
Chapter 9
Geometric Minimizing Movements

We now examine some minimizing movements describing the motion of sets. Such
a motion can be framed in the setting of the previous chapter after identification of a
set A with its characteristic function u D �A. The energies we are going to consider
are of perimeter type; i.e., with

F.A/ D H n�1.@A/ (9.1)

as a prototype in the notation of the previous chapter.

9.1 Motion by Mean Curvature

The prototype of a geometric motion is motion by mean curvature; i.e., a family of
sets A.t/ whose boundary moves in the normal direction with velocity proportional
to its curvature (inwards in convex regions and outwards in concave regions). In the
simplest case when the initial datum is a ball in R

2, A.0/ D A0 D BR0.0/, the
motion is given by concentric balls with radii satisfying

8
<

:

R0 D � c

R

R.0/ D R0I
(9.2)

i.e., R.t/ D
q

R2
0 � 2ct , valid until the extinction time t D R2

0=2c, when the radius
vanishes.

A heuristic argument suggests that the variation of the perimeter be linked to the
notion of curvature; hence, we expect to be able to obtain motion by mean curvature
as a minimizing movement for the perimeter functional. We will see that, in order
to obtain geometric motions as minimizing movements, we will have to modify the
procedure described in the previous chapter.
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130 9 Geometric Minimizing Movements

Example 9.1 (Pinning for the perimeter motion). Let n D 2. We apply the mini-
mizing-movement procedure to the perimeter functional (9.1) and the initial datum
A0 D BR0.0/ in R

2.
With fixed � , since

Z

R2

j�A � �B j2 dx D jA4Bj;

the minimization to determine A1 is

min
n
H 1.@A/ C 1

2�
jA4A0j

o
: (9.3)

We note that we can restrict our attention to sets A contained in A0, since
otherwise taking A \ A0 as test sets in their place would decrease both terms
in the minimization. Once this is observed, we also note that, given A � A0, if
BR.x/ � A0 has the same measure as A then it decreases the perimeter part of the
energy (strictly, if A itself is not a ball) while keeping the second term fixed. Hence,
we can limit our analysis to balls BR.x/ � A0, for which the energy depends only
on R. The incremental problem is then given by

min
n
2�R C �

2�
.R2

0 � R2/ W 0 � R � R0

o
; (9.4)

whose minimizer is either R D 0 (with value �
2�

R2
0) or R D R0 (with value 2�R0),

since in (9.4) we are minimizing a concave function of R. For � small the minimizer
is then R0. This means that the motion is trivial: Ak D A0 for all k, and hence also
the resulting minimizing movement is trivial.

9.2 A First (Unsuccessful) Generalization

We may generalize the scheme of the minimizing movements by taking a more
general distance term in the minimization; e.g., considering xk as a minimizer of

min
n
F.x/ C 1

�
˚.kx � xk�1k/

o
; (9.5)

where ˚ is a continuous increasing function with ˚.0/ D 0. As an example, we can
consider

˚.z/ D 1

p
jzjp:
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Note that in this case we obtain the estimate

kxk � xk�1kp � p �.F.xk�1/ � F.xk//

for the minimizer xk . Using Hölder’s inequality as in the case p D 2, we end up
with (for j > h)

kxj � xhk � .j � h/.p�1/=p
� jX

kDhC1

kxk � xk�1kp
�1=p

� .p F.x0//1=p.�1=.p�1/.j � h//.p�1/=p:

In order to obtain the (1 � 1
p

)-Hölder continuity for the interpolated function u� , we
have to define it as

u� .t/ D ubt=�1=.p�1/c:

Note that we may use the previous definition u� .t/ D ubt=�c with time step � for
the interpolated function if we change the parameter � in (9.5) and, to define xk ,
consider the problem

min
n
F.x/ C 1

�p�1
˚.kx � xk�1k/

o
(9.6)

instead.

Example 9.2 ((non-)geometric minimizing movements). We use the scheme above,
with a slight variation in the exponents, since we will be interested in the description
of the motion in terms of the radius of a ball in R

2 (which is the square root of the
L2-norm and not the norm itself). As in the previous example, we take the initial
datum A0 D BR0 D BR0 .0/, and consider Ak defined recursively as a minimizer of

min
n
H 1.@A/ C 1

p�p�1
jA4A0jp

o
; (9.7)

with p > 1. As above, at each step the minimizer is given by balls

BRk
.xk/ � BRk�1

.xk�1/: (9.8)

The value of Rk is determined by solving

min
n
2�R C �p

p�p�1
.R2

k�1 � R2/p W 0 � R � Rk�1

o
; (9.9)
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which gives

Rk � Rk�1

�
D � 1

�R
1=.p�1/

k .Rk C Rk�1/
: (9.10)

Note that, in this case, the minimum value is not taken at Rk D Rk�1 (this can be
verified, e.g., by checking that the derivative of the function to be minimized in (9.9)
is positive at Rk�1). By passing to the limit in (9.10) we deduce the equation

R0 D � 1

2�Rp=.p�1/
(9.11)

(valid until the extinction time).
Despite having obtained an equation for R, we notice that this approach is not

satisfactory, since we have:

• (non-geometric motion) in (9.8) we have infinitely many solutions; namely, all
balls centered in xk with

jxk�1 � xkj � Rk�1 � Rk:

This implies that we may have moving centres x.t/ provided that jx0j � R0 and
x.0/ D 0; in particular, we may choose x.t/ D .R0 � R.t//z for any z 2 B1.0/

which converges to R0z; i.e., the point where the sets concentrate at the vanishing
time may be any point in BR0 at the extinction time. This implies that the motion
is not a geometric one: sets do not move according to geometric quantities.

• (failure to obtain mean-curvature motion) even if we obtain an equation for R

we never obtain the mean curvature flow since p=.p � 1/ > 1.

9.3 A Variational Approach to Curvature-Driven Motion

In order to obtain motion by curvature, Almgren, Taylor and Wang have introduced
a variation of the implicit-time scheme described above, where the term jA 4Akj
is substituted by an integral term which favours variations which are ‘uniformly
distant’ to the boundary of Ak . The problem defining Ak is then

min
n
H 1.@A/ C 1

�

Z

A4Ak�1

dist.x; @Ak�1/ dx
o
: (9.12)

Note that the integral term can be indeed interpreted as an L2 distance between the
boundaries of the sets.

We will not prove a general convergence result for an arbitrary initial datum A0,
but we will check the convergence to mean-curvature motion for A D BR0 in R

2.
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In this case we note that if Ak�1 is a ball centered in 0 then we have:

• Ak is contained in Ak�1. To check this, note that, given a test set A, considering
A \ Ak�1 as a test set in its place decreases the energy in (9.12), strictly if A n
Ak�1 ¤ ;.

• Ak is convex and with baricenter in 0. To check this, first, note that each
connected component of Ak is convex. Otherwise, considering the convex
envelopes decreases the energy (strictly, if one of the connected components if
not convex). Then note that if 0 is not the baricenter of a connected component
of Ak then a small translation towards 0 strictly decreases the energy (this
follows by computing the derivative of the volume term along the translation).
In particular, we only have one (convex) connected component.

From these properties we can conclude that Ak is indeed a ball centered in 0.
Were it not so, there would be a line through 0 such that the boundary of Ak does
not intersect perpendicularly this line. By a reflection argument, we then obtain
a non-convex set QAk with total energy not greater than the one of Ak (note that
the line considered subdivides Ak into two subsets with equal total energy). Its
convexification would then strictly decrease the energy. This shows that each Ak

is of the form

Ak D BRk
D BRk

.0/:

We can now compute the equation satisfied by Rk , by minimizing (after passing
to polar coordinates)

min
n
2�R C 2�

�

Z Rk�1

R

.Rk�1 � �/� d�
o
; (9.13)

which gives

Rk � Rk�1

�
D � 1

Rk

: (9.14)

Passing to the limit gives the desired mean curvature equation (9.2).

9.4 Homogenization of Flat Flows

We now consider geometric functionals with many local minimizers (introduced in
Example 4.3) which give a more refined example of homogenization of minimizing
movements. The functionals we consider are defined on (sufficiently regular)
subsets of R2 by

F".A/ D
Z

@A

a
�x

"

�
dH 1; (9.15)
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where

a.x1; x2/ D
(

1 if x1 2 Z or x2 2 Z

2 otherwise:

The � -limit of the energies F" is the crystalline perimeter energy

F.A/ D
Z

@A

k�k1dH 1; (9.16)

with k.�1; �2/k1 D j�1j C j�2j. A minimizing movement for F is called a flat flow.
We will first briefly describe it, and then compare it with the minimizing movements
for F".

9.4.1 Motion by Crystalline Curvature

The incremental problems for the minimizing-movement scheme for F in (9.16) are
of the form

min
n
F.A/ C 1

�

Z

A4Ak�1

dist1.x; @Ak�1/ dx
o
; (9.17)

where for technical reasons we consider the 1-distance

dist1.x; B/ D inffkx � yk1 W y 2 Bg:

However, in the simplified situation below this will not be relevant in our computa-
tions.

We only consider the case when the initial datum A0 is a rectangle, which plays
the role played by a ball for motion by mean curvature. Note that, as in Sect. 9.3,
we can prove that if Ak�1 is a rectangle, then we can limit the computation in (9.17)
to

• A contained in Ak�1 (otherwise A \ Ak�1 strictly decreases the energy).
• A with each connected component a rectangle (otherwise taking the least

rectangle containing a given component would decrease the energy, strictly if
A is not a rectangle).

• A connected and with the same center as A0 (since translating the center towards
0 decreases the energy).

Hence, we may suppose that

Ak D
h
�Lk;1

2
;

Lk;1

2

i
�
h
�Lk;2

2
;

Lk;2

2

i
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L

L

2

2
1

2

Fig. 9.1 Incremental
crystalline minimization

for all k. In order to iteratively determine Lk , we have to minimize the energy

min
n
2.Lk;1C	L1/C2.Lk;2C	L2/C 1

�

Z

A4Ak�1

dist1.x; @Ak�1/ dx
o
: (9.18)

In this computation it is easily seen that for � small the integral term can be
substituted by

Lk;1

4
.	L2/

2 C Lk;2

4
.	L1/

2:

This argument amounts to noticing that the contribution of the small rectangles at
the corners highlighted in Fig. 9.1 is negligible as � ! 0. The optimal increments
(more precisely, decrements) 	Lj are then determined by the conditions

8
ˆ̂
<

ˆ̂
:

1 C Lk;2

4�
	L1 D 0

1 C Lk;1

4�
	L2 D 0:

(9.19)

Hence, we have the difference equations

	L1

�
D � 4

Lk;2

;
	L2

�
D � 4

Lk;1

; (9.20)

which finally gives the system of ODEs for the limit rectangles, with edges of length
L1.t/ and L2.t/ respectively,

8
ˆ̂
<

ˆ̂
:

L0
1 D � 4

L2

L0
2 D � 4

L1

:

(9.21)
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Geometrically, each edge of the rectangle moves inwards with velocity inversely
proportional to its length; more precisely, equal to twice the inverse of its length
(so that the other edge contracts with twice this velocity). Hence, in this context the
inverse of the length of an edge plays the role of the curvature (crystalline curvature).

It is worth noticing that by (9.21) all rectangles are homothetic, since d
dt

L1

L2
D 0,

and with area satisfying

d

dt
L1L2 D �8;

so that L1.t/L2.t/ D L0;1L0;2 �8t , which gives the extinction time t D L0;1L0;2=8.
In the case of an initial datum a square of side length L0, the sets are squares whose

side length at time t is given by L.t/ D
q

L2
0 � 8t , in analogy with the evolution of

balls by mean curvature flow.

9.5 Homogenization of Oscillating Perimeters

We consider the sequence F" in (9.15). Note that, for any (sufficiently regular) initial
datum A0, we have that A0

" � A0 � A00
" , where A0

" and A00
" are such that F".A

0
"/ D

H 1.@A0
"/ and F".A

00
" / D H 1.@A00

" / and jA00
" n A0

"j D O."/. Such sets are local
minimizers for F" and hence the minimizing movement of F" from either of them
is trivial. As a consequence, if A".t/ is a minimizing movement for F" from A0 we
have

A0
" � A".t/ � A00

" :

This shows that for any set A0 the only limit lim"!0 A".t/ of minimizing movements
for F" from A0 is the trivial motion A.t/ D A0.

We now compute the minimizing movements along the sequence F" with initial
datum a rectangle, and compare them with the flat flow described in the previous
section.

For simplicity of computation we deal with a constrained case, when:

• For every " the initial datum A0 D A"
0 is a rectangle centered in 0 such that

F".A/ D H 1.@A/ (i.e., its edge lengths L0;j belong to 2"Z). In analogy with
x0 in the example in Sect. 8.4, if this does not hold then either it does after one
iteration or we have a pinned state Ak D A0 for all k.

• All competing A are rectangles with F".A/ D H 1.@A/ centered in 0. The
fact that all competing sets are rectangles follows as for the flat flow in the
previous section. The fact that F".Ak/ � F".Ak�1/ then implies that the minimal
rectangles satisfy F".Ak/ D H 1.@Ak/. The only real assumption at this point is
that they are centered in 0. This hypothesis can be removed, upon a slightly more
complex computation, which would only make the arguments less clear.
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After this simplifications, the incremental problem is exactly as in (9.17) since
for competing sets we have F".A/ D F.A/, the only difference being that now Lk;1;

Lk;2 2 2"Z. The problem in terms of 4Lj , using the same simplification for (9.18)
as in the previous section, is then

min
n
2.Lk;1 C	L1/C2.Lk;2 C	L2/C Lk;1

4�
.	L2/

2 C Lk;2

4�
.	L1/2 W 	Lj 2 2"Z

o
:

(9.22)

This is a minimization problem for a parabola as the ones in Sect. 8.4 that gives

	L1 D �
j 4�

"Lk;2

C 1

2

k
" if

4�

"Lk;2

C 1

2
62 Z (9.23)

(the other cases giving two solutions), and an analogous equation for 	L2. Passing
to the limit, we have the system of ODEs governed by the parameter

w D lim
"!0

�

"

(which we may suppose exists, up to subsequences), which reads as

8
ˆ̂
<̂

ˆ̂
:̂

L0
1 D � 1

w

j4w

L2

C 1

2

k

L0
2 D � 1

w

j4w

L1

C 1

2

k
:

(9.24)

Note that the right-hand side is a discontinuous function of Lj , so some care must be
taken at times t when 4w

Lj .t/
C 1

2
2 Z. However, apart from some exceptional cases,

this condition holds only for a countable number of t , and is therefore negligible.
We can compare the resulting minimizing movements with the crystalline

curvature flow, related to F .

• (total pinning) if � � " (w D 0) then we have A.t/ D A0.
• (crystalline curvature flow) if " � � then we have the minimizing movements

described in the previous section.
• (partial pinning/asymmetric curvature flow) if 0 < w < C1 then we have

(i) (total pinning) if both L0;j > 8w then the motion is trivial A.t/ D A0.
(ii) (partial pinning) if L0;1 > 8w, L0;2 < 8w and 4w

L0;2
C 1

2
62 Z then the

horizontal edges do not move, but they contract with constant velocity until
L1.t/ D 8w.

(iii) (asymmetric curvature flow) if L0;1 � 8w and L0;2 < 8w then we have a
unique motion with A.t/ �� A.s/ if t > s, up to a finite extinction time.
Note, however, that the sets A.s/ are not homothetic, except for the trivial
case when A0 is a square.
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Some cases are not considered above, namely those when we do not have unique-
ness of minimizers in the incremental problem. This may lead to a multiplicity of
minimizing movements, as remarked in Sect. 8.4.

It is worthwhile to highlight that we may rewrite the equations for L0
j as a

variation of the crystalline curvature flow; e.g., for L0
1 we can write it as

L0
1 D �f

�L2

w

� 4

L2

; with f .z/ D z

4

j4

z
C 1

2

k
:

This suggests that the ‘relevant’ homogenized problem is the one obtained for �
"

D 1,
as all the others can be obtained from this one by a scaling argument.

We note that the scheme can be applied to the evolution of more general sets,
but the analysis of the rectangular case already highlights the new features deriving
from the microscopic geometry.

9.6 Flat Flow with Oscillating Forcing Term

We now consider another minimizing-movement scheme linked to the functional F

in (9.16). In this case, the oscillations are given by a lower-order forcing term. We
consider, in R

2,

G".A/ D
Z

@A

k�k1dH 1 C
Z

A

g
�x1

"

�
dx; (9.25)

where g is 1-periodic and even, given by

g.s/ D
(

˛ if dist .x;Z/ < 1
4

ˇ otherwise;

with ˛; ˇ 2 R and ˛ < ˇ. Note that the additional term may be negative, so that
this functional is not positive; however, the minimizing-movement scheme can be
applied unchanged.

Since the additional term converges continuously in L1 as " ! 0, the � -limit is
simply

G.A/ D
Z

@A

k�k1dH 1 C ˛ C ˇ

2
jAj: (9.26)

9.6.1 Flat Flow with Forcing Term

We now consider minimizing movements for G. As in Sect. 9.4.1, we only deal
with a constrained problem, when both the initial datum and the competing sets are
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rectangles centered in 0. With the notation of Sect. 9.4.1, we are led to the minimum
problem

min
n
2.Lk;1 C 	L1 C Lk;2 C 	L2/ C Lk;1

4�
.	L2/

2 C Lk;2

4�
.	L1/

2

C˛ C ˇ

2
.Lk;1 C 	L1/.Lk;2 C 	L2/

o
:

The minimizing pair .	L1; 	L2/ satisfies

	L1

�
D �

� 4

Lk;2

C .˛ C ˇ/
�
1 C 	L2

Lk;2

��
(9.27)

and the analogous equation for 	L2

�
. Passing to the limit we have

8
ˆ̂
<̂

ˆ̂
:̂

L0
1 D �

� 4

L2

C ˛ C ˇ
�

L0
2 D �

� 4

L1

C ˛ C ˇ
�
;

(9.28)

so that each edge moves with velocity 2
L2

C ˛Cˇ

2
, with the convention that it moves

inwards if this number is positive, outwards if it is negative.
Note that if ˛ C ˇ � 0 then L1 and L2 are always decreasing and we have

finite-time extinction, while if ˛ C ˇ < 0 then there is an equilibrium for Lj D
4=j˛ C ˇj, and we have expanding rectangles, with an asymptotic velocity of each
side of j˛ C ˇj=2 as the side length diverges.

9.6.2 Homogenization of Forcing Terms

We treat the case � � " only, in which we may highlight new homogenization
phenomena. Again, we consider the constrained case when both the initial datum
and the competing sets are rectangles centered in 0 and adopt the notation of
Sect. 9.4.1. The geometry of the problem is pictured in Fig. 9.2, where the two colors
in the background represent the two values of the forcing term.

Taking into account that � � ", the incremental minimum problem can be
approximated by

min
n
2.Lk;1 C 	L1 C Lk;2 C 	L2/ C Lk;1

4�
.	L2/

2 C Lk;2

4�
.	L1/

2

C˛ C ˇ

2
Lk;1Lk;2 C ˛ C ˇ

2
Lk;1	L2 C g

�Lk;1

2"

�
Lk;2	L1

o
: (9.29)
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Fig. 9.2 Rectangle in a
layered environment

In considering the term g.Lk;1=2"/ we implicitly assume that � is so small that both
Lk;1=2" and .Lk;1 C	L1/=2" belong to the same interval where g is constant. This
can be assumed up to a number of k that is negligible as � ! 0.

For the minimizing pair of (9.29) we have

8
ˆ̂
<

ˆ̂
:

2 C Lk;2

2�
	L1 C g

�Lk;1

2"

�
Lk;2 D 0

2 C Lk;1

2�
	L2 C ˛ C ˇ

2
Lk;1 D 0I

(9.30)

that is,

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

	L1

�
D �

 
4

Lk;2

C 2g
�Lk;1

2"

�
!

	L2

�
D �

� 4

Lk;1

C .˛ C ˇ/
�
:

(9.31)

This systems shows that the horizontal edges move with velocity 2
Lk;1

C ˛Cˇ

2
, while

the velocity of the vertical edges depends on the location of the edge and is

2

Lk;2

C g
�Lk;1

2"

�
:

We then deduce that the limit velocity for the horizontal edges of length L1 is

2

L1

C ˛ C ˇ

2
: (9.32)

As for the vertical edges, we have:

• (mesoscopic pinning) if L2 is such that

� 2

L2

C ˛
�� 2

L2

C ˇ
�

< 0
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Fig. 9.3 Stages in the motion
according to system (9.34)

then the vertical edge is eventually pinned in the minimizing-movement scheme.
This pinning is not due to the equality LkC1;1 D Lk;1 in the incremental problem,
but to the fact that the vertical edge moves in contrasting directions depending
on the value of g.

• (homogenized velocity) if, on the contrary, the vertical edge length satisfies

� 2

L2

C ˛
�� 2

L2

C ˇ
�

> 0

then we have a limit effective velocity of the vertical edge given by the harmonic
mean of the two velocities 2

L2
C ˛ and 2

L2
C ˇ; namely,

.2 C ˛L2/.2 C ˇL2/

L2

�
2 C ˛Cˇ

2
L2

� : (9.33)

We examine some cases explicitly.

(i) Let ˛ D �ˇ. Then we have

8
ˆ̂
<

ˆ̂
:

L0
2 D � 4

L1

L0
1 D �2

.2 � ˇL2/ _ 0

L2

I
(9.34)

i.e., the vertical edges are pinned if their length is larger than 2=ˇ. In this case,
the horizontal edges move inwards with constant velocity 2

L0;1
. In this way the

vertical edges shrink with rate 4
L0;1

until their length is 2=ˇ. After this, the whole
rectangle shrinks in all directions. The stages of this evolution are pictured in
Fig. 9.3.

(ii) Let ˛ < ˇ < 0. Then for the vertical edges we have an interval of ‘mesoscopic
pinning’ corresponding to

2

jˇj � L2 � 2

j˛j (9.35)
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L

vFig. 9.4 Velocity of the
vertical hedges with an
interval of mesoscopic
pinning

The velocity of the vertical edges in dependence of their length is then
given by

v D

8
ˆ̂
<̂

ˆ̂
:̂

0 if (9.35) holds

.2 C ˛L2/.2 C ˇL2/

L2

�
2 C ˛Cˇ

2
L2

� otherwise

and is pictured in Fig. 9.4. Instead, the velocity of the horizontal edges is given
by (9.32), so that they move inwards if

L1 <
4

j˛ C ˇj ;

and outwards if L1 > 4
j˛Cˇj .

In this case we can consider as initial datum a square of side length L0. We have
the following cases:

• If L0 � 2
jˇj then all edges move inwards until a finite extinction time.

• If 2
jˇj < L0 < 4

j˛Cˇj then first only the horizontal edges move inwards until the

vertical edge reaches the length 2
jˇj , after which all edges move inwards.

• If 4
j˛Cˇj < L0 < 2

j˛j then first only the horizontal edges move outwards until the

vertical edge reaches the length 2
j˛j , after which all edges move outwards.

• If L0 � 2
j˛j then all edges move outwards, and the motion is defined for all times.

The asymptotic velocity of the vertical edges as the length of the edges diverges is

ˇ
ˇ
ˇ

2˛ˇ

˛ C ˇ

ˇ
ˇ
ˇ;

lower than
ˇ
ˇ
ˇ

˛Cˇ

2

ˇ
ˇ
ˇ (the asymptotic velocity for the horizontal edges).
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The critical case can be shown to be " � � , so that for " � � we have the
flat flow with averaged forcing term described in Sect. 9.6.1. The actual description
in the case " � � would involve a complicated homogenization argument for the
computation of the averaged velocity of vertical sides.

Appendix

The variational approach for motion by mean curvature is due to Almgren et al.
[2]. The variational approach for crystalline curvature flow is contained in a paper
by Almgren and Taylor [1].

The homogenization of the flat flow essentially follows the discrete analog con-
tained in the paper by Braides et al. [3]. In that paper more effects of the microscopic
geometry are described for more general initial sets. The homogenization with
forcing term is part of ongoing work with A. Malusa and M. Novaga.

Geometric motions with a non-trivial homogenized velocity are described in the
paper by Braides and Scilla [4], where example are shown of geometries which do
not influence the crystalline perimeter obtained as � -limit, but do influence various
features of the evolution.
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