
Chapter 3
Parameterized Motion Driven by Global
Minimization

Energy-driven dynamic problems are in general associated with a local
minimization procedure. Nevertheless, for ‘slow movements’ a meaningful notion
of ‘quasi-static’ motion can be defined starting from a global-minimization criterion.
The ingredients are:

• a parameter-dependent energy F ,
• a dissipation D satisfying a non-decreasing constraint,
• a (time-)parameterized forcing condition.

Loosely speaking, a quasistatic motion is controlled by some parameterized
forcing condition (applied forces, varying boundary conditions or other constraints);
the motion is thought to be so slow so that the solution at a fixed value of
the parameter (at fixed ‘time’) minimizes a total energy. This energy is obtained
adding some ‘dissipation’ to some ‘internal energy’. A further condition is that the
total dissipation increases with time. An entire general theory (of rate-independent
motion) can be developed starting from these ingredients.

An important feature of these rate-independent motions is that they can be
characterized as the limit of a piecewise-constant (time-)parameterized family
of functions, which are defined iteratively as solutions of minimum problems.
Under suitable conditions, to such a characterization the Fundamental Theorem
of � -convergence can be applied, so that this notion can be proved to be indeed
compatible with � -convergence.

3.1 A Paradigmatical Example: Damage Models

In this section we deal with a simplified example and examine its stability with
respect to perturbations. We will first define a damage process for a single material.
Then we will consider the same definition for a mixture of two materials in the
context of homogenization. A homogenized theory can be derived, with some care
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26 3 Parameterized Motion Driven by Global Minimization

in the definition of the � -limit, that must take into account at the same time the
energy and the dissipation.

3.1.1 Damage of a Homogeneous Material

We consider a one-dimensional setting. Our functions will be parameterized on a
fixed interval .0; 1/. In this case we have:

• The parameter space will be that of all measurable subsets A of .0; 1/. The set A
will be understood as the damage set.

• The energies depending on a set A will be

FA.u/ D ˛

Z
A

ju0j2 dx C ˇ

Z
.0;1/nA

ju0j2 dx;

where 0 < ˛ < ˇ. In an mechanical interpretation of the variables, u represents
the deformation of a bar, whose elastic constant is ˇ in the undamaged set and
˛ < ˇ in the damaged set.

• The dissipation is

D.A/ D � jAj;

with � > 0. The work done to damage a portionA of the material is proportional
to the measure of A.

• The condition that forces the solution to be parameter dependent (‘time-depen-
dent’) is a boundary condition

u.0/ D 0; u.1/ D g.t/;

where g is a continuous function with g.0/ D 0. Here the parameter is t 2 Œ0; T �.
Definition 3.1. A solution to the evolution related to the energy, dissipation and
boundary conditions above is a pair .ut ; At / with ut 2 H1.0; 1/, At � .0; 1/, and
such that

• (monotonicity) we have As � At for all s < t ;
• (minimization) the pair .ut ; At / minimizes

min
n
FA.u/CD.A/ W u.0/ D 0; u.1/ D g.t/; At � A

o
I (3.1)

• (continuity) the energy E .t/ D FAt .ut /CD.At / is continuous;
• (homogeneous initial datum) u0 is the constant 0 and A0 D ;.
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The continuity assumption allows to rule out trivial solutions as those with
At D .0; 1/ for all t > 0. It is usually replaced by a more physical condition of
energy conservation. In our context this assumption is not relevant.

Note that t acts only as a parameter (the motion is ‘rate independent’). Hence,
for example if g is monotone increasing, it suffices to consider g.t/ D t . We will
construct by hand a solution in this simplified one-dimensional context.

Remark 3.1. Note that the value in the minimum problem

m.t/ D min
n
FA.u/CD.A/ W u.0/ D 0; u.1/ D t

o
(3.2)

depends on A only through � D jAj.
Indeed, given A, we can explicitly compute the minimum value

m.A; t/ D min
nZ

A

˛ju0j2 dx C
Z
.0;1/nA

ˇju0j2 dx W u.0/ D 0; u.1/ D t
o
:

In fact, for all test functions u we have, by Jensen’s inequality

Z
A

˛ju0j2 dx C
Z
.0;1/nA

ˇju0j2 dx � ˛jAjjz1j2 C ˇ.1� jAj/jz2j2;

where

z1 D 1

jAj
Z
A

u0 dx; z2 D 1

1 � jAj
Z
.0;1/nA

u0 dx;

with a strict inequality if u0 is not constant on A and .0; 1/ n A. This shows that the
unique minimizer satisfies

u0 D z1�A C z2.1 � �A/; jAjz1 C .1 � jAj/z2 D t;

where the second condition is given by the boundary data; hence,

m.A; t/ D minf˛�jz1j2Cˇ.1��/jz2j2 W �z1C.1��/z2 D tg D ˛ˇ

�ˇ C .1 � �/˛
t2:

We conclude that the minimum value (3.2) is given by

˛ˇ

�ˇ C .1 � �/˛
t2 C ��: (3.3)

By minimizing over � we obtain the optimal value of the measure of the damaged
region
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�min.t/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

0 if jt j �
q

˛�

ˇ.ˇ�˛/

1 if jt j �
q

ˇ�

˛.ˇ�˛/

t
q

˛ˇ

�.ˇ�˛/ � ˛
ˇ�˛ otherwise

(3.4)

and the minimum value

m.t/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

ˇt2 if jt j �
q

˛�

ˇ.ˇ�˛/

˛t2 C � if jt j �
q

ˇ�

˛.ˇ�˛/

2t
q

˛ˇ�

ˇ�˛ � �˛

ˇ�˛ otherwise:

(3.5)

The interpretation of this formula is as follows. For small values of the total
displacement t the material remains undamaged, until it reaches a critical value
for the boundary datum. Then a portion of size �min.t/ of the material damages,
lowering the elastic constant of the material and the overall value of the sum of the
internal energy and the dissipation, until all the material is damaged. Note that in
this case E .t/ D m.t/, due to the increasing-load assumption.

The solutions for the evolution problem are given by any increasing family of sets
At satisfying jAt j D �min.t/ and correspondingly functions ut minimizingm.At ; t/.

The value in (3.3) is obtained by first minimizing in u. Conversely, we may first
minimize in A. We then have

min
nZ 1

0

min
A

˚
�A.˛ju0j2C�/; �.0;1/nAˇju0j2� dx W u.0/ D 0; u.1/ D g.t/

o
: (3.6)

The lower-semicontinuous envelope of the integral energy is given by the integral
with energy function the convex envelope of

f .z/ D min
˚
˛z2 C �; ˇz2

�
; (3.7)

which is exactly given by formula (3.5); i.e.,

m.t/ D f ��.t/

(see Fig. 3.1).

Irreversibility. An important feature of the monotonicity condition for At is
irreversibility of damage, which implies that for non-increasing g the values of
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t

mFig. 3.1 Minimal value m.t/
for the damage problem

t

m'

Fig. 3.2 Plot of m0.t / along
a cycle

m.g.t// will depend on the highest value taken by �min.g.t// on Œ0; t �. In particular,
for a ‘loading–unloading’ cycle with g.t/ D T

2
� ˇ̌
t � T

2

ˇ̌
, the value of E .t/ is

given by

E .t/ D

8̂
ˆ̂<
ˆ̂̂:

m.t/ for 0 � t � T
2

˛ˇ

�min.
T
2
/ˇ C .1 � �min.

T
2
//˛

.T � t/2 C � �min.
T

2
/ for T

2
� t � T:

This formula highlights that once the maximal value �min.T=2/ is reached, then
the damaged region At remains fixed, so that the problem becomes a quadratic
minimization (plus the constant value of the dissipation). We plot m0.t/ and draw a
cycle in Fig. 3.2.

Note that, in particular, if T
2

�
q

ˇ�

˛.ˇ�˛/ then the material is completely damaged
in the ‘unloading’ regime.

3.1.1.1 Threshold Formulation

Note that a solution ut of (3.2) satisfies the Euler–Lagrange equation

..˛�A C ˇ.1 � �A//u
0/0 D 0I



30 3 Parameterized Motion Driven by Global Minimization

i.e.,

.˛�A C ˇ.1 � �A//u0 D �t ; (3.8)

where �t is a constant parameterized by t . Its plot as a function of g D g.t/ along a
‘loading-unloading’ cycle is the same as in Fig. 3.2.

The plateau for � is obtained at the threshold value

� D
s

˛ˇ�

ˇ � ˛
:

We can interpret the g-� graph as a threshold principle: the material does not
damage until the stress � reaches the threshold value. At this point, if the material is
loaded further it damages so as to keep the value of � below the threshold, until all
the material is damaged. If the material is unloaded then � follows a linear elastic
behavior with the overall effective elastic constant corresponding to the total amount
of damage produced.

3.1.2 Homogenization of Damage

We now examine the behaviour of the previous process with respect to
� -convergence in the case of homogenization; i.e., when we have a fine mixture of
two materials, each one of which can undergo a damage process as in the previous
section. To that end we introduce the energies

F";A.u/ D
Z
.0;1/nA

ˇ
�x
"

�
ju0j2 dx C

Z
A

˛
�x
"

�
ju0j2 dx; (3.9)

where ˛ and ˇ are 1-periodic functions with

˛.y/ D
(
˛1 for 0 � y < 1

2

˛2 for 1
2

� y < 1
ˇ.y/ D

(
ˇ1 for 0 � y < 1

2

ˇ2 for 1
2

� y < 1

with 0 < ˛j < ˇj . Note that, for fixed A, the functionals F";A � -converge to

Fhom;A.u/ D ˇ

Z
.0;1/nA

ju0j2 dx C ˛

Z
A

ju0j2 dx; (3.10)

with

˛ D 2˛1˛2

˛1 C ˛2
<

2ˇ1ˇ2

ˇ1 C ˇ2
D ˇ:
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This can be easily checked if A is an interval (or a union of intervals), and then for a
generalA by approximation. Indeed ifA D .0; �/ then the liminf inequality trivially
holds by separately applying the liminf inequality to the two energies

Z �

0

˛
�x
"

�
ju0j2 dx;

Z 1

�

ˇ
�x
"

�
ju0j2 dx: (3.11)

Conversely, given a target function u 2 H1.0; 1/, we can find recovery sequences
.u1"/ and .u2"/ for u on .0; �/ and .�; 1/, respectively, for the energies (3.11) with
u1".�/ D u2".�/, so that the corresponding u" defined as u1" on .0; �/ and as u2" on
.�; 1/ is a recovery sequence for Fhom;A.u/. Note that the � -limit is still of the form
examined in Sect. 3.1.1 with constants ˛ and ˇ.

We now instead study the damage process at fixed ". For simplicity of
computation we suppose that 1

"
2 N. The general case can be always reduced

to this assumption up to an error of order ". The dissipation will be of the form

D".A/ D
Z
A

�
�x
"

�
dx;

where again � is a 1-periodic function with

�.y/ D
(
�1 for 0 � y < 1

2

�2 for 1
2

� y < 1

with �j > 0. In the case �1 D �2 we obtain the same dissipation as in Sect. 3.1.1,
independent of ".

In order to compute the minimum value

m".t/ D min
n
F";A.u/CD".A/ W u.0/ D 0; u.1/ D t; A � .0; 1/

o
(3.12)

we proceed as in Remark 3.1, noticing that the minimum value

m".A; t/ D min
n
F";A.u/ W u.0/ D 0; u.1/ D t

o
(3.13)

depends on A only through the volume fraction of each damaged component

�i D 2
ˇ̌
ˇ
n
x 2 A W ˛

�x
"

�
D ˛i

oˇ̌
ˇ;

and its value is independent of " and is given by

min
n1
2

�
�1˛1z

2
11 C .1 � �1/ˇ1z

2
12

�
C 1

2

�
�2˛2z

2
21 C .1 � �2/ˇ1z

2
22

�
W
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1

2
.�1z11 C .1 � �1/z12/C 1

2
.�2z21 C .1 � �2/z22/ D t

o
:

We conclude that m".t/ D mhom.t/ is independent of " and satisfies

mhom.t/ D 1

2
min

n
m1.t1/Cm2.t2/ W t1 C t2

2
D t

o
; (3.14)

where mj is defined as m in (3.2) with ˛j ; ˇj and �j in the place of ˛; ˇ and �
(i.e., by the damage process in the i -th material). Hence, by (3.5)

mj .t/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

ˇj t
2 if jt j �

q
˛j �j

ˇj .ˇj�˛j /

˛j t
2 C �j if jt j �

q
ˇj �j

˛j .ˇj�˛j /

2t
q

˛j ˇj �j
ˇj�˛j � �j ˛j

ˇj�˛j otherwise:

(3.15)

We can therefore easily computem.t/. In the hypothesis, e.g., that

p2 WD
s
˛2ˇ2�2

ˇ2 � ˛2 <
s
˛1ˇ1�1

ˇ1 � ˛1
DW p1; (3.16)

we can write m0.t/ as

m0
hom.t/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

2ˇt if jt j � p2
ˇ

2p2 if p2
ˇ
< jt j < p2.ˇ1C˛2/

2ˇ1˛2

4ˇ1˛2
ˇ1C˛2 t if p2.ˇ1C˛2/

2ˇ1˛2
� jt j � p1.ˇ1C˛2/

2ˇ1˛2

2p1 if p1.ˇ1C˛2/
2ˇ1˛2

< jt j < p1
˛

2˛t if jt j � p1
˛
:

The outcome is pictured in Fig. 3.3. It highlights that the behaviour is different
from the one computed in Sect. 3.1.1: for small values of the total displacement t
the overall response is the same as the one of the homogenized behaviour of the two
‘strong’ materials. At a first critical value for t one of the two materials (and only
one except for the exceptional case p1 D p2) starts to damage (this corresponds
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t

m'hom

Fig. 3.3 The function
m0

hom.t / describing the
homogenized damage in a
periodic microstructure

to the first constant value 2p1 of m0) until it is completely damaged. Under
condition (3.16) the first material to damage is material 2, and the corresponding
damage volume fraction is

�2;min.t/ D

8̂
<̂
ˆ̂:

0 if 0 � t � p2
ˇ

2p2
�2

�
t � p2

ˇ

�
if p2

ˇ
< t <

p2.ˇ1C˛2/
2ˇ1˛2

1 if t > p2.ˇ1C˛2/
2ˇ1˛2

:

(3.17)

Then the material behaves as a mixture of a strong material 1 and a damaged
material 2. Subsequently, also material 1 starts to damage; the corresponding
damage volume fraction is

�1;min.t/ D

8̂
<̂
ˆ̂:

0 if t � p1.ˇ1C˛2/
2ˇ1˛2

2p1
�1

�
t � p1.ˇ1C˛2/

2ˇ1˛2

�
if p1.ˇ1C˛2/

2ˇ1˛2
< t <

p1
˛

1 if t � p1
˛
:

(3.18)

After also material 1 has completely damaged, the behaviour is that of the
homogenized energy for two weak materials.

Note that at fixed " we can define At" and ut" by choosing increasing families
of sets Atj;" describing the damage in the j -th material with jAtj;"j D 1

2
�j;min.t/,

setting At" D At1;" [ At2;" and ut" the corresponding solution of m".At ; t/. However
the sets At" do not converge to sets as " ! 0 except for the trivial cases ; and .0; 1/.
In particular for p2.ˇ1C˛2/

2ˇ1˛2
� t � p1.ˇ1C˛2/

2ˇ1˛2
we have �2;min.t/ D 1 and �1;min.t/ D 0,

so that At" D ".Z C Œ 1
2
; 1�/, which do not converge as sets.

3.1.2.1 A Double-Damage-Set Formulation

The observation above highlights that a weaker notion of convergence of sets must
be given in order to describe the behavior of (some solutions of) the sequence of
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damage problem. One way is to choose particular sequences of damaged sets Atj;",
for examples intersections of intervals with the j -th material. For simplicity we
consider intervals Œ0; �j;".t/� with one endpoint in 0, so that

At1;" D Œ0; �1;".t/� \ "
�
Z C

h
0;
1

2

i�
; At2;" D Œ0; �2;".t/� \ "

�
Z C

h1
2
; 1

i�
:

Note that under hypothesis (3.16) we have �2;".t/ � �1;".t/ for all t . We have
therefore to examine problems (3.13) rewritten in the form

m".�1;"; �2;"; t/ D min
nZ �1;"

0

˛
�x
"

�
ju0j2 dx C

Z �2;"

�1;"

a
�x
"

�
ju0j2 dx

C
Z 1

�2;"

ˇ
�x
"

�
ju0j2 dx W u.0/ D 0; u.1/ D t

o
; (3.19)

where a is the 1-periodic function with

a.y/ D
(
ˇ1 for 0 � y < 1

2

˛2 for 1
2

� y < 1
:

If �j;" ! �j then these problems converge to

mhom.�1; �2; t/ D min
n
˛

Z �1

0

ju0j2 dx C a

Z �2

�1

ju0j2 dx

Cˇ
Z 1

�2

ju0j2 dx W u.0/ D 0; u.1/ D t
o
: (3.20)

Taking into account that in this case
R
A
�.x="/ dx ! 1

2
�2�2 C 1

2
�1�1, the limit of

m".t/ can be written as

mhom.t/ D min
nZ 1

0

�
�Œ0;�1�

�
˛ju0j2 C �1 C �2

2

�
C �Œ�1;�2�

�
aju0j2 C �2

2

�

C�Œ�2;1�ˇju0j2
�

dx W u.0/ D 0; u.1/ D t; 0 � �1 � �2 � 1
o
: (3.21)

Minimizing first in �1 and �2 we obtain

mhom.t/ D min
nZ 1

0

min
n
˛ju0j2 C �1 C �2

2
; aju0j2 C �2

2
; ˇju0j2

o
dx

W u.0/ D 0; u.1/ D t
o
: (3.22)
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t

mhom

Fig. 3.4 The minimal energy
mhom.t / of Sect. 3.1.2

This observation highlights that the function mhom.t/ can be expressed as the
convex envelope of

min
n
ˇz2;

2˛2ˇ1

ˇ1 C ˛2ˇ2
z2 C 1

2
�2; ˛ C 1

2
.�1 C �2/

o
; (3.23)

(see Fig. 3.4) which are the three total energy densities corresponding to the
mixtures of undamaged materials, equally damaged and undamaged materials
(in the optimal way determined by condition (3.16)), and completely damaged
materials.

The limit damage motion in this case is given in terms of the two sets
Atj D Œ0; �j .t/�, where �j .t/ are the minimizers of problem (3.21), and of the
corresponding ut . Note that this is possible thanks to the particular choice of the
damage sets Atj;", and does not give a description of the behavior of an arbitrary
family of solutions At"; u

t
".

3.1.2.2 Double-Threshold Formulation

Also in this case we note that the damage process takes place when �t reaches some
particular values. In this case the thresholds are two given by p1 and p2 (see Fig. 3.3
as compared with Fig. 3.2).

3.1.3 Dissipations Leading to a Commutability Result

We now slightly modify the dissipation in the example of the previous section. This
will produce a ‘commutatibility’ result in the quasistatic motion outlined above;
i.e., the process of homogenization and of damage can be interchanged. The first
such modification is obtained by imposing that the domain of the dissipation be the
set of intervals; i.e.,

D".A/ D C1 if A is not an interval,
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while D" remains unchanged otherwise. In this case, in the process described in
Sect. 3.1.2, we may remark that, at fixed ", the minimal At" will converge to some
interval At for which we may pass to the limit obtaining the problem

min
n
Fhom;At .u/C � jAt j W u.0/ D 0; u.1/ D t

o
;

where

� D �1 C �2

2
;

since

lim
"!0

D".A
t
"/ D � jAt j:

Note that in the previous example this passage was not possible since the At" thus
defined do not converge to a limit set.

We may conclude then that At minimizes the corresponding

mhom.t/ WD min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t; A subinterval of .0; 1/

o

D min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t; A � .0; 1/

o

D f ��
hom.t/; (3.24)

where

fhom.z/ D min
˚
˛z2 C �; ˇz2

�
; (3.25)

which describes the damage process corresponding to the limit homogenized
functionals. Note that in the limit problem we may remove the constraint that A
be an interval, since we have already remarked that solutions satisfying such a
constraint exist.

3.1.3.1 Brutal Damage

We consider another dissipation, with

D".A/ D
Z
A

�
�x
"

�
dx C � #.@A\ Œ0; 1�/;

so that it is finite only on finite unions of intervals.
We may compute the limit of m".t/ as in Sect. 3.1.2, noticing that, for a finite

union of intervals, we may pass to the limit (taking possibly into account that
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the number of intervals may decrease in the limit process), and conclude that the
limit damage process corresponds to the functionals Fhom;A and the homogenized
dissipation

Dhom.A/ D � jAj C �#.@A \ Œ0; 1�/:

Correspondingly, we can compute the minima

mhom.t/ D min
n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D t;

A union of subintervals of .0; 1/
o
;

as

mhom.t/ D min
n
m0

hom.t/;m
1
hom.t/

o
;

wherem0
hom corresponds to no damage,

m0
hom.t/ D min

n
Fhom;;.u/ W u.0/ D 0; u.1/ D t/

o
D ˇt2;

and m1
hom corresponds to A a single interval (not being energetically convenient to

have more than one interval),

m1
hom.t/ D inf

n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D t;

A subinterval of .0; 1/; A ¤ ;
o

D min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t;

A subinterval of .0; 1/
o

C 2�

D f ��
hom.t/C 2�; (3.26)

with fhom as in (3.25).
The plot of mhom is reproduced in Fig. 3.5. Note that we follow the curve

corresponding to undamaged materials until we reach the graph of m1
hom, which

corresponds to a positive value of the damage area; i.e., the damage is ‘brutal’ (once
it is convenient to damage, we damage a large region). Correspondingly, in Fig. 3.6
we plot the value of m0

hom and the derivative of the homogenized energy E along a
cycle in dependence of the boundary condition g D g.t/.
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t

mhom
Fig. 3.5 The minimal energy
mhom.t /

g

m'hom

Fig. 3.6 Plot of m0

hom.t / and
derivative of the energy along
a cycle

3.1.4 Conditions for Commutability

Motivated by the examples above, we may derive a criterion of commutability of
� -convergence and quasi-static motion, which we state in this particular case but
is immediately generalized to more abstract situations. This easily follows from the
remark that in order to pass to the limit we have to have the convergence of the
minimum problems

min
n
F";A.u/CD".A/ W u.0/ D 0; u.1/ D g.t/; B" � A

o
(3.27)

with B" Borel sets converging to B (in (3.1) B" D SfAs W s < tg) to

min
n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D g.t/; B � A

o
: (3.28)

Proposition 3.1 (A commutativity criterion). Let B" ! B and let

G".u; A/ D
(
F";A.u/CD".A/ if B" � A

C1 otherwise
(3.29)
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Ghom.u; A/ D
(
Fhom;A.u/CDhom.A/ if B � A

C1 otherwise:
(3.30)

Suppose that G" � -converges to Ghom with respect to the converge L2 � L1-
convergence (the latter is understood as the convergence of the characteristic
functions of sets). Then if a sequence of solutions .ut"; A

t
"/ to the evolutions related

to the energies F";A, dissipationD" and boundary conditions given by g is such that
(up to subsequences) for all t ut" converges to some ut in L2 and Bt

" D SfAs" W
s < tg converges to some Bt in L1, then it converges (up to subsequences) to
a solution to the evolution related to the energies Fhom;A, dissipation Dhom and
boundary conditions given by g.

This criterion follows from the fundamental theorem of � -convergence, upon
noting that the boundary conditions are compatible with the convergence of minima
regardless to the constraint B" � A.

Remark 3.2. We may apply Proposition 3.1 to the two examples in Sect. 3.1.3.
In fact, in both cases the boundedness of the dissipation implies that At" and hence
Bt
" are (increasing with t) intervals (or finite union of intervals in the second case),

so that the pre-compactness of Bt
" is guaranteed. The convergence for all t follows

from an application of Helly’s theorem.
We cannot apply Proposition 3.1 to the solutions in Sect. 3.1.2. Indeed, except

for the trivial cases when At" D ; or At" D .0; 1/, these do not converge strongly in
L1 but only weakly.

3.1.5 Relaxed Evolution

The criterion above suggests, in case it is not satisfied, to examine the behavior
of the functionals (3.29) with respect to the L2 � L1-weak convergence. In this
case, the limit of a sequence of characteristic functions may not be a characteristic
function itself, so that the domain of the � -limit will be the space of pairs .u; 	/,
with 0 � 	 � 1. This formulation will necessarily be more complex, but will capture
the behavior of all sequences At"; u

t
".

Proposition 3.2 (Relaxed total energies). If hypothesis (3.16) holds, then the
� -limit of the functionals (3.29) with respect to the L2 � L1-weak convergence
is given by the functional (r stands for ‘relaxed’)

Gr
hom.u; 	/ D

Z
.0;1/

fhom.	; u
0/ dx C

Z
.0;1/

�hom.	/ dx; (3.31)



40 3 Parameterized Motion Driven by Global Minimization

where

fhom.	; z/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

2˛2ˇ1ˇ2

2	ˇ1ˇ2 C .1 � 2	/˛2ˇ1 C ˛2ˇ2
z2 if 0 � 	 � 1

2

2˛1˛2ˇ1

2.1� 	/˛1˛2 C .2	 � 1/˛2ˇ1 C ˛1ˇ1
z2 if 1

2
� 	 � 1

(3.32)

and the dissipation energy density is

�hom.	/ D

8̂
<̂
ˆ̂:
�2	 if 0 � 	 � 1

2

1
2
�2 C �1

�
	 � 1

2

�
if 1
2

� 	 � 1

(3.33)

Proof. We do not dwell on this proof, since it is a variation of the usual homog-
enization theorem. A lower bound is obtained by minimizing on each periodicity
cell. Upon scaling we are led to computing


.z; 	/ WD min
n Z

A

˛.y/ju0j2 dy C
Z
.0;1/nA

ˇ.y/ju0j2 dy C
Z
A

�.y/ dy W

A � .0; 1/; jAj D 	; u.0/ D 0; u.1/ D z
o
:

By a direct computation we get


.z; 	/ D fhom.	; z/C �hom.	/:

Since 
 is convex in the pair .z; 	/, its integral is lower semicontinuous in L2 �L1-
weak, and hence is a candidate for the � -liminf. The proof of the limsup inequality
is obtained by density, first dealing with the case when u is a piecewise-affine
function and 	 is a piecewise-constant function. ut
Remark 3.3. The limit of problems (3.27) with B" converging weakly to some 

will be of the form

min
n
Gr

hom.u; 	/ W u.0/ D 0; u.1/ D g.t/; 
 � 	
o
: (3.34)

As in Sect. 3.1.2, we only consider the case g.t/ D t , and the problem

mr.t/ D min
n
Gr

hom.u; 	/ W u.0/ D 0; u.1/ D t
o
: (3.35)

We have

mr.t/ D min
nZ 1

0

min
0�	�1

n
fhom.	; u

0/C�hom.	/
o

dx W u.0/ D 0; u.1/ D t
o
: (3.36)
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t

Fig. 3.7 Value of the
damage 	.t/

A direct computation shows that

min
0�	�1

n
fhom.	; z/C �hom.	/

o
D m.z/; (3.37)

withm the one in Sect. 3.1.2; hence, by the convexity ofm, we havemr.z/ D m.z/.
Moreover, again using the convexity of m, a solution is simply given by ut .x/ D tx
and correspondingly 	 D 	.t/ constant equal to the minimizer of (3.37) with z D t ;
namely,

	.t/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

0 if jt j � p2
ˇ

p22
�2

�
t
p2

� 1
ˇ

�
if p2

ˇ
< jt j < p2.ˇ1C˛2/

2ˇ1˛2

1
2

if p2.ˇ1C˛2/
2ˇ1˛2

� jt j � p1.ˇ1C˛2/
2ˇ1˛2

1C p21
�1

�
t
p1

� 1
˛

�
if p1.ˇ1C˛2/

2ˇ1˛2
< jt j < p1

˛

1 if jt j � p1
˛

(see Fig. 3.7). Note that we have

	.t/ D �1;min.t/C �2;min.t/

2

with �j;min given by (3.17) and (3.18). The solution with 	 constant corresponds to
equi-distributed damage. Note that we have infinitely many solutions, among which
the ones described above in terms of At1 and At2.



42 3 Parameterized Motion Driven by Global Minimization

3.2 Energetic Solutions for Rate-Independent Evolution

The examples in the previous theory can be framed in a general theory of
rate-independent variational evolution. We introduce some of the concepts of the
theory that are relevant to our presentation, without being precise in the hypotheses
on spaces and topologies.

Definition 3.2. Let F D F .t; �/ be a time-parameterized energy functional and
D be a dissipation functional, which we assume to be positively-homogeneous of
degree one; i.e. D.sU / D sD.U / if s > 0. Then U is an energetic solution for the
evolution inclusion

@D. PU /C @UF .t; U / 3 0
if the following two conditions hold:

(S) global stability for all t and OU we have

F .t; U.t// � F .t; OU /C D. OU � U.t//I

(E) energy inequality for all t

F .t; U.t//C
Z t

0

D. PU / � F .0; U.0//C
Z t

0

@sF .s; U.s// ds:

In this formula the integral
R t
0
D. PU /must be understood in the sense of measures,

and can be equivalently defined as

sup
n nX
iD1

D.U.ti /� U.ti�1// W 0 D t0 < t1 < � � � < tn D t
o
: (3.38)

IfU is an absolutely continuous function then the integral reduces to
R t
0 D.

PU .s// ds.

Remark 3.4 (Energy equality). Under mild assumptions, from (S) it can be deduced
that in (E) equality holds, so that we have an energy conservation identity. This
identity states that the difference of the energy at a final and an initial state equals
the difference of the work of the applied actions and the total dissipation along the
path.

Remark 3.5. In the case of damage we have U D .u; v/,

F .t; u; v/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

Z 1

0

�
˛vju0j2 C ˇ.1� v/ju0j2/ dx if v 2 f0; 1g a.e.;

u.0/ D 0; u.1/ D g.t/

C1 otherwise;
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and

D.U / D

8̂
ˆ̂<
ˆ̂̂:

�

Z 1

0

v dx if v 2 f0; 1g a.e.

C1 otherwise:

Condition (S) is meaningful only if OU D .u; v/ and U.t/ D .ut ; vt / satisfy v D �A
and vt D �At with At � A, so that (S) implies that ut and At are minimizers
for (3.1). Conversely, it can be checked that the solutions to the damage evolution
satisfy the energy inequality as an identity.

Remark 3.6 (Rate-independence). The requirement that D be positively homoge-
neous of degree one implies that the solution is rate-independent; i.e., that if
we consider a re-parameterization of the energy QF .t; U / D F .'.t/; U / via an
increasing diffeomorphism ', then the energetic solutions QU of the corresponding
evolution inclusion are exactly the QU .t/ D U.'.t// with U energetic solutions of
the corresponding evolution inclusion for F .

Example 3.1 (Mechanical play/hysteresis). The prototypical example of an evolu-
tion inclusion is by taking U D x 2 R and

F .t; x/ D x2

2
� tx; D.x/ D jxj:

In this case we can write explicitly @j Pxj C x � t 3 0 as

8̂
<̂
ˆ̂:

Px > 0 if x D t � 1
Px < 0 if x D t C 1

Px D 0 if t � 1 � x � t C 1:

The solution with x.0/ D x0 2 Œ�1; 1� is

x.t/ D
(
x0 if t � 1C x0

t � 1 if t > 1C x0:
(3.39)

If we take a non-monotone load g.t/ D T � jt � T j with T > 1C x0 and

F .t; x/ D x2

2
� g.t/x; D.x/ D jxj:

then the solution x is as above for t � T , and given solving @j PxjCx�.2T�t/ 3 0 by

x.t/ D
(
T � 1 ifT � t � T C 2

2T � t C 1 D g.t/C 1 if t � T C 2:
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g

x
Fig. 3.8 Hysteretic trajectory
x.t/ in dependence of g.t/

This solution shows a hysteretic behavior of this system, whose trajectory in the g-x
plane is represented in Fig. 3.8.

3.2.1 Solutions Obtained by Time Discretization

Energetic solutions can be obtained as limits of discrete schemes as follows: fix
� > 0 and defineU �

k recursively by setting U �
0 D U0, and choosingU �

k as a solution
of the minimum problem

min
OU

n
F .�k; OU /C D. OU � U �

k�1/
o
:

Define the continuous trajectory U �.t/ D U �
bt=�c. Under suitable assumptions, the

limits of (subsequences of) U � are energetic solution of the variational inclusion for
F and D .

Example 3.2 (Mechanical play). It is easy to check that the solutions in
Example 3.1 can be obtained by time-discretization, solving iteratively

min
n1
2
x2 � g.k�/x C jx � x�k�1j

o
:

In the case of x0 2 Œ�1; 1� and g.t/ D t the sequence fx�kg is non-decreasing and
hence x�k solves

min
n1
2
x2 � .k� � 1/x � x�k�1 W x � x�k�1

o
I

i.e.,

x�k D
(
x�k�1 if k� � 1 � x�k�1
k� C 1 if k� � 1 � x�k�1:
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Passing to the limit as � ! 0 we then obtain

x.t/ D
(
x0 if t � 1 � x0

t � 1 if t � 1 � x0;

which corresponds to the solution in (3.39).

Example 3.3 (Nonconvex mechanical play). We can consider a double-well
potential of the form

F .t; x/ D 1

2
minf.x � 1/2; .x C 1/2g � tx; D.x/ D jxj

with x0 2 Œ�2;�1�. Then the sequence x�k is increasing and minimizes

min
n1
2

minf.x � 1/2; .x C 1/2g � .k� � 1/x � x�k�1 W x � x�k�1
o
:

The solution satisfies

x�k D

8̂
<̂
ˆ̂:
x�k�1 if k� � 2 � x�k�1
k� � 2 if x�k�1 � k� � 2; k� � 1

k� if k� � 1

(with an ambiguity if k� D 1, in which case we may take equivalently x�k�1 D �1
or x�k�1 D 1). Passing to the limit we have either the solution

x.t/ D

8̂
<̂
ˆ̂:
x0 if t � x0 C 2

t � 2 if x0 � t � 1

t if t > 1

or the one equal to this except for 1 where x.1/ D 1. The graph of the solution is
pictured in Fig. 3.9.

Note that the solution is discontinuous at t D 1 and is not characterized
completely by the differential inclusion. In this case the discontinuity exactly at
jxj D 1 can be justified by the energy equality.

3.2.2 Stability

We can give a stability result with respect to � -convergence. As remarked in the
case of damage, the separate � -convergence of F" and D" may not be sufficient to
describe the limit of the corresponding variational motions.
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x

t

1

-1
x0

Fig. 3.9 The trajectory x.t/
in Example 3.3

Theorem 3.1. Suppose that F and D are lower bounds for F" and D", that U" are
energetic solutions converging pointwise to some U as " ! 0, that the initial data
are well-prepared; i.e., that

lim
"!0

F".0; U".0// D F .0; U.0//;

that we have convergence of the external actions

lim
"!0

Z t

0

@sF".s; U".s// ds D
Z t

0

@sF .s; U.s// ds for all t;

and that the following mutual recovery sequence existence condition holds: for all
t and all OU there exists a sequence OU" such that

lim sup
"!0

�
F".t; OU"/� F".t; U".t//C D". OU" � U".t//

�

� F .t; OU /� F .t; U.t//C D. OU � U.t//: (3.40)

Then U is an energetic solution for the limit energy and dissipation.

Proof. Let 0 D t0 < t1 < � � � < tn D t ; by the liminf inequality for D" and (3.38)
we then have

nX
iD1

D.U.ti /� U.ti�1// � lim inf
"!0

nX
iD1

D".U".ti /� U".ti�1// � lim inf
"!0

Z t

0

D". PU"/:

Taking into account the liminf inequality for F" and the convergence hypotheses on
initial data and external actions we then obtain
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F .t; U.t//C
Z t

0

D. PU .s// ds � lim inf
"!0

�
F".0; U".0//C

Z t

0

@sF".s; U".s// ds
�

D F .0; U.0//C
Z t

0

@sF .s; U.s// ds

so that (E) holds.
Take any test OU and use the mutual recovery sequence OU" to obtain

F .t; OU / � F .t; U.t//C D. OU � U.t// � 0I
i.e. the inequality in (S), from the same inequality for U". ut
Proposition 3.3 (Necessary and sufficient conditions).

(i) Let F" � -converge to F and D" converge continuously to D . Then the mutual
recovery sequence condition is satisfied;.

(ii) Assume that F" and D" � -converge to F and D , that U".t/ is a recovery
sequence for F" at U.t/ and that the mutual recovery sequence condition holds
with OU" ! OU . Then G".V / D F".t; V / C D".V � U".t// � -converges to
G .V / D F .t; U.t//C D.V � U.t//.

Proof. (i) Follows by taking OU" any recovery sequence for F".t; OU /.
(ii) Is an immediate consequence of the fact that F C D is a lower bound for

F"CD", while the mutual recovery sequence provides a recovery sequence for
F .t; U.t//C D.V � U.t//. ut

Example 3.4 (An example with relaxed evolution). In R
2 withU D .x; y/, consider

the initial datum u".0/ D .0; 0/ and the energy and dissipation

F".t; U / D 1

2
x2 C 1

2"2
.y � "x/2 � tx; D".U / D jxj C 1

"
jyj

with � -limits

F .t; U / D 1

2
x2 � tx; D.U / D jxj

with domain fy D 0g.
The solution to the differential inclusion for F and D with initial datum .0; 0/

is given by x.t/ as in (3.39) with x0 D 0, and y.t/ D 0. On the other hand, the
solutions to the differential inclusions U" can be computed explicitly, and they tend
to U D .x; y/ defined by y.t/ D 0 and

x.t/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

0 if t � 1

t � 1
2

if 1 � t � 3

t � 2 if t � 3:
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In this case we do not have convergence of the solutions. However, we can
compute the � -limit of the sum F" C D", whose domain is fy D 0g. Recovery
sequences for .x; 0/ can be looked for of the form .x; "z/. By minimizing in z we
easily get that this � -limit is

G .x/ D 1

2
x2 � tx C jxj C  .x/;

where

 .x/ D min
n1
2
.z � x/2 C jzj

o
D min

nx2
2
;
1

2
C jjxj � 1j

o
;

whose derivative is

 0.x/ D .x ^ 1/ _ .�1/:

It is easily seen that the function x.t/ above is the solution of

@j Pxj C F 0
0.x/ D @j Pxj C x � t C  0.x/ 3 0;

where F0.x/ D G .x/ � jxj D 1
2
x2 � tx C  .x/. This energy F0 can then be

regarded as the relaxed effective energy describing the limit behavior of the system.

3.3 Francfort and Marigo’s Variational Theory of Fracture

A very interesting application of the theory outlined above is to variational models
of Fracture following the formulation given by Griffith in the 1920s. In this case it
is maybe clearer the definition via time-discrete motions (see Sect. 3.2.1) given as
follows.

We consider the antiplane case where the variable u representing the displace-
ment is scalar. By ˝ we denote a bounded open subset of Rn which will be the
reference configuration of a linearly elastic material subject to brittle fracture as a
consequence of a varying boundary condition u D g.t/ on @˝ . K will be a closed
set representing the crack location in the reference configuration. We consider the
case g.0/ D 0, and we set K0 D ;.

With fixed � > 0 we define u�0 D 0, K�
0 D K0 and u�k, K�

k recursively as
minimizers of the problem

min
nZ

˝nK
jruj2dx C H n�1.K nK�

k�1/ W K�
k�1 � K D K � ˝;

u 2 H1.˝ nK/; u D g.t/ on @˝ nK
o
; (3.41)
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where H n�1 denotes the .n�1/-dimensional Hausdorff measure. In this wayK�
k is

an increasing sequence of closed sets. Note that part of the crack may also lie on the
boundary of ˝ , in which case the boundary condition is satisfied only on @˝ nK .

In this formulation we have an elastic energy defined by

F .t; u; K/ D

8̂
ˆ̂<
ˆ̂̂:

Z
˝nK

jruj2dx if u 2 H1.˝ nK/ and u D g.t/ on @˝ nK

C1 otherwise;

and a dissipation

D.K/ D
(

H n�1.K/ ifK D K � ˝

C1 otherwise:

The existence of minimizing pairs for .u; K/ is not at all trivial. One way
is by using the theory of SBV functions; i.e., functions of bounded variation u
whose distributional derivative is a measure that can be written as a sum of a
measure absolutely continuous with respect to the Lebesgue measure and a measure
absolutely continuous with respect to the restriction of the .n � 1/-dimensional
Hausdorff measure to the complement of the Lebesgue points of u, the latter denoted
by S.u/. For such functions the approximate gradient ru exists at almost all points.
We can therefore define for all closedK the energy

EK.u/ D
Z
˝nK

jruj2 dx C H n�1.S.u/\ .˝ nK//: (3.42)

Such energies are L1-lower semicontinuous and coercive, so that existence of
weak solutions in SBV.˝/ are ensured from the direct methods of the Calculus
of Variations. Regularity results give that H d�1.S.u/ n S.u// D 0 for minimizing
u, so that to a minimizing u 2 SBV.˝ nK�

k�1/ of

min
n
EK�

k�1
.u/ W u 2 SBV.˝ nK�

k�1/; u D g.t/ on @˝ n .S.u/[K�
k�1/

o
(3.43)

corresponds a minimizing pairK�
k D K�

k�1[S.u/ and u�k D uj˝nK�
k

2 H1.˝ nK�
k/

for (3.41).
The passage from a discrete trajectory u� to a continuous one u for all t letting

� ! 0 is possible thanks to some monotonicity arguments. The delicate step is the
proof that such u still satisfies the global stability property, which is ensured by a
transfer lemma (the Francfort–Larsen transfer lemma), which allows to approximate
a test function Ou appearing in the limit stability estimate with a sequence Ou� that can
be used in the stability estimate holding for u� .t/, which then carries to the limit.
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Remark 3.7 (Existence of fractured solutions). Note that for large enough values of
the boundary condition g.t/ we will always have a solution with Kt ¤ ;. Indeed,
consider the case g.t/ D tg0 with g0 ¤ 0 on @˝ . IfKt D ; then the corresponding
ut is a minimizer of

min
nZ

˝

jruj2 dx W u D tg0 on @˝
o

D t2 min
nZ

˝

jruj2 dx W u D g0 on @˝
o

DW t2C0:

On the other hand, we can use as test function u D 0 and as test set K D @˝

in (3.41), for which the total energy isC1 D H n�1.@˝/. This shows that for t2C0 >
C1 we cannot have K D ;.

Remark 3.8 (The one-dimensional case). In the one-dimensional case, the
functional E reduces to the energy F obtained as a limit in Sect. 2.6 with
the normalization 2J 00.0/ D J.1/ D 1, since H 0.K/ D #.K/. Note that in
this case the domain of E reduces to piecewise-H1 functions. If ˝ D .0; 1/ then
the time-continuous solutions are of the form

.ut .x/;Kt / D

8̂
<̂
ˆ̂:

.g.t/x;;/ for t � tc

�
g.t/�.x0;1/.x/; fx0g

�
for t > tc;

or

.ut .x/;Kt / D

8̂
<̂
ˆ̂:

.g.t/x;;/ for < tc

�
g.t/�.x0;1/.x/; fx0g

�
for t � tc ;

where x0 2 Œ0; 1� and tc is any value with g.tc/ D 1 and g.s/ � 1 for s < tc . This
non-uniqueness is due to the fact that for g.t/ D 1 we have two possible types of
solutions u.x/ D x and u.x/ D �.x0;1/.x/.

3.3.1 Homogenization of Fracture

The interpretation of fracture energies as functionals defined in SBV allows
to consider the L1-convergence in SBV along sequences with equibounded
energy (3.42). With respect to such a convergence we can consider stability issues
for energies and dissipations related to the oscillating total energy

E".u/ D
Z
˝nK

ab

�x
"

�
jruj2 dx C

Z
S.u/\.˝nK/

af

�x
"

�
dH n�1
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(here the coefficients ab and af , where b stands for bulk and f for fracture, are
periodic functions). In this case the limit of the total energies E" is the sum of the
energies obtained separately as limits of the energy and the dissipation parts (with
respect to the same convergence), and has the form

Ehom.u/ D
Z
˝nK

hAhomru;rui dx C
Z
S.u/\.˝nK/

'hom.�/dH n�1;

where � denotes the measure-theoretical normal to S.u/. Note that the homogenized
Ahom is the same given by the homogenization process in H1, while 'hom is an
effective fracture energies obtained by optimization on oscillating fractures, related
to the homogenization of perimeter functionals. Thanks to this remark it is possible
to show that the energetic solutions for E" converge to energetic solutions of
Ehom. In terms of the construction of mutual recovery sequences this is possible
since internal energy and dissipation can be optimized separately, contrary to what
happens for the damage case, where both terms involve bulk integrals.

Appendix

Analyses of damage models linked to our presentation are contained in the work
by Francfort and Marigo [5]. The higher-dimensional case is studied in a paper by
Francfort and Garroni [3]. A threshold-based formulation is introduced by Garroni
and Larsen [7]. The examples in Sect. 3.1.3 have been part of the course exam of
B. Cassano and D. Sarrocco at Sapienza University in Rome.

An analysis of rate-independent processes is contained in the review article by
Mielke [8]. The definitions given here can be traced back to the works by Mielke,
Theil and Levitas [10] and [11]. The stability with respect to � -convergence is
analyzed in the paper by Mielke, Roubiček, and Stefanelli [9]. Most of Sect. 3.2 is
taken from a lecture given by Ulisse Stefanelli during the course at the University of
Pavia. The homogenization examples in Sect. 3.1, framed in the theory of energetic
solutions, are contained in the paper [2]

An account of the variational theory of fracture (introduced in [6]) is contained
in the book by Bourdin et al. [1]. The fundamental transfer lemma is contained in
the seminal paper by Francfort and Larsen [4].
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