experimental results are available to confirm these calculations, nevertheless, a

significant reduction in lattice thermal conductivity (κph) of cross-plane in

superlattice structure was observed for several TE materials. The coherent back-

scattering of phonons at superlattice interfaces had been invoked and lowest cutoff

wavelength was achieved by superlattice period of 50 Å [5]. As discussed in

previous section, the lattice thermal conductivity is related to the phonon mean

free path l, which is restricted in superlattice structure leading to lower thermal

diffusivity. In other words, phonons with frequency lower than ωcoutoff (equals to

2v/3l ) would be inhibited from transport by the superlattice structure. The

superlattice period around 50 Å is desirable for minimizing κph, which is consistent
with the calculation. The lattice thermal conductivity of 0.22 W m�1 K�1 was

achieved in p-type Bi2Te3/Sb2Te3 superlattice TE device, which is much lower

than the normal bulk Bi2Te3 alloy and even lower than the minimum predicted

thermal conductivity for bulk Bi2Te3 [5]. When the multilayer size was controlled

between 10 and 40 nm by combining melt spinning and spark plasma sintering, the

κph was 0.6 Wm�1 K�1, and thus zT did not achieve similar high value of 2.4 [5] as

thin-film device with superlattice structure [49].

The phonon blocking by 2D superlattice nanostructure has been demonstrated in

SiGe alloy as well. Lee et al. [50] have shown that for 30–70 Å superlattice period,

the cross-plane κph decreases with the period thickness. The suppression of perpen-

dicular thermal transport by internal reflection and acoustic mismatch was con-

firmed by calculation [51] and further experiment work on Si/Si0.7Ge0.3 and

Si0.84Ge0.16/Si0.76Ge0.24 superlattices [52]. As the interfacial acoustic impedance
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mismatch/roughness (equals to (ρυ)1/(ρυ)2, where ρ is the material density and υ is
the speed of in material) of Si/Si0.7Ge0.3 is much larger than Si0.84Ge0.16/

Si0.76Ge0.24, an obvious κph reduction with decrease in period thickness was

noticed in Si/Si0.7Ge0.3, but not in the second material, since acoustic impedance

mismatch at interface plays a determining role of phonon reflection. Other exam-

ples of significantly reduced lattice thermal conductivity for superlattice systems

include PbTe/PbTexSe1�x [53], GaAs/AlxGa1�xAs [54], and InxGa1�xAs/

AlyInzGa1�zAs [55].

Similar to the superlattice structure, quantum dot superlattice structure (QDSL)

also has ultrathin multilayers (Figs. 11.4b and 11.5). In QSDL, one type of layers

consists of randomly distributed nanodots of a second phase (Fig. 11.5b) (for some

cases the nanodot is sufficient to create carrier confinement so that it is also named

as nanodot superlattice NDSL). QDSL structure has a delta-function distribution of

(phonon or electronic) density of states and discrete energy level due to three-

dimensional quantum confinement [45]. Further compared with the superlattice

structure with flat multilayer, QDSL has larger size roughness feature. So the

nanoparticle layer was effective for scattering mid-to-long-wavelength phonons,

and atomic defects on the other hand scattered the Brillouin zone edge phonons.

The PbSeTe/PbTe QDSL material has been shown to provide improved TE device

performance due to the presence of PbSe quantum nanodots embedded in PbTe

matrix [45]. According to the Debye–Callaway model, half of the heat is carried by

phonons with mean free path less than 19 nm in PbTe alloys. The κph minimization

has been attributed to short mean free paths of phonons in PbTe [56]. The mean free

path l is larger than 100 nm in Si [48], which exhibits larger lattice thermal

conductivity than PbTe-based alloys and mid-long mean free path phonons carry

a large fraction of heat. Therefore, the QDSL structure could have more effective

Fig. 11.5 (a) Bright-field TEM image of a sample with superlattice period of 12 nm. The dark
areas correspond to the Ge layers. The inset shows a high resolution TEM of a nanodot; (b) AFM

image of a single Ge/Si (001) dot layer before overgrowth with Si [48]
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phonon scattering performance in Si-based TE materials. When island dots with

nano-size height are randomly distributed perpendicular to the transport direction

and the film is dislocation free, the mean free path l is mainly determined by

scattering from the nanodots so that the lattice thermal conductivity can be designed

by superlattice period [48]. A minimum κph 0.9 W m�1 K�1 is achieved from

nanodot layer with 1.2 nm height and 70 % relative surface density, with the period

of 3.6 nm [48], which is well below the amorphous Si limit of 2.5 W m�1 K�1. The

comparison of NDSL structure and matrix with randomly distributed nanoparticle

has been conducted for InGaAs thin film materials [57].

The nanowire structure also influences the phonon motion and drastically

reduces the thermal conductivity [46, 47, 58, 59]. For Si nanowires, the mean

free path length is 110 nm for electrons and 300 nm for phonons. The nanowire

maintains similar thermal power and electrical conductivity value as bulk Si while

exhibiting 100-fold reduction in κ. This provides enhanced zT of 0.6 at room

temperature (50 nm, wafer-scale arrays) [46] and about 1 at 200 K (20 nm)

[47]. The decrease of κ depends on the nanowire diameter [46, 47] and roughness

[46]. Lead chalcogenide (PbS, PbSe, PbTe) nanowires have been investigated for

the phonon confinement effects and were found to exhibit similar reduction in κ
with decrease in the nanowire diameter [58].

11.2.3 Nanostructures in Bulk Materials

In fact, the bulk structure does not require exact low dimensional geometry or

perfect nanodots and interface. As long as high density of nanodots or interfaces

exists, strong phonon scattering happens and the reduction of lattice thermal

conductivity can be realized. Not only thin film and nanowire, but nanostructures

(like nanoprecipitates, Fig. 11.4c) in bulk materials could shorten the phonon

mean free path. PbTe-based material systems such as AgPbmSbTe2+m with

nanoprecipitate structure provide a good example for illustrating this principle

[63]. In this system, Ag+-Sb3+-rich nanocrystals embedded uniformly in PbTe

matrix to keep the charge balance of Ag+ and Sb3+ pairs provide low thermal

conductivity of less than 1 W m�1 K�1 (when m ¼ 10 in chemical formulation).

Another commonly studied system, PbTe-PbS, undergoes spinodal decomposition

during annealing around 500 �C resulting in nanoscale coherent heterogeneities in

PbTe matrix, as shown in Fig. 11.6 [67–69]. The size of the nanoprecipitates, which

in general is less than 50 nm, varies with composition and annealing temperature.

When the amount of PbS is relatively high (16 % atomic percent), spinodal-

laminated structures with the period of about 2 nm are formed. Results show that

the nanodots are more effective in scattering phonons than laminate structure,

resulting from spinodal decomposition [68]. Nanoprecipitate formation in PbTe

matrix has been extensively investigated in recent years with modifiers such as Sb

[64–66, 73] Bi (BiSb) [64, 66, 73], Pb [65, 73], SnTe [74], and Ag2Te [75]. Nearly

all the nanoprecipitates in PbTe-based alloys are self-assembled nanocrystals
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that result in lattice misfit dislocations or large stain (large acoustic impedance

mismatch/roughness). These nanoscale inclusions block the propagation of mid-to-

long-wavelength phonons hence intensely reducing the κph. In most cases, the

charge carriers are also somewhat scattered leading to slight decrease of

the electrical conductivity. Recently SrTe nanocrystals have been found to provide

phonon blocking and charge transmitting functions [70, 78]. Due to very small

valence band offset, there is no negative influence on the electrical conductivity by

nanoprecipitates.

In comparison to the quantum dots superlattice, the nandots in bulk TE materials

have two advantages: (1) the synthesis process is simple and easily controlled

which is suitable for large scale fabrication, and (2) the structure is stable due to

the self-assembly formation of nanoprecipitates. After the successful demonstration

in bulk TE alloys, the nanostructuring concepts have been applied in oxide TE

materials for obtaining low thermal conductivity. Nano-inclusion together with

heavy doping and layered grain in Ca3Co4O9+δ has been shown to result in 40 %

decrease in thermal conductivity [71]. The minimum thermal conductivity of ZnO

of the order of 1.5 W m�1 K�1 at 1,000 K was achieved through uniformly

distributed nanoprecipitates in ZnO matrix [72].

The second method to create bulk nano-composite is to develop nanoscale grain

sizes in polycrystalline material (Fig. 11.4d). It has been shown that the nano-size

grains with sharp grain boundaries (Fig. 11.7a) in BiSbTe [77] exhibit strong phonon

scattering thereby reducing the thermal conductivity by a factor of 2. Another

interesting experiment worth discussing here is related to Bi0.52Sb1.48Te3 ribbons

synthesized from melt spinning having nanocrystals of dimension 5–10 nm, amor-

phous structures on contact surface and dendritic structure on free surface. After

SPS, the bulk alloy preserved all the structures of ribbons, which achieved low

thermal conductivity about 0.67 W m�1 K�1 with the lattice contribution of

0.26 W m�1 K�1 [62]. In SiGe system, the phonon long mean free path is larger to

Fig. 11.6 (a) STEM image of PbTe-PbS 8 % showing two PbS particle sizes in PbTe matrix:

larger about 100 nm and smaller 2–10 nm; (b) HRTEM image of nanoscale precipitates (smaller

particles in (a)) located within the PbTe matrix [68]
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300 nm [80], and thus the thermal conductivity can be easily deceased by forming

nanocrystalline structure (Fig. 11.7b). The electrical conductivity was found not to

have any significant change from the nanocrystalline structure as the mean free path

length for electrons is in the order of 5 nm. A fraction of the heat is carried by

the phonon with long mean free path and even the micron scale grain boundaries

have phonon scattering effect. Investigations in Si-Ge system with samples having

three different grain sizes (10–25 μm, 5–10 μm, and less than 5 μm) [76] have shown

that the decrease of grain size results in reduction of thermal conductivity.

11.2.4 Synthesis Techniques

The selection of proper synthesis technique is crucial towards the fabrication of

low-dimension and nanoscale structures in bulk TE. For low-dimensional

(0D structure in QDSL, 1D nanowire, and 2D superlattice in thin film) systems,

the fabrication methods are mostly based upon complex thin film deposition

processes (such as molecular beam epitaxy and pulsed laser deposition). For

example, molecular beam epitaxy (MBE) has been applied in fabrication of several

thermoelectric alloys [45, 48, 81] and pulsed laser flash evaporation, ion-beam

sputtering, metal organic chemical vapor deposition, molecular beam epitaxy, and

electrodeposition techniques have been utilized for the synthesis of bismuth tellu-

ride thin films [82]. However, these materials are not practical for large-scale

commercial use because atomic layer deposition processes are slow and expensive.

Large-scale fabrication of bulk nanostructured materials with compatible geom-

etry is possible by using simple and mature technologies such as precipitation.

The nano-size precipitates form by spontaneous decomposition processes, the

Fig. 11.7 TEM images showing (a) the nano size, high crystallinity, random orientation, and

clean grain boundaries of BiSbTe bulk alloy [77]; (b) nanograins of SiGe bulk alloy [80]
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detailed discussion of which is provided in Sect. 11.2.5. For fabrication of bulk

materials with nanoscale grain size, the process consists of two steps: (1) synthesis

of nanoparticles and (2) consolidation of the particles to form dense body.

Nanoparticles have been fabricated using mechanical alloying (ball-milling),

hydrothermal method, chemical reaction, and melt spinning. High-energy ball-

milling method has been applied for the synthesis of BiSbTe and SiGe

nanopowders [61, 80]. While the composition and particle size obtained from

ball-milling are usually not as uniform as powders obtained from chemical reaction

or hydrothermal method. After the fabrication, the nanopowders need to be

compacted into dense bulk maintaining the nanoscale grain size. In the conven-

tional solid-state reaction method, first powders are compacted into green body and

then sintering is conducted at high temperature to form the dense body. In order to

prevent the rapid grain growth and maintain the nanoscale grain size, the high

sintering temperature and long sintering time should be avoided. Hot-pressing has

been used to prepare PbSe composites and the process has also been employed to

produce SiGe polycrystalline materials [80, 83]. Hot-pressing is a pressure-assisted

sintering process. With the applied pressure, much lower sintering temperature and

shorter time are needed, during which the nanopowders grow together into a bulk

material but the grains are still of nanoscale dimension. Spark plasma sintering is

another modification of pressure-assisted sintering process, in which a spark dis-

charges to heat the samples under high pressure.

Although the nanopowder fabrication, hot-pressing, and spark plasma sintering

are quite mature techniques, there are still some challenges for deploying them in

the synthesis of nano-composites. Firstly, most of the good TE materials are alloys,

which need to be protected from the oxidation (especially for nano alloy particles

with very high surface ratio). Thus, during mechanical alloying, hot-pressing or

SPS, inert gas is required which increases the difficulty and cost of production. The

density of bulk alloy should be high to prevent it from oxidation and environmental

degradation. To achieve the high density, the high magnitude of pressure during

hot-pressing or SPS is required which enhances the complexity of the equipment.

Lastly, the nanograin structure is usually not stable at high temperature.

Bi0.52Sb1.48Te3 bulk alloy with nano grain sizes have been found to exhibit good

thermal stability in the temperature range of 300–400 K [62]; however, SiGe that

shows good figure of merit at relatively high temperature may deteriorate under

continuous operation.

Here we are discussing about the nanostructured bulk materials where the

kinetic and the thermodynamic of the system change. Because of the ball milling,

there are more point defects that increase the diffusion coefficients of the different

elements, and there is a large concentration of extended defects such as grain

boundaries and dislocations. Phase diagram can change in presence of these

extended defects. It is more difficult to predict the phase transformation during

the thermal aging process.
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11.2.5 Self-assembly Synthesis Techniques

The improvement in thermoelectric properties by formation of nanostructures can

be achieved by adopting various strategies as discussed earlier and briefly summa-

rized in Fig. 11.4. The self-assembly technique can provide a solution for the costly

and time-consuming process generally used for the realization of nanostructured

materials. In most of the self-assembly processes, the entropic effect is driven by

the thermodynamic potentials (Gibbs or Helmholtz free energies), resulting from

the entire system’s statistical tendency to increase its entropy. Some material

compositions are homogenous and stable in liquid state but metastable in the

solid state. Thus, rapidly cooling the liquid through the solidus temperature could

freeze and the entropic force will drive the precipitation of insoluble phases

from the matrix under subsequent annealing. By controlling the annealing process,

nanoscale precipitates can be formed with uniform distribution in the matrix. The

composition selection and annealing process is critical for achieving the homoge-

neous precipitate structure. Since, the precipitates (or “nanodots”) are self-

assembled, the process is easy and simple, and these materials are stable at

relatively high temperature. This approach has been utilized for achieving high

thermoelectric performance in PbTe-based alloys [63–70, 73, 74, 78, 84–87] and

ZnO [72]. For example, using the different regimes of the phase diagram and

varying the solidification curve of PbTe-Sb2Te3 alloy, the bulk material with

nanoprecipitates (blue arrow), lamella structure (green arrow), oriented epitaxial

like interfaces and semi-coherent interfaces can be obtained (Fig. 11.8) [88]. Along

the blue line with continuous cooling, Sb2Te3 solubility in PbTe decreases, and it
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begins to precipitate. The size of the precipitates is small as the diffusion process in

solid state is much more difficult than in liquid state. For the critical composition

(shown by green arrow), annealing below the eutectoid temperature allows meta-

stable phase Pb2Sb6Te11 to decompose into PbTe and Sb2Te3 which assemble in

lamellar bulk structure [88, 89]. The formation of lamellar structure is quite similar

to the formation of the pearlitic steel. The temperature and decomposition time can

be used to tune the interlamellar spacing.

Using chemical bonding and van der Waals force, several low-dimensional

thermoelectric materials have been recently synthesized. Facile solvothermal

method was utilized to obtain the bundles of Bi2Te3 nanorods [90] and a high

ZT value of ~0.43 at 473 K was reported. In this process, the K2TeO3 was dissolved

separately in the water solution of ethylenediamine and hydrazine hydrate

N2H4·H2O and then mixed, following the heat treatment processes. In another

case of Bi2Te3, nanoplates of thickness 15–20 nm and self-assembled nanoflowers

(which exhibited good value of power factor 8.6 � 10�6 W m�1 K�2 at 160) using

nanoplates have been synthesized through hydrothermal synthesis technique

[91]. Silver telluride-based hollow microspheres and dendritic nanostructures

have been formed by the self-assembly of nanoparticles and nanosheets using

solution based room temperature process [92]. The [Ag(en)2]
+ particles assembled

on the surface of tiny bubbles generated by the volatilization of anhydrous

ethylenediamine and resulted in the formation of Ag hollow microspheres after

chemical reaction. Ag2Te hollow microspheres or dendritic nanostructures have

been achieved through reaction of Ag and Te. Also, Si/SiGe superlattice nanowires

consisting of interlaced nanodots have been successfully deposited by hybrid

pulsed laser ablation–chemical vapor deposition (PLA-CVD) process [93]. Theo-

retical studies have predicted [94] the zT values of 4 and 6 for the PbSe/PbS and

PbTe/PbSe superlattice nanowires of 5 nm diameter at 77 K respectively if the

PLA-CVD process can be able to apply in these two materials. Hierarchical

assembly of nanowires has been utilized through the microfluidic-assisted integra-

tion process for ZnO. The variables of the nanowires such as composition, diameter,

growth direction, etc. were controlled via vapor–solid–liquid crystal growth

mechanism [95].

11.3 Thermal Conductivity of Oxide Bulk Thermoelectrics

with Self-assembled Structure

For expanding the range of application of thermoelectrics, both quality and cost of

thermoelectric materials are important. Bulk alloys such as BiTe, PbTe have been

shown to provide improved figure of merit higher than 1.5 (Table 11.1). However,

as discussed earlier, high cost of raw materials or complex and costly fabrication

processes together with oxidation issue prevent their commercialization in high
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temperature platforms. For thermoelectric oxides, although the figure of merit is

still low compared to that of alloys due to their relatively high thermal conductivity

and low electrical conductivity, these materials have the commercial advantage of

cost, environmental friendliness, and stability at high temperature in air atmo-

sphere. Also, in the past decade, there has been a great progress for n- and p-type

polycrystalline oxides, as shown in Fig. 11.9. The zT enhancement of thermoelec-

tric alloys by developing nanostructures has been predicted and experimentally

validated (Sect. 11.2). Low dimension nanostructures provide a good opportunity

for research but are difficult to implement at mass scale because of the complex

synthesis techniques (thin film deposition). Large scale fabrication of bulk nano-

structured materials with compatible geometry is possible by using mature sintering

technologies. Bulk materials with self-assembled nanoprecipitate structure are

promising because the process is driven by thermodynamic force. Therefore,

precipitation is more stable at high temperature and method for achieving nano-

structured materials is simple as compared to nanograin structure formed by SPS or

hot-pressing. Few studies on nanostructuring in oxides have been conducted but

these studies show promising results towards reducing the thermal conductivity.

This section will discuss in detail the role of nanostructures in reduction of thermal

conductivity in thermoelectric oxides, with specific focus on self-assembled

nanoprecipitates in ZnO.

Fig. 11.9 History of the development of n- and p-type polycrystalline oxide TE materials [12, 71,

96–98, 102, 113–118]
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11.3.1 Self-assembled Nanostructure and Effect of
Dimension on Thermal Conductivity of ZnO Bulk
Thermoelectrics

Doped ZnO has good Seebeck coefficient (around 200 μV K�1) and large variation

in electrical property [12]. Moreover, it exhibits substantial stability at high tem-

peratures and therefore it is considered as a promising thermoelectric material

[12, 72, 96–98]. The decrease of κ is an essential strategy towards improving its

figure of merit. Because ZnO consists of light elements (with moderate Al doping)

arranged in simple wurtzite crystal structure, it exhibits high thermal conductivity

of 100 W m�1 K�1 at room temperature [99].

Various techniques have been investigated to reduce the thermal conductivity of

ZnO in literature. Voids were introduced in ZnO matrix by foaming technique that

employs polystyrene in order to block the phonon transport. The size of inclusion is

critical for κ decrease, for example, when the voids were in nanoscale size range,

the ZnO matrix revealed ~16–25 % reduced κ values [96], and the micron size pores

have little effect on the κ reduction [97]. The thermal conductivity of ZnO has been

noticed to decrease by doping as well [98, 100, 101]. The value of κ diminished to

~5 W m�1 K�1 [102] in Ga and Al co-doped ZnO, because of the granular texture

from Ga impurity, but ZnO ceramics with Ga doping were highly porous, and

therefore had adverse effect on electrical conductivity.

Similar to that of PbTe-based alloys with nanodot structure, precipitates can be

formed spontaneously in ZnO with Al addition due to the limited solubility of Al in

ZnO [103]. As the extra amount of Al atoms is metastable in the solid solution, the

secondary phase is spontaneously precipitated in ZnO with Al addition during high

temperature sintering process. ZnO–Al composites with nanosize (Fig. 11.10a–d)

and micro-size (Fig. 11.10e–f) precipitates can be fabricated by same solid-state

reaction of mixture of ZnO and Al2O3 powders using different annealing temper-

atures in air. When Al concentration is below 2 mol%, the size of precipitates is

uniform and in the vicinity of 50 nm (Fig. 11.10b, c). The Zn0.97Al0.03O samples

possess both 50 and 400 nm precipitates (Fig. 11.10d). Typical values of micron-

size precipitates are in the range of 1–3 μm as shown in the magnified view in

Fig. 11.10f. Elemental mapping performed using energy-dispersive spectroscopy

(EDS) on a typical Zn0.96Al0.04O sample revealed that precipitates with ZnAl2O4

phase composition distributed uniformly throughout the sample, both inside and at

the grain boundaries (Fig. 11.10g). The grain sizes are in the range of 1–5 μm for

ZnO–Al nano-composites, while 20–50 μm for ZnO–Al micro-composites.

The phonon scattering behavior depends on several mechanisms: Umklapp

phonon–phonon scattering, phonon–impurity scattering, and phonon–boundary

scattering. So the combined relaxation time can be given from (11.4) as [104]:
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1

τC
¼ 1

τU
þ 1

τM
þ 1

τB
þ 1

τph-e
(11.9)

where τC, τU, τM, τB, and τph-e denote total, Umklapp phonon–phonon scattering,

phonon–impurity scattering, phonon–boundary scattering, and phonon–electron

scattering relaxation times, respectively. Assuming additional Al3+ ions stay in

precipitates, the Umklapp phonon–phonon scattering, phonon–impurity scattering,

Fig. 11.10 (a–d) SEM images of ZnO–Al nano-composites (brighter particles are ZnAl2O4

nanoprecipitates and insets are higher magnification SEM); (e and f) contrast SEM images using

back-scattered electron of ZnO–Al micro-composites (darker particles are ZnAl2O4 precipitates);

(g) EDS elemental mapping of (Zn0.96Al0.04)O sample on element Zn (green), O (red) and Al

(blue) [119]
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and phonon–electron scattering in ZnO–Al nano-composites can be considered

to be comparable, so cannot lead to large κ difference. Because of the formation

of nanoprecipitates and grain size reduction, phonon–boundary scattering (interface

scattering) is the key factor for κ variation, which can be expressed as [104]:

1

τB
¼ V

D
1� pð Þ (11.10)

where V is the phonon group velocity, D is the dimension of the system, and p is the
surface roughness factor. The value of p close to 1 means a smooth surface where

the scattering is purely specular and the relaxation time goes to 1.

Since nano-composites have nanoscale precipitates and smaller grains, the

phonon relaxation time (in other way the phonon mean free path) is shorter in

nano-composites than in micro-composites. These nanoscale inclusions block the

propagation of mid-to-long-wavelength phonons, resulting in the reduction of

κ especially in relative low temperature ranges shown in Fig. 11.11. With increase

in Al content, nano-composites were found to display much larger decrease in the

value of κ. For nano-composites, with increase of Al addition to 2 mol%, the

amount of precipitates formed increases but the size was still below 50 nm. Thereby

the samples containing 2 mol% Al displayed the minimum thermal conductivity for

the whole range of measurement temperature; values being 7.5 Wm�1 K�1 at room

temperature and 3.7 W m�1 K�1 at 600 �C. These values are 73 and 40 % lower

than that of pure ZnO samples synthesized under the same conditions. When Al

concentration increases to 3 mol%, part of the precipitates increase the size to about

400 nm, so that the reduction of κ is not as efficient as that with 2 mol% Al. This

indicates the significance of the size of precipitates. While ZnO–Al micro-

composites exhibited progressive decrease in the values of κ with increase in Al

content; the relative decrease in value of κ was only ~15 % for the samples

containing 4 mol% Al than those containing 1 mol% Al in all temperatures ranges

mainly because of micron size precipitates.

Fig. 11.11 Temperature dependence of thermal conductivities of ZnO–Al (a) nano-composites;

(b) micro-composites [119]
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ZnO with nano inclusions were also synthesized by sintering ZnO from thermal

decomposition method [72]. The nanopowders with single phase and average size

of 30 nm (Fig. 11.12a) can be synthesized by thermal decomposition of zinc and

aluminum acetates in pentanediol with oleylamine as a surfactant. Self-assembled

nanoprecipitates with the size of 30–200 nm were formed during sintering and

uniformly distributed in ZnO matrix (Fig. 11.12b). Low thermal conductivity

(Fig. 11.12c) of ZnO was measured at room temperature and calculated at higher

temperatures and the reduction of κ was attributed to ZnO grain boundary, ZnAl2O4

nanosize precipitates, point defects and porosity (�90 % relative density) [72].

Raman spectroscopy (Fig. 11.13) has been utilized to confirm the phonon

scattering mechanism of phonon scattering in ZnO with nanoprecipitates structure.

Fig. 11.12 SEM micrograph of (a) ZnO nanocrystals synthesized with microwave doses of

16 48 kJ g�1 and (b) bulk ZnO nano-composite with 1 at.% Al; (c) thermal conductivity for

ZnO nano-composite pellets with 0.25 at.% Al [72]

Fig. 11.13 Raman spectra of ZnO–Al nano-composites [119]
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The ZnO with wurtzite structure belongs to the C4
6v space group (P63mc), and

exhibits 12 possible vibrational modes, among which the A1, E1, and E2 are Raman-

active optical modes [99]. The Raman active optical phonon E2 mode of the ZnO

around 440 cm�1 has high intensity displaying a sharp and strong peak. Because of

ionic character of Zn–O bonds, polar modes (A1 and E1) exhibit large splitting as

longitudinal optical (LO) and transverse optical (TO) modes. The mode “E1-high”

is much stronger in the ZnO–Al samples in comparison to pure ZnO samples.

Theoretical prediction reported that confined LO phonon wavenumber to be

between A1 (LO) (574 cm�1) and E1 (LO) (590 cm�1) [105] in ZnO nanostructure.

Experimental studies confirmed the phenomena that confined LO phonon modes to

appear at 588 cm�1 (for 8.5 nm) and 584 cm�1 (for 4.0 nm) [106, 107]. So the

higher intensity at 584.5 cm�1 in Fig. 11.13 is attributed to phonon confinement by

nano-size precipitated phase in ZnO–Al nano-composites. Further, no peak shift

and broadening of the Raman peaks is observed which can only happen when

quantum dot size approaches to exciton Bohr radius [108]. Phonon scattering at

ZnO–ZnAl2O4 interface can occur in both ZnO–Al micron- and nano-composites,

however phonon confinement in the homogeneously distributed nanoprecipitates

leads to larger decrease in the value of κ.
As mentioned before, ZnO grain boundary is another potential

phonon–boundary scattering center. Smaller grain size reveals the higher density

of interfaces and therefore exhibits lower value of κ (Fig. 11.14). The values of κ for
ZnO with grain sizes of 5–10 μm, 2–4 μm, 1.5 μm and 1 μm have shown the

decrement by 10 %, 13 %, 25 % and 28 % respectively at room temperature in

comparison to the value of κ for the largest grain size of 10–15 μm. The grain size

dependent κ reduction is more evident at lower temperatures (<200 �C). At relative
higher temperatures (>400 �C), ZnO with grain sizes of 10–15, 5–10, and 2–4 μm
has almost the same κ (the difference is less than 5 %). ZnO with smaller grains,

1.5 μm and 1 μm revealed reduction in the value of κ by ~13 % and 18 %

respectively at 600 �C. All the samples revealed relative density higher than 96 %

indicating that the porosity is not the main factor contributing to the phonon

scattering. The results confirm that grain (micron scale) boundary area has

Fig. 11.14 SEM images of ZnO with different grain size (a–e); and temperature dependence of

thermal conductivity of ZnO with different grain size (f) [119]
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significant contribution towards the blocking of long-wavelength phonons (with

free path in mesoscale) but the degree of reduction is smaller than the contribution

of nanoprecipitates, which block the main heat carrier, phonon with mid-to-long

free path.

11.3.2 Nanostructure of p-Type Ca-Co-O and n-Type SrTiO3

Bulk Thermoelectrics

The compounds Ca3Co4O9 and NaCo2O4 exhibit large thermopower and metal-like

conductivity. They both belong to AxCoO2 (A ¼ Na, Ca, Sr, Ba; x is varying for

different A) family with similar alternating layer structure, CdI2-type CoO2
� and

Ca2CoO3
+ or A+ layer, resulting in phonon blocking and therefore relatively low

thermal conductivity along c-axis direction as compared to other oxide TE mate-

rials [109]. For NaCo2O4, the application in power generation has challenges

because of the volatility of Na and the instability in the humid conditions

[71]. Ca-Co-O ceramic system with textured microstructure have been obtained

by using SPS which has the promise of providing lower thermal conductivity along

c-axis [109]. During ball-milling process and SPS, spontaneously oriented lamellar

nanostructure (Fig. 11.15a) was formed in the presence of Ag inclusions

(Fig. 11.15b). The grains with multilayer structure were randomly oriented with

high angle boundary [71]. The Ag inclusions with the diameter of 350 nm consisted

of spherical and cubical shape particles. The lamellar nanostructure together with

Ag nano inclusion and heavy doping element Eu was found to provide a lower

thermal conductivity [71]. With high concentration of Ag, the inclusion aggregated

and thermal conductivity was found to increase as compared to the sample without

Ag and Eu.

SrTiO3 is another n-type thermoelectric candidate with large Seebeck coefficient

(�100 to �300) and its electrical conductivity can be controlled by Nb5+ and La3+

doping. With the perovskite structure, the thermal conductivity of SrTiO3 is lower

Fig. 11.15 (a) BF-TEM images of Co3Co4O9 with heavy doping of Ag and Eu; (b) STEM of Ag

precipitates in Co3Co4O9δ; (c) heavily doped aligned lamellar nanostructures with embedded

nano-size inclusions [71]
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than that of ZnO but higher than layered Co3Co4O9, having magnitude of

11–3.2 W m�1 K�1 in the range of 300–1,000 K [110]. Thermal conductivity

reduction was found to vary with different doping elements and Dy has been

found to show good phonon blocking as compared to Nb, La, Y, Sm, and Gd

[111]. The natural superlattice Ruddlesden–Popper (RP) phase is good for phonon

blocking. Consisting of alternating SrO and SrTiO3 layers (Fig. 11.16), rare earth

elements doped RP phase exhibits much lower thermal conductivity than SrTiO3.

Similar to the layered Ca-Co-O system, there is phonon scattering at SrO–SrTiO3

interface.

11.4 Conclusions

Thermoelectric generator can efficiently convert unused heat into electricity, and

nanostructure based bulk thermoelectric devices can be promising due to the

enhanced figure of merit (zT). Low-dimensional systems (2D superlattice,

0D + 2D quantum dots superlattice and 1D nanowire), and nanostructures

Fig. 11.16 Schematic

crystal structures of

Ruddlesden–Popper phase,

SrO/(SrTiO3)n with

(a) n ¼ 1 and (b) n ¼ 2

[120, 121]
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synthesized in bulk (nanodots and nanograins) have been studied in recent decades

and proven to be good phonon scattering centers for low thermal conductivity.

Oxides thermoelectrics synthesized from abundant and low cost raw materials offer

the high temperature stability due to their high oxidation resistance. Self-assembly

techniques have been successfully applied for the fabrication of bulk oxide ther-

moelectrics with nanostructure. The self-assembled nanostructures in n-type ZnO

were introduced which resulted in large reduction in thermal conductivity, by a

factor of about three. The thermal conductivity reduction was attributed to the

phonon scattering and confinement by uniformly distributed nanoprecipitates

(ZnAl2O4) and large grain boundary area. Nano lamellar and inclusion structure

in p-type Ca-Co-O system (Ca3Co4O9), and natural superlattices structure in n-type

SrO/SrTiO3 result in thermal conductivity reduction as well. In the near future

thermoelectric waste heat recovery by using oxides will make a significant contri-

bution, over a wide range of applications, in power generator and cooling system.
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Chapter 12

Thermoelectric Properties of Carbon

Nanotubes and Related One-Dimensional

Structures

H.J. Liu

Abstract Using nonequilibriummolecular dynamics simulations and nonequilibrium

Green’s function method, we investigate the thermoelectric properties of carbon

nanotubes and related one-dimensional structures, which include ultrasmall and

larger diameter carbon nanotubes, as well as graphene nanoribbons (GNRs) and

carbon nanowires (CNWs). It is found that the transmission function of these

one-dimensional carbon nanostructures display a clear stepwise structure that gives

the number of electron channels. By optimizing the carrier concentration, character-

istic size, and/or operating temperature, these systems could exhibit very high figure

of merit. Moreover, their thermoelectric performance can be significantly enhanced

via man approaches such as surface design, isotope substitution, isoelectronic impu-

rities, and hydrogen adsorption. It is thus reasonable to expect that carbon nanotubes

and related one-dimensional carbon nanostructures may be promising candidates

for high-performance thermoelectric materials.

12.1 Introduction

Thermoelectric materials have attracted a lot of attention from the science commu-

nity due to their interesting transport properties and potential applications in cooling

and power generation. The efficiency of a thermoelectric material is given by the

dimensionless figure of merit (ZT value)

ZT ¼ S2σT= κe þ κp
� �

(12.1)

In this formula, S is the Seebeck coefficient, σ is the electrical conductivity, T is

the absolute temperature, κe and κp are the electron and phonon contributions to the
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thermal conductivity, respectively. Good thermoelectric materials behave as glass

for phonons and crystal for electrons [1], and one therefore must try to maximize

the power factor (S2σ) and/or minimize the thermal conductivity (κ ¼ κe + κp). As
these transport coefficients (S, σ, and κ) are coupled with each other and related to

the crystal structure and carrier concentration, it is very difficult to significantly

improve the thermoelectric performance of conventional materials, which has a

highest ZT value of about 1.0 [2, 3]. Since the pioneering works of Hicks and

Dresselhaus [4, 5], much effort has been devoted to the studies of low-dimensional

or nano-thermoelectric materials, which are believed to exhibit much higher ZT
values on account of enhanced power factor caused by quantum confinement and

energy filtering effects as well as reduced thermal conductivity due to enhanced

phonon boundary scattering. However, the experimental realization of such systems

remains a big challenging for the best thermoelectric materials which usually

contains one or more elements of Bi, Sb, Te, Co, Ag, and Pb. Moreover, these

elements are either toxic or expensive. The environmental problems they cause and

the high economic cost therefore restrict their practical applications.

As an interesting quasi-one-dimensional nanostructure with many unusual prop-

erties, carbon nanotubes (CNTs) have attracted a lot of attention from the science

community since their discovery [6]. However, few people believe that CNTs could

be promising thermoelectric materials. This is probably due to the fact that although

CNTs can have much higher electrical conductivity, their thermal conductivity are

also found to be very high [7–12]. As a result, the ZT values of CNTs predicated

from previous works [11, 13] are rather small (~0.0047). Prasher et al. [14] found

the so-called “CNT bed” structure could reduce the thermal conductivity of CNTs.

However, the random network of the samples may weaken the electronic transport

and the room temperature ZT value is estimated to be 0.2. Jiang et al. [15] inves-

tigated the thermoelectric properties of single-walled CNTs using a nonequilibrium

Green’s function approach. They found that CNTs exhibit very favorable electronic

transport properties but the maximum ZT value is only 0.2 at 300 K. The possible

reason is the neglect of nonlinear effect [16] in the phonon transport and the

corresponding thermal conductivity was overestimated. If the thermal conductivity

can be significantly reduced without much change to their electronic transport,

CNTs may have very favorable thermoelectric properties. In this work, we use a

combination of nonequilibrium Green’s function and nonequilibrium molecular

dynamics simulations to study the thermoelectric properties of a series of CNTs

with different diameters and chiralities. We will first focus on three kinds of

ultrasmall single-wall carbon nanotubes, namely, the zigzag (5,0), the chiral (4,2),

and the armchair (3,3). These nanotubes were fabricated by a templating method

and have a diameter of about 0.4 nm [17], probably at or close to the theoretical limit.

We will then deal with carbon nanotubes having relatively larger diameter. They are

the zigzag (7,0), (8,0), (10,0), (11,0), (13,0), (14,0), and the chiral (4,2), (5,1), (6,2),

(6,4), (8,4), (10,5), and all are semiconducting in their pristine form. To be complete,

our theoretical calculations are extended to the related one-dimensional carbon

nanostructures, which include graphene nanoribbons (GNRs) and carbon nanowires

(CNWs). By cooperatively manipulate the electronic and phonon transports, we shall
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see these carbon nanostructures could be optimized to exhibit much higher ZT value.

Moreover, their thermoelectric performance can be significantly enhanced via man

means such as surface design, isotope substitution, isoelectronic impurities, and

hydrogen adsorption. Our theoretical investigations suggest that carbon nanotubes

and related one-dimensional structures could be very promising candidates for future

thermoelectric applications.

12.2 Computational Details

The electronic transport has been studied using the nonequilibrium Green’s function

(NEGF) method as implemented in the Atomistix ToolKit (ATK) software package

[18, 19]. As usual in the NEGF model, the carbon nanotube (and related

one-dimensional structures) is divided into a central part connected by the left

and right semi-infinite ones. We focus on the ballistic transport and the weak

electron–phonon scattering is ignored. During the self-consistent calculations, we

use the Troullier–Martins non-local pseudopotentials [20] to describe the electron–ion

interactions. The exchange-correlation energy is in the form of PW91 [21] and the

Brillouin zone is sampled with 1 � 1 � 100 Monkhorst–Pack k-mesh [22]. The

mixing rate of electronic Hamiltonian is set to be 0.1, and the convergent criterion

for the total energy is 4 � 10�5 eV. We use a double ζ basis set plus polarization for
the carbon atoms and the cutoff energy is set as 150 Ry. On the other hand, the thermal

transport is calculated using the reverse nonequilibriummolecular dynamics (NEMD)

simulations implemented in the LAMMPS software package [23]. We adopt the

Tersoff potential [24] and solve Newtonian equations of motion according to the

Müller-Plathe algorithm [25] with a fixed time step of ~0.5 fs. To make sure that

the system has reached steady state, a constant temperature simulation of seven

million steps and a constant energy simulation of three million steps are carried out.

The nanotubes (and related one-dimensional structures) are then divided into N equal

segments with periodic boundary condition, and the segments at N/4 and 3N/4 are

defined as hot and cold regions, respectively. The kinetic energies are swapped

between the coldest atom(s) in the hot region and the hottest one(s) in the cold region,

then a temperature gradient responses and thermal flux maintains via atoms interac-

tions in neighboring segments [26, 27]. Our calculated results are carefully testedwith

respect to the number of divisions and time steps.

12.3 Ultrasmall Carbon Nanotubes

We begin with the electronic transport of the ultrasmall carbon nanotubes having a

diameter of about 0.4 nm. As mentioned before, we use a standard model where the

central scattering region is connected by two semi-infinite electrodes which are also

carbon nanotubes in the present study. To get reliable results, the length of the
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central part is carefully tested which contain 10, 2, and 6 unit cells for the (3,3),

(4,2), and (5,0) tubes, respectively. Figure 12.1 shows the calculated transmission

function T(E) of these nanotubes under zero bias voltage. We see that all of them

display a clear stepwise structure that gives the number of electron channels. The

quantized transmission indicates ballistic transport of electron in the carbon

nanotubes as suggested by previous studies. It should be mentioned that the

transmission function of (4,2) tube vanishes around the Fermi level, which is

consistent with the fact that among the 0.4 nm nanotubes, the (4,2) tube is the

only semiconductor with a band gap of ~0.2 eV [28].

Based on the calculated transmission function, the electronic transport coeffi-

cients can be readily obtained [29]. As the cross-sectional area is not well defined

for quasi-one-dimensional systems such as CNTs, we will discuss the conductance

(G, λe, or λp) [30] instead of the conductivity (σ, κe, or κp) mentioned before.

The dimensionless figure of merit is therefore rewritten as

ZT ¼ S2GT= λe þ λp
� �

(12.2)

Let

Lm μð Þ ¼ 2

h

ð1
�1

dET Eð Þ E� μð Þm �∂f E; μð Þ
∂E

� �
(12.3)

Fig. 12.1 (Color online)
Transmission function of

0.4 nm carbon nanotubes:

(a) armchair (3,3), (b) chiral

(4,2), and (c) zigzag (5,0)

under zero bias voltage. The

inset are ball-and-stick
models of these nanotubes

which are divided into a

central part connected by

the left and right semi-

infinite ones as usually done

in the NEGF approach
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where f (E,μ) is the Fermi–Dirac distribution function, we can then respectively

write the Seebeck coefficient, the electrical conductance, and the electronic thermal

conductance as

S μ; Tð Þ ¼ 1

eT

L1 μð Þ
L0 μð Þ (12.4)

G μ; Tð Þ ¼ e2L0 μð Þ (12.5)

λe μ; Tð Þ ¼ 1

T
L2 μð Þ � L1 μð Þ½ �2

L0 μð Þ

( )
(12.6)

Figure 12.2 plots the redefined power factor (S2G) as a function of chemical

potential μ and temperature T for the (3,3), (4,2), and (5,0) tubes. As indicated in the

color scale, the red and blue stand for large and small calculated values of S2G,
respectively. Note here the chemical potential determines the doping level of the

system, and the positive and negative μ correspond to n-type and p-type doping,

respectively. As can be seen from Fig. 12.2, the calculated power factor exhibit one

or two highlight areas with obviously large values in a wide temperature range. This

observation suggests that one can always enhance the thermoelectric performance of

these nanotubes by appropriate n-type and/or p-type doping. If we focus on the room
temperature, we find from Table 12.1 that the (4,2) and (3,3) tubes have relatively

large value of S2G compared with that of the (5,0) tube. However, the much higher

electronic thermal conductance λe makes the pristine (3,3) tube less possible for the

thermoelectric applications. The most favorable candidate should be (4,2) tube

which has a very small λe but larger S2G with chemical potential close to the

Fermi level.

We now move to the discussion of phonon transport by using the NEMD

simulation, which can handle anharmonicity and turns out to be an efficient approach

Fig. 12.2 (Color online) Calculated power factor S2G of 0.4 nm carbon nanotubes: (a) (3,3),

(b) (4,2), and (c) (5,0) as a function of chemical potential μ and temperature T
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to calculate thermal conductivity as long as the temperature is not very low. In the

present work, the nanotubes are divided into 40 equal segments, and the 1st (21th)

one is set as cold (hot) region. One atom in each region exchange their kinetic energy

every 80 time steps and others interact to reach a quasi-equilibrium state until the

next exchange happens. Figure 12.3a shows the exchanged kinetic energy as a

function of simulation time for the (4,2) tube at 300 K. The simulation cell is

about 135 nm in length. We see that the exchanged energy increases linearly in

the whole simulation time, which suggests a stable heat flux J from the hot to cold

region. As shown in Fig. 12.3b, there is a linear temperature response along the tube

axis except for themiddle hot region and outer cold region. The temperature gradient

∇T is thus obtained by averaging the slope values of two linearly fitted lines shown

in Fig. 12.3b. Inserting these values into the Fourier’s law

κp ¼ J= A �∇Tð Þ (12.7)

Table 12.1 Optimized ZT value at 300 K for the 0.4 nm carbon nanotubes (3,3), (4,2), and (5,0).

The tube length is assumed to be 1 μm. The corresponding chemical potential μ, the power factor
S2G, the electronic thermal conductance λe, and the lattice thermal conductance λp and conduc-

tivity κp are also indicated

Tube μ (eV) S2G (W/K2) λe (nW/K) λp (nW/K) κp (W/m·K) ZT

(3,3) 0.78 1.11 � 10�12 1.89 0.21 1,615 0.16

(4,2) �0.09 1.39 � 10�12 0.08 0.18 1,330 1.6

(5,0) 0.53 5.81 � 10�13 0.96 0.30 2,073 0.14

Fig. 12.3 (a) Typical time

variation of the exchanged

kinetic energy for the (4,2)

tube; (b) Typical

temperature profile for the

(4,2) tube at an average

temperature of 300 K; (c)

The inverse thermal

conductivity 1/κp as a
function of inverse tube

length 1/l, where the open
circles represent explicit
MD results and the solid
line indicates a linear fit
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the phonon-derived thermal conductivity κp can be calculated. Here A is the cross-

sectional area which has certain arbitrariness for low-dimensional systems such

as CNTs. A proper treatment is using the thermal conductance λp [30] which is

related to the thermal conductivity by

λp ¼ κpA=l (12.8)

where l is the length of CNTs and in the order of micron size for most carbon

nanotubes samples.

It is well known that the thermal conductivity κp of bulk materials is only

determined by their composite and is size independent. This is however not the

case for low-dimensional systems. Both experiment measurement [31] and MD

simulations [32, 33] indicate that the thermal conductivity of CNTs are related to

their length. As most thermal energy is transported by acoustic phonons which

scatter at the boundary of the tubes and the phonon mean free path is limited by

the size of the simulation cell, the thermal conductivity increases with increasing

tube length within the ballistic transport regime. When the transport extends to the

diffusive regime, the thermal conductivity diverges as κp ~ lβ, where the exponent
β depends on the temperature and tube length l. In order to obtain a fully diffusive

thermal conductivity of our systems, the κpwith different tube lengths are calculated
and extrapolated to obtain a good estimate at infinite length. A simple approach of

effective phonon travel path leff is given by

1=leff ¼ 1=l1 þ 4=l (12.9)

where l is the length of simulated CNTs, l1 is the phonon mean free path for infinite

system, and the factor 4 means that phonons will be at an average distance l/4 from
either the cold region or the hot one where the last anharmonic scattering event

occurred [27]. This formula suggests that a plot of 1/κp vs. 1/l should be linear, and
that the thermal conductivity of CNTs at any length can thus be calculated.

Figure 12.3c gives the results for the (4,2) tube, where the solid line is fitted from

the 1/κp at a series of tube length. If the tube has a typical length of 1 μm, the

thermal conductivity can be readily obtained by extrapolating to 1/l ¼ 0.001 nm�1.

It should be mentioned that in our MD simulation, the temperature is defined by

the formula

Eh i ¼
XN
i¼1

1

2
mv2i ¼

3

2
NkBTMD (12.10)

where hEi is the mean kinetic energy, N is the number of atoms in the simulation

cell, m is the atomic mass, vi is the velocity of atom i, and kB is the Boltzmann

constant. However, this formula is valid only when the temperature is higher than

the Debye temperature ΘD. If we are interested in the room or intermediate
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temperature region which is lower than the ΘD of CNTs (usually 500–1,000 K),

a quantum correction to both the MD temperature and the thermal conductivity

must be carried out. This is done by redefining the MD temperature as [34]:

3NkBTMD ¼
ðωΘ

0

D ωð Þn ω; Tð Þħωdω (12.11)

where D(ω) is the phonon density of states obtained from density functional pertur-

bation theory, n(ω,T) is the Bose–Einstein distribution, and ωΘ is the Debye

frequency. The quantum corrected thermal conductivity κp as well as the thermal

conductance λp for the 0.4 nm nanotubes at 300 K are summarized in Table 12.1,

where the tube length is assumed to be 1 μm.We find these three kinds of nanotubes

have quite different thermal conductivity although they are nearly of the same

diameter. It is generally accepted that the acoustic branches play a significant role

in the thermal conductivity of carbon nanotubes [35]. As the calculated heat capacity

and the phonon group velocity of those 0.4 nm nanotubes are more or less similar to

each other, we believe that the large difference in the thermal conductivity

(or thermal conductance) is mainly due to their different phonon mean free path.

Based on the calculated power factor S2G, the electronic thermal conductance λe,
and the phonon-induced thermal conductance λp, we are able to evaluate the figure

of merit according to (12.2). Due to relatively larger S2G and smaller λe and λp (see
Table 12.1), we find that the (4,2) tube has the highest ZT value among the three

kinds of 0.4 nm tubes, which is 1.6 (at length of 1 μm) at room temperature. This

value is already larger than those reported previously for larger diameter carbon

nanotubes or their composites [14, 15, 36]. We further find that, chemisorptions of

hydrogen on the (4,2) tube could result in a significant reduction of both the λp and
λe while maintaining good power factor S2G. For the optimized product where two

hydrogen atoms chemisorbed on top of the C–C bond that has the lowest angle with

the tube axis (see Fig. 12.4a), we see from Table 12.2 that the calculated λp (λe) is
only 0.067 nW/K (0.038 nW/K) compared with 0.18 nW/K (0.08 nW/K) of the

pristine (4,2) tube. The maximum ZT value of the chemisorbed (4,2) tube is thus

increased to 3.5, which is comparable to that of the best commercial materials.

In addition to the surface design mentioned above, we find that formation of

carbon nanotube bundles could also give an improved ZT value. Here we consider

two examples, namely, the doublet (3,3) and the triplet (5,0). In contrast to the weak

tube–tube interactions found in bundle of large diameter nanotubes, the ultrasmall

tubes within the doublet and triplet bundles are covalently connected [37] as shown

in Fig. 12.4b, c. Our MD simulations indicate that such new forms of bundle are

energetically favorable and kinetically stable around room temperature. Due to very

strong tube–tube interactions, we see from Tables 12.1 and 12.2 that the electronic

thermal conductance λe is lowered by 93 % for the doublet (3,3), and 85 % for the

triplet (5,0). Moreover, there is an obvious increase of the corresponding power

factor S2G and a decrease of the phonon-derived thermal conductivity κp. As a

result, the calculated ZT value increases significantly from 0.14 to 1.8 for the triplet

(5,0), and from 0.16 to 2.7 for the doublet (3,3).
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It should be emphasized that we have assumed that the tube length is 1 μm in the

above discussions. This is not necessarily the case for real system where the tube

length varies from sample to sample. As the thermal conductance λp will decrease
with increasing tube length, our calculated ZT values may further increase as

obviously shown in Fig. 12.5. For example, the ZT value of pristine and hydrogen

adsorbed (4,2) tube with length of 3 μm can be respectively enhanced to 2.8 and

6.6 at optimized chemical potential. Similar trends can be found for the carbon

nanotube bundles, which has a ZT value of 4.1 for the triplet (5,0), and 6.5 for the

doublet (3,3) when the bundle length is 5 μm. If the sample length is further

increased to 10 μm, we see from Fig. 12.5 that the predicated ZT value can be as

high as 11.5 for the (4,2) tube chemisorbed with hydrogen. The significantly

enhanced ZT values suggest very favorable thermoelectric applications of these

0.4 nm carbon nanotubes.

Fig. 12.4 Top-view of the

fully relaxed structures

for (a) the (4,2) tube

chemisorbed with two

hydrogen atoms, (b) the

doublet bundle of (3,3) tube,

and (c) the triplet bundle

of (5,0) tube

Table 12.2 Optimized ZT value at 300 K for the chemisorbed (4,2) tube, the doublet bundle of

(3,3) tube, and the triplet bundle of (5,0) tube. The tube length is assumed to be 1 μm. The

corresponding chemical potential μ, the power factor S2G, the electronic thermal conductance λe,
and the lattice thermal conductance λp and conductivity κp are also indicated

Structure μ (eV) S2G (W/K2) λe (nW/K) λp (nW/K) κp (W/m·K) ZT

Tube (4,2) + H2 0.81 1.24 � 10�12 0.038 0.067 281 3.5

Doublet (3,3) 0.79 3.22 � 10�12 0.13 0.23 885 2.7

Triplet (5,0) 0.24 2.49 � 10�12 0.14 0.27 622 1.8

Fig. 12.5 (Color online)
The optimized ZT value at

300 K as a function of tube

length for the pristine (4,2)

tube, the (4,2) tube with

chemisorbed hydrogen, the

triplet bundle of (5,0) tube,

and the doublet bundle of

(3,3) tube
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12.4 Larger Diameter Carbon Nanotubes

We now consider carbon nanotubes with relatively larger diameter. As mentioned

in Sect. 12.1, they are the zigzag series (7,0), (8,0), (10,0), (11,0), (13,0), (14,0),

and the chiral series (4,2), (5,1), (6,2), (6,4), (8,4), (10,5). We first investigate

the phonon transport of these CNTs by using the NEMD simulations, where

the phonon-induced thermal conductivity κp is calculated according to (12.7).

Table 12.3 summarizes the NEMD calculated room temperature thermal conduc-

tivity κp of a series of zigzag and chiral nanotubes. We see that κp of these carbon
nanotubes are indeed very high which range from several hundreds to more than

one thousand of W/m∙K. If we focus on the zigzag series, we find that the thermal

conductivity decreases as the tube diameter is increased. This is also the case for

the chiral series with the same chiral angle (e.g., the (4,2), (8,4), and (10,5) tubes).

The reason is that larger diameter CNTs have smaller average group velocity and the

probability of the umklapp process is higher [38, 39]. On the other hand, if we focus

on those CNTs with roughly similar diameters (e.g., (7,0) vs. (6,2), (11,0) vs. (8,4),

(13,0) vs. (10,5)), it is interesting to find that the thermal conductivity of chiral tube

is always lower than that of zigzag one. As these CNTs have similar average group

velocity, we believe the more frequent phonon umklapp scattering in the chiral tubes

makes a significant contribution to the reduced thermal conductivity.

We now move to the discussions of electronic transport by using the NEGF

approach. Figure 12.6 shows the calculated electronic transmission function T(E)
for the above mentioned zigzag and chiral series. Within the rigid-band picture,

E > 0 corresponds to the n-type doping while E < 0 corresponds to the p-type
doping. Here we focus on the electron ballistic transport and ignore the weak

electron–phonon scattering. We see that all the investigated CNTs exhibit quan-

tized transmission which can be essentially derived from their energy band struc-

tures. The vanishing transmission function around the Fermi level is consistent with

the fact that all of them are semiconducting. It is interesting to find those CNTs with

larger diameter have symmetrically distributed transmission function near the

Table 12.3 Calculated

phonon-derived thermal

conductivity κp at 300 K

for the zigzag (7,0), (8,0),

(10,0), (11,0), (13,0), (14,0)

tubes and chiral (4,2), (5,1),

(6,2), (6,4), (8,4), (10,5)

tubes. The corresponding

tube diameter d and chiral

angle θ are also given

Tubes d (nm) θ (�) κp (W/m·K)

Zigzag series (7,0) 0.548 0 1,270

(8,0) 0.627 0 955

(10,0) 0.783 0 809

(11,0) 0.862 0 778

(13,0) 1.019 0 613

(14,0) 1.097 0 599

Chiral series (4,2) 0.414 19.2 1,337

(5,1) 0.436 8.9 1,413

(6,2) 0.565 13.9 1,009

(6,4) 0.683 23.4 829

(8,4) 0.829 19.2 721

(10,5) 1.036 19.2 564

372 H.J. Liu



Fermi level. However, this is not the case for the smaller diameter CNTs such as

(7,0), (8,0), and (4,2), where we see the number of first conduction channel is 2 for

the p-type doping and 1 for the n-type doping. By integrating [29] the calculated

transmission function T(E), one can easily obtain the Seebeck coefficient S, the
electrical conductance G, and the electronic thermal conductance λe within the

linear response limit. Here we choose the zigzag (10,0) and chiral (6,4) as two

typical examples and plot in Fig. 12.7 the corresponding transport coefficients at

300 K as a function of chemical potential μ. Note the chemical potential indicates

the doping level or carrier concentration of the system, and the n-type doping

corresponds to μ > 0 while p-type corresponds to μ < 0. As can be seen from

Fig. 12.7a, b, both the electrical conductance G and the electronic thermal conduc-

tance λe of these two CNTs vanish around the Fermi level (μ ¼ 0) since this area

corresponds to the band gap of the systems. When the chemical potential moves to

the edge of the first conduction channels, there is a sharp increase of the electrical

conductance G and the electronic thermal conductance λe. For both the (10,0) and

(6,4) tubes, the Seebeck coefficient S shown in Fig. 12.7c is rather symmetric about

the Fermi level, which can be attributed to the symmetrically distributed first

conduction channels (see Fig. 12.6). The absolute value of Seebeck coefficient

reaches the maximum value at μ � � kBT and then decreases until vanish near the

edge of band gap.

Figure 12.7d shows the chemical potential dependent ZT value at 300 K for the

(10,0) and (6,4) tubes. We see that both of them exhibit two peak values around the

Fermi level, which suggest that by appropriate p-type and n-type doping, one can

significantly enhanced the thermoelectric performance of CNTs. For the (10,0)

tube, the maximum ZT value is found to be 0.9 and appears at μ ¼ �0.40 eV. In the

Fig. 12.6 (Color online)
Calculated electron

transmission function for a

series of (a) zigzag tubes

and (b) chiral tubes
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case of (6,4) tube, the ZT value can be optimized to 1.1 at μ ¼ �0.44 eV. The same

doping level for the p-type and n-type doping in the (10,0) or (6,4) tubes is very

beneficial for their applications in real thermoelectric devices.

Up to now we are dealing with room temperature and the corresponding ZT
values are still not comparable to that of the best commercial materials. Moreover, a

thermoelectric material may be needed to operate at different temperatures for

different applications. We thus perform additional transport calculations where

the temperature ranges from 250 K to 1,000 K. Figure 12.8 plots the calculated

ZT values as a function of temperature for the above mentioned zigzag and chiral

series. At each temperature, two ZT values are shown which correspond to the

optimized p-type and n-type doping in each tube. Except for the small (4,2) tube

with a maximum ZT value at 300 K, we see from Fig. 12.8 that the thermoelectric

performance of other CNTs can be significantly enhanced at relatively higher

temperature. The maximum ZT value that achieved is 3.5 for the zigzag (10,0) at

800 K, and 4.5 for the chiral (6,4) at 900 K. These values are very competitive with

that of conventional refrigerators or generators. It is interesting to note that among

the investigated CNTs, both the (10,0) and (6,4) tubes have an intermediate

diameter (0.7–0.8 nm), and those with larger or smaller diameters have relatively

less favorable thermoelectric performance. On the other hand, we see that almost all

the zigzag tubes exhibit a peak ZT value at intermediate temperature (700–800 K).

Fig. 12.7 (Color online) Calculated transport coefficients at 300 K as a function of chemical

potential for the zigzag (10,0) and chiral (6,4): (a) electric conductance, (b) electronic thermal

conductance, and (c) Seebeck coefficient. The corresponding ZT values are shown in (d)
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In contrast, the peak for chiral series moves roughly from 300 K to 900 K as the tube

diameter is increased. Our calculated results thus provide a simple map by which

one can efficiently find the best CNT for the thermoelectric applications at different

operating temperatures.

To further improve the thermoelectric performance of these CNTs, we have

considered isotope substitution which is believed to reduce the phonon-induced

thermal conductance without changing the electronic transport properties [40–42].

Here we choose (10,0) as an example since it has the highest ZT value among those

zigzag series, and the zigzag tubes are usually more easily to be fabricated in or

selected from the experiments than the chiral ones. In our calculations, the 12C

atoms in the (10,0) tube are randomly substituted by 13C atoms at different

concentrations. The corresponding lattice thermal conductance as well as the ZT
value at 800 K is shown in Fig. 12.9 with respect to the pristine values. Due to

the mass difference between 12C and 13C, we see that the calculated thermal

conductance of (10,0) tube decreases with increasing concentration of 13C atoms.

Fig. 12.8 (Color online) Optimized ZT values as a function of temperature for a series of

(a) zigzag tubes and (b) chiral tubes. The results for the p-type and n-type doping are both shown
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Of course, if half or more 12C atoms are substituted, the situation is reversed.

The thermal conductance can be well fitted by a double exponential function:

λp=λp0 ¼ 0:36e�x=0:28 þ 0:35e� 1�xð Þ=0:24 þ 0:62 (12.12)

where x is the concentration of 13C atoms. For a light isotope substitution

(12C0.95
13C0.05), the thermal conductance is already reduced by about 9 % and the

ZT value can be increased to 3.7 from the pristine value of 3.5. If half 12C atoms are

replaced (12C0.5
13C0.5), the corresponding thermal conductance reaches the mini-

mum and the ZT value can be as high as 4.2, which suggest its appealing thermo-

electric applications.

Introducing isoelectronic impurities is another effective way to localize phonon

and reduce lattice thermal conductance due to impurity scattering [43]. Here we

choose Si as an example and consider a very low concentration where one C atom in

a (10,0) supercell containing three primitive cells is replaced by Si atom. The

resulting product has a nominal formula of C119Si and is schematically shown in

Fig. 12.10a. As the mass difference between C and Si is even larger, we find that the

phonon-derived thermal conductance of C119Si is significantly reduced by 45–60 %

compared with that of pristine (10,0) tube in the temperature range from 300 K to

900 K. On the other hand, since C and Si atoms have the same electron configura-

tion, one may expect that Si doping will not change much to the electronic transport

properties. Indeed, our calculations only find a small weakening of the power factor

S2G. As a result, we see from Fig. 12.10c there is an overall increase of the ZT value

at temperature range from 300 K to 700 K. The Si-doped product has a maximum

ZT ¼ 4.0 at T ¼ 600 K compared with the pristine value of 3.5 at T ¼ 800 K. It is

Fig. 12.9 (Color online) Calculated lattice thermal conductance (red) and optimized ZT value

(blue) at 800 K for the (10,0) tube, where the 12C atoms are substituted by 13C atoms with different

concentrations. Note that the results are given with respect to those of the pure 12C tube
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worth to mention that in a wide temperature range (450–850 K), the ZT values of the

Si-doped product are all higher than 3.0 which is very beneficial for their thermo-

electric applications.

A similar improvement of the thermoelectric performance can be achieved by

hydrogen adsorption on the (10,0) tube. As shown in Fig. 12.10b, two hydrogen

atoms are chemisorbed on top of a C–C bond along the tube axis and the product has

a concentration of C40H2. Our calculated results indicate that such hydrogen

adsorption causes deformation of the (10,0) tube, and reduces both the phonon

and electron induced thermal conductance while keep the power factor S2G less

affected. For example, the calculated λp at 600 K is 0.072 nW/K, which is much

lower than that found for the pristine (10,0) tube (0.21 nW/K). The calculated λe
also decreases from 0.089 nW/K to 0.062 nW/K. At the same time, we find that the

power factor S2G of chemisorbed product (9.47 � 10�13 W/K2) is slightly lower

than that of the pristine (10,0) tube (1.28 � 10�12 W/K2). As a result, the calculated

ZT value at 600 K increases significantly from 2.6 to 4.2 which is even higher than

the highest value of pristine (10,0). The chemisorptions of hydrogen also increases

the ZT value at other temperatures, as indicated in Fig. 12.10c. It is interesting to

note that the temperature dependent behavior almost coincide with that from Si

doping, especially in the temperature region from 400 K to 700 K.

12.5 Graphene Nanoribbons

The GNRs can be visualized as unfolding carbon nanotubes and are usually

classified into armchair graphene nanoribbons (AGNRs) and zigzag graphene

nanoribbons (ZGNRs) according to their edge shape. Following the conventional

Fig. 12.10 (Color online)
Top-view of the fully

relaxed structures for (a) Si

doped (10,0) tube with

nominal formula of C119Si,

and (b) the (10,0) tube

chemisorbed with hydrogen

atoms having nominal

formula of C40H2. (c) plots

the optimized ZT value as a

function of temperature for

the C119Si and C40H2

products, and the results for

the pristine (10,0) tube is

also shown for comparison
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notation [44, 45], the AGNRs (ZGNRs) can be identified by the number of

dimer lines (zigzag chains) across the ribbon width and are labeled as N-AGNRs
(N-ZGNRs). Figure 12.11a, b is a ball-and-stick model of N-AGNRs and

N-ZGNRs, respectively. Note all the carbon atoms at the edges are passivated by

hydrogen atoms. Here we consider a series of narrow GNRs with N ¼ 3, 4, 5, and

6 for both the AGNRs and ZGNRs, where the width varies from 4 to 14 Å. As the
widths of these GNRs are quite small, it is nature to ask whether they are stable as

standalone entities. We thus perform first-principles molecular dynamics (MD) for

the narrowest 3-AGNR and 3-ZGNR. The MD starts at 300 K and runs for 2,000

steps with a time step of 0.5 fs. Figure 12.11c, d plot the corresponding C–C and

C–H distance at the edges in the whole MD running time. We see there are only

slight fluctuations around the C–C bond length of 1.40 Å and C–H bond length of

1.10Å, which indicates that the narrowAGNRs and ZGNRs considered in our work

are rather stable. It should be mentioned that the stability of hydrogen-passivated

products have also been confirmed previously [44] and can be comparable to that of

a graphene sheet.

Fig. 12.11 (Color online) Ball-and-stick model of (a) N-AGNRs and (b) N-ZGNRs, where the

black ball stands for carbon atom and the green for hydrogen atom. The first-principles molecular

dynamics results of the C–C and C–H distance at the edges are plotted in (c) and (d) for the

3-AGNR and 3-ZGNR, respectively
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We have calculated the energy band structures of these GNRs and all of them are

found semiconducting with direct band gaps. In the case of AGNRs, we find that the

variations of gap as a function of ribbon width exhibit three distinct family

behaviors [44, 46, 47], which is the largest for N ¼ 3n + 1, the smallest for N ¼ 3

n + 2, with N ¼ 3n in between (Here n is a positive integer). For the ZGNRs,

however, such oscillation of band gap disappears and the spins of two edges are

antiferromagnetically ordered, which agree well with previous studies [44]. To

investigate the electronic transport properties, we firstly calculate the transmission

function T(E) of these GNRs using the NEGF approach. As shown in Fig. 12.12a,

the transmissions of all the AGNRs display clear stepwise structures that are

symmetrical about the Fermi level (E ¼ 0). The number of the first conduction

channel is 1 for both the n-type (E > 0) and p-type doping (E < 0), which can be

essentially obtained by counting the number of energy bands at a certain energy.

The transmission function vanishes around the Fermi level, which is consistent with

Fig. 12.12 (Color online) Calculated transport coefficients for the AGNRs series as a function of

chemical potential: (a) transmission function, (b) Seebeck coefficient, (c) electrical conductance,

and (d) electronic thermal conductance
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the fact that all the investigated AGNRs are semiconducting with family behavior

of their band gaps. By integrating the calculated transmission function T(E), the
Seebeck coefficient S, the electrical conductance G, and the electronic thermal

conductance λe can be readily obtained [15, 29, 48]. Figure 12.12b–d plot these

transport coefficients at 300 K as a function of chemical potential μ. Within the

rigid-band picture [49], the chemical potential indicates the doping level (or carrier

concentration) of the system. For n-type doping the chemical potential is positive,

while it is negative for p-type doping. We see that close to the Fermi level (μ ¼ 0),

the Seebeck coefficients of these AGNRs exhibit much larger absolute values,

which increase with increasing band gap. For the 4-AGNR having the largest

gap, the Seebeck coefficient can be as high as 3,690 μV/K. Such large value

indicates that GNRs may have very favorable thermoelectric properties. On the

other hand, the calculated electrical conductance and electronic thermal conduc-

tance are very small around the Fermi level. At the edge of the first conduction

channel, there is a sharp increase of both of them. These observations suggest that

by choosing a proper chemical potential, one may find a trade-off between S, G, and
λe of AGNRs thus significantly enhance their thermoelectric performance. We will

come back to this point later.

Figure 12.13 shows the calculated electronic transport coefficients of the ZGNRs

series. Unlike that found in the AGNRs, we see from Fig. 12.13a that the transmis-

sion spectrum is no longer symmetrical about the Fermi level. Moreover, the

difference between each ZGNR is rather small, especially for the n-type doping.

This is reasonable since all the investigated ZGNRs have very similar energy band

structures. The Seebeck coefficient shown in Fig. 12.13b also coincides with each

other and the maximum value is found to be 554 μV/K. This value is much smaller

than that of the AGNRs series and suggests that ZGNRs may be less favorable for

the thermoelectric applications. Close to the Fermi level, we see from Fig. 12.13c, d

that the electrical conductance and the electronic thermal conductance are very

small as observed in the AGNR series. However, there is a peak both below and

above the Fermi level which is consistent with the abrupt change of their transmis-

sion function around the first conduction channel.

To investigate the thermal transport of GNRs, we have calculated the phonon-

derived thermal conductance (λp) using theNEMDmethod.We choose themolecular

dynamics simulation since it is much faster than other approaches and can handle

nonlinearity when dealing with heat transport. Indeed, it has previously been shown

[27] that NEMD is an efficient approach to calculate thermal conductance which

includes both ballistic and diffusive transport for a wide temperature range. Our

calculated results at 300K are shown in Fig. 12.14a. Note the thermal conductance of

low-dimensional systems such as GNRs are related to their length and is assumed to

be 1 μm in the present calculations [50]. We see that the thermal conductance of both

AGNRs and ZGNRs increase with the ribbon width. This is reasonable since increas-

ing N of GNRs can increase the number of phonon modes [51]. Moreover, the

calculated thermal conductance of AGNRs are nearly one order of magnitude smaller

than that of ZGNRs. Similar results [52, 53] were found using a NEGF approach

for phonon transport. Such strong anisotropy of thermal conductance is mainly
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caused by different phonon scattering rates at the zigzag and armchair edges [54], and

that low-frequency phonon bands of ZGNRs are more dispersive than those of the

AGNRs [53]. All these observations suggest that narrow AGNRs could have very

favorable thermoelectric properties. On the other hand, we find that in theAGNRs the

phonon contribution to the thermal conductance is comparable to that from electron

(see Table 12.4). This is however not the case for the ZGNRs where the phonon part

plays a major role. It is therefore reasonable to expect that by reducing the phonon-

induced thermal conductance, one could efficiently enhance the thermoelectric

performance of ZGNRs.

With all the transport coefficients calculated, we are now able to evaluate the

figure of merit. Figure 12.14b plots the room temperature ZT value as a function of

chemical potential for the above-mentioned AGNRs series. We see the overall

topology is rather symmetric and each of them exhibit two identical peaks around

the Fermi level. This indicates that by appropriate p-type or n-type doping in

Fig. 12.13 (Color online) Calculated transport coefficients for the ZGNRs series as a function of

chemical potential: (a) transmission function, (b) Seebeck coefficients, (c) electrical conductance,

and (d) electronic thermal conductance
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the AGNRs, one could obtain much higher ZT values at room temperature. It should

be emphasized that all the investigated AGNRs in our work exhibit ZT values larger

than 3.0, which suggests that if used as thermoelectric materials they can compete

with the conventional energy conversion method. Moreover, the maximum ZT

Fig. 12.14 (Color online)
(a) Calculated phonon-

derived thermal

conductance at 300 K for

the AGNRs and ZGNRs

series. (b) and (c) are the

calculated room

temperature ZT value as a

function of chemical

potential for the AGNRs

and ZGNRs series,

respectively
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value increases with decreasing ribbon width. For the narrowest 3-AGNR, a

maximum ZT value of 6.0 can be reached at μ ¼ �0.73 eV. Compared with other

low-dimensional carbon materials such as carbon nanotubes (See Sect. 12.3), the

significantly enhanced thermoelectric performance of AGNRs can be attributed to

very small thermal conductance from both the electrons and phonons. Our calcu-

lated ZT values are summarized in Table 12.4 where the corresponding chemical

potential and transport coefficients are also given.

The picture for the ZGNRs series is however quite different. As shown in

Fig. 12.14c, the peak ZT value at μ < 0 is relatively larger than that at μ > 0,

which means that p-type doping are more favorable than n-type doping to enhance

the thermoelectric performance. Compared with those of AGNRs, we see the ZT
values of ZGNRs are much smaller. If we compare the calculated transport coef-

ficients listed in Table 12.4, we find ZGNRs actually have relatively larger power

factor (S2G). The less favorable thermoelectric performance of ZGNRs is therefore

caused by their larger thermal conductance (λ), and in particular, the phonon

contribution to it. As the investigated ZGNRs show similar transport coefficients

around the Fermi level, we see their maximum ZT values appear at almost the same

chemical potential. The ZT values also increase with decreasing ribbon width, but

with a less extent.

12.6 Carbon Nanowires

The CNWs can be visualized as a virtual cylinder cut from the bulk diamond along

certain directions. Figure 12.15 shows the top and side view of CNWs with three

typical orientations: [100], [110], and [111]. All of them have a lateral diameter of

about 5.0 Å. We see that the nanowire surface is reconstructed with all the initial

dangling bonds eliminated, which is consistent with previous observations [55].

The unit cell contains 21, 14, and 26 carbon atoms, for the [100], [110], and [111]

CNWs, respectively. The length of translational vector along the wire axis is

calculated to be 3.66, 2.54, and 6.25 Å, respectively. As the diameter of these

Table 12.4 Calculated room temperature ZT values and corresponding transport coefficients at

optimized chemical potential for a series of armchair and zigzag nanoribbons. The ribbon width

and the band gap of each structure are also shown

Structure Width (Å
´
) Gap (eV) μ (eV) S (μV/K) G (μS) λe (nW/K) λp (nW/K) ZT

3-AGNR 4.19 1.59 �0.73 324 4.74 0.011 0.014 6.0

4-AGNR 5.42 2.32 �1.08 351 4.01 0.012 0.015 5.4

5-AGNR 6.65 0.27 �0.09 274 8.21 0.023 0.028 3.7

6-AGNR 7.88 0.99 �0.43 275 8.20 0.019 0.034 3.5

3-ZGNR 6.97 0.37 �0.13 235 22.07 0.039 0.18 1.7

4-ZGNR 9.10 0.39 �0.13 240 22.72 0.045 0.19 1.7

5-ZGNR 11.23 0.47 �0.12 243 22.92 0.050 0.26 1.3

6-ZGNR 13.36 0.44 �0.11 213 31.71 0.053 0.32 1.1
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CNWs is very small, it is natural to ask whether they are stable as standalone

entities. We thus calculate the corresponding phonon dispersion relations (not

shown here) using the density functional perturbation theory (DFPT) [56]. Our

calculations find no imaginary frequency for any of the three kinds of CNWs, which

indicates the structural stability of these ultrasmall systems. It should be mentioned

that among these three kinds of CNWs, the surface roughness is the highest for the

[111], the lowest for the [110], and the [100] is somehow in between. Such a

structural characteristic may result in different phonon-derived thermal conduc-

tances, and we will come back to this point later.

In Fig. 12.16, we plot the energy band structure and the electronic transmission

function for all the three kinds of 5 Å CNWs. We see that the transmissions display

clear stepwise structures which indicate ballistic transport of electrons. The quan-

tized transmission can be essentially derived from the number of energy bands at

Fig. 12.15 Top (left) and
side view (right) of three
kinds of 5 Å carbon

nanowires: (a) CNW [100],

(b) CNW [110], and (c)

CNW [111]

Fig. 12.16 (Color online) Energy band structure and electron transmission function for (a) CNW

[100], (b) CNW [110], and (c) CNW [111]. The Fermi level is at 0 eV. The zero transmission

windows near the Fermi level are shaded
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any given energy. Although all the three CNWs are found to be metallic, it is

interesting to note that around the Fermi level, the [100] and [111] CNWs exhibit

several zero transmission windows as indicated by shadows in Fig. 12.16a, c. By

appropriate doping, one may be able to move the Fermi level to the edge of zero

transmission windows thus the carrier concentration can be optimized to exhibit

enhanced power factor. This is very similar to the case of semiconducting carbon

nanotubes and GNRs discussed in previous sections. In the following discussions,

we shall see that these metallic CNWs can be also optimized to exhibit high ZT
values only if the zero transmission window is close to the Fermi level.

Based on the calculated transmission function T(E), the Seebeck coefficient S, the
electrical conductance G, the electronic thermal conductance λe as well as the power
factor S2G can be readily obtained [29]. Figure 12.17 plots these electronic transport

coefficients at 300 K as a function of chemical potential μ for the 5Å CNWs.Within

the rigid-band picture [49], the chemical potential indicates the doping level

(or carrier concentration) of the system. For p-type doping, the chemical potential

is negative while it is positive for n-type doping. If we focus on the CNW [110], we

see from Fig. 12.17b that the electrical conductance is high at the chemical potential

where the Seebeck coefficient is almost vanishing. As a consequence, the electronic

thermal conductance is high and the power factor is very low, which suggests that

the CNW [110] is not suitable as a thermoelectric material. This is consistent with

the fact that the transmission function of the CNW [110] is continuous without any

zero transmission windows (see Fig. 12.16b). For the [100] and [111] CNWs,

however, we see from the upper panel of Fig. 12.17a, c that near the edge of the

zero transmission window the absolute value of the Seebeck coefficient is relatively

large and the electrical conductance increases sharply, which tends to maximize the

power factor as indicated in the lower panel of Fig. 12.17a, c. At the same time,

Fig. 12.17 (Color online) Calculated electronic transport coefficients: Seebeck coefficient, elec-

trical conductance, electronic thermal conductivity, and power factor as a function of chemical

potential at room temperature for three kinds of 5 Å CNWs: (a) [100], (b) [110], and (c) [111].

The zero transmission windows near the Fermi level are shaded
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we see that the electronic thermal conductance is relatively low at the edge of the

zero transmission window. Both of these aspects are very beneficial to achieving a

high ZT value.

To evaluate the ZT value explicitly, we have to know the phonon-derived

thermal conductance. As before, we use the NEMD since it is much faster than

other approaches and can handle nonlinearity when dealing with phonon transport.

Our calculated room temperature phonon transport coefficients are summarized in

Table 12.5. For better comparison, the phonon-derived thermal conductance and

thermal conductivity are both shown. Note that the phonon-derived thermal con-

ductance of low-dimensional systems is related to their length and we consider the

size effect as discussed in Sect. 12.3. In the present calculations, the length of these

CNWs is assumed to be 1 μm.We see from Table 12.5 that the thermal conductance

(λp) of these nanowires exhibits an obvious orientation dependence, where the λp of
CNW [110] is about five and ten times larger than those of the [100] and [111]

CNWs, respectively. This is believed to be caused mainly by their different group

velocities for the acoustic phonon modes [57]. In addition, as we mentioned above,

the [100] and [111] CNWs have a significant intrinsic surface roughness which will

scatter phonons and reduce the thermal conductance. Indeed, Donadio et al. have

taken advantage of the roughness by annealing to reduce the thermal conductivity

of silicon nanowires [58]. It is worth mentioning that the orientation dependence of

λp was also found in previous works for other diameter CNWs [57, 59, 60]. On the

other hand, our calculated λp of [100] and [111] CNWs are about one order of

magnitude smaller compared with those of CNTs having similar diameters (e.g., the

calculated λp of (7,0) and (5,1) tubes are 0.359 and 0.269 nW/K, respectively). The

significantly reduced thermal conductance of these two CNWs makes them very

favorable candidates for thermoelectric applications. It should be emphasized that

Table 12.5 Calculated room temperature ZT values at optimized chemical potential (both p-type
and n-type doping) for three kinds of 5 Å CNWs and their partial hydrogen-passivated products.

The corresponding electron and phonon transport coefficients are also listed. For better compar-

ison, the phonon-derived thermal conductance and thermal conductivity are both shown

Structure μ (eV) S (μV/K) G (μS) S2G (W/K2)

λe
(nW/K)

λp
(nW/K)

κp
(W/m·K) ZT

CNW [100] �0.28 �307.1 11.5 1.09 � 10�12 0.027 0.044 224 4.62

0.30 275.3 11.5 1.09 � 10�12 0.026 4.64

CNW [110] �0.41 319.6 20.2 0.21 � 10�12 1.429 0.220 1,120 0.04

0.94 �303.7 29.5 0.27 � 10�12 2.173 0.03

CNW [111] �0.76 �289.4 10.1 0.84 � 10�12 0.014 0.021 107 7.19

0.19 320.6 9.75 1.00 � 10�12 0.024 6.72

PP-CNW [100] �0.93 306.5 5.80 0.54 � 10�12 0.013 0.023 117 4.55

0.39 307.8 5.75 0.54 � 10�12 0.014 4.51

PP-CNW [110] �0.17 �277.3 16.5 1.27 � 10�12 0.041 0.093 474 2.84

0.12 269.1 24.0 1.74 � 10�12 0.044 3.80

PP-CNW [111] �0.11 320.0 7.02 0.72 � 10�12 0.008 0.013 66 10.2

0.15 344.5 4.16 0.49 � 10�12 0.009 6.71
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although the calculated thermal conductivity are somewhat larger than those of

conventional thermoelectric materials, the power factor of CNWs are three orders

of magnitude larger than those of conventional thermoelectric materials, thus

leading to a high ZT value.

With all the transport coefficients specified, we are now able to calculate ZT

values of these 5ÅCNWs.As discussed above, one can obtain high power factor and

low electronic thermal conductance at the edge of the zero transmission window.

Within the rigid-band picture, this can be done by appropriate p-type or n-type
doping which can move the Fermi level to the desired chemical potential (i.e., the

edge of the zero transmission window). The optimized ZT values of 5 Å CNWs are

summarized in Table 12.5 where the corresponding chemical potential (μ) and

transport coefficients (S, G, S2G, λe, and λp) are also given. Note the ZT values and

all the transport coefficients are evaluated at 300 K. Compared with other carbon-

based one-dimensional structures such as CNTs (see Table 12.1), the thermal

conductance of CNWs from both electrons and phonons is nearly one order of

magnitude smaller, which leads to their significantly improved thermoelectric

performance in spite of the slightly lower power factor. We see that, indeed, the

[100] and [111] CNWs exhibit much higher ZT values at optimized doping levels.

The strong orientation dependence of ZT values can be attributed to the fact that

among these three kinds of CNWs, the [100] and [111] CNWs have zero transmis-

sion windows around the Fermi level (see Fig. 12.16), and thus the carrier concen-

tration can be optimized to exhibit relatively higher power factor S2G and lower

electronic thermal conductance λe. At the same time, the phonon-derived thermal

conductance λp of [100] and [111] CNWs are much lower than that of [110] CNW. It

should be mentioned that the ZT values of [100] and [111] CNWs are significantly

larger than those of the current best thermoelectric materials. For example, the

experimentally measured ZT value of Sb2Te3 is 1.1 at room temperature [61],

while the Mg2Si1-xSnx solid solutions [62] and multiple-filled skutterudites [63]

have ZT of 1.3 and 1.7 at 700 K and 850 K, respectively. We want to emphasize that

the ZT values of [100] and [111] CNWs are much larger than 3.0 which suggests that

they are very competitive vis-à-vis the conventional energy conversion methods.

Moreover, the ZT values of CNW [100] are almost identical for the p-type and n-type
doping, which suggests that this CNW is particularly suitable for fabrication of both

p-legs and n-legs of thermoelectric modules. We want to mention that in the present

work we focus on the CNWs with very small diameters (~5 Å). If the diameter of

CNW is increased, the ZT value may decrease since the thermal conductance will

increase accordingly [59]. However, by means of hydrogen passivation, isotope

doping or using core–shell structure, etc., one can reduce the thermal conductance

thus larger diameter CNWs may still be possible thermoelectric materials.

As the CNWs are experimentally synthesized under hydrogen flow [64], it is

quite possible that the surface of these CNWs contains hydrogen with certain

coverage. Here we consider a general case where the surface carbon atoms are

partially passivated (PP) by hydrogen atoms. The resulting systems have nominal

formulas of C21H12, C14H5, and C26H13, for the [100], [110], and [111] CNWs,
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respectively. The corresponding energy band structure and electron transmission

function are shown in Fig. 12.18. It can be seen that for all the three PP-CNWs,

there are two or three zero transmission windows around the Fermi level, which is

beneficial to their thermoelectric performance via proper doping as discussed

above. Compared with those shown in Fig. 12.16, the PP-CNWs exhibit somewhat

lower transmission, which is attributed to the fact that the energy bands of partially

passivated products are usually singly degenerate. The optimized ZT values as well

as the corresponding transport coefficients for these PP-CNWs are also summarized

in Table 12.5. We see that the phonon-derived thermal conductance is significantly

reduced (to about half the value) when the surface carbon atoms are partially

passivated. This is due to the added disorder and the C/H mass difference scattering.

On the other hand, we see from Table 12.5 that the reduced transmission coeffi-

cients somewhat decrease the power factor and the electronic thermal conductance

for the [100] and [111] CNWs, while the additional zero transmission window

significantly increases the power factor but greatly decreases the electronic thermal

conductance for the [110] CNW. As a result, the ZT values of the CNW [110] are

significantly enhanced to 2.84 and 3.80 for the p-type and n-type doping, respec-

tively. In the case of the [111] CNW, we find that the thermal conductance is

reduced more than the power factor upon partial passivation and therefore the

maximum ZT value is further improved to 10.2 via proper p-type doping. For the

[100] CNW, the partial passivation of hydrogen leads to a comparable reduction of

the thermal conductance and the power factor, and the ZT value remains about 4.6

for both the p-type and n-type doping.

12.7 Summary

In summary, the thermoelectric properties of three kinds of ultrasmall diameter

carbon nanotubes are studied by using nonequilibrium Green’s function method and

nonequilibrium molecule dynamics simulations. Our calculated results indicate that

Fig. 12.18 (Color online) Energy band structure and electron transmission function for (a)

PP-CNW [100], (b) PP-CNW [110], and (c) PP-CNW [111]. The Fermi level is at 0 eV. The

zero transmission windows near the Fermi level are shaded
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although these nanotubes do not have much higher ZT value in the pristine form,

their thermoelectric performance can be significantly enhanced via surface design,

formation of bundles, and increasing the tube length, etc. For carbon nanotubes with

relatively larger diameter, our theoretical calculations indicate that by appropriate n-
type and p-type doping, one can obtain much higher ZT value for both the zigzag and
armchair CNTs, and those tubes with intermediate diameter (0.7–0.8 nm) seems

have better thermoelectric properties than others. Taking the zigzag (10,0) as an

example, we show that the phonon-induced thermal conductance can be effectively

reduced by isotope substitution, isoelectronic impurities, and hydrogen adsorption,

while the electronic transport is less affected. As a result, the ZT value can be further

enhanced and is very competitive with that of the best commercial materials. To

experimentally realize this goal, one need to fabricate CNTs with specific diameter

and chirality, and the tube length should be at least 1 μm. This may be challenging

but very possible considering the fact that (10,0) tube were successfully produced by

many means such as direct laser vaporization [65], electric-arc technique [66], and

chemical vapor deposition [67], and can be selected frommixed or disorder samples

using DNA-based separation process [68].

In the case of graphene nanoribbons, our theoretical calculations indicate that the

electronic transport coefficients of AGNRs exhibit obvious width dependence,

which is closely related to their family behavior of the energy band gap. In contrast,

all the investigated ZGNRs have similar band structures and the calculated trans-

port coefficients almost coincide with each other. On the other hand, the phonon-

induced thermal conductance of AGNRs is much smaller than those of ZGNRs,

and both increase with increasing ribbon width. As for the CNWs, we show that

ultrasmall diameter CNWs with particular orientations can exhibit large power

factors and low electronic thermal conductances at the edge of the so-called zero

transmission windows. The phonon-induced thermal conductance is nearly one

order of magnitude smaller than those of CNTs according to the nonequilibrium

molecular dynamics simulation. As a result, one obtains room temperature ZT
values much higher than 3.0 by appropriate p-type and n-type doping. Moreover,

it is found that partial hydrogen passivation can reduce the thermal conductance by

about 50 % and further improve the maximum ZT to values in excess of 10 for the

CNW [111].

In a word, our theoretical investigations suggest that carbon nanotubes and

related one-dimensional carbon nanostructures possess outstanding thermoelectric

properties that exceed those of current state-of-the-art thermoelectric materials and

thus appear very prospective for thermoelectric applications. Major effort should be

directed towards realization of these high-performance and environment friendly

thermoelectric materials.
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Chapter 13

The Thermoelectric Properties in Graphene

and Graphene Nanoribbons

Changning Pan, Zhongxiang Xie, and Keqiu Chen

Abstract The two-dimensional (2D) graphene with many remarkable physical

properties, such as high mechanical robustness, excellent thermal conductivity,

extremely high conductance, and giant Seebeck coefficient as well as particular

electronic band structures, promises well for potential applications in nanoelectronics,

spintronics, photonics, and optoelectronics. The quasi-one-dimensional (1D)

graphene nanoribbons (GNRs) and graphene nanojunctions (GNJs), which can be

precisely patterned from graphene, are the most elementary building blocks for future

nanodevices and nanocircuits. In this chapter, we review the latest advances on

graphene, GNRs and GNJs in both theoretical and experimental level, including

thermal transport, electronic transport as well as thermoelectric properties. In partic-

ular, how to enhance the thermoelectric properties in the 1D graphene-based

nanostructures through the geometry-decorated method (antidot lattices, nanopores,

edge disorder, defect-engineering, and so on) is presented in detail and some novel

results are elucidated clearly. It provides the reader a comprehensive understanding of

the recent progress in realistic 1D graphene nanostructures, and will be helpful for

designing nanodevices based on graphene in the future.

13.1 Introduction

Graphene is an infinite two-dimensional (2D) monolayer, which is composed of sp2

hybridized carbon atom structures belonging to one of the five 2D Bravais lattices

called the hexagonal lattice. It is the basic unit of carbon allotropes and can be

wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite.

Since it was successfully fabricated in experiments [1] in 2004, the graphene has

attracted great interest in their fundamental physical properties, such as thermal
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properties, electronic properties, optical properties, and magnetic properties

[2–12]. Owing to the unique physical properties, graphene is foreseen to have

potential applications in nanoelectronics, spintronics, photonics, and optoelectronics

and be a promising material to take place of semiconductor Si in some fields. Based

on the existing well-controlled planar carve technologies [13–17], quasi-one-dimen-

sional graphene nanoribbon (GNR) and graphene nanojunctions (GNJs) can be

precisely patterned from two-dimensional graphene, which provides a new possibility

of GNR-based devices and integrated-graphene circuits (IGCs). For instance,

All-graphene circuits, which include semiconducting GNR channels connected by

metallic GNR interconnects, could be achieved from a graphene sheet by using the

electron- or ion-beam lithography or direct focused electron or ion-beam writing

[18]. In terms of the edge orientation, the GNRs are classified to zigzag-edged

(ZGNRs) and armchair-edged nanoribbons (AGNRs). The electronic properties of

GNRs are highly dependent on their edge orientations and widths. In more detail,

ZGNRs possess spin-polarized peculiar edge states and result in the half-metallic

properties under transverse electric field. In contrast, the AGNRs can be either

metallic or semiconducting properties which is dependent on their widths, i.e.,

AGNR with widths Na ¼ 3k + 2 has been shown to be metallic and otherwise to be

semiconducting, where k is an integer. So far, the thermal transport properties,

electron transport properties, and thermoelectric energy conversion of graphene and

GNRs have been extensively investigated and some intriguing results have been

obtained.

In this chapter, we provide a comprehensive review about the latest advance in

the thermoelectric effect (TE) of the GNRs and GNJs, how to enhance the TE, for

instance, antidot lattices, nanopores, defect-engineering, edge disorder, and so on,

is introduced. The chapter is organized as following: the second part introduces the

thermoelectric energy conversion mechanism and the nonequilibrium Green’s

function approach. The third part is devoted to the thermoelectric effect of the

graphene and pristine GNRs. In the fourth part, we focus on the enhancement by

using geometry-decorated engineering. A summery is given in the fifth part.

13.2 Model and Approach

13.2.1 The Energy Dispersion Relation of the 2D Graphene

Firstly, we introduce the crystal structure of the 2D graphene [19]. The unit cell,

including two atoms A and B, are shown in Fig. 13.1a as the dotted rhombus,

where a
!
1 and a

!
2 are unit vectors in real space, and can be expressed as

a
!
1 ¼

ffiffiffi
3

p
a=2, a=2

� �
, a
!
2 ¼

ffiffiffi
3

p
a=2, � a=2

� �
, with a ¼ a

!
1

��� ��� ¼ a
!
2

��� ��� ¼ 2:46 Å the

lattice constant of the 2D graphene. The nearest-neighbor distance between two

carbon atoms, ac–c ¼ 1.42 Å. The first Brillouin zones are shown as the shaded
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hexagon in Fig. 13.1b, where b
!
1 and b

!
2 are the reciprocal lattice vectors, and

b
!
1 ¼ 2π=

ffiffiffi
3

p
a, 2π=a

� �
, b
!
2 ¼ 2π=

ffiffiffi
3

p
a, � 2π=a

� �
corresponding to a lattice con-

stant of 4π=
ffiffiffi
3

p
a in reciprocal space. In general, the three high symmetry points,

Γ, K, and M are defined as the center, the corner, and the center of the edge,

respectively. Following these definitions and using the tight-binding (TB) model

approach, the energy dispersion relations can be calculated throughout the whole

Brillouin zone.

It is well known that there are σ bonds and π covalent bonds in sp2 hybridized
configuration for the 2D graphite. The π covalent bonds are made by the 2pz orbital
perpendicular to the graphene plane. It is very important for determining the solid

state properties of graphite. In the TB calculation, the on-site energy εc ¼ 0, hopping

energies t ¼ � 3.033 eV and overlap integral s ¼ 0.129 are used, it fully consists

with the first principles calculation of the graphene energy bands [20, 21].

Besides the 2pz atomic orbital, there are three other atomic orbitals of sp2

covalent bonding per carbon atom, i.e., 2s, 2px, and 2py. When we take the coupling

parameters of carbon atoms in the Hamiltonian as [19], the energy dispersion

relations for 2D graphene for π and σ bands, along the high symmetry axes K !
Γ ! M ! K, can be plotted as Fig. 13.2. The upper energy dispersion curve

describes the antibonding π* band, and the lower energy curve describes the π
band. The π band and the antibonding π* band are degenerate at the high symmetry

points K. In addition, there exist three σ bands which display below the Fermi

energy and three antibonding σ* bands above the Fermi energy. From the energy

dispersion relations, it is found that the π bond and the two σ bonds cross each other,
and the same behavior appear for the π* bond and the two σ* bonds. Moreover,

there is no band separation at the crossing points. Hence, we can see that the 2D

graphene is gapless. It doesn’t like the GNRs in which the gap is opened and change

with the chirality and width of nanoribbons.

a2

a1

A B

b2

b1

K

M

x

y

k

k

y

x

Γ

a b

Fig. 13.1 (a) The unit cell and the unit vectors a
!

1, a
!
2 in the real space, (b) Brillouin zone and the

reciprocal lattice vectors b
!

1 , b
!

2 of two-dimensional graphene, three high symmetry points Γ,
M, and K corresponding to the center, the corner, and the center of the edge, respectively [19]
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13.2.2 The Phonon Dispersion Relation of Two-Dimensional
Graphene

According to the force constant model, in which inter-atomic forces are represented

by spring constants, the equation of motion for the displacement of the ith coordi-

nate, ui ¼ (xi,yi,zi) for N atoms in the unit cell is given by

Mi€ui ¼
X
j

Kij uj � ui
� �

, i ¼ 1, 2, . . . ,Nð Þ,

whereMi is the mass of the ith atom and Kij is the 3 � 3 force constant tensor which

represents the interaction between ith and jth atoms. In general, if we take the more

number of the force constants in the sum over j, the calculations are closer to the

experimental results. For the sake of simplicity, we only take over a few neighbor

distances interaction relative to the ith atom. But, at least the fourth nearest-

neighbor interactions must be included to describe the twisted modes [22].

After considered the force constant of interaction atoms up to fourth neighbor,

using the set of force constants in Table 13.1, the phonon dispersion relation of the

graphene can be described as Fig. 13.3. There exist three dispersion curves origi-

nated from the high symmetry point Γ of the Brillouin zone, which correspond to

three acoustic modes, i.e., the out-of-plane mode, the in-plane tangential mode, and

the in-plane radial mode. However, the other three curves correspond to one out-of-

plane optical mode and two in-plane optical modes, respectively.

Fig. 13.2 The energy

dispersion relations for the π
bond and the two σ bonds of

the 2D graphene along the

high symmetry axes

K ! Γ ! M ! K [19]
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13.2.3 The Definition of Thermoelectric Effect

13.2.3.1 Phonon Thermal Transport

In general, we use the nonequilibrium Green’s function (NEGF) approach [23–28]

to calculate the phonon transport in graphene. The approach can be simply gener-

alized as the following steps. The whole system is divided into three different parts:

left lead (L), center region (C), and right lead (R). The left/right leads are semi-

infinite periodic structures and are treated as the heat baths. In this geometry, the

Hamiltonian of the whole system can be given by

Hsys ¼
X

α¼L,C, R
Hα þ uL

� �T
VLCUC þ uC

� �T
VCRuR þ Vn:

Where Hα ¼ 1
2

_uαð ÞT _uα þ 1
2
uαð ÞTKαuα represents harmonic oscillators, and uα is

the row vector consisting of the vibrational displacement of each atommultiplied by

its square root of mass in three different regions α(L,C,R), i.e., the mass normalized

displacement variables. Kα is the force constant matrices in the corresponding

Table 13.1 The fourth

nearest-neighbor force

constant parameters for

graphene in units of 104

dyn/cm [22]

Radial Tangential

ϕð1Þ
r ¼ 36.50 ϕð1Þ

ti ¼ 24.50 ϕð1Þ
to ¼ 9.82

ϕð2Þ
r ¼ 8.80 ϕð2Þ

ti ¼ �3.23 ϕð2Þ
to ¼ �0.40

ϕð3Þ
r ¼ 3.00 ϕð3Þ

ti ¼ �5.25 ϕð3Þ
to ¼ 0.15

ϕð4Þ
r ¼ �1.92 ϕð4Þ

ti ¼ 2.29 ϕð4Þ
to ¼ �0.58

Here ϕðnÞ
r , ϕðnÞ

ti , and ϕðnÞ
to represent the force constant parameters

in the radial (bond-stretching), in-plane, and out-of-plane tangen-

tial (bond-bending) direction, respectively

Fig. 13.3 The phonon

dispersion curves plotted

along the high symmetry

directions for the

2D graphene
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region, VLC and VCR are the coupling matrices between left/right leads and center.

Here VLC ¼ (VCL)T and VRC ¼ (VCR)T. Vn is the nonlinear interaction in the central

region. It is ignored generally in many studies. The reason and effect will be

discussed in the conclusion of the chapter. Using the Hamiltonian of the system,

we can calculate the retarded surface Green’s function for the center region and left/

right leads:

grα ¼ ωþ iηð Þ2I � Kα
h i�1

, α ¼ L, C, Rð Þ

i.e., the retarded Green’s function of the isolated central region grC, the surface

Green’s function of the two isolated leads grL=R. Generally, the retarded Green’s

function grC can be directly computed by the formula. But, it is difficult to calculate

the surface Green’s function grL=R due to the semi-infinite leads; it will be computed

by a recursive iteration technique [29]. So it is still a challenge to use the NEGF

approach for many realistic systems.

After obtaining the surface Green’s function of the leads, the retarded self-

energy of the leads can be given by ∑r
α ¼ VCαgrαV

αC, it contains the coupling

information between leads and center region. Correspondingly, with the conjugate

relation ∑a
α ¼ (∑r

α)
{, the Γ function is given by

Γα ¼ i
Xr

α
�
Xa

α

� �
¼ �2ImVCαgrαV

αC:

Then the retarded Green’s function can be expressed as

Gr ¼ ωþ iηð Þ2I � KC �
Xr

L
�
Xr

R

h i�1

,

which describes the interaction between the center region and the leads. In terms of

the so-called Caroli formula, the transmission coefficient can be calculated as

T ω½ � ¼ Tr GrΓLG
aΓRð Þ,

here Gr ¼ (Ga){ is the retarded Green’s function for the central region. Accord-

ingly, we can express the phonon thermal conductance in a form similar to the

Landauer formula [30] for the ballistic transport as,

κph ¼ 1

2π

ð
dωħωTph ω½ � ∂f ω; Tð Þ

∂T

h i
,

where f(ω,T ) ¼ {exp[ħω/(kBT)] � 1}� 1 is the Bose–Einstein distribution for pho-

nons at the frequency ω and absolute temperature T. The density of states for

phonon is given by
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ρi ωð Þ ¼ � 2ω

π

X
β¼x, y, z

Im Gr
C ωð Þ� 	

iβ, iβ
,

which describes the phonon distribution information at the ith atom-site in the

central scattering region.

13.2.3.2 Electron Transport

For the electron transport, the procedure of the calculation is very similar to the

phonon transport; only two physical quantities substitutions are needed to make as

the following:

KC ! He, ωþ iηð Þ2 ! Eþ iη,

i.e., the force constant matrix KC is replaced by the electron Hamiltonian He, and the

square of frequency ω2 is replaced by the energy of the electron, E. After obtaining
the electron transport function, the physical quantities, which are related to the

thermoelectric conversion, can be derived as following, respectively.

At the first, the electronic conductance is given by:

Ge ¼ � I

V

����
ΔT¼0

¼ �1

V
� Δμ

2q

h

ðþ1

�1
dET Eð Þ∂f E; μ; Tð Þ

∂μ
¼ q2L0:

Then, the electron thermal conductance is given by:

κel ¼ � IQ
ΔT

������
I¼0

¼ �1

ΔT
� Δμ

2

h

ðþ1

�1
dET Eð Þ∂f E; μ; Tð Þ

∂μ
E� μð Þ

2
4

þΔT
2

h

ðþ1

�1
dET Eð Þ∂f E; μ; Tð Þ

∂T
E� μð Þ�

¼ 1

T
� L2 � L21

L0

0
@

1
A,

here, q ¼ � e is the charge of the electron, h is the Plank constant, and μ is the

chemical potential. f(E,μ,T) is the Fermi–Dirac distribution function.
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The Peltier coefficient, which describes the amount of heat that is carried by an

electrical current when it passes through a material [31], is

Π ¼ IQ
I

����
ΔT¼0

¼
Δμ 2

h

ðþ1

�1
dET Eð Þ ∂f E;μ;Tð Þ

∂μ E� μð Þ

Δμ 2q
h

ðþ1

�1
dET Eð Þ ∂f E;μ;Tð Þ

∂μ

¼ L1
qL0

:

On the contrary, the temperature gradient can generate the electric voltage; the

thermoelectric efficiency is represented by the Seebeck coefficient and can be

calculated as

S ¼ � V

ΔT

����
I¼0

¼ 1

q

2q

h

ðþ1

�1
dET Eð Þ ∂f

∂T



2q

h

ðþ1

�1
dET Eð Þ ∂f

∂μ

� �
¼ 1

qT
� L1
L0

,

where I and IQ are the electronic current and electron thermal current. In the

ballistic transport region, they can be derived by the Landauer-Buttiker formulae:

I ¼ 2q

h

ðþ1

�1
dETe Eð Þ f E; μLð Þ � f E; μRð Þ½ �,

IQ ¼ 2

h

ðþ1

�1
dETe Eð Þ f E; μLð Þ � f E; μRð Þ½ � E� μð Þ:

Meanwhile, an intermediate function

Ln μ; Tð Þ ¼ 2

h

ð
dETe Eð Þ E� μð Þn �∂f E; μ; Tð Þ

∂E

 �

is introduced for simplifying the tedious formulae expression.

As the name indicates, thermoelectricity involves conversion of energy from

thermal to electrical using charge and heat transport in solid materials. The perfor-

mance of thermoelectric material is quantified by the dimensionless figure of merit,

ZT [32–34], where Z means the measure of a material’s thermoelectric properties

and T is the absolute temperature. It can be calculated by the following formula:

ZT ¼ GeS
2T

κel þ κph
:

A large value of ZT should own the large value of Seebeck coefficient S, the large
value of conductanceGe, and a low value of the thermal conductances (κel + κph). But
these quantities are unfavorable and closely interrelated to each other, the variation of

the one value will inevitably influence the others. One needs to have a careful

tradeoffs to obtain the maximum efficiency of a thermoelectric conversion.
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In general, the maximum efficiency of the thermoelectric devices for electricity

generation can be given by:

ηmax ¼
TH � TL

TH

� 1� 1þ TL

THffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT

p þ TL

TH

 !
,

here TH/L are the high/low temperatures of the hot/cold baths. From the above

formula, one can conclude that the larger temperature differences, TH � TL, will
lead to higher efficiency. The upper limit of the value of ηmax can be achieved at the

limit TL/TH ¼ 0. For the value ZT ¼ 1, ηmax can be exceed 0.29, so thermoelectric

devices with ZT � 1 are regarded as good thermoelectrics performance, while

value of ZT � 3, corresponding to ηmax � 0.5, is needed to compete with conven-

tional power generators and refrigerators. More realistically, finding thermoelectric

materials with ZT � 2–3, which are stable over a broad temperature range and with

low parasitic losses, is expected presently for thermoelectric applications [35, 36].

13.3 Thermoelectric of 2D Graphene and Pristine GNRs

For 2D graphene monolayer, consisting of sp2 hybridized carbon atom structures,

its electrical conductance is as high as that of copper [37]. Meanwhile, graphene

possesses extremely high thermal conductivity in the range ~(4.84 � 0.44) � 103

to (5.30 � 0.48) � 103 W/mK at the room temperature [38, 39], it is almost an

order of magnitude higher than that of copper. In addition, due to the zero band gap,

the pristine graphene has relatively smaller the Seebeck coefficient [39] than the

GNRs. So the pristine graphene possesses lower thermoelectric performance, and

can’t be directly applied as a thermoelectric material. However, the band gaps can

be opened up by appropriate cutting of the graphene sheets as the nanoribbons

[40–42]. Moreover, the band gap is varied by the chirality of the edge and the width

of graphene ribbon [43, 44], it has been verified experimentally in [45]. For the sake

of the convenience in the following discussion, we denote the armchair edge

ribbons which have Na carbon dimmer lines across the ribbon width as Na-AGNRs,

it is shown in Fig. 13.4a. In the same approach, the zigzag edge ribbons which have

Nz carbon dimmer lines across the ribbon width are names as Nz-ZGNRs [2], as it is

shown in Fig. 13.4b. With the above-mentioned denotation, we can discuss specif-

ically the electron transport properties of graphene ribbons. All of the graphene

ribbons with zigzag edges (ZGNRs) possess spin-polarized edge states, which the

charge density is strongly localized on the zigzag edge sites, and exhibit metallic

behavior [43]. In order to further understand the physical reason, we plot the energy

bands for different ribbon width Nz ¼ 4, 6, 8, in Fig. 13.5, we can see that the

highest valence band state and the lowest conduction band state are always degen-

erate at k ¼ π, and they are nearly flat near the Fermi level. Accordingly, the charge

density of states gives rise to a sharp peak at the Fermi level due to the edge states.
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Theses edge states are very important for the transport of electron and lead to a lot

of novel physical phenomena. In contrast, the electronic properties of the armchair

edges graphene ribbons (AGNRs) are dependent on their width, i.e., the Na-AGNRs

show metallic when the width Na ¼ 3k + 2 is satisfied, otherwise, the materials

Fig. 13.4 (a) The pristine

zigzag-edged graphene

nanoribbon (Nz-ZGNR). (b)

The pristine armchair-edged

graphene nanoribbon

(Na-AGNR)

Fig. 13.5 The energy dispersion of the pristine zigzag-edged graphene nanoribbons: 4-ZGNR,

6-ZGNR, 8-ZGNR
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exhibit semiconducting properties, and the band gaps have been opened in this way,

where k is an integer. From the calculated band structures of three different

armchair edges ribbons for Na ¼ 7, 8, 9 in Fig. 13.6, we find that the gaps are

opened for 7-AGNR and 9-AGNR and become the semiconductor materials;

however, the 8-AGNR always remains gapless and exhibits metallic as the pristine

ZGNR. In addition, for the insulating armchair ribbons, the band gap degrades with

increasing the ribbon width and tends to zero in the limit of very large Na [43].

When the gap-band is opened, the Seebeck coefficient significantly increases at the

subband edge. For the purpose of comparison, Ouyang et al. [46] studied a theoretical

study on the thermoelectric properties of pristine graphene and perfect GNRs. As

shown in Fig. 13.7, both of the simulated S versus μ curve have similarity at the

different temperature, i.e., they are antisymmetric about the Dirac point [47] due to

the symmetrical band structures, and the peaks grow near the Dirac point. However,

the maximum magnitude of the thermopower of the GNR is significantly larger than

that of graphene. For 2D graphene, the thermopower is less than 100 μV/K, the
perfect 15-AGNR, however, is in the order of mV/K. The main reason is that S is

determined by the electron transmission-weighted average value of the heat energy

E � μ. For the semiconducting GNR, the electrons at the conduction subband edge

have much larger heat energy E � μ than the gapless 2D graphene and contribute for

Fig. 13.6 The energy dispersion of the pristine armchair-edged graphene nanoribbons: 7-AGNR,

8-AGNR, 9-AGNR
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high thermopower. Thus, the peaks of |S| usually occur at the conduction subband

edge, and the maximum magnitudes of |S| always appear at the first subband edge for
pristine GNRs. Furthermore, the studies show that the Seebeck coefficient S can be

increased by reducing the dimensionality of the system [48–50]. From the general

principle, we can infer that the quasi-1D GNRs have larger S than the 2D graphene.

Although the high thermopower is reached, however, the pristine GNRs are

always considered to be very inefficient thermoelectric materials with the figure of

merit ZT range from 0.05 to 0.20, the reason is that the pristine GNRs posses the

extremely high phonons thermal conductivity. In Figs. 13.8 and 13.9, the quantity

ZT is plotted as a function of the chemical potential for zigzag edge 4-ZGNR,

6-ZGNR, 8-ZGNR and armchair edge 7-AGNR, 8-AGNR, 9-AGNR, respectively.

The ZT peaks are strictly symmetric about the Dirac point for both ZGNRs and

AGNRs. However, the metallic or semiconducting characters lead to very different

thermoelectric properties. The metallic ZGNRs exhibits very small ZT factor of

merit, while the semiconducting 7-AGNR and 9-AGNR have relatively high ZT
values due to the presence of the band gap, more than several times higher than the

ZGNRs. In addition, it is found that the quasimetallic AGNRs have still very low

thermoelectric performance, for example, the 8-AGNR still leads to significantly

low ZT ~0.03.

The ZT, which is much less than the unity, indicate the pristine GNRs is not

intrinsically a good candidate for thermoelectric materials and cannot be directly

utilized for thermoelectric devices without modifications. To optimize the thermo-

electric properties, so that it can be achieved for thermoelectric applications, one need

to largely reduce the thermal conductivity contributed by the phonons through

modified approaches, but, on the other hand, the electronic conductance ideally

should not be affected. Many approaches have already been examined, such as

antidote lattices [51–53], point defects [46, 54, 55], edge disorder [56–58], edge

Fig. 13.7 The simulated thermopower S versus chemical potential μ curve for (a) a pristine

15-AGNR and (b) a 2D graphene at different temperatures: T ¼ 75 K (squares), 150 K (triangles),
225 K (circles), and 300 K (unmarked) [46]
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passivation [59–61], random hydrogen vacancies of GNRs [62], doping of carbon

isotopes [63, 64], mechanical strain [65], superlattices [66], GNRs junctions [67–71],

molecular junctions [72], nanopores GNRs [73], and so on. And the high figure of

merit ZTs have been obtained. In what following, we review the latest advances on the

enhancement of thermoelectric properties and discuss how the geometry effects the

ZT of GNRs.

Fig. 13.8 The figure of merit ZT at the room temperature 300 K for the pristine zigzag-edged

graphene nanoribbons: 4-ZGNR, 6-ZGNR, 8-ZGNR

Fig. 13.9 The figure of merit ZT at the room temperature 300 K for the pristine armchair-edged

graphene nanoribbons: 7-AGNR, 8-AGNR, 9-AGNR
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13.4 Enhancement of Thermoelectric in Graphene

Nanoribbons (GNRs) and Nanojunctions (GNJs)

13.4.1 Enhancement of Thermoelectric by Graphene
Antidot Lattices

Antidot lattices, which were defined on a 2D electron gas at semiconductor

heterostructures, can be fully fabricated on the graphene sheets by electron beam

lithography [74, 75], block copolymer lithography [76, 77], nanorod photocatalysis

[78], and anisotropic etching [79] with any size and shape. The class of man-made

structures displaysmany intricate transport properties. In [41], Pedersen et al. reported

that graphene antidot lattices (GALs), i.e., graphene sheets with regularly spaced

holes, can controllably manipulate the electronic properties of graphene sheets. The

zero band gap material can be converted into the semiconductor by introducing the

antidots and the magnitude of the band gap can be tuned by the scale, edge shape, and

arrangement of the antidot [42].When the gap is opened, the thermoelectric properties

of the material will keep a change accordingly. Based on the π-tight-binding model

(Vppπ ¼ 2.7 eV) and the Brenner potential [80], Gunst’s group [52] computed the

electronic and thermal transport properties of finite graphene antidot lattices and

investigated how different antidot edge shapes and sizes affect the thermoelectric

properties. The studied system is plotted as Fig. 13.10: an antidot lattice of finite

length, with simply triangular array of hexagonal unit cells, connected by two pristine

graphene leads. The results, as shown in Fig. 13.11, show that the transport gap of

finite antidot lattice structures is fast converged to the gap of the infinite after six to

seven unit cell repetitions. The maximal thermoelectric figure of merit ZT can be

obtained after length convergence has been achieved. It is achieved as high as 0.25 for

the armchair edge antidot at room temperature. By contrast, the ZT [in Fig. 13.12] is

significantly lower for the GALs with zigzag edge due to the formation of edge

localization states at zigzag edges. Furthermore, there is also a week increasing

trend with the increasing of the hole dimension and higher ZT could be reached by

increasing the hole dimension.

Focus on the influence of the antidot shapes, the authors, in [53], reported the

thermoelectric properties of the different unit cell antidot: including the circular,

rectangular, hexagonal, and triangular antidot shapes (as shown in Fig. 13.13). A

third nearest-neighbor tight-binding (NNTB) model [81] and a fourth nearest-

neighbor force constant model [19, 82] are considered. In more detail, the systems

Cir(10,108), Rect(10,120), Hex(10,120), IsoTri(10,126), and RightTri(10,126)

(Following the nomenclature introduced in [53]) have been investigated contras-

tively when keep nearly the same area for GALs. As shown in Fig. 13.14,

iso-triangular antidot lattices have the highest thermoelectric figure of merit ZT
due to the smallest thermal conductance resulted by longer boundaries and one of

the largest Seebeck coefficient. All of these results can give us an insight into how

these new materials can be utilized in the future for the thermoelectric applications.
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Fig. 13.10 The simulated

structures of triangular

graphene antidot lattices

with rectangular unit cell

and zigzag edge shapes. The

length of M ¼ 2

corresponds to four holes in

the transport direction for

{10, 5zz} GAL [52]

Fig. 13.11 The electronic

transmission Te of a {10,
3arm} antidot lattice as a

function of energy E
(eV) for different length

M [52]

Fig. 13.12 ZT of {10,

6arm} and {10, 5zz} antidot

lattices as a function of

chemical potential μ at four

temperatures [90, 150, 300,

450] K [52]
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13.4.2 Enhancement of Thermoelectric by Resonant
Tunneling of Electrons

As mentioned in the above discussion, the electronic properties of GNRs strongly

depend on their edge orientations and widths [44], while the thermal conductances

have little effect about the edge shapes and mainly depend on the widths. Hence, one

want to know what will happen if different edge shapes GNRs are alternatively

connected. Recently, Mazzamuto’ group reported the thermoelectric properties of the

mixed edges GNRs [67], denoted by n-MGNRs, and it can be seen as a mixture of

both zigzag and armchair edges in the transport direction, as shown in Fig. 13.15a. In

their studies, the fifth nearest-neighbor force constant model (FCM) [71] in phonon

Hamiltonian and a simple NNTB electron Hamiltonian [83, 84] is considered. In the

considered system, the armchair edges have an opening band gap, while zigzag edges

Fig. 13.13 The schematic

geometrical structures for

different GALs: (a) pristine

graphene, (b) Circ(10,108),

(c) Rect(10,120), (d) Hex

(10,120), (e) IsoTri

(10,126), (f) RightTRi

(10,126), respectively [53]

Fig. 13.14 The figure of

merit ZT versus the Fermi

energy for different GALs:

Circ(10,108), Rect

(10,120), Hex(10,120),

IsoTri(10,126), RightTRi

(10,126), respectively [53]
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generate gapless edge localized states. For the electron transport, the armchair edges

sections can be seen as barriers between localized zigzag edge states. The overall

devices form the multibarrier systems. As a result, the electron strongly selectively

transport through the systems. A resonant tunneling transport occurs and induces very

strong oscillations of electronic conductance as predicted in [85, 86] for multibarrier

systems. Since the barrier effects of the armchair edges sections, when this section

becomes longer, the barrier effects become stronger. But, for a certain long of

armchair edges section, the increasing of zigzag edges section can strengthen selec-

tive electron transports resulting in the larger amplitude of the conductance. As

shown in Fig. 13.15b, the oscillations of the structure βMGNR(5,3) with chirality

(5,3) are more pronounced than the structure αMGNR(5,1) with chirality (5,1) and

give rise to several large peak value of the conductance. In terms of the Cutler–Mott

theory {S / d[ln(Ge)]/dE}, the thermopower is proportional to the logarithmic

derivative of the electronic conductance, the numerical fluctuations lead to larger

Seebeck coefficient S. As a consequence of the strong resonant tunneling effect, the

Fig. 13.15 (a) The schematic geometrical structures for different MGNRs: αMGNR(5,1), and

βMGNR(5,3), and γMGNR. (b)–(d) The corresponding the electronic conductance Ge, Seebeck

coefficient S, and thermoelectric factor of merit ZT versus the chemical potential μ, (e) phonon
thermal conductance versus the temperature [67]
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thermopower S is significantly enhanced, as seen in Fig. 13.15c, the γMGNR has

larger thermopower S than the αMGNR(5,1) and βMGNR(5,3). In addition to the

resonant tunneling effect of the electron, the thermal conductance of MGNRs is

dramatically reduced due to the discrepancy between AGNR and ZGNR vibrational

modes [57]. Combined with the optimized thermopower and significantly reduced

phonon thermal conductance, the thermoelectric properties have been strongly

enhanced in the patterned GNRs. ZT of the structure γMGNR can exceed unity at

room temperature [in Fig. 13.15d]. It is very useful and helpful for designing high

thermoelectric properties graphene nanodevices in the future.

More recently, Liang et al. [87] reported that another kinds of periodic GNR

counterparts can also enhance the thermoelectric properties by using the electronic

resonant tunneling effect. It is named as graphene nanowiggles (GNWs). The

systems are the periodic repetitions of GNR junctions resulting in the quasi-1D

wiggle-edged structures as Fig. 13.16a, b. Experimentally, using surface-assisted

coupling of molecular precursors into linear poly phenylenes and their subsequent

cyclodehydrogenation, these structures can be synthesized and observed by an

atomically precise bottom-up approach [88] in the laboratory. Here, following the

notations of GNWs introduced in [87, 89], we denote the structures with the width

of the parallel and oblique sectors, i.e., AA-96 represents the GNW consisted of

9-AGNR and 6-AGNR in the parallel and oblique sectors [Fig. 13.16a], while the

ZZ-64 GNW comprises 6-ZGNR and 4-ZGNR in the parallel and oblique sectors

Fig. 13.16 The schematic geometrical structures for different GNWs: (a) AA-96, (c) ZZ-64; the

thermoelectric figure of merit ZT of (b) AA-96 (solid line) and pristine 9-AGNR (dashed line),
(d) the ZZ-64 (solid line) and 6-ZGNR (dashed line) as a function of the chemical potential μ at

room temperature (T ¼ 300 K) [87]
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[Fig. 13.16b], respectively. In their studies, a combination of density-functional

theory and semiempirical approach were employed, the results showed that a large

number of flat phonon bands existed for both AA-GNWs and ZZ-GNWs [87]. Com-

pared to the perfect GNRs, these flat phonon bands give little contribute to thermal

transports Tph(ω). As a result, the thermal conductances of GNWs are significantly

decreased to 0.54 nW/K (for AA-96 and ZZ-64) at the room temperature. They are

much less than the thermal conductances of perfect 1.22 nW/K for 9-AGNR and

1.95 nW/K for 6-ZGNR. For electron transports, the parallel sectors can be acted as

barriers between oblique sectors in the GNWs. Therefore, the GNWs can be also seen

asmultibarrier systems. The resonant tunneling transport may occur and induce strong

oscillations of the conductance and thermopower [67, 85]. Such resonant tunneling

effect preserves excellent electrical conductance. Combined with the excellent con-

ductance and the degreasing thermal conductance, GNWs are found to have signifi-

cantly enhanced thermoelectric performance, as shown in Fig. 13.16b, d, many ZT
peaks value occur, and the value of maximum can reach 0.65 for AA-96, it is six to

seven times larger than that of the perfect GNRs with the same width. The maximum

can nearly reach 0.4 for ZZ-64 which is less than the AA-96. Among all GNWs

structures studied in [87], AA-65 possesses the maximum ZT ¼ 0.79 at room temper-

ature. Most of the AA structures have ZT higher than 0.5. In contrast, the AA-GNWs

are more promising candidates than ZZ-GNWs for thermoelectric applications.

13.4.3 Enhancement of Thermoelectric by Edge Currents

As mentioned above, the edge current, which results from the quasiparticles suffi-

ciently close to the Dirac point (DP) and peaks around the edges for both ZGNRs and

chiral graphene nanoribbons (CGNRs), plays an important role in electronic trans-

port properties. Thus, drilling nanopores in the interior will not substantially effects

the so-called edge current. Experimentally, the nanopore arrays in GRNs [77, 90]

have been realized recently by a variety of advanced techniques. In [73], Chang

et al. reported the thermoelectric of GNRs with an array of nanopores in transport

direction for ZGNRs and CGNRs. The schematic view of 20-ZGNR and (8,1)-

CGNR with a chiral angle θ ¼ 5.8� are shown as Fig. 13.17a, c. The diameter of

each nanopore and distance of nearest-neighbor nanopore are displayed, respec-

tively. The length of GNRs is set to L ¼ 1.2 μm in actual calculations, composed of

300 nanopores. In these models, on the one hand, the electron transports are not

substantially modified due to the edge currents, which are reduced from Te ¼ 3 in

infinite homogeneous GNRs to Te � 2 near the DP, on the other hand, since the

homogeneity are broken by introduced nanopores in nanowire, the propagation of

phonons are substantially impeded due to the imperfect transports. Correspondingly,

the lattice thermal conductance significantly reduced from the κph ¼ 6.2 nW/K

for perfect 20-GNR to κph ¼ 0.68 nW/K for 20-GNRs with nanopores, and from

κph ¼ 3.5 nW/K for (8,1)-CGNR to κph ¼ 0.32 nW/K for (8,1)-CGNR with

nanopores at room temperature, which is an order of reducing for nanopores GNRs.
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Furthermore, the length of L ¼ 1.2 μm is close to the limit of electron and thermal

transports beyond which a further increase of L does not change significantly the

conductance Ge and the thermal conductance κph. Benefit from these two effects, the

thermoelectric efficient can be boosted dramatically, the maximum ZT � 4 at liquid

nitrogen temperature T ¼ 77 K and ZT � 2 at room temperature T ¼ 300 K can be

obtained by introduced the periodic array of identical nanopores. In contrast, the

CGNR with a periodic nanopores possess lower thermoelectric, but the values of ZT
can still excess unity at T ¼ 77 K. Hence, the ZGNRs and CGNRs with an array of

nanopores in their interior could act as the building blocks of highly efficient

thermoelectric devices.

13.4.4 Enhancement of Thermoelectric by Supercell
Structures

In addition to the graphene, hexagonal boron nitride (h-BN) is also single-atomic-

layer honeycomb materials [91–95]. Similarly, because of the quantum confine-

ment effect, it exhibits a various novel physical phenomenon in electric and thermal

Fig. 13.17 The schematic geometrical structures: (a) 20-ZGNR and (c) (8,1)-CGNR with chiral

angle θ ¼ 5.8�, the length of these GNRs is set to L ¼ 1.2 μm and compose of 300 nanopores in

real structure; the corresponding thermoelectric figure of merit ZTof (b) 20-ZGNR and (d) the

(8,1)-CGNR as a function of the chemical potential μ at both room temperature 300 K (dashed
line) and liquid nitrogen 77 K (solid line) [73]
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transports. Furthermore, the 2D hybrid sheet, which composed of graphene and

h-BN, has been synthesized by the thermal catalytic chemical vapor deposition

method [96] in experiment. Recently, Yang et al. [66] reported that the hybrid

graphene/boron nitride nanoribbons (BCNNRs) can remarkably enhance the ther-

moelectric properties of nanomaterial. As shown in Fig. 13.18a, b, the central

scattering region is composed of the hybrid graphene/boron nitride ribbons with

the armchair and zigzag edges, named as A-BCNNR and Z-BCNNR, while the left/

right lead is the pristine GNRs for all systems. The widths of ribbons are labeled by

Na and Nz for armchair and zigzag edges, respectively. LBN (L0BN) and LC (L0C) are
the lengths of h-BN and graphene in the supercell. Accordingly, LS ¼ (LBN + LC)
and L0S ¼ (L0BN + L0C) represent the lengths of the supercell in armchair- and

zigzag-edged nanoribbons, respectively. Compared with the pristine armchair-

edged ribbons, the figure of merit ZT can be boosted about 10–20 times for metallic

AGNRs with width index 3k + 2 (where k is the positive integer) as shown in

Fig. 13.18c, e, but the ZT have small enhancement about 1.5–3 times for semicon-

ductor AGNRs. In addition, for the zigzag edge structure, ZT is improved two to

three times compared to that of pristine ZGNRs (shown in Fig. 13.18d, f). In fact,

these hybrid structures have strong effects on the thermal and electronic conduction

due to the destructive channels which block the carrier transmission. The decrease

of electronic conductance is even stronger than the thermal conductance. But

thanks to the destructive channels of electron transmission, the Seebeck coefficients

have greatly improved in BCNNRs structures. Therefore, the increase of the

Seebeck coefficient, together with the corresponding decrease of the thermal

conductance, outweighs the decrease in the electrical conductance and leads to

very high ZT. Furthermore, for a given width of BCNNRs, with the increase of the

periodic number N, the ZT gradually increase firstly, but, when the periodic number

is greater than 6, the ZT approaches almost a constant value.

The physical reason is that, when the number N is large enough, the whole central

scattering region can be approximately seen as a superlattice structure composed of

alternating h-BN and graphene, thus the electron and phonon transports approach the

value of the superlattice and have small change for more periodic number. Hence,

these hybrid nanostructures provide another route for building highly efficient ther-

moelectric devices.

13.4.5 Enhancement of Thermoelectric by Heterojunctions

The heterojunction is one of the most important structures in the nanomaterial. It can

be used to control and regulate effectively the thermal and electric transport. As a

result, the thermoelectric performance of nanomaterials will be changed drastically

by the introduced heterojunction structures. In [68], we have investigated system-

atically the effect of the heterojunction to the thermoelectric properties for AGNRs

and ZGNRs. How to improve the thermoelectric efficiency has also been presented.
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The studied structures are simulated in Fig. 13.19a, b, two typical heterojunction

structures with zigzag and armchair edges are considered. In the ballistic region, the

phonon–phonon and electron–phonon interactions are neglected because they are

very weak. In our calculation, we considered the nearest coupling for the electric

Fig. 13.18 The schematic geometrical structures: (a) A-BCNNR and (b) Z-BCNNR; the

corresponding thermoelectric figure of merit ZT (ZT0) with different widthNa(Nz), periodic number

(N ) and length of the superlattices LS(L
0
S) of BCNNRs as a function of the chemical potential μ at

both room temperature 300 K: (c) and (e) for A-BCNNRs; (d) and (f) Z-BCNNRs [66]
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transport and the fourth nearest-neighbor FCM for the thermal transport in the tight-

bindingmodel, some interesting result has been found.When the heterojunctions are

introduced in GNRs, the electronic transports Te(E) are decreased by the interface

elastic scattering for both AGNRs and ZGNRs. But, there are distinctly different

between these two transports due to the different electronic band structures. The

electric transport keeps the quasi-ballistic behavior within the first conductance

band. Whereas the quasi-ballistic transport is destroyed strongly by the interface

mismatching. So, it is more sensitive to the structural parameters of the structures.

On the other hand, the phonon thermal conductances are also dramatically decreased

due to the phonon-interface scatting. Compared to the AGNRS, ZGNRs have more

available phonon channels to conduct heat. Moreover, the dispersive phonon bands

are generally dominated at the low frequency, which are always less scattered by the

interface mismatching. As a result, the reduction of ZGNRs is less than AGNRs. It is

similar to the electronic case. In addition, the dips of electric transmission Te(E) rise
near the subband edge due to the interface elastic scattering. These rapid variations

of Te(E) greatly enhance the Seebeck coefficient (thermopower) which fully consists

with the Cutler–Mott theory mentioned above. Together with the depressed phonon

thermal conductances, the enhanced thermopowers lead to high thermoelectric

properties in the systems. As shown in Fig. 13.19c, d, the maximum ZT is improved

nearly an order of magnitude for the 5-AGNR with Nc ¼ 8, M ¼ 4 and five times

for the 4-ZGNR with Nc ¼ 7, M ¼ 6. These results provide an efficient way to

improve the thermoelectric performance of GNRs by the heterojunctions.

Fig. 13.19 Schematic

structure of (a) zigzag- and

(b) armchair-edge

heterojunctions.

Thermoelectric figure of

merit ZT as a function of the

chemical potential μ at

room temperatures

T ¼ 300 K for (c) ZGNRs

and (d) ZGNRs
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13.4.6 Enhancement of Thermoelectric by Defects

In the process of patterning epitaxially grown graphene, GNRs may have several

kinds of defects such as pentagon/heptagon defects, vacancies, adatoms, substitu-

tion, disorder, and even combinations of some of them. Defects can lead to the

localized states in the vicinity of defects at particular energies in GNRs, which can

significantly affect both the electronic and thermal transport properties. For exam-

ple, it has been known that defects can induce the form of additional gaps of the

electronic transmission, which benefit to enhance the peaks of the Seebeck coeffi-

cient. On the other hand, defects also can significantly decrease the phonon thermal

conductance. Here, we introduce the defective disorder on the thermoelectric

performances of GNRs. The defective disorders are treated by randomly removing

the atoms (carbon or hydrogen) out of the channel. Based on the distributed

positions of defects, two representative defective disorders such as edge disorder

(namely edge roughness) and lattice vacancy with random distribution in bulk

region are considered. Some interesting properties are revealed.

1. The edge disorder effects in zigzag GNRs

It has been demonstrated in [97] that how the edge disorder affect the electronic

and phononic transport properties of zigzag GNRs. The modeled structure is shown

in Fig. 13.20a. The central region includes the disorder part, whereas the left and

right are taken as semi-infinite perfect GNRs of given width. For different lengths L,
an ensemble of edge disordered ZGNRs is generated. After performing the elec-

tronic and phononic calculations for each configuration, the transmission coeffi-

cients are obtained by averaging the transmission spectra over the ensembles of

100 disordered edge profiles. From the results in [97], it is found that, compared to

the perfect case, the transmission coefficient reduce significantly even for samples

as short as 50 nm, and the reduction is more evident for longer samples. At the same

time, by comparing the reduction in transmission values for two different widths,

one can see that the phonon transmission coefficient is lower for the higher disorder

degree. It is also seen that the edge disorder reduces the phonon transport effec-

tively for all energy values except very low energies, which is very different from

the results that isotopic disorder or Anderson-like disorder in nanotubes suppress

highest-energy modes more strongly than other modes. This is because that the

edge disorder not only modifies the vibrational frequencies but also changes the

number of modes throughout the ribbon except the mode ω ¼ 0. On the other hand,

the influence of the edge disorder on the electronic transport is not parallel to the

phonon case. When the edge disorder is introduced, the electronic transmission

coefficient drops shapely and even a transport gap opens at the charge neutrality

point (CNP). Such the gap is attributed to the fact that the electronic states are fully

localized at the edge at the CNP. When the relative amount of disorder or the length

of the system is increased, the width of the gap, which is opened by edge disorder, is

also increased. But close to the subband edges, the transmission coefficient Te is
abruptly increased by the edge disorder. Hence, the large derivatives of Te can be
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obtained in this system, which is useful to enhance the thermoelectric properties of

GNRs. The calculated ZT value is shown in Fig. 13.20b, c. As expected, the

maximum of ZT is enhanced strongly compared to the perfect case. At room

temperature, ZT reaches 0.39 and 4 for 10-ZGNR and 20-ZGNR, respectively.

For 10-ZGNR, the ZT increases with the temperature up to 1.2 at 750 K, while for

the wider ribbon it decreases with the temperature. These indicate that high ZT can

be achieved sensitively depending on the ribbon width and the relative amount of

edge disorder.

2. The edge disorder effects in armchair GNRs

Figure 13.21a shows the 16-AGNR structure with different values of roughness

index: 5 %, 10 %, 15 %, respectively. The roughness index is defined as the

probability for each edge dimer to be removed. The phonon thermal conductance

as a function of temperature is shown in Fig. 13.21b, while the electronic conductance

Ge, the Seebeck coefficient S and the figure of merit ZT as a function of the chemical

potential μ at room temperature are plotted in Fig. 13.21c–e, respectively. Here, to

make a comparison, the perfect case is also given. From Fig. 13.21b, it is seen that the

edge disorder decreases strongly the phonon thermal conductance which decays from

2.4 nW/K for the pristine case to about 1.6 nW/K for the disordered armchair GNRs

at room temperature. These results for roughness indices of 5 and 10 % seem to be

similar but it is actually fortuitous. In principle, the decrease of the thermal conduc-

tance induced by the edge disorder is useful to enhance the ZT. However, the ZT value

Fig. 13.20 (a) Schematic structure of the ZGNR with the edge disorder. Thermoelectric figure of

merit ZT as a function of the chemical potential μ at different temperatures T ¼ 300, 500, 750 K

for (b) 10-ZGNR and (c) 20-ZGNR [97]
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for the edge disordered armchair GNRs is lower than that for the perfect case, since

the edge disorder also affects the electronic transport properties with negative overall

effects on the ZT. As shown in Fig. 13.21c, the electric conductance is decreased for

all roughness indexes. Additionally, the random edge profiles produce random

oscillations of electronic conductance at high energy. As a result, the ZT peaks of

rough GNRs are all smaller than that of the perfect AGNR. The peak values of the ZT
and their energy position strongly depend on the random edge profile which is

impossible to control. Thus, the edge roughness cannot be considered as an efficient

way to improve the thermoelectric properties of armchair GNRs, very different from

that for the zigzag case.

3. Lattice vacancies in bulk region

Similar to the case with the edge disorder, the phonon thermal conductance is

decreased by the lattice vacancy inside the ribbon (as shown in Fig. 13.22a).

Figure 13.22b shows the phonon thermal conductance of the 16-AGNR with lattice

vacancy distributed randomly is almost two times smaller than the perfect 16-AGNR.

This decrease is slightly less pronounced for the 16-AGNR with lattice vacancies

Fig. 13.21 (a) 16-AGNR structure with different values of roughness index: 5, 10, and 15 %.

(b) Phonon thermal conductance as a function of the temperature T, (c) electronic conductance,

(d) Seebeck coefficient, and (e) figure of merit ZT as a function of the chemical potential μ for the

perfect 16-AGNRand 16-AGNRs with edge disorders [98]
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distributed periodically. Due to the introduction of lattice defect, the band gap is

enhanced and the electronic conductance tends to be reduced (Fig. 13.22c).

Meanwhile, the enhancement of the Seebeck coefficient is observed in Fig. 13.22d.

Similar to the armchair case with the edge disorders, the lattice vacancies with

random distribution have a negative influence on the thermoelectric properties in

armchair GNRs. Figure 13.22e shows that the peak of the ZT in the case with random

vacancies decreases from 0.08 (the perfect value) to 0.03. On the contrary, when the

lattice vacancies are distributed periodically, the peak of the ZT increases to 0.13 due

to the effective width reduction.

13.5 Concluding Remarks

This chapter has reviewed comprehensively the thermoelectric properties of the 2D

graphene, 1DGNRs, and quasi-1D graphene nanoribbon-based heterojunctions. How

to enhance the thermoelectric of these nanostructures by artificially decorated

approaches, for instance, edge disorder, defect-engineering, antidot lattices,

nanopores, and so on, has also been discussed in detail. In the most of the case, the

thermoelectric figure of merit ZT can be significantly enhanced and exceed the unit.

So the artificially structured graphene can be regarded as the good thermoelectric

16-AGNR with random vacancies
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Fig. 13.22 (a) 16-AGNR structure with random vacancies and with periodic distribution of

vacancies. (b) Phonon thermal conductance as a function of the temperature T, (c) electronic
conductance, (d) Seebeck coefficient, and (e) figure of merit ZT as a function of the chemical

potential μ [98]
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materials and can become the promising candidates for taking place of the semicon-

ductor Si in nanodevices and nanocomposites.

However, from the published literature on the thermoelectric properties of these

structures, it can be found easily that most previous researches mainly focus on the

theoretical level, the measurement of experiment is scarcely reported [99–102], it is

a very important for further understanding the real thermoelectric properties of the

graphene. Hence, intensive work would be attempted to investigate the thermo-

electric of the material on the experimental level.

In addition, there exist some imperfections in the previous theoretical investiga-

tions. (1) Most of the discussions are limited in the ballistic region for the thermal

transport. The nonlinear interaction of the system Hamiltonian in the center has been

ignored in the calculation of thermal conductance contributed by phonon. But for real

systems, the nonlinear interaction describes the resistive Umklapp phonon–phonon

scattering which plays an important role in the interpretation of experiments; it may

change the transmission spectrum and will lead to decrease in the phonon thermal

conductance, especially for high temperature region. (2) Compared with the

phonon–phonon scattering, the electron–phonon scattering [46, 63] is relatively

weak in thermal transport, it is also neglected due to the difficult of the approach.

(3) Mean-field approximation has been utilized in the NEGF method, which only

works well for relatively weak nonlinear interaction [27]. Furthermore, the self-

consistent iteration fails to converge for complex structures. When taking account

of relatively strong nonlinear interaction in high temperature, another good approx-

imation must be found to adapt for the complex case. (4) Under a weak magnetic

field, the phonon Hall effect [12, 103] will appear, meanwhile, the spin of the electron

in the graphene will be influenced. Therefore, the transport of thermal and electron

will be change by the magnetic field. Moreover, it gives rise to Hall effect of electron

under the electric field. The conductance will be affected inevitably. All of these case,

the thermoelectric properties will be largely changed by the extra field energy. But it

has little been reported in these aspects. So it is still a challenge to understand

thoroughly the thermoelectric properties of graphene, even a lot of significant

research progresses have been achieved.
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Chapter 14

Silicon Nanostructures for Thermoelectric

Applications

Massimo Totaro and Giovanni Pennelli

Abstract In this chapter, an overview on silicon nanostructures for thermoelectric

applications is presented. After an introduction on the key concepts of thermoelec-

tricity, we show that nanostructuring is one of the most promising solutions for

making high efficient thermoelectric devices. In particular, we discuss the use of

nanostructured silicon as a good thermoelectric material, due to its abundance, its

nontoxicity, and its technological pervasiveness in the society, compared to other

materials often proposed in the literature. Furthermore, a top-down process for the

reliable fabrication of very complex and large area arrays of silicon nanowires

(SiNWs) is shown and discussed. Finally, we show that these networks can be

employed for the fabrication of high efficiency thermoelectric generators, and the

high reliability and the high tolerance with respect to SiNW width dispersion are

demonstrated by means of numerical simulations.

14.1 Introduction

Increasing energy demand and global warming have in recent years generated a

burgeoning activity dedicated to the development of low-CO2 and sustainable

energy production technologies [1–3]. Nowadays, electrical power is mainly
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obtained from fossil fuels and nuclear energy, while the electricity produced by

renewable sources (sun, wind, etc.) is only a very small fraction. The transformation

of almost all energy sources into mechanical or electrical energy, such as means of

transport, industrial processes, or electric power transmission lines, produces

always a substantial waste heat, which is in average about the 60 % of the input

energy.

Moreover, a significant portion of this waste heat is produced by relatively low

energy heat sources (T < 300 ∘C) [4], and there is not yet a technology available

to convert this energy into electricity with high efficiency. In the last 10 years,

thermoelectric (TE) generation is being more and more considered one of the

most promising solutions. The thermoelectric conversion is based on the Seebeck

effect [5]. Carriers in metals and in semiconductors transport electrical charge as

well as heat. When a temperature gradient is applied to the extremities of a

conductor, the mobile charge carriers at the HOT side flow through the device to

the COLD contact. At the equilibrium, this temperature gradient generates an

electrostatic voltage difference V , and this effect is the basis of thermoelectric

energy conversion. Thermoelectrics has several advantages even over photovol-

taics [6, 7], always indicated as the best and leading sustainable energy source,

because of the endless possibilities to recover waste heat from a huge variety of

industrial processes [8–10], and because of the potentially higher efficiency, both

vs.conventional Si-based cells and vs. thin-film large-area devices. Furthermore,

waste heat can also be recovered from several distributed sources, such as

residential heating and automotive exhaust, making TE conversion the ideal

solution for localized energy harvesting, without any need of centralized systems

and energy transport lines, usually expensive and with several maintenance

required.

One of the most limiting factors of thermoelectric generators is the significant

portion of the thermal energy lost by Joule effect, due to the finite electrical

conductivity of the material, and by direct heat conduction from the hot to the

cold region of the device, due to the thermal conductivity of the materials. For this

reason, a device with high electrical but low thermal conductivity should be

developed. Regrettably, this is hard to achieve with metals, since the two param-

eters are directly correlated, thus giving very poor TE performances.

As far as now, lead and bismuth telluride compounds present the best TE

properties [11], being the most widely used material for TE energy conversion,

with an efficiency about 6–8 %. However, such compounds as material for energy

generation in very large-scale applications have several disadvantages. First of all,

some of these materials are unstable above 1,000 K, due to melting or vaporization,

thus they are not suitable for high temperature processes. In addition, the abundance

on the Earth’s surface of these materials is another factor which limits the devel-

opment of large-scale applications. Indeed, in an industrial context, the price of a

material, due to market request and to its extraction and transformation costs,

influences largely the whole device cost, making very unlikely the widespread
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use of current thermoelectric systems for waste energy harvesting. Furthermore,

low natural abundance is often accompanied by a certain level of toxicity for the

environment, and health hazard for people. In particular, tellurium and thallium,

which appears in a large number of the high performance thermoelectric com-

pounds presently used, are considered to be highly toxic metals, and this also affects

the cost of material packaging and recycling to minimize the environmental con-

tamination. In addition, these materials should particularly be avoided for high

temperature processes since they tend to vaporize and release harmful pollutants to

the environment.

Finally, in last years the sustainability is commanding ever-increasing attention.

It can be viewed as the use of a material in the future without worrying about its

availability or its degradation. Sustainability mainly depends on the resource

availability, which is the total amount of the material on the Earth’s crust, and on

the reserve availability, defined as the quantity of the element that is currently

possible to extract. From both these points of view, high performance thermoelec-

tric alloys present critical concerns.

On the other hand, silicon would satisfy all the above requirements, since, after

oxygen, it is the most abundant element on the Earth’s surface, it is not toxic, it is

stable even at very high temperatures, and it is sustainable for very large-scale

applications [11], as demonstrated by its pervasiveness in the society. Moreover,

due to its large employment as leading element in modern microelectronics, and to

the impressive technological development of microchip fabrication, the costs

related to the material processing, to the system fabrication, and to the distribution

into the market are much lower if compared to any other material or compound.

Finally, silicon-based thermoelectric modules can be easily integrated in existing

electronic systems, giving a significant breakthrough to energy harvesting

applications.

Unfortunately, bulk silicon, due to its quite high thermal conductivity, presents

very poor thermoelectric performances [12]. Interestingly, in recent years, it has

been demonstrated, as we discuss below, that in silicon nanostructures, and in

particular in silicon nanowires, nanoscale dimensions can enhance the surface

scattering of phonons that can be viewed as lattice vibrations which act as heat

carriers, without degrading electronic transport. In this way, the conversion effi-

ciency of silicon-based thermoelectric generators (TEGs) can become competitive

with now available commercial thermal engines.

In this chapter, after a description of thermoelectric effects in bulk materials, we

discuss which are the key parameters to optimize the thermoelectric efficiency, and

we clarify the proper use of different thermoelectric figures of merit commonly

found in the literature. Then, we show how nanostructuring can allow silicon to be

used as high efficiency thermoelectric material, and we present a top-down process

for the fabrication of large area silicon nanowire arrays for thermoelectric applica-

tions. Finally, we discuss their reliability with respect to the random nanowire

breakdown, and we demonstrate by means of numerical simulation their high

tolerance with respect to the nanowire width dispersion.
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14.2 Thermoelectric Effect in Bulk Materials

In the case of thermoelectric systems, we have a device, as shown in Fig. 14.1, with

a temperature gradient ΔT ¼ TH�TC at its extremities where TH are TC are HOT

and COLD side temperatures, respectively. This gradient induces a voltage drop V ,

related to ΔT through the Seebeck coefficient, defined as the ratio of the voltage

drop and the temperature difference at the extremities of the device:

S ¼ V

ΔT
; (14.1)

However, in the case of the device depicted in Fig. 14.1, if we suppose to

measure the voltage drop V by means of a voltmeter, the result will be zero. Indeed,

in a closed circuit the total temperature gradient is zero, and the only way to obtain a

non-null V is to put two materials with different Seebeck coefficients S1 and S2
between TH and TC, as sketched in the upper panel of Fig. 14.2. In this way, we

obtain

V ¼ ðS2 � S1ÞðTH � TCÞ: (14.2)

Thus, the output voltage depends on the product of the Seebeck coefficient

difference and the temperature gradient. If the two materials are metals, both

Seebeck coefficients will have the same sign, since carriers are always electron

which diffuses from the HOT to the COLD side, and the total S ¼ S2�S1 coefficient
will be very low, with a consequent low voltage V . On the other hand, if we have

TCTH

HEAT

HOT SIDE COLD SIDE

+−
V

Φ

Electrical carriers
(n or p)

Fig. 14.1 Sketch of a thermoelectric device, where a temperature gradient Δ T ¼ TH�TC between
the HOT and the COLD side induces a voltage drop V at its extremities
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semiconductors, since charge carriers will always diffuse from the hot side to

the cold one, in the case of n doped materials electrons will charge the cold side

negatively, with Sn < O, meanwhile in the case of p doped the cold side will

be charged positively by holes, with Sp > 0. Thus, if we connect n-type and

p-type modules thermally in parallel and electrically in series, as shown schemat-

ically in the lower panel of Fig. 14.2, we obtain

V ¼ ðSp � SnÞðTH � TCÞ (14.3)

V ¼ ðSp þ jSnjÞðTH � TCÞ (14.4)

In this way, the total Seebeck coefficient is the sum of absolute values of the two

Seebeck coefficients, giving a higher output voltage V.

TCTH

S1 S1

S2

+
V

HEAT

−

TH

HEAT

HOT SIDE

p

n

COLD SIDE

V
+

−

TC

Positive carriers
(HOLES)

Negative carriers
(ELECTRONS)

Fig. 14.2 Upper panel: Schematic sketch of a thermocouple, composed of two materials with

different Seebeck coefficient. When a temperature gradient TH�TC occurs at the contacts between

the two materials, a non-null voltage V can be observed. Lower panel: schematic sketch of a

thermoelectric generator, composed of two n and p-type semiconductors, connected thermally in

parallel and electrically in series
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14.3 Thermoelectric Power Factor and Efficiency

The aim of any energy conversion system is to have the highest efficiency, that is

defined as

η ¼ PL

PIN
; (14.5)

where PL and PIN are the power supplied to the load and the input power,

respectively.

In this context, we should identify which quantities are involved in the thermo-

electric power conversion picture.

First of all, let us suppose that the device extremities can be maintained at fixed

temperatures TH and TC. This means that the HOT side can be considered as an

infinite heat source, while the COLD side an infinite heat sink. In this case, we can

ignore the heat flux Φ through the device, and it is sufficient to optimize the

maximum output electrical power

Pel ¼ V2

4R
¼ S2ΔT2σ

A

4L
; (14.6)

where

R ¼ L

σA
(14.7)

is the internal device resistance (remembering that the maximum power transfer is

obtained if the load and the internal resistances are equal), σ its electrical conduc-

tivity, L and A the length and the cross-section surface of the conductor, respec-

tively. Considering that L and A are two geometrical factors, so not related to

material properties, and the temperature gradient ΔT is kept constant, to maximize

the output power, we should optimize the factor S2σ, which for this reason is

commonly known as thermoelectric power factor. In this context, we should find

a material with S and σ as high as possible. For this kind of applications, due to its

properties (both huge electrical conductance and Seebeck coefficient), graphene

seems to be the ideal material, which lead to predict a giant thermoelectric effect in
graphene [13].

Unfortunately, in almost all real applications, the assumption of infinite heat

source and/or sink is not satisfied. Indeed, the heat flux through the device, due to its

finite thermal conductivity k, reduces ΔT unavoidably, or by raising TC up if the heat
flux from the HOT side is larger than the heat that the COLD side can dissipate, or

by lowering TH down when the heat source is not able to supply enough thermal

energy to balance the heat flowing to the COLD side. In many cases, both phe-

nomena can occur simultaneously. Then, a new dynamic thermal equilibrium, with

lower ΔT and with a significant efficiency loss, can be obtained, or both sides will
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reach the same temperature, with a consequent null thermoelectric conversion.

Thus, we should take into account also the thermal conductivity k, and, in partic-

ular, to optimize thermoelectric performances we would like to have a material with

the highest σ and the lowest k. Briefly, our aim is to find an unusual phonon-glass

and electron-crystal material [14]. The phonon-glass behavior is needed for as low a

thermal conductivity as possible, while the electron-crystal requirement hails from

the fact that crystalline materials (in particular semiconductors) are the best com-

promise for the electronic properties (Seebeck coefficient and electrical

conductivity).

To evaluate the quality of a thermoelectric material we can introduce the factor

of merit [5]

Z ¼ S2σ

k
: (14.8)

This factor, which depends only on the physical properties of a material, is useful

since it appears in the thermoelectric maximum efficiency expression [5]:

ηTOT ¼ ηC � ηTH ¼ TH � TC
TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZT
p

þ TC=TH
; (14.9)

where T ¼ (TH + TC) ∕ 2 is the average absolute temperature. We have to note that

this expression is only a first order approximation and, while it is almost always

used in the literature for evaluating thermoelectric performances, it is strictly

correct only if S, σ and k, and therefore Z, can be considered constant with respect

to the temperature between TC and TH [15]. Of course, this is only a rough

approximation, since, as well known, all the above parameters vary with the

temperature, both in metals and in semiconductors. In this case, an averaged Z is

often used [15].

Moreover, we can observe that ηTOT is composed of two terms. The first one,

ηC ¼ (TH�TC) ∕TC is the Carnot efficiency, which is the maximum efficiency for

any thermal cycle operating between TC and TH [5]. The second term, ηTH, can be

ascribed to the thermoelectric conversion process, and it depends only on the

material chosen for the device.

As well known, due to the second law of thermodynamics, the Carnot limit is

unavoidable. Thus, for example, any thermal machine working between room

temperature (300 K) and 800 K cannot reach a total efficiency over than 62.5 %.

However, commonly available internal combustion engines (such as diesel or

gasoline-based ones) have a typical efficiency around 20 %. Aware of this fact,

thermoelectrics can be a valid option for competitive energy conversion if a total

efficiency approaching the 20 % can be reached. In Fig. 14.3, we can see the

theoretical maximum efficiency of a thermoelectric device, as a function of TH
and assuming the COLD side at room temperature (300 K), for different values of

the Z factor. While for Z less than 10�3 the efficiency is well below the 20 % target
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even at quite high temperatures, we can see that an increase to Z ¼ 4�10�3 rises

the efficiency up to more than the 20 % for temperatures above 700 K. Further-

more, even for Z ¼ 2�10�3 the efficiency starts to be competitive, with a value of

15 % at 800 K, easily obtainable, for example, with solar concentration systems,

and 20 % at 1,000 K, that can be reached in several industrial processes. Thus, it is

apparent to understand the big effort in the scientific community to improve

thermoelectric performances by fabricating complex alloys [16] or, in recent

years, by nanostructuring [17], and the significant interest of the industrial sector

in these kinds of applications.

Thermoelectric efficiency and figure of merit, which is the right factor?

Instead of Z, in the literature, we can often find as figure of merit the

parameter ZT, with T the average absolute temperature. The product ZT
appears explicitly in Eq. (14.9); moreover, it is a dimensionless parameter,

with typical values around 1. Thus, it is “easy” to remember, to cite, and to

compare. Also for these reasons, it is often used as the “unit of measurement”

for thermoelectric performances. However, as we explain below, this factor

should be handled carefully, and, unfortunately, sometimes its misuse can

give incomplete or even incorrect indications on thermoelectric materials.

From this point of view, we could state, as often found in the literature, that a

material whose ZT is higher than 1 can be considered a good thermoelectric

material. However, this statement is incomplete if we do not specify the

operating temperatures (TH and TC) of the thermoelectric device.

First of all, the T value in ZT is the average absolute temperature, and

according to Eq. (14.9) we should write T . Observing again the curves of

Fig. 14.3, we can obtain a 20 % total efficiency (which is, more or less,

our goal) with a material whose ZT ¼ 2 at TH ¼ 700 K (Z ¼ 0.004 K�1 and

T ¼ 500 K), and, for such a material, we can often find ZT ¼ 1.2 at room

temperature (300 K). The latter value is often cited as the threshold for a good

thermoelectric material. Unfortunately, this statement, if incomplete, could

(continued)
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(continued)

have some critical points. First of all, saying ZT ¼ 1.2 at 300 K should mean

that T ¼ 300 K. For this reason, it is an indicative factor if we suppose that

the conversion process is operating with T around the room temperature, as

for example in domestic heating or air conditioning systems. In this case, if Δ
T is less than 100 K, the variation of Z with respect to the temperature is not

very relevant. Indeed, both S and σ do not vary too much, especially in

heavily doped semiconductors, where the carrier mobility is limited by the

scattering with lattice impurities. Thus, comparing different materials or

compounds with ZT at room temperature is indicative only for quite low

temperature processes. Otherwise, in applications where the conversion

occurs between 300 K and TH about 500 K or more, the approximation of

constant Z in the whole temperature range is not satisfied, and the ZT
parameter at room temperature could give incorrect information.

In addition, it is obvious that if TC ¼ 300 K is supposed, considering ZT at

room temperature means that the device would operate between 300 K

and. . .300 K, giving, for the Carnot law, an efficiency of 0! Briefly, without

paying attention to previous facts, we could measure the thermoelectric

performances with an almost fictitious value; in addition, we should be

careful to avoid confusion between the average temperature T that should

be considered in ZT and the absolute temperature TH.
Another critical point is that giving a ZT value can be, sometimes, a bit

misleading. Indeed, the same value can be obtained with another (worse)

material just by varying the operating temperature, so it is not an absolute

“unit of measurement,” as Z alone could be. In this context, the main strategy

to obtain the best thermoelectric efficiency is to maximize the ZT of a

material. Even if we handle correctly this parameter, we could achieve

incomplete results. If, for example, we find a material whose maximum ZT
is 3 at 500 K (which means TH ¼ 700 K if TC ¼ 300 K), according to the ZT
optimizing strategy, we will try to use the thermoelectric device at that

temperature, with an efficiency, from expression (14.9) with TC ¼ 300 K,

ηTOT ¼ 0. 1538 (15.38 %). On the other hand, if the same material had

ZT ¼ 2.5 at 700 K (TH ¼ 1, 100 K with TC ¼ 300 K), we would obtain

ηTOT ¼ 0.2164 (21.64 %), with a significant improvement, due to the much

higher TH, at a lower ZT.
Furthermore, the operating temperature TH is often imposed by the process

that we want to exploit, or it can be tuned only slightly. Thus, the strategy to

optimize the ZT factor should consider in any case at which temperature we

want to operate, and, if TH cannot be varied, it actually means to optimize Z at

a given temperature. For example, if our aim is to recover waste energy from

domestic heating, it would be unlikely to exploit successfully a system which

(continued)
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(continued)

has the best efficiency at 800 K (and, thus a commonly indicated ZT value

around 1 at room temperature). This indicates that the best strategy should be
to consider both Z and T, but separately, if we want to optimize the whole

thermoelectric efficiency.

Finally, regarding the ZTmisuse, in few cases, we can find graphics for the

theoretical maximum efficiency where different curves, as a function of the

temperature, equivalent to those in Fig. 14.3, are shown taking ZT as param-

eter, instead of Z. In this way, we impose implicitly that, for a certain curve,

the whole factor ZT should be independent to the temperatureT, that would be

true only if the factor Z was proportional to 1∕ T . Unfortunately, as already
shown above, the expression is valid only if Z is constant with the tempera-

ture, and we run into an inconsistency.

In conclusion, the widespread use of ZT as thermoelectric figure of merit,

without any wisdom, can lead to wrong conclusions about thermoelectric

performances. Indeed, it should sound strange to use as ’unit of measurement’

a parameter which does not give absolute indications and, most importantly,

with values that, according to the application, can be fictitious. For these

reasons, in our exposition we prefer to use Z as much as possible, and we will

always keep in mind the previous considerations when referring to ZT.

14.4 Nanostructuring Strategy for Thermoelectric

Applications

Nanostructuring is one of the most powerful strategies to increase the thermoelec-

tric figure of merit of materials [18]

Z ¼ S2σ

k
; (14.10)

Through nanofabrication, the device active elements become comparable in size to

the phonon mean free path (m.f.p.), and thus benefit from a reduced k via enhanced
surface scattering of the acoustic phonons that provide the most significant contri-

bution to the overall thermal conductivity. Electrical conductivity σ however,

remains essentially unaltered owing to a much smaller electron m.f.p., thereby

yielding a real advantage for thermoelectrics. To this end, current research concen-

trates on the search for novel nanostructured materials, characterized by high σ but

low k to enhance the thermoelectric conversion figure of merit Z (or the alternative

dimensionless parameter ZT, as discussed previously). As mentioned earlier, there
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are encouraging prospects for limiting the value of the overall thermal conductivity

k via nano-engineering of the materials. k can be expressed in general as the sum of

two contributions due to the charge carriers (ke), and the lattice (namely due to heat

transmission by crystalline lattice vibrations or phonons) kph [19],

k ¼ ke þ kph: (14.11)

For bulk elemental metals ke provides a dominant contribution to k and is related to
σ by the Wiedemann–Franz law [19]:

ke
σ
¼ π2

3

kB
e

� �2

T; (14.12)

where kB is the Boltzmann constant, e the electron charge, and T the absolute

temperature. This means that ke cannot be decreased without altering σ, thereby
making metals poor TE materials. Interestingly, however, there are significant

deviations from these behaviors in both alloyed semiconductor superlattices, and

nanostructured semiconductors.

14.5 The Choice of Silicon as Thermoelectric Material

The case of silicon is worth mentioning explicitly, given its nontoxic nature, versatil-

ity, abundance, and its pervasiveness in society as the elective semiconductor for

microelectronics. In silicon the main contribution to k is given by kph ¼ 148W∕mK,

whereas ke, that depends on doping, is less than 1 W/mK. Most importantly,

theoretical studies [20, 21] confirmed by experiments [22, 23] have shown the

possibility to suppress k by up to 2 orders of magnitude, to 1 W/mK, thereby yielding

Z ¼ 0.002 K�1 (with an equivalent ZT ¼ 0.6 at 300 K). This is possible because the

phononmean free path (m.f.p.) is much longer than the electronm.f.p., i.e. of the order

of 20–50 nm compared to 2–10 nm for electrons. When the lateral dimensions of the

nanowires become comparable with the phonon m.f.p, conduction of the latter results

limited by surface scattering, thus leading to a decrease in k, and determining an

increase in Z. A further thermal conductivity reduction can be obtained by suitable

surface treatments [18, 24, 25], aimed, for example, at increasing the surface rough-

ness, and thus again the phonon m.f.p. owing to enhanced phonon scattering. Inter-

estingly, this can be done in such a way that the electrical properties are almost

perfectly preserved. Overall, by the combined effect of reduced dimensions and

enhanced surface roughness, an increase of Z of more than 2 orders of magnitude

can be expected. Obviously, once kph is minimized and reduced to values below or

comparable to ke, it is important again to consider the factors affecting both ke and kph
(such as effective mass, electronegativity and atomic weight of the component

elements, charge mobility and energy gap) as already discussed a decade ago in the
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excellent review by Disalvo [26]. While significant work has been done since then,

especially in terms of materials nanostructuring [27], there are still ample margins for

improvement in the engineering of TEGswith ZT at high temperatures (800–1,000 K)

of 4 or greater, for example by seeking further reduction of the NWs diameter, their

uniformity, density, and the control of their doping level. Importantly, in considering

the best results obtained to date, it is also useful to distinguish, as already stated

previously, between nontoxic, up-scalable, and essentially “sustainable” materials

such as nanostructured-Si (for which ZT at room temperature is essentially still limited

to 1 or less), and “high-Z” materials (e.g., based on Pb, Te, Sb, Bi, and their

nanostructured alloys), which while attaining ZT values at 300 K of 3 or more [11,

26] raise significant concerns in terms of scalability, toxicity, and eventually sustain-

ability, a property that is commanding ever increasing attention.

In any case, a single SiNW can convert into a negligible energy. For this reason,

the research should be focused on the fabrication of large SiNW arrays [28], in

order to exploit the TE nanoscale properties in macroscopic devices. By putting in

parallel n and p doped SiNW arrays, high efficiency TEGs can be fabricated.

14.6 Fabrication of Silicon Nanowire Networks

The reduced SiNW thermal conductivity gives interesting possibilities for the

fabrication of devices to be used for thermoelectric generation with high heat to

electrical power conversion efficiency. These devices could be usefully employed

for energy harvesting purposes. However, for the development of usable SiNW-

based thermoelectric generators a technique for a massive and reliable production

of well-organized, very long, SiNWs must be available. Such a technology could

also be employed for the fabrication of several electronic devices, such as solid-

state memories [29], or sensors based on large arrays of very sensitive

nanowires [30].

Here we present a top-down technique for the fabrication of a well-organized

and very reliable network based on a large amount (order of 105 SiNWs per mm2) of

narrow (< 50 nm) silicon nanowires. In ideal conditions (i.e., no defects are

present) these very large area SiNW arrays are equivalent to the parallel of many

very long (order of millimeters) and small SiNW. On the other hand, the arrays are

much more tolerant to unavoidable random defects of single, very long, nanowires.

Figure 14.4 shows SEM photos of a typical top down fabricated SiNW net. In the

upper panel, a low magnification image showing the 1�0.6 mm2 area of the SiNW

network (dark zone of the image) is shown; clear areas are silicon, and a trench

(dark) runs at the borders of the net to provide electrical insulation. Conduction is

measured (see the next sections) between crystalline silicon areas (top and bottom

terminals) which are accessed through aluminum contacts (not visible). In the lower

panel, the texture of the net, made of SiNWs 3 μm long, is shown; the SEM image

of the inset shows the 50 nm wide Si core, embedded in silicon dioxide.

The implemented fabrication technique is an advancement of a previously
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Fig. 14.4 SEM images of a silicon nanowire network. Upper panel: a low magnification image

showing the overall dimension of the network. Lower panel: the texture made of 3 μm long SiNW

is shown; the inset shows a detail of the SiNW with a core width of 50 nm. (Reprinted with

permission of Elsevier, from [28])
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developed top-down process [31, 32] that allows the reliable fabrication of devices

based on narrow (down to 10 nm), micrometers long, single SiNWs, whose both

mechanical [33] and electrical properties [34, 35] have been fully investigated in

our recent works. The process is developed on Silicon On Insulator (SOI) sub-

strates, with a top silicon layer 260 nm thick. The doping of the top silicon layer has

been adjusted by means of a solid source doping technique based on Filmtronics

ceramic wafer for phosphorus (n-type) or boron ( p-type), already employed for

the selective doping of a silicon nanowire [36]. The doping process consists in

the pre-deposition and the drive-in steps. The ceramic wafer is brought into contact

with the SOI substrate, and a rapid thermal annealing (RTA) cycle in N2 atmo-

sphere is performed. Varying the temperature and the time of pre-deposition

process the top layer can be doped as needed. After the ceramic wafer removal,

an RTA cycle at 1, 150 ∘C for 10 min, with 1 min in O2 atmosphere and 9 min in

N2 atmosphere, is applied to the SOI sample. Afterwards, a 50 nm thick top dioxide

layer, used as a mask for the following silicon anisotropic etching, is grown

by means of a dry oxidation step at 1, 150 ∘C for 5 min. The final doping, and

carrier mobility, of silicon nanowires is still and open problem, because they

depend on many factors as interfacial states density, surface segregation of doping

species, and so on.

A silicon dioxide layer is grown on top by dry thermal oxidation. A suitable SiO2

mask is then obtained by a high resolution electron beam lithography step [37],

through standard PMMA resist and calibrated chemical wet etching. It is important

to underline that electron beam lithography is not mandatory for this step. Indeed,

SiNWs with a cross-section smaller than 30 nm can be fabricated starting from

150 nm masks, easily obtainable with advanced optical lithography, making this

process suitable for massive and very large-scale production.

The most critical point of the lithographic step is to optimize the electron beam

process in order to achieve the lowest dispersion in the SiNW widths. As known, in

a large structure defined by means of electron-beam lithography, the effective dose

in different region of the device is not uniform, due to proximity effects. In fact, the

forward and the back-scattering of electrons hitting the target broaden the exposed

area of a single spot. The result is that highly dense patterned regions can be over

exposed easily, while portions with very few surrounding patterns are often under

exposed. In a very high-resolution process (with several thousands of dense differ-

ent structures) this will affect the lithographic step with no chance to fabricate the

desired device. In order to overcome this limitation, a very big effort has been made

and several correction techniques have been developed. The common point of all

techniques is to lower the dose in dense patterned regions, while at the boundaries it

is raised. Unfortunately, the exact solution of the problem is computationally very

demanding, since it has an exponential growth with the exposed area. For this

reason, often only approximated techniques can be performed. Regarding the large

area and high density of the devices here proposed, an ad hoc procedure for the

correction of electron beam lithography intra proximity effects has been developed

in order to obtain a more uniform exposure on large areas. As shown in Fig. 14.5

the SiNW network is defined by writing several rows of boxes, starting from the one
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corner of the structure that we want to fabricate. Moreover, the device is isolated

from the whole Si chip by means of lateral trenches. The dose is partially compen-

sated along the transverse writing direction by tuning the exposure dose of the

insulating trenches. On the other hand, the compensation in the longitudinal writing

direction is obtained by varying the exposure dose of each box, that is larger at the

boundaries and it is reduced toward the center of the device. In Fig. 14.6 we show a

comparison between the boundary regions of some arrays without (in a and b) and

with the proximity effect correction applied. As we can note, in the first case we

have under-exposition and poor pattern definition, while, if the correction is

applied, we obtain very uniform and well-patterned networks.

Silicon anisotropic wet etching has been used in order to obtain very uniform

wires with trapezoidal cross section, laterally delimited by [111] silicon crystalline

planes. Stress controlled oxidation [32] is then used for defining the SiNWs and

reducing their width in a well-controlled and reliable way. At the end of the

oxidation-reduction process, each silicon nanowire has a triangular cross section.

As it has been demonstrated [38], by using this technique it is possible to obtain

very narrow SiNW even starting by not very small initial structures (over

100–150 nm of initial width) that could be obtained even with advanced optical

lithography, in order to reduce fabrication costs. The initial width of the structures

is limited only by the maximum nanowire density that has to be obtained in the final

device.

Tranverse writing direction

Longitudinal
writing

direction

Boxes defining
SiNW network

Boxes defining
insulating trenches

Fig. 14.5 A sketch of the adopted e-beam writing strategy and of the intra proximity effect

correction. (Reprinted with permission of Elsevier, from [28])
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14.7 Random Failures in SiNW Networks

As schematically represented in the sketches of Fig. 14.7a and b, a silicon

nanowire network is equivalent to many parallel silicon nanowires, each of the

same width of the SiNWs forming the texture and of the same length of the whole

net (1 mm in the case of the net shown in Fig. 14.4). In particular, important

properties connected to the low nanowire width, such as large electrical to thermal

conductivity ratio, are preserved; in Fig. 14.7c a sketch of the electrical equivalent

resistor network is shown. Each of the N�M (row by column) resistors of the

network models a SiNW of the net texture with a resistance value R0 (conductance

value G0 ¼ 1 ∕R0). It is trivial to demonstrate that this resistor network is equiva-

lent to M parallel resistors, each given by the series of N elementary resistor of the

network that are the vertical branches in the sketch of Fig. 14.7c. In the case of a

perfect network, horizontal branches are ineffective both for the electrical and for

the thermal conduction. The key point in using a silicon nanowire network is that

this structure is much more tolerant to nanowire failures (as breaking) that can

occur during the fabrication process for the presence of defects or other.

Fig. 14.6 (a) and (b) SEM images of SiNW array boundary regions without any proximity effect

correction applied. (c) and (d) Similar boundary regions with the proximity effect correction
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This allows the fabrication of very large areas SiNW networks (equivalent to

millimeters long SiNWs in parallel) with high reliability and repeatability of the

total thermal and electrical resistance of the net.

In order to give theoretical support to these considerations, a Monte Carlo

technique has been implemented and applied to resistor networks. An ad hoc

program for the resolution of electrical networks with a great number of resistance,

based on a recursive optimized Y�Δ transformations [39], has been developed in

order to optimize computational times. The program has been tested on a complete

network of N�M resistors of resistivity R0, confirming that it is equivalent to

M parallel resistors, each of value N�R0. If, for example, N�M ¼ 291�190

resistors with R0 ¼ 1 kΩ are considered, the total resistance of the net resulted

exactly 1�291 ∕ 190 ¼ 1.53 kΩ. Nanowire failures, due to defects in the fabrication

1 
m

m

1 
m

m

V

I

V

I

a b

c d

Fig. 14.7 Sketch of a SiNW network (a), electrically and thermally equivalent to many very long

SiNWs in parallel (b). In (c) the equivalent electrical resistor network is shown and in (d) it is

shown how random nanowire failures can be schematized by removing resistors from the net.

(Reprinted with permission of Elsevier, from [28])
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process, have been modeled by randomly removing resistors from the net, as

schematically shown in Fig. 14.7d. For each resistor a random number with an

uniform distribution between 0 and 1 has been generated [40] and compared with a

threshold P that established the probability (percentage) of failures: the resistor is

removed if the random number is below the threshold P. The random removal of

resistors has been repeated a suitable number n of times (population), stating from

the same initial resistor network. Figure 14.8 shows the evaluated resistance of a

network with N�M 291�190 resistors, each with a resistance of 17 kΩ, as a

function of percentage of failure. A population of n ¼ 100 networks has been

considered for each percentage, and the average value of resistance is reported as

a function of percentage of randomly removed resistors (threshold value). It can be

seen that the net total resistance value shows a reduced variation even for high

percentage of failure (10–20 %). For example, the resistance increases from 26 kΩ
(no failures) to 33 kΩ in the case of 10 % of failures. According to the bond

percolation theory [41, 42], a full failure (disconnection between top and bottom

contacts) occurs only for very high nanowire failure percentages; in the case of

Fig. 14.8 only failure percentages greater than 40 % give a complete disconnection

between the top and the bottom contacts of the network.

In the case of M parallel resistors, each representing a millimeter long nanowire

(no horizontal branches), the reliability of the top to down connection with respect

to nanowire failure is much more small. The same defect density can be considered

by assuming that a millimeter long nanowire is outlined as the series of

N elementary resistors R0 (conductivity G0), representing a nanowire of the texture

3 μm long, with a probability failure P. The failure of one elementary resistor of the

series brings to the failure of the millimeter long nanowire. The probability that an
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Fig. 14.8 The average value of resistance, evaluated on 100 networks with 291 �190 initial

number of resistors, is reported as a function of percentage of randomly removed resistors that

simulated the nanowire failure. (Reprinted with permission of Elsevier, from [28])
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elementary resistor R0 does not fail is 1�P; making the reasonable hypothesis that

failure events are uncorrelated, the probability that the series (the sum) of

N resistors does not fail is the product of each single probability. This means that

the probability of conduction for a millimeter long nanowire is 1�PN, and it results

to be very small even with low P because it depends on N that in the case of long

nanowires is of the order of several hundreds. If M long nanowires are placed in

parallel, the total conductance can be evaluated as G ¼ M�G0 ∕N in the case of no

failures (no defects); in the case of failures with probability P, the expression for the
total conductance can be evaluated as

G ¼ M � G0

1� Pð ÞN
N

: (14.13)

For example, by considering again R0 ¼ 17 kΩ, (G0 ¼ 5.88�10�5 Ω�1), the total

conductance in the case of 10 % of failures (P ¼ 0. 1) is G ¼ 1.2 �10�15 Ω�1 and

the total resistance is 1 ∕G ¼ 8.2 �1014, i.e. top and bottom are practically

disconnected.

Tolerance of the total net electrical resistance with respect to nanowire width

dispersion has been investigated. Random resistance networks have been gener-

ated; each resistor has been evaluated by considering an ohmic behavior of

nanowires. Each one has a length of 3 μm and a random width generated by

means of a gaussian random generator [40] with a given average width of 80 μm
and standard deviation σ. Figure 14.9 shows the average total network resistance,

evaluated on 100 random nets (generated by different seeds), as a function of the

nanowire width standard deviation σ. The errorbars show the standard deviations of
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Fig. 14.9 The average value of resistance, evaluated on 100 networks with 291�190 random

resistors, is reported as a function of the silicon nanowire width dispersion (standard deviation).

(Reprinted with permission of Elsevier, from [28])
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the total net resistance that resulted to be well reduced with respect to the dispersion

of the nanowire width. For example, given a σ ¼ � 50 nm (more than 60 % of the

average width of 80 nm), the total average resistance is 31,900 Ω with a standard

deviation of �152 Ω that is less than 5 %. This demonstrates the robustness of the

total electrical resistance of the net with respect to the nanowire width dispersion.

However, as far as the thermal conductivity is concerned, its reduction seems not to

be linear with the nanowire width [18, 22]; in this case the average nanowire width

and dispersion must be low enough for maintaining the thermal conductivity below

a suitable value.

14.8 Network Reliability and Electrical Characterization

An estimation of nanowire failure percentage in fabricated networks, as the one

shown in Fig. 14.4, can be performed by means of SEM inspection. For example,

SEM photo of Fig. 14.10a shows a portion of a typical SiNW network, and

interruptions (broken nanowires) in the network are enlightened. By inspecting

several samples of fabricated SiNW networks, we can conclude that the mean value

of failures is between 10 and 15 %. This value is well below the threshold failure

percentage for which the whole resistance grows up noticeably. Figure 14.10b

shows a typical I�V characteristic measured for an SiNW network. The dispersion

of the SiNW widthW in a very large portion of the device is between 50 and 90 nm,

and the proximity effect correction strategy previously described has been applied.

The ohmic behavior shows that nonlinear effects in the conduction are negligible,

and the value of about 66.7 kΩ is consistent to the above considerations about the

electrical equivalence of the whole network with a large number of 1 mm long

single nanowires in parallel. Indeed, from previous electrical measurements of a

single SiNW the conductivity can be estimated of 40�103 Ω�1 m�1 (heavily

doped). The measured resistance value of the network is comparable to the one of

190 SiNWs in parallel, with a length of 1 mm and a width mean valueW ’ 72 nm,

which is very close to theWmean value observed by SEM inspection in a very large

region of the device. Moreover, as it has been previously demonstrated, even a large

dispersion in the width at the boundaries of the device does not affect the electrical

characteristics of the network significantly, since the whole behavior of such

devices is dominated by the large number of SiNWs smaller than 90 nm observed

inside the structure.

14.9 Conclusions

In this chapter, after an introduction on the key concepts of thermoelectricity and a

discussion of the different figures of merit used in the literature, we showed which

are, nowadays, the limiting factors of a widespread diffusion of thermoelectric
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generators. In particular, currently available high efficient materials present several

concerns in terms of abundance, toxicity, technological development, market

distribution, and, ultimately, sustainability, which in last years is acquiring ever-

increasing impact in the worldwide economy. Silicon could overcome all these

aspects, since it is the most abundant element on the Earth’s surface, it is not toxic,

and, definitely, it is sustainable. Moreover, its technology and its market are

impressively advanced, due to the leading role of silicon in the modern microelec-

tronics. The main problem of bulk silicon for thermoelectric applications is its quite
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Fig. 14.10 In (a) an SEM image of a portion of SiNW network is shown; nanowire failures are

enlightened. In (b) the I�V characteristics of the SiNW network shown in (a), measured between

the top and bottom contacts, are reported. The conduction is linear and the resistance is very

similar to the one of many small and long silicon nanowires. (Reprinted with permission of

Elsevier, from [28])
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high thermal conductivity k (about 148 W/mK), which does not allow relevant

conversion efficiencies. We showed how nanostructuring can reduce k up to two

order of magnitude, mainly due to the surface scattering of acoustic phonons,

without any degradation of electrical properties, thus obtaining a significant

improvement of thermoelectric performances.

Then, we presented a CMOS-compatible top-down process exploited for the

fabrication of silicon nanowire arrays. We showed that these very large area

networks are very reliable with respect to the failure of single SiNWs (the whole

resistance variation is less than one order of magnitude up to 40 % of SiNW

failures). Furthermore, the average value is very robust with respect to the SiNW

width dispersion (even with a standard deviation about the 60 % of the average

width value, the whole resistance standard deviation is less than 5 %).

These results are very promising for the fabrication of large area silicon

nanowire networks that could allow practical applications of the interesting prop-

erties of SiNWs. In particular, the equivalence of reliable networks to the parallel of

many, millimeters long, SiNWs makes this technique suitable for the fabrication of

high efficiency thermoelectric devices. Finally, the possible implementation of this

technique with advanced optical lithography is very promising for the fabrication of

even larger area SiNW networks to be applied to energy harvesting.
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Chapter 15

Modeling and Analysis of Strain Effects

on Thermoelectric Figure of Merit in Si/Ge

Nanocomposites

Y. Xu and G. Li

Abstract In this chapter, strain effect on the thermoelectric figure of merit is

investigated in n-type Si/Ge nanocomposite materials. Strain effect on phonon

thermal conductivity in the nanocomposites is computed through a model combin-

ing the strain-dependent lattice dynamics and the ballistic phonon BTE. The

Seebeck coefficient and electrical conductivity of the Si/Ge nanocomposites are

calculated by an analytical model derived from the Boltzmann transport equation

(BTE) under the relaxation-time approximation. The effect of strain is incorporated

into the BTE through strain-induced energy shift and effective mass variation

calculated from the deformation potential theory and a degenerate k � p method

at the zone-boundary X point. Electronic thermal conductivity is computed from

electrical conductivity by using the Wiedemann–Franz law. Various strains are

applied in the transverse plane of the Si/Ge nanocomposites. Thermoelectric prop-

erties including thermal conductivity, electrical conductivity, Seebeck coefficient,

and dimensionless figure of merit are computed for Si/Ge nanocomposites under

these strain conditions.

15.1 Introduction

Thermoelectric materials and devices have promising applications in power

generation, cooling systems, and waste heat recovery [6, 20, 42, 68, 77]. Driving

these applications are several attractive properties, such as being pollution-free,

silent, reliable, and scalable. However, presently they are only in limited use due to

their relatively low energy conversion efficiency. They are not able to match the
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performance of conventional refrigeration or efficiently generate power. The effi-

ciency of thermoelectric materials is evaluated by the dimensionless figure of merit

defined by ZT ¼ S2σT=kt , where S, σ, and T, respectively, denote the Seebeck

coefficient, electrical conductivity, and absolute temperature, while kt represents
the thermal conductivity, including contributions from phonons and elec-

trons [29]. The key goal in thermoelectrics research is to increase ZT, but this is

a challenging process because adjustment of one parameter unavoidably involves

variations of others [18]. In the past decade, synthesis and processing techniques

have been developed to create nanostructured materials with highly controlled

material composition, structures and related physical properties [2, 26,

30, 78]. Examples of the engineered nanostructures include nanotubes, quantum

dots, superlattices, thin films, and nanocomposites. Recently, it has been reported

that ZT values can be significantly improved in nanocomposites due to the largely

increased material interfaces, which strongly scatter phonons but only slightly

influence the charge carrier transport, leading to significantly reduced phonon

thermal conductivity and maintained or improved power factor S2σ [71, 83]. Com-

pared to one of the state-of-the-art thermoelectric power generation material,

Si0.8Ge0.2 alloy, which has been used in space radioisotope thermoelectric power

generators that operate at about 900∘ with a maximum efficiency of about 7 % [18],

nanostructured Si/Ge bulk alloy leads to larger figure of merits due to the decreased

phonon thermal conductivity [33, 76]. This method and others are being used to

attempt to increase ZT values and create more universally viable thermoelectric

nanocomposite materials.

Strain has long been serving as an important tool in enhancing the performance of

modern CMOS devices [37, 58, 65, 69]. Crystal lattice deformation can induce band

structure changes in semiconductor materials which commonly composed of band

splitting and band warping [41, 69]. Band splitting may cause electron redistribution

in the band valleys while band warping can result in conductivity effective mass

change. The band splitting can reduce the inter-valley scattering and increase

electron occupancy in the valleys with lower energies, and consequently influence

the electron transport in the material. In addition, previous studies show that strain

between two crystal lattices can also change the effective thermal conductivity [1, 5,

22, 51]. These results have motivated the authors to investigate the strain effects on

the thermal and electrical transport properties of nanocomposite TE materials and

explore the possibility to further increase the ZT by utilizing the strain effects

through mechanical deformation. Investigating the strain effect on ZT of

nanocomposites will not only help understanding the behavior of nanocomposite

thermoelectric materials under strain but also introduce additional dimensions to the

design space of nanocomposite thermoelectric materials.

In this work, we seek to investigate the effect of mechanical deformation on the

thermal and electrical transport properties and the dimensionless figure of merit of

Si/Ge nanocomposite thermoelectric materials. Strain can be introduced into

nanocomposite materials under several conditions, such as phonon-induced lattice

vibrations, lattice mismatch in nanocomposite growth, and applied external
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mechanical force. We focus on studying the effect of externally applied stresses on

σ, S, kt and ZT of n-type Si1�xGex nanocomposites with Si (or Ge) nanowires

embedded in Ge (or Si) host, as depicted in Fig. 15.1. The strain effect on phonon

thermal conductivity in the nanocomposite material is simulated from a model [79]

combining the lattice dynamics for phonon dispersion change (i.e., wave effects)

due to strain with the ballistic phonon BTE for interface scattering of phonons (i.e.,

particle effects). In the model, several strain-dependent phonon scattering proper-

ties of the materials are used to link the lattice dynamics and the BTE. In this

approach, there is no fitting parameter in the calculation. In addition, the finite

volume solution of BTE over unstructured meshes allows thermal transport analysis

of nanocomposites with complex geometries. The strain-dependent Seebeck coef-

ficient and electrical conductivity of the Si/Ge nanocomposites are calculated from

analytical models derived from the BTE under the relaxation-time approximation

with strain-induced energy shift and effective mass variation, which are computed

from the deformation potential theory and a two-band degenerate k � p method. In

addition, electronic thermal conductivity is calculated from electrical conductivity

by using the Wiedemann–Franz law. Then, by combining the strain effect models

(phonon and electron), the strain effect on ZT of the nanocomposite materials is

obtained [80].

The rest of the chapter is organized as follows. Section 15.2 describes the

theoretical and computational models and calculated results depicting the strain

effect on thermal transport in Si/Ge nanocomposite materials. Section 15.3

describes the theoretical model and a set of calculated electron transport properties

of strained Si/Ge nanocomposites. The prediction of strain-dependent dimension-

less figure of merit of Si0.8Ge0.2 nanocomposites is presented in Sect. 15.4.

Section 15.5 gives conclusions.

15.2 Strain Effect on Thermal Transport

in Si/Ge Nanocomposites

Thermal conductivity of doped semiconductors under uniaxial stress at low tem-

peratures is relatively well understood [12, 34, 55, 61]. Recently, residual strain in

nanocomposite materials has been studied by several groups. Borca-Tasciuc

et al. measured thermal conductivity in the cross-plane direction of symmetrically

stressstress

unit cell

Fig. 15.1 Si0.2Ge0.8
nanocomposite material

with applied strain
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strained Si–Ge superlattices [7]. Abramson et al. studied interfacial strain on

phonon transport and thermal conductivity of heterostructures around Debye tem-

perature by Molecular Dynamics (MD) study [1]. Picu et al. have also employed

Molecular Dynamics to study the residual strain effect on heat transport in

nanostructures by using a Lennard–Jones solid at low temperatures and concluded

that tensile (or compressive) strain led to a reduction (or enhancement) of the lattice

thermal conductivity [51]. While these studies have shown the significance of strain

on the nanoscale thermal transport, they are limited to single crystal materials or the

residual strain effect at the interface of two different materials. Thermal conduc-

tivity variation of nanocomposite materials due to externally applied mechanical

strain has not been studied. In addition, either analytical or pure atomistic methods

such as Molecular Dynamics were employed in previous studies of strain effect. In

strained nanocomposites, it is difficult to study the strain effect by using analytical

approaches due to multiple material phases and complex geometry of the inclusion

phase. Although lattice strain can be accommodated in MD calculations, the size of

the system is limited due to the computational cost. For nanocomposites with

characteristic length larger than a few nanometers, MD simulations would become

very inefficient. Another nanoscale thermal transport analysis approach is based on

the Boltzmann transport equation (BTE) [86]. This approach provides greater

computational flexibility and efficiency. It has been successfully applied to com-

pute the effective thermal conductivity of complex materials including

nanocomposites [81]. However, this approach does not include mechanical vari-

ables such as strain in the model. In this section, we present a computational

approach combining a strain-dependent lattice dynamics with the BTE and calcu-

late the thermal conductivity of strained nanocomposite materials.

15.2.1 Theoretical Model and Computational Procedure

Figure 15.2 illustrates the theoretical model of the analysis. In this approach, atomic

interactions are described by using interatomic potentials. Mechanical strains

are translated to crystal lattice deformation by applying the Cauchy–Born rule.

For the deformed crystal lattice, we employ the lattice dynamics theory to compute

the strain-dependent phonon scattering properties for both Silicon and Germanium,

including the group velocity, specific heat and phonon mean free path. The strain-

dependent phonon scattering properties are then incorporated into the BTE to

describe the thermal transport with interface scattering in the strained

nanocomposites. Along with the BTE, a diffuse mismatch model is adopted for

the Si–Ge interface. In the numerical solution of BTE, a unit cell of the

nanocomposite material is taken as the computational domain with a periodic

boundary condition. The unit cell is discretized into unstructured triangular vol-

umes. The BTE is solved over the unstructured mesh by using a finite volume

formulation. Heat flux and effective temperature are calculated for the volumes and

faces from the intensity solution of the BTE. The strain-dependent effective thermal

conductivity can then be obtained.
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Several assumptions are implied in the theoretical model described above:

(1) Strain is assumed to be uniformly distributed throughout the nanocomposites,

and residual strain is not considered between Si–Ge interfaces; (2) the BTE model

employs a “gray” assumption with a single group velocity and single relaxation

time [49]; (3) three-phonon scattering dominates the thermal transport within each

material, and phonon scattering due to defects and/or impurities is neglected; (4) the

scattering between Si–Ge interface is assumed to be diffuse.

15.2.2 Strain-Dependent Lattice Dynamics

At the atomistic level, interaction between atoms in diamond crystal lattices can be

described by empirical interatomic potentials such as the Tersoff [66], Brenner [9],

and Stillinger–Weber [62] potentials. Tersoff empirical interatomic potential is

employed in this work for Si and Ge. Typically, the total potential energy U of a

N-atom system is given by

U ¼
X
α

Uα ¼ 1

2

X
α 6¼β

Vαβ (15.1)

where α and β are the atoms of the system and Vαβ is the bond energy between

atoms α and β given by

Vαβ ¼ fCðrαβÞ aαβfRðrαβÞ þ bαβfAðrαβÞ
� �

(15.2)

where rαβ is the distance between α and β, fR and fA denote the repulsive and

attractive pair potentials defined as

fRðrÞ ¼ Ae�λ1r (15.3)

fAðrÞ ¼ �Be�λ2r; (15.4)

Interatomic potential

Lattice dynamics

Cauchy-Born rule

Phonon mean free path

Diffuse mismatch interface

Boltzmann transport
equation

Thermal
conductivity

Periodic boundary

Strain

Stain dependnent
Specific heat
Phonon group velocity

Fig. 15.2 Theoretical model of the analysis
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respectively, fC(rαβ) is a smooth cutoff function going from 1 to 0 in a small range

around the cutoff distance Rc, which is chosen to include only the first-neighbor

shell for most structures of interest. fC(r) is defined as

fCðrÞ ¼
1 r < Rc � D

1
2
� 1

2
sin

πðr�RcÞ
2D

� �
Rc � D � r � Rc þ D

0 r > Rc þ D

8><
>: (15.5)

In Eq. (15.2), aαβ is taken to be 1.0 for both Silicon and Germanium, bαβ is a

measure of the bond order given by

bαβ ¼ 1þμnζnαβ
� ��1=2n

; (15.6)

ζαβ ¼
X
χ 6¼α;β

fCðrαχÞgðθαβχÞexp λ33ðrαβ � rαχÞ3
� �

; (15.7)

gðθαβχÞ ¼ 1þ c2=d2 � c2= d2 þ ðh� cosθαβχÞ2
h i

(15.8)

where χ denotes an atom, and θαβχ is the bond angle between the bonds αβ and α χ.
All remaining variables are constant parameters. For Silicon, the constants are

summarized in the 3rd column of Table I in [66]. For Germanium, the constants

are adopted from Table I in [67].

In the classical lattice dynamics, by using the periodicity of the crystal structure,

the phonon frequency spectrum can be obtained by computing the eigenvalues

of the dynamical matrix D(k) for each wave vector k in the first Brillouin zone,

i.e. [85],

DðkÞ ¼ 1
M

P
β Φ

11
j;kðα; βÞeik�ðx

0
β�x0αÞ P

β Φ
12
j;kðα; βÞeik�ðx

0
β�x0αÞP

β Φ
21
j;kðα; βÞeik�ðx

0
β�x0αÞ P

β Φ
22
j;kðα; βÞeik�ðx

0
β�x0αÞ

" #
j; k ¼ 1; 2; 3

(15.9)

where α and β denote the atoms in the unit cell, M is the mass of atom, k is wave

vector, xα
0 and xβ

0 are the equilibrium positions of atom α and β, respectively, and
Φpq

j;kðα; βÞ is force constant defined by

Φpq
j;kðα; βÞ ¼

@2UðxÞ
@xαj@xβk

����
x¼x0;α2Bp;β2Bq

j; k ¼ 1; 2; 3; p; q ¼ 1; 2 (15.10)

in which xαj and xβk are the jth and the kth components of the position of atoms α
and β, respectively. Bp and Bq are Bravais lattices p and q, respectively. Note that
we choose α to be the center atom and loop atom β over all the atoms in the

crystal lattice. The phonon frequencies can be calculated by ωsk ¼
ffiffiffiffiffiffi
λsk
p

, where λsk
are the eigenvalues of the 6�6 dynamical matrix D(k) and s is the index of the

polarization.
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When there is an applied strain, to relate the continuum level description of

deformation to displacements of the atoms in the crystal lattice as shown in

Fig. 15.3(top), we employ the hypotheses of the Cauchy–Born rule [8] which states

that the crystal lattice is homogeneously distorted according to the deformation

gradient. For Silicon/Germanium crystal, there exist additional inner displacements

between the two Bravais lattices. The Cauchy–Born rule gives

x0β � x0α ¼ F X0
β � X0

α

� �
þ ξ (15.11)

where F is the deformation gradient of the Bravais lattice, Xα
0 and Xβ

0 are the

equilibrium positions of atom α and β in the undeformed configuration, respec-

tively, and ξ is the inner displacement of the two FCC Bravais lattices. Note that

F ¼ Iþ @u=@X0 where u is the displacement vector of an atom.

In the reciprocal lattice of a Bravais lattice, from Eq. (15.11), it is easy to show

that, a given wave vector k0 in the undeformed configuration of the lattice deforms

to k in the deformed configuration with the relation

k ¼ F�Tk0 (15.12)

as shown in Fig. 15.3(bottom). Substituting Eqs. (15.11, 15.12) into Eq. (15.9), the

strain-dependent dynamical matrix can then be written as [85]

deformation gradient 

Fig. 15.3 Top: atom configuration and deformation for a diamond lattice. Bottom: corresponding
deformation of the first Brillouin zone

15 Modeling and Analysis of Strain Effects on Thermoelectric Figure. . . 457



DðkÞ ¼ 1

M

P
β Φ

11

jk ðα; βÞeik
0�ðX0

β�X0
αÞ P

β Φ
12

jk ðα; βÞeik
0�ðX0

β�X0
α�F�1ξÞ

P
β Φ

21

jk ðα; βÞeik
0�ðX0

β�X0
αþF�1ξÞ P

β Φ
22

jk ðα; βÞeik
0�ðX0

β�X0
αÞ

#

α ¼ 1; j; k ¼ 1; 2; 3

2
6664

(15.13)

where

Φpq
j;kðα; βÞ ¼

@2UðxÞ
@xαj@xβk

����
x¼x0ðX0;F;ξÞ;α2Bp;β2Bq

j; k ¼ 1; 2; 3; p; q ¼ 1; 2 (15.14)

and F�1 is the inverse of F. The phonon frequencies of the strained bulk crystal Si

and Ge, ωsk(F, ξ), can be obtained by computing the eigenvalues of Eq. (15.13).

After the phonon frequency spectrum is obtained, the Helmholtz free energy A of

the system can be calculated by

A ¼ UðX0;F; ξÞ þ 1

2

X
k

X6
s¼1

ℏωskðF; ξÞ þ kBT
X
k

X6
s¼1

ln 1� e
�ℏωskðF;ξÞ

kBT

� 	

(15.15)

where U(X0, F, ξ) is the total potential energy of the system at the deformed

equilibrium position, ℏ is the reduced Planck’s constant, kB is the Boltzmann

constant, and T is temperature. For a given deformation gradient F, the inner

displacement ξ can be determined by minimizing the Helmholtz free energy, i.e.,

@A

@ξ
¼ 0 (15.16)

15.2.3 Strain-Dependent Thermodynamic and Phonon
Scattering Properties

For a given deformation gradient F, we compute the phonon frequency spectrum of

Si and Ge lattices by sampling the k points in the first Brillouin zone. Once the

phonon frequency spectrum is obtained, the bulk thermodynamic and phonon

scattering properties of Si and Ge can be calculated. Of particular interest are the

specific heat, the average phonon group velocity and the average phonon mean free

path. As will be described later, they are the physical variables used in the BTE for

the analysis of thermal transport in the Si–Ge nanocomposites. To compute these

thermodynamic and phonon scattering properties, we first compute the bulk thermal

conductivity of Si and Ge as a function of F by using the Slack relation [31, 60]. The

Slack relation is suitable for calculating the thermal conductivity of nonmetallic
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crystals at high temperatures (above 1/5 of the Debye temperature) where heat is

mainly carried by acoustic phonons and the scattering is mainly intrinsic three-

phonon process. The bulk thermal conductivity is given by [31, 60]

kb ¼ 3:1� 107 <M> δT3
D

T< γ2> N
2=3
c

(15.17)

where <M> is the average atomic mass of the crystal, δ3 is the average volume per

atom, Nc is the number of atoms in a primitive cell, and TD is high-temperature limit

of the Debye temperature defined by

T2
D ¼

5h2
R1
0

ω2DpðωÞdω
3k2B

R1
0

DpðωÞdω
(15.18)

in which h is Planck’s constant, ω is the frequency, and Dp(ω) is phonon density of
states. <γ2> is mode-averaged square of the Grüneisen parameter given by

<γ2>¼ 1

C

X
k

X6
s¼1
ðγskÞ2Csk (15.19)

where the Grüneisen parameter γsk for the s-th mode of a given wave vector k is

defined as

γsk ¼ �
@ lnωsk

@ lnV
; (15.20)

where V is the volume per atom, Csk is the phonon specific heat given by

Csk ¼ kB

ℏωsk

kBT

� �2
e
ℏωsk
kBT

e
ℏωsk
kBT � 1

� �2 ; (15.21)

and C is the total specific heat given by

C ¼
X
k

X6
s¼1

Csk: (15.22)

Noted that since the phonon frequencies ωsk(F, ξ) depend on the applied strain,

thermodynamic properties such as TD, γ, C, and kb are all functions of strain. For the
simplicity of notation, “(F, ξ)” is not shown explicitly for these quantities. After the
bulk thermal conductivity kb is obtained, the average phonon mean free path (MFP)

can be calculated from approximated Kinetic theory by [16]
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kb � Λ
3

X
k

X3
s¼1

Cskvsk s 2 acoustic phonon branches (15.23)

where vsk is the acoustic phonon group velocity given by

vsk ¼ @ωsk

@k

����
����: (15.24)

Note that, in Eq. (15.23), only the acoustic branches of the phonon dispersion are

included. The optical phonons are excluded for a better approximation of the

average phonon MFP since they contribute little to the thermal conductivity at

room temperature for Si and Ge due to their small group velocities. More detailed

justification for this choice can be found in [15, 16]. The average phonon group

velocity is then obtained from the average phonon MFP as

v ¼ 3kb
CaΛ

(15.25)

where Ca is the acoustic phonon specific heat which is obtained by summing Csk

over the acoustic branches. Again, the phonon scattering properties Λ and v are all
function of the strain.

15.2.4 Boltzmann Transport Equation Model
for Nanocomposites

Once the strain-dependent phonon thermal properties of the bulk Si and Ge are

obtained, the effective thermal conductivity of nanocomposites can then be calcu-

lated by using a thermal transport model. Among various models that can be used to

predict the thermal conductivity of nanocomposites [1, 10, 84], BTE-based thermal

modeling approaches have been developed and applied to thermal transport anal-

ysis in various applications with demonstrated accuracy and efficiency (see [49] for

a review). In this work, we adopt the “gray” BTE approach for the computational

thermal transport analysis of Si–Ge nanocomposites. The BTE model under “gray”

assumption can be expressed in terms of total phonon intensity as [14, 43]

r � ðIðr; sÞ � sÞ ¼ � Iðr; sÞ � I0ðrÞ
Λ

(15.26)

where I(r, s) is the total phonon intensity at a spatial position r ¼ { x, y, z} over a
path length ds in the direction of unit vector s. As shown in Fig. 15.4, s is defined by

s ¼ sin θ cosϕex þ sin θ sinϕey þ cos θez (15.27)
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where θ ∈ [0, π] and ϕ ∈ [0, 2π] represent polar and azimuthal angles, respectively,

and ex, ey, and ez are the unit vectors in the x, y, and zdirections, respectively. I0(r) is the
equivalent equilibrium phonon intensity which is given by

I0ðrÞ ¼ 1

4π

Z 2π

0

Z π

0

Iðr; sÞ sin θdθdϕ (15.28)

Assuming a uniform distribution of the Si nanowires, the BTE can be solved in a

2-D unit cell of the nanocomposite material as shown in Fig. 15.5. The edge length

of the unit cell is denoted as L. The phonon intensities in the Si–Ge domains are

determined by the BTE. Periodic boundary conditions are employed on the outer

boundary of the unit cell. The phonon scattering at the Si–Ge interface is assumed

to be diffuse. In this work, the boundary and interface models developed by Yang

and Chen [81] for nanocomposites are adopted and implemented using the finite

volume method. The boundary and interface conditions are briefly summarized as

follows. For the top (y ¼ L ) and bottom (y ¼ 0) edges, the periodic boundary

condition can be written as

x

y

z

s

r

Fig. 15.4 Directional

phonon intensity

periodic boundary

x

y

periodic boundary

pe
ri
od

ic
 b

ou
nd

ar
y

pe
ri
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ic
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y

Ge

Si

diffuse interface scattering

Fig. 15.5 Unit cell of

Si1�xGex nanocomposites

for numerical solution

of the BTE and calculation

of the phonon thermal

conductivity of the

materials
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Iðx; L; sÞ ¼ Iðx; 0; sÞ; (15.29)

for all x and s. For the right (x ¼ 0) and left (x ¼ L ) edges, the periodic boundary
condition implies that the difference between the phonon intensities in any given

direction at the right and left edges is independent of y. This constant difference is
imposed by a temperature drop, ΔT, between the left and right edges. The magni-

tude of ΔT, however, does not affect the result of the thermal conductivity. The

periodic boundary condition is given by

Ið0; y; sÞ � IðL; y; sÞ ¼ vGeC
a
GeΔT
4π

; (15.30)

where vGe and CGe
a denote the group velocity and acoustic specific heat of Germa-

nium, respectively. The diffuse interface scattering is represented by a simple

diffuse mismatch model which assumes, at the interface, part of the phonons are

transmitted through and the rest are reflected back. The transmitted and reflected

phonons are evenly distributed across all angles on each side of the interface, as

shown in Fig. 15.5. From the energy conservation, the relation of reflectivity R and

transmissivity T is given by

TGS ¼ RSG ¼ 1� TSG; (15.31)

where the subscript GS denotes from Ge into Si and vice versa, and TGS is given

by [16]

TGS ¼ Ca
SivSi

Ca
GevGe þ Ca

SivSi
: (15.32)

By solving the BTE in both Si and Ge domains with the boundary and interface

conditions, the phonon intensity I(x, y, s) can be obtained. It is then straightforward
to calculate the effective temperature distribution, heat flux, and thermal conduc-

tivity. Note that, since the local thermal equilibrium condition breaks down in

nanostructures, an effective temperature is used to represent the local energy

density, i.e.,

Tðx; yÞ ¼ 4πI0ðx; yÞ
Cav

(15.33)

The average temperature at each y�z plane along the x-direction is then obtained as

�TðxÞ ¼ 1

L

Z L

0

Tðx; yÞdy (15.34)
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The heat flux in the x-direction, qx, is computed by integrating the x-component of

the phonon intensity over the entire solid angle

qxðx; yÞ ¼
Z 2π

0

Z π

0

Iðx; y; sÞ sin2θ cosϕdθdϕ (15.35)

The effective thermal conductivity is then calculated by using Fourier’s law.

ke ¼
R L
0
qxðx; yÞdy

�Tð0Þ � �TðLÞ (15.36)

Note that ke is guaranteed to be constant along the x-axis by the periodic boundary

conditions imposed by Eq. (15.29).

15.2.5 Finite Volume Solution of BTE

Due to the similarity between the thermal radiative transfer equation (RTE) and the

BTE, numerical methods for solving RTE are often applicable to BTE. Among a

variety of numerical methods that are used to solve the RTE, the discrete ordinates

method (DOM) and the finite volume method (FVM) are most popular. The DOM is

known for its simplicity and efficiency. However, like the finite difference method,

the DOM typically requires a structured grid, which imposes a major difficulty for

problems involving complex geometries. In comparison, the FVM can be easily

applied to unstructured meshes. Thus it provides greater flexibility in treating

complex geometries. In addition, integration over the control angles is calculated

exactly and heat flux in control volumes is automatically conserved in

FVM [54]. Due to these attractive properties, the FVM has been employed for

radiative thermal transport analysis in various applications [11, 19, 35, 46]. It has

also been applied to obtain BTE solution for heat transfer analysis of submicron

structures [48]. In this work, as the Si–Ge nanocomposites to be investigated

contain Si nanowires with different shaped cross sections as shown in Fig. 15.1,

the FVM is employed in the computational analysis. One difficulty in the FVM

solution of the BTE on an unstructured mesh is that the control angles may overlap

with the control volume boundaries. In such cases, the overlapping control angle

contains both the outgoing and incoming phonons. Several authors have addressed

this issue for radiative heat transfer problems [3, 35, 46]. We employ an exact

treatment proposed in [3]. This treatment is found to be effective to resolve the

problem for our calculations.

As shown in Fig. 15.6, the 2-D domain of the Si–Ge unit cell is discretized into

non-overlapping triangular volumes (or elements). The volume of a given triangu-

lar element is denoted as ΔV . The length of the edges is denoted as ΔAi, i ¼ 1, 2, 3.

Within each triangular volume, the phonon intensity is defined on the center node of
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the triangular volume. The total solid angle, 4π, of the center node is discretized

into Nθ�Nϕ control angles along θ and ϕ directions. The control angles are denoted

as ΔΩmn (1 � m � Nθ, 1 � n � Nϕ) with the polar and azimuthal angles spanning

from θm to θm+1 and ϕn to ϕn+1, respectively, as shown in Fig. 15.6. Within each

control volume and control angle ΔΩmn, the phonon intensity is assumed to be

constant and denoted as Imn. For each control volume and control angle, the

governing BTE, Eq. (15.26), is integrated over ΔV and ΔΩmn to yield

Z
ΔΩmn

Z
ΔV
r � ðIsÞ dV dΩ ¼

Z
ΔΩmn

Z
ΔV
� I � I0

Λ

� 	
dV dΩ (15.37)

Applying the divergence theorem, Eq. (15.37) can be rewritten as

Z
ΔΩmn

Z
ΔA

Is � n dA dΩ ¼
Z
ΔΩmn

Z
ΔV
� I � I0

Λ

� 	
dV dΩ (15.38)

For a given triangular control volume with a center node P, the phonon intensity in
the control angle ΔΩmn is denoted as IP

mn. Assuming that for a given control angle,

facial intensities are constant on each boundary face of the volume, the following

finite-volume formulation can be obtained from Eq.(15.38) as

X
i¼1;2;3

Imni ΔAiD
mn
Ci ¼

1

Λ
ð�ImnP þ ðImn0 ÞPÞΔV ΔΩmn; (15.39)

where Ii
mn is the facial intensity on ΔAi, i ¼ 1, 2, 3, and the directional weight

DCi
mn is given by

Heat

periodic boundary

periodic boundary

Si

Ge

Fig. 15.6 Spatial and angular discretization
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Dmn
Ci ¼

Z θmþ1

θm

Z ϕnþ1

ϕn
ðs � niÞ sin θdθ dϕ; i ¼ 1; 2; 3; (15.40)

where s is given by Eq. (15.27) and ni is the outward normal of the i-th face of the

control volume. For 2-D problems, DCi
mn can be obtained as

DCi
mn ¼ Δθ

2
� 1

4
ðsin 2θmþ1 � sin 2θmÞ


 �
� ½nxðsinϕnþ1� sinϕnÞ � nyðcosϕnþ1� cosϕnÞ� (15.41)

where nx and ny are the x- and y-components of ni. In Eq. (15.40), the sign of DCi
mn

(or equivalently, the sign of s � ni) determines whether the phonons are incoming or

outgoing across the faces of control volume.

The facial intensity Ii
mn is then related to the nodal intensity by a step scheme

assuming a downstream facial intensity is equal to the upstream nodal intensity.

For example, as shown in Fig. 15.7, for face 2 of the control volume of node P, if
the azimuthal angle of s is between ϕ2 and ϕ3, one obtains s � n2 > 0, i.e., phonons

are outgoing and P is the upstream node. Therefore, Imni¼2 ¼ ImnP . If s is between ϕ4

and ϕ5, then s � n2 < 0 and the node I of the neighbor control volume is the

upstream node. Therefore, Imni¼2 ¼ ImnI . However, as shown in Fig. 15.7, the control

angle from ϕ3 to ϕ4 overlaps with the face and contains both incoming and outgoing

phonons. It is more involved to determine the facial intensity in this situation.

The solution to this control angel overlap problem has been summarized in [35].

In this work, we employ an exact treatment described in [3] which splits the control

angle into [ϕ3, ϕ0] and [ϕ0, ϕ4] as shown in Fig. 15.7 and integrates the two

resultant control angle separately. The facial intensity can be expressed by the

following general expression as

Imni Dmn
ci ¼ ImnP Dmn

ci;out þ ImnI Dmn
ci;in (15.42)

s

s

s

Fig. 15.7 Step scheme

for the facial intensity
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where, for a non-overlapping control angle,

if s � ni > 0; then Dmn
Ci;out ¼

Z θmþ1

θm

Z ϕnþ1

ϕn
ðs � niÞ sin θdθ dϕ; Dmn

Ci;in ¼ 0;

(15.43)

if s � ni < 0; then Dmn
Ci;in ¼

Z θmþ1

θm

Z ϕnþ1

ϕn
ðs � niÞ sin θdθ dϕ; Dmn

Ci;out ¼ 0;

(15.44)

For an overlapping control angle, without loss of generality, assuming s � ni > 0 in

[ϕn, ϕ0] and s � ni < 0 in [ϕ0, ϕn+1], we have

Dmn
Ci;out ¼

Z θmþ1

θm

Z ϕ0

ϕn
ðs � niÞ sin θdθdϕ;

Dmn
Ci;in ¼

Z θmþ1

θm

Z ϕnþ1

ϕ0
ðs � niÞ sin θdθ dϕ: (15.45)

When a control volume face is on the Si–Ge interface, the interface condition given

in Eq. (15.31) is applied by replacing II
mn in Eq. (15.42) with

ImnI ¼
RPI

π

X
mn

ImnP Dmn
Ci;out �

TIP
π

X
mn

ImnI Dmn
Ci;in (15.46)

where RPI is the reflectivity from medium of node P to the medium of node I, and
TIP is the transmissivity from medium of node I to the medium of node P. It should
be noted that the interface condition only modifies II

mn in Eq. (15.42) and IP
mn

remains the same. Otherwise, the transmission and reflection of the phonons would

be double counted and the energy conservation condition would be violated.

Substituting Eq. (15.42) into Eq. (15.39), the finite-volume formulation of the

BTE for each control volume and control angle can be obtained as

X
i

ΔAiD
mn
Ci;out þ

ΔV
Λ

ΔΩmn � ΔV
4πΛ

ðΔΩmnÞ2
 !

ImnP

¼ �
X
i

ΔAiD
mn
Ci;inI

mn
I þ

ΔV
4πΛ

X
m0n0 6¼mn

Im
0n0

P ΔΩm0n0
 !

ΔΩmn (15.47)

For the global system, there are a total of NV � Nϕ � Nθ equations, where NV is the

number of control volumes. This set of equations are solved iteratively by using

the Gauss–Seidel method. Note that, like the DOM, in Gauss–Seidel iterations, the

nodal intensities are calculated in each control volume and control angle by using
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the values obtained from the last iteration. No global matrix storage is required. The

iteration stops when the following convergence condition is reached:

maxð ImnP � ðImnÞoldP

��� ���=ImnP Þ � 10�6: (15.48)

15.2.6 Strain Effect on Thermal Properties of Bulk Si and Ge

We first investigate the strain effect on thermodynamic properties of bulk Si and

Ge. From the lattice dynamics with Tersoff potential, various thermodynamic

properties of bulk Si and Ge can be calculated. A few thermodynamic properties

that are used in the calculation of the thermal conductivity are first calculated under

unstrained condition. These results are compared with the experimental data and

other theoretical results. Table 15.1 lists the specific heat (C), Debye temperature

(TD), Grüneisen parameter (γ), longitudinal acoustic group velocity at Γ point in the

first Brillouin zone (vLA
Γ ), transverse acoustic group velocity at Γ point (vTA

Γ ),

longitudinal acoustic group velocity at X point (vLA
X ), and the bulk thermal conduc-

tivity (kb) of Silicon. The comparison shows that the Tersoff potential gives

reasonable estimates to the thermodynamic properties, including the bulk thermal

conductivity.

We considered a maximum of 2 % length change caused by four types of strains:

hydrostatic compressive, hydrostatic tensile, uniaxial compressive, and uniaxial

tensile. In Sects. 15.2.6 and 15.2.7, if not otherwise specified, the strains correspond

to a 2 % length change, i.e., (1) Fii ¼ 0. 98, i ¼ 1, 2, 3, and Fij ¼ 0, i 6¼j for
hydrostatic compressive strain, (2) Fii ¼ 1. 02, i ¼ 1, 2, 3, and Fij ¼ 0, i6¼j
for hydrostatic tensile strain, (3) F11 ¼ 0. 98, F22 ¼ F33 ¼ 1:0, and Fij ¼ 0, i 6¼j
for uniaxial compressive strain, and (4) F11 ¼ 1. 02, F22 ¼ F33 ¼ 1:0, and Fij ¼ 0,

i 6¼j for uniaxial tensile strain. Figure 15.8 shows the strain effect on the phonon

density of states (PDOS) of Si under hydrostatic compressive and tensile strains.

A direct sampling method is used in the calculation of PDOS, which generates

100�100�100 uniformly distributed k-points in the first Brillouin zone and

approximates the PDOS by a normalized histogram. It is shown that a shift of

optical phonons to the left occurs when the tensile strain is applied, while a shift to

the right occurs for the compressive strain. In other words, compared to the

unstrained case, most optical phonons will be at a lower (or higher) energy when

tensile (or compressive) strain is applied. Note that there are similar peak shifts for

longitudinal acoustic (LA) phonons, indicating that the hydrostatic strain has a

Table 15.1 Room temperature thermodynamic properties of bulk Si

Cð J
m3KÞ TD(K ) γ vΓLAðms Þ vΓTAðms Þ vXLAðmsÞ kbð WmKÞ

1. 59 � 106 720 0.79 8,705 5,470 4,540 167.6

1. 65 � 106 [25] 645[36] 0.8[52] 8,480[13] 5,860[13] 4,240[13] 156[27]

15 Modeling and Analysis of Strain Effects on Thermoelectric Figure. . . 467



significant effect on them as well. Variations of transverse phonons are also

observed, although not equally significant compared to the LA and optical phonons.

Similar behavior of the PDOS is observed for Ge under strain (not shown). The

different frequency shift direction of the PDOS is largely due to the change of the

stiffness of the atomic bonds which is represented by the force constants given in

Eq. (15.14), i.e., a compressive (tensile) strain increases (decreases) the force

constants and consequently increases (decreases) the vibration frequencies of the

atoms. Figure 15.9 shows the overall Grüneisen parameter under hydrostatic strain

at different temperatures. It’s shown that Grüneisen parameter increases when

temperature increases and when tensile strain is applied. Again, similar behavior

of the Grüneisen parameter of Ge is observed.

Figure 15.10 shows the Debye temperature of bulk Si crystal under hydrostatic

compressive, uniaxial compressive, hydrostatic tensile, and uniaxial tensile strains

at the temperature range 200–500 K comparing to the results of the unstrained case.

The Debye temperature is almost independent of temperature but shows a strong

dependence on strains. Debye temperature’s increase with compressive strains and

its decrease with the tensile strains can be explained from the PDOS variation as

shown in Fig. 15.8. In addition, it’s shown in the figure that hydrostatic strains

produce a larger effect on TD than the uniaxial strains.

With the decrease in Grüneisen parameter and the increase in Debye temperature

for compressive strains, the Slack relation given in Eq. (15.17) predicts a increase

in bulk phonon thermal conductivity. Similarly, a reduction of thermal conductivity
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468 Y. Xu and G. Li



is predicted for tensile strains. Same conclusions can be obtained for

Ge. Figure 15.11 shows the bulk thermal conductivity of Si with respect to

temperature and strain. In [60], Slack has qualitatively explored the strain effect

on bulk thermal conductivity of crystalline solids by assuming possible changes in

Debye temperature and Grüneisen parameter due to strain. Our calculations have

confirmed his prediction quantitatively. Figure 15.11 shows that hydrostatic strains
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have a stronger effect on bulk thermal conductivity than the uniaxial strains. The

stars in the figure show the experiment data of unstrained bulk Silicon taken from

Table I of [27]. The calculated unstrained bulk thermal conductivities are higher

than experiment results but in reasonable agreement.

Figure 15.12 shows the contribution of optical phonons to the overall specific

heat. It is shown that, at low temperatures (T < 100 K), acoustic phonons are the

200 250 300 350 400 450 500
50

100

150

200

250

300

350

400

Temperature (K)

B
ul

k 
th

er
m

al
 C

on
du

ct
iv

ity
 (

W
/(

m
K

))
Hydrostatic compressive strain
Uniaxial compressive strain
Unstrained
Hydrostatic tensile strain
Uniaxial tensile strain
experiment with no strain

Fig. 15.11 Strain-dependent bulk thermal conductivity of Si between 200 and 500 K

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Temperature (K)

S
pe

ci
fic

 H
ea

t*
1e

6 
(J

/(
m

3 K
))

Unstrained with only acoustic phonons
Unstrained with all phonons
MD
experiment

Fig. 15.12 Specific heat of Si

470 Y. Xu and G. Li



major contributors to specific heat but at high temperatures (T > 400 K), optical

phonons contribute about half of the total specific heat. Similar results have

been obtained in [16]. Since the optical phonons contribute little to heat transfer

due to their small group velocities, it is justifiable to exclude the optical phonons

in the calculation of the phonon mean free path and average group velocity as

shown in Eqs. (15.23), (15.25). MD data taken from Fig. 10 of [85] and exper-

iment data taken from Fig. 1 of [28] are also shown in Fig. 15.12. The strain and

temperature dependence of the acoustic specific heat is shown in Fig. 15.13,

where a compressive strain decreases the specific heat and a tensile strain

increases it. Once again, the results for Ge are similar. The results are not

shown for the sake of brevity.

Figure 15.14 shows the variation of average group velocity with respect to

strain-induced volume change. For the small strains considered here, the group

velocity shows a nearly linear dependence on the volume change, for both hydro-

static and uniaxial cases. For the same volume change, hydrostatic strain leads to a

larger variation than uniaxial strain. The group velocities of unstrained Si and Ge at

room temperature are calculated to be 3,143 m/s and 2,233 m/s, respectively. In

[81], the group velocities of Si and Ge were calculated by approximating the

phonon dispersion using a simple sine function. The results are 1,804 m/s for Si

and 1,042 m/s for Ge. It should be noted that this discrepancy is largely due to the

differences in the phonon dispersion and the PDOS given by the Tersoff potential

and the sine function.
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15.2.7 Strain Effect on Thermal Conductivity
of Si/Ge Nanocomposites

Having calculated the thermal properties of bulk Si and Ge as functions of strain,

the effective thermal conductivity is computed for the Si–Ge nanocomposites as

shown in Fig. 15.1 by using the FVM and solving the BTE over unstructured

triangle meshes as shown in Fig. 15.6. In this section, the atomic percentage of Si

is fixed at 20 %, i.e., the nanocomposites are Si0.2Ge0.8. In all calculations, θ is

discretized uniformly into 12 angles from 0 and π while ϕ is discretized into

24 angles from 0 and 2π.
Figure 15.15 shows the size and temperature effects on phonon thermal conduc-

tivity of the Si0.2Ge0.8 nanocomposite with square-cross-section Si nanowires. The

x-coordinate is the characteristic length of the Si nanowire, denoted as LSi, which is
the width of the square cross section. Thermal conductivity of the nanocomposite

decreases when the temperature increases or when size decreases. The large

reduction of the thermal conductivity with the decreasing characteristic length is

due to the dominance of the interface scattering over the ballistic transport in

nanocomposites [81]. Figure 15.15 shows that this interface scattering-induced

thermal conductivity reduction holds over a wide range of temperatures while the

effect is more significant at low temperatures.

Figure 15.16 shows the numerical results of x-directional heat flux at T ¼ 300 K

in unstrained Si0.2Ge0.8 nanocomposites with Si nanowires having square, circular,

and diamond cross sections. For comparison, we keep the atomic percentage of the

Si nanowires at 20 % and the characteristic length of the cross sections to be 10 nm.
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Note that, for circular cross sections, the characteristic length of square, circular,

and diamond cross sections refers to the width (or height), diameter, and length of

the edges, respectively. The low heat flux along the path blocked by the Si wire is

clearly due to the phonon scattering at the Si–Ge interface.

The effect of strain along with the size effect on the effective thermal conduc-

tivity is shown in Figs. 15.17 and 15.18. It is shown that strain has a significant effect

on the thermal conductivity of the nanocomposite. Depending on the characteristic

length of the Silicon nanowire, with a volume change of 2 %, an applied hydrostatic

tensile or compressive strain can reduce or increase the thermal conductivity up to

15 %, while uniaxial tensile or compressive strain can reduce or increase the thermal

conductivity by as much as 8 %. More importantly, the strain effect on the thermal

conductivity of bulk materials is largely preserved in the composite configuration
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over all the sizes. This result shows that the mechanical effect can be combined with

structural effects such as size and composition effects to further manipulate and

control the thermal conductivity of nanomaterials and nanostructures.

Although, as shown in Fig. 15.16, the difference in the heat flux profiles

corresponding to different nanowire cross section shapes is obvious, it is observed

from calculations that the thermal conductivity curves of circular and diamond-

shaped nanowires are very similar to those shown in Figs. 15.17 and 15.18, except
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at the lower limit of the characteristic length. Figure 15.19 shows the thermal

conductivities for the three types of Si nanowires at the characteristic length of

10 nm. The strain effect is almost the same for the three nanocomposites. The circular

and square cases have very close thermal conductivities, with or without strain.

The magnitude of the thermal conductivity for diamond-shaped cross section is

appreciably lower (about 5 %). Figure 15.19 shows the difference in thermal conduc-

tivity for diamond and square cross sections over the characteristic length from 10 to

200 nm. The thermal conductivity difference between the two nanocomposites drops

exponentially. These results show that, with the same atomic percentage of Si, the

cross-sectional shape makes little difference when the characteristic length increases.

However, for very small systems (e.g., characteristic length < 10 nm), the cross-

sectional shape starts to play a role (Fig. 15.20).
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15.3 Strain Effect on Electron Transport

in Si/Ge Nanocomposites

Strain effect on the lineup band offsets of different semiconductor materials has

been studied extensively in the literature [32, 39, 50, 75]. While most of the existing

strain effect analysis has been focused on the strains at hetero-junctions due to

lattice mismatch of dissimilar crystalline semiconductor materials, variation of

electron transport properties due to externally applied mechanical strains has not

been studied in details especially for nanocomposite semiconductor materials. In

this section, we investigate the strain effect on electron transport in Si/Ge

nanocomposites by incorporating strain-induced band shift and effective mass

variation into an analytical model derived from the BTE under the relaxation-

time approximation.

15.3.1 Strain-Dependent Band Structure of Si and Ge

To evaluate the strain effect on electron transport in Si/Ge nanocomposites, it is first

necessary to study band structures of Si and Ge under different strain conditions.

Taking Si as an example, in unstrained n-type Si, electrons fill Δ valleys before Λ
valleys. Generally, the Λ valleys can be ignored for electron transport simulations in

Si at relatively low temperatures. In an unstrained Si crystal, there are six degen-

erate Δ valleys with the same minimum energy located near the X point at the

conduction band. The distribution of electrons in these valleys can be considered

the same since in semiconductors such as Si, the x, y, z directions are equivalent in
the first Brillouin zone. However, advantageous strain reduces the symmetry of

those valleys, which changes the relative population of electrons, causing subband

splitting. In addition, strains along a low-symmetry axis further break crystal

symmetry and result in the warping of the energy surface of subbands, leading

to the effective mass variation [41, 69, 73]. In short, mechanical strains cause

band energy splitting and warping, resulting in the variation of the conduction

band minima and effective mass, thus leading to changes on transport properties.

Figure 15.21 shows a diagram of band structure change under uniaxial stress for

bulk n-type Si. The longitudinal tensile strain in [100] direction splits the six

originally equivalent subbands, causing the Δ4 subbands to shift down and the Δ2

subbands to shift up and leading to electron re-population from the Δ2 valleys to Δ4

valleys. If the current transports in [100] direction, since the valleys in [010] and

[001] directions with lower conductivity effective mass have relatively higher

electron mobility compared to the other two valleys in [100] direction, with more

electrons distributed in the four-fold valleys, the conductivity will be increased.

In unstrained Ge, the lowest conduction bands lie at L point along Λ valleys with

four degenerate valleys. However, for Si1�xGex alloys, generally the band structure
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and electronic properties can be modeled as Si-like with the lowest conduction

minima near the X-point in the Brillouin zone for x < 0.85 and as Ge-like with

conduction band minima at the L-point for x > 0.85 [38]. Further, in highly strained

Ge grown on Si1�xGex with x < 0.40, the conduction band minimum locates on

the Δ valleys [57]. Here we assume that the lowest conduction band of Si0.8Ge0.2
nanocomposites lies at the 0.85X points of Δ valleys, the same as that in Si.

The total energy of an electron in a semiconductor, Et, is the sum of the carrier’s

potential energy, EC, and kinetic energy, E:

Et ¼ EC þ E; (15.49)

where EC is the conduction band minima and E is defined by

Eð1þ αEÞ ¼ ℏ2k2l
2ml
þ ℏ2k2t1

2mt1
þ ℏ2k2t2

2mt2
; (15.50)

in the ellipsoidal coordinate system (ECS), which is usually spanned by three unit

vectors k̂l, k̂t1, and k̂t2 along the principal axes of a constant-energy ellipsoid. In this

dispersion equation, the nonparabolicity and anisotropicity have been accounted to

increase the accuracy, ℏ is the reduced Planck’s constant, and kl ∕ kt are longitudi-
nal/transverse component of the wave vector.

As discussed earlier, strain typically introduces band shift and effective mass

variation. Deformation potential theory was developed to describe energy shift

introduced by strain. The energy shift of the n-th conduction band valley due to

applied strain, ΔEC
n, is given by [4],

ΔEn
C ¼ Ξd � ðεxx þ εyy þ εzzÞ þ Ξu � ðk̂ � εij � k̂Þ ; (15.51)

where ε denotes the mechanical strain, Ξd and Ξu are the dilation and uniaxial-shear

deformation potential of the conduction band, respectively, which can be calculated

Fig. 15.21 Simplified band

structure change under

uniaxial strain for bulk

n-type Si
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from theoretical methods or fitted by experimental results. In Eq. (15.51), i and

j represent x, y, z and k̂ is the unit vector parallel to the valley n. Note that

Eq. (15.51) holds for arbitrary stress/strain conditions. However, since the Δ valleys

are along < 100 > directions, the effect of shear strains is lost in Eq. (15.51).

In order to account for energy shift due to shear strain, we follow a degenerate

k � p theory at the zone-boundary X point proposed by Ungersboeck et al. [70]. Note

that an x�y plane shear strain εxy only shifts the band energy of z-direction valleys

with [70],

ΔE�zC;shear ¼
�κ2ε2xyΔ=4; κ εxy

�� �� < 1

�ð2κ εxy
�� ��� 1ÞΔ=4; κ εxy

�� �� > 1

(
; (15.52)

where Δ is the band separation between the two lowest conduction bands of the

unstrained lattice at the X point, and κ ¼ 4Ξp=Δ with Ξp being the deformation

potential responsible for the band splitting of the two lowest conduction bands at

the zone boundary due to a shear in x�y plane.
From full band calculations, the effect of normal stress on effective masses can

be ignored but the shear strain εxy will affect the effective masses of valleys in

z-directions (Figs. 11–13 of [69]). This is because the energy surface of two-fold

valleys in z-directions is warped due to εxy (Fig. 14 of [69] and Fig. 2 of [63]),

which has been experimentally demonstrated using UTB (ultrathin-body) FETs

(Field-effect-transistors) [69]. From the same degenerate two-band k � p theory, we

have [70]

ml;½001�=m	l ¼
ð1�κ2ε2xyÞ

�1
; κ εxy
�� �� < 1

ð1� 1=κ εxy
�� ��Þ�1 ; κ εxy

�� �� > 1

8<
: ; (15.53)

mt;½110�=m	t ¼
ð1þ ηκεxyÞ�1 ; κ εxy

�� �� < 1

ð1þ ηsgnðεxyÞÞ�1 ; κ εxy
�� �� > 1

8<
: ; (15.54)

mt;½�110�=m
	
t ¼

ð1� ηκεxyÞ�1 ; κ εxy
�� �� < 1

ð1� ηsgnðεxyÞÞ�1 ; κ εxy
�� �� > 1

8<
: : (15.55)

Here sgn denotes the signum function, ml and mt are electron longitudinal and

transverse effective masses with strain, respectively, ml
∗ and mt

∗ are electron

longitudinal and transverse effective masses without strain, respectively, and

η � 1� m	t =m0 [64] with m0 being the free electron mass. Note that, when there

is no shear strain, ml ¼ ml
∗ and mt ¼ mt

∗ .

In addition, the nonparabolicity coefficient in the two valleys along z-direction is
also a function of εxy, i.e. [63],
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α�z ¼ α0
1þ 2ðηκεxyÞ2
1� ðηκεxyÞ2

(15.56)

where α0 is the nonparabolicity coefficient when no strain is applied, which is chosen
to be 0.5 eV�1 for intrinsic Si and 1.25 eV�1 for Si0.8Ge0.2 nanocomposites when

doping density is high.

In summary, in the current model, εxy introduces band shift, effective masses

variation and nonparabolicity coefficient change of the valley pairs along

z direction only. Similarly, εyz and εzx alter band dispersion relations for valley

pairs along x and y directions, respectively.

15.3.2 Electron Transport Model for Strained
Si/Ge Nanocomposites

The change of dispersion relation changes electron transport properties. The

i-direction electrical conductivity of the n-th valley σi
n can be calculated from an

analytical model based on BTE under relaxation-time approximation [17]:

σni ¼ �
e2

3

Z 1
0

τnðEÞ½υni ðEÞ�2
@f nðE;EFÞ

@E
gnðEÞdE; (15.57)

where e is the electrical carrier charge, τ is the momentum relaxation time, and υi
n is

the group velocity of charge carriers in i-direction defined by [44]

υni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð1þαnEÞp
ffiffiffiffiffiffi
mn

i

p ð1þ 2αnEÞ ; (15.58)

with mi
n the i-direction effective mass of n-th valley. In Eq. (15.57), f is the Fermi-

Dirac distribution function defined by f n ¼ eðEþE
n
C
�EFÞ=kBT þ 1

� ��1
where EF is the

Fermi level. For a given carrier concentration, N, the Fermi level is calculated

from [44]

N ¼
X
n

Z 1
0

gnðEÞf nðE;EFÞdE; (15.59)

with gn(E) being the density of states(DOS) for the n-th valley given by [56]

gnðEÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þαnEÞ

p
ð1þ 2αnEÞðmn

d1Þ3=2=ðπ2ℏ3Þ: (15.60)

where md1 is DOS effective mass for valley n:mn
d1 ¼ ðmlmt1mt2Þ1=3ð1þ 2αnEÞ [56].
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The total relaxation time is calculated by using Matthiessen’s rule to combine

the influences from the ionized impurity, phonon deformation potential (DP), and

grain boundary (interface) scattering mechanisms. Ionized impurity scattering rate

is calculated from [40]

τ�1II ¼
Ne4hð1þ 2αEÞ

16π
ffiffiffiffiffiffiffiffiffiffi
2md1

p
ε2 Eð1þ αEÞ½ �2=3

; (15.61)

with h ¼ lnð1þ γÞ � γ
1þγ where γ ¼ 4k∗ 2LD

2. Here k∗ is effective wave vector

defined by k	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2md1Eð1þαEÞ
p

ℏ [56] and LD is screening length obtained from

LD ¼ ðπÞ
2=3 ε

1=2
ℏ

ð3NÞ1=6 m
1=2
d1 e

[82].

For electron–phonon DP scattering rate, we employ a model proposed in [56],

τ�1DP ¼
π kBT D2

c gðEÞ
ℏ K

1� αE

1þ 2αE
1� Dv

Dc

� 	
 �2
� 8

3

αEð1þ αEÞ
1þ 2αEð Þ2

Dv

Dc

( )
:

(15.62)

In addition to the electron–phonon DP scattering, inter-valley optical phonon

scattering can be significant. Unfortunately, inter-valley scattering parameters for

single crystal silicon and germanium cannot be used to explain the experimental

data for Si/Ge alloys and nanocomposites. Due to the lack of relevant experimental

data of optical phonon modes, it is difficult to estimate the inter-valley scattering

parameters for Si/Ge alloys and nanocomposites. In this work, we follow the

approach proposed by Minnich et al. [45]. In their approach, based on the obser-

vation that the acoustic phonon scattering and the inter-valley scattering have the

same energy dependence, the effects of both scattering processes are combined in a

single set of effective deformation potentials. In this work, we fit effective defor-

mation potentials, Dc and Dv, in Eq. (15.62) to the electrical conductivity experi-

mental data of Si/Ge alloys and nanocomposites with different doping densities to

account for both acoustic phonon and inter-valley scattering. Detailed discussion on

this issue can be found in [45].

For grain boundary scattering rate, a model proposed in [45] is used, i.e.,

τ�1GB ¼ 8π2U2
0z

2
0r

4
0gðEÞNgi=ℏ; (15.63)

with number density of interface Ng being Ng ¼ 4 LGe=ðπ r20 L2SiÞ and i being

Eq. (22) in [45]. Other parameters can be found in Table 15.2. For Si1�xGex alloy
and nanocomposites, the effective properties such as the bulk modulus, K, the low
frequency permittivity, ε, and the deformation potentials, Ed and Eu, are calculated

as functions of x from a first order (linear) interpolation [38]. For Ep, the value of

Si is used.
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The total electrical conductivity is obtained by summing contribution of electrons

from all the six valleys [47]. Since these valleys are differently oriented, it’s

convenient to introduce a reference coordinate system defining some general direc-

tions. Here the crystal coordinate system (CCS) is chosen, which consists of lattice

basis vectors k̂1 , k̂2 , and k̂3 , oriented along the three orthogonal [100] crystallo-

graphic directions of the underlying material. The CCS and the ECS are related in

the reciprocal space. The direct relation between them depends on thematerial under

consideration. For a given conduction band ellipsoid in a given material, the unit

basis vector k̂l , k̂t1, and k̂t2 in the ECS can be expressed in the CCS, thus forms a

rotation matrix ℜE  C, which defines the direction cosine of the principal axes of

this ellipsoid with respect to the coordinates of the CCS. Different ellipsoid trans-

formation matrices at unstrained case have been shown in [53] for sixfold-

degenerate Δ and the eightfold-degenerate Λ valleys. For Si, there are six degenerate

constant energy Δ valley conduction band ellipsoids, as shown in Fig. 15.22. The

basis vectors are unique for each ellipsoid in the ECS, with k̂l along the major axis

and k̂t1; k̂t2 perpendicular to it. There is a unique transformation matrix ℜE  C for

each ellipsoid, with the rows coming from the components of k̂l , k̂t1, and k̂t2. For

instance, for ellipsoid 1 in Fig. 15.22, k̂l ¼ ð1 0 0Þ, k̂t1 ¼ ð0 1 0Þ, and k̂t2 ¼ ð0 0 1Þ,
thus,

RΔ1

E C ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: (15.64)

Transformation matrix for other ellipsoids can be obtained similarly. In all our

simulations, the CCS is fixed in real space, and the ECS depends on the specific

material and is unique to each ellipsoid.

Table 15.2 Parameters used to calculate electron transport properties for n-type Si and Si1 � xGex
nanocomposites

ml
∗ ∕ mt

∗ [57] 0.92 ∕ 0.19 m0

Ed[24] (1.1 + 3.4x) eV

Eu[24] (10.5 � 0.75x) eV

Ep[70] 7.0 eV

Δ[70] 0.53 eV

Low frequency permittivity[38] ε ¼ ð11:7þ 4:5xÞε0 a

Electron/hole deformation potential

(heavily doped Si1�xGex)
Dc ¼ 12:5 eV;Dv ¼ 5:0 eV

Electron/hole deformation potential

(intrinsic Si)

Dc ¼ 9:0 eV, Dv ¼ 5:0 eV

Bulk modulus[38] K ¼ ð97:9� 22:8xÞ GPa
Grain boundary potential parameters[45] U0 ¼ 45 meV, z0 ¼ 2.0 nm,

r0 ¼ 1.0 nm

[a]ε0:vacuum permittivity.
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When strains are applied, the wave vectors between deformed and undeformed

crystal configuration is related by F�T where F is the deformation gradient tensor.

Accordingly, after deformation, the directional cosines matrix C becomesC ¼ F�T

R�1E C.

The total conductivity is then calculated as,

σij ¼
X6
n

X3
p

cnipσ
n
p cnpj

h i�1
; (15.65)

where ci p
n and ½cnpj��1 are components of the n-th directional cosines matrix Cn and

its inverse matrix.

The Seebeck coefficient is then calculated by

Sij ¼
P6

n

P3
p c

n
ipS

n
pσ

n
p½cnpj��1

σij
; (15.66)

with

Sni ¼ �
1

eT

R1τ
0

nðEÞ½υni ðEÞ�2 @f nðE;EFÞ
@E ðE� EFÞgnðEÞdER1τ

0
nðEÞ½υni ðEÞ�2 @f nðE;EFÞ

@E gnðEÞdE
: (15.67)

Fig. 15.22 Conduction band constant energy ellipsoids along Δ for Si
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Note that, while phonon-drag effects can be large at low temperatures in silicon

(around 1/5 of the Debye temperature), they are generally reduced by alloying and

increasing temperature [72]. For the temperature range (300–800 K) we consider in

this work, phonon-drag effects are not included in the calculations.

The electronic thermal conductivity, ke, is calculated from theWiedemann–Franz

law, ke ¼ σ LzT, where Lz is the Lorenz number. For metals, Lz ¼ 2.45�108WΩK2.

For doped Si/Ge nanocomposites, Lz depends on doping for semiconductors [17].

As Si/Ge nanocomposites considered for thermoelectric energy conversion

applications are typically heavily doped. In this case, the semiconductors become

metal-like and Lz for metals is used.

15.3.3 Strain Effect on Electrical Transport Properties
of Si and Si/Ge Nanocomposites

This section investigates the strain effect on electrical properties of bulk Si and

Si1�xGex nanocomposites. As a validation of the electrical conductivity model

described above, we calculated electrical conductivities of unstrained Si0.7Ge0.3
alloys and Si0.8Ge0.2 nanocomposites with different doping densities and compared

them with available experimental data obtained from [45, 72] and [21], as shown

in Fig. 15.23. The computational results show a good agreement with the

experiment data.
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Fig. 15.23 Experimental (symbols) and computed (curves) electrical conductivity of Si70Ge30
alloy and Si0.8Ge0.2 nanocomposite as a function of temperature
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The strain effect on electrical conductivity is verified by comparing the electron

mobility of intrinsic Si for [100] uniaxial strain with data from Ungersboeck et al.’s

work [70], as shown in Fig. 15.24. Results show similar dependence on strain

compared with Ungersboeck’s results although they are not exactly the same. The

difference comes from the different modeling approaches and different scattering

mechanisms considered. Our results are based on an analytical model derived from

BTE with several fitting parameters. The results in [70] were calculated numeri-

cally by solving the semiclassical BTE using a Monte Carlo method. We considered

ionized impurity and phonon deformation potential scatterings while

Ungersboeck’s models contained ionized impurity scattering, phonon scattering,

alloy scattering, and impact ionization scattering. Figure 15.25 shows electron

mobility enhancement of intrinsic Si as a function of strain for stress direction

along [100] calculated from our model and experimental results obtained

from [69]. Our results show similar trends as experimental data. From the two

figures, we observe that uniaxial tensile strain along [100] direction increases

electron mobility in the same direction but decreases them in the two perpendicular

directions, which implies possible change in thermoelectric power factor.

Seebeck coefficient of unstrained bulk Si with doping density from 1016/cm3 to

1019/cm3 is shown in Fig. 15.26. Solid lines are Seebeck coefficient calculated from

our model and dashed lines are from Fig. 3.8 of [74]. The results indicate that

Seebeck coefficient decreases with increasing temperature and further decreases

with decreasing doping density.
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Fig. 15.24 Bulk electron mobility of intrinsic Si as a function of strain for stress direction along

[100]

484 Y. Xu and G. Li



15.4 Strain Effect on Figure of Merit of Si0.8Ge0.2
Nanocomposites

Having obtained strain-dependent phonon thermal conductivity and electrical prop-

erties, the calculation of dimensionless figure of merit of nanocomposite thermo-

electric materials is straightforward, i.e., ZT ¼ S2σT=ðkp þ keÞ.
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Fig. 15.25 Electron

mobility enhancement of

intrinsic Si as a function of

strain for stress direction

along [100]
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In this section, three types of stresses are applied in the transverse plane

(assumed to be (001) plane) of the Si0.8Ge0.2 nanocomposites to study strain effect

on their thermoelectric properties. As shown in Fig. 15.27, the applied stresses are

(1) uniaxial stress in [100] direction, (2) uniaxial stress in [110] direction, and

(3) biaxial stress in [100] and [010] directions. These stresses are applied such that

the resultant strains are, respectively, (1) 1 % normal strain in [100] direction, (2) a

shear strain of 0.01 on (001) plane, and (3) 1 % biaxial normal strain in [100] and

[010] directions. In addition, to show the size effect of Ge nanowires, LGe ¼ 10 nm

and LGe ¼ 20 nm are used in the calculations while the atomic percentage of Si

and Ge remains fixed. The doping density of the Si0.8Ge0.2 nanocomposites is set to

be N ¼ 1019 cm�3.
The calculated Seebeck coefficient, electrical conductivity, phonon thermal

conductivity, and figure of merit are shown in Figs. 15.28–15.30 for LGe ¼ 10 nm

and Figs. 15.31–15.33 for LGe ¼ 20 nm. For the two nanowire sizes, as shown

in Figs. 15.28 and 15.31, the tensile strain along [100] direction increases electrical

conductivity and Seebeck coefficient, and at the same time, decreases thermal

conductivity along the direction in which the stress is applied, resulting an increase

in dimensionless figure of merit along the applied stress direction. The compressive

strain in [100] direction largely decreases electrical conductivity and at the same

time increases the phonon thermal conductivity. Under the compressive strain in

[100] direction, the decreasing rate of Seebeck coefficient with temperature increase

is higher than that in the tensile strain case. Even though Seebeck coefficient

increases with compressive strain at low temperatures, ZT still decreases under a

compressive strain in [100] direction. Figures 15.29 and 15.32 show that the shear

strain due to the applied stresses along [110] direction largely decreases electrical

conductivity and increases Seebeck coefficient in [100] direction, for both tension

and compression loads. Note that in n-type semiconductors, Seebeck coefficients are

[100]

[110] [010]

[100]

a b c

Fig. 15.27 Three types of stresses applied on the Si0.8Ge0.2 nanocomposites: (a) uniaxial stress in

[100] direction, (b) uniaxial stress in [110] direction producing a shear strain on (001) plane, and

(c) biaxial stress in [100] and [010] directions
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Fig. 15.28 Thermoelectric properties of Si0.8Ge0.2 with N ¼ 1019 cm�3 under 1 % normal strain

in [100] direction when LGe ¼ 10 nm
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Fig. 15.29 Thermoelectric properties of Si0.8Ge0.2 with N ¼ 1019 cm�3 under a shear strain of
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negative. The resultant power factor is decreased by the shear strain. At the same

time, tension/compression loads in [110] direction decrease/increase the phonon

thermal conductivity in [100] direction. Due to the combined effect, the shear strain

leads to a drop in ZT in [100] direction. Figures 15.30 and 15.33 show strain effect

on thermoelectric properties of Si0. 8Ge0. 2 nanocomposites along [100] and [010]

directions in which biaxial normal strain occurs. The results indicate that biaxial

tensile strain increases electrical conductivity and Seebeck coefficient while biaxial

compressive strain decreases electrical conductivity but increases Seebeck coeffi-

cient. Phonon thermal conductivity is decreased by tensile strain and increased by

compressive strain. Combining these effects together, we observed that the ZT

decreases under the biaxial normal strain.

Comparing the figure of merit under different strains, the uniaxial tensile strain is

the only case that leads to the increase of figure of merit. And this increase becomes

clearer when the temperature increases. At 800 K, 1 % uniaxial tensile strain
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Fig. 15.30 Thermoelectric properties of Si0.8Ge0.2 with N ¼ 1019 cm�3 under 1 % biaxial strain

when LGe ¼ 10 nm
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results in 15 % increase of dimensionless figure of merit in Si0.8Ge0.2
nanocomposites. The corresponding dimensionless figure of merit is 0.093.

Comparing the results for the two Ge nanowire sizes, LGe ¼ 10 nm and LGe
¼ 20 nm, it is shown that the decrease of Ge nanowire size causes a larger

reduction in phonon thermal conductivity than in electrical conductivity, leading

to a higher ZT. Taking Figs. 15.28 and 15.31 for example, when LGe decreases

from 20 to 10 nm, the phonon thermal conductivity decreases by about 40 % but

the electrical conductivity decreases by less than 10 %. This behavior is due to the

stronger phonon scattering at Si/Ge interfaces when the characteristic length of

the material components decreases, as many authors have pointed out in the

literature [33, 71, 76, 83]. In addition, our results show that the strain effect on

the thermoelectric properties is similar for the two Ge nanowire sizes, which

implies that the strain effect is insensitive to the characteristic length of the material

components.
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Fig. 15.31 Thermoelectric properties of Si0. 8Ge0. 2 withN ¼ 1019 cm�3 under 1 % normal strain

in [100] direction when LGe ¼ 20 nm
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Fig. 15.32 Thermoelectric properties of Si0. 8Ge0. 2 with N ¼ 1019 cm�3 under a shear strain of

0.01 when LGe ¼ 20 nm
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15.5 Conclusion

Strain effect on thermoelectric properties of Si/Ge nanocomposites has been

investigated in this chapter. Strain effect on electron transport was studied by

using an analytical model derived from BTE with band structures obtained from

a degenerate k � p theory. Strain effect on thermal transport was studied by solving

phonon BTE using strain-dependent phonon scattering properties calculated from

lattice dynamics. Our results confirm that nanocomposites are better thermoelectric

materials compared to their alloys. In the 300–800 K temperature range, uniaxial

tensile strain along [100] direction can improve ZT parallel to the tension direction.

Compressive strain in [100] direction, biaxial strain along [100] and [010] direc-

tions and uniaxial stress along [110] decrease ZT. At 800 K with electron concen-

tration of 1019/cm3, 1 % uniaxial tensile strain along [100] direction can increase

figure of merit of Si0.8Ge0.2 nanocomposites by 15 % to ZT ¼ 0.093. While the

results have shown strong strain effects on the figure of merit of Si/Ge

nanocomposites and demonstrated the possibility of tuning ZT by using externally

applied mechanical strains, further studies are necessary to identify the optimal

component material atomic percentage, nanowire size, and combination of the

strains for obtaining the maximum improvement of the ZT.
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Chapter 16

SiGe Nanowires for Thermoelectrics

Applications

Michele Amato, Maurizia Palummo, Stefano Ossicini,

and Riccardo Rurali

Abstract The possibility to reduce the thermal conductivity leaving essentially

unaltered the electron transport makes semiconducting nanowires ideal materials

for the engineering of high-efficiency thermoelectric devices. A simple and

appealing route to achieve these goals is bringing together Si and Ge, giving rise

to Si1�xGex alloy nanowires with tunable Ge concentration, core–shell structures

and multiple axial junctions, i.e. superlattices. In this chapter we review the most

recent progresses in this field.
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16.1 Introduction

In the quest for renewable sources of energy that would be compatible with a

sustainable development, thermoelectricity is one of the most intriguing alterna-

tives and has long been sought for. Heat is the most pervasive form that energy

takes in our world, but regretfully is also the one that we are less able to govern.

As a matter of fact, despite its ubiquitousness, heat is normally related to the

concept of dissipation and is regarded as a source of loss. The conversion of heat

into electricity is possibly the ideal paradigm of a clean energy source: heat is freely

available and is often the product of other energy conversion processes, such as the

friction within the bearings of a mechanical engine or Joule heating in an electric

circuit.

The thermoelectric effect is the direct conversion of a temperature gradient into

an electric voltage and vice versa. The Seebeck effect is the kind of thermoelec-

tricity we are concerned here: the conversion of heat into electricity. It is particu-

larly appealing to implement such conversion scheme in semiconducting materials,

which are the natural backbone of electronic devices. In these materials electrons do

not contribute to the thermal transport and heat is entirely carried by phonons, the

vibrations of the lattice. The thermoelectric efficiency of a semiconductor is then

given by the dimensionless figure of merit:

ZT ¼ S2T
σ

κ
(16.1)

where S is the Seebeck coefficient or thermoelectric power, T is the temperature,

and σ and κ are electrical conductivity and thermal conductivity, respectively.

Apparently the increase of the efficiency of a semiconductor as thermoelectric

material is not difficult and it boils down to trying to increase the electrical

conductivity or decrease the thermal conductivity. Or doing both things at the

same time. Unfortunately, things are more complicated than that. The electrical

and the thermal conductivities are magnitudes that normally exhibit a high degree

of correlation and materials that are good at conducting electricity tend to do well

also at conducting heat; similarly, poor electrical conductors are usually also poor

thermal conductors. This means that attempts of increasing σ lead to an increase κ
and, vice versa, a decrease of κ goes normally together with a decrease of σ as well.

One-dimensional materials seem to offer a way out of this problem, as first

proposed in their seminal paper back in 1993 by Hicks and Dresselhaus [1].

Electrons and phonon are scattered in different ways, thus the electrical conductiv-

ity and the thermal conductivity might be decoupled via an appropriate

nanostructuring of the system. While electrons are confined to one-dimensional

motion along the conductor axis, phonons still move in three dimensions and can be

scattered off the surface. It follows that, as the conductor size shrinks down, surface

scattering becomes increasingly important for phonon mobility, pushing it down,

while electrical conductivity will be mostly insensitive. Hicks and Dresselhaus
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showed that in the limit case of a square one-dimensional Bi2Te3 conductor of 5Å�
5Å, ZT would be as high as 14, to be compared to 0.5 for the bulk counterpart.

The advent of semiconducting nanowires (NWs) [2–5]marked a resurgent interest

in the prediction of Hicks and Dresselhaus. Thin, cylindrical conductors approaching

the size domain relevant to their proposal became available, thanks to the outstanding

progresses in the bottom-up growth techniques. The vapor–liquid–solid (VLS)

method—where a metallic nanoparticle that catalyzes the decomposition of a gas

precursors is the vehicle of the nanowire nucleation—played a crucial role in the

controlled synthesis of these nanostructures and wires with diameters below 10 nm

have been successfully grown by several groups [6–14].

In 2008 two groups at UC Berkeley [15] and Caltech [16] independently

reported Si NWs with ZT � 1, causing a great excitement. Instead of simply

improving the efficiency of a good thermoelectric, nanowires proved to be capable

of making a thermoelectric out of a material that in its bulk form was not such. And

that material was silicon! These studies showed that, exactly like theory predicted

15 years before, with nanowires it was possible to greatly reduce the thermal

conductivity without much affecting the Seebeck coefficient and electrical resis-

tivity. To understand the excitement generated by these results it should be stressed

that the values of ZT reported represent an approximately 100-fold improvement

over bulk Si and are of the order of the best performing bulk thermoelectrics, such

as Bi2Te3 and Bi2Se3.

These works stimulated an extraordinary interest around nanowires and their

potential as thermoelectric materials. Many efforts were devoted to either try to

increase those unprecedented efficiencies or maintaining them in thicker nanowires

that could be grown in a more reproducible way. Given a semiconductor, a rigorous

approach to the increase of ZT would be invoking isotope blends, either disordered

or in the form of ordered superlattices. Isotopes have different masses, but the

same electronic structure. Hence, by definition, the electrical conductivity is

strictly preserved, while, as by adding different isotopes one is adding scattering

centers for the incoming phonons, κ will decrease, leading to the corresponding

increase of ZT.

However, controlling the isotopic composition of a material is not practical and

in many cases the difference in the mass that can be achieved is rather modest. For

instance, Si has three known stable isotopes whose masses differ at most of 7 %

[17], which suggests that the associated phonon scattering will be moderate.

An appealing alternative is mixing Si and Ge. These two elements have the same

valence electronic structure (3s23p2 and 4s24p2), but Ge mass is �2.5 larger than

Si (72.63 vs 28.085), being a close approximation of the isotope mixing described

above. Si and Ge both crystallize in the zincblende structure, thus obtaining

stable Si1�xGex alloys is rather straightforward. Heterojunctions required in

superlattice structures, on the other hand, are more problematic, because the 4 %

lattice mismatch prevent defect-free 2D interfaces. Luckily, this problem virtually

vanishes with nanowires, where the strain can be released laterally.
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In the remaining part of this chapter we describe the state-of-the art and the most

cutting-edge challenges of SiGe nanowire research for thermoelectric applications.

The chapter will be organized as follows: in Sect. 16.2 we will give a brief

overview on the growth techniques, in Sect. 16.3 we will focus on the experimental

characterization of thermal and electron transport properties of SiGe NWs, while in

Sect. 16.4 we discuss the most recent progress concerning the theoretical modeling.

In Sect. 16.5 we present our conclusions.

16.2 Growth Methods

The enormous interest in the thermoelectric device application of SiGe NWs has

been boosted by the recent advances in synthesis, processing, and characterization.

Though some preliminary attempts to produce cylindrical shaped structures have

been proposed in the 1960s [18], the last 15 years have seen a noticeable improve-

ment of the experimental techniques to produce SiGe nanowires with different

composition and interfaces. The latter assumes a particular importance in the case

of thermoelectrics, since it is well known that phonon and electron scattering are

strongly influenced by the thickness and the quality of the interface. The main aim

of thermoelectric design, namely the decoupling of electronic and thermal conduc-

tivity to optimize ZT, can be reached only if a total control on the geometry and

interface can be obtained. As we discuss below, this goal can be achieved, opening

new and exciting paths for one-dimensional nanostructures SiGe systems.

The most used method to produce SiGe NWs is the VLS growth. This method,

originally developed for the synthesis of pure Si and pure Ge NWs, implies the

growth of the NW through the decomposition of a gas precursor on a metal

nanoparticle catalyst. The basic idea of the process is quite simple in the case of a

pure Si NW: first a metal nanoparticle (usually Au) is deposited onto an Si substrate

and metal–Si liquid droplets are formed. Then the gas precursor (silane) is intro-

duced into the growth chamber. This gas starts to diffuse into the metal/Si droplets.

By choosing the opportune thermodynamic conditions, the eutectic state for the

metal–Si liquid alloy can be reached. After this point, Si atoms diffusing into

the droplets reach supersaturation and start to precipitate forming a Si NW. This

basic mechanism has been slightly modified by (changing the type of precursor gas

or the catalyst) and used for the growth of a lot of different types of NWs, but

preserving the main concept: the process always relies on the catalyzed decompo-

sition of a precursor on a liquid metal droplet, which permits the growth only along

one direction suppressing growth mechanism in the other two directions. Many

different flavors of the VLS method have been reported [Chemical Vapor Deposi-

tion (CVD), laser ablation, Molecular Beam Epitaxy (MBE)] [6, 7, 19, 20] and the

interested reader is referred to the focused review of Schmidt et al. [21].

As we will see below, in the case of SiGe NWs the possibility of switching the

precursor gas from silane to germane or using them combined together has been

revealed to be fundamental for the growth of these kinds of wires. The main

500 M. Amato et al.



objective of this section is to review the main achievements and challenges

concerning the growth of SiGe NWs. The most used methods to produce different

types of SiGe NWs will be discussed, trying to point out the role of controlling

morphology and interfaces for thermoelectrics.

SiGe alloyed NWs represent one of the most attracting nanostructures for

thermoelectrics. The possibility of playing with phonon boundary and alloying

scattering seems a promising tool to modulate the thermal conductivity of the

material and hence the figure of merit ZT. The basic idea to grow a NW in which

both Si and Ge are randomly distributed into the wire was developed immediately

after the first experiments on VLS growth. Since both Si and Ge have the same

eutectic temperature, the technique of growing an NW containing both the species

presents only some modifications with respect to the growth of a pure wire. The first

to accomplish this task were Duan and Lieber [19] who proposed a method in

which, by using laser assisted catalytic growth, Si and Ge gas precursors are

introduced into growth chamber and then incorporated into droplets. This permits

the precipitation and the nucleation of the SiGe wire. This method offers the

possibility of growing SiGe alloyed NWs whose composition, however, cannot

be controlled. In fact the different thermal stabilities of SiH4 and GeH4 and the

nonuniform temperature distribution into the growth chamber create Si-rich NWs in

the hotter central region while Ge-rich NWs were obtained at the colder end. The

control of composition assumes a particular importance, also in view of thermo-

electric applications, and for this reason several efforts were proposed to overcome

this limit.

An important step in this direction was taken by Lew et al. [22] who, by using

CVD growth, optimize the temperature and the inlet gas ratio between SiH4 and

GeH4 to produce wires with uniform composition and diameter. In particular at

temperature between 350 and 400 ∘C they obtained wires with uniform composi-

tion x up to 0.66. Although the technique proposed by Lew et al. [22] gave a good

control over the composition, the work of Givan and Patolsky [23] showed that

another useful way to reach uniform composition was playing with the total growth

pressure. In particular, by keeping low the temperature and the gas inlet ratio to

minimize the tapering, it is possible to modulate the composition by modifying

the total pressure. The intrinsic advantage of the method consists in the fact that the

control on x, in the optimal range of temperature and gas inlet ratio, can be reached

by varying only one parameter, i.e. the pressure. The authors showed that for

values < 500 Torr, the Ge content increases sharply with the pressure, while for

values > 500 Torr, a milder linear dependence was observed.

Axial SiGe nanowires, namely wires in which there is a planar interface between

Si and Ge along the direction of growth, are particularly interesting for thermo-

electrics since they present some intriguing coherence effects in both thermal and

electronic transport which constitute a useful playground to engineer thermoelectric

performances. In this context the possibility to have a wire with a sharp interface

between Si and Ge is of primary interest. Preliminary works [24–29] showed that,

though in principle is possible to obtain axial SiGe wires with the standard

VLS-CVD growth or MBE growth methods, the results are quite poor in terms of
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sharpness of the interfaces. In fact, in all the above-mentioned works the obtained

interfaces were very diffuse, mining their application as electronic or thermoelec-

tric devices. This limit is related to the fact that when the gas precursor is switched

from silane to germane to build a sharp Si/Ge interface, the droplet must be cleaned

of all the Si before a pure Ge NW can be grown. Recently, several works have been

carried to overcome VLS limits in producing Si/Ge abrupt interfaces. Perea

et al. [30] proposed a way in which the solubility of semiconductors precursors

into the droplet can be changed by playing on the composition of the metal

nanoparticle. In particular, they showed that the eutectic solubility of Ge into an

Au1�xGax droplet can be varied by changing the Ga concentration x of the alloyed
catalyst. Following this idea, they applied this procedure: (1) first, they grew the Ge

segment on a pure Au droplet; (2) then, when the Si/Ge interface had to be built, Ga

alloying into Au droplets was induced, by changing gas precursor. Ge diffusion was

inhibited because Ge atoms have very low solubility into the new formed droplets;

(3) finally, the Ge-based and Ga-based gas were removed and SiH4 was introduced

to form the Si segment. With this method interfaces less than 11 nm were achieved.

Another workaround attempting to obtain sharp interfaces beyond the limits of

the reservoir effect was reported by Wen et al. [31], who achieved the sharpest

interfaces between Si and Ge segments thus far. Conscious of the limits of VLS

growth, they decided to follow a completely different strategy of growth. Their

interesting solution, with which heterojunction as sharp as 1 nm for wires can be

obtained, is based on a combination of VLS and vapor–solid–solid (VSS) growth.

In particular, they (1) start the growth of the Si segment with a standard VLS

method; (2) then, lower the temperature and started the VSS growth; (3) when the

droplet is emptied of its Si content, they switch from SiH4 to GeH4 and start

growing the Ge segment. The only limit of the present method consists in the fact

that, due to the low growth rate of VSS process (incompatible with a technological

large scale production), this noticeable abruptness can be obtained only when short

Ge segments have to be grown.

Another important geometry of SiGe nanowires is represented by radial

heterostructures like core–shell SiGe NWs. This type of wires has attracted a lot

of interest from a technological point of view, thanks to the excellent electronic

properties they present with respect to the pure Si and pure Ge NWs. The carrier

confinement properties and the higher mobility if compared to pure wires have been

shown to lead to field-effect transistors (FETs) with significantly better perfor-

mances than FETs based on single-element Ge or Si nanowires [32]. The first

experimental demonstration of the synthesis of radial SiGe heterostructures was

reported by Lauhon et al. [33] who performed axial VLS growth of a Ge or an Si

NW followed by uncatalyzed, homogeneous vapor-phase deposition on the

nanowire sidewalls of the complementary chemical species. They demonstrated

the possibility of heteroepitaxial growth of crystalline Ge–Si and Si–Ge core–shell

NWs as well as the synthesis of multi-structure with an interface that is less than

1 nm.
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After this pioneering work, several efforts have been focused on optimizing

growth conditions to obtain more uniform and defect-free structures. Most of the

works focused on the Ge-core/Si-shell geometry that is the most interesting one for

device applications. The first main problem arising from the growth of such kind of

nanostructures is related to the different optimal growth temperatures of Si and

Ge. In order to favor the radial deposition of Si (Ge) when the axial segment of Ge

(Si) is grown the temperature has to be changed. However, this cannot avoid the

growth of an additional segment on the top of the wire (Si or Ge). This problem was

solved by Goldthorpe et al. [34]: before depositing the Si-shell, they etched the Au

nanoparticle from the Ge NW tip avoiding any type of additional VLS growth on

the top of the catalyst.

An important issue related to the growth of core–shell NWs deals is the smooth-

ness of the Si shells. Due to the critical impact that it has on device performances

many efforts have been devoted to the minimization of the shell roughening that

derives from the accommodation of Si/Ge lattice misfit. In particular in the work of

Goldthorpe et al. [35] the authors proposed a strategy to obtain uniform Si shells:

starting from the observation that the roughening of the shell observed derives from

the low stability of {112} facets, they thought to replace them with lower energy

planes to minimize mechanical and energetic distortions. In this way, by playing on

the surface energy they were able to eliminate the facet break-up. More recently,

Zhao et al. [36] meticulously characterized the impact of the shell morphology on

the transport regime in SiGe NW-based FETs, showing how without a proper

degree of crystallinity of the shell doping impurities therein could not be properly

activated (see Fig. 16.1).

16.3 Experimental

As discussed in Sect. 16.1 the energy conversion efficiency of thermoelectric

devices is determined by the figure of merit ZT ¼ S2σT

k
. This is a dimensionless

parameter that has no direct physical meaning, but plays an important role in the

maximum thermodynamic efficiency expression:

nmax ¼ TH � TC
TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT

p þ TC
TH

where the first fraction is the usual Carnot efficiency, with TH and TC being the hot

and cold temperatures. Therefore a higher ZT corresponds to an efficiency closer to

the Carnot one. However, since the electrical conductivity σ and the electronic

contribution κe to the thermal conductivity κ ¼ κeþκL (where κL is the lattice

thermal vibrations, i.e. phonons, contribution) are linked by the Wiedemann–Franz

law, the maximum ZT is limited and a reduction of the lattice contribution to the

thermal conductivity is the first possible way to further improve the efficiency.
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In this context SiGe NWs represent a promising strategy to greatly enhance ZT,

thanks to the combination of the scaling down of the material size (using the

quantum-confinement effects that should increase S and σ and reduce the thermal

conductivity k, due to an increased phonons scattering rate) and of alloying (which

mimics an isotope mixing). Since nanostructuring affects much more the thermal

than the electrical conductivity (because electrons have much smaller mean free

paths than phonons at room temperature), in the majority of the experiments the

main task has been to reduce the thermal conductivity. Only few works have been

devoted to the simultaneous measurement of all the thermoelectric properties in

order to reach an accurate determination of the figure of merit.

Fig. 16.1 (a) Transmission electron microscopy (TEM) image of a Ge-core amorphous Si-shell

NW. (b) High-resolution TEM (HRTEM) image at the Ge/Si interface of panel (a). (c) TEM image

of a Ge-core Si-shell NW with crystalline shell. (d) HRTEM image at the Ge/Si interface of panel

(c). Scale bars for (a–d) are 20, 5, 20, and 5 nm, respectively. Reprinted with permission from

Zhao et al., Nano Lett. 11(4), 1406. Copyright 2011 American Chemical Society
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16.3.1 Thermal Transport

Since a reduction in the thermal conductivity can be related to increased phonon

scattering as consequence of alloying, nanostructuring, and surface boundaries, all

these issues have been investigated in the last years.

Li et al. [37] have synthesized high crystalline Si/SiGe (111) superlattice NWs

with diameters between 53 and 83 nm and Ge concentration from 5 to 10 %, using

a hybrid pulsed laser ablation/CVD method. They have observed a reduction of

thermal conductivity (values around 6Wm�1 K�1 at 300 K) with respect to both

pure Si NWs of similar diameter and 2D Si/SiGe superlattice films. Decreasing the

diameter results in a slight reduction of k, while the interface scattering is not very

significant. From these results it is possible to conclude that the alloy scattering

mechanism in SiGe regions is the main sources of thermal conductivity reduction in

these nanowires, while boundary effects contribute to further decrease k.
This alloy effect has been observed also by Kim et al. [38]. They have showed

that the thermal conductivity of Si1�xGex NW alloys decreases with increasing

the Ge concentration, whereas, on decreasing the NW diameter, the reduction of the

thermal conductivity is not as evident as in pure Si NWs.

More recently Yin et al. [39] have studied the influence of phonon scattering on

the thermal conductivity of VLS grown SiGe NWs of different diameter and length,

variable Ge concentration and amorphous silicon oxide shell thickness. A small

dependence on the wire length and a small influence from the oxide layer is

observed and this is explained in terms of the shortened phonon characteristic

lengths due to the high Ge concentration present in the NWs. The thermal conduc-

tivities measured from 60 to 450 K approach the minimum values, around 1–2

Wm�1 K�1 at 300 K, for diameter of the order of 40–60 nm and with Si:Ge ratios

around the unit.

Another source of thermal conductivity reduction, originated by carrier-phonon

scattering of low-frequency modes, has been individuated by Martinez et al. [40] in

B-doped SiGe alloy NWs. The measured values of the order of 1:1Wm�1 K�1 at

300 K, comparable to bulk silica and more than a factor 2 smaller than single-

crystal alloys. Measurements at room temperature show that the largest reduction of

k is reached for the most heavily doped NWs, suggesting that, in addition to

boundary and alloy scattering, also the carrier-phonon scattering mechanism is

present. Moreover the temperature dependence of k confirms the role of hole-

phonon scattering as a mechanism of increasing importance, reducing T. Indeed
in the most heavily doped samples a strong reduction of k is observed below room

temperature, while in less doped NWs a weak temperature dependence, character-

istic of alloy scattering, is observed.

The role of surface roughness on thermal conductivity has been studied by Kim

et al. [41] in VLS grown Si1�xGex nanowires, with diameters around 200–300 nm.

The thermal conductivity of rough Si0.96Ge0.04 nanowires is a factor 4 smaller than

that of corresponding smooth nanowires and also an order of magnitude smaller

than the bulk alloy as shown in Fig. 16.2.
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Recently Lee et al. [42] have produced and studied several ½�11�1� oriented SiGe

NWs with different diameter and Ge concentration. They have observed a reduction

of the thermal conductivity mainly due to surface-boundary scattering for NWs

with diameter over ’ 100 nm, while alloying plays an important role in suppress-

ing phonon transport for smaller diameters.

In the last years, the interest has shifted to Ge/Si core shell NWs due to their

remarkable properties. In particular Wingert et al. [43] have measured the thermal

conductivity of Ge/Si core–shell NWs (diameters in the range 10–20 nm) with a

new apparatus able to measure very low thermal conductivities of the order of 0:1

nWm�1 K�1, at least one order of magnitude smaller than the traditional measure-

ment sensitivity. Their results show that the phonon confinement starts to play a

role beyond the diffusive scattering limit when the NW diameter is of the order of

the phonon wavelength. The measured thermal conductivity of their Ge/Si

core–shell NWs is of the order of 1–2 Wm�1 K�1 at room temperature and it is

Fig. 16.2 (a) Temperature-

dependent thermal

conductivities of

Si0.96Ge0.04 crystals in bulk,

smooth NWs and rough

NWs. Dot and triangular
markers are based on

experimental data in the

literature, whereas lines are
based on model calculation.

Thermal conductivities of

250 nm rough SiGe NWs

with surface roughness, h,
of 23 nm are presented.

(b) Phonon mean free path

of various scattering

mechanism vs normalized

phonon frequency. ωd is the

Debye frequency. With kind

permission from Springer

Science+Business Media:

Appl. Phys. A, Effect of

surface roughness on

thermal conductivity of

VLS-grown rough Si1�xGex
nanowires, 104, 2011,

23, Kim, Park, Kim, Kim,

Choi, and Kim, Fig. 3
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rather independent of the temperature. Comparing these results with those

measured in pure Ge NWs an increase below 220 K is observed while, at room

and higher temperature, a reduction of about 1Wm�1 K�1 is found. Furthermore, at

room temperature, k is lower both than the corresponding bulk alloy and than that

measured in larger diameter SiGe alloy NWs. In agreement with theoretical

simulations [44], this reduction has been attributed to the altered vibration modes

of the phonons responsible of transport heat through the lattice.

16.3.2 Electronic Transport and the Determination of ZT

To determine the figure of merits ZT it is necessary to measure simultaneously all

the thermoelectric properties, including the electrical conductivity.

Using a thermoelectric platform produced by photolithography processes and a

homemade nanomanipulator Martinez et al. [40] were able, in the case of B-doped

SiGe alloy NWs, to measure the electric and thermal conductivity on suspended

wires of two different diameters (100 and 300 nm) and variable dopants concen-

tration (1.2 �1019 and 3.8 �1019 cm3). Measurements at room temperature of the

electrical and thermal conductivity result in a figure of merit ZT close to 0.18 at

room temperature, more than a factor 2 higher than bulk SiGe alloy. An enhance-

ment mostly due to the enhanced thermal properties.

By simultaneously measuring the thermal conductivity, the electrical conduc-

tivity and the thermopower of several SiGe NWs with different diameter and Ge

concentration, Lee et al. [42] reported a large improvement in the figure of merit

with respect to reference bulk material and to Si NWs. Due to the short electron

mean free paths, the measured electrical conductivities, different from the thermal

ones, do not show a strong dependence on the nanowire diameter and on the Ge

concentration. Thus the authors conclude that the measured improvement of ZT is

mainly due to the reduction of the thermal conductivity. A maximum and signifi-

cative value of ZT ’ 0. 46 is reached at 450 K.

Finally Moon et al. [45] presented a study of the gate modulated thermoelectric

power factor S2σ for single Ge/Si core–shell NWs with Ge core diameters ranging

from 11 to 25 nm. The Seebeck coefficient has a dependence on the carrier

concentration similar to that of bulk Ge, showing that the quantum confinement

effect is not significant at room temperature for the investigated diameters. The

behavior of the power factor S2σ vs carrier concentration is reported in Fig. 16.3.

The results for SiGe NWs are compared with that of bulk Ge. Similar to bulk Ge

there is an optimal carrier concentration for the peak power factor. The highest

results (more than 30 % larger that of p-type bulk Ge) are those related to the NWs,

that show the highest mobility, suggesting the promising possibility of exploiting

the high carrier mobility of the hole gas in core–shell Si/Ge NWs.
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16.4 Theoretical

As mentioned in the introduction, in the last decade SiGe nanowires started to play

an important role for the envisaged good performances as thermoelectric devices.

Beyond SiGe nanostructured alloys and thanks to the enormous progress in

nanowire’s synthesis, axial and radial heterostructures can be grown with Si/Ge

interfaces less than 1 nm wide. Both of these geometries have been individuated as

particular promising for thermoelectric applications.

Indeed, as we have seen before, nanostructuring offers the possibility to improve

the thermoelectric figure of merit ZT ¼ S2σT

κe þ κL
, by reducing the lattice thermal

conductivity κL, without a corresponding reduction of the electric conductivity σ
and the Seebeck coefficient S. Moreover, these one-dimensional systems offer the

possibility of engineering phonon dispersion and thermal conductivity by playing

not only on the NW cross section but also on the specific atomic arrangement of

Si and Ge species. Several authors [46] have shown that (1) as in bulk systems,

the temperature modulates the magnitude of atomic displacements influencing the

thermal transport; (2) the NW diameter, when comparable to the phonons mean

free path, determines the phonon boundary scattering and the propagation of heat in

the wire; (3) the relative amplitude of Si and Ge regions is a fundamental parameter

which influences the thermal conductance.

Beyond several experimental works, an increasing number of theoretical

investigations are appeared in the last years on SiGe NWs to calculate and explain

their thermoelectric features. The role of theoretical modeling in nanoscience is

each day more important, as simulating a nanomaterial in well-defined conditions

provides great insight on its most fundamental properties, whose direct measure-

ment is often complicated by a number of factors, such as the intrinsic uncertainty

and the difficulty of having well-controlled experimental conditions or pure samples.

Fig. 16.3 Power factor vs

carrier concentration of

Ge/Si NWs and bulk p-Ge.

Similar to bulk Ge, there

is an optimal carrier

concentration for the peak

power factor for the NWS.

Reprinted with permission

from Moon et al. [45]
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The study of nanoscale thermal transport is no exception and, in view of the

relevance of practical applications such as thermoelectricity, many studies have

been reported recently.

The important case of SiGe alloy nanowires has been tackled recently by Wang

and Mingo [47] who computed the thermal conductivity as a function of nanowire

diameter. In this work the scattering rate is calculated as sum of anharmonic, alloy

and boundary scattering contributions. In fair agreement with experimental obser-

vation [38, 48], a weak dependence as compared to pure Si nanowires is reported.

For small diameter κ is proportional to D, while this dependence becomes slower as

D increases. At larger Ge concentration the deviation from linear dependence

occurs at smaller diameters. This slower dependence is related to the fact that the

thermal conductivity of an alloy, due to the presence of the alloy scattering which

proportional to ω4, is dominated by low frequency modes, while for very small

D the boundary scattering term dominates over alloy and anharmonic terms at all

frequencies. The thermal conductivity for Si1�xGex bulk and NWs of different

diameter as function of x is reported in Fig. 16.4 showing a good agreement of

theoretical results with available experimental data.

In SiGe superlattices NWs three different types of thermal resistance can be

individuated: the space resistance RS, originated by the sidewall phonons scattering,

the transmission resistance RT, related to Si/Ge interface phonon boundary scatter-

ing and finally the volumetric resistance, RV, which is due to defects, impurities,

grain boundary.

Fig. 16.4 Thermal conductivity as a function of the Ge concentration x for a Si1�xGex bulk alloy

and NWs with different diameters. The lines show calculation results using an analytical expres-

sion (see [47]), and the symbols are experimental data [38, 48]. Reprinted with permission from

Wang and Mingo, Appl. Phys. Lett. 97(10), 101903. Copyright 2010, American Institute of

Physics
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Dames and Chen [49] provided one of the first examples of thermal conductivity

calculations of SiGe superlattice nanowires. Their model considers the three mech-

anisms described above completely decoupled and, similarly to [47], uses a simple

Matthiessen’s rule to derive the three effective independent mean free paths.

It neglects confinement effects and it is based on the assumption that thermal

transport is mainly dominated by diffuse scattering of incoherent phonons

in agreement with several experimental observations [50, 51]. Notably in this

work, a fair agreement with experimental data [37] for Si∕Si0.9Ge0.1 superlattice

nanowires of 58 and 83 nm in the temperature range 30–150 K is reported. Addi-

tionally, their results, valid in the diffusive scattering regime, show that the thermal

conductivity κ decreases reducing wire diameter, Si or Ge segment length and

intersegment transmission. Three distinct scattering regimes can be individuated:

the small diameter regime where the dominant scattering mechanism is due to

the wire’s sidewalls, the short segment regime where the thermal resistance

of the Si/Ge interface plays the major role and finally the bulk regime when both

the diameter and the segment length are much larger than the mean free path of the

bulk phonons and then nanostructuring is not any more relevant. Other studies [44,

52, 53], appeared recently in the literature, focus on the study of the thermal

behavior of ultrathin nanowires taking into account quantum confinement and

coherence interference effects and are mainly based on atomistic calculations of

the thermal conductance.

Since various experimental results have shown that κ depends not only from the

size of the SiGe alloy NW but also from the arrangement of atoms therein, Chan

et al. [54] investigated this aspect using equilibrium classical MD simulations,

joined to coarse grained cluster expansion and genetic algorithm optimization.

Although limited to the case of ⟨111⟩ Si1�xGex NWs with 0.03 < x < 0.2 with

D ¼ 1.5 nm, their results clearly indicate that configurations with complete planes

of Ge atoms along the NW axis, have the lowest κ, close to the bulk amorphous

limit, which is explained by the suppression of long-range order in the simulations.

Non-equilibrium Molecular Dynamics calculations have been used by Hu and

Poulikakos [46] to investigate the dependence of thermal conductivity of ⟨100⟩
SiGe superlattice NWs on diameter, periodic length, and temperature. Actually

three different types of NWs are analyzed: pure, superlattices, and random alloys.

A strong reduction of thermal conductivity in superlattices with respect to pure Si

NW is observed and a non-monotonic behavior is found varying the superlattice

periodic length. The values of thermal conductivity for pure Si NW, random alloyed

SiGe and SiGe superlattice NWs and fully amorphous Si NW are 45.3, 6.03, 4.44

and 1:35Wm�1 K�1 , respectively, indicating that more the system is hetero-

structured more the thermal conductivity is reduced. The sound velocity reduction,

the phonon interface and boundary scattering, are the main reasons of the

k reduction found in SiGe NWs. The non-monotonic behavior of the thermal

conductance with periodic length is explained by the fact that at small periodic

lengths, coherence effects become dominant and a constructive interference phe-

nomenon suppresses the interface scattering and facilitates the thermal transport
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along the wire. These findings have been confirmed by Shi et al. [52], who, by

combining Density Functional Theory calculations and non-equilibrium Green’s

Function simulations for ⟨100⟩ SiGe superlattice NWs, found the same

non-monotonic behavior for the thermal conductance dependence on the periodic

length. Another interesting result of [46] is that, at fixed periodic length of 4.34 nm,

the thermal conductivity is a non-monotonic function of the wire diameter. While

the initial thermal conductance decrease is explained, according to the Boltzmann

equation, with the calculated reduction of heat capacity, at small diameters the heat

conduction is facilitated by the fact that the long-wave length surface modes

become predominant due to the high surface–volume ratio. Finally in the

50–650 K range, a negligible dependence of the heat conduction by temperature

is reported.

By using a combination of first-principles simulations, interatomic potentials

and Landauer–Büttiker approach, Shelley and Mostofi [53] evaluated the thermal

transport for axial SiGe ⟨111⟩, ⟨110⟩, and ⟨112⟩ heterostructures in the coherent

regime. Beyond pristine nanowires they studied superlattices with random,

Fibonacci chain and periodic distribution of Ge layers along the wire axis, evalu-

ating the thermal conductivity both in the ohmic and in the coherent regimes.

They confirmed the strong decrease of thermal conduction when the heterostructure

is created and, moreover, they report a further reduction when disorder is increased,

especially when the ohmic regime is considered. This study is of special interest

because it is one of the few that addresses thermal and electronic transport in an

SiGe NW at the same time. Most of the theoretical works, on the other hand

(another noticeable exception is [55]), are focused on the engineering of the phonon

transport. Single alloyed inclusions were studied by Amato et al. [56] within a

first-principles formalisms, focusing on the change of the ballistic conductivity as

the Ge content increases.

As described above, SiGe core–shell NWs are radial heterostructures which are

made up by two coaxial cylinders, the internal one, the core, is made up by one

type of material while the external one, the shell, is made up by the other material.

Like in the superlattice geometry the presence of at least one dimension of the order

of the phonon mean free path and of interface between Si and Ge offers the right

conditions to modulate phonon scattering and, hence, heat conduction.

In particular, several works have shown how the deposition of a Ge or Si coating

on the top of a pure Si or Ge NW can strongly modify normal modes of the system

and give rise up to unusual coherent resonance effects.

Hu et al. [44] have reported one of the first detailed investigations of thermal

processes in SiGe core–shell nanowires by using Molecular Dynamics simulations

in ⟨100⟩ oriented NWs up to 7.7 nm of diameter. The influence of thermal conduc-

tivity from the dimension of the shell, the diameter, and the length of the wire is

discussed.

The addition of a Ge shell substantially lowers the phonon transport with respect

to the pure Si NW. This reduction of thermal conductivity is preserved also if the

cross-section width and length of the wire are varied. A slight non-monotonic

behavior has been found increasing the number of Ge shells because the value of
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κ increases as a consequence of the larger contribution of the Ge part of the wire to
the overall heat conduction.

The authors demonstrate that when a Ge layer is added on the surface of a pure Si

NW there is a suppression of low frequency vibrational modes of the Si surface

atoms. While oscillations of Si core atoms are not modified by the presence of Ge

atoms, in the case of Si surface atoms the bonds with the heavier Ge atoms strongly

depress low frequency vibrational modes. It is well known that low frequency

modes are very delocalized and hence their contribution to heat conduction is

very large. For this reason the suppression of these modes, by adding Ge layers,

is the main cause of thermal conduction reduction with respect to the pure system.

Finally, the authors demonstrate that another contribution to the thermal conduc-

tivity reduction comes from the depression of high frequency phonons, which

usually can carry heat in core–shell structure.

All the above-mentioned effects have been better highlighted in the works of

Chen et al. [57, 58] who have investigated the nature of coherent resonance in

Ge-core/Si-shell NWs. By using Molecular Dynamics simulations of Ge-core/Si-

shell NWs, they have shown that the low values of thermal conductivity are

associated with the strong localization of longitudinal phonon modes originating

by a coherent resonance effect due to a coupling between longitudinal and trans-

versal vibrational modes. Indeed, while in pristine nanowires the longitudinal and

transversal modes are completely decoupled due to the sound velocity that is the

same for all the atoms, this is not true in SiGe core–shell NWs where, induced by

the stretching of the atoms belonging to the Si/Ge interfaces, a coupling between

longitudinal and transversal oscillations occurs. Consequently the non-propagating

nature of transversal modes is transferred to the longitudinal ones, strongly depress-

ing the overall heat conduction in the nanowire.

Chen et al. [57] have recently analyzed how the thermal-conductivity of a Ge

NW changes when coated with Si shells. Their results demonstrate that κ can be

reduced of more than 25 % with respect to the pristine wire, but that a critical

thickness coating exists beyond which the thermal conductivity grows back. More-

over, they have shown that a disordered interface, at a given coating thickness, can

further reduce the value of κ. This behavior is explained in terms of vibrational

eigenmode analysis and is due to the fact that coating induces localization for

low-frequency phonons with wavelength comparable to NW diameter, while inter-

face roughness localizes the high-frequency phonons.

By means of atomistic calculations based on semi-empirical methods and

Green’s Function Theory, Markussen [55] has reached similar conclusions studying

the thermoelectric properties of Ge-core Si-shell nanowires with surface disorder

(a sketch of the wires studied is given in Fig. 16.5). Due to the decoupling of the

electronic and phonon transport a very promising thermoelectric figure of merit

ZT > 2 has been predicted for Ge/Si core/shell NWs with high-degree of surface

roughness disorder. Charge carrier flow in the wire’s core, due to the confinement

potential of the shell and are thus insensitive to the surface structure (see Fig. 16.6).

Phonons, on the other hand, suffer a considerable surface scattering, thus leading to

an increased value of ZT.
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16.5 Conclusions

Semiconducting nanowires are among the most firm candidates to provide the

paradigm shift needed to continue improving the efficiency of electronic devices,

beyond the limits that the heuristic and well-knownMoore’s law starts facing. More

recently, however, a wealth of applications with a broader scope are being inves-

tigated and thermoelectricity is proving to be one of the most fertile. The marriage

Fig. 16.5 (a, b) ⟨110⟩ and (c, d) ⟨111⟩ nanowires. The ZT figure of merit of core–shell NWs (a, c)

is compared against that of pure Si NWs (b, d). The scattering region with the rough Si-shell is

shown in panel (e). Reprinted with permission fromMarkussen, Nano Lett. 12(9), 4698. Copyright

2012 American Chemical Society

Fig. 16.6 Schematic representation of a core–shell NW in which charge carriers flow in the Ge

core because of the shell confinement, while phonons are scattered at the rough shell surface,

leading to an increased value of ZT. Reprinted with permission fromMarkussen, Nano Lett. 12(9),

4698. Copyright 2012 American Chemical Society
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of Si and Ge is an old-classic in conventional planar electronics, but it is at the

nanoscale that it is free to flourish and express its full potential. SiGe nanowires are

extremely versatile and thier tailor-made properties can be tuned by playing with

the composition, with the interfaces or with the periodicity with which these two

materials are alternated. The development in the growth techniques has been crucial

to obtain properties that were previously predicted, but that rely critically on

the atomic scale details of the nanowire geometry, such as the sharpness of the

interfaces or the homogeneous distribution of the species in an alloy. In this chapter

we have shown that these properties can now be controlled with an increasingly

high degree of precision and that efficient thermoelectric devices based on SiGe

nanowires are on their way to have an impact on practical applications for the

generation of clean energy.
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