
Chapter 2
Global Minimization

The issues related to the behavior of global minimization problems along a sequence
of functionals F" are by now well understood, and mainly rely on the concept of
� -limit. In this chapter we review this notion, which will be the starting point
of our analysis. We will mainly be interested in the properties of � -limits as the
convergence of minimization problems is concerned; further properties of � -limits
will be recalled when necessary.

2.1 Upper and Lower Bounds

Here and afterwards F" will be functionals defined on a separable metric (or
metrizable) space X , if not further specified.

Definition 2.1 (Lower bound). We say that F is a lower bound for the family
.F"/ if for all u 2 X we have

F.u/ � lim inf
"!0

F".u"/ for all u" ! u; (LB)

or, equivalently, F.u/ � F".u"/C o.1/ as " ! 0 for all u" ! u.

The inequality (LB) is usually referred to as the liminf inequality.
If F is a lower bound we obtain a lower bound also for minimum problems on

compact sets.

Proposition 2.1. Let F be a lower bound for F" and K be a compact subset of X .
Then

inf
K
F � lim inf

"!0
inf
K
F": (2.1)
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8 2 Global Minimization

Proof. Let u"k 2 K be such that u"k ! u and

lim
k
F"k .u"k / D lim inf

"!0
inf
K
F":

We set

Qu" D
(

u"k if " D "k

u otherwise:

Then by (LB) we have

inf
K
F � F.u/ � lim inf

"!0
F".Qu"/ � lim

k
F"k .u"k / D lim inf

"!0
inf
K
F"; (2.2)

as desired. ut
Remark 2.1. Note that the hypothesis that K be compact cannot altogether be
removed. A trivial example on the real line is:

F".x/ D
(

�1 if x D 1="

0 otherwise:

Then F D 0 is a lower bound according to Definition 2.1, but (2.1) fails if we take
R in the place of K .

Remark 2.2. The hypothesis thatK be compact can be substituted by the hypothesis
that K be closed and the sequence .F"/ be equi-coercive; i.e., that

if sup" F".u"/ < C1 then .u"/ is precompact, (2.3)

the proof being the same.

Definition 2.2 (Upper bound). We say that F is an upper bound for the family
.F"/ if for all u 2 X we have

there exists u" ! u such that F.u/ � lim sup
"!0

F".u"/; (UB)

or, equivalently, F.u/ � F".u"/C o.1/ as " ! 0.

The inequality (UB) is usually referred to as the limsup inequality.
If F is an upper bound for F" we obtain an upper bound also for the correspond-

ing minimum problems on open sets.

Proposition 2.2. Let F be an upper bound for F" and A be an open subset of X .
Then
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inf
A
F � lim sup

"!0

inf
A
F": (2.4)

Proof. The proof is immediately derived from the definition after remarking that if
u 2 A then we may suppose also that u" 2 A, so that

F.u/ � lim sup
"!0

F".u"/ � lim sup
"!0

inf
A
F";

and (2.4) follows by the arbitrariness of u 2 A. ut
Remark 2.3. Again, note that the hypothesis that A be open cannot be removed.
A trivial example on the real line is:

F".x/ D
(
1 if x D 0

0 otherwise

(independent of "). Then F D 0 is an upper bound according to Definition 2.2 (and
also a lower bound!), but (2.4) fails taking A D f0g.

Note that in the remark above 0 is an upper bound for F" at 0 even though
F".0/ D 1 for all ", which trivially shows that an upper bound at a point can be
actually (much) lower that any element of the family F" at that point.

2.2 � -Convergence

In this section we introduce the concept of � -limit.

Definition 2.3 (� -limit). We say that F is the � -limit of the sequence .F"/ if it is
both a lower and an upper bound according to Definitions 2.1 and 2.2.

If (LB) and (UB) hold at a point u then we say that F is the � -limit at u, and we
write

F.u/ D � - lim
"!0

F".u/:

Note that this notation does not imply that u is in any of the domains of F", even if
F.u/ is finite.

Remark 2.4 (Alternate upper-bound inequalities). If F is a lower bound then
requiring that (UB) holds is equivalent to any of the following

there exists u" ! u such that F.u/ D lim
"!0

F".u"/I (RS)

for all � > 0 there exists u" ! u such thatF.u/C � � lim sup
"!0

F".u"/: (AUB)
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The latter is called the approximate limsup inequality, and is more handy in
computations. A sequence satisfying (RS) is called a recovery sequence. The
construction of a recovery sequence is linked to an ansatz on its form. The
description of this ansatz gives an insight of the relevant features of the energies
(oscillations, concentration, etc.) and is usually given on a subclass of u for which it
is easier to prove its validity, while for general u one proceeds by a density argument.

Example 2.1. We analyze some simple examples on the real line.

1. From Remark 2.3 we see that the constant sequence

F".x/ D
(
1 ifx D 0

0 otherwise

� -converges to the constant 0; in particular this is a constant sequence not
converging to itself.

2. The sequence

F".x/ D
(
1 ifx D "

0 otherwise

again � -converges to the constant 0. This is clearly a lower and an upper bound
at all x ¤ 0. At x D 0 any sequence x" ¤ " is a recovery sequence.

3. The sequence

F".x/ D
(

�1 if x D "

0 otherwise

� -converges to

F.x/ D
(

�1 ifx D 0

0 otherwise:

Again, F is clearly a lower and an upper bound at all x ¤ 0. At x D 0 the
sequence x" D " is a recovery sequence.

4. Take the sum of the energies in Examples 2.2 and 2.3 above. This is identically
0, so is its limit, while the sum of the � -limits is the function F in Example 2.3.
The same function F is obtained as the � -limit by taking the function G".x/ D
F".x/C F".�x/ (F" in Example 2.3).

5. Let F".x/ D sin.x="/. Then the � -limit is the constant �1. This is clearly a
lower bound. A recovery sequence for a fixed x is x" D 2�"bx=.2�"/c � "�=2

(btc is the integer part of t).

The following fundamental property of � -convergence derives directly from its
definition.
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Proposition 2.3 (Stability under continuous perturbations). Let F" � -converge
to F and let G" converge continuously to G (i.e., G".u"/ ! G.u/ if u" ! u); then
F" CG" � -converges to F CG.

Note that this proposition applies to G" D G if G is continuous, but is in
general false for G" D G even if G is lower semicontinuous (take G" D F as
in Example 2.1(3), with F" D �F ).

Example 2.2. The functions sin.x="/C x2 C 1 � -converge to x2. In this case we
may apply the proposition above with F".x/ D sin.x="/ (see Example 2.1(5))
and G".x/ D x2 C 1. Note for future reference that F" has countably many local
minimizers, which tend to be dense in the real line, while F has only one global
minimizer.

It may be useful to define the lower and upper � -limits, so that the existence of
a � -limit can be viewed as their equality.

Definition 2.4 (Lower and upper � -limits). We define

� - lim inf
"!0

F".u/ D infflim inf
"!0

F".u"/ W u" ! ug (2.5)

� - lim sup
"!0

F".u/ D infflim sup
"!0

F".u"/ W u" ! ug: (2.6)

Remark 2.5. 1. We immediately obtain that the � -limit exists at a point u if and
only if

� - lim inf
"!0

F".u/ D � - lim sup
"!0

F".u/:

2. Comparing with the trivial sequence u" D u we obtain

� - lim inf
"!0

F".u/ � lim inf
"!0

F".u/

(and analogously for the � - lim sup). More in general, note that the � -limit
depends on the topology on X . If we change topology, converging sequences
are different and the value of the � -limit changes. A weaker topology will have
more converging sequences and the value will decrease, a stronger topology will
have less converging sequences and the value will increase. The pointwise limit
corresponds to the � -limit with respect to the discrete topology.

3. From the formulas above it is immediate to check that a constant sequence F" D
F � -converges to itself if and only if F is lower semicontinuous; i.e., (LB) holds
with F" D F . Indeed (LB) is equivalent to the validity of (2.5), while F is always
an upper bound. More in general, a constant sequence F" D F converges to the
lower-semicontinuous envelope F of F defined by
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F D maxfG W G � F;G is lower semicontinuousgI

in particular the � -limit is a lower-semicontinuous function.
4. It may be convenient to notice that the upper and lower � -limits are

lower-semicontinuous functions and, with the notation just introduced, that

� - lim inf
"!0

F".u/ D � - lim inf
"!0

F".u/ (2.7)

� - lim sup
"!0

F".u/ D � - lim sup
"!0

F".u/ I (2.8)

that is, � -limits are unchanged upon substitution of F" with its lower-
semicontinuous envelope. These properties are an important observation for the
actual computation of the � -limit, since in many cases lower-semicontinuous
envelopes satisfy structural properties that make them easier to handle. As an
example, we may consider (homogeneous) integral functionals of the form

F.u/ D
Z
˝

f .u/ dx;

defined on L1.˝/ equipped with the weak topology. Under some growth
conditions, the � -limits can be computed with respect to the weak topology
on bounded sets of L1.˝/, which is metrizable. In this case, the lower-
semicontinuous envelope of F is

F.u/ D
Z
˝

f ��.u/ dx;

where f �� is the convex and lower-semicontinuous envelope of f ; i.e.,

f �� D maxfg W g � f; g is lower-semicontinuous and convexg:

In particular, convexity is a necessary condition for a functional to be a � -limit
of the integral form above.

2.3 Convergence of Minimum Problems

As we have already remarked, the � -convergence of F" will not imply the
convergence of minimizers (or ‘almost minimizers’). It is necessary then to assume
a compactness (or ‘mild coerciveness’) property as follows:

there exists a precompact sequence .u"/ with F".u"/ D infF" C o.1/ as " ! 0;

(2.9)
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which is implied by the following stronger condition

there exists a compact set K such that infF" D infK F" for all " > 0: (2.10)

This condition is implied by the equi-coerciveness hypothesis (2.3); i.e., if for all
c there exists a compact set K such that the sublevel sets fF" � cg are all contained
in K . To check that (2.10) is stronger than (2.9) consider F".x/ D "ex on the real
line: any converging sequence satisfies (2.9) but (2.10) does not hold.

By arguing as for Propositions 2.1 and 2.2 we will deduce the convergence of
minima. This result is made precise in the following theorem.

Theorem 2.1 (Fundamental Theorem of � -convergence). Let .F"/ satisfy the
compactness property (2.9) and � -converge to F . Then

(i) F admits minimum, and minF D lim
"!0

infF".

(ii) If .u"k / is a minimizing sequence for some subsequence .F"k / (i.e., is such that
F"k .u"k / D infF" C o.1/ as " ! 0) which converges to some u, then its limit
point is a minimizer for F .

Proof. By condition (2.9) we can argue as in the proof of Proposition 2.1 withK D
X and also apply Proposition 2.2 with A D X to deduce that

infF � lim sup
"!0

infF" � lim inf
"!0

infF" � infF: (2.11)

We then have that there exists the limit

lim
"!0

infF" D infF:

Since from (2.9) there exists a minimizing sequence .u"/ from which we can extract
a converging subsequence, it suffices to prove (ii). We can then follow the proof of
Proposition 2.1 to deduce as in (2.2) that

infF � F.u/ � lim
k
F"k .u"k / D lim

"!0
infF" D infF I

i.e., F.u/ D infF as desired. ut
Corollary 2.1. In the hypotheses of Theorem 2.1 the minimizers of F are all the
limits of converging minimizing sequences.

Proof. If u is a limit of a converging minimizing sequence then it is a minimizer
of F by (ii) in Theorem 2.1. Conversely, if u is a minimizer of F , then every its
recovery sequence .u"/ is a minimizing sequence. ut
Remark 2.6. Trivially, it is not true that all minimizers of F are limits of minimizers
of F", since this is not true even for (locally) uniformly converging sequences on the
line. Take for example:
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(1) F".x/ D "x2 or F".x/ D "ex and F.x/ D 0. All points minimize the limit but
only x D 0 minimizes F" in the first case, and we have no minimizer for the
second case.

(2) F.x/ D .x2�1/2 and F".x/ D F.x/C".x�1/2. F is minimized by 1 and �1,
but the only minimum of F" is 1. Note, however, that �1 is the limit of strong
local minimizers for F".

2.4 An Example: Homogenization

The theory of homogenization of integral functionals is a very wide subject in itself.
We will refer to monographs on the subject for details if needed. In this context, we
want only to highlight some facts that will be used in the sequel and give a hint of
the behaviour in the case of elliptic energies.

We consider a W R
n ! Œ˛; ˇ�, with 0 < ˛ < ˇ < C1 1-periodic in the

coordinate directions, and the integrals

F".u/ D
Z
˝

a
�x
"

�
jruj2 dx

defined in H1.˝/, where ˝ is a bounded open subset of Rn. The computation of
the � -limit of F" is referred to as their homogenization, implying that a simpler
‘homogeneous’ (i.e., x-independent) functional can be used to capture the relevant
features of F". The limit can be computed both with respect to the L1- topology, but
it can also be improved; e.g., in 1D it coincides with the limit in the L1-topology.
This means that the liminf inequality holds for u" converging in the L1-topology,
while there exists a recovery sequence with u" tending to u in the L1 sense.

An upper bound is given by the pointwise limit of F", whose computation in this
case can be obtained by the following non-trivial but well-known result.

Proposition 2.4 (Riemann–Lebesgue lemma). The functions a".x/ D a
�x
"

�
converge weakly� in L1 to their average

a D
Z
.0;1/n

a.y/ dy: (2.12)

For fixed u the pointwise limit of F".u/ is then simply a
R
˝

jruj2 dx, which
therefore gives an upper bound for the � -limit.

In a one-dimensional setting, the � -limit is completely described by a, and is
given by

Fhom.u/ D a

Z
˝

ju0j2 dx; where a D
�Z 1

0

1

a.y/
dy

��1
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is the harmonic mean of a. We briefly sketch a proof which gives the ansatz for
recovery sequences. We check the limit inequality as u" ! u. Suppose, for the sake
of simplicity, that N D 1=" 2 N, and write

F".u"/ D
NX
iD1

Z "i

".i�1/
a
�x
"

�
ju0
"j2 dx

�
NX
iD1

"min
nZ 1

0

a.y/jv0j2 dy W v.1/ � v.0/ D u"."i/ � u".".i � 1//

"

o

D a

NX
iD1

"
ˇ̌̌u"."i/� u".".i � 1//

"

ˇ̌̌2
:

The inequality in the second line is obtained by minimizing over all functions w
with w.".i � 1// D u"."i/ and w.".i � 1// D u"."i/; the minimum problem in the
second line is obtained by scaling such w and using the periodicity of a, the third
line is a direct computation of the previous minimum.

If we define Qu" as the piecewise-affine interpolation of u" on "Z then the estimate
above shows that

F".u"/ � Fhom.Qu"/:

The functional on the right-hand side is independent of " and with a convex inte-
grand; hence, it is lower semicontinuous with respect to the weakH1-convergence.
Since Qu" weakly converges to u in H1, we then deduce

lim inf
"!0

F".u"/ � lim inf
"!0

Fhom.Qu"/ � Fhom.u/I

i.e., the liminf inequality. The ansatz for the upper bound is obtained by making
the lower bound sharp: recovery sequences oscillate around the target function in an
optimal way. If the target function u.x/ D zx is linear then a recovery sequence is
obtained by taking the 1-periodic function v minimizing

min
nZ 1

0

a.y/jv0 C 1j2 dy W v.0/ D v.1/ D 0
o

D a;

and setting

u".x/ D z
�
x C "v

�x
"

��
:

If u is affine then the construction is the same upon adding a constant. This
construction can be repeated up to an error of order " if u is piecewise affine, and
then carries over to arbitrary u by density.
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As a particular case, we can fix � 2 Œ0; 1� and consider the 1-periodic a given on
Œ0; 1/ by

a.y/ D
(
˛ if 0 � y < �

ˇ if � � y < 1:
(2.13)

In this case we have

a D ˛ˇ

�ˇ C .1 � �/˛
: (2.14)

Note that if a is a 1-periodic function with jfy 2 .0; 1/ W a.y/ D ˛gj D � and
jfy 2 .0; 1/ W a.y/ D ˇgj D 1� � then the � -limit is the same. Thus, in dimension
one, the limit depends only on the volume fraction of ˛.

In the higher-dimensional case the limit can still be described by an elliptic
integral, of the form

Fhom.u/ D
Z
˝

hAru;rui dx;

where A is a constant symmetric matrix with aI � A � aI (I the identity matrix),
with strict inequalities unless a is constant. If in two dimensions we take a.y1; y2/ D
a.y1/ (this is called a laminate in the first direction), then A is the diagonal matrix
diag.a; a/. Of course, if a.y1; y2/ D a.y2/ then the two values are interchanged. If a
takes only the values ˛ and ˇ in particular this shows that in the higher-dimensional
case the results depends on the geometry of fy 2 .0; 1/ W a.y/ D ˛g (often referred
to as the microgeometry of the problem) and not only on the volume fraction.

A class of meaningful minimum problems is obtained by considering as F" the
restriction of the previous functionals on the affine space X D ' C H1

0 .˝/ (i.e.,
we consider only functions with u D ' on @˝). It can be proved that this boundary
condition is ‘compatible’ with the � -limit; i.e., that the � -limit is the restriction to
X of the previous one or, equivalently, that recovery sequences for the first � -limit
can be taken satisfying the same boundary data as their limit. As a consequence
of Theorem 2.1 we then conclude that oscillating minimum problems for F" with
fixed boundary data are approximated by a simpler minimum problem with the
same boundary data. Note, however, that all energies, both F" and Fhom, are strictly
convex, which implies that they have no local non global minimizer.

Example 2.3. We can perturb the previous energies with some continuously con-
verging perturbation to obtain some additional convergence result. For example, we
can add perturbations of the form

G".u/ D
Z
˝

g
�x
"
; u

�
dx:
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On g we make the following hypothesis:
g is a Borel function 1-periodic in the first variable and uniformly Lipschitz in

the second one; i.e.,

jg.y; z/ � g.y; z0/j � Ljz � z0j:

We then have a perturbed homogenization result as follows.

Proposition 2.5. The functionals F" C G" � -converge in the L1-topology to the
functional Fhom CG, where

G.u/ D
Z
˝

g.u/ dx; and g.z/ D
Z
.0;1/n

g.y; z/ dy

is simply the average of g.�; z/.
Proof. By Proposition 2.3 it suffices to show that G" converge continuously with
respect to the L1-convergence. If u" ! u in L1 then

jG".u"/�G.u/j �
Z
˝

ˇ̌̌
g

�x
"
; u"

�
� g

�x
"
; u

�ˇ̌̌
dx C jG".u/�G.u/j

� L

Z
˝

ju" � uj dx C jG".u/�G.u/j:

It suffices then to show that G" converges pointwise to G. If u is piecewise constant
then this follows immediately from the Riemann–Lebesgue Lemma. Noting that
also jg.z/ � g.z0/j � Ljz � z0j we easily obtain the convergence for u 2 L1.˝/ by
the density of piecewise-constant functions. ut

Note that, with a slightly more technical proof, we can improve the Lipschitz
continuity condition to a local Lipschitz continuity of the form

jg.y; z/ � g.y; z0/j � L.1C jzj C jz0j/jz � z0j:

In particular, in dimension one we can apply the result for g.y; z/ D a.y/jzj2 and
we have that

Z
˝

a
�x
"

�
.ju0j2 C juj2/ dx

� -converges to

Z
˝

.aju0j2 C ajuj2/ dx:
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As a consequence of Theorem 2.1, under the condition of coerciveness

lim
z!˙1 infg.�; z/ D C1;

we obtain a convergence result as follows.

Proposition 2.6. The solutions to the minimum problems

min
n
F".u/CG".u/ W u 2 H1.˝/

o
converge (up to subsequences) to a constant function u, whose constant value
minimizes g.

Proof. The proof of the proposition follows immediately from Theorem 2.1, once
we observe that, by the coerciveness and continuity of g, a minimizer for that
function exists, and the constant function u defined above minimizes both Fhom

and G. ut
If g is differentiable then by computing the Euler–Lagrange equations of F"CG"

we conclude that we obtain solutions of

�
X

ij

@

@xi

�
a
�x
"

�@u"
@xi

�
C @

@u
g

�x
"
; u"

�
D 0 (2.15)

with Neumann boundary conditions, converging to the constant u.

2.5 Higher-Order � -Limits and a Choice Criterion

We have noticed that if the hypotheses of Theorem 2.1 are satisfied then every
minimum point of the � -limit F corresponds to a minimizing sequence for F"
(see Corollary 2.1). However, not all points may be limits of minimizers for F";
conversely, it may be interesting to discriminate between limits of minimizing
sequences with different speeds of convergence. To this end, we may look at scaled
� -limits. If we suppose that, e.g., u is a limit of a sequence .u"/ with

F".u"/ D minF CO."˛/ (2.16)

for some ˛ > 0 (but, of course, the rate of convergence may also not be polynomial),
then we may look at the � -limit of the scaled functionals

F ˛
" .u/ D F".u"/� minF

"˛
: (2.17)
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Suppose that F ˛
" � -converges to some F ˛ not taking the value �1. Then:

(i) The domain of F ˛ is contained in the set of minimizers of F (but may as well
be empty).

(ii) F ˛.u/ ¤ C1 if and only if there exists a recovery sequence for u satisfying
(2.16).

Moreover, we can apply Theorem 2.1 to F ˛
" and obtain the following result,

which gives a choice criterion among minimizers of F .

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied and the functionals in
(2.17) � -converge to some F ˛ not taking the value �1 and not identically C1.
Then

(i) infF" D minF C "˛ minF ˛ C o."˛/.
(ii) If F".u"/ D minF" C o."˛/ and u" ! u then u minimizes both F and F ˛.

Proof. We can apply Theorem 2.1 to a (subsequence of a) converging minimizing
sequence for F ˛

" ; i.e., a sequence satisfying hypothesis (ii). Its limit point u satisfies

F ˛.u/ D minF ˛ D lim
"!0

minF ˛
" D lim

"!0

minF" � minF

"˛
;

which proves (i). Since, as already remarked u is also a minimizer of F , we also
have (ii). ut
Example 2.4. Simple examples in the real line:

(1) If F".x/ D "x2 then F.x/ D 0. We have F ˛.x/ D 0 if 0 < ˛ < 1, F 1.x/ D x2

(if ˛ D 1), and

F ˛.x/ D
(
0 x D 0

C1 x ¤ 0

if ˛ > 1.
(2) If F".x/ D .x2 � 1/2 C ".x � 1/2 then F.x/ D .x2 � 1/2. We have

F ˛.x/ D
(
0 jxj D 1

C1 jxj ¤ 1

if 0 < ˛ < 1,

F 1.x/ D

8̂̂<
ˆ̂:
0 x D 1

4 x D �1
C1 jxj ¤ 1

if ˛ D 1,
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F ˛.x/ D
(
0 x D 1

C1 x ¤ 1

if ˛ > 1.

Remark 2.7. It must be observed that the functionals F ˛
" in Theorem 2.2 are often

equicoercive with respect to a stronger topology than the original F", so that we can
improve the convergence in (ii), as in the following example.

Example 2.5 (Gradient theory of phase transitions). Let

F".u/ D
Z
˝

.W.u/C "2jruj2/ dx (2.18)

be defined in L1.˝/ with domain in H1.˝/. Here W.u/ D .u2 � 1/2 (or a more
general double-well potential; i.e., a non-negative function vanishing exactly at ˙1).
Then .F"/ is equicoercive with respect to the weak L1-convergence. Since this
convergence is metrizable on bounded sets, we can consider L1.˝/ equipped with
this convergence. The � -limit is then simply

F 0.u/ D
Z
˝

W ��.u/ dx;

whereW �� is the convex envelope ofW ; i.e.W ��.u/ D ..u2�1/_0/2. All functions
with kuk1 � 1 are minimizers of F 0.

We take ˛ D 1 and consider

F 1
" .u/ D

Z
˝

�W.u/
"

C "jruj2
�
dx: (2.19)

Then .F 1
" / is equicoercive with respect to the strong L1-convergence, and its

� -limit is

F 1.u/ D cWH n�1.@fu D 1g \˝/ for u 2 BV.˝I f˙1g/; (2.20)

and C1 otherwise, where cW D 8=3 (in general cW D 2
R 1

�1
p
W.s/ ds). Here

we denote by BV.˝/ the space of functions of bounded variation in ˝ , and by
BV.˝I f˙1g/ the space of functions of bounded variation in ˝ taking only the
values ˙1.

This results states that recovery sequences .u"/ tend to sit in the bottom of the
wells (i.e., u 2 f˙1g) in order to make W.u"/

"
finite; however, every ‘phase transition’

costs a positive amount, which is optimized by balancing the effects of the two terms
in the integral. Indeed, by optimizing the interface between the phases fu D 1g and
fu D �1g one obtains the optimal ‘surface tension’ cW .
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In one-dimension the ansatz on the recovery sequences around a jump point x0
is that they are of the form

u".x/ D v
�x � x0

"

�
;

where v minimizes

min
nZ C1

�1
.W.v/C jv0j2/ dx W v.˙1/ D ˙1

o
D 2

Z 1

�1

p
W.s/ ds:

In more than one-dimension the ansatz becomes

u".x/ D v
�d.x; @fu D 1g/

"

�
;

where d.�; A/ is the signed distance from the set A. This means that around the
interface @fu D 1g the recovery sequence passes from �1 to C1 following the
one-dimensional profile of v essentially on a O."/-neighbourhood of @fu D 1g.

Note that:

(i) We have an improved convergence of recovery sequences from weak to strong
L1-convergence.

(ii) The domain of F 1 is almost disjoint from that of the F 1
" , the only two functions

in common being the constants ˙1.
(iii) In order to make the � -limit properly defined we have to use the space

of functions of bounded variation or, equivalently, (taking the constraint
u.x/ D ˙1 a.e. into account) the family of sets of finite perimeter if we take
as parameter the set A D fu D 1g. In this context the set @fu D 1g is properly
defined in a measure-theoretical way, as well as its .n � 1/-dimensional
Hausdorff measure. Even though @A may greatly differ from the topological
boundary of A, we will use the same symbol in order not to overburden the
notation. Note however that in our examples sets can be supposed to be smooth
enough, so that the two notions coincide.

Example 2.6 (Linearized fracture mechanics from interatomic potentials). We now
give an example in which the scaling of the variable, and not only of the energy, is
part of the problem. We consider a systems of one-dimensional nearest-neighbour
atomistic interactions through a Lennard-Jones type interaction. Note that, by the
one-dimensional nature of the problem, we can parameterize the position of the
atoms as an increasing function of the parameter.

Let be a C2 potential as in Fig. 2.1, with domain .0;C1/ (we set  .z/ D C1
for z � 0), minimum in 1 with  00.1/ > 0, convex in .0; z0/, concave in .z0;C1/

and tending to  .1/ < C1 at C1. A possible choice is Lennard-Jones potential

 .z/ D 1

z12
� 2

z6
:
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z

Fig. 2.1 A Lennard-Jones
potential

We consider the energy

�N .v/ D
NX
iD1

 .vi � vi�1/

with N 2 N, defined on vi with vi > vi�1. We introduce the small parameter
" D 1=N and identify the vector .v0; : : : ; vN / with a discrete function defined on
"Z \ Œ0; 1� (i.e., vi D v."i/). A non-trivial � -limit will be obtained by scaling and
rewriting the energy in terms of a scaled variable

u D p
"
�
v � id

"

�
I i.e., ui D p

".vi � i/:

This scaling can be justified noting that (up to additive constants) vi D i D id=" is
the absolute minimum of the energy. The scaled energies that we consider are

F".u/ D �N

� id
"

C up
"

�
� min�N D

NX
iD1

J
�ui � ui�1p

"

�
;

where

J.w/ D  .1C w/ � min D  .1C w/ �  .1/:

For convenience we extend the function to all R setting J.w/ D C1 if w � �1.
Again, the vector .u0; : : : ; uN / is identified with a discrete function defined on "Z\
Œ0; 1� or with its piecewise-affine interpolation. With this last identification, F" can
be viewed as functionals in L1.0; 1/, and their � -limit computed with respect to the
strong L1.0; 1/-topology.

We denote by w0 D 1C z0 the inflection point of J . It must be noted that for all
w > 0 we have
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#
n
i W ui � ui�1p

"
> w

o
� 1

J.w/
F".u/;

so that this number of indices is equi-bounded along sequences with equibounded
energy. We may therefore suppose that the corresponding points "i converge to a
finite set S � Œ0; 1�. For fixed w, we have J.w/ � cjwj2 on .�1;w� for some
c > 0; this gives, if A is compactly contained in .0; 1/ n S , that

F".u/ � c
X
i

�ui � ui�1p
"

�2 D c
X
i

"
�ui � ui�1

"

�2 � c

Z
A

ju0j2 dt

(the sum is extended to those i such that ui�ui�1p
"

� w). By the arbitrariness of A

in this estimate we then have that if u" ! u and F".u"/ � C < C1 then u is
piecewise-H1; i.e., there exists a finite set S � .0; 1/ such that u 2 H1..0; 1/ n S/;
we denote by S.u/ the minimal set such that u 2 H1..0; 1/ n S.u//. The reasoning
above also shows that

c

Z 1

0

ju0j2 dt C J.w/#.S.u//

is a lower bound for the � -limit of F". The � -limit on piecewise-H1.0; 1/ functions
can be computed by optimizing the choice of w and c, obtaining

F.u/ D 1

2
J 00.0/

Z 1

0

ju0j2 dt C J.1/#.S.u// (2.21)

with the constraint that uC > u� on S.u/. This functional is the one-dimensional
version of Griffith’s fracture energy for brittle materials, and coincides with a
functional introduced by Mumford–Shah in the framework of Image Reconstruction
(without the constraint uC > u�).

Note that the parameterization of vi on "Z would suggest to interpret vi � vi�1
as a different quotient and hence the change of variables ui D "vi � id . This would
give an energy of the form

QF".u/ D
NX
iD1

J
�ui � ui�1

"

�
I

it can be shown that QF" converges to the energy with domain the set of piecewise-
affine increasing u with u0 D 1 a.e., and for such u

QF .u/ D J.1/ #.S.u//:

This different choice of the parameterization hence only captures the fracture part
of the energy.
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Appendix

For an introduction to � -convergence we refer to the ‘elementary’ book [1]. More
examples, and an overview of the methods for the computation of � -limits can be
found in [2]. More detailed information on topological properties of � -convergence
are found in [6]. The use of higher-order � -limits is analyzed in [5].

Homogenization results are described in [3]. The reference to the original � -
limit of the gradient theory of phase transitions is [7]. A more detailed treatment of
Example 2.6 can be found in [4].
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