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Preface

These notes have been motivated by the interests of the author in variational
problems depending on small parameters, for some of which a description based
on a global minimization principle does not seem satisfactory. Such problems range
from the derivation of physical theories from first principles to numerical problems
involving energies with many local minima. Even though an asymptotic description
of related global minimization problems can be given in terms of � -convergence,
the � -limit often does not capture the behavior of local minimizers or of gradient
flows. This failure is sometimes mentioned as the proof that � -convergence is
‘wrong’. It may well be so. The author’s standpoint is that it might nevertheless
be a good starting point that may be systematically ‘corrected’.

The author’s program has been to examine the (few) results in the literature and
try to connect them with his own work in homogenization and discrete systems,
where often the local minimization issues are crucial due to the oscillations of the
energies. The directions of research have been to:

• find criteria that ensure the convergence of local minimizers and critical points. In
case this does not occur, then modify the � -limit into an equivalent � -expansion
(as introduced by the author and L. Truskinovsky) in order to match this
requirement. We note that in this way we ‘correct’ some limit theories, finding
(or ‘validating’) other ones present in the literature.

• modify the concept of local minimizer, so that it may be more ‘compatible’ with
the process of � -limit. One such concept is the small-scale stability of C. Larsen.

• treat evolution problems for energies with many local minima obtained by a
time-discrete scheme introducing the notion of ‘minimizing movements along
a sequence of functionals’. In this case the minimizing movement of the � -limit
can always be obtained by a choice of the space- and time-scale, but more
interesting behaviors can be obtained at a critical ratio between them. In many
cases a ‘critical scale’ can be computed together with an effective motion, from
which all other minimizing movements are obtained by scaling. Furthermore the
choice of suitable � -converging sequences in the scheme above allows to address
the issues of long-time behavior and backwards motion.
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viii Preface

• examine the general variational evolution results that may be related to these
minimizing movements, in particular recent theories of quasistatic motion and
gradient flow in metric spaces.

The content of the present notes is taken from a series of lectures which formed
a PhD course first given at Sapienza University of Rome from March to May 2012
and subsequently at the University of Pavia from November 2012 to January 2013.
Those courses were addressed to an audience of students, some of which with an
advanced background (meaning that they were already exposed to the main notions
of the Calculus of Variations and of � -convergence), and researchers in the field
of the Calculus of Variations and of Variational Evolution. This was an advanced
course in that it was meant to address some current (or future) research issues rather
than to discuss some subject systematically. Part of the notes has also been reworked
during a 10-h course at the University of Narvik on October 25–30, 2012.

The reader should bear in mind that the scope of the notes has been to foster
discussion on the problems presented rather than construct a general detailed
theory (a worthy and very interesting objective, though). Hence, we have focused
on highlighting the phenomena and issues linked to the interaction of scales,
local minimization and variational evolution, rather than on the details of the
� -convergence process, or the optimal hypotheses for the definition of gradient
flows, and so on, for which we refer to the existing literature.

These notes would not have been written without the personal constant encour-
agement of Adriana Garroni, who is also responsible for the organization of the PhD
course in Rome. I gratefully acknowledge the invitation of Enrico Vitali to give the
PhD course in Pavia, his many interesting comments and his delightful hospitality.
I greatly profited from the stimulating environments in both departments; special
thanks go to all the students who interacted during the course and the final exams. A
precious direct contribution has been given by Adriana Garroni for many ideas about
the homogenization of damage in Sect. 3.1, by Ulisse Stefanelli, who provided the
material for most of Sect. 3.2 by giving a beautiful lecture on the subject during the
course at Pavia, and by Luigi Ambrosio for the proofs in Sect. 11.1.1. I also acknowl-
edge the very fruitful discussions with Matteo Focardi, Chris Larsen, Alexander
Mielke, Matteo Novaga, Andrey Piatnitski, Giuseppe Savaré and Lev Truskinovsky,
which inspired many examples in these notes. I gratefully acknowledge a careful
reading of the manuscript by Giovanni Scilla.

Rome, Italy Andrea Braides
July 2013
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Chapter 1
Introduction

The theory of � -convergence was conceived by Ennio De Giorgi at the beginning
of the 1970s. It originated from previous notions of convergence related mainly to
elliptic operators, such asG-convergence orH -convergence, or to convex function-
als, as Mosco convergence. The main issue in the definition of � -convergence is
tracking the behaviour of global minimum problems (i.e., both of minimum values
and minimizers) of a sequence F" by the computation of an ‘effective’ minimum
problem involving the (suitably defined) � -limit of this sequence. Even though
the definition of such a limit is local (in that in defining its value at a point x
we only take into account sequences converging to x), its computation in general
does not describe the behaviour of local minimizers of F" (i.e., points x" which are
absolute minimizers of the restriction of F" to a small neighbourhood of the point
x" itself). The possible situation, in a very simplified picture, is that in Fig. 1.1,
where the original F" possess many local minimizers, some (or all) of which are
‘integrated out’ in the � -convergence process (note that this happens even when the
depth of the oscillations does not vanish), or the one pictured in Fig. 1.2, where the
limit F may present local minimizers that do not derive from local minimizers of
F". This over-simplification of the description given by the � -limit on some sets is
not uncommon.

A notable exception is when we have an isolated local minimizer x0 of the
� -limit: in that case we may track the behaviour of local minimizers as absolute
minimizers of F" restricted to a fixed neighbourhood of x0 and conclude the
existence of local minimizers for F" close to x0 (this situation is pictured in
Fig. 1.3). The possibility of the actual application of such a general principle has
been envisaged by Kohn and Sternberg, who first used it to deduce the existence of
local minimizers of the Allen–Cahn equation by exhibiting local area minimizing
sets.

A recent different but related direction of research concerns the study of gradient
flows. A general variational theory based on the solution of Euler schemes has
been developed by Ambrosio, Gigli and Savaré. The stability of such schemes by
� -perturbations is possible in the absence of local minimizers, which otherwise

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

F F

Fig. 1.1 Local minima may disappear in the limit

Fig. 1.2 Local minima may appear in the limit

F
F

Fig. 1.3 Strict local minima are limits of local minima

could generate ‘pinned’ flows (i.e., stationary solutions or solutions ‘attracted’ by a
local minimum) that are not detected by the � -limit. Conditions that guarantee such
a stability are of convexity type on the energies. These conditions can be removed
under other special assumptions on the gradient flows and for ‘well-prepared’ initial
data following the scheme proposed for Ginzburg–Landau energies by Sandier
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and Serfaty. Unfortunately, as remarked by those authors, the applicability of this
scheme is often hard to verify.

Taking the above-mentioned results as a starting point we have explored some
different directions. The standpoint of the analysis is that even though the � -limit
may not give the correct description of the effect of local minimizers, it may
nevertheless be ‘corrected’ in some systematic way.

After introducing the main notions of � -convergence in Chap. 2 and the general
results on convergence of global minimum problems, in Chap. 3 we have exam-
ined another question related to global minimization, concerning the behavior of
quasistatic motions, where the functions u" D u".t; x/ minimize at each value of
the parameter t (which is understood as a ‘slow time’) a total energy of the form
F".u; v/CD".v/ subject to a t-depending forcing condition. Here, v is an additional
parameter satisfying some monotonicity constraint andD" is a dissipation. We have
examined conditions that imply that the separate � -convergences of F" to F and of
D" to D guarantee the convergence of u" to an energetic solution of the quasistatic
motion related to F and D, as envisaged by Mielke, Roubiček and Stefanelli. In
general such conditions do not hold, and a relaxed formulation taking into account
the interaction of F" andD" must be used. In this case, quasistatic motion turns out
to be compatible with � -convergence provided that the latter is understood as the
� -convergence of the functionalsG".u; v/ D F".u; v/CD".v/ as depending on the
variable .u; v/.

A first issue beyond global minimization is introduced in Chap. 4 and takes into
account the notion of ‘equivalence by � -convergence’ as introduced and studied by
Braides and Truskinovsky: in the case that a � -limit or a � -development may be
insufficient to capture some desired feature of the minimum problems F", we may
introduce equivalent energies QF". These energies still integrate out the unimportant
details of F" but maintain the particular desired feature and are equivalent to the
originalF" in that they have the same � -limit or� -development. In our context, one
of the conditions that may be required to QF" is that they have the same landscape
of local minimizers as F". As an example, we highlight that an argument using a
� -development taking into account interactions between neighbouring transitions
recovers the local minimizers of Allen–Cahn energies, that are integrated out by the
usual sharp-interface models of phase transitions.

In Chap. 5 we have dealt with another case when global minimization arguments
can be ‘localized’, which is the case of isolated local minimizers of the � -limit,
as recalled above. We have noted that this principle can also be applied to
scaled energies (e.g., to higher-order � -limits, or to ‘blown-up’ energies) obtaining
existence of multiple local minimizers for the � -converging functionals.

Another issue is the problem of distinguishing ‘meaningful local minimizers’
from those that may ‘rightfully’ considered to disappear in the limit. Taking Fig. 1.1
as a pictorial example, local minimizers deriving from vanishing oscillations should
be considered as different from those ‘trapped’ by energy barriers. To that end, in
Chap. 6 we study the notion of small-scale stable state as recently introduced by
C. Larsen, and the related notion of stable sequences of energies (in the original
work of Larsen that notion is called "-stability, a terminology which we abandon in



4 1 Introduction

order to use the parameter " as a label for energies). We show that � -convergence
allows to exhibit classes of stable sequences. Furthermore, this notion allows to
define parameterized motion driven by a stability criterion.

Linked to the study of local minimizers is the variational motion defined by the
limit of Euler schemes at vanishing time step. This motion has been usually defined
for a single functional F (and is sometimes referred to as a minimizing movement)
by introducing a time step � and define discrete trajectories .u�k/ iteratively as
solutions of

min
n
F.u/C 1

2�
ku � u�k�1k2

o

(for simplicity assume that the energies be defined on a Hilbert space, and kuk be
the related norm). A minimizing movement is a suitably defined continuum limit
of such discrete trajectories. These concepts are introduced in Chap. 7 together with
their analogues for time-dependent energies.

In Chap. 8 we examine a variation of the minimizing-movement scheme with two
parameters: one is the time step � , and the second one is the parameter " (that we
may often regard as a space scale) appearing in the � -converging sequence F". The
Euler scheme is then applied at fixed � with " D ".�/ and F" in place of F , so that
the resulting discrete trajectories .u"k/, defined iteratively as solutions of

min
n
F".u/C 1

2�
ku � u"k�1k2

o
;

may depend on the interaction between the two scales " and � . A general result,
directly derived from the properties of � -convergence, allows to deduce the
existence of a ‘fast’ space scale such that the limit of the "-� Euler scheme is just a
minimizing movement for the � -limit. For ‘slow’ space scales the motion is often
‘pinned’ at local minimizers (e.g., for the F" pictured in Fig. 1.1). This observation
highlights the existence of one or more critical "-� regimes which capture the most
interesting features of the motion connected to these energies. We show examples
where an ‘effective’ motion is obtained such that all minimizing movements are
obtained by scaling of that motion.

An important class of minimizing movements are geometric minimizing move-
ments treated in Chap. 9. The prototype of such a geometric motion is the motion
by mean curvature obtained as a minimizing movement starting from the perimeter
functional by Almgren, Taylor and Wang. In that case the scheme must be
generalized to cover the case of an ‘asymmetric’ distance. This generalized scheme
can be applied to treat sequences of perimeter energies.

Another possible phenomenon for these Euler schemes for � -converging ener-
gies is the existence of more superposed time scales, whose motions can themselves
be interpreted as derived from Euler schemes for scaled functionals F"=�". More-
over, an appropriate choice of � -approximating sequences to a given F may be
used to define a ‘backward’ motion. These issues are examined in Chap. 10.
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Finally, in Chap. 11 we examine stability issues. The first one is linked to the
theory of gradient flows elaborated by Ambrosio, Gigli and Savaré. Using their
approach we can show that for convex equicoercive energies � -convergence always
commutes with the minimizing-movement scheme. This is also true for some non-
convex energies following the Sandier–Serfaty approach.

The notes are organized around some fundamental examples. We have analyzed
a number of prototypical � -converging sequences F" W X ! Œ�1;C1�,
highlighting different phenomena.

1. Elliptic homogenization:

F".u/ D
Z

˝

a
�x
"

�
jruj2 dx;

with a 1-periodic. In this case X is (a subset of) H1.˝/. The inhomogeneity a
represents the fine properties of a composite medium. These energies are convex
so that they do not possess local (non-global) minimizers. We may nevertheless
introduce non-trivial perturbations for which we exhibit an isolated local mini-
mizer for the � -limit, deducing existence of nontrivial local minimizers. Their
convexity ensures that for the functionals F" � -convergence commutes with the
minimizing movement schemes. As an application, we can deduce a parabolic
homogenization theorem. Conversely, they may be ‘incompatible’ with simple
types of dissipation, and lead to relaxed quasi static evolutions.

2. Oscillating metrics:

F".u/ D
Z 1

0

a
�u

"

�
ju0j dt;

with a as above andX a subspace ofW 1;1.Œ0; 1�IRn/, and the analog oscillating
perimeter energies

F".A/ D
Z

@A

a
�x
"

�
dH d�1.x/:

Here we are interested in the overall metric properties, or, in the case of
perimeters, in the averaged interfacial energies of a composite medium. These
energies have many local minimizers (which tend to be dense as " ! 0), which
are not stable as " ! 0. As a consequence, we have a variety of limit minimizing
movements that range from trivial (i.e., constant) motions to ‘crystalline’ motion,
passing through interesting regimes where the scale " interacts with the timescale
� . In the case of perimeter energies the limit motion is a kind of motion by
curvature with a discontinuous dependence of the velocity on the curvature.

3. Van-der-Waals theory of phase transitions:

F".u/ D
Z

˝

�
W.u/

"
C "jruj2

�
dx;
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with X D H1.˝/. Here W is a double-well potential with minima in ˙1. In
one-dimension this is an example where the limit sharp-interface energy has
many local minimizers (actually, all functions in the domain of the limit are
local minimizers), so that a correction of the � -limit may be required to take
into account the interaction of interfaces, through an exponentially decaying
term. It must be noted that this corrected energy also provides an example of
an exponentially scaled time-scale at which we have motion of interfaces (which
otherwise stay pinned).

4. Atomistic theories: for a 1D chain of atoms

F".u/ D
NX
iD1

J.ui � ui�1/;

where J is an interatomic potential (e.g., the Lennard-Jones potential), and ui
represents the position of the i -th atom of a chain ofN atoms, ordered with ui >
ui�1. Here " D 1=N . Starting from Lennard-Jones atomic interactions we show
that the resulting � -limit in one-dimension (the Mumford–Shah functional or
Griffith brittle fracture energy) must be modified to a Barenblatt cohesive fracture
energy to maintain the features of local minimizers. Even though these energies
are not convex, the Euler scheme commutes with � -convergence. Another
feature of the variational motion is the appearance of a rescaled time scale,
in which ‘multiple fractures’ (that correspond to ‘spurious’ local minimizers
introduced by the limit process) tend to interact. A similar behavior is shown
for Perona–Malik scaled energies, when J.z/ is of the form log.1C z2/.

We believe that the examples and results highlighted provide a rather complex
overview of the type of issues these notes want to be a stimulus to further analyze.



Chapter 2
Global Minimization

The issues related to the behavior of global minimization problems along a sequence
of functionals F" are by now well understood, and mainly rely on the concept of
� -limit. In this chapter we review this notion, which will be the starting point
of our analysis. We will mainly be interested in the properties of � -limits as the
convergence of minimization problems is concerned; further properties of � -limits
will be recalled when necessary.

2.1 Upper and Lower Bounds

Here and afterwards F" will be functionals defined on a separable metric (or
metrizable) space X , if not further specified.

Definition 2.1 (Lower bound). We say that F is a lower bound for the family
.F"/ if for all u 2 X we have

F.u/ � lim inf
"!0

F".u"/ for all u" ! u; (LB)

or, equivalently, F.u/ � F".u"/C o.1/ as " ! 0 for all u" ! u.

The inequality (LB) is usually referred to as the liminf inequality.
If F is a lower bound we obtain a lower bound also for minimum problems on

compact sets.

Proposition 2.1. Let F be a lower bound for F" and K be a compact subset of X .
Then

inf
K
F � lim inf

"!0
inf
K
F": (2.1)

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__2,
© Springer International Publishing Switzerland 2014
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Proof. Let u"k 2 K be such that u"k ! u and

lim
k
F"k .u"k / D lim inf

"!0
inf
K
F":

We set

Qu" D
(

u"k if " D "k

u otherwise:

Then by (LB) we have

inf
K
F � F.u/ � lim inf

"!0
F".Qu"/ � lim

k
F"k .u"k / D lim inf

"!0
inf
K
F"; (2.2)

as desired. ut
Remark 2.1. Note that the hypothesis that K be compact cannot altogether be
removed. A trivial example on the real line is:

F".x/ D
(

�1 if x D 1="

0 otherwise:

Then F D 0 is a lower bound according to Definition 2.1, but (2.1) fails if we take
R in the place of K .

Remark 2.2. The hypothesis thatK be compact can be substituted by the hypothesis
that K be closed and the sequence .F"/ be equi-coercive; i.e., that

if sup" F".u"/ < C1 then .u"/ is precompact, (2.3)

the proof being the same.

Definition 2.2 (Upper bound). We say that F is an upper bound for the family
.F"/ if for all u 2 X we have

there exists u" ! u such that F.u/ � lim sup
"!0

F".u"/; (UB)

or, equivalently, F.u/ � F".u"/C o.1/ as " ! 0.

The inequality (UB) is usually referred to as the limsup inequality.
If F is an upper bound for F" we obtain an upper bound also for the correspond-

ing minimum problems on open sets.

Proposition 2.2. Let F be an upper bound for F" and A be an open subset of X .
Then
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inf
A
F � lim sup

"!0

inf
A
F": (2.4)

Proof. The proof is immediately derived from the definition after remarking that if
u 2 A then we may suppose also that u" 2 A, so that

F.u/ � lim sup
"!0

F".u"/ � lim sup
"!0

inf
A
F";

and (2.4) follows by the arbitrariness of u 2 A. ut
Remark 2.3. Again, note that the hypothesis that A be open cannot be removed.
A trivial example on the real line is:

F".x/ D
(
1 if x D 0

0 otherwise

(independent of "). Then F D 0 is an upper bound according to Definition 2.2 (and
also a lower bound!), but (2.4) fails taking A D f0g.

Note that in the remark above 0 is an upper bound for F" at 0 even though
F".0/ D 1 for all ", which trivially shows that an upper bound at a point can be
actually (much) lower that any element of the family F" at that point.

2.2 � -Convergence

In this section we introduce the concept of � -limit.

Definition 2.3 (� -limit). We say that F is the � -limit of the sequence .F"/ if it is
both a lower and an upper bound according to Definitions 2.1 and 2.2.

If (LB) and (UB) hold at a point u then we say that F is the � -limit at u, and we
write

F.u/ D � - lim
"!0

F".u/:

Note that this notation does not imply that u is in any of the domains of F", even if
F.u/ is finite.

Remark 2.4 (Alternate upper-bound inequalities). If F is a lower bound then
requiring that (UB) holds is equivalent to any of the following

there exists u" ! u such that F.u/ D lim
"!0

F".u"/I (RS)

for all � > 0 there exists u" ! u such thatF.u/C � � lim sup
"!0

F".u"/: (AUB)
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The latter is called the approximate limsup inequality, and is more handy in
computations. A sequence satisfying (RS) is called a recovery sequence. The
construction of a recovery sequence is linked to an ansatz on its form. The
description of this ansatz gives an insight of the relevant features of the energies
(oscillations, concentration, etc.) and is usually given on a subclass of u for which it
is easier to prove its validity, while for general u one proceeds by a density argument.

Example 2.1. We analyze some simple examples on the real line.

1. From Remark 2.3 we see that the constant sequence

F".x/ D
(
1 ifx D 0

0 otherwise

� -converges to the constant 0; in particular this is a constant sequence not
converging to itself.

2. The sequence

F".x/ D
(
1 ifx D "

0 otherwise

again � -converges to the constant 0. This is clearly a lower and an upper bound
at all x ¤ 0. At x D 0 any sequence x" ¤ " is a recovery sequence.

3. The sequence

F".x/ D
(

�1 if x D "

0 otherwise

� -converges to

F.x/ D
(

�1 ifx D 0

0 otherwise:

Again, F is clearly a lower and an upper bound at all x ¤ 0. At x D 0 the
sequence x" D " is a recovery sequence.

4. Take the sum of the energies in Examples 2.2 and 2.3 above. This is identically
0, so is its limit, while the sum of the � -limits is the function F in Example 2.3.
The same function F is obtained as the � -limit by taking the function G".x/ D
F".x/C F".�x/ (F" in Example 2.3).

5. Let F".x/ D sin.x="/. Then the � -limit is the constant �1. This is clearly a
lower bound. A recovery sequence for a fixed x is x" D 2�"bx=.2�"/c � "�=2

(btc is the integer part of t).

The following fundamental property of � -convergence derives directly from its
definition.
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Proposition 2.3 (Stability under continuous perturbations). Let F" � -converge
to F and let G" converge continuously to G (i.e., G".u"/ ! G.u/ if u" ! u); then
F" CG" � -converges to F CG.

Note that this proposition applies to G" D G if G is continuous, but is in
general false for G" D G even if G is lower semicontinuous (take G" D F as
in Example 2.1(3), with F" D �F ).

Example 2.2. The functions sin.x="/C x2 C 1 � -converge to x2. In this case we
may apply the proposition above with F".x/ D sin.x="/ (see Example 2.1(5))
and G".x/ D x2 C 1. Note for future reference that F" has countably many local
minimizers, which tend to be dense in the real line, while F has only one global
minimizer.

It may be useful to define the lower and upper � -limits, so that the existence of
a � -limit can be viewed as their equality.

Definition 2.4 (Lower and upper � -limits). We define

� - lim inf
"!0

F".u/ D infflim inf
"!0

F".u"/ W u" ! ug (2.5)

� - lim sup
"!0

F".u/ D infflim sup
"!0

F".u"/ W u" ! ug: (2.6)

Remark 2.5. 1. We immediately obtain that the � -limit exists at a point u if and
only if

� - lim inf
"!0

F".u/ D � - lim sup
"!0

F".u/:

2. Comparing with the trivial sequence u" D u we obtain

� - lim inf
"!0

F".u/ � lim inf
"!0

F".u/

(and analogously for the � - lim sup). More in general, note that the � -limit
depends on the topology on X . If we change topology, converging sequences
are different and the value of the � -limit changes. A weaker topology will have
more converging sequences and the value will decrease, a stronger topology will
have less converging sequences and the value will increase. The pointwise limit
corresponds to the � -limit with respect to the discrete topology.

3. From the formulas above it is immediate to check that a constant sequence F" D
F � -converges to itself if and only if F is lower semicontinuous; i.e., (LB) holds
with F" D F . Indeed (LB) is equivalent to the validity of (2.5), while F is always
an upper bound. More in general, a constant sequence F" D F converges to the
lower-semicontinuous envelope F of F defined by
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F D maxfG W G � F;G is lower semicontinuousgI

in particular the � -limit is a lower-semicontinuous function.
4. It may be convenient to notice that the upper and lower � -limits are

lower-semicontinuous functions and, with the notation just introduced, that

� - lim inf
"!0

F".u/ D � - lim inf
"!0

F".u/ (2.7)

� - lim sup
"!0

F".u/ D � - lim sup
"!0

F".u/ I (2.8)

that is, � -limits are unchanged upon substitution of F" with its lower-
semicontinuous envelope. These properties are an important observation for the
actual computation of the � -limit, since in many cases lower-semicontinuous
envelopes satisfy structural properties that make them easier to handle. As an
example, we may consider (homogeneous) integral functionals of the form

F.u/ D
Z

˝

f .u/ dx;

defined on L1.˝/ equipped with the weak topology. Under some growth
conditions, the � -limits can be computed with respect to the weak topology
on bounded sets of L1.˝/, which is metrizable. In this case, the lower-
semicontinuous envelope of F is

F.u/ D
Z

˝

f ��.u/ dx;

where f �� is the convex and lower-semicontinuous envelope of f ; i.e.,

f �� D maxfg W g � f; g is lower-semicontinuous and convexg:

In particular, convexity is a necessary condition for a functional to be a � -limit
of the integral form above.

2.3 Convergence of Minimum Problems

As we have already remarked, the � -convergence of F" will not imply the
convergence of minimizers (or ‘almost minimizers’). It is necessary then to assume
a compactness (or ‘mild coerciveness’) property as follows:

there exists a precompact sequence .u"/ with F".u"/ D infF" C o.1/ as " ! 0;

(2.9)
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which is implied by the following stronger condition

there exists a compact set K such that infF" D infK F" for all " > 0: (2.10)

This condition is implied by the equi-coerciveness hypothesis (2.3); i.e., if for all
c there exists a compact set K such that the sublevel sets fF" � cg are all contained
in K . To check that (2.10) is stronger than (2.9) consider F".x/ D "ex on the real
line: any converging sequence satisfies (2.9) but (2.10) does not hold.

By arguing as for Propositions 2.1 and 2.2 we will deduce the convergence of
minima. This result is made precise in the following theorem.

Theorem 2.1 (Fundamental Theorem of � -convergence). Let .F"/ satisfy the
compactness property (2.9) and � -converge to F . Then

(i) F admits minimum, and minF D lim
"!0

infF".

(ii) If .u"k / is a minimizing sequence for some subsequence .F"k / (i.e., is such that
F"k .u"k / D infF" C o.1/ as " ! 0) which converges to some u, then its limit
point is a minimizer for F .

Proof. By condition (2.9) we can argue as in the proof of Proposition 2.1 withK D
X and also apply Proposition 2.2 with A D X to deduce that

infF � lim sup
"!0

infF" � lim inf
"!0

infF" � infF: (2.11)

We then have that there exists the limit

lim
"!0

infF" D infF:

Since from (2.9) there exists a minimizing sequence .u"/ from which we can extract
a converging subsequence, it suffices to prove (ii). We can then follow the proof of
Proposition 2.1 to deduce as in (2.2) that

infF � F.u/ � lim
k
F"k .u"k / D lim

"!0
infF" D infF I

i.e., F.u/ D infF as desired. ut
Corollary 2.1. In the hypotheses of Theorem 2.1 the minimizers of F are all the
limits of converging minimizing sequences.

Proof. If u is a limit of a converging minimizing sequence then it is a minimizer
of F by (ii) in Theorem 2.1. Conversely, if u is a minimizer of F , then every its
recovery sequence .u"/ is a minimizing sequence. ut
Remark 2.6. Trivially, it is not true that all minimizers of F are limits of minimizers
of F", since this is not true even for (locally) uniformly converging sequences on the
line. Take for example:
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(1) F".x/ D "x2 or F".x/ D "ex and F.x/ D 0. All points minimize the limit but
only x D 0 minimizes F" in the first case, and we have no minimizer for the
second case.

(2) F.x/ D .x2�1/2 and F".x/ D F.x/C".x�1/2. F is minimized by 1 and �1,
but the only minimum of F" is 1. Note, however, that �1 is the limit of strong
local minimizers for F".

2.4 An Example: Homogenization

The theory of homogenization of integral functionals is a very wide subject in itself.
We will refer to monographs on the subject for details if needed. In this context, we
want only to highlight some facts that will be used in the sequel and give a hint of
the behaviour in the case of elliptic energies.

We consider a W R
n ! Œ˛; ˇ�, with 0 < ˛ < ˇ < C1 1-periodic in the

coordinate directions, and the integrals

F".u/ D
Z

˝

a
�x
"

�
jruj2 dx

defined in H1.˝/, where ˝ is a bounded open subset of Rn. The computation of
the � -limit of F" is referred to as their homogenization, implying that a simpler
‘homogeneous’ (i.e., x-independent) functional can be used to capture the relevant
features of F". The limit can be computed both with respect to the L1- topology, but
it can also be improved; e.g., in 1D it coincides with the limit in the L1-topology.
This means that the liminf inequality holds for u" converging in the L1-topology,
while there exists a recovery sequence with u" tending to u in the L1 sense.

An upper bound is given by the pointwise limit of F", whose computation in this
case can be obtained by the following non-trivial but well-known result.

Proposition 2.4 (Riemann–Lebesgue lemma). The functions a".x/ D a
�x
"

�

converge weakly� in L1 to their average

a D
Z

.0;1/n
a.y/ dy: (2.12)

For fixed u the pointwise limit of F".u/ is then simply a
R
˝

jruj2 dx, which
therefore gives an upper bound for the � -limit.

In a one-dimensional setting, the � -limit is completely described by a, and is
given by

Fhom.u/ D a

Z

˝

ju0j2 dx; where a D
�Z 1

0

1

a.y/
dy
��1



2.4 An Example: Homogenization 15

is the harmonic mean of a. We briefly sketch a proof which gives the ansatz for
recovery sequences. We check the limit inequality as u" ! u. Suppose, for the sake
of simplicity, that N D 1=" 2 N, and write

F".u"/ D
NX
iD1

Z "i

".i�1/
a
�x
"

�
ju0
"j2 dx

�
NX
iD1

"min
nZ 1

0

a.y/jv0j2 dy W v.1/ � v.0/ D u"."i/ � u".".i � 1//

"

o

D a

NX
iD1

"
ˇ̌
ˇu"."i/� u".".i � 1//

"

ˇ̌
ˇ
2

:

The inequality in the second line is obtained by minimizing over all functions w
with w.".i � 1// D u"."i/ and w.".i � 1// D u"."i/; the minimum problem in the
second line is obtained by scaling such w and using the periodicity of a, the third
line is a direct computation of the previous minimum.

If we define Qu" as the piecewise-affine interpolation of u" on "Z then the estimate
above shows that

F".u"/ � Fhom.Qu"/:

The functional on the right-hand side is independent of " and with a convex inte-
grand; hence, it is lower semicontinuous with respect to the weakH1-convergence.
Since Qu" weakly converges to u in H1, we then deduce

lim inf
"!0

F".u"/ � lim inf
"!0

Fhom.Qu"/ � Fhom.u/I

i.e., the liminf inequality. The ansatz for the upper bound is obtained by making
the lower bound sharp: recovery sequences oscillate around the target function in an
optimal way. If the target function u.x/ D zx is linear then a recovery sequence is
obtained by taking the 1-periodic function v minimizing

min
nZ 1

0

a.y/jv0 C 1j2 dy W v.0/ D v.1/ D 0
o

D a;

and setting

u".x/ D z
�
x C "v

�x
"

��
:

If u is affine then the construction is the same upon adding a constant. This
construction can be repeated up to an error of order " if u is piecewise affine, and
then carries over to arbitrary u by density.
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As a particular case, we can fix 	 2 Œ0; 1� and consider the 1-periodic a given on
Œ0; 1/ by

a.y/ D
(
˛ if 0 � y < 	

ˇ if 	 � y < 1:
(2.13)

In this case we have

a D ˛ˇ

	ˇ C .1 � 	/˛
: (2.14)

Note that if a is a 1-periodic function with jfy 2 .0; 1/ W a.y/ D ˛gj D 	 and
jfy 2 .0; 1/ W a.y/ D ˇgj D 1� 	 then the � -limit is the same. Thus, in dimension
one, the limit depends only on the volume fraction of ˛.

In the higher-dimensional case the limit can still be described by an elliptic
integral, of the form

Fhom.u/ D
Z

˝

hAru;rui dx;

where A is a constant symmetric matrix with aI � A � aI (I the identity matrix),
with strict inequalities unless a is constant. If in two dimensions we take a.y1; y2/ D
a.y1/ (this is called a laminate in the first direction), then A is the diagonal matrix
diag.a; a/. Of course, if a.y1; y2/ D a.y2/ then the two values are interchanged. If a
takes only the values ˛ and ˇ in particular this shows that in the higher-dimensional
case the results depends on the geometry of fy 2 .0; 1/ W a.y/ D ˛g (often referred
to as the microgeometry of the problem) and not only on the volume fraction.

A class of meaningful minimum problems is obtained by considering as F" the
restriction of the previous functionals on the affine space X D ' C H1

0 .˝/ (i.e.,
we consider only functions with u D ' on @˝). It can be proved that this boundary
condition is ‘compatible’ with the � -limit; i.e., that the � -limit is the restriction to
X of the previous one or, equivalently, that recovery sequences for the first � -limit
can be taken satisfying the same boundary data as their limit. As a consequence
of Theorem 2.1 we then conclude that oscillating minimum problems for F" with
fixed boundary data are approximated by a simpler minimum problem with the
same boundary data. Note, however, that all energies, both F" and Fhom, are strictly
convex, which implies that they have no local non global minimizer.

Example 2.3. We can perturb the previous energies with some continuously con-
verging perturbation to obtain some additional convergence result. For example, we
can add perturbations of the form

G".u/ D
Z

˝

g
�x
"
; u
�

dx:
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On g we make the following hypothesis:
g is a Borel function 1-periodic in the first variable and uniformly Lipschitz in

the second one; i.e.,

jg.y; z/ � g.y; z0/j � Ljz � z0j:

We then have a perturbed homogenization result as follows.

Proposition 2.5. The functionals F" C G" � -converge in the L1-topology to the
functional Fhom CG, where

G.u/ D
Z

˝

g.u/ dx; and g.z/ D
Z

.0;1/n
g.y; z/ dy

is simply the average of g.�; z/.
Proof. By Proposition 2.3 it suffices to show that G" converge continuously with
respect to the L1-convergence. If u" ! u in L1 then

jG".u"/�G.u/j �
Z

˝

ˇ̌
ˇg
�x
"
; u"
�

� g
�x
"
; u
�ˇ̌
ˇ dx C jG".u/�G.u/j

� L

Z

˝

ju" � uj dx C jG".u/�G.u/j:

It suffices then to show that G" converges pointwise to G. If u is piecewise constant
then this follows immediately from the Riemann–Lebesgue Lemma. Noting that
also jg.z/ � g.z0/j � Ljz � z0j we easily obtain the convergence for u 2 L1.˝/ by
the density of piecewise-constant functions. ut

Note that, with a slightly more technical proof, we can improve the Lipschitz
continuity condition to a local Lipschitz continuity of the form

jg.y; z/ � g.y; z0/j � L.1C jzj C jz0j/jz � z0j:

In particular, in dimension one we can apply the result for g.y; z/ D a.y/jzj2 and
we have that

Z

˝

a
�x
"

�
.ju0j2 C juj2/ dx

� -converges to

Z

˝

.aju0j2 C ajuj2/ dx:



18 2 Global Minimization

As a consequence of Theorem 2.1, under the condition of coerciveness

lim
z!˙1 infg.�; z/ D C1;

we obtain a convergence result as follows.

Proposition 2.6. The solutions to the minimum problems

min
n
F".u/CG".u/ W u 2 H1.˝/

o

converge (up to subsequences) to a constant function u, whose constant value
minimizes g.

Proof. The proof of the proposition follows immediately from Theorem 2.1, once
we observe that, by the coerciveness and continuity of g, a minimizer for that
function exists, and the constant function u defined above minimizes both Fhom

and G. ut
If g is differentiable then by computing the Euler–Lagrange equations of F"CG"

we conclude that we obtain solutions of

�
X

ij

@

@xi

�
a
�x
"

�@u"
@xi

�
C @

@u
g
�x
"
; u"
�

D 0 (2.15)

with Neumann boundary conditions, converging to the constant u.

2.5 Higher-Order � -Limits and a Choice Criterion

We have noticed that if the hypotheses of Theorem 2.1 are satisfied then every
minimum point of the � -limit F corresponds to a minimizing sequence for F"
(see Corollary 2.1). However, not all points may be limits of minimizers for F";
conversely, it may be interesting to discriminate between limits of minimizing
sequences with different speeds of convergence. To this end, we may look at scaled
� -limits. If we suppose that, e.g., u is a limit of a sequence .u"/ with

F".u"/ D minF CO."˛/ (2.16)

for some ˛ > 0 (but, of course, the rate of convergence may also not be polynomial),
then we may look at the � -limit of the scaled functionals

F ˛
" .u/ D F".u"/� minF

"˛
: (2.17)
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Suppose that F ˛
" � -converges to some F ˛ not taking the value �1. Then:

(i) The domain of F ˛ is contained in the set of minimizers of F (but may as well
be empty).

(ii) F ˛.u/ ¤ C1 if and only if there exists a recovery sequence for u satisfying
(2.16).

Moreover, we can apply Theorem 2.1 to F ˛
" and obtain the following result,

which gives a choice criterion among minimizers of F .

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied and the functionals in
(2.17) � -converge to some F ˛ not taking the value �1 and not identically C1.
Then

(i) infF" D minF C "˛ minF ˛ C o."˛/.
(ii) If F".u"/ D minF" C o."˛/ and u" ! u then u minimizes both F and F ˛.

Proof. We can apply Theorem 2.1 to a (subsequence of a) converging minimizing
sequence for F ˛

" ; i.e., a sequence satisfying hypothesis (ii). Its limit point u satisfies

F ˛.u/ D minF ˛ D lim
"!0

minF ˛
" D lim

"!0

minF" � minF

"˛
;

which proves (i). Since, as already remarked u is also a minimizer of F , we also
have (ii). ut
Example 2.4. Simple examples in the real line:

(1) If F".x/ D "x2 then F.x/ D 0. We have F ˛.x/ D 0 if 0 < ˛ < 1, F 1.x/ D x2

(if ˛ D 1), and

F ˛.x/ D
(
0 x D 0

C1 x ¤ 0

if ˛ > 1.
(2) If F".x/ D .x2 � 1/2 C ".x � 1/2 then F.x/ D .x2 � 1/2. We have

F ˛.x/ D
(
0 jxj D 1

C1 jxj ¤ 1

if 0 < ˛ < 1,

F 1.x/ D

8̂
<̂
ˆ̂:

0 x D 1

4 x D �1
C1 jxj ¤ 1

if ˛ D 1,
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F ˛.x/ D
(
0 x D 1

C1 x ¤ 1

if ˛ > 1.

Remark 2.7. It must be observed that the functionals F ˛
" in Theorem 2.2 are often

equicoercive with respect to a stronger topology than the original F", so that we can
improve the convergence in (ii), as in the following example.

Example 2.5 (Gradient theory of phase transitions). Let

F".u/ D
Z

˝

.W.u/C "2jruj2/ dx (2.18)

be defined in L1.˝/ with domain in H1.˝/. Here W.u/ D .u2 � 1/2 (or a more
general double-well potential; i.e., a non-negative function vanishing exactly at ˙1).
Then .F"/ is equicoercive with respect to the weak L1-convergence. Since this
convergence is metrizable on bounded sets, we can consider L1.˝/ equipped with
this convergence. The � -limit is then simply

F 0.u/ D
Z

˝

W ��.u/ dx;

whereW �� is the convex envelope ofW ; i.e.W ��.u/ D ..u2�1/_0/2. All functions
with kuk1 � 1 are minimizers of F 0.

We take ˛ D 1 and consider

F 1
" .u/ D

Z

˝

�W.u/
"

C "jruj2
�
dx: (2.19)

Then .F 1
" / is equicoercive with respect to the strong L1-convergence, and its

� -limit is

F 1.u/ D cWH n�1.@fu D 1g \˝/ for u 2 BV.˝I f˙1g/; (2.20)

and C1 otherwise, where cW D 8=3 (in general cW D 2
R 1

�1
p
W.s/ ds). Here

we denote by BV.˝/ the space of functions of bounded variation in ˝ , and by
BV.˝I f˙1g/ the space of functions of bounded variation in ˝ taking only the
values ˙1.

This results states that recovery sequences .u"/ tend to sit in the bottom of the
wells (i.e., u 2 f˙1g) in order to make W.u"/

"
finite; however, every ‘phase transition’

costs a positive amount, which is optimized by balancing the effects of the two terms
in the integral. Indeed, by optimizing the interface between the phases fu D 1g and
fu D �1g one obtains the optimal ‘surface tension’ cW .
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In one-dimension the ansatz on the recovery sequences around a jump point x0
is that they are of the form

u".x/ D v
�x � x0

"

�
;

where v minimizes

min
nZ C1

�1
.W.v/C jv0j2/ dx W v.˙1/ D ˙1

o
D 2

Z 1

�1

p
W.s/ ds:

In more than one-dimension the ansatz becomes

u".x/ D v
�d.x; @fu D 1g/

"

�
;

where d.�; A/ is the signed distance from the set A. This means that around the
interface @fu D 1g the recovery sequence passes from �1 to C1 following the
one-dimensional profile of v essentially on a O."/-neighbourhood of @fu D 1g.

Note that:

(i) We have an improved convergence of recovery sequences from weak to strong
L1-convergence.

(ii) The domain of F 1 is almost disjoint from that of the F 1
" , the only two functions

in common being the constants ˙1.
(iii) In order to make the � -limit properly defined we have to use the space

of functions of bounded variation or, equivalently, (taking the constraint
u.x/ D ˙1 a.e. into account) the family of sets of finite perimeter if we take
as parameter the set A D fu D 1g. In this context the set @fu D 1g is properly
defined in a measure-theoretical way, as well as its .n � 1/-dimensional
Hausdorff measure. Even though @A may greatly differ from the topological
boundary of A, we will use the same symbol in order not to overburden the
notation. Note however that in our examples sets can be supposed to be smooth
enough, so that the two notions coincide.

Example 2.6 (Linearized fracture mechanics from interatomic potentials). We now
give an example in which the scaling of the variable, and not only of the energy, is
part of the problem. We consider a systems of one-dimensional nearest-neighbour
atomistic interactions through a Lennard-Jones type interaction. Note that, by the
one-dimensional nature of the problem, we can parameterize the position of the
atoms as an increasing function of the parameter.

Let be a C2 potential as in Fig. 2.1, with domain .0;C1/ (we set  .z/ D C1
for z � 0), minimum in 1 with  00.1/ > 0, convex in .0; z0/, concave in .z0;C1/

and tending to  .1/ < C1 at C1. A possible choice is Lennard-Jones potential

 .z/ D 1

z12
� 2

z6
:
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z

Fig. 2.1 A Lennard-Jones
potential

We consider the energy


N .v/ D
NX
iD1

 .vi � vi�1/

with N 2 N, defined on vi with vi > vi�1. We introduce the small parameter
" D 1=N and identify the vector .v0; : : : ; vN / with a discrete function defined on
"Z \ Œ0; 1� (i.e., vi D v."i/). A non-trivial � -limit will be obtained by scaling and
rewriting the energy in terms of a scaled variable

u D p
"
�
v � id

"

�
I i.e., ui D p

".vi � i/:

This scaling can be justified noting that (up to additive constants) vi D i D id=" is
the absolute minimum of the energy. The scaled energies that we consider are

F".u/ D 
N

� id
"

C up
"

�
� min
N D

NX
iD1

J
�ui � ui�1p

"

�
;

where

J.w/ D  .1C w/ � min D  .1C w/ �  .1/:

For convenience we extend the function to all R setting J.w/ D C1 if w � �1.
Again, the vector .u0; : : : ; uN / is identified with a discrete function defined on "Z\
Œ0; 1� or with its piecewise-affine interpolation. With this last identification, F" can
be viewed as functionals in L1.0; 1/, and their � -limit computed with respect to the
strong L1.0; 1/-topology.

We denote by w0 D 1C z0 the inflection point of J . It must be noted that for all
w > 0 we have
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#
n
i W ui � ui�1p

"
> w

o
� 1

J.w/
F".u/;

so that this number of indices is equi-bounded along sequences with equibounded
energy. We may therefore suppose that the corresponding points "i converge to a
finite set S � Œ0; 1�. For fixed w, we have J.w/ � cjwj2 on .�1;w� for some
c > 0; this gives, if A is compactly contained in .0; 1/ n S , that

F".u/ � c
X
i

�ui � ui�1p
"

�2 D c
X
i

"
�ui � ui�1

"

�2 � c

Z

A

ju0j2 dt

(the sum is extended to those i such that ui�ui�1p
"

� w). By the arbitrariness of A

in this estimate we then have that if u" ! u and F".u"/ � C < C1 then u is
piecewise-H1; i.e., there exists a finite set S � .0; 1/ such that u 2 H1..0; 1/ n S/;
we denote by S.u/ the minimal set such that u 2 H1..0; 1/ n S.u//. The reasoning
above also shows that

c

Z 1

0

ju0j2 dt C J.w/#.S.u//

is a lower bound for the � -limit of F". The � -limit on piecewise-H1.0; 1/ functions
can be computed by optimizing the choice of w and c, obtaining

F.u/ D 1

2
J 00.0/

Z 1

0

ju0j2 dt C J.1/#.S.u// (2.21)

with the constraint that uC > u� on S.u/. This functional is the one-dimensional
version of Griffith’s fracture energy for brittle materials, and coincides with a
functional introduced by Mumford–Shah in the framework of Image Reconstruction
(without the constraint uC > u�).

Note that the parameterization of vi on "Z would suggest to interpret vi � vi�1
as a different quotient and hence the change of variables ui D "vi � id . This would
give an energy of the form

QF".u/ D
NX
iD1

J
�ui � ui�1

"

�
I

it can be shown that QF" converges to the energy with domain the set of piecewise-
affine increasing u with u0 D 1 a.e., and for such u

QF .u/ D J.1/ #.S.u//:

This different choice of the parameterization hence only captures the fracture part
of the energy.
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Appendix

For an introduction to � -convergence we refer to the ‘elementary’ book [1]. More
examples, and an overview of the methods for the computation of � -limits can be
found in [2]. More detailed information on topological properties of � -convergence
are found in [6]. The use of higher-order � -limits is analyzed in [5].

Homogenization results are described in [3]. The reference to the original � -
limit of the gradient theory of phase transitions is [7]. A more detailed treatment of
Example 2.6 can be found in [4].
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Chapter 3
Parameterized Motion Driven by Global
Minimization

Energy-driven dynamic problems are in general associated with a local
minimization procedure. Nevertheless, for ‘slow movements’ a meaningful notion
of ‘quasi-static’ motion can be defined starting from a global-minimization criterion.
The ingredients are:

• a parameter-dependent energy F ,
• a dissipation D satisfying a non-decreasing constraint,
• a (time-)parameterized forcing condition.

Loosely speaking, a quasistatic motion is controlled by some parameterized
forcing condition (applied forces, varying boundary conditions or other constraints);
the motion is thought to be so slow so that the solution at a fixed value of
the parameter (at fixed ‘time’) minimizes a total energy. This energy is obtained
adding some ‘dissipation’ to some ‘internal energy’. A further condition is that the
total dissipation increases with time. An entire general theory (of rate-independent
motion) can be developed starting from these ingredients.

An important feature of these rate-independent motions is that they can be
characterized as the limit of a piecewise-constant (time-)parameterized family
of functions, which are defined iteratively as solutions of minimum problems.
Under suitable conditions, to such a characterization the Fundamental Theorem
of � -convergence can be applied, so that this notion can be proved to be indeed
compatible with � -convergence.

3.1 A Paradigmatical Example: Damage Models

In this section we deal with a simplified example and examine its stability with
respect to perturbations. We will first define a damage process for a single material.
Then we will consider the same definition for a mixture of two materials in the
context of homogenization. A homogenized theory can be derived, with some care

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__3,
© Springer International Publishing Switzerland 2014
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in the definition of the � -limit, that must take into account at the same time the
energy and the dissipation.

3.1.1 Damage of a Homogeneous Material

We consider a one-dimensional setting. Our functions will be parameterized on a
fixed interval .0; 1/. In this case we have:

• The parameter space will be that of all measurable subsets A of .0; 1/. The set A
will be understood as the damage set.

• The energies depending on a set A will be

FA.u/ D ˛

Z

A

ju0j2 dx C ˇ

Z

.0;1/nA
ju0j2 dx;

where 0 < ˛ < ˇ. In an mechanical interpretation of the variables, u represents
the deformation of a bar, whose elastic constant is ˇ in the undamaged set and
˛ < ˇ in the damaged set.

• The dissipation is

D.A/ D � jAj;

with � > 0. The work done to damage a portionA of the material is proportional
to the measure of A.

• The condition that forces the solution to be parameter dependent (‘time-depen-
dent’) is a boundary condition

u.0/ D 0; u.1/ D g.t/;

where g is a continuous function with g.0/ D 0. Here the parameter is t 2 Œ0; T �.
Definition 3.1. A solution to the evolution related to the energy, dissipation and
boundary conditions above is a pair .ut ; At / with ut 2 H1.0; 1/, At � .0; 1/, and
such that

• (monotonicity) we have As � At for all s < t ;
• (minimization) the pair .ut ; At / minimizes

min
n
FA.u/CD.A/ W u.0/ D 0; u.1/ D g.t/; At � A

o
I (3.1)

• (continuity) the energy E .t/ D FAt .ut /CD.At / is continuous;
• (homogeneous initial datum) u0 is the constant 0 and A0 D ;.
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The continuity assumption allows to rule out trivial solutions as those with
At D .0; 1/ for all t > 0. It is usually replaced by a more physical condition of
energy conservation. In our context this assumption is not relevant.

Note that t acts only as a parameter (the motion is ‘rate independent’). Hence,
for example if g is monotone increasing, it suffices to consider g.t/ D t . We will
construct by hand a solution in this simplified one-dimensional context.

Remark 3.1. Note that the value in the minimum problem

m.t/ D min
n
FA.u/CD.A/ W u.0/ D 0; u.1/ D t

o
(3.2)

depends on A only through � D jAj.
Indeed, given A, we can explicitly compute the minimum value

m.A; t/ D min
nZ

A

˛ju0j2 dx C
Z

.0;1/nA
ˇju0j2 dx W u.0/ D 0; u.1/ D t

o
:

In fact, for all test functions u we have, by Jensen’s inequality

Z

A

˛ju0j2 dx C
Z

.0;1/nA
ˇju0j2 dx � ˛jAjjz1j2 C ˇ.1� jAj/jz2j2;

where

z1 D 1

jAj
Z

A

u0 dx; z2 D 1

1 � jAj
Z

.0;1/nA
u0 dx;

with a strict inequality if u0 is not constant on A and .0; 1/ n A. This shows that the
unique minimizer satisfies

u0 D z1�A C z2.1 � �A/; jAjz1 C .1 � jAj/z2 D t;

where the second condition is given by the boundary data; hence,

m.A; t/ D minf˛�jz1j2Cˇ.1��/jz2j2 W �z1C.1��/z2 D tg D ˛ˇ

�ˇ C .1 � �/˛
t2:

We conclude that the minimum value (3.2) is given by

˛ˇ

�ˇ C .1 � �/˛
t2 C ��: (3.3)

By minimizing over � we obtain the optimal value of the measure of the damaged
region
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�min.t/ D

8
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if jt j �
q

˛�

ˇ.ˇ�˛/

1 if jt j �
q

ˇ�

˛.ˇ�˛/

t
q

˛ˇ

�.ˇ�˛/ � ˛
ˇ�˛ otherwise

(3.4)

and the minimum value

m.t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂̂
:̂

ˇt2 if jt j �
q

˛�

ˇ.ˇ�˛/

˛t2 C � if jt j �
q

ˇ�

˛.ˇ�˛/

2t
q

˛ˇ�

ˇ�˛ � �˛

ˇ�˛ otherwise:

(3.5)

The interpretation of this formula is as follows. For small values of the total
displacement t the material remains undamaged, until it reaches a critical value
for the boundary datum. Then a portion of size �min.t/ of the material damages,
lowering the elastic constant of the material and the overall value of the sum of the
internal energy and the dissipation, until all the material is damaged. Note that in
this case E .t/ D m.t/, due to the increasing-load assumption.

The solutions for the evolution problem are given by any increasing family of sets
At satisfying jAt j D �min.t/ and correspondingly functions ut minimizingm.At ; t/.

The value in (3.3) is obtained by first minimizing in u. Conversely, we may first
minimize in A. We then have

min
nZ 1

0

min
A

˚
�A.˛ju0j2C�/; �.0;1/nAˇju0j2� dx W u.0/ D 0; u.1/ D g.t/

o
: (3.6)

The lower-semicontinuous envelope of the integral energy is given by the integral
with energy function the convex envelope of

f .z/ D min
˚
˛z2 C �; ˇz2

�
; (3.7)

which is exactly given by formula (3.5); i.e.,

m.t/ D f ��.t/

(see Fig. 3.1).

Irreversibility. An important feature of the monotonicity condition for At is
irreversibility of damage, which implies that for non-increasing g the values of
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t

mFig. 3.1 Minimal value m.t/
for the damage problem

t

m'

Fig. 3.2 Plot of m0.t / along
a cycle

m.g.t// will depend on the highest value taken by �min.g.t// on Œ0; t �. In particular,
for a ‘loading–unloading’ cycle with g.t/ D T

2
� ˇ̌
t � T

2

ˇ̌
, the value of E .t/ is

given by

E .t/ D

8
ˆ̂̂
<
ˆ̂̂
:

m.t/ for 0 � t � T
2

˛ˇ

�min.
T
2
/ˇ C .1 � �min.

T
2
//˛

.T � t/2 C � �min.
T

2
/ for T

2
� t � T:

This formula highlights that once the maximal value �min.T=2/ is reached, then
the damaged region At remains fixed, so that the problem becomes a quadratic
minimization (plus the constant value of the dissipation). We plot m0.t/ and draw a
cycle in Fig. 3.2.

Note that, in particular, if T
2

�
q

ˇ�

˛.ˇ�˛/ then the material is completely damaged
in the ‘unloading’ regime.

3.1.1.1 Threshold Formulation

Note that a solution ut of (3.2) satisfies the Euler–Lagrange equation

..˛�A C ˇ.1 � �A//u
0/0 D 0I
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i.e.,

.˛�A C ˇ.1 � �A//u0 D t ; (3.8)

where t is a constant parameterized by t . Its plot as a function of g D g.t/ along a
‘loading-unloading’ cycle is the same as in Fig. 3.2.

The plateau for  is obtained at the threshold value

 D
s

˛ˇ�

ˇ � ˛
:

We can interpret the g- graph as a threshold principle: the material does not
damage until the stress  reaches the threshold value. At this point, if the material is
loaded further it damages so as to keep the value of  below the threshold, until all
the material is damaged. If the material is unloaded then  follows a linear elastic
behavior with the overall effective elastic constant corresponding to the total amount
of damage produced.

3.1.2 Homogenization of Damage

We now examine the behaviour of the previous process with respect to
� -convergence in the case of homogenization; i.e., when we have a fine mixture of
two materials, each one of which can undergo a damage process as in the previous
section. To that end we introduce the energies

F";A.u/ D
Z

.0;1/nA
ˇ
�x
"

�
ju0j2 dx C

Z

A

˛
�x
"

�
ju0j2 dx; (3.9)

where ˛ and ˇ are 1-periodic functions with

˛.y/ D
(
˛1 for 0 � y < 1

2

˛2 for 1
2

� y < 1
ˇ.y/ D

(
ˇ1 for 0 � y < 1

2

ˇ2 for 1
2

� y < 1

with 0 < ˛j < ˇj . Note that, for fixed A, the functionals F";A � -converge to

Fhom;A.u/ D ˇ

Z

.0;1/nA
ju0j2 dx C ˛

Z

A

ju0j2 dx; (3.10)

with

˛ D 2˛1˛2

˛1 C ˛2
<

2ˇ1ˇ2

ˇ1 C ˇ2
D ˇ:
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This can be easily checked if A is an interval (or a union of intervals), and then for a
generalA by approximation. Indeed ifA D .0; �/ then the liminf inequality trivially
holds by separately applying the liminf inequality to the two energies

Z �

0

˛
�x
"

�
ju0j2 dx;

Z 1

�

ˇ
�x
"

�
ju0j2 dx: (3.11)

Conversely, given a target function u 2 H1.0; 1/, we can find recovery sequences
.u1"/ and .u2"/ for u on .0; �/ and .�; 1/, respectively, for the energies (3.11) with
u1".�/ D u2".�/, so that the corresponding u" defined as u1" on .0; �/ and as u2" on
.�; 1/ is a recovery sequence for Fhom;A.u/. Note that the � -limit is still of the form
examined in Sect. 3.1.1 with constants ˛ and ˇ.

We now instead study the damage process at fixed ". For simplicity of
computation we suppose that 1

"
2 N. The general case can be always reduced

to this assumption up to an error of order ". The dissipation will be of the form

D".A/ D
Z

A

�
�x
"

�
dx;

where again � is a 1-periodic function with

�.y/ D
(
�1 for 0 � y < 1

2

�2 for 1
2

� y < 1

with �j > 0. In the case �1 D �2 we obtain the same dissipation as in Sect. 3.1.1,
independent of ".

In order to compute the minimum value

m".t/ D min
n
F";A.u/CD".A/ W u.0/ D 0; u.1/ D t; A � .0; 1/

o
(3.12)

we proceed as in Remark 3.1, noticing that the minimum value

m".A; t/ D min
n
F";A.u/ W u.0/ D 0; u.1/ D t

o
(3.13)

depends on A only through the volume fraction of each damaged component

�i D 2
ˇ̌
ˇ
n
x 2 A W ˛

�x
"

�
D ˛i

oˇ̌
ˇ;

and its value is independent of " and is given by

min
n1
2

�
�1˛1z

2
11 C .1 � �1/ˇ1z

2
12

�
C 1

2

�
�2˛2z

2
21 C .1 � �2/ˇ1z

2
22

�
W
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1

2
.�1z11 C .1 � �1/z12/C 1

2
.�2z21 C .1 � �2/z22/ D t

o
:

We conclude that m".t/ D mhom.t/ is independent of " and satisfies

mhom.t/ D 1

2
min

n
m1.t1/Cm2.t2/ W t1 C t2

2
D t

o
; (3.14)

where mj is defined as m in (3.2) with ˛j ; ˇj and �j in the place of ˛; ˇ and �
(i.e., by the damage process in the i -th material). Hence, by (3.5)

mj .t/ D

8
ˆ̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂
:̂

ˇj t
2 if jt j �

q
˛j �j

ˇj .ˇj�˛j /

˛j t
2 C �j if jt j �

q
ˇj �j

˛j .ˇj�˛j /

2t
q

˛j ˇj �j
ˇj�˛j � �j ˛j

ˇj�˛j otherwise:

(3.15)

We can therefore easily computem.t/. In the hypothesis, e.g., that

p2 WD
s
˛2ˇ2�2

ˇ2 � ˛2 <
s
˛1ˇ1�1

ˇ1 � ˛1
DW p1; (3.16)

we can write m0.t/ as

m0
hom.t/ D

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

2ˇt if jt j � p2
ˇ

2p2 if p2
ˇ
< jt j < p2.ˇ1C˛2/

2ˇ1˛2

4ˇ1˛2
ˇ1C˛2 t if p2.ˇ1C˛2/

2ˇ1˛2
� jt j � p1.ˇ1C˛2/

2ˇ1˛2

2p1 if p1.ˇ1C˛2/
2ˇ1˛2

< jt j < p1
˛

2˛t if jt j � p1
˛
:

The outcome is pictured in Fig. 3.3. It highlights that the behaviour is different
from the one computed in Sect. 3.1.1: for small values of the total displacement t
the overall response is the same as the one of the homogenized behaviour of the two
‘strong’ materials. At a first critical value for t one of the two materials (and only
one except for the exceptional case p1 D p2) starts to damage (this corresponds
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t

m'hom

Fig. 3.3 The function
m0

hom.t / describing the
homogenized damage in a
periodic microstructure

to the first constant value 2p1 of m0) until it is completely damaged. Under
condition (3.16) the first material to damage is material 2, and the corresponding
damage volume fraction is

�2;min.t/ D

8
ˆ̂<
ˆ̂:

0 if 0 � t � p2
ˇ

2p2
�2

�
t � p2

ˇ

�
if p2

ˇ
< t <

p2.ˇ1C˛2/
2ˇ1˛2

1 if t > p2.ˇ1C˛2/
2ˇ1˛2

:

(3.17)

Then the material behaves as a mixture of a strong material 1 and a damaged
material 2. Subsequently, also material 1 starts to damage; the corresponding
damage volume fraction is

�1;min.t/ D

8
ˆ̂<
ˆ̂:

0 if t � p1.ˇ1C˛2/
2ˇ1˛2

2p1
�1

�
t � p1.ˇ1C˛2/

2ˇ1˛2

�
if p1.ˇ1C˛2/

2ˇ1˛2
< t <

p1
˛

1 if t � p1
˛
:

(3.18)

After also material 1 has completely damaged, the behaviour is that of the
homogenized energy for two weak materials.

Note that at fixed " we can define At" and ut" by choosing increasing families
of sets Atj;" describing the damage in the j -th material with jAtj;"j D 1

2
�j;min.t/,

setting At" D At1;" [ At2;" and ut" the corresponding solution of m".At ; t/. However
the sets At" do not converge to sets as " ! 0 except for the trivial cases ; and .0; 1/.
In particular for p2.ˇ1C˛2/

2ˇ1˛2
� t � p1.ˇ1C˛2/

2ˇ1˛2
we have �2;min.t/ D 1 and �1;min.t/ D 0,

so that At" D ".Z C Œ 1
2
; 1�/, which do not converge as sets.

3.1.2.1 A Double-Damage-Set Formulation

The observation above highlights that a weaker notion of convergence of sets must
be given in order to describe the behavior of (some solutions of) the sequence of
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damage problem. One way is to choose particular sequences of damaged sets Atj;",
for examples intersections of intervals with the j -th material. For simplicity we
consider intervals Œ0; �j;".t/� with one endpoint in 0, so that

At1;" D Œ0; �1;".t/� \ "
�
Z C

h
0;
1

2

i�
; At2;" D Œ0; �2;".t/� \ "

�
Z C

h1
2
; 1
i�
:

Note that under hypothesis (3.16) we have �2;".t/ � �1;".t/ for all t . We have
therefore to examine problems (3.13) rewritten in the form

m".�1;"; �2;"; t/ D min
nZ �1;"

0

˛
�x
"

�
ju0j2 dx C

Z �2;"

�1;"

a
�x
"

�
ju0j2 dx

C
Z 1

�2;"

ˇ
�x
"

�
ju0j2 dx W u.0/ D 0; u.1/ D t

o
; (3.19)

where a is the 1-periodic function with

a.y/ D
(
ˇ1 for 0 � y < 1

2

˛2 for 1
2

� y < 1
:

If �j;" ! �j then these problems converge to

mhom.�1; �2; t/ D min
n
˛

Z �1

0

ju0j2 dx C a

Z �2

�1

ju0j2 dx

Cˇ
Z 1

�2

ju0j2 dx W u.0/ D 0; u.1/ D t
o
: (3.20)

Taking into account that in this case
R
A
�.x="/ dx ! 1

2
�2�2 C 1

2
�1�1, the limit of

m".t/ can be written as

mhom.t/ D min
nZ 1

0

�
�Œ0;�1�

�
˛ju0j2 C �1 C �2

2

�
C �Œ�1;�2�

�
aju0j2 C �2

2

�

C�Œ�2;1�ˇju0j2
�

dx W u.0/ D 0; u.1/ D t; 0 � �1 � �2 � 1
o
: (3.21)

Minimizing first in �1 and �2 we obtain

mhom.t/ D min
nZ 1

0

min
n
˛ju0j2 C �1 C �2

2
; aju0j2 C �2

2
; ˇju0j2

o
dx

W u.0/ D 0; u.1/ D t
o
: (3.22)
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t

mhom

Fig. 3.4 The minimal energy
mhom.t / of Sect. 3.1.2

This observation highlights that the function mhom.t/ can be expressed as the
convex envelope of

min
n
ˇz2;

2˛2ˇ1

ˇ1 C ˛2ˇ2
z2 C 1

2
�2; ˛ C 1

2
.�1 C �2/

o
; (3.23)

(see Fig. 3.4) which are the three total energy densities corresponding to the
mixtures of undamaged materials, equally damaged and undamaged materials
(in the optimal way determined by condition (3.16)), and completely damaged
materials.

The limit damage motion in this case is given in terms of the two sets
Atj D Œ0; �j .t/�, where �j .t/ are the minimizers of problem (3.21), and of the
corresponding ut . Note that this is possible thanks to the particular choice of the
damage sets Atj;", and does not give a description of the behavior of an arbitrary
family of solutions At"; u

t
".

3.1.2.2 Double-Threshold Formulation

Also in this case we note that the damage process takes place when t reaches some
particular values. In this case the thresholds are two given by p1 and p2 (see Fig. 3.3
as compared with Fig. 3.2).

3.1.3 Dissipations Leading to a Commutability Result

We now slightly modify the dissipation in the example of the previous section. This
will produce a ‘commutatibility’ result in the quasistatic motion outlined above;
i.e., the process of homogenization and of damage can be interchanged. The first
such modification is obtained by imposing that the domain of the dissipation be the
set of intervals; i.e.,

D".A/ D C1 if A is not an interval,
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while D" remains unchanged otherwise. In this case, in the process described in
Sect. 3.1.2, we may remark that, at fixed ", the minimal At" will converge to some
interval At for which we may pass to the limit obtaining the problem

min
n
Fhom;At .u/C � jAt j W u.0/ D 0; u.1/ D t

o
;

where

� D �1 C �2

2
;

since

lim
"!0

D".A
t
"/ D � jAt j:

Note that in the previous example this passage was not possible since the At" thus
defined do not converge to a limit set.

We may conclude then that At minimizes the corresponding

mhom.t/ WD min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t; A subinterval of .0; 1/

o

D min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t; A � .0; 1/

o

D f ��
hom.t/; (3.24)

where

fhom.z/ D min
˚
˛z2 C �; ˇz2

�
; (3.25)

which describes the damage process corresponding to the limit homogenized
functionals. Note that in the limit problem we may remove the constraint that A
be an interval, since we have already remarked that solutions satisfying such a
constraint exist.

3.1.3.1 Brutal Damage

We consider another dissipation, with

D".A/ D
Z

A

�
�x
"

�
dx C  #.@A\ Œ0; 1�/;

so that it is finite only on finite unions of intervals.
We may compute the limit of m".t/ as in Sect. 3.1.2, noticing that, for a finite

union of intervals, we may pass to the limit (taking possibly into account that
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the number of intervals may decrease in the limit process), and conclude that the
limit damage process corresponds to the functionals Fhom;A and the homogenized
dissipation

Dhom.A/ D � jAj C #.@A \ Œ0; 1�/:

Correspondingly, we can compute the minima

mhom.t/ D min
n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D t;

A union of subintervals of .0; 1/
o
;

as

mhom.t/ D min
n
m0

hom.t/;m
1
hom.t/

o
;

wherem0
hom corresponds to no damage,

m0
hom.t/ D min

n
Fhom;;.u/ W u.0/ D 0; u.1/ D t/

o
D ˇt2;

and m1
hom corresponds to A a single interval (not being energetically convenient to

have more than one interval),

m1
hom.t/ D inf

n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D t;

A subinterval of .0; 1/; A ¤ ;
o

D min
n
Fhom;A.u/C � jAj W u.0/ D 0; u.1/ D t;

A subinterval of .0; 1/
o

C 2

D f ��
hom.t/C 2; (3.26)

with fhom as in (3.25).
The plot of mhom is reproduced in Fig. 3.5. Note that we follow the curve

corresponding to undamaged materials until we reach the graph of m1
hom, which

corresponds to a positive value of the damage area; i.e., the damage is ‘brutal’ (once
it is convenient to damage, we damage a large region). Correspondingly, in Fig. 3.6
we plot the value of m0

hom and the derivative of the homogenized energy E along a
cycle in dependence of the boundary condition g D g.t/.
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t

mhom
Fig. 3.5 The minimal energy
mhom.t /

g

m'hom

Fig. 3.6 Plot of m0

hom.t / and
derivative of the energy along
a cycle

3.1.4 Conditions for Commutability

Motivated by the examples above, we may derive a criterion of commutability of
� -convergence and quasi-static motion, which we state in this particular case but
is immediately generalized to more abstract situations. This easily follows from the
remark that in order to pass to the limit we have to have the convergence of the
minimum problems

min
n
F";A.u/CD".A/ W u.0/ D 0; u.1/ D g.t/; B" � A

o
(3.27)

with B" Borel sets converging to B (in (3.1) B" D SfAs W s < tg) to

min
n
Fhom;A.u/CDhom.A/ W u.0/ D 0; u.1/ D g.t/; B � A

o
: (3.28)

Proposition 3.1 (A commutativity criterion). Let B" ! B and let

G".u; A/ D
(
F";A.u/CD".A/ if B" � A

C1 otherwise
(3.29)
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Ghom.u; A/ D
(
Fhom;A.u/CDhom.A/ if B � A

C1 otherwise:
(3.30)

Suppose that G" � -converges to Ghom with respect to the converge L2 � L1-
convergence (the latter is understood as the convergence of the characteristic
functions of sets). Then if a sequence of solutions .ut"; A

t
"/ to the evolutions related

to the energies F";A, dissipationD" and boundary conditions given by g is such that
(up to subsequences) for all t ut" converges to some ut in L2 and Bt

" D SfAs" W
s < tg converges to some Bt in L1, then it converges (up to subsequences) to
a solution to the evolution related to the energies Fhom;A, dissipation Dhom and
boundary conditions given by g.

This criterion follows from the fundamental theorem of � -convergence, upon
noting that the boundary conditions are compatible with the convergence of minima
regardless to the constraint B" � A.

Remark 3.2. We may apply Proposition 3.1 to the two examples in Sect. 3.1.3.
In fact, in both cases the boundedness of the dissipation implies that At" and hence
Bt
" are (increasing with t) intervals (or finite union of intervals in the second case),

so that the pre-compactness of Bt
" is guaranteed. The convergence for all t follows

from an application of Helly’s theorem.
We cannot apply Proposition 3.1 to the solutions in Sect. 3.1.2. Indeed, except

for the trivial cases when At" D ; or At" D .0; 1/, these do not converge strongly in
L1 but only weakly.

3.1.5 Relaxed Evolution

The criterion above suggests, in case it is not satisfied, to examine the behavior
of the functionals (3.29) with respect to the L2 � L1-weak convergence. In this
case, the limit of a sequence of characteristic functions may not be a characteristic
function itself, so that the domain of the � -limit will be the space of pairs .u; 	/,
with 0 � 	 � 1. This formulation will necessarily be more complex, but will capture
the behavior of all sequences At"; u

t
".

Proposition 3.2 (Relaxed total energies). If hypothesis (3.16) holds, then the
� -limit of the functionals (3.29) with respect to the L2 � L1-weak convergence
is given by the functional (r stands for ‘relaxed’)

Gr
hom.u; 	/ D

Z

.0;1/

fhom.	; u
0/ dx C

Z

.0;1/

�hom.	/ dx; (3.31)
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where

fhom.	; z/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

2˛2ˇ1ˇ2

2	ˇ1ˇ2 C .1 � 2	/˛2ˇ1 C ˛2ˇ2
z2 if 0 � 	 � 1

2

2˛1˛2ˇ1

2.1� 	/˛1˛2 C .2	 � 1/˛2ˇ1 C ˛1ˇ1
z2 if 1

2
� 	 � 1

(3.32)

and the dissipation energy density is

�hom.	/ D

8
ˆ̂<
ˆ̂:

�2	 if 0 � 	 � 1
2

1
2
�2 C �1

�
	 � 1

2

�
if 1
2

� 	 � 1

(3.33)

Proof. We do not dwell on this proof, since it is a variation of the usual homog-
enization theorem. A lower bound is obtained by minimizing on each periodicity
cell. Upon scaling we are led to computing

�.z; 	/ WD min
n Z

A

˛.y/ju0j2 dy C
Z

.0;1/nA
ˇ.y/ju0j2 dy C

Z

A

�.y/ dy W

A � .0; 1/; jAj D 	; u.0/ D 0; u.1/ D z
o
:

By a direct computation we get

�.z; 	/ D fhom.	; z/C �hom.	/:

Since � is convex in the pair .z; 	/, its integral is lower semicontinuous in L2 �L1-
weak, and hence is a candidate for the � -liminf. The proof of the limsup inequality
is obtained by density, first dealing with the case when u is a piecewise-affine
function and 	 is a piecewise-constant function. ut
Remark 3.3. The limit of problems (3.27) with B" converging weakly to some �
will be of the form

min
n
Gr

hom.u; 	/ W u.0/ D 0; u.1/ D g.t/; � � 	
o
: (3.34)

As in Sect. 3.1.2, we only consider the case g.t/ D t , and the problem

mr.t/ D min
n
Gr

hom.u; 	/ W u.0/ D 0; u.1/ D t
o
: (3.35)

We have

mr.t/ D min
nZ 1

0

min
0�	�1

n
fhom.	; u

0/C�hom.	/
o

dx W u.0/ D 0; u.1/ D t
o
: (3.36)
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t

Fig. 3.7 Value of the
damage 	.t/

A direct computation shows that

min
0�	�1

n
fhom.	; z/C �hom.	/

o
D m.z/; (3.37)

withm the one in Sect. 3.1.2; hence, by the convexity ofm, we havemr.z/ D m.z/.
Moreover, again using the convexity of m, a solution is simply given by ut .x/ D tx
and correspondingly 	 D 	.t/ constant equal to the minimizer of (3.37) with z D t ;
namely,

	.t/ D

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂:

0 if jt j � p2
ˇ

p22
�2

�
t
p2

� 1
ˇ

�
if p2

ˇ
< jt j < p2.ˇ1C˛2/

2ˇ1˛2

1
2

if p2.ˇ1C˛2/
2ˇ1˛2

� jt j � p1.ˇ1C˛2/
2ˇ1˛2

1C p21
�1

�
t
p1

� 1
˛

�
if p1.ˇ1C˛2/

2ˇ1˛2
< jt j < p1

˛

1 if jt j � p1
˛

(see Fig. 3.7). Note that we have

	.t/ D �1;min.t/C �2;min.t/

2

with �j;min given by (3.17) and (3.18). The solution with 	 constant corresponds to
equi-distributed damage. Note that we have infinitely many solutions, among which
the ones described above in terms of At1 and At2.
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3.2 Energetic Solutions for Rate-Independent Evolution

The examples in the previous theory can be framed in a general theory of
rate-independent variational evolution. We introduce some of the concepts of the
theory that are relevant to our presentation, without being precise in the hypotheses
on spaces and topologies.

Definition 3.2. Let F D F .t; �/ be a time-parameterized energy functional and
D be a dissipation functional, which we assume to be positively-homogeneous of
degree one; i.e. D.sU / D sD.U / if s > 0. Then U is an energetic solution for the
evolution inclusion

@D. PU /C @UF .t; U / 3 0
if the following two conditions hold:

(S) global stability for all t and OU we have

F .t; U.t// � F .t; OU /C D. OU � U.t//I

(E) energy inequality for all t

F .t; U.t//C
Z t

0

D. PU / � F .0; U.0//C
Z t

0

@sF .s; U.s// ds:

In this formula the integral
R t
0
D. PU /must be understood in the sense of measures,

and can be equivalently defined as

sup
n nX
iD1

D.U.ti /� U.ti�1// W 0 D t0 < t1 < � � � < tn D t
o
: (3.38)

IfU is an absolutely continuous function then the integral reduces to
R t
0 D.

PU .s// ds.

Remark 3.4 (Energy equality). Under mild assumptions, from (S) it can be deduced
that in (E) equality holds, so that we have an energy conservation identity. This
identity states that the difference of the energy at a final and an initial state equals
the difference of the work of the applied actions and the total dissipation along the
path.

Remark 3.5. In the case of damage we have U D .u; v/,

F .t; u; v/ D

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂:

Z 1

0

�
˛vju0j2 C ˇ.1� v/ju0j2/ dx if v 2 f0; 1g a.e.;

u.0/ D 0; u.1/ D g.t/

C1 otherwise;
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and

D.U / D

8̂
ˆ̂<
ˆ̂̂:

�

Z 1

0

v dx if v 2 f0; 1g a.e.

C1 otherwise:

Condition (S) is meaningful only if OU D .u; v/ and U.t/ D .ut ; vt / satisfy v D �A
and vt D �At with At � A, so that (S) implies that ut and At are minimizers
for (3.1). Conversely, it can be checked that the solutions to the damage evolution
satisfy the energy inequality as an identity.

Remark 3.6 (Rate-independence). The requirement that D be positively homoge-
neous of degree one implies that the solution is rate-independent; i.e., that if
we consider a re-parameterization of the energy QF .t; U / D F .'.t/; U / via an
increasing diffeomorphism ', then the energetic solutions QU of the corresponding
evolution inclusion are exactly the QU .t/ D U.'.t// with U energetic solutions of
the corresponding evolution inclusion for F .

Example 3.1 (Mechanical play/hysteresis). The prototypical example of an evolu-
tion inclusion is by taking U D x 2 R and

F .t; x/ D x2

2
� tx; D.x/ D jxj:

In this case we can write explicitly @j Pxj C x � t 3 0 as

8
ˆ̂<
ˆ̂:

Px > 0 if x D t � 1
Px < 0 if x D t C 1

Px D 0 if t � 1 � x � t C 1:

The solution with x.0/ D x0 2 Œ�1; 1� is

x.t/ D
(
x0 if t � 1C x0

t � 1 if t > 1C x0:
(3.39)

If we take a non-monotone load g.t/ D T � jt � T j with T > 1C x0 and

F .t; x/ D x2

2
� g.t/x; D.x/ D jxj:

then the solution x is as above for t � T , and given solving @j PxjCx�.2T�t/ 3 0 by

x.t/ D
(
T � 1 ifT � t � T C 2

2T � t C 1 D g.t/C 1 if t � T C 2:
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g

x
Fig. 3.8 Hysteretic trajectory
x.t/ in dependence of g.t/

This solution shows a hysteretic behavior of this system, whose trajectory in the g-x
plane is represented in Fig. 3.8.

3.2.1 Solutions Obtained by Time Discretization

Energetic solutions can be obtained as limits of discrete schemes as follows: fix
� > 0 and defineU �

k recursively by setting U �
0 D U0, and choosingU �

k as a solution
of the minimum problem

min
OU

n
F .�k; OU /C D. OU � U �

k�1/
o
:

Define the continuous trajectory U �.t/ D U �
bt=�c. Under suitable assumptions, the

limits of (subsequences of) U � are energetic solution of the variational inclusion for
F and D .

Example 3.2 (Mechanical play). It is easy to check that the solutions in
Example 3.1 can be obtained by time-discretization, solving iteratively

min
n1
2
x2 � g.k�/x C jx � x�k�1j

o
:

In the case of x0 2 Œ�1; 1� and g.t/ D t the sequence fx�kg is non-decreasing and
hence x�k solves

min
n1
2
x2 � .k� � 1/x � x�k�1 W x � x�k�1

o
I

i.e.,

x�k D
(
x�k�1 if k� � 1 � x�k�1
k� C 1 if k� � 1 � x�k�1:
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Passing to the limit as � ! 0 we then obtain

x.t/ D
(
x0 if t � 1 � x0

t � 1 if t � 1 � x0;

which corresponds to the solution in (3.39).

Example 3.3 (Nonconvex mechanical play). We can consider a double-well
potential of the form

F .t; x/ D 1

2
minf.x � 1/2; .x C 1/2g � tx; D.x/ D jxj

with x0 2 Œ�2;�1�. Then the sequence x�k is increasing and minimizes

min
n1
2

minf.x � 1/2; .x C 1/2g � .k� � 1/x � x�k�1 W x � x�k�1
o
:

The solution satisfies

x�k D

8̂
<̂
ˆ̂:

x�k�1 if k� � 2 � x�k�1
k� � 2 if x�k�1 � k� � 2; k� � 1

k� if k� � 1

(with an ambiguity if k� D 1, in which case we may take equivalently x�k�1 D �1
or x�k�1 D 1). Passing to the limit we have either the solution

x.t/ D

8
ˆ̂<
ˆ̂:

x0 if t � x0 C 2

t � 2 if x0 � t � 1

t if t > 1

or the one equal to this except for 1 where x.1/ D 1. The graph of the solution is
pictured in Fig. 3.9.

Note that the solution is discontinuous at t D 1 and is not characterized
completely by the differential inclusion. In this case the discontinuity exactly at
jxj D 1 can be justified by the energy equality.

3.2.2 Stability

We can give a stability result with respect to � -convergence. As remarked in the
case of damage, the separate � -convergence of F" and D" may not be sufficient to
describe the limit of the corresponding variational motions.
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x

t

1

-1
x0

Fig. 3.9 The trajectory x.t/
in Example 3.3

Theorem 3.1. Suppose that F and D are lower bounds for F" and D", that U" are
energetic solutions converging pointwise to some U as " ! 0, that the initial data
are well-prepared; i.e., that

lim
"!0

F".0; U".0// D F .0; U.0//;

that we have convergence of the external actions

lim
"!0

Z t

0

@sF".s; U".s// ds D
Z t

0

@sF .s; U.s// ds for all t;

and that the following mutual recovery sequence existence condition holds: for all
t and all OU there exists a sequence OU" such that

lim sup
"!0

�
F".t; OU"/� F".t; U".t//C D". OU" � U".t//

�

� F .t; OU /� F .t; U.t//C D. OU � U.t//: (3.40)

Then U is an energetic solution for the limit energy and dissipation.

Proof. Let 0 D t0 < t1 < � � � < tn D t ; by the liminf inequality for D" and (3.38)
we then have

nX
iD1

D.U.ti /� U.ti�1// � lim inf
"!0

nX
iD1

D".U".ti /� U".ti�1// � lim inf
"!0

Z t

0

D". PU"/:

Taking into account the liminf inequality for F" and the convergence hypotheses on
initial data and external actions we then obtain
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F .t; U.t//C
Z t

0

D. PU .s// ds � lim inf
"!0

�
F".0; U".0//C

Z t

0

@sF".s; U".s// ds
�

D F .0; U.0//C
Z t

0

@sF .s; U.s// ds

so that (E) holds.
Take any test OU and use the mutual recovery sequence OU" to obtain

F .t; OU / � F .t; U.t//C D. OU � U.t// � 0I
i.e. the inequality in (S), from the same inequality for U". ut
Proposition 3.3 (Necessary and sufficient conditions).

(i) Let F" � -converge to F and D" converge continuously to D . Then the mutual
recovery sequence condition is satisfied;.

(ii) Assume that F" and D" � -converge to F and D , that U".t/ is a recovery
sequence for F" at U.t/ and that the mutual recovery sequence condition holds
with OU" ! OU . Then G".V / D F".t; V / C D".V � U".t// � -converges to
G .V / D F .t; U.t//C D.V � U.t//.

Proof. (i) Follows by taking OU" any recovery sequence for F".t; OU /.
(ii) Is an immediate consequence of the fact that F C D is a lower bound for

F"CD", while the mutual recovery sequence provides a recovery sequence for
F .t; U.t//C D.V � U.t//. ut

Example 3.4 (An example with relaxed evolution). In R
2 withU D .x; y/, consider

the initial datum u".0/ D .0; 0/ and the energy and dissipation

F".t; U / D 1

2
x2 C 1

2"2
.y � "x/2 � tx; D".U / D jxj C 1

"
jyj

with � -limits

F .t; U / D 1

2
x2 � tx; D.U / D jxj

with domain fy D 0g.
The solution to the differential inclusion for F and D with initial datum .0; 0/

is given by x.t/ as in (3.39) with x0 D 0, and y.t/ D 0. On the other hand, the
solutions to the differential inclusions U" can be computed explicitly, and they tend
to U D .x; y/ defined by y.t/ D 0 and

x.t/ D

8
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0 if t � 1

t � 1
2

if 1 � t � 3

t � 2 if t � 3:
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In this case we do not have convergence of the solutions. However, we can
compute the � -limit of the sum F" C D", whose domain is fy D 0g. Recovery
sequences for .x; 0/ can be looked for of the form .x; "z/. By minimizing in z we
easily get that this � -limit is

G .x/ D 1

2
x2 � tx C jxj C  .x/;

where

 .x/ D min
n1
2
.z � x/2 C jzj

o
D min

nx2
2
;
1

2
C jjxj � 1j

o
;

whose derivative is

 0.x/ D .x ^ 1/ _ .�1/:

It is easily seen that the function x.t/ above is the solution of

@j Pxj C F 0
0.x/ D @j Pxj C x � t C  0.x/ 3 0;

where F0.x/ D G .x/ � jxj D 1
2
x2 � tx C  .x/. This energy F0 can then be

regarded as the relaxed effective energy describing the limit behavior of the system.

3.3 Francfort and Marigo’s Variational Theory of Fracture

A very interesting application of the theory outlined above is to variational models
of Fracture following the formulation given by Griffith in the 1920s. In this case it
is maybe clearer the definition via time-discrete motions (see Sect. 3.2.1) given as
follows.

We consider the antiplane case where the variable u representing the displace-
ment is scalar. By ˝ we denote a bounded open subset of Rn which will be the
reference configuration of a linearly elastic material subject to brittle fracture as a
consequence of a varying boundary condition u D g.t/ on @˝ . K will be a closed
set representing the crack location in the reference configuration. We consider the
case g.0/ D 0, and we set K0 D ;.

With fixed � > 0 we define u�0 D 0, K�
0 D K0 and u�k, K�

k recursively as
minimizers of the problem

min
nZ

˝nK
jruj2dx C H n�1.K nK�

k�1/ W K�
k�1 � K D K � ˝;

u 2 H1.˝ nK/; u D g.t/ on @˝ nK
o
; (3.41)
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where H n�1 denotes the .n�1/-dimensional Hausdorff measure. In this wayK�
k is

an increasing sequence of closed sets. Note that part of the crack may also lie on the
boundary of ˝ , in which case the boundary condition is satisfied only on @˝ nK .

In this formulation we have an elastic energy defined by

F .t; u; K/ D

8
ˆ̂̂
<
ˆ̂̂
:

Z

˝nK
jruj2dx if u 2 H1.˝ nK/ and u D g.t/ on @˝ nK

C1 otherwise;

and a dissipation

D.K/ D
(

H n�1.K/ ifK D K � ˝

C1 otherwise:

The existence of minimizing pairs for .u; K/ is not at all trivial. One way
is by using the theory of SBV functions; i.e., functions of bounded variation u
whose distributional derivative is a measure that can be written as a sum of a
measure absolutely continuous with respect to the Lebesgue measure and a measure
absolutely continuous with respect to the restriction of the .n � 1/-dimensional
Hausdorff measure to the complement of the Lebesgue points of u, the latter denoted
by S.u/. For such functions the approximate gradient ru exists at almost all points.
We can therefore define for all closedK the energy

EK.u/ D
Z

˝nK
jruj2 dx C H n�1.S.u/\ .˝ nK//: (3.42)

Such energies are L1-lower semicontinuous and coercive, so that existence of
weak solutions in SBV.˝/ are ensured from the direct methods of the Calculus
of Variations. Regularity results give that H d�1.S.u/ n S.u// D 0 for minimizing
u, so that to a minimizing u 2 SBV.˝ nK�

k�1/ of

min
n
EK�

k�1
.u/ W u 2 SBV.˝ nK�

k�1/; u D g.t/ on @˝ n .S.u/[K�
k�1/

o
(3.43)

corresponds a minimizing pairK�
k D K�

k�1[S.u/ and u�k D uj˝nK�
k

2 H1.˝ nK�
k/

for (3.41).
The passage from a discrete trajectory u� to a continuous one u for all t letting

� ! 0 is possible thanks to some monotonicity arguments. The delicate step is the
proof that such u still satisfies the global stability property, which is ensured by a
transfer lemma (the Francfort–Larsen transfer lemma), which allows to approximate
a test function Ou appearing in the limit stability estimate with a sequence Ou� that can
be used in the stability estimate holding for u� .t/, which then carries to the limit.
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Remark 3.7 (Existence of fractured solutions). Note that for large enough values of
the boundary condition g.t/ we will always have a solution with Kt ¤ ;. Indeed,
consider the case g.t/ D tg0 with g0 ¤ 0 on @˝ . IfKt D ; then the corresponding
ut is a minimizer of

min
nZ

˝

jruj2 dx W u D tg0 on @˝
o

D t2 min
nZ

˝

jruj2 dx W u D g0 on @˝
o

DW t2C0:

On the other hand, we can use as test function u D 0 and as test set K D @˝

in (3.41), for which the total energy isC1 D H n�1.@˝/. This shows that for t2C0 >
C1 we cannot have K D ;.

Remark 3.8 (The one-dimensional case). In the one-dimensional case, the
functional E reduces to the energy F obtained as a limit in Sect. 2.6 with
the normalization 2J 00.0/ D J.1/ D 1, since H 0.K/ D #.K/. Note that in
this case the domain of E reduces to piecewise-H1 functions. If ˝ D .0; 1/ then
the time-continuous solutions are of the form

.ut .x/;Kt / D

8̂
<̂
ˆ̂:

.g.t/x;;/ for t � tc

�
g.t/�.x0;1/.x/; fx0g

�
for t > tc;

or

.ut .x/;Kt / D

8̂
<̂
ˆ̂:

.g.t/x;;/ for < tc

�
g.t/�.x0;1/.x/; fx0g

�
for t � tc ;

where x0 2 Œ0; 1� and tc is any value with g.tc/ D 1 and g.s/ � 1 for s < tc . This
non-uniqueness is due to the fact that for g.t/ D 1 we have two possible types of
solutions u.x/ D x and u.x/ D �.x0;1/.x/.

3.3.1 Homogenization of Fracture

The interpretation of fracture energies as functionals defined in SBV allows
to consider the L1-convergence in SBV along sequences with equibounded
energy (3.42). With respect to such a convergence we can consider stability issues
for energies and dissipations related to the oscillating total energy

E".u/ D
Z

˝nK
ab

�x
"

�
jruj2 dx C

Z

S.u/\.˝nK/
af

�x
"

�
dH n�1
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(here the coefficients ab and af , where b stands for bulk and f for fracture, are
periodic functions). In this case the limit of the total energies E" is the sum of the
energies obtained separately as limits of the energy and the dissipation parts (with
respect to the same convergence), and has the form

Ehom.u/ D
Z

˝nK
hAhomru;rui dx C

Z

S.u/\.˝nK/
'hom.�/dH n�1;

where � denotes the measure-theoretical normal to S.u/. Note that the homogenized
Ahom is the same given by the homogenization process in H1, while 'hom is an
effective fracture energies obtained by optimization on oscillating fractures, related
to the homogenization of perimeter functionals. Thanks to this remark it is possible
to show that the energetic solutions for E" converge to energetic solutions of
Ehom. In terms of the construction of mutual recovery sequences this is possible
since internal energy and dissipation can be optimized separately, contrary to what
happens for the damage case, where both terms involve bulk integrals.

Appendix

Analyses of damage models linked to our presentation are contained in the work
by Francfort and Marigo [5]. The higher-dimensional case is studied in a paper by
Francfort and Garroni [3]. A threshold-based formulation is introduced by Garroni
and Larsen [7]. The examples in Sect. 3.1.3 have been part of the course exam of
B. Cassano and D. Sarrocco at Sapienza University in Rome.

An analysis of rate-independent processes is contained in the review article by
Mielke [8]. The definitions given here can be traced back to the works by Mielke,
Theil and Levitas [10] and [11]. The stability with respect to � -convergence is
analyzed in the paper by Mielke, Roubiček, and Stefanelli [9]. Most of Sect. 3.2 is
taken from a lecture given by Ulisse Stefanelli during the course at the University of
Pavia. The homogenization examples in Sect. 3.1, framed in the theory of energetic
solutions, are contained in the paper [2]

An account of the variational theory of fracture (introduced in [6]) is contained
in the book by Bourdin et al. [1]. The fundamental transfer lemma is contained in
the seminal paper by Francfort and Larsen [4].
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Chapter 4
Local Minimization as a Selection Criterion

In this chapter we will leave the global minimization framework, and consider some
issues linked to local minimization. By a local minimizer of F we mean a point u0
such that there exists ı > 0 such that

F.u0/ � F.u/ if d.u; u0/ � ı; (4.1)

or, equivalently, is a minimum of the restriction of F to some ball centered in u0
itself.

The � -limit F of a sequenceF" is often interpreted as a simplified description of
the energies F", where unimportant details have been averaged out still keeping the
relevant information about minimum problems. As far as global minimization prob-
lems are concerned this is ensured by the fundamental theorem of � -convergence,
but this is in general false for local minimization problems. Nevertheless, if some
information on the local minima is known, we may use the fidelity of the description
of local minimizers as a way to ‘correct’ � -limits. In order to do that, we first
introduce some notions of equivalence by � -convergence, and then show how to
construct simpler equivalent theories as perturbations of the � -limit F in some
relevant examples.

4.1 Equivalence by � -Convergence

Definition 4.1. Let .F"/ and .G"/ be sequences of functionals on a separable metric
space X . We say that they are equivalent by � -convergence (or � -equivalent) if
there exists a sequence .m"/ of real numbers such that if .F"j �m"j / and .G"j �m"j /

are � -converging sequences, then their � -limits coincide and are proper (i.e., not
identically C1 and not taking the value �1).

Remark 4.1. (i) Since � -convergence is sequentially compact (i.e., every seque-
nce has a � -converging subsequence), the condition in the definition is never

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__4,
© Springer International Publishing Switzerland 2014
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empty as long as the functional themselves are proper. On the set of proper
lower-semicontinuous functionals the definition above is indeed an equivalence
relation (in particular any sequence .F"/ is equivalent to itself, even though it
may not converge).

(ii) Note that if F" � -converge to F and G" � -converge to G then equivalence
amounts to F DG and F proper, and .F"/ is equivalent to the constant
sequence F .

(iii) The addition of the constants m" allows to consider and discriminate among
diverging sequences (whose limit is otherwise not proper). For example, the
sequences of constants F" D 1=" and G" D 1="2 are not equivalent, even
though they diverge to C1. Note instead that F".x/ D x2=" and G".x/ D
x2="2 are equivalent since their common limit is

F.x/ D
(
0 if x D 0

C1 otherwise;

which is proper.

Definition 4.2 (Parameterized and uniform equivalence). For all �2�, let .F �
" /

and .G�
" / be sequences of functionals on a separable metric space X . We say that

they are equivalent by � -convergence if for all � they are equivalent according to the
definition above. If� is a metric space, we say that they are uniformly � -equivalent
if there exist .m�

" / such that

� - lim
j
.F

�j
"j �m�j

"j / D � - lim
j
.G

�j
"j �m�j

"j /

and are proper for all �j ! � and "j ! 0.

Remark 4.2. Suppose that F �
" � -converge to F � and .F �

" / and .F �/ are uniformly
� -equivalent as above, and that all functionals are equi-coercive and � is compact.
Then we have

sup
�2�

j infF �
" � minF �j D o.1/

as "!0, or, equivalently, that f".�/D infF �
" converges uniformly to f .�/D

minF � on �. This follows immediately from the fundamental theorem of
� -convergence and the compactness of �.

Example 4.1. Take � D Œ�1; 1�, and

F �
" .u/ D

Z 1

0

�W.u/
"

C "ju0j2
�

dt;
Z 1

0

u dt D �
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with W as in Example 2.5. Then we have, for fixed �, the � -limit

F �.u/ D
(
0 if u.x/ D �

C1 otherwise

if � D ˙1 and

F �.u/ D
(
cW #.S.u// if u 2 BV..0; 1/I f˙1g/ and

R 1
0

u dt D �

C1 otherwise

if j�j ¤ 1. Note that f".�/ D infF �
" is a continuous function, while

f .�/ D minF � D
(
0 if j�j D 1

1 otherwise

is not continuous; hence, the convergence of f" to f is not uniform, which implies
that .F �

" / and .F �/ are not uniformly � -equivalent.

4.2 A Selection Criterion

We will use the concept of equivalence introduced above to formalize a problem of
the form: given F" find ‘simpler’ G" equivalent to F", which capture the ‘relevant’
features of F".

We will proceed as follows:

• Compute the � -limit F of F". This suggests a limit domain and a class of
energies (e.g., energies with sharp interfaces in place of diffuse ones, convex
homogeneous functionals in place of oscillating integrals, etc.).

• If the description given by F is not ‘satisfactory,’ then ‘perturb’ F so as to obtain
a family .G"/ � -equivalent to .F"/, with G" in the limit class determined by the
computation of the � -limit.

The same procedure may apply to parameterized families .F �
" /.

Of course, the criteria of ‘relevance’ for the construction of G" as above may be
of different types. In the following example we consider the parameterized family
of Example 4.1, and the criterion of uniform equivalence.

Example 4.2. We consider the functionals F � in Example 4.1, which have been
shown to be not uniformly equivalent to the sequence F �

" . We wish to construct
energies of the same form of F �; i.e., with domain u 2 BV..0; 1/I f˙1g/ withR 1
0 u dt D �, and uniformly � -equivalent to the sequence F �

" . These energies must
then depend on ".
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Suppose that W 2 C2. If we look for energies of the form

G�
" .u/ D

(
c�" #.S.u// if u 2 BV..0; 1/I f˙1g/ and

R 1
0

u dx D �

C1 otherwise;

then it is possible to show that the choice

c�" D min
nW.�/

"
; cW

o

gives G�
" uniformly � -equivalent to F �

" .
The form of c�" highlights that minimizers for F �

" can either be close to a sharp
interface (in which case their value is cW ), or close to the constant � (which gives
the energy valueW.�/="). When � D ˙1CO.

p
"/ the second type of minimizers

may have lower energy. Nevertheless since they converge to ˙1 this second type of
minimizers are never detected by F �.

The choice of c�" is not unique, even within energies of the form prescribed; in
fact we may also take the Taylor expansions of W at ˙1 in place of W

c�" D min
nW 00.�1/

2"
.�C 1/2;

W 00.1/
2"

.� � 1/2; cW

o
;

or any other function with the same Taylor expansion.
We may also takeG�

" belonging to a class of energies of a slightly more complex
form, defined on piecewise-constant functions, setting

G�
" .u/ D

8
<̂
:̂

Z 1

0

W.u/

"
dx C cW #.S.u// if u piecewise constant and

R 1
0 u dx D �

C1 otherwise:

This choice gives a better description of the minimizers of F �
" .

4.3 A ‘Quantitative’ Example: Phase Transitions

In this section and the following the ‘unsatisfactory description’ of the original
problems given by the � -limit, which we are trying to correct, will be a partial
description of local minimizers. We will then try to perturb the � -limits as described
above so as to satisfy this requirement.

We consider the same type of energies as in Examples 2.5 and 4.1

F".u/ D
Z 1

0

�W.u/
"

C "ju0j2
�

dx
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with W a double-well potential with wells in ˙1. For the sake of simplicity, in the
present example the domain of F" is restricted to 1-periodic functions (i.e., u such
that u.1/ D u.0/). This constraint is compatible with the � -limit, which is then
given by

F.u/ D cW #.S.u/\ Œ0; 1// for u 2 BV..0; 1/I f˙1g/:

Again, u is extended to a periodic function, so that it may have a jump at 0 (and then
by periodicity also at 1). By considering jumps in Œ0; 1/ such a jump is taken into
account only once in the limit energy.

• Note that all functions in BV..0; 1/I f˙1g/ are L1-local minimizers (even though
not isolated). This is a general fact when we have a lower-semicontinuous energy
taking discrete values.

• We now show that, on the contrary,F" has no non-trivialL1-local minimizer. We
consider the simplified case

W.u/ D .juj � 1/2:

In this case cW D 2. Suppose by contradiction that u is a local minimizer. If
u � 0 (equivalently, u � 0) then

F".u/ D
Z 1

0

� .u � 1/2

"
C "ju0j2

�
dt:

Since this functional is convex, its only local minimizer is the global minimizer
u D 1. Otherwise, we can suppose, up to a translation, that there existsL 2 .0; 1/
such that u.˙L=2/ D 0 and u.x/ > 0 for jxj < L=2. Again, using the convex-
ity of

FL
" .u/ D

Z L=2

�L=2

� .u � 1/2
"

C "ju0j2
�

dx

we conclude that u must be the global minimizer of FL with zero boundary data;
i.e., the solution of

8
<̂
:̂

u00 D 1

"2
.u � 1/

u.˙L
2
/ D 0:

This gives

u.x/ D 1 �
�

cosh
� L
2"

���1
cosh

�x
"

�
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and

FL
" .u/ D

sinh
�
L
"

�

�
cosh

�
L
2"

��2 :

Note that

d2

dL2
F L
" .u/ D � 1

"2

sinh
�
L
2"

�

�
cosh

�
L
2"

��3 I

i.e., this minimum value is a concave function of L. This immediately implies
that no local minimizer may exist with changing sign; in fact, such a minimizer
would be a local minimizer of the function

f .L1; : : : ; LK/ D
KX
kD1

sinh
�
Lk
"

�

�
cosh

�
Lk
2"

��2 ; (4.2)

for someK > 0 under the constraintLk > 0 and
P

k Lk D 1, which is forbidden
by the negative definiteness of its Hessian matrix. Note moreover that

FL
" .u/ D 2 � 4e�L

" CO.e� 2L
" /

and that �4e�L
" is still a concave function of L.

• We can now propose a ‘correction’ to F by considering in its place

G".u/ D cW #.S.u//�
X

x2S.u/\Œ0;1/
4e� 1

" jx�max.S.u/\.�1;x/j

defined on periodic functions with u 2 BV..0; 1/I f˙1g/. It is easily seen that
G" � -converges to F , and, hence, is equivalent to F"; thanks to the concavity of
the second term, the same argument as above shows that we have no non-trivial
local minimizers. As a side remark note that this approximation also maintains
the stationary points of F", which are functions with K jumps at distance 1=K .
This is easily seen after remarking that the distances between consecutive points
must be a stationary point for (4.2). Moreover, the additional terms can also be
computed as a development by � -convergence, which extends this equivalence
to higher order.

Remark 4.3 (Interaction with the boundary). The case without periodicity condi-
tions can be reduced to the case with periodic boundary conditions upon remarking
that if Qu denotes the even extension of u to .�1; 1/ then
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F".u/ D 1

2

Z 1

�1

�W.Qu/
"

C "jQu0j2
�

dx

and Qu satisfies periodic boundary conditions. Then we can apply the arguments
above to obtain that if x1 < � � � < xn denote the location of points in .0; 1/ where u
changes sign as in the computation above (where Lk D xk � xk�1), then we have
the corresponding estimate

F".u/ �
nX

kD2

sinh
�
xk�xk�1

"

�

�
cosh

�
xk�xk�1

2"

��2 C
sinh

�
2x1
"

�

2
�

cosh
�
2x1
2"

��2 C
sinh

�
2�2xn
"

�

2
�

cosh
�
2�2xn
2"

��2

D
nX

kD2

sinh
�
xk�xk�1

"

�

�
cosh

�
xk�xk�1

2"

��2 C tanh
�x1
"

�
C tanh

�1 � xn
"

�
:

The last two terms represent the interaction of the points x0 and xn with the
boundary of .0; 1/. The ‘corrected’ � -converging sequence in this case can be
written as

G".u/ D cW #.S.u//�
nX

kD2
4e� 1

" jxk�xk�1j � 2e� 2
" x1 � 2e�2".1�xn/

if S.u/ D fx1; : : : ; xng with xk < xk�1.

4.4 A ‘Qualitative’ Example: Lennard-Jones
Atomistic Systems

As in Example 2.6, we consider a scaled system of one-dimensional nearest-
neighbour atomistic interactions through a Lennard-Jones type potential. Let J be
a C2 function as in Fig. 4.1, with domain .�1;C1/ (we set J.w/ D C1 for
w � �1), minimum in 0 with J 00.0/ > 0, convex in .�1;w0/, concave in .w0;C1/

and tending to J.1/ < C1 at C1.
We consider the energy

F �
" .u/ D

NX
iD1

J
�ui � ui�1p

"

�

with the boundary conditions u0 D 0 and uN D � � 0. Here " D 1=N with N 2 N.
The vector .u0; : : : ; uN / is identified with a discrete function defined on "Z \ Œ0; 1�
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-1 w

J
Fig. 4.1 A (translation of a)
Lennard-Jones potential J

or with its piecewise-affine interpolation. With this last identification, F �
" can be

viewed as functionals in L1.0; 1/, and their � -limit computed with respect to that
topology.

Taking into account the boundary conditions, we can extend all functions to
u.x/ D 0 for x � 0 and u.x/ D � for x � �, and denote by S.u/ (set of
discontinuity points of u) the minimal set such that u 2 H1..�s; 1 C s/ n S.u//
for some s > 0. With this notation, the same arguments as in Example 2.6 give that
the � -limit is defined on piecewise-H1.0; 1/ functions by

F �.u/ D 12J 00.0/
Z 1

0

ju0j2 dt C J.1/#.S.u/\ Œ0; 1�/

with the constraint that uC > u� on S.u/ and the boundary conditions u�.0/ D 0,
uC.1/ D � (so that S.u/ is understood to contain also 0 or 1 if uC.0/ > 0 or
u � .1/ < �). For simplicity of notation we suppose

1

2
J 00.0/ D J.1/ D 1:

• Local minimizers of F �. If the average z D R 1
0

u0 dt is given, by the strict convex-

ity of
R 1
0

ju0j2 dt this part of the energy is minimized by the piecewise-constant
gradient u0 D z. From now on we tacitly assume that u0 is constant; we then have
two cases depending on the number of jumps:

(i) If S.u/ D ; then z D �, and this is a strict local minimizer since any L1

perturbation with a jump of size w and (average) gradient z has energy z2C1

independent of w, which is strictly larger than �2 if the perturbation is small.
(ii) If #S.u/ � 1 then L1 local minimizers are all functions with u0 D 0 (since

otherwise we can strictly decrease the energy by taking a small perturbation
v with the same set of discontinuity points and v0 D su0 with s < 1).

The energy of the local minima in dependence of � is pictured in Fig. 4.2.
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Fig. 4.2 Energy of local
minima for F �

ww0

J'

Fig. 4.3 Derivative of J

• Local minimizers of F �
" . This is a finite-dimensional problem, whose stationarity

condition is

J 0
�ui � ui�1p

"

�
D  for all i ,

for some  > 0. The shape of J 0 is pictured in Fig. 4.3; its maximum is achieved
for w D w0. Note that for all 0< <J 0.w0/ we have two solutions of J 0.w/D  ,
while we have no solution for  > J 0.w0/.

We have three cases:

(i) We have

ui � ui�1p
"

� w0 (4.3)

for all i . In this case the boundary condition gives

ui � ui�1
"

D �
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for all i , so that we have the constraint.

� � w0p
"
: (4.4)

This solution is a local minimum. This is easily checked when � < w0p
"

since

small perturbations maintain condition (4.3). In the limit case � D w0p
"

we may
consider only perturbations where (4.3) is violated at exactly one index (see
(ii) below), to which there corresponds an energy

J.w0 C t/C .N � 1/J
�

w0 � t

N � 1

�
;

for t � 0, which has a local minimum at 0.
(ii) Condition (4.3) is violated by two (or more) indices j and k. Let w be such

that

uj � uj�1p
"

D uk � uk�1p
"

D w > w0:

We may perturb ui � ui�1 only for i D j; k, so that the energy varies by

f .s/ WD J.w C s/C J.w � s/ � 2J.w/: (4.5)

We have f 0.0/ D 0 and f 00.0/ D 2J 00.w/ < 0, which contradicts the mini-
mality of u.

(iii) Condition (4.3) is violated exactly by one index. The value of w D ui�ui�1p
"

for
the N � 1 indices satisfying (4.3) is obtained by computing local minimizers
of the energy on such functions, which is

f �
" .w/ WD .N � 1/J.w/C J

� �p
"

� .N � 1/w
�

defined for 0 � w � min
n
w0;

1
N�1

�
�p
"

� w0
�o

. We compute

.f �
" /

0.w/ WD .N � 1/
�
J 0.w/ � J 0� �p

"
� .N � 1/w

��
:

Note that

f �
" .0/ D J

� �p
"

�
D 1 � o.1/

and .f �
" /

0.0/ < 0. If � > w0=
p
" then .f �

" /
0.w/ D 0 has a unique solution,

which is a local minimizer, while if � � w0=
p
" we have two solutions

w1 <w2, of which the first one is a local minimizer. We then have a unique
curve of local minimizers with one jump.
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w0
-1/2

Fig. 4.4 Energy of local
minima for F �

"

The energy of the local minima in dependence of � is schematically pictured in
Fig. 4.4.

• A qualitative comparison of local minimization. First, the local minimizer for F �
"

which never exceeds the convexity threshold (corresponding to the minimizer
with S.u/ D ; for F �) exists only for � � w0=

p
"; second, we only have one

curve of local minimizers for F �
" which exceed the convexity threshold for only

one index (corresponding to the minimizers with #S.u/ D 1 for F �).
• � -equivalent energies. The class of energies suggested by the computation of

the � -limits are those defined on piecewise-H1 functions. We can further narrow
their form by fixing the integral part, and look for energies defined on piecewise-
H1 functions of the form

G�
" .u/ D

Z 1

0

ju0j2 dt C
X
t2S.u/

g
�uC � u�

p
"

�
;

again with the constraint that uC > u� on S.u/ and the boundary conditions
u�.0/ D 0, uC.1/ D �. In order that local minimizers satisfy #.S.u// � 1

we require that g W .0;C1/ ! .0;C1/ be strictly concave. In fact, with this
condition the existence of two points in S.u/ is ruled out by noticing that given
w1;w2 > 0 the function t 7! g.w1 C t/ C g.w2 � t/ is concave. Moreover, we
also require that g satisfy

lim
w!C1g.w/ D 1:

With this condition it is easily seen that we have the � -convergence ofG�
" to F �.

In order to make a comparison with the local minimizers of F �
" we first consider

local minimizers with S.u/ D ;; i.e., u.t/ D �t . Such a function is a local
minimizer if it is not energetically favourable to introduce a small jump of size
w; i.e., if 0 is a local minimizer for

g�" .w/ WD .� � w/2 C g
� wp

"

�
;
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where we have extended the definition of g by setting g.0/ D 0. Note that if g is
not continuous in 0 then 0 is a strict local minimizer for g�" for all �. Otherwise, we
can compute the derivative, and obtain that

d

dw
g�" .0/ D �2�C 1p

"
g0.0/:

For " small enough, 0 is a (isolated) local minimizer if and only if d
dwg

�
" .0/ > 0; i.e.,

� <
1

2
p
"
g0.0/:

If we choose

g0.0/ D 2w0

we obtain the desired constraint on this type of local minimizers. A possible simple
choice of g is

g.w/ D 2w0w

1C 2w0w
:

We finally consider local minimizers with #.S.u// D 1. If w denotes the size
of the jump then again computing the derivative of the energy, we conclude the
existence of a single local minimizer w with

2.�� w/ D 1p
"
g0
� wp

"

�
;

and energy approaching 1 as " ! 0.

• With the choice above, the pictures of the local minimizers for G�
" and for F �

"

are of the same type, but may vary in quantitative details. We have not addressed
the problem of the uniformity of this description, for which a refinement of the
choice of g could be necessary.

• As a conclusion, we remark that this example has some modeling implications.
The functional F � can be seen as a one-dimensional version of the energy of a
brittle elastic medium according to Griffith’s theory of Fracture (S.u/ represents
the fracture site in the reference configuration), which is then interpreted as a
continuum approximation of an atomistic model with Lennard Jones interactions.
The requirement that also local minima may be reproduced by the limit theory
has made us modify our functional F � obtaining another sequence of energies,
which maintain an internal parameter ". Energies of the form G�

" are present in
the literature, and are related to Barenblatt’s theory of ductile fracture. Note that
in all these considerations the parameter � appears in the functionals only as a
boundary condition, and does not influence the form of the energy.
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4.5 A Negative Example: Oscillating Perimeters

The procedure described above cannot be always performed in a simple fashion.
This may happen if the structure of the � -limit F cannot be easily modified to
follow the pattern of the local minimizers of F". We include an example where local
minimizers of F" tend to be a dense set, while functionals with the structure of F
have no local minimizers.

Example 4.3. We consider the function a W Z2 ! f1; 2g

a.x1; x2/ D
(
1 if x1 2 Z or x2 2 Z

2 otherwise;

and the related scaled inhomogeneous-perimeter functionals

F".A/ D
Z

@A

a
�x
"

�
dH 1

defined on sets A with Lipschitz boundary. The energies F" � -converge, with
respect to the convergence A" ! A, understood as the L1-convergence of the
corresponding characteristic functions, to an energy of the form

F.A/ D
Z

@A

g.�/dH 1 (4.6)

defined on all sets of finite perimeter (� denotes the normal to @A). A direct
computation shows that actually

g.�/ D k�k1 D j�1j C j�2j:

Furthermore, it is easily seen that the same F is equivalently the � -limit of

QF".A/ D H 1.@A/;

defined on A which are the union of cubes Q"
i WD ".i C .0; 1/2/ with i 2 Z

2. We
denote by A" the family of such A. Note that QF" is the restriction of F" to A".

If A 2 A" then A is trivially a L1-local minimizer for QF" with ı < "2, since
any two distinct elements of A" are at least at L1-distance "2 (the area of a single
"-square). It can be proved also that all A 2 A" are L1-local minimizer for F" with
ı D C"2 for C > 0 sufficiently small.

Appendix

The notion of equivalence by� -convergence is introduced and analyzed in the paper
by Braides and Truskinovsky [5].
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Local minimizers for Lennard-Jones type potentials (also with external forces)
are studied in the paper by Braides et al. [3]

More details on the derivation of fracture energies from interatomic potentials
and the explanation of the

p
"-scaling can be found in the paper by Braides et al. [4]

(see also the quoted paper by Braides and Truskinovsky for an explanation in terms
of uniform � -equivalence).

For general reference on sets of finite perimeter and BV functions we refer to
[1, 2, 6].
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Chapter 5
Convergence of Local Minimizers

In this chapter we consider a generalization of the fundamental theorem of
� -convergence when we have strict local minimizers of the � -limit, in which case
we are often able to deduce the existence and convergence of local minimizers of
the converging sequence.

5.1 Convergence to Isolated Local Minimizers

The following theorem shows that we may extend (part of) the fundamental theorem
of � -convergence to isolated local minimizers of the � -limit F ; i.e., (we suppose
that F be defined on a metric space with distance d ) to points u0 such that there
exists ı > 0 such that

F.u0/ < F.u/ if 0 < d.u; u0/ � ı: (5.1)

The proof of this theorem essentially consists in remarking that we may at the same
time apply Proposition 2.1 (more precisely, Remark 2.2) to the closed ball of center
u0 and radius ı, and Proposition 2.2 to the open ball of center u0 and radius ı.

Theorem 5.1. Suppose that each F" is coercive and lower semicontinuous, and
the sequence .F"/ � -converges to F and is equicoercive. If u0 is an isolated local
minimizer of F then there exist a sequence .u"/ converging to u0 with u" a local
minimizer of F" for " small enough.

Proof. Let ı > 0 satisfy (5.1). Note that by the coerciveness and lower semi-
continuity of F" there exists a minimizer u" of F" on Bı.u0/, the closure of
Bı.u0/ D fu W d.u; u0/ � ıg. By the equicoerciveness of .F"/, upon extracting
a subsequence, we can suppose that u" ! u. Since u 2 Bı.u0/ we then have

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__5,
© Springer International Publishing Switzerland 2014

67
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F.u0/ � F.u/ � lim inf
"!0

F".u"/ D lim inf
"!0

min
Bı.u0/

F"

� lim sup
"!0

inf
Bı.u0/

F" � inf
Bı.u0/

F D F.u0/;

where we have used Proposition 2.2 in the last inequality. By (5.1) we have that
u D u0 and u" 2 Bı.u0/ for " small enough, which proves the thesis. ut
Remark 5.1. In the theorem above it is sufficient to require the coerciveness
properties for F" only on bounded sets, since they are applied to minimization
problems on Bı.u0/.

Remark 5.2. Clearly, the existence of an isolated (local) minimizer in the limit does
not imply that the converging (local) minimizers are isolated. It suffices to consider
F".x/ D ..x � "/ _ 0/2 converging to F.x/ D x2.

Remark 5.3. In Sect. 4.4, we have noticed that the limit fracture energy F �

possesses families of L1-local minimizers with an arbitrary number of jump points,
while the approximating functionals F �

" have local minimizers corresponding to
limit functions with only one jump point. This cannot directly be deduced from
the result above since those limit local minimizers are not isolated. Anyhow
L1-local minimizers with one jump are strict local minimizers with respect to the
distance

d.u; v/ D
Z 1

0

ju � vj dx C
X
x2.0;1/

j.uC � u�/� .vC � v�/j

D
Z 1

0

ju � vj dx C
X

x2S.u/\S.v/
j.uC � u�/� .vC � v�/j

C
X

x2S.u/nS.v/
juC � u�j C

X
x2S.v/nS.u/

jvC � v�j;

which penalizes (large) jumps of a competitor v outside S.u/. Upon suitably
defining interpolations of discrete functions in SBV.0; 1/ (where jumps correspond
to difference quotients above the threshold w0=

p
"), it can be shown that the � -limit

remains unchanged with this convergence, so that we may apply Theorem 5.1.
Note that for discrete functions the notion of local minimizers is the same as for
the L1-distance since we are in a finite-dimensional space. Note moreover that
L1-local minimizers of F � with more than one jump are not strict local minimizers
for the distance d above. Indeed, if u0 D 0 and S.u/ D fx1; : : : ; xN g with
0 � x1 < � � � < xN and N � 2, then any us D u C s�.x1;x2/ is still a local
minimizer for F � with F �.us/ D F �.u/ D N and d.u; us/ D s.1C jx2 � x1j/.
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5.2 Two Examples

We now use Theorem 5.1 to prove the existence of sequences of converging local
minima in two examples.

Example 5.1 (Local minimizers for elliptic homogenization). Consider the func-
tionals in Example 2.3. Suppose furthermore that g has an isolated local minimum
at z0. We will show that the constant function u0.x/ D z0 is a L1-local minimizer of
Fhom C G. Thanks to Theorem 5.1 we then deduce that there exists a sequence of
local minimizers of F" CG" (in particular, if g is differentiable with respect to u, of
solutions of the Euler–Lagrange equation (2.15)) converging to u0.

We only prove the statement in the one-dimensional case, for which˝ D .0; L/.
We now consider ı > 0 and u such that

ku � u0kL1.0;L/ � ı:

Since z0 is an isolated local minimum of g there exists h > 0 such that g.z0/ <
g.z/ if 0 < jz � z0j � h. If ku � u0k1 � h then G.u/ � G.u0/ with equality only
if u D u0 a.e., so that the thesis is verified. Suppose otherwise that there exists a set
of positive measure A such that ju � u0j > h on A. We then have

hjAj �
Z

A

ju � u0j dt � ı;

so that jAj � ı=h. We can then estimate

G.u/ � mingjAj C .L � jAj/g.z0/ � G.u0/� g.z0/� ming

h
ı:

On the other hand, there exists a set of positive measure B such that

ju.x/� u0j � ı

L

for x 2 B (otherwise the L1 estimate does not hold). Let x1 2 B and x2 2 A; we
can estimate (we can assume x1 < x2)

Fhom.u/ � ˛

Z

Œx1;x2�

ju0j2 dt � ˛
.u.x2/� u.x1//2

x2 � x1 � ˛

�
h� ı

L

�2

L
;

using Jensen’s inequality. Summing up we have
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Fig. 5.1 A neck in the open
set ˝

Fhom.u/CG.u/ � Fhom.u0/CG.u0/C ˛

�
h � ı

L

�2

L
� g.z0/� ming

h
ı

D Fhom.u0/CG.u0/C ˛
h2

L
CO.ı/

> Fhom.u0/CG.u0/

for ı small as desired.

Example 5.2 (Kohn–Sternberg). In order to prove the existence of L1 local mini-
mizers for the energiesF" in (2.18), by Theorem 2.3 it suffices to prove the existence
of isolated local minimizers for the minimal-interface problem related to the energy
in (2.20). In order for this to hold we need some hypothesis on the set ˝ (for
example, it can be proved that no non-trivial local minimizer exists when ˝ is
convex).

We treat the two-dimensional case only. We suppose that ˝ is bounded, regular,
and has an ‘isolated neck’; i.e., it contains a straight segment whose endpoints meet
@˝ perpendicularly, and @˝ is strictly concave at those endpoints (see Fig. 5.1).

We will show that the set with boundary that segment (we can suppose that the
segment disconnects ˝) is an isolated local minimizer for the perimeter functional.
We can set coordinates so that the segment is .0; L/ � f0g.

By the strict concavity of @˝ , there exist h > 0 such that in a rectangular
neighbourhood of the form .a; b/ � .�2h; 2h/ the lines x D 0 and x D L meet
@˝ only at .0; 0/ and .0; L/, respectively. The candidate strict local minimizer is
A0 D f.x; y/ 2 ˝ W x > 0g, which we identify with the function u0 D �1C 2�A0 ,
taking the value C1 in A0 and �1 in ˝ n A0.

Take another test set A. The L1 closeness condition for functions translates into

jA4A0j � ı:

We may suppose that A is sufficiently regular (some minor extra care must be taken
when A is just a set of finite perimeter, but the proof may be repeated essentially
unchanged).
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h

2h

M

m

Fig. 5.2 Comparison with a
uniformly close test set

h

2h

Fig. 5.3 Comparison with a
L1-close test set

We first consider the case that A contains a horizontal segment y D M with
M 2 Œh; 2h� and its complement contains a horizontal segment y D m with m 2
Œ�2h; h�. Then a portion of the boundary @A is contained in the part of˝ in the strip
jyj � 2h, and its length is strictly greater than L, unless it is exactly the minimal
segment (see Fig. 5.2).

If the condition above is not satisfied then we can suppose that the boundary of A
does not contain, e.g., any horizontal segment y D t with t 2 Œh; 2h� (see Fig. 5.3).
In particular, the length of the portion of @A contained with h � y � 2h is not less
than h. Consider now the one-dimensional set

B D ft 2 .0; L/ W @A\ .ftg � .�h; h// D ;g:

We have

ı � jA4A0j � hjBj;
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so that jBj � ı=h, and the portion of @A with h � y � 2h is not less than L� ı=h.
Summing up we have

H 1.@A/ � hC L � ı

h
D H 1.@A0/C h� ı

h
;

and the desired strict inequality for ı small enough.

5.3 Generalizations

We can give some generalizations of Theorem 5.1 in terms of scaled energies.

Proposition 5.1. Let F" satisfy the coerciveness and lower-semicontinuity assump-
tions of Theorem 5.1. Suppose furthermore that a bounded positive function f W
.0;C1/ ! .0;C1/ exists, together with constants m", such that the scaled
functionals

QF".u/ D F".u/�m"

f ."/
(5.2)

are equicoercive and � -converge on Bı.u0/ to QF0 given by

QF0.u/ D
(
0 if u D u0

C1 otherwise
(5.3)

in Bı.u0/. Then there exists a sequence .u"/ converging to u0 of local minimizers
of F".

Remark 5.4. (i) First note that the functionals F" in Theorem 5.1 satisfy the
hypotheses of the above proposition, taking, e.g., f ."/ D " and m" equal to
the minimum of F" in Bı.u0/.

(ii) Note that the hypothesis above is satisfied if there exist constants m" such
that:

(a) � -lim sup
"!0

.F".u0/ �m"/ D 0.

(b) � -lim inf
"!0

.F".u/�m"/ > 0 on Bı.u0/ n fu0g.

Indeed condition (a) implies that we may change the constants m" so that the
� -limit exists, is 0 at u0, and we have a recovery sequence with F".u"/ D m", while
(b) is kept unchanged. At this point is suffices to chose, e.g., f ."/ D ".

Proof. The proof follows that of Theorem 5.1. Again, let u" be a minimizer of F"
on Bı.u0/. We can suppose that u" ! u 2 Bı.u0/; we then have
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0 D QF0.u0/ � QF0.u/ � lim inf
"!0

QF".u"/ D lim inf
"!0

min
Bı.u0/

QF" (5.4)

� lim sup
"!0

inf
Bı.u0/

QF" � inf
Bı.u0/

QF0 D 0;

so that u D u0 and u" 2 Bı.u0/ for " small enough, which proves the thesis after
remarking that (local) minimization of F" and QF" are equivalent up to additive and
multiplicative constants. ut
Proposition 5.2. Let F" satisfy the coerciveness and lower-semicontinuity assump-
tions of Theorem 5.1. Suppose furthermore that there exist a bounded positive
function f W .0;C1/ ! .0;C1/, constants m" and �" with �" > 0 and �" ! 0,
and Qu" ! u0 such that the scaled functionals

QF".v/ D F".Qu" C �"v/ �m"

f ."/
(5.5)

are equicoercive and � -converge on Bı.v0/ to QF0, with v0 an isolated local
minimum. Then there exists a sequence .u"/ converging to u0 of local minimizers
of F".

Proof. We can apply Theorem 5.1 to the functionals QF".v/ concluding that there
exist local minimizers v" of QF" converging to v0. The corresponding u" D Qu" C�"v"
are local minimizers for F" converging to u0. ut
Example 5.3. We illustrate the proposition with the simple example

F".x/ D sin
�x
"

�
C x;

whose � -limit F.x/ D x� 1 has no local (or global) minimizers. Take any x0 2 R,
x" ! x0 any sequence with sin.x"="/ D �1, m" D x" � 1, �" D "ˇ with ˇ � 1,
and f ."/ D "˛ with ˛ � 0, so that

QF".t/ D
sin
�
x"C"ˇt

"

�
C 1

"˛
C "ˇ�˛t

D
sin
�
"ˇ�1t � �

2

�
C 1

"˛
C "ˇ�˛t D 1 � cos."ˇ�1t/

"˛
C "ˇ�˛t:

In this case the � -limit QF coincides with the pointwise limit of QF". If ˇ D 1 and
0 � ˛ � 1 then we have (local) minimizers of QF at all points of 2�Z; indeed if
˛ D 0 then the sequence converges to QF .x/ D 1 � cosx, if 0 < ˛ < 1 we have

QF .x/ D
(
0 ifx 2 2�Z
C1 otherwise;
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and if ˛ D 1

QF .x/ D
(
x ifx 2 2�Z
C1 otherwise:

In the case 2 > ˇ > 1 we have two possibilities: if ˛ D 2ˇ � 2 then QF .x/ D 1
2
t2;

if ˇ � ˛ > 2ˇ � 2 then

QF .x/ D
(
0 if x D 0

C1 otherwise:

If ˛ D ˇ D 2 then QF .x/ D 1
2
t2 C t . In all these cases we have isolated local

minimizers in the limit.
Note that in this computation x" are not themselves local minimizers of F", but

are chosen for computational convenience.

We now consider an infinite-dimensional example in the same spirit as the one
above.

Example 5.4 (Existence of infinitely many local minima for oscillating metrics). Let
the 1-periodic coefficient a W R2 ! f1; 2g be defined on Œ0; 1�2 as

a.v1; v2/ D
(
1 if .v1 � v2/.v1 C v2 � 1/ D 0

4 otherwise:
(5.6)

Let

F 0
" .u/ D

Z 1

0

a
�x
"
;

u

"

�
.1C ju0j2/ dx

be defined on

X D fu 2 W 1;1..0; 1/IR2/; u.0/ D 0; u.1/ D 1g

equipped with the L2-convergence. It may be useful to remark that F 0
" can be

rewritten in terms of the curve �.x/ D .x; u.x// as the energy

Z 1

0

a
��
"

�
j� 0.x/j2 dx;

of an inhomogeneous Riemannian metric which favors curves lying on the network
where a D 1 (we will call that the 1-network), which is a sort of opus reticolatum
as pictured in Fig. 5.4.
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Fig. 5.4 A local minimizer
and a competitor (dashed
line)

The � -limit of F 0
" is of the form

F 0
hom.u/ D

Z 1

0

'.u0/ dx;

with domain X . It can be shown that '.z/ D p
2 if jzj � 1, and that for

functions with ju0j � 1 recovery sequences for F 0
hom.u/ are functions with

a.x="; u".x/="/D 1 a.e. (i.e., that follow the lines of the 1-network). This will also
follow from the computations below.

We consider the functionals

F".u/ D F 0
" .u/CG.u/; where G.u/ D

Z 1

0

juj2 dx

(perturbations more general than G can be added). Since G is a continuous
perturbation, the � -limit of F" is simply F D F 0

hom C G. Since G is strictly
convex, then F is also strictly convex, and hence admits no local minimizers other
than the absolute minimizer u D 0. We will show that F" admit infinitely many
local minimizers. To that end we make some simplifying hypotheses: we suppose
that " are of the form 2�k. In this way, both .0; 0/ and .1; 0/ (corresponding to
the boundary conditions) belong to the 1-network for all ", and 1-networks are
decreasing (in the sense of inclusion) with ". We consider any function u0 2 X

such that a.x2k0 ; u0.x/2k0/ D 1 a.e. for some k0, and hence for all k � k0; i.e.,
a function following the lines of the 1-network for all " sufficiently small. We will
prove that every such u0 is a local minimum for F" if " is small enough.

We consider the scaled functionals

QF".v/ D F".u0 C "2v/� F".u0/

"2
:

We note that the term deriving from G still gives a continuously converging term,
and can be dealt with separately, since

G.u0 C "2v/ �G.u0/

"2
D 2

Z 1

0

u0v dx C "2
Z 1

0

jvj2 dx:
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We concentrate our analysis on the term of QF" coming from F 0
" : let Qv" be such that

k Qv" � u0kL2 � "2ıI (5.7)

i.e., that Qv" D u0 C "2v" with kv"kL2 � ı, and QF". Qv"/ � C1 < C1.
We denote Q�".x/ D .x; Qv".x// and �0.x/ D .x; u0.x//. Note that if we set e1 D

. 1p
2
; 1p

2
/ and e2 D . 1p

2
;� 1p

2
/ then x 7! h�0.x/; e1i and x 7! h�0.x/; e2i are both

non decreasing. We may then suppose that the same holds for Q�". We also denote

kzk1 D jhz; e1ij C jhz; e2ij:

For each " fixed we consider points 0 D x0 < x1 < : : : < xN D 1 such that

a
� Q�"
"

�
D 1 a.e. or a

� Q�"
"

�
D 4 a.e. alternately on Œxk�1; xk� I

we can suppose that the first case occurs for e.g. k odd and the second one for k
even. In the first case, by convexity and taking into account that the image of Q�" is
contained in the 1-network, we have

Z xk

xk�1

a
� Q�"
"

�
j Q�"j2 dx � .xk � xk�1/

			 Q�".xk/� Q�".xk�1/
xk � xk�1

			
2

1

In the second case, again by convexity and by the inequality kzk1 � p
2jzj,

Z xk

xk�1

a
� Q�"
"

�
j Q� 0
"j2 dx � 4.xk � xk�1/

ˇ̌
ˇ Q�".xk/� Q�".xk�1/

xk � xk�1

ˇ̌
ˇ
2

� 2.xk � xk�1/
			 Q�".xk/ � Q�".xk�1/

xk � xk�1

			
2

1
:

As a first consequence, we deduce that

F 0
" . Q�"/ �

NX
kD1

.xk � xk�1/
			 Q�".xk/ � Q�".xk�1/

xk � xk�1

			
2

1

C
X
k even

.xk � xk�1/
			 Q�".xk/� Q�".xk�1/

xk � xk�1

			
2

1

�
			
NX
kD1

Q�".xk/ � Q�".xk�1/
			
2

1

C
X
k even

1

xk � xk�1
k Q�".xk/� Q�".xk�1/k21
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D k Q�".1/� Q�".0/k21 C
X
k even

1

xk � xk�1
k Q�".xk/� Q�".xk�1/k21

D F 0
" .u0/C

X
k even

1

xk � xk�1
k Q�".xk/� Q�".xk�1/k21:

From the energy bound we then deduce that for each k even

.xk � xk�1/
�
1C

� Qv".xk/� Qv".xk�1/
xk � xk�1

��
� C"2:

so that both .xk � xk�1/ � C"2 and j Qv".xk/ � Qv".xk�1/j � C". This implies that
Q�" can be deformed with a perturbation with o."2/ L2-norm to follow the 1-network
between xk�1 and xk . Hence, possible competitors essentially follow the 1-network
(see Fig. 5.4).

If ı is small enough then in order that (5.7) hold we must have v" ! 0. This
shows that the limit of QF" is finite only at v D 0 on Bı.0/ as desired.

As a consequence of the computation above we deduce that for all u 2 X with
ku0k1 � 1 we have a sequence fu"g of local minimizers of F" converging to u.

Example 5.5 (Density of local minima for oscillating distances). We may consider
a similar example to the one above for oscillating distances; i.e., length functionals
defined on curves. Let the 1-periodic coefficient a W R2 ! f1; 2g be defined as

a.v1; v2/ D
(
1 if either v1 or v2 2 Z

4 otherwise:
(5.8)

This is the same type of coefficient as in the previous example up to a rotation and
a scaling factor. Let

F".u/ D
Z 1

0

a
�u

"

�
ju0j dx

be defined on

X D fu 2 W 1;1..0; 1/IR2/; u.0/ D v0; u.1/ D v1g
equipped with the L1-convergence.

The � -limit of F" is

F.u/ D
Z 1

0

ku0k1dx;

where

kzk1 D jz1j C jz2j:
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This is easily checked after remarking that recovery sequences .u"/ are such that
a.u".t/="/ D 1 a.e. (except possibly close to 0 and 1 if a.v0="/ ¤ 1 or a.v1="/ ¤ 1)
and then that ju0

"j D j.u"/01j C j.u"/02j. For example, if both components of .u"/ are
monotone, then

F".u"/ D
Z 1

0

a
�u"
"

�
ju0j dx D

Z 1

0

ju0
"j dx C o.1/

D
Z 1

0

.j.u"/01j C j.u"/02j/ dx C o.1/

D
ˇ̌
ˇ.v1/1 � .v0/1

ˇ̌
ˇC

ˇ̌
ˇ.v1/2 � .v0/2

ˇ̌
ˇC o.1/

D
Z 1

0

.ju0
1j C ju0

2j/ dx C o.1/ D F.u/C o.1/:

For all these energies there are no strict local minimizers since energies are
invariant with respect to reparameterization. Anyhow, if we consider equivalence
classes with respect to reparameterization (e.g., by taking only functions in

X1 D fu 2 X W ku0k1 constant a.e.g/;

then an argument similar to the one in the previous example shows that local
minimizers are L1 dense, in the sense that for all u 2 X1 there exists a sequence of
local minimizers of F" (restricted to X1) converging to u.

As a technical remark, we note that in order to have coercivity the limit F
should be extended to the space of curves with bounded variations. Anyhow, since
functionals are invariant by reparameterization, it suffices to consider bounded
sequences in W 1;1 after a change of variables.

Appendix

The use of Theorem 5.1 for proving the existence of local minimizers, together with
Example 5.2 are due to Kohn and Sternberg [1].

Reference

1. Kohn, R.V., Sternberg, P.: Local minimizers and singular perturbations. Proc. Roy. Soc.
Edinburgh A 111, 69–84 (1989)



Chapter 6
Small-Scale Stability

In the previous chapter we have shown how it is possible to deduce the existence
and convergence of local minimizers of F" from the existence of an isolated local
minimizer of their � -limit F . On the contrary, the knowledge of the existence of
local minimizers of F" is not sufficient to deduce the existence of local minimizers
for F .

We now examine a notion of stability such that, loosely speaking, a point is stable
if it is not possible to reach a lower-energy state from that point without crossing
an energy barrier of a specified height. This notion is a quantification of the notion
of local minimizer, which instead is ‘scale-independent’; i.e., it does not depend on
the energy barrier that characterizes a local minimizer; e.g., it does not discriminate
between energies

F".x/ D x2 C sin2
�x
"

�
or F".x/ D x2 C p

" sin2
�x
"

�
:

In this case the local minimizers in the first of the two sequence of energies are
stable as " ! 0, while those in the second sequence are not.

This notion will allow us to state a convergence theorem for sequences of stable
points.

6.1 Larsen’s Stable Points

We first introduce a notion of stability that often can be related to notions of local
minimality. Note that in the literature the parameter " is used in the place of ı (so that
we have "-slides, "-stable points, etc.) while here the parameter " is already used to
label energies.

Definition 6.1 (Slide). Let F W X ! Œ0;C1� and ı > 0. A continuous function
� W Œ0; 1� ! X is a ı-slide for F at u0 2 X if

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__6,
© Springer International Publishing Switzerland 2014

79
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• �.0/ D u0 and F.�.1// < F.�.0// D F.u0/.
• There exists ı0 < ı such that F.�.t// � F.�.s//C ı0 if 0 � s � t � 1.

Definition 6.2 (Stability). Let F W X ! Œ0;C1� and ı > 0. A point u0 2 X is
ı-stable for F if no ı-slide exists for F at u0.

A point u0 2 X is stable for F if it is ı-stable for some ı > 0 (and hence for all
ı small enough).

Let F" W X ! Œ0;C1�. A sequence of points .u"/ in X is uniformly stable for
.F"/ if there exists ı > 0 such that all u" are ı-stable for " small.

Example 6.1. (1) F.x/ D
8
<
:
0 x D 0

sin
� 1
x

�
otherwise:

The point 0 is not a local

minimizer but it is ı-stable for ı < 1.

(2) Similarly for F.x/ D
8
<
:
0 x D 0

�x2 C sin2
� 1
x

�
otherwise:

(3) Let X D C and F.z/ D F.�ei	 / D
(
	� jzj � 1

�1 otherwise;

where we have chosen the representation z D �ei	 with 0 < 	 � 2� . Then 0 is
an isolated local minimum, but it is not stable; e.g., taking �.t/ D 2teiı=2. Note
in fact that �.0/D 0, F.�.1//D �1<0, and supF.�.t//DF.�.1=2//Dı=2.

(4) We can generalize point (3) above to an infinite-dimensional example. Take
X D L2.��; �/ and

F.u/ D

8
<̂
:̂

X
k

1

k2
jckj2 if u D P

k cke
ikx and kukL2 < 1

�1 otherwise:

The constant 0 is an isolated minimum point. F is lower semicontinuous, and
continuous in fkukL2 < 1g. Note that F.eikx/ D 1

k2
so that �k.t/ D 2teikx is a

ı-slide for k2 > 1=ı.

(5) F".x/ D x2 C sin2
�x
"

�
. Each bounded sequence of local minimizers is

uniformly stable.

(6) F".x/ D x2 C "˛ sin2
�x
"

�
with 0 < ˛ < 1. No bounded sequence of local min-

imizers is uniformly stable (except the constant sequence of global minimizers
x" D 0).

Remark 6.1 (Local minimality and stability).

(i) If F W X ! R is a continuous function and u is a stable point for F , then u is
a local minimizer of F .

(ii) Let F be a lower-semicontinuous and coercive function. Then every isolated
local minimizer of F is stable.

(iii) If u is just a local minimizer for F then u may not be stable for F .
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To check (i) suppose that u is not a local minimum for F . Then let � be such that
jF.u/� F.w/j < ı=2 if w 2 B�.u/, and let u� 2 B�.u/ be such that F.u�/ < F.u/.
Then it suffices to take �.t/ D u C t.u� � u/.

To check (ii), let � > 0 be such that u0 is an isolated minimum point for F in
B�.u0/. If u0 is not stable then there exist 1=k slides �k with final point outside
B�.u0/. This implies that there exist uk D �k.tk/ for some tk with uk 2 @B�.u0/,
so that F.uk/ � F.u0/C 1=k. By coerciveness, upon extraction of a subsequence
u" ! u 2 @B�.u0/, and by lower semicontinuity F.u/ � lim infk F.uk/ � F.u0/,
which is a contradiction.

For (iii) take for example u D 0 for F.u/ D .1 � juj/ ^ 0 on R.

6.2 Stable Sequences of Functionals

We now give a notion of stability of parameterized functionals.

Definition 6.3 (Relative (sub)stability). We say that a sequence .F"/ is stable (or
sub-stable) relative to F if the following holds:

• If u0 has a ı-slide for F and u" ! u0, then each u" has a ı-slide for F" (for "
small enough).

Remark 6.2 (Relative (super)stability). The condition of sub-stability above can be
considered as an analogue of the lower bound for � -convergence. With this analogy
in mind we can introduce a notion of (super)stability relative to F by requiring
that:

• If u0 is an isolated local minimum for F then there exists u" ! u such that .u"/
is uniformly stable for F".

This notion gives an analogue of the upper bound for � -convergence. However,
we will not explore this notion further, since we already have a satisfactory sort of
upper bound for local minimizers from Theorem 5.1.

Remark 6.3. (i) Note that if F is a constant then all .F"/ are stable relative to F .
(ii) In general if F" D F for all " then .F"/ may not be stable relative to F . Take

for example

F".x/ D F.x/ D
8
<
:

sin
� 1
x

�
ifx > 0

x ifx � 0I

then x0 D 0 has ı-slides for all ı > 0, while taking x" D .2�b 1
"
c � �

2
/�1 we

have x" ! x0 and x" has no ı-slide for ı < 2.

The following proposition is in a sense the converse of Theorem 5.1, with
� -convergence substituted with stability.
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Proposition 6.1. Let .F"/ be (sub)stable relative to F and u" be a sequence of
uniformly stable points for F" with u" ! u. Then u is stable for F .

Proof. If u" ! u and u" is uniformly stable, then it is stable for some ı > 0. By the
(sub)stability of .F"/ then u is ı0 stable for all 0 < ı0 < ı; i.e., it is stable. ut
Remark 6.4. The main drawback of the notion of stability of energies is that it is
not in general compatible with the addition of (continuous) perturbations. Take for
example F".x/ D sin2

�
x
"

�
and F D 0. Then F" is stable relative to F , but G".x/ D

F".x/Cx is not stable with respect toG.x/ D x. In fact, each x has a ı-slide for all
ı > 0, but if x" ! x is a sequence of local minimizers of G" then they are ı-stable
for ı < 1.

6.3 Stability and � -Convergence

In this section we will couple stability with � -convergence, and try to derive some
criteria in order to guarantee the compatibility with respect to the addition of con-
tinuous perturbations. The main issue is to construct ı-slides for the approximating
functionals starting from ı-slides for the � -limit.

Example 6.2. We consider the one-dimensional energies

F".u/ D
Z 1

0

a
�x
"

�
ju0j2 dx;

where a is a 1-periodic function with 0 < inf a < sup a < C1, so that F" � -
converge to the Dirichlet integral

F.u/ D a

Z 1

0

ju0j2 dx:

We will also consider a perturbation of F" with

G.u/ D
Z 1

0

g.x; u/ dx;

where g is a Carathéodory function with jg.x; u/j � C.1 C juj2/ (this guarantees
that G is L2-continuous).

We want to check that F" CG is stable relative to F CG. To this end consider a
point u0 such that a ı-slide � for F C G exists at u0, and points u" ! u0. We wish
to construct a ı-slide for F" CG at u".

With fixedK 2 N we consider points xKi D i=K for i D 0; : : : K and denote for
every t with �K.t/ the piecewise affine interpolation of �.t/ on the points xKi . Note
that we have:
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• For all K we have F.�K.t// � F.�.t// by Jensen’s inequality.
• F.�K.t// ! F.�.t// as K ! C1.
• For fixed K the map t 7! �K.t/ is continuous with respect to the strong H1-

convergence. Indeed its gradient is piecewise constant and is weakly continuous
in t , hence it is strongly continuous.

We fix ı0 < ı such that

F.�.t//CG.�.t// � F.�.s//CG.�.s//C ı0 if 0 � s � t � 1;

choose ı00 > 0 such that ı0 C 2ı00 < ı and

F.�.1//CG.�.1// < F.u0/CG.u0/ � 2ı0:

Let K be large enough so that (if uK0 D �K.0/ denotes the interpolation of u0)

F.uK0 /CG.uK0 / � F.u0/CG.u0/� ı00

and

jG.�K.t// �G.�.t//j < ı00

for all t . We then have

F.�K.t//CG.�K.t// � F.�.t//CG.�.t//C ı00:

We then claim that, up to a reparameterization, �K is a ı-slide for F CG from uK0 .
Indeed, let M D infft W F.�K.t//C G.�K.t// < F.uK0 /C G.uK0 /g. This set is

not empty since it contains the point 1. If 0 � s � t � M then we have

F.�K.t//CG.�K.t// � F.�K.s//CG.�K.s//

� supfF.�K.r//CG.�K.r// W 0 � r � M g � F.uK0 /CG.uK0 /

� supfF.�.r//CG.�.r// W 0 � r � M g C 2ı00 � F.u0/CG.u0/

� ı0 C 2ı00 < ı

By the continuity of t 7! F.�K.t//CG.�K.t// we can then find t > M such that
F.�K.t// C G.�K.t// < F.uK0 / C G.uK0 / and s 7! ˚K.st/ is a ı-slide. For the
following, we suppose that t D 1, so that we do not need any reparameterization.

Next, we construct a ı-slide for F" C G. To this end, for the sake of simplicity,
we assume that N D 1

"K
2 N. Let v be a function in H1

0 .0; 1/ such that

Z 1

0

a.y/jv0 C 1j2 dy D min
nZ 1

0

a.y/jw0 C 1j2 dy W w 2 H1
0 .0; 1/

o
D a:
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Note that we also have

Z N

0

a.y/jv0 C 1j2 dy D min
nZ N

0

a.y/jw0 C 1j2 dy W w 2 H1
0 .0; 1/

o
D Na:

We then define the function �K" .t/ by setting on ŒxKi ; x
K
iC1�

�K" .t/.x
K
i C s/ D �.t/.xKi /CK.�.t/.xKiC1/ � �.t/.xKi //

�
s C " v

�s
"

��

for 0 � s � 1
K

, so that

F".�
K
" .t// D F.�K.t//:

Note again that we may suppose " small enough so that jG.�K" .t// �G.�K.t//j D
o.1/ uniformly in t so that �K" is a ı-slide for F" CG at �K" .0/.

It now remains to construct a L2-continuous function  " W Œ0; 1� ! H1.0; 1/

with  ".0/ D u" and  ".1/ D �K" .0/ such that concatenating " with �K" we have a
ı-slide. This is achieved by taking the affine interpolation (in t) of u" and uK" defined
by setting on ŒxKi ; x

K
iC1�

uK" .x
K
i C s/ D u".x

K
i /CK.u".x

K
iC1/� u".x

K
i //

�
s C " v

�s
"

��
; 0 � s � 1

K
;

on .0; 1=2/ and of uK" and �K" .0/ on .1=2; 1/.

Example 6.3. We consider the oscillating perimeter functionals F" and F of
Example 4.3. We now show that if A has a ı-slide for F and A" ! A, then each
A" has a .ı C o.1//-slide for F" (and so a ı-slide for " sufficiently small). It is
easily checked that the same argument can be used if we add to F" a continuous
perturbation

G.A/ D
Z

A

f .x/ dx;

where f is a (smooth) bounded function, so that the stability can be used also for
F" CG.

We first observe that an arbitrary sequenceA" of Lipschitz sets converging to a set
A can be substituted by a sequence in A" with the same limit. To check this, consider
a connected component of @A". Note that for " small enough every portion of @A"
parameterized by a curve � W Œ0; 1� ! R

2 such that a.�.0/="/ D a.�.1/="/ D 1

and a.�.t/="/ D 2 for 0 < t < 1 can be deformed continuously to a curve lying on
"a�1.1/ and with the same endpoints. If otherwise a portion of @A" lies completely
inside a cube Q"

i it can be shrunk to a point or expanded to the whole cube Q"
i .

In both cases this process can be obtained by a O."/-slide, since either the lengths
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of the curves are bounded by 2", or the deformation can be performed so that the
lengths are decreasing.

We can therefore assume that A" 2 A" and that there exist a ı-slide for E at A
obtained by a continuous family A.t/ with 0 � t � 1.

We fix N 2 N and set tNj D j=N . For all j 2 f1; : : : ; N g let AN;j" be a recovery

sequence in A" for A.tNj /. Furthermore we set AN;0n D A". Note that, since AN;j" !
A.tNj / and A.t/ is continuous, we have jAN;j" 4AN;jC1

" j D o.1/ as N ! C1. We

may suppose that the set AN;jC1
" is the union of AN;j" and a family of cubes QN;j

i .
We may order the indices i and construct a continuous family of sets AN;j;i .t/ such
that AN;j;i .0/ D A

N;j
" [S

k<i Q
N;j

k , AN;j;i .1/ D A
N;j
" [S

k�i Q
N;j

k , and

�
H 1.AN;j" / ^ H 1.AN;jC1

" /
�

� C" � H 1.AN;j;i .t//

�
�
H 1.AN;j" / _ H 1.AN;jC1

" /
�

C C":

Since also jAN;j;i .t/j differs from jAN;j" j and jAN;jC1
" j by at most o.1/ as N !

C1, by concatenating all these families, upon reparametrization we obtain a family
ANn .t/ such thatANn .0/ D A", ANn .1/ D A".1/, and, if s < t then we have, for some
j < k

F".A
N
n .s// � F.A.tNj // � C" � o.1/;

F".A
N
n .t// � F.A.tNk //C C"C o.1/:

Since A.t/ is a ı-slide for E , we have

F.A.tNk // � F.A.tNj //C ";

so that

F".A
N
n .t// � F".A

N
n .s//C ı C C"C o.1/:

By choosingN large enough and " small enough we obtain the desired .ı C o.1//-
slide.

The previous example suggests a criterion for ‘strong’ stability (i.e., compatible
with continuous perturbations), which is sometimes satisfied by � -converging
sequences. We have constructed ı-slides for the approximating functionals in two
steps: one in which we have transformed a limit ı-slide �.t/ considering recovery
sequences (essentially, setting �".t/ D ut", where .ut"/ is a recovery sequence for
�.t/), another where we have constructed an ‘almost-decreasing’ path from u" to
�".0/. Note that this step, conversely, is possible thanks to the liminf inequality.
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Theorem 6.1 (A criterion of strong stability). Suppose that F" and F satisfy the
following requirements:

if � is a path from u (i.e., � W Œ0; 1� ! X , �.0/ D u, and � is continuous) and
u" ! u, then there exist paths  " from u" and �" from  ".1/ such that

(i) � 7! F". ".�// is decreasing up to o.1/ as n ! C1; i.e.,

sup
0��1<�2�1

�
F". ".�2// � F". ".�1//

�
! 0 as n ! 1

(ii) sup�2Œ0;1� dist.�".�/; �.�// D o.1/

(iii) there exist 0 D �"1 < �
"
2 < : : : < �

"
" D 1 with maxi Œ�"i � �"i�1� D o.1/ such that

maxi jF".�".�"i // � F.�.�"i //j D o.1/ and F".�".�// is between F".�".�"i //
and F".�".�"iC1// for � 2 .�"i ; �

"
iC1/, up to o.1/; i.e., there exist infinitesimal

ˇn > 0 such that

min
n
F".�".�

"
i //; F".�".�

"
iC1//

o
� ˇn � F".�".�//

� max
n
F".�".�

"
i //; F".�".�

"
iC1//

o
C ˇn

Then .F" C G/ is stable relative to .E C G/ for every continuous G such that
.F" CG/ is coercive.

Proof. Suppose that u has a ı-slide � for F C G (and therefore a .ı � ı0/-slide
for some ı0 > 0) and u" ! u. Then we choose  "; �" as in (i)–(iii) above and set
�0
".�/ WD  ".�/ for � 2 Œ0; 1�, and �0

".�/ WD �".� � 1/ for � > 1. We then consider
�1 < �2 2 Œ0; T �. If �1; �2 2 Œ0; 1�, then

F".�
0
".�2//� F".�

0
".�1// D F". ".�2//� F". ".�1// � o.1/:

If �1; �2 > 1, then

F".�
0
".�2// � F".�0

".�1// D F".�".�2//� F".�".�1//
� E.�.�"j // �E.�.�"i //C o.1/

for some �"i � �"j . If �1 < 1 < �2, then

F".�
0
".�2//� F".�

0
".�1// D F".�".�2//� F". ".�1//

� E.�.�"i //� E.�.0//C o.1/

for some �"i , so that in any case

�
F".�

0
".�2//CG.�0

".�2//
� � �

F".�
0
".�1//CG.�0

".�1//
�

� �
E.�.�j //CG.�.�j //

� � �
E.�.�i //CG.�.�i //

�C o.1/

< ı � ı0 C o.1/
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for some �i � �j , where we used the continuity of G together with (ii) and (iii), as
well as the fact that � is a ı-slide for u. The same argument gives

.F" CG/.�0
".1// � .F" CG/.�0

".0// � .E CG/.�.1// � .E CG/.�.0//C o.1/;

so that �0
" is a ı-slide for F" CG, for " sufficiently small. ut

6.4 Delta-Stable Evolution

The notion of ı-slide (or some of its modification) can be used to define evolutions
in a similar way as for quasistatic motion, in cases when the presence of energy
barriers may be relevant in the model under consideration, and can be similarly
characterized. In order to construct such an evolution one can proceed by discrete
approximation as in Remark 3.2.1:

• With fixed F .t; U / and D.U / energy and dissipation as in Sect. 3.2, time step
� > 0 and maximal barrier height ı > 0, define U �

k recursively by setting U �
0 D

U0, and choosing U �
k as a solution of the minimum problem

min
U

n
F .�k; U /C D.U � U �

k�1/
o

on the class of U such that there exists a path � from U �
k�1 to U such that

F .�k; �.t//CD.�.s/�U �
k�1/ � F .�k; �.s//CD.�.s/�U �

k�1/Cı (6.1)

if 0 � s < t � 1.
• Define the continuous trajectory U ı;� .t/ D U �

bt=�c.

• Define the ı-stable evolutions as the limits U ı of (subsequences of) U ı;� (which
exist, under suitable assumptions).

In order to ensure the existence of the minimizer U �
k some additional properties

of the functionals

Fk.U / D F .�k; U /C D.U � U �
k�1/

must be assumed; namely, that if Uj is a sequence converging to U and Fk.Uj / <
Fk.U

�
k�1/ � C for some positive constant C such that there exists paths �j from

U �
k�1 to Uj satisfying (6.1), then there exists a path � satisfying (6.1) from U �

k�1
to U .

Remark 6.5. It must be noted that stable evolution gives a different notion from
the global minimization approach even when D D 0, in which case the quasistatic
approach just gives a parameterized choice of minimizers of F.t; �/.
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As a simple example, take the one-dimensional energy

F.t; x/ D minfx2; .x � 1/2g � 2tx;

and x0 D 0. Then the trajectory of parameterized minimizers of F.t; x/ from x0 is

u.t/ D
(
0 if t D 0

1C t if t > 0:

On the contrary, the limit u as ı ! 0 of the corresponding ı-stable evolutions
uı.t/ is

u.t/ D
8
<
:
t if t < 1

2

1C t if t � 1
2
:

Example 6.4 (The long-bar paradox in Fracture Mechanics). As shown in Remark
3.8, for one-dimensional fracture problems with applied boundary displacement;
i.e., for the energies and dissipations

F .t; u/ D
Z 1

0

ju0j2 dt; D.S.u// D #.S.u//

defined on piecewise-H1 functions u with u.0�/ D 0 and u.1C/ D t (and S.u/
denotes the set of discontinuity points of u), fracture is brutal and appears at a
critical value of the displacement t . If instead of a bar of unit length we take a bar
of length L and we consider the normalized boundary conditions u.0�/ D 0 and
u.LC/ D tL, then the critical value for fracture is t D 1p

L
for which the energy of

the (unfractured) linear solution u.t/ D tx equals the energy of a piecewise-constant
solution with one discontinuity. In other words, a long bar fractures at lower values
of the strain (the gradient of the linear solution). In order to overcome this drawback
of the theory, one may consider ı-stable evolutions, or, rather, a small variation from
it necessary due to the fact that the domains of the functionals F .t; �/ are disjoint
for different t . In the iterated minimization scheme above we consider minimization
among functions u such that there exists a L2-continuous path � from the elastic
solution uk�.x/ D k�x (we again consider only the case L D 1) to u such that
�.t/.0/ D 0, �.t/.1/ D k� for all t and

F .�k; �.t//C #.S.�.t// � F .�k; �.s//C #.S.�.s//C ı (6.2)

if 0 � s < t � 1. This set of u is contained inH1. Indeed, otherwise there would be
a t 2 .0; 1� such that #.S.�.tj // � 1 for a non-increasing sequence of tj converging
to t , and �.t/ 2 H1 for t � t . By the lower semicontinuity of F and the minimality
of uk� we have

F .k�; uk� / � F .k�; �.t// � F .k�; �.tj //C o.1/;
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which gives

F .k�; �.0//C 1 � F .k�; �.tj //C #.S.�.tj //C o.1/

contradicting (6.2) for s D 0 and t D tj if ı < 1.
We conclude that for all k the minimizer is exactly uk� , and we may pass to the

limit obtaining the elastic solution u.t; x/ D tx. As a conclusion we have that no
fracture appears, and this conclusion is clearly independent of the length of the bar.

Appendix

The notion of stable points has been introduced by Larsen in [3], where also stable
fracture evolution has been studied; in particular there it is shown that the scheme
in Sect. 6.4 can be applied to Griffith fracture energies.

The notions of stability for sequences of functionals have been analyzed by
Braides and Larsen in [1], and are further investigated by Focardi in [2].
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Chapter 7
Minimizing Movements

In this chapter we give a brief account of the variational motion defined by the
limit of Euler schemes at vanishing time step. This notion is linked to the study of
local minimizers, which provide stationary solutions for such motions. For the sake
of simplicity of exposition, we limit our analysis to a Hilbert setting, even though
many results can be proven in general metric spaces.

7.1 An Energy-Driven Implicit-Time Discretization

We now introduce a notion of energy-based motion which generalizes an implicit-
time scheme for the approximation of solutions of gradient flows to general (also
non differentiable) energies. We will use the terminology of minimizing movements,
introduced by De Giorgi, even though we will not follow precisely the notation used
in the literature.

Definition 7.1 (Minimizing movements). Let X be a separable Hilbert space and
let F W X ! Œ0;C1� be coercive and lower semicontinuous. Given x0 2 X and
� > 0 we define xk recursively as a minimizer for the problem

min
n
F.x/C 1

2�
kx � xk�1k2

o
; (7.1)

and consider the piecewise-constant trajectory u� W Œ0;C1/ ! X given by

u� .t/ D xbt=�c: (7.2)

The construction of this trajectory is pictured in Figs. 7.1 and 7.2.
A minimizing movement for F from x0 is any limit of a subsequence u�j uniform

on compact sets of Œ0;C1/.

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__7,
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Xo X1

O( )

F

Fig. 7.1 Computation of the
first step of a minimizing
movement

Xo X1

F

X2 X3 X4 etc.

Fig. 7.2 Pictorial description
of the trajectory at time step �

As in the rest of these notes, we are not focusing on the general topological
assumptions on function spaces and convergences. In this definition we have taken
F � 0 and X Hilbert for the sake of simplicity. More in general, we can take X a
metric space and the (power of the) distance in place of the squared norm. Note, in
addition, that the topology on X with respect to which F is lower semicontinuous
can be taken weaker than the one of the related distance.

Remark 7.1. A heuristic explanation of the definition above is given when F is
smooth. In this case, with the due notation, a minimizer for (7.1) solves the equation

xk � xk�1
�

D �rF.xk/I (7.3)

i.e., u� solves the equation

u� .t/ � u� .t � �/

�
D �rF.u� .t//: (7.4)

If we can pass to the limit in this equation as u� ! u then we obtain

@u

@t
D �rF.u/: (7.5)
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This is easily shown to hold if X D R
n and F 2 C2.Rn/. In this case, by taking

any ' 2 C1
0 ..0; T /IRn/ we have

�
Z T

0

˝rF.u� /; '˛dt D
Z T

0

Du� .t/ � u� .t � �/

�
; '
E
dt

D �
Z T

0

D
u� .t/;

'.t/ � '.t C �/

�

E
dt;

from which, passing to the limit

Z T

0

˝rF.u/; '˛dt D
Z T

0

hu; ' 0idtI

i.e., (7.5) is satisfied in the sense of distributions, and hence in the classical sense.

Remark 7.2 (Stationary solutions). Let x0 be a local minimizer for F , then the only
minimizing movement for F from x0 is the constant function u.t/ D x0.

Indeed, if x0 is a minimizer for F on the set of x such that kx � x0k � ı,
then, by the positiveness of F , it is the only minimizer of F.x/C 1

2�
kx � x0k2 for

� � ı2=F.x0/ if F.x0/ > 0 (for any � if F.x0/ D 0), so that for these � xk D x0
for all k.

Proposition 7.1 (Existence of minimizing movements). For all F and x0 as
above there exists a minimizing movement u 2 C1=2.Œ0;C1/IX/.
Proof. By the coerciveness and lower semicontinuity of F we obtain that xk are
well defined for all k. Moreover, since

F.xk/C 1

2�
kxk � xk�1k2 � F.xk�1/;

we have F.xk/ � F.xk�1/ and

kxk � xk�1k2 � 2�.F.xk�1/� F.xk//; (7.6)

so that for t > s

ku� .t/ � u� .s/k �
bt=�cX

kDbs=�cC1
kxk � xk�1k

�
p

bt=�c � bs=�c

vuuut
bt=�cX

kDbs=�cC1
kxk � xk�1k2
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�
p

bt=�c � bs=�c

vuuut2�

bt=�cX
kDbs=�cC1

.F.xk�1/� F.xk//

D
p

bt=�c � bs=�c
q
2�.F.xbs=�c/ � F.xbt=�c//

�
p
2F.x0/

p
�.bt=�c � bs=�c/

� p
2F.x0/

p
t � s C �:

This shows that the functions u� are (almost) equicontinuous and equibounded
in C.Œ0;C1/IX/. Hence, they converge uniformly. Moreover, passing to the limit
we obtain

ku.t/ � u.s/k � p
2F.x0/

p
jt � sj;

so that u 2 C1=2.Œ0;C1/IX/. ut
Remark 7.3 (Growth conditions). The positiveness of F can be substituted by the
requirement that for all x the functionals

x 7! F.x/C 1

2�
kx � xk2

be bounded from below; i.e., that there exists C > 0 such that

x 7! F.x/C Ckx � xk2

be bounded from below.

Example 7.1 (Non-uniqueness of minimizing movements). If F is not C2 we may
have more than one minimizing movement.

(i) Bifurcation at times with multiple minimizers. A simple example is F.x/ D
� 1
˛
jxj˛ with 0 < ˛ < 2, which is not C2 at x D 0. In this case, for x0 D 0 we

have a double choice for minimum problem (7.1); i.e.,

x1 D ˙�1=.2�˛/:

Once x1 is chosen all other valued are determined, and it can be seen that either
xk > 0 for all k or xk < 0 for all k (for ˛ D 1, e.g., we have xk D ˙k�), and
that in the limit we have the two solutions of

(
u0 D juj.˛�2/u
u.0/ D 0
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with u.t/ ¤ 0 for t > 0. Note in particular that we do not have the trivial
solution u.t/ D 0 for all t . In this example we do not have to pass to a
subsequence of � .

(ii) Different movements depending on subsequences of � . Discrete trajectories can
be different depending on the time step � . We give an explicit example, close in
spirit to the previous one. In this example the function F is asymmetric, so that
x1 is unique but may take positive or negative values depending on � .

We define F as the Lipschitz function taking value 0 at x D 0, for x > 0

F 0.x/ D
(

�1 if 2�2k�1 < x < 2�2k; k 2 N

�2 otherwise forx > 0

and F 0.x/ D 3 C F 0.�x/ for x < 0. It is easily seen that for x0 D 0 we may
have a unique minimizer x1 with x1 > 0 or x1 < 0 depending on � . In particular
we have x1 D �2�2k < 0 for � D 2�2k�1 and x1 D 2�2kC1 > 0 for � D 2�2k .
In the two cases we then have again the solutions to

(
u0 D �F 0.u/
u.0/ D 0

with u.t/ < 0 for all t > 0 or u.t/ > 0 for all t > 0, respectively.

Example 7.2 (Heat equation). Taking X D L2.˝/ and the Dirichlet integral
F.u/ D 1

2

R
˝ jruj2 dx, with fixed u0 2 H1.˝/ and � > 0 we can solve iteratively

min
n1
2

Z

˝

jruj2 dx C 1

2�

Z

˝

ju � uk�1j2 dx
o
;

whose unique minimizer uk solves the Euler–Lagrange equation

uk � uk�1
�

D �uk;
@uk
@�

D 0 on @˝; (7.7)

where � is the inner normal to˝ . We then set u� .x; t/ D ubt=�c.x/, which converges,
up to subsequences, to u.x; t/. We can then pass to the limit in (7.7) in the sense of
distributions to obtain the heat equation

@u

@t
D �u;

@u

@�
D 0 on @˝; (7.8)

combined with the initial datum u.x; 0/ D u0.x/. Due to the uniqueness of the
solution to the heat equation we also obtain that the whole sequence converges as
� ! 0.
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Example 7.3 (One-dimensional fracture energies). In dimension one, we still con-
sider X D L2.0; 1/ and the Griffith (or Mumford–Shah) energy

F.u/ D 1

2

Z 1

0

ju0j2 dx C #.S.u//

with domain piecewise-H1 functions. We fix u0 piecewise-H1 and � > 0. In this
case we solve iteratively

min
n1
2

Z 1

0

ju0j2 dx C #.S.u//C 1

2�

Z 1

0

ju � uk�1j2 dx
o
:

This problem is not convex, and may have multiple minimizers. Nevertheless
in this simpler case we can prove iteratively that for � small enough we have
S.uk/ D S.u0/ for all k, and hence reduce to the independent iterated minimization
problems of the Dirichlet integral on each component of .0; 1/ n S.u0/, giving the
heat equation in .0; 1/nS.u0/with Neumann boundary conditions on 0, 1 and S.u0/.
This description holds until the first time T such that u.x�; T / D u.xC; T / at some
point x 2 S.u.�; T //.

We check this with some simplifying hypotheses:

(1) That
R 1
0

ju0
0j2dx < 2. This implies that #.S.uk// � #S.u0/ since by the

monotonicity of the energy we have #.S.uk// � F.uk/ � F.u0/ < #S.u0/C1.
This hypothesis can be removed with a localization argument.

(2) That there exists � > 0 such that ju0.x/ � u0.x0/j � � if .x; x0/ \ S.u0/ ¤ ;.
This will imply that juk.xC/ � uk.x�/j � � at all x 2 S.uk/ so that T D C1
in the notation above.

Furthermore, we suppose that S.u0/ D fx0g (the jump set is a single point)
and u0.x

C
0 / > u0.x�

0 /, for simplicity of notation.

We reason by induction. We first examine the properties of u1; checking that it
has a jump point close to x0. Suppose otherwise that there exists ı > 0 such that
u 2 H1.x0 � ı; x0 C ı/. We take ı small enough so that

u0.x/ � u.x�
0 /C 1

4
.u.xC

0 /� u.x�
0 // for x0 � ı < x < x0

u0.x/ � u.xC
0 / � 1

4
.u.xC

0 /� u.x�
0 // for x0 < x < x0 C ı:

In this case

1

2

Z x0Cı

x0�ı
ju0
1j2 dx C 1

2�

Z x0Cı

x0�ı
ju1 � u0j2dx
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� 1

2
min

nZ ı

0

jv0j2 dx C 1

�

Z ı

0

jvj2dx W v.ı/ D 1

4
.u.xC

0 /� u.x�
0 //

o

D .u.xC
0 /� u.x�

0 //
2

8
p
�

tanh
� ıp

�

�
;

the last equality being easily obtained by computing the solution of the
Euler–Lagrange equation. This shows that for each such ı > 0 fixed we have
.x0 � ı; x0 C ı/ \ S.u1/ ¤ ; for � sufficiently small. Note that the smallness
of � depends only on the size of u.xC

0 / � u.x�
0 / (which is larger than �). Since

#S.u1/ � #S.u0/ we then have .x0 � ı; x0 C ı/ \ S.u1/ D fx1g; we may suppose
that x1 � x0.

We now check that x1 D x0. Suppose otherwise; then note that by the Hölder
continuity of u1 we have that for ı small enough (depending only on the size of
u.xC

0 /� u.x�
0 /) we have

u1.x/ � u0.x
�
0 /C 1

8
.u.xC

0 /� u.x�
0 // for x0 < x < x1

and

u1.x
C
1 / � u0.x

C
1 /� 1

8
.u.xC

0 /� u.x�
0 //:

We may then consider the function Qu coinciding with u1 on .0; x0/, with Qu0 �U 0
1 and

S.Qu/ D fx0g. Then F.Qu/ D F.u1/ and

Z 1

0

jQu � u0j2 dx <
Z 1

0

ju1 � u0j2 dx;

contradicting the minimality of u1. Hence, we have S.u1/ D S.u0/.
Note that u1 is obtained by separately minimizing the problems with the Dirichlet

integral on .0; x0/ and .x0; 1/, and in particular that on each such interval sup u1 �
sup u0 and inf u1 � inf u0, so that the condition that ju1.x/� u1.x0/j � � if .x; x0/\
S.u1/ ¤ ; still hold. This shows that we can iterate the scheme obtaining uk which
satisfy inf u0 � uk � sup u0 on each component of .0; 1/nS.u0/ and u0

k D 0 on 0, 1
and S.u0/. In particular juC

k �u�
k j � � on S.u0/, which shows that the limit satisfies

the heat equation with Neumann conditions on S.u0/ for all times.

Remark 7.4 (Higher-dimensional fracture energies: an open problem). In dimen-
sion higher than one, we may apply the minimizing-movement scheme to the
Mumford–Shah functional (which can also be interpreted as a Griffith energy in
an anti-plane setting). To this scheme we may also add the constraint of increasing
crack in the same way as in Sect. 3.3. We then obtain a minimizing movement
u in L2.˝/ from an initial datum u0. The solution u solves a weak form of the
heat equation almost everywhere in ˝ , and in some cases it can be proved that
Neumann boundary conditions still hold on S.u/, but it remains open the problem
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of the characterization of the (possible) motion of the crack set. As compared with
the Francfort and Marigo quasistatic theory, here an analog of the Francfort–Larsen
transfer lemma is missing.

7.2 Time-Dependent Minimizing Movements

By considering time-parameterized energies F.x; t/ we can generalize the def-
inition of minimizing movement to include forcing terms or varying boundary
conditions. Then, given � and an initial datum x0, we recursively choose xk as a
minimizer of

min
n
F.x; k�/C 1

2�
kx � xk�1k2

o
; (7.9)

and eventually set u� .t/ D xbt=�c. If some technical hypothesis is added to F then
we may define a limit u of u� as � ! 0, up to subsequences. One such hypothesis
is that

F.uk; k�/C 1

2�
kxk � xk�1k2 � .1C C�/F.uk�1; .k � 1/�/C C�; (7.10)

for some C in the scheme above (at least if k� remains bounded). With such a
condition we can repeat the convergence argument as for the time-independent case
and obtain a limit minimizing movement u.

Indeed, with such a condition we have

kxk � xk�1k2 � 2�
�
.1C C�/F.uk�1; .k � 1/�/� F.uk; k�/C C�

�
; (7.11)

and the inequality (for � small enough)

F.uk; k�/ � .1C C�/F.uk�1; .k � 1/�/C C�

� .1C C�/.F.uk�1; .k � 1/�/C 1/; (7.12)

that implies that F.uk; k�/ is equibounded for k� bounded. We fix T > 0; from
(7.11) we obtain (for 0 � s � t � T )

ku� .t/ � u� .s/k �
bt=�cX

kDbs=�cC1
kxk � xk�1k

�
p

bt=�c � bs=�c

vuuut
bt=�cX

kDbs=�cC1
kxk � xk�1k2
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�
p

bt=�c � bs=�c

�

vuuut2�

bt=�cX
kDbs=�cC1

�
F.xk�1; .k � 1/�/� F.xk; k�/C CT �/

�

D
p

bt=�c � bs=�c
p
2�F.x0; 0/C CT �.bt=�c � bs=�c//

�
p
2F.x0; 0/.t � s C �/C CT .t � s C �/2;

which gives an equicontinuity condition sufficient to pass to the limit as � ! 0.
Note that from (7.12) for s < t we obtain the estimate

F.u� .t/; bt=�c�/ � eC.t�sC�/.F .u� .s/; bs=�c�/C C�/: (7.13)

Example 7.4 (Heat equation with varying boundary conditions). We can take

F.u; t/ D 1

2

Z 1

0

ju0j2 dx;

with domain all H1-functions satisfying u.0/ D 0 and u.1/ D t .
Then if we can test the problem defining uk with the function Qu D uk�1 C �x.

We then have

F.uk; k�/C 1

2�
kuk � uk�1k2 � F.Qu; k�/C 1

2�
kQu � uk�1k2

D 1

2

Z 1

0

ju0
k�1 C � j2 dx C 1

6
�2

� .1C �/
1

2

Z 1

0

ju0
k�1j2 dx C � C 1

6
�2

� .1C �/
1

2
F.uk�1; .k � 1/�/C

�
1C 1

6
�
�
�:

which gives (7.10).
We then have the convergence of u� to the solution u of the equation

8
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂:

@u

@t
D @2u

@x2

u.0; t/ D 0; u.1; t/ D t

u.x; 0/ D u0.x/:

(7.14)
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Clearly in this example we may take any Lipschitz function g.t/ in place of t as
boundary condition.

Example 7.5 (Minimizing movements vs quasistatic evolution for fracture). We can
take

F.u; t/ D 1

2

Z 1

0

ju0j2 dx C #S.u/;

with domain all piecewise-H1-loc functions with u.x/ D 0 if x � 0 and u.x/ D t

for x � 1, so that S.u/ � Œ0; 1�, and the fracture may also appear at the boundary
points 0 and 1. As in the previous example, we can test the problem defining uk with
the function Qu D uk�1 C �x since #S.Qu/ D #S.uk�1/, and obtain (7.10).

We consider the initial datum u0 D 0. Note that the minimum problems for
F.�; t/ correspond to the definition of quasistatic evolution in Remark 3.8. We now
show that for problems (7.9) the solution does not develop fracture.

Indeed, consider

k� D minfk W uk 62 H1
loc.R/g;

and suppose that �k� ! t 2 Œ0;C1/. Then we have that u� converges on Œ0; t � to u
described by (7.14) in the previous example. Moreover we may suppose that

lim
�!0

Z 1

0

ju0
k��1j2 dx D

Z 1

0

ju0.x; t /j2 dx;

and since also uk� ! u.�; t/ as � ! 0, we have

Z 1

0

ju0.x; t /j2 dx � lim inf
�!0

Z 1

0

ju0
k�

j2 dx:

We deduce that

F.uk� ; k��/ � F.uk��1; .k� � 1/�/C 1C o.1/

as � ! 0, which contradicts (7.12).
From the analysis above we can compare various ways to define the evolutive

response of a brittle elastic material to applied increasing boundary displacements
(at least in a one-dimensional setting):

• (quasistatic motion) the response is purely elastic until a threshold (depending
on the size of the specimen) is reached, after which we have brutal fracture.

• (stable evolution) the response is purely elastic, and corresponds to minimizing
the elastic energy at fixed boundary displacement. No fracture occurs.

• (minimizing movement) in this case the solution does not develop fracture, but
follows the heat equation with given boundary conditions.
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Appendix

The terminology ‘(generalized) minimizing movement’ has been introduced by
De Giorgi in a series of papers devoted to mathematical conjectures (see [5]).
We also refer to the original treatment by Ambrosio [1].

A theory of gradient flows in metric spaces using minimizing movements is
described in the book by Ambrosio et al. [3].

Minimizing movements for the Mumford–Shah functional in more that one space
dimension (and hence also for the Griffith fracture energy) with the condition of
increasing fracture have been defined by Ambrosio and Braides [2], and partly
analyzed in a two-dimensional setting by Chambolle and Doveri [4].
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Chapter 8
Minimizing Movements Along a Sequence
of Functionals

Gradient flows, and hence minimizing movements, and the convergence of
functionals trivially do not commute even when the convergence is uniform. As a
simple example, take X D R and

F".x/ D x2 � � sin
�x
"

�
;

with � D �" ! 0 as " ! 0, uniformly converging to F.x/ D x2. If also

" � �;

then for fixed x0 the solutions u" to the equation

8
<
:

u0
" D �2u" C �

"
cos
�u"
"

�

u".0/ D x0

converge to the constant function u0.t/ D x0 as " ! 0. This is easily seen by
studying the stationary solutions of

�2x C �

"
cos
�x
"

�
D 0:

Conversely, the gradient flow of the limit is

(
u0 D �2u

u.0/ D x0;

for which the constant functions are not solutions if x0 ¤ 0.
With the remark above in mind, in order to give a meaningful limit for the energy-

driven motion along a sequence of functionals it may be useful to vary the definition

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__8,
© Springer International Publishing Switzerland 2014
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of minimizing movement. This will be done in the following section. As in the
previous chapter, we will limit our analysis to a Hilbert setting for simplicity.

8.1 Minimizing Movements Along a Sequence

In this section we will give a notion of minimizing movement along a sequence F",
which will depend in general on the interaction between the time scale � and the
parameter " in the energies.

Definition 8.1 (minimizing movements along a sequence). Let X be a separable
Hilbert space, let F" W X ! Œ0;C1� be equicoercive and lower semicontinuous,
x"0 ! x0 with

F".x
"
0/ � C < C1; (8.1)

and let �" > 0 converge to 0 as " ! 0. With fixed " > 0 we define x"k recursively as
a minimizer for the problem

min
n
F".x/C 1

2�
kx � x"k�1k2

o
; (8.2)

and the piecewise-constant trajectory u" W Œ0;C1/ ! X given by

u".t/ D xbt=�"c: (8.3)

A minimizing movement for F" from x"0 is any limit of a subsequence u"j uniform
on compact sets of Œ0;C1/.

After remarking that the Hölder continuity estimates in Proposition 7.1 only
depend on the bound on F".x"0/, with the same proof we can show the following
result.

Proposition 8.1. For every F" and x"0 as above there exist minimizing movements
for F" from x"0 in C1=2.Œ0;C1/IX/.
Remark 8.1 (Growth conditions). As for the case of a single functional, the
positiveness ofF" can be substituted by the requirement that for all x the functionals

x 7! F".x/C 1

2�
kx � xk2

be bounded from below; i.e., that there exists C > 0 such that

x 7! F".x/C Ckx � xk2

be bounded from below.
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Example 8.1. We give a simple example that shows how the limit minimizing
movement may depend on the choice of the mutual behavior of " and � . We consider
the functions

F".x/ D

8̂
<̂
ˆ̂:

�x if x � 0

0 if 0 � x � "

" � x if x � ";

which converge uniformly to F.x/ D �x. Note that the energies are not bounded
from below, but their analysis falls within the framework in the previous remark.
For this example a direct computation is immediately carried on. We consider a
fixed initial datum x0.

If x0 > 0, then for " < x0 we have x"k D x"k�1 C � for all k � 0.
If x0 � 0 then we have x"k D x"k�1 C � if x"k�1 � �� . If 0 � x"k�1 > �� then

x"k � x"k�1 is obtained by minimizing the function

f .y/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂:

�y C 1

2�
y2 if 0 � y � �x"k�1

x"k�1 C 1

2�
y2 if � x"k�1 � y � �x"k�1 C "

" � y C 1

2�
y2 ify � �x"k�1 C ";

whose minimizer is always y D � C x"k�1 if " � x"k�1 > � . In this case x"k D 0.
If otherwise " � x"k�1 � � the other possible minimizer is y D � . We then have to
compare the values

f .�x"k�1/ D x"k�1 C 1

2�
.x"k�1/2; f .�/ D " � 1

2
�:

We have three cases:

(a) " � 1
2
� > 0. In this case we have x"k D 0 (and this holds for all subsequent

steps).
(b) " � 1

2
� < 0. In this case we either have f .�/ < f .�x"k�1/, in which case

x"k D x"k�1 C � (and this then holds for all subsequent steps); otherwise x"k D 0

and x"kC1 D x"k C � (and this holds for all subsequent steps).
(c) " � 1

2
� D 0. If x"k�1 < 0 then x"k D 0 (otherwise we already have x"k�1 D 0).

Then, since we have the two solutions y D 0 and y D � , we have x"j D 0 for
k � j � k0 for some k0 2 N [ C1 and x"j D x"j�1 C � for j > k0.

We can summarize the possible minimizing movements with initial datum x0 � 0

as follows:
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(i) If � < 2" then the unique minimizing movement is x.t/ D minfx0 C t; 0g.
(ii) If � > 2" then the unique minimizing movement is x.t/ D x0 C t .

(iii) If � D 2" then we have the family of minimizing movements (parameterized
by x1 � x0) x.t/ D max

˚
minfx0 C t; 0g; x1 C t

�
.

For x0 > 0 we always have the only minimizing movement x.t/ D x0 C t .

8.2 Commutability Along ‘Fast-Converging’ Sequences

We now show that, by suitably choosing the "-� regimes, the minimizing movement
along the sequence F" from x" converges to a minimizing movement for the limit
F from x0 (‘fast-converging "’), while for other choices (‘fast-converging �’) the
minimizing movement converges to a limit of minimizing movements for F" as
" ! 0. Heuristically, minimizing movements for all other regimes are ‘trapped’
between these two extrema.

Theorem 8.1. Let F" be a equi-coercive sequence of (non-negative)
lower-semicontinuous functionals on a Hilbert space X � -converging to F , let
x" ! x0. Then:

(i) There exists a choice of " D ".�/ such that every minimizing movement along
F" (and with time-step �) with initial data x" is a minimizing movement for F
from x0 on Œ0; T � for all T .

(ii) There exists a choice of � D �."/ such that every minimizing movement along
F" (and with time-step �) with initial data x" is a limit of a sequence of
minimizing movements for F" (for " fixed) from x" on Œ0; T � for all T .

Proof. (i) Note that if y" ! y0 then the solutions of

min
n
F".x/C 1

2�
kx � y"k2

o
(8.4)

converge to solutions of

min
n
F.x/C 1

2�
kx � y0k2

o
(8.5)

since we have a continuously converging perturbation of a � -converging
sequence.

Let now x" ! x0. Let � be fixed. We consider the sequence fx�;"k g defined
by iterated minimization of F" with initial point x". Since x" ! x0, up to
subsequences we have x�;"1 ! x

�;0
1 , which minimizes

min
n
F.x/C 1

2�
kx � x0k2

o
: (8.6)
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The point x�;"2 converge to x�;02 . Since they minimize

min
n
F".x/C 1

2�
kx � x�;"1 k2

o
(8.7)

and x�;"1 ! x
�;0
1 , their limit is a minimizer of

min
n
F.x/C 1

2�
kx � x�;01 k2

o
: (8.8)

This operation can be repeated iteratively, obtaining (upon subsequences)
x
�;"
k ! x

�;0
k , and fx�;0k g iteratively minimizes F with initial point x0. Since

up to subsequences the trajectories fx�;0k g converge to a minimizing movement
for F with initial datum x0, the thesis follows by a diagonal argument.

(ii) For fixed ", the piecewise-constant functions u";� .t/ D x
";�

bt=�c converge
uniformly to a minimizing movement u" for F" with initial datum x". By
compactness, these u" converge uniformly to some function u as " ! 0. Again,
a diagonal argument gives the thesis. ut

Remark 8.2. Note that, given x" and F", if F has more than one minimizing
movement from x0 then the approximation gives a choice criterion. As an example,
take F.x/ D �jxj, F".x/ D �jx C "j and x0 D x" D 0.

Remark 8.3 (The convex case). If all F" are convex then it can be shown that,
actually, the minimizing movement along the sequence F" always coincides with
the minimizing movement for their � -limit. This (exceptional) case will be dealt
with in detail separately in Chap. 11.

Example 8.2. In dimension one, we can take

F".x/ D 1

2
x2 C "W

�x
"

�
;

whereW is a one-periodic odd Lipschitz function with kW 0k1 D 1. Up to addition
of a constant is not restrictive to suppose that the average of W is 0. We check
that the critical regime for the minimizing movements along F" is " 	 � . Indeed,
if " � � then from the estimate

ˇ̌
ˇF".x/ � 1

2
x2
ˇ̌
ˇ � "

2

we deduce that

xk � xk�1
�

D �xk CO
� "
�

�
;
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and hence that the limit minimizing movement satisfies u0 D �u, so that it
corresponds to the minimizing movement of the limit F0.x/ D 1

2
x2.

Conversely, if � � " then it may be seen that for jx0j � 1 the motion is
pinned; i.e., the resulting minimizing movement is the trivial solution u.t/ D x0
for all t . IfW 2 C2 this is easily checked, since in this case the stationary solutions,
corresponding to x satisfying

x CW 0
�x
"

�
D 0

tend to be dense in the interval Œ�1; 1� as " ! 0. Moreover, in this regime
the minimizing movement corresponds to the limit as " ! 0 of the minimizing
movements of F" for " fixed; i.e., solutions u" of the gradient flow

u0
" D �u" �W 0

�u"
"

�
:

Integrating between t1 and t2 we have

Z u".t2/

u".t1/

1

s CW 0.s="/
ds D t1 � t2:

By the uniform convergence u" ! u we can pass to the limit, recalling that the
integrand weakly converges to the function 1=g defined by

1

g.s/
D
Z 1

0

1

s CW 0./
d;

and obtain the equation

u0 D �g.u/:

This equation corresponds to the minimizing movement for the even energy QF0
given for x � 0

QF0.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

0 if x � 1

Z x

1

g.w/ dw if x � 1:

The plot of the derivatives of F", F0 and QF0 is reproduced in Fig. 8.1
We can explicitly compute the minimizing movement for � � "; e.g., in the case

W.x/ D 1

2�
sin.2�x/;
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x

Fig. 8.1 The derivatives of
F", F0 and QF0

which gives the equation

u0 D
p

u2 � 1;

for jx0j � 1, and

QF0.x/ D 1

2

�
jxj

p
x2 � 1 � log

�
jxj C

p
x2 � 1

��

for jxj > 1, and in the case

W.x/ D
ˇ̌
ˇx � 1

2

ˇ̌
ˇ � 1

4
for 0 � x � 1: (8.9)

In the latter, the solutions with initial datum x0 > 1 satisfy the equation

u0 D 1

u
� u:

Integrating this limit equation we conclude that the minimizing movement along F"
corresponds to that of the effective energy

QF0.x/ D
�1
2
x2 � log jxj � 1

2

�C
:

Example 8.3 (Pinning threshold). In the previous example we have computed the
critical regime " 	 � , but we have not computed the minimizing movement for a
fixed ratio "=� . In this case, a simpler interesting problem is the computation of the
pinning threshold; i.e., the maximal value T such that jx0j � T gives in the limit
a stationary minimizing movement. We have seen that for " � � we have T D 0,
while for � � " we have T D 1. After considering the linearization of the problem
above, the pinning threshold can be characterized as the greatest value T such that
we have only stationary minimizing movements for the energies

F T
" .x/ D Tx C "W

�x
"

�
:
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In order to have an explicit description of T D T .�/ in terms of � WD "=� ,
we only treat the case of

W.x/ D jxj for jxj � 1

2
; (8.10)

which gives the same limit as the one in (8.9). By comparison with the case � � ",
we have T .�/ � 1 for all � .

By a comparison argument, it is not restrictive to suppose that x0 2 "Z, and
then by translation that x0 D 0. The problem is then translated in the existence of
negative minimizers for the problem

min
n
Tx C "W

�x
"

�
C 1

2�
x2
o
:

Since T � 1 andW 0 D �1 in Œ�"=2; 0�, this holds only if we have a negative value
in Œ�";�"=2�, or equivalently if

0 > min
n
Tx C "W

�x
"

�
C 1

2�
x2 W �" � x � �"=2

o

D min
n
.T C 1/x C "C 1

2�
x2 W �" � x � �"=2

o
:

Taking again into account that T � 1, it is easily seen that this minimum must be
taken for x D �", so that the condition is equivalent to

0 > �T"C 1

2�
"2 ; i.e., T >

"

2�
:

This proves that we have pinning for T � �=2. In conclusion, the pinning
threshold is

T .�/ D min
n�
2
; 1
o

(see Fig. 8.2). As � ! 0 and � ! C1 we recover the thresholds in the limit cases.

8.2.1 Relaxed Evolution

In Theorem 8.1 we have considered, as usual for simplicity, the � -convergence
with respect to the topology in X . In this way we characterize the convergence of
solutions to problems (8.4) to solutions of problems (8.5) in terms of the � -limit.
This is the only argument where we have used the definition of F in the proof of



8.2 Commutability Along ‘Fast-Converging’ Sequences 111

0 1 2 3 4 5 6

0,5

1

1,5
Fig. 8.2 Pinning threshold in
dependence of the ratio "=�

Theorem 8.1(i). We may consider the� -limits with respect to weaker topologies, for
which we have coerciveness but the distance term is not a continuous perturbation.
In analogy with what already observed for quasistatic motions in Chap. 3 (see, e.g.,
Sect. 3.1.5), the proof of Theorem 8.1(i) can be repeated, upon defining a relaxed
limit motion, where the minimizing movement for F is replaced by the limit of u�

defined by successive minimizing

min
X

F xk�1
� .x/;

where

F y
� .x/ D � - lim

"!0

�
F".x/C 1

2�
kx � yk2

�
: (8.11)

The study of this more general minimizing movements is beyond the scope of these
notes. We only give a simple example.

Example 8.4. Consider X D L2.0; 1/ and

F".u/ D
Z 1

0

a
�x
"

�
u2 dx;

where a is 1-periodic and 0 < ˛ � a.y/ � ˇ < C1 for some constants
˛ and ˇ. Then F" is equicoercive with respect to the weak-L2 topology, and its
limit is a

R 1
0

u2 dx (a the harmonic mean of a). However, the perturbations with the
L2-distance are not continuous, and the limits in (8.11) with respect to the weak
topology are easily computed as

F v
� .u/ D � - lim

"!0

�
F".u/C 1

2�
ku � vk2

�

D � - lim
"!0

Z 1

0

 �
a
�x
"

�
C 1

2�

�
u2 C .v2 � 2uv/

2�

!
dx
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D
Z 1

0

 
a�u

2 C .v2 � 2uv/

2�

!
dx

D
Z 1

0

�
a� � 1

2�

�
u2 dx C 1

2�
ku � vk2;

where

a� D
 Z 1

0

1�
a.y/C 1

2�

� dy

!�1
:

A series expansion argument easily yields that

a� D 1

2�

 Z 1

0

1

2�a.y/C 1
dy

!�1

D 1

2�

 Z 1

0

�
1 � 2�a.y/CO.�2/

�
dy

!�1

D 1

2�

�
1C 2�

Z 1

0

a.y/ dy CO.�2/
�

D 1

2�
C aCO.�/;

where a is the arithmetic mean of a. We then obtain that the limit of u� coincides
with the minimizing motion for QF given by

QF .u/ D a

Z 1

0

u2 dx:

The same argument leading to an effective motion can be applied to varying
distances as in the following example.

Example 8.5. We consider X" D X D L2.0; 1/ equipped with the distance d"
given by

d2" .u; v/ D
Z 1

0

a
�x
"

�
ju � vj2 dx;

and F".u/ D F.u/ D R 1
0 ju0j2 dx. For fixed v the square distances can be seen

as functionals depending on v, weakly equicoercive in L2 and � -converging to
aku � vk2 (kuk the L2-norm). Nevertheless, in this case the functionals F".u/ C
1
2�
d 2" .u; v/ are coercive with respect to the strong L2-norm and � -converge to

F.u/ C 1
2�
aku � vk2. As a conclusion, the minimizing movement coincide with

the minimizing movement for F with respect to the norm
p
akuk or, equivalently,

with the minimizing movement for 1
a
F with respect to the L2-norm.



8.3 An Example: ‘Overdamped Dynamics’ of Lennard-Jones Interactions 113

8.3 An Example: ‘Overdamped Dynamics’ of Lennard-Jones
Interactions

We now give an example of a sequence of non-convex energies which commute
with the minimizing movement procedure.

Let J be as in Sect. 4.4 and 1
"

D N 2 N. We consider the energies

F".u/ D
NX
iD1

J
�ui � ui�1p

"

�

with the periodic boundary condition uN D u0. As proved in Sect. 4.4, after
identification of u with a piecewise-constant function on Œ0; 1�, these energies
� -converge to the energy

F.u/ D
Z 1

0

ju0j2 dt C #.S.u/\ Œ0; 1//; uC > u�;

defined on piecewise-H1 functions, in this case extended 1-periodically on the
whole real line.

In this section we apply the minimizing movements scheme to F" as a sequence
of functionals in L2.0; 1/. In order to have initial data u"0 with equibounded energy,
we may suppose that these are the discretization of a single piecewise-H1 function
u0 (with a slight abuse of notation we will continue to denote all those discrete
functions by u0).

With fixed " and � , the time-discretization scheme consists in defining recursively
uk as a minimizer of

u 7!
NX
iD1

J
�ui � ui�1p

"

�
C 1

2�

NX
iD1

"jui � uk�1
i j2: (8.12)

By Proposition 8.1, upon extraction of a subsequence, the functions u� .t/ D ubt=�c
converge uniformly in L2 to a function u 2 C1=2.Œ0;C1/IL2.0; 1//. Moreover,
since we have F.u.t// � F.u0/ < C1, u.t/ is a piecewise-H1 function for all t .

We now describe the motion of the limit u. For the sake of simplicity we suppose
that u0 is a piecewise-Lipschitz function and that S.u0/\f"i W i 2 f1; : : : ; N gg D ;
(so that we do not have any ambiguity in the definition of the interpolations of u0).

We first write down the Euler–Lagrange equations for uk , which simply amount
to a N -dimensional system of equations obtained by deriving (8.12) with respect
to ui

1p
"

�
J 0�uki � uki�1p

"

�
� J 0�ukiC1 � ukip

"

��
C "

�
.uki � uk�1

i / D 0: (8.13)
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• With fixed i 2 f1; : : : ; N g let vk be defined by

vk D uki � uki�1
"

:

For simplicity of notation, we set

J".w/ D 1

"
J.

p
"w/:

By (8.13) and the corresponding equation for i � 1, which can be rewritten as

J 0
"

�uki�1 � uki�2
"

�
� J 0

"

�uki � uki�1
"

�
C "

�
.uki�1 � uk�1

i�1 / D 0;

we have

vk � vk�1
�

D 1

�

�uki � uki�1
"

� uk�1
i � uk�1

i�1
"

�

D 1

"

�uki � uk�1
i

�
� uki�1 � uk�1

i�1
�

�

D 1

"2

 �
J 0
"

�uki�1 � uki�2
"

�
� J 0

"

�uki � uki�1
"

��

�
�
J 0
"

�uki � uki�1
"

�
� J 0

"

�ukiC1 � uki
"

��!
;

so that

vk � vk�1
�

� 2

"2
J 0
".vk/ D � 1

"2

�
J 0
"

�uki�1 � uki�2
"

�
C J 0

"

�ukiC1 � uki
"

��

� � 2

"2
J 0
"

� w0p
"

�
: (8.14)

We recall that we denote by w0 the maximum point of J 0.
We can read (8.14) as an inequality for the difference system

vk � vk�1
�

� 2J 0
".vk/ � �2J 0

"

� w0p
"

�
;

where � D �="2 is interpreted as a discretization step. Note that vk D w0=
p
" for

all k is a stationary solution of the equation

vk � vk�1
�

� 2J 0
".vk/ D �2J 0

"

� w0p
"

�
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and that J 0
" are equi-Lipschitz functions on Œ0;C1/. If � � 1 this implies that

if vk0 � w0=
p
" for some k0 then

vk � w0p
"

for k � k0;

or, equivalently, that if � � "2 the set

Sk" D
n
i 2 f1; : : : ; N g W uki � uki�1

"
� w0p

"

o

is decreasing with k. By our assumption on u0, for " small enough we then have

S0" D
n
i 2 f1; : : : ; N g W Œ".i � 1/; "i �\ S.u0/ ¤ ;

o
;

so that, passing to the limit

S.u.t// 
 S.u0/ for all t � 0: (8.15)

• Taking into account that we may define

u� .t; x/ D ubt=�c
bx="c;

we may choose functions � 2 C1
0 .0; T / and  2 C1

0 .x1; x2/, with .x1; x2/ \
S.u0/ D ;, and obtain from (8.13)

Z T

0

Z x2

x1

u� .t; x/
��.t/� �.t C �/

�

�
 .x/ dx dt

D �
Z T

0

Z x2

x1

� 1p
"
J 0�p

"
u� .t; x/ � u� .t; x � "/

"

��

��.t/
� .x/ �  .x C "/

"

�
dx dt:

Taking into account that

lim
"!0

1p
"
J 0.

p
"w/ D 2w;

we can pass to the limit and obtain that

�
Z T

0

Z x2

x1

u.t; x/�0.t/ .x/ dx dt D
Z T

0

Z x2

x1

2
@u

@x
�.t/ 0.x/ dx dt I
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i.e., that

@u

@t
D �2 @

2u

@x2
(8.16)

in the sense of distributions (and hence also classically) in .0; T / � .x1; x2/.
By the arbitrariness of the interval .x1; x2/ we have that equation (8.16) is
satisfied for x in .0; 1/ n S.u0/.

• We now derive boundary conditions on S.u.t//. Let i0 C 1 belong to S0" , and
suppose that uC.t; x/ � u�.t; x/ � c > 0. Then we have

lim
�!0

1p
"
J 0
 

ubt=�c
i0

� ubt=�c
i0�1p

"

!
D 0:

If i < i0, from (8.13) it follows, after summing up the indices from i to i0, that

i0X
jDi

"

�
.ukj � uk�1

j / D � 1p
"
J 0
�uki � uki�1p

"

�
: (8.17)

We may choose i D i" such that "i" ! x and we may deduce from (8.17) that

Z x0

x

@u

@t
dx D �2 @u

@x
.x/;

where x0 2 S.u.t// is the limit of "i0. Letting x ! x�
0 we obtain

@u

@x
.x�
0 / D 0:

Similarly we obtain the homogeneous Neumann condition at xC
0 .

Summarizing, the minimizing movement along the scaled Lennard-Jones
energies F" from a piecewise-H1 function consists in a piecewise-H1 motion,
following the heat equation on .0; 1/nS.u0/, with homogeneous Neumann boundary
conditions on S.u0/ (as long as u.t/ has a discontinuity at the corresponding point
of S.u0/).

Note that for " ! 0 sufficiently fast Theorem 8.1 directly ensures that the
minimizing movement along F" coincides with the minimizing movement for the
functional F . The computation above shows that this holds also for � � "2

(i.e., " ! 0 ‘sufficiently slow’), which then must be regarded as a technical
condition.
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Fig. 8.3 The function F"

8.4 Homogenization of Minimizing Movements

We now examine minimizing movements along oscillating sequences (with many
local minima), treating two model cases in the real line.

8.4.1 Minimizing Movements for Piecewise-Constant Energies

We apply the minimizing-movement scheme to the functions

F".x/ D �
jx
"

k
"

converging to F.x/ D �x (see Fig. 8.3). This is a prototype of a function with many
local minimizers (actually, in this case all points are local minimizers) converging
to a function with few local minimizers (actually, none).

Note that, with fixed ", for any initial datum x0 the minimizing movement for
F" is trivial: u.t/ D x0, since all points are local minimizers. Conversely, the
corresponding minimizing movement for the limit is u.t/ D x0 C t .

We now fix an initial datum x0, the space scale " and the time scale � , and
examine the successive-minimization scheme from x0. Note that it is not restrictive
to suppose that 0 � x0 < 1 up to a translation in "Z.

The first minimization, giving x1, is

min
n
F".x/C 1

2�
.x � x0/2

o
: (8.18)

The function to minimize is pictured in Fig. 8.4 in normalized coordinates (" D 1);
note that it equals �x C 1

2�
.x � x0/2 if x 2 "Z.
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Fig. 8.4 The function in the
minimization problem (8.18)

Apart from some exceptional cases that we deal separately below, we have two
possibilities:

(i) If �
"
< 1

2
then the motion is trivial. The value 1=2 is the pinning threshold.

Indeed, after setting set x0 D s" with 0 � s < 1, we have two sub-cases:

(a) The minimizer x1 belongs to Œ0; "/. This occurs exactly if F"."/C 1
2�
." �

x0/
2 > 0; i.e.,

� <
.s � 1/2"

2
: (8.19)

In this case the only minimizer is the initial datum x0. This implies that we
have xk D x0 for all k.

(b) We have that x1 D ". This implies that, up to a translation we are in the
case x0 D 0 with s D 0, and (8.19) holds since � < "

2
. Hence, xk D x1 for

all k � 1.

(ii) If �
"
> 1

2
then for " small the minimum is taken on "Z. So that again we may

suppose that x0 D 0.

Note that we are leaving out for the time being the case when x0 D 0 and �
"

D 1
2
.

In that case we have a double choice for the minimizer; such situations will be
examined separately.

If x0 D 0 then x1 is computed by solving

min
n
F".x/C 1

2�
x2 W x 2 "Z

o
; (8.20)

and is characterized by

x1 � 1

2
" � � � x1 C 1

2
":
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We then have

x1 D
j�
"

C 1

2

k
" if

�

"
C 1

2
62 Z

(note again that we have two solutions for �
"

C 1
2

2 Z, which also includes the
case �

"
D 1

2
already set aside, and we examine those cases separately). The same

computation is repeated at each k giving

xk � xk�1
�

D
j�
"

C 1

2

k "
�
:

We can now choose � and " tending to 0 simultaneously and pass to the limit.
The behaviour of the limit minimizing movements is governed by the quantity

w D lim
"!0

�

"
; (8.21)

which we may suppose exists up to subsequences. If wC 1
2

62 Z then the minimizing
movement along F" from x0 is uniquely defined by

u.t/ D x0 C vt; with v D
j

w C 1

2

k 1
w
; (8.22)

so that the whole sequence converges if the limit in (8.21) exists. Note that

• (pinning) we have v D 0 exactly when �
"
< 1

2
for " small. In particular this holds

for � � " (i.e., for w D 0).
• (limit motion for slow times) if " � � then the motion coincides with the

gradient flow of the limit, with velocity 1.
• (discontinuous dependence of the velocity) the velocity is a discontinuous

function of w at points of 1
2

C Z. Note moreover that it may be actually greater
than the limit velocity 1. The graph of v is pictured in Fig. 8.5.

• (non-uniqueness at w 2 1
2

C Z) in these exceptional cases we may have either
of the two velocities 1C 1

2w or 1 � 1
2w in the cases "

�
C 1

2
> w or "

�
C 1

2
< w for

all " small respectively, but we may also have any u.t/ with

1 � 1

2w
� u0.t/ � 1C 1

2w

if we have precisely "
�

C 1
2

D w for all " small, since in this case at every time
step we may choose any of the two minimizers giving the extremal velocities,
and then obtain any such u0 as a weak limit of piecewise constant functions taking
only those two values. Note therefore that in this case the limit is not determined
only by w, and in particular it may depend on the subsequence even if the limit
(8.21) exists.
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Fig. 8.5 The velocity v in
terms of w

We remark that the functions F" above can be substituted by functions with
isolated local minimizers; e.g. by taking (˛ > 0)

F".x/ D �
jx
"

k
"C ˛

�
x �

jx
"

k
"
�
;

with isolated local minimizers at "Z (for which the computations run exactly as
above), or

F".x/ D �x C .1C ˛/" sin
�x
"

�
:

Note that the presence of an energy barrier between local minimizers does not
influence the velocity of the final minimizing movement, that can always be larger
than 1 (the velocity as " � �).

We also remark that the same result can be obtained by a ‘discretization’ of F ;
i.e., taking

F".x/ D
(

�x if x 2 "Z
C1 otherwise:

(8.23)

8.4.2 A Heterogeneous Case

We briefly examine a variation of the previous example obtained by introducing a
heterogeneity parameter 1 � � � 2 and defining

F �.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

�2
jx
2

k
if 2
jx
2

k
� x < 2

jx
2

k
C �

�2
jx
2

k
� � if 2

jx
2

k
C � � x < 2

jx
2

k
C 1:

(8.24)
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2

Fig. 8.6 The function F �

If � D 1 we are in the previous situation; for general � the function F � is pictured
in Fig. 8.6.

We apply the minimizing-movement scheme to the functions

F".x/ D F �
" .x/ D " F �

�x
"

�
:

Arguing as above, we can reduce to the two cases

(a) xk 2 2"Z, or (b) xk 2 2"Z C "�.

Taking into account that xkC1 is determined as the point in 2"Z[ .2"ZC "�/ closer
to � (as above, we only consider the cases when we have a unique solution to the
minimum problems in the iterated procedure), we can characterize it as follows.

In case (a) we have the two sub cases:

.a1/ If we have

2n <
�

"
� �

2
< 2nC 1

for some n 2 N then

xkC1 D xk C .2nC �/":

In particular xkC1 2 2"Z C "�.
.a2/ If we have

2n � 1 <
�

"
� �

2
< 2n
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for some n 2 N then

xkC1 D xk C 2n":

In particular xkC1 2 2"Z. Note that xkC1 D xk (pinning) if
�

"
<
�

2
.

In case (b) we have the two sub cases:

.b1/ If we have

2n <
�

"
C �

2
< 2nC 1

for some n 2 N then

xkC1 D xk C 2n":

In particular xkC1 2 2"Z C "�. Note that xkC1 D xk (pinning) if
�

"
< 1 � �

2
,

which is implied by the pinning condition in .a2/.
.b2/ If we have

2n � 1 < �

"
C �

2
< 2n

for some n 2 N then

xkC1 D xk C 2n" � "�:

In particular xkC1 2 2"Z.

Eventually, we have the two cases:

(1) When

ˇ̌
ˇ�
"

� 2n
ˇ̌
ˇ < �

2

for some n 2 N then, after possibly one iteration, we are either in the case .a2/

or .b1/. Hence, either xk 2 2"Z or xk 2 2"ZC "� for all k. The velocity in this
case is then

xkC1 � xk

�
D 2n

"

�
:

(2) When

ˇ̌
ˇ�
"

� .2nC 1/
ˇ̌
ˇ < 1 � �

2
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2 -

Fig. 8.7 The function f
describing the effective
velocity

for some n 2 N then we are alternately in case .a1/ or .b2/. In this case we
have an

• averaged velocity: the speed of the orbit fxkg oscillates between two values
with an average speed given by

xkC2 � xk
2�

D 2n"C �"

2�
C 2.nC 1/" � �"

2�
D .2nC 1/

"

�
:

This is an additional feature with respect to the previous example.

Summarizing, if we define w as in (8.21) then (taking into account only the cases
with a unique limit) the minimizing movement along the sequence F" with initial
datum x0 is given by x.t/ D x0 C vt with v D 1

wf .w/, and f is given by

f .w/ D

8
ˆ̂̂
<
ˆ̂̂
:

2n if jw � 2nj � �

2
; n 2 N

2nC 1 if jw � .2nC 1/j < 1 � �

2
; n 2 N

(see Fig. 8.7). Note that the pinning threshold is now �=2. We can compare this
minimizing movement with the one given in (8.22) by examining the graph of w 7!
bw C 1=2c � f .w/ in Fig. 8.8. For 2nC 1=2 < w < 2nC �=2 the new minimizing
movement is slower, while for 2nC 2 � �=2 < w < 2nC 2 � 1=2 it is faster.
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1 2

2 -

Fig. 8.8 Comparison with
the homogeneous case

8.4.3 A Proposal for Some Random Models

From the heterogeneous example above we may derive two possible random
models, of which we may then study the corresponding minimizing movement.
We only give a heuristic proposal, which can then be correctly formalized by
introducing suitable random variables.

1. Random environment. Let � 2 .1=2; 1/ and p 2 Œ0; 1�. We consider a random
array of points fx!i g in R such that, e.g.,

x!i � x!i�1 D

8
ˆ̂<
ˆ̂:

� with probability p

2 � � with probability 1 � p:

(8.25)

With fixed ! we may consider the minimizing movement related to

F!
" .x/ D

(
�x if x 2 f"x!i W i 2 Zg
C1 otherwise;

or equivalently (as in the definition (8.23)

F!
" .x/ D �"x!i if x 2 Œ"x!i ; "x!iC1/, i 2 Z.

In the case p D 0 or p D 1 we almost surely have a homogeneous environment
as in Sect. 8.4.1. For p D 1=2 we have a random version of the heterogeneous
model of Sect. 8.4.2. Note that in this case for all p 2 .0; 1/ the pinning threshold
for the ratio �=" is almost surely �=2, since below that value, the motion will
be pinned at the first index i with x!i � x!i�1 D �; i.e., almost surely after a
finite number of steps. For �=" D �=2 and � < 2=3 (with this condition we
always move of one index) then the (maximal) velocity after pinning is v D
�pC.1�p/ (for � > 2=3 the computation of the velocity involves the probability
of m-consecutive points x!i at distance 2 � �).
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2. Random movements. Let � 2 .1=2; 1/ and p 2 Œ0; 1�. Contrary to the
model above, we suppose that at every time step k we may make a random
choice of points fx!ki g satisfying (8.25) such that x"k 2 fx!ki g; i.e., this choice
now represents the random possibility of motion of the point itself (and not a
characteristic of the medium). Note that in this case for p 2 .0; 1/ the pinning
threshold for the ratio �=" is almost surely the lower value 1 � �

2
, and the

(maximal) velocity after pinning is v D .2 � �/.1 � p/.

8.5 Time-Dependent Minimizing Movements

Following the arguments of Sect. 7.2 we can define a minimizing movement along
a time-dependent sequence of energies F".x; t/, upon some technical assumptions
as in (7.10). In this case we fix a sequence of initial data x"0 and � D �" ! 0, and
define recursively x"k as minimizing

min
n
F".x; k�/C 1

2�
kx � x"k�1k2

o
: (8.26)

A minimizing movement is then any limit u of u" defined by u".t/ D x"bt=�c.

We only give a simple one-dimensional example with a time-dependent forcing
term.

Example 8.6. We consider

F".x; t/ D "W
�x
"

�
� tx

with W as in Example 8.2. Similarly to that example we can check that " 	 � is
the critical case, and we can explicitly describe the minimizing movement in the
extreme cases:

• (" � �) the minimizing movement is that corresponding to F0.x; t/ D �tu; i.e.,
to the equation u0 D t .

• (� � ") the minimizing movement is that corresponding to the function

QF0.t; x/ D
(
0 if t � 1

g.t/u if t � 1;

where g is now defined by

1

g.t/
D
Z 1

0

1

W 0./ � t
d:
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8.6 Varying Dissipations: BV-Solutions of Evolution
Equations

In the previous sections of this chapter, we have limited ourselves to a Hilbert
setting. This often rules out interesting applications, in particular a viscosity
approach to quasistatic motion as a limit of gradient flows, which is obtained by
perturbing a positively one-homogeneous dissipation D by a sequence D C 1

�
D" for

which a gradient flow-type motion can be defined using the minimizing-movement
approach. In general, the limit of these gradient flows gives a motion, called
BV-solution, which is different from the energetic solution as defined in Sect. 3.2,
and can be characterized in a variational way different from the energy balance.
A treatment of this subject is beyond the scope of these notes, since it would need
a too refined introduction to the theory of gradient flows in metric spaces, even
though it would fit the spirit of the book since it may be stated in terms of � -limits.
Many of the arguments followed above for varying energies also hold for varying
dissipations.

We only deal with a simple example, in order to highlight the differences with
energetic solutions.

Example 8.7 (Nonconvex mechanical play). We can consider the double-well
potential in Example 3.3 and the perturbed dissipations

F .t; x/ D 1

2
minf.x � 1/2; .x C 1/2g � tx; D";� .x/ D jxj C "

2�
x2;

with x0 2 Œ�2;�1�. Then the sequence x�k is increasing and minimizes

min
n1
2

minf.x � 1/2; .x C 1/2g � .k� � 1/x � x�k�1

C "

2�
.x � x�k�1/2 W x � x�k�1

o
:

We fix the ratio

� D "

�
: (8.27)

With a computation similar to the one in Example 3.3, we obtain as limit the solution

x.t/ D

8̂
<̂
ˆ̂:

x0 if t � x0 C 2

t � 2 if x0 � t � 2 � 1
�C1

t if t > 2 � 1
�C1

or the one equal to this except for t D 2 � 1
�C1 where x D t .
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x

t

1

-1
x0

Energetic solution

BV solution

interpolation

Fig. 8.9 Interpolation
between energetic and BV
solutions

Remark 8.4 (Interpolations of energetic and BV solutions). In the previous
example, the case " � � (formally, � D 0) gives the energetic solution obtained in
Example 3.3. The case � � " (formally, � D C1) corresponds to the BV-solution
hinted at above. The case in which (8.27) holds can be interpreted as an interpolation
between these two extreme case, and is pictured in Fig. 8.9.

Appendix

The definition of minimizing movement along a sequence of functionals formalizes
a natural extension to the notion of minimizing movement, and follows the definition
given in the paper by Braides et al. [2].

The energies in Examples 8.2 and 8.6 have been taken as a prototype to model
plastic phenomena by Puglisi and Truskinovsky [7]. More recently, that example
has been recast in the framework of quasistatic motion in the papers by Mielke and
Truskinovsky [4, 6].

The example of the minimizing movement for Lennard-Jones interactions is part
of results of Braides et al. [1]. It is close in spirit to a semi-discrete approach (i.e., the
study of the limit of the gradient flows for the discrete energies) by Gobbino [3].

For the notion of BV-solution we refer to Mielke et al. [5].
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Chapter 9
Geometric Minimizing Movements

We now examine some minimizing movements describing the motion of sets. Such
a motion can be framed in the setting of the previous chapter after identification of a
set A with its characteristic function u D �A. The energies we are going to consider
are of perimeter type; i.e., with

F.A/ D H n�1.@A/ (9.1)

as a prototype in the notation of the previous chapter.

9.1 Motion by Mean Curvature

The prototype of a geometric motion is motion by mean curvature; i.e., a family of
sets A.t/ whose boundary moves in the normal direction with velocity proportional
to its curvature (inwards in convex regions and outwards in concave regions). In the
simplest case when the initial datum is a ball in R

2, A.0/ D A0 D BR0.0/, the
motion is given by concentric balls with radii satisfying

8
<
:
R0 D � c

R

R.0/ D R0I
(9.2)

i.e.,R.t/ D
q
R20 � 2ct , valid until the extinction time t D R20=2c, when the radius

vanishes.
A heuristic argument suggests that the variation of the perimeter be linked to the

notion of curvature; hence, we expect to be able to obtain motion by mean curvature
as a minimizing movement for the perimeter functional. We will see that, in order
to obtain geometric motions as minimizing movements, we will have to modify the
procedure described in the previous chapter.

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__9,
© Springer International Publishing Switzerland 2014
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Example 9.1 (Pinning for the perimeter motion). Let n D 2. We apply the mini-
mizing-movement procedure to the perimeter functional (9.1) and the initial datum
A0 D BR0.0/ in R

2.
With fixed � , since

Z

R2

j�A � �B j2 dx D jA4Bj;

the minimization to determine A1 is

min
n
H 1.@A/C 1

2�
jA4A0j

o
: (9.3)

We note that we can restrict our attention to sets A contained in A0, since
otherwise taking A \ A0 as test sets in their place would decrease both terms
in the minimization. Once this is observed, we also note that, given A � A0, if
BR.x/ � A0 has the same measure as A then it decreases the perimeter part of the
energy (strictly, if A itself is not a ball) while keeping the second term fixed. Hence,
we can limit our analysis to balls BR.x/ � A0, for which the energy depends only
on R. The incremental problem is then given by

min
n
2�R C �

2�
.R20 �R2/ W 0 � R � R0

o
; (9.4)

whose minimizer is either R D 0 (with value �
2�
R20) or R D R0 (with value 2�R0),

since in (9.4) we are minimizing a concave function ofR. For � small the minimizer
is then R0. This means that the motion is trivial: Ak D A0 for all k, and hence also
the resulting minimizing movement is trivial.

9.2 A First (Unsuccessful) Generalization

We may generalize the scheme of the minimizing movements by taking a more
general distance term in the minimization; e.g., considering xk as a minimizer of

min
n
F.x/C 1

�
˚.kx � xk�1k/

o
; (9.5)

where˚ is a continuous increasing function with ˚.0/ D 0. As an example, we can
consider

˚.z/ D 1

p
jzjp:
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Note that in this case we obtain the estimate

kxk � xk�1kp � p �.F.xk�1/ � F.xk//

for the minimizer xk . Using Hölder’s inequality as in the case p D 2, we end up
with (for j > h)

kxj � xhk � .j � h/.p�1/=p
� jX
kDhC1

kxk � xk�1kp
�1=p

� .p F.x0//
1=p.�1=.p�1/.j � h//.p�1/=p:

In order to obtain the (1� 1
p

)-Hölder continuity for the interpolated function u� , we
have to define it as

u� .t/ D ubt=�1=.p�1/c:

Note that we may use the previous definition u� .t/ D ubt=�c with time step � for
the interpolated function if we change the parameter � in (9.5) and, to define xk ,
consider the problem

min
n
F.x/C 1

�p�1 ˚.kx � xk�1k/
o

(9.6)

instead.

Example 9.2 ((non-)geometric minimizing movements). We use the scheme above,
with a slight variation in the exponents, since we will be interested in the description
of the motion in terms of the radius of a ball in R

2 (which is the square root of the
L2-norm and not the norm itself). As in the previous example, we take the initial
datum A0 D BR0 D BR0.0/, and consider Ak defined recursively as a minimizer of

min
n
H 1.@A/C 1

p�p�1 jA4A0jp
o
; (9.7)

with p > 1. As above, at each step the minimizer is given by balls

BRk .xk/ � BRk�1
.xk�1/: (9.8)

The value of Rk is determined by solving

min
n
2�RC �p

p�p�1 .R
2
k�1 �R2/p W 0 � R � Rk�1

o
; (9.9)
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which gives

Rk �Rk�1
�

D � 1

�R
1=.p�1/
k .Rk CRk�1/

: (9.10)

Note that, in this case, the minimum value is not taken at Rk D Rk�1 (this can be
verified, e.g., by checking that the derivative of the function to be minimized in (9.9)
is positive at Rk�1). By passing to the limit in (9.10) we deduce the equation

R0 D � 1

2�Rp=.p�1/ (9.11)

(valid until the extinction time).
Despite having obtained an equation for R, we notice that this approach is not

satisfactory, since we have:

• (non-geometric motion) in (9.8) we have infinitely many solutions; namely, all
balls centered in xk with

jxk�1 � xkj � Rk�1 � Rk:

This implies that we may have moving centres x.t/ provided that jx0j � R0 and
x.0/ D 0; in particular, we may choose x.t/ D .R0 � R.t//z for any z 2 B1.0/
which converges toR0z; i.e., the point where the sets concentrate at the vanishing
time may be any point in BR0 at the extinction time. This implies that the motion
is not a geometric one: sets do not move according to geometric quantities.

• (failure to obtain mean-curvature motion) even if we obtain an equation forR
we never obtain the mean curvature flow since p=.p � 1/ > 1.

9.3 A Variational Approach to Curvature-Driven Motion

In order to obtain motion by curvature, Almgren, Taylor and Wang have introduced
a variation of the implicit-time scheme described above, where the term jA4Akj
is substituted by an integral term which favours variations which are ‘uniformly
distant’ to the boundary of Ak . The problem defining Ak is then

min
n
H 1.@A/C 1

�

Z

A4Ak�1

dist.x; @Ak�1/ dx
o
: (9.12)

Note that the integral term can be indeed interpreted as an L2 distance between the
boundaries of the sets.

We will not prove a general convergence result for an arbitrary initial datum A0,
but we will check the convergence to mean-curvature motion for A D BR0 in R

2.
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In this case we note that if Ak�1 is a ball centered in 0 then we have:

• Ak is contained in Ak�1. To check this, note that, given a test set A, considering
A \ Ak�1 as a test set in its place decreases the energy in (9.12), strictly if A n
Ak�1 ¤ ;.

• Ak is convex and with baricenter in 0. To check this, first, note that each
connected component of Ak is convex. Otherwise, considering the convex
envelopes decreases the energy (strictly, if one of the connected components if
not convex). Then note that if 0 is not the baricenter of a connected component
of Ak then a small translation towards 0 strictly decreases the energy (this
follows by computing the derivative of the volume term along the translation).
In particular, we only have one (convex) connected component.

From these properties we can conclude that Ak is indeed a ball centered in 0.
Were it not so, there would be a line through 0 such that the boundary of Ak does
not intersect perpendicularly this line. By a reflection argument, we then obtain
a non-convex set QAk with total energy not greater than the one of Ak (note that
the line considered subdivides Ak into two subsets with equal total energy). Its
convexification would then strictly decrease the energy. This shows that each Ak
is of the form

Ak D BRk D BRk .0/:

We can now compute the equation satisfied by Rk , by minimizing (after passing
to polar coordinates)

min
n
2�R C 2�

�

Z Rk�1

R

.Rk�1 � �/� d�
o
; (9.13)

which gives

Rk � Rk�1
�

D � 1

Rk
: (9.14)

Passing to the limit gives the desired mean curvature equation (9.2).

9.4 Homogenization of Flat Flows

We now consider geometric functionals with many local minimizers (introduced in
Example 4.3) which give a more refined example of homogenization of minimizing
movements. The functionals we consider are defined on (sufficiently regular)
subsets of R2 by

F".A/ D
Z

@A

a
�x
"

�
dH 1; (9.15)
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where

a.x1; x2/ D
(
1 ifx1 2 Z orx2 2 Z

2 otherwise:

The � -limit of the energies F" is the crystalline perimeter energy

F.A/ D
Z

@A

k�k1dH 1; (9.16)

with k.�1; �2/k1 D j�1j C j�2j. A minimizing movement for F is called a flat flow.
We will first briefly describe it, and then compare it with the minimizing movements
for F".

9.4.1 Motion by Crystalline Curvature

The incremental problems for the minimizing-movement scheme forF in (9.16) are
of the form

min
n
F.A/C 1

�

Z

A4Ak�1

dist1.x; @Ak�1/ dx
o
; (9.17)

where for technical reasons we consider the 1-distance

dist1.x; B/ D inffkx � yk1 W y 2 Bg:

However, in the simplified situation below this will not be relevant in our computa-
tions.

We only consider the case when the initial datum A0 is a rectangle, which plays
the role played by a ball for motion by mean curvature. Note that, as in Sect. 9.3,
we can prove that if Ak�1 is a rectangle, then we can limit the computation in (9.17)
to

• A contained in Ak�1 (otherwise A \Ak�1 strictly decreases the energy).
• A with each connected component a rectangle (otherwise taking the least

rectangle containing a given component would decrease the energy, strictly if
A is not a rectangle).

• A connected and with the same center as A0 (since translating the center towards
0 decreases the energy).

Hence, we may suppose that

Ak D
h
�Lk;1

2
;
Lk;1

2

i
�
h
�Lk;2

2
;
Lk;2

2

i
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L

L

2

2
1

2

Fig. 9.1 Incremental
crystalline minimization

for all k. In order to iteratively determine Lk , we have to minimize the energy

min
n
2.Lk;1C�L1/C2.Lk;2C�L2/C 1

�

Z

A4Ak�1

dist1.x; @Ak�1/ dx
o
: (9.18)

In this computation it is easily seen that for � small the integral term can be
substituted by

Lk;1

4
.�L2/

2 C Lk;2

4
.�L1/

2:

This argument amounts to noticing that the contribution of the small rectangles at
the corners highlighted in Fig. 9.1 is negligible as � ! 0. The optimal increments
(more precisely, decrements)�Lj are then determined by the conditions

8
ˆ̂<
ˆ̂:

1C Lk;2

4�
�L1 D 0

1C Lk;1

4�
�L2 D 0:

(9.19)

Hence, we have the difference equations

�L1

�
D � 4

Lk;2
;

�L2

�
D � 4

Lk;1
; (9.20)

which finally gives the system of ODEs for the limit rectangles, with edges of length
L1.t/ and L2.t/ respectively,

8
ˆ̂<
ˆ̂:

L0
1 D � 4

L2

L0
2 D � 4

L1
:

(9.21)
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Geometrically, each edge of the rectangle moves inwards with velocity inversely
proportional to its length; more precisely, equal to twice the inverse of its length
(so that the other edge contracts with twice this velocity). Hence, in this context the
inverse of the length of an edge plays the role of the curvature (crystalline curvature).

It is worth noticing that by (9.21) all rectangles are homothetic, since d
dt
L1
L2

D 0,
and with area satisfying

d

dt
L1L2 D �8;

so thatL1.t/L2.t/ D L0;1L0;2�8t , which gives the extinction time t D L0;1L0;2=8.
In the case of an initial datum a square of side length L0, the sets are squares whose

side length at time t is given by L.t/ D
q
L20 � 8t , in analogy with the evolution of

balls by mean curvature flow.

9.5 Homogenization of Oscillating Perimeters

We consider the sequenceF" in (9.15). Note that, for any (sufficiently regular) initial
datum A0, we have that A0

" � A0 � A00
" , where A0

" and A00
" are such that F".A0

"/ D
H 1.@A0

"/ and F".A00
" / D H 1.@A00

" / and jA00
" n A0

"j D O."/. Such sets are local
minimizers for F" and hence the minimizing movement of F" from either of them
is trivial. As a consequence, if A".t/ is a minimizing movement for F" from A0 we
have

A0
" � A".t/ � A00

" :

This shows that for any setA0 the only limit lim"!0 A".t/ of minimizing movements
for F" from A0 is the trivial motion A.t/ D A0.

We now compute the minimizing movements along the sequence F" with initial
datum a rectangle, and compare them with the flat flow described in the previous
section.

For simplicity of computation we deal with a constrained case, when:

• For every " the initial datum A0 D A"0 is a rectangle centered in 0 such that
F".A/ D H 1.@A/ (i.e., its edge lengths L0;j belong to 2"Z). In analogy with
x0 in the example in Sect. 8.4, if this does not hold then either it does after one
iteration or we have a pinned state Ak D A0 for all k.

• All competing A are rectangles with F".A/ D H 1.@A/ centered in 0. The
fact that all competing sets are rectangles follows as for the flat flow in the
previous section. The fact that F".Ak/ � F".Ak�1/ then implies that the minimal
rectangles satisfy F".Ak/ D H 1.@Ak/. The only real assumption at this point is
that they are centered in 0. This hypothesis can be removed, upon a slightly more
complex computation, which would only make the arguments less clear.
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After this simplifications, the incremental problem is exactly as in (9.17) since
for competing sets we have F".A/ D F.A/, the only difference being that nowLk;1;
Lk;2 2 2"Z. The problem in terms of 4Lj , using the same simplification for (9.18)
as in the previous section, is then

min
n
2.Lk;1C�L1/C2.Lk;2C�L2/CLk;1

4�
.�L2/

2CLk;2

4�
.�L1/

2 W �Lj 2 2"Z
o
:

(9.22)

This is a minimization problem for a parabola as the ones in Sect. 8.4 that gives

�L1 D �
j 4�

"Lk;2
C 1

2

k
" if

4�

"Lk;2
C 1

2
62 Z (9.23)

(the other cases giving two solutions), and an analogous equation for �L2. Passing
to the limit, we have the system of ODEs governed by the parameter

w D lim
"!0

�

"

(which we may suppose exists, up to subsequences), which reads as

8̂
ˆ̂<
ˆ̂̂
:

L0
1 D � 1

w

j4w

L2
C 1

2

k

L0
2 D � 1

w

j4w

L1
C 1

2

k
:

(9.24)

Note that the right-hand side is a discontinuous function ofLj , so some care must be
taken at times t when 4w

Lj .t/
C 1

2
2 Z. However, apart from some exceptional cases,

this condition holds only for a countable number of t , and is therefore negligible.
We can compare the resulting minimizing movements with the crystalline

curvature flow, related to F .

• (total pinning) if � � " (w D 0) then we have A.t/ D A0.
• (crystalline curvature flow) if " � � then we have the minimizing movements

described in the previous section.
• (partial pinning/asymmetric curvature flow) if 0 < w < C1 then we have

(i) (total pinning) if both L0;j > 8w then the motion is trivial A.t/ D A0.
(ii) (partial pinning) if L0;1 > 8w, L0;2 < 8w and 4w

L0;2
C 1

2
62 Z then the

horizontal edges do not move, but they contract with constant velocity until
L1.t/ D 8w.

(iii) (asymmetric curvature flow) if L0;1 � 8w and L0;2 < 8w then we have a
unique motion with A.t/ �� A.s/ if t > s, up to a finite extinction time.
Note, however, that the sets A.s/ are not homothetic, except for the trivial
case when A0 is a square.
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Some cases are not considered above, namely those when we do not have unique-
ness of minimizers in the incremental problem. This may lead to a multiplicity of
minimizing movements, as remarked in Sect. 8.4.

It is worthwhile to highlight that we may rewrite the equations for L0
j as a

variation of the crystalline curvature flow; e.g., for L0
1 we can write it as

L0
1 D �f

�L2
w

� 4
L2
; with f .z/ D z

4

j4
z

C 1

2

k
:

This suggests that the ‘relevant’ homogenized problem is the one obtained for �
"

D 1,
as all the others can be obtained from this one by a scaling argument.

We note that the scheme can be applied to the evolution of more general sets,
but the analysis of the rectangular case already highlights the new features deriving
from the microscopic geometry.

9.6 Flat Flow with Oscillating Forcing Term

We now consider another minimizing-movement scheme linked to the functional F
in (9.16). In this case, the oscillations are given by a lower-order forcing term. We
consider, in R

2,

G".A/ D
Z

@A

k�k1dH 1 C
Z

A

g
�x1
"

�
dx; (9.25)

where g is 1-periodic and even, given by

g.s/ D
(
˛ if dist .x;Z/ < 1

4

ˇ otherwise;

with ˛; ˇ 2 R and ˛ < ˇ. Note that the additional term may be negative, so that
this functional is not positive; however, the minimizing-movement scheme can be
applied unchanged.

Since the additional term converges continuously in L1 as " ! 0, the � -limit is
simply

G.A/ D
Z

@A

k�k1dH 1 C ˛ C ˇ

2
jAj: (9.26)

9.6.1 Flat Flow with Forcing Term

We now consider minimizing movements for G. As in Sect. 9.4.1, we only deal
with a constrained problem, when both the initial datum and the competing sets are
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rectangles centered in 0. With the notation of Sect. 9.4.1, we are led to the minimum
problem

min
n
2.Lk;1 C�L1 C Lk;2 C�L2/C Lk;1

4�
.�L2/

2 C Lk;2

4�
.�L1/

2

C˛ C ˇ

2
.Lk;1 C�L1/.Lk;2 C�L2/

o
:

The minimizing pair .�L1;�L2/ satisfies

�L1

�
D �

� 4

Lk;2
C .˛ C ˇ/

�
1C �L2

Lk;2

��
(9.27)

and the analogous equation for �L2
�

. Passing to the limit we have

8
ˆ̂̂<
ˆ̂̂
:

L0
1 D �

� 4
L2

C ˛ C ˇ
�

L0
2 D �

� 4
L1

C ˛ C ˇ
�
;

(9.28)

so that each edge moves with velocity 2
L2

C ˛Cˇ
2

, with the convention that it moves
inwards if this number is positive, outwards if it is negative.

Note that if ˛ C ˇ � 0 then L1 and L2 are always decreasing and we have
finite-time extinction, while if ˛ C ˇ < 0 then there is an equilibrium for Lj D
4=j˛ C ˇj, and we have expanding rectangles, with an asymptotic velocity of each
side of j˛ C ˇj=2 as the side length diverges.

9.6.2 Homogenization of Forcing Terms

We treat the case � � " only, in which we may highlight new homogenization
phenomena. Again, we consider the constrained case when both the initial datum
and the competing sets are rectangles centered in 0 and adopt the notation of
Sect. 9.4.1. The geometry of the problem is pictured in Fig. 9.2, where the two colors
in the background represent the two values of the forcing term.

Taking into account that � � ", the incremental minimum problem can be
approximated by

min
n
2.Lk;1 C�L1 C Lk;2 C�L2/C Lk;1

4�
.�L2/

2 C Lk;2

4�
.�L1/

2

C˛ C ˇ

2
Lk;1Lk;2 C ˛ C ˇ

2
Lk;1�L2 C g

�Lk;1
2"

�
Lk;2�L1

o
: (9.29)



140 9 Geometric Minimizing Movements

Fig. 9.2 Rectangle in a
layered environment

In considering the term g.Lk;1=2"/ we implicitly assume that � is so small that both
Lk;1=2" and .Lk;1 C�L1/=2" belong to the same interval where g is constant. This
can be assumed up to a number of k that is negligible as � ! 0.

For the minimizing pair of (9.29) we have

8
ˆ̂<
ˆ̂:

2C Lk;2

2�
�L1 C g

�Lk;1
2"

�
Lk;2 D 0

2C Lk;1

2�
�L2 C ˛ C ˇ

2
Lk;1 D 0I

(9.30)

that is,

8̂
ˆ̂̂
<
ˆ̂̂
:̂

�L1

�
D �

 
4

Lk;2
C 2g

�Lk;1
2"

�!

�L2

�
D �

� 4

Lk;1
C .˛ C ˇ/

�
:

(9.31)

This systems shows that the horizontal edges move with velocity 2
Lk;1

C ˛Cˇ
2

, while
the velocity of the vertical edges depends on the location of the edge and is

2

Lk;2
C g

�Lk;1
2"

�
:

We then deduce that the limit velocity for the horizontal edges of length L1 is

2

L1
C ˛ C ˇ

2
: (9.32)

As for the vertical edges, we have:

• (mesoscopic pinning) if L2 is such that

� 2
L2

C ˛
�� 2
L2

C ˇ
�
< 0
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Fig. 9.3 Stages in the motion
according to system (9.34)

then the vertical edge is eventually pinned in the minimizing-movement scheme.
This pinning is not due to the equalityLkC1;1 D Lk;1 in the incremental problem,
but to the fact that the vertical edge moves in contrasting directions depending
on the value of g.

• (homogenized velocity) if, on the contrary, the vertical edge length satisfies

� 2
L2

C ˛
�� 2
L2

C ˇ
�
> 0

then we have a limit effective velocity of the vertical edge given by the harmonic
mean of the two velocities 2

L2
C ˛ and 2

L2
C ˇ; namely,

.2C ˛L2/.2C ˇL2/

L2

�
2C ˛Cˇ

2
L2

� : (9.33)

We examine some cases explicitly.

(i) Let ˛ D �ˇ. Then we have

8̂
<̂
ˆ̂:

L0
2 D � 4

L1

L0
1 D �2.2� ˇL2/ _ 0

L2
I

(9.34)

i.e., the vertical edges are pinned if their length is larger than 2=ˇ. In this case,
the horizontal edges move inwards with constant velocity 2

L0;1
. In this way the

vertical edges shrink with rate 4
L0;1

until their length is 2=ˇ. After this, the whole
rectangle shrinks in all directions. The stages of this evolution are pictured in
Fig. 9.3.

(ii) Let ˛ < ˇ < 0. Then for the vertical edges we have an interval of ‘mesoscopic
pinning’ corresponding to

2

jˇj � L2 � 2

j˛j (9.35)
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L

vFig. 9.4 Velocity of the
vertical hedges with an
interval of mesoscopic
pinning

The velocity of the vertical edges in dependence of their length is then
given by

v D

8
ˆ̂̂
<
ˆ̂̂
:

0 if (9.35) holds

.2C ˛L2/.2C ˇL2/

L2
�
2C ˛Cˇ

2
L2
� otherwise

and is pictured in Fig. 9.4. Instead, the velocity of the horizontal edges is given
by (9.32), so that they move inwards if

L1 <
4

j˛ C ˇj ;

and outwards if L1 > 4
j˛Cˇj .

In this case we can consider as initial datum a square of side length L0. We have
the following cases:

• If L0 � 2
jˇj then all edges move inwards until a finite extinction time.

• If 2
jˇj < L0 <

4
j˛Cˇj then first only the horizontal edges move inwards until the

vertical edge reaches the length 2
jˇj , after which all edges move inwards.

• If 4
j˛Cˇj < L0 <

2
j˛j then first only the horizontal edges move outwards until the

vertical edge reaches the length 2
j˛j , after which all edges move outwards.

• If L0 � 2
j˛j then all edges move outwards, and the motion is defined for all times.

The asymptotic velocity of the vertical edges as the length of the edges diverges is

ˇ̌
ˇ 2˛ˇ
˛ C ˇ

ˇ̌
ˇ;

lower than
ˇ̌
ˇ ˛Cˇ

2

ˇ̌
ˇ (the asymptotic velocity for the horizontal edges).
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The critical case can be shown to be " 	 � , so that for " � � we have the
flat flow with averaged forcing term described in Sect. 9.6.1. The actual description
in the case " 	 � would involve a complicated homogenization argument for the
computation of the averaged velocity of vertical sides.

Appendix

The variational approach for motion by mean curvature is due to Almgren et al.
[2]. The variational approach for crystalline curvature flow is contained in a paper
by Almgren and Taylor [1].

The homogenization of the flat flow essentially follows the discrete analog con-
tained in the paper by Braides et al. [3]. In that paper more effects of the microscopic
geometry are described for more general initial sets. The homogenization with
forcing term is part of ongoing work with A. Malusa and M. Novaga.

Geometric motions with a non-trivial homogenized velocity are described in the
paper by Braides and Scilla [4], where example are shown of geometries which do
not influence the crystalline perimeter obtained as � -limit, but do influence various
features of the evolution.
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Chapter 10
Different Time Scales

In this chapter we treat some variations on the minimizing-movement scheme
motivated by some time-scaling argument. In particular, we highlight that a scaling
of the energy entails a time scaling, from which we may define long-time and
backwards motion.

10.1 Long-Time Behaviour

We will consider a new parameter � > 0 and follow the iterative minimizing scheme
from an initial datum x0 by considering xk defined recursively as a minimizer of

min
n 1
�
F".x/C 1

2�
kx � xk�1k2

o
; (10.1)

and setting u� .t/ D u�;�.t/ D xbt=�c. Equivalently, we may view this as applying
the minimizing-movement scheme to

min
n
F".x/C �

2�
kx � xk�1k2

o
: (10.2)

Note that we may compare this scheme with the one for unscaled energies, where
xk are defined as minimizers of the minimizing-movement scheme with time scale
� D �=�. This other scheme gives a function u� which is a discrete function on a
lattice of time step �. Then we have

u� .t/ D xbt=�c D xbt=��c D u�
� t
�

�
:

Hence, the introduction of � corresponds to a scaling of time.

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__10,
© Springer International Publishing Switzerland 2014
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Remark 10.1. Note that the process described above may be meaningful also if
F" D F is independent of ". In this case, as � ! 0 we obtain the minimizing
movement along F� D 1

�
F with � in place of " in the notation used hitherto

(of course, being a matter of notation, up to a change of parameters; i.e., considering
1=� in place of �, we can always suppose that � ! 0).

Conversely, if F" � -converges to F and � D �" is a scale along which there
exists a non-trivial � -development; i.e., the limit

F .1/.x/ D � - lim
"!0

F".x/ � minF

�"

exists and is not trivial, then from (10.1) we argue that such �" is a meaningful scale
(which may be related to minimizing movements for F .1/). More in general, such a
scale is the one suggested by the existence of a non-trivial

� - lim
"!0

F".x/ �m"

�"

for some choice of m".
Finally, if F" D F , note that taking � D 0 in (10.2) we obtain a global minimum

problem for F , while the trajectories u� .t=�/ may remain uniformly distant from a
global minimizer for � small (e.g., if the initial datum x0 is a local minimizer for F ).
Similarly, for time-depending minimizing movements, time scaling in general does
not lead to a quasistatic motion (as in Example 7.5).

We now first give some simple examples which motivate the study of time-scaled
problems, also when the unscaled problems already give a non trivial minimizing
movement.

Example 10.1. Consider in R
2 the energy

F".x; y/ D 1

2
.x2 C "y2/:

The corresponding gradient flow is then
(
x0 D �x
y0 D �"y;

with solutions of the form

.x".t/; y".t// D .x0e
�t ; y0e�"t /:

These solutions converge to .x.t/; y.t// D .x0e
�t ; y0/, solving

(
x0 D �x
y0 D 0;
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1

1

y

x

Fig. 10.1 Trajectories of the
solutions, and their pointwise
limit

which is the gradient flow of the limit F.x; y/ D 1
2
x2. Note that

lim
t!C1.x".t/; y".t// D .0; 0/ ¤ .0; y0/ D lim

t!C1.x.t/; y.t//:

The trajectories of the solutions .x"; y"/ lie on the curves

y

y0
D
� x
x0

�"

and are pictured in Fig. 10.1.
The solutions can be seen as a superposition of .x.t/; y.t// and ".x1.t/; y1.t//,

where

.x1.t/; y1.t// WD .0; e�t /

is the solution of
8
ˆ̂<
ˆ̂:

x0 D 0

y0 D �y
.x.0/; y.0// D .0; y0/:

The solution .x1; y1/ can be obtained by scaling .x"; y"/; namely,

.x1.t/; y1.t// D lim
"!0

.x".t="/; y".t="//:

In this case the scaling of time is � D ". Note that the limit of the scaled solutions
does not satisfy the original initial condition, which instead is the ‘projection’ of the
initial condition on the set of (local) minimizers of the limit energy F (or, in other
words, the domain of the limit of the energies 1

"
F").
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Example 10.2. A similar example can be constructed in one-dimension,
taking, e.g.,

F".x/ D "

2
x2 C 1

2
..jxj � 1/ _ 0/2:

If x0 < �1 then the corresponding solutions x" satisfy:

• The limit x.t/ D lim"!0 x".t/ solves

(
x0 D �x C 1

x.0/ D x0;

which corresponds to the gradient flow of the energy

F.x/ D 1

2
..jxj � 1/ _ 0/2:

• The scaled limit x1.t/ D lim"!0 x".t="/ solves

(
x0 D �x
x.0/ D �1;

which corresponds to the gradient flow of the energy

F1.x/ D lim
"!0

1

"
F".x/:

In this case, the initial datum is the projection of x0 on the domain of F1.

Remark 10.2. In the previous examples we faced the problem of defining a
minimizing movement for a sequence of functionals F" (� -)converging to a limit
F when the initial data x"0 converge to a point x0 62 domF . Note that in this case
the approximating trajectories u" are always defined if one can define x"1; i.e., a
solution of

min
n
F".x/C 1

2�
kx � x0k2

o
;

or equivalently of

minf2�F".x/C kx � x0k2 W x 2 domF g;

after which x�1 2 domF and we apply the theory already studied. Note that if domF
is a closed set in X then x�1 converge to the projection x1 of x0 on dom F , so it
may be meaningful to directly study the minimizing movements from that point.
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Note however that, as always, the choice of initial data x�1 ! x1 may provide a
choice among the minimizing movements from x1.

We now give more examples with families of energies F" � -converging to a
limit F . Since we are mainly interested in highlighting the existence of a time scale
� D �" at which the scaled motion is not trivial, we will make some simplifying
assumptions, one of which is that the initial datum be a local minimizer for F ,
so that the (unscaled) minimizing movement for the limit from that point is trivial.

Example 10.3. We take as F the 1D Mumford–Shah functional on .0; 1/ defined by

F.u/ D
Z 1

0

ju0j2dt C #.S.u//;

with domain the set of piecewise-H1 functions. We take

F".u/ D
Z 1

0

ju0j2dt C
X
S.u/

g
� juC � u�j

"

�
;

where g is a positive concave function with

lim
z!C1g.z/ D 1:

We also consider the boundary conditions

u.0�/ D 0; u.1C/ D 1:

We suppose that:

• u0 is a local minimizer for F ; i.e., it is piecewise constant.
• #.S.u0// D fx0; x1g (the simplest non-trivial local minimizer) with 0 � x0 <

x1 � 1.
• Competing functions are also piecewise constant.

With these conditions, all minimizers uk obtained by iterative minimization
satisfy:

• S.uk/ � fx0; x1g.

We may use the constant value zk of uk on .x0; x1/ as a one-dimensional
parameter. The minimum problem defining zk is then (supposing that z0 > 0 so
that all zk > 0)

min
n 1
�

�
g
� z

"

�
C g

�1 � z

"

��
C 1

2�
.x1 � x0/.z � zk�1/2

o
;
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which gives

.x1 � x0/ zk � zk�1
�

D � 1

"�

�
g0
� zk
"

�
� g0

�1 � zk
"

��
:

As an example, we may take

g.z/ D z

1C z
;

so that the equation for zk becomes

.x1 � x0/
zk � zk�1

�
D � "

�

� 1

"2 C z2k
� 1

"2 C .zk � 1/2
��
:

This suggests the scale

� D ";

and with this choice gives the limit equation for z.t/

z0 D � 1 � 2z

.x1 � x0/z2.z � 1/2 :

In this time scale, unless we are in the equilibrium z D 1
2
, the middle value moves

towards the closest value between 0 and 1.
As a side remark, note that a simple qualitative study of this equation shows that

if the initial datum is not the constant 1=2 then z D 0 or z D 1 after a finite time,
after which the motion is trivial. Note that the limit state is a local minimum with
only one jump.

Remark 10.3 (Long-time behaviour as a choice criterion). Note that we may apply
the time-scale approach above also to the scaled Lennard-Jones energies, which we
proved to converge to the Griffith fracture energy in Example 2.6. The resulting
long-time behaviour can be compared to the one described in the previous example
for Barenblatt fracture energies. Requiring that the two long-time behaviours be the
same gives further conditions on the function g in addition to those obtained in
Sect. 4.4.

Example 10.4. We consider the same functionalsF andF" as in Example 10.3, with
an initial datum with three jumps satisfying the same Dirichlet boundary conditions
u.0�/ D 0, u.1C/ D 1 and the same assumptions as before.

With the notation used above, the minimum problem is

min
n 1
�

�
g

�
z0 � 0

"

�
C g

� z1 � z0
"

�
C g

�
1 � z1
"

��
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C 1

2�

�
.x1 � x0/jz0 � zk�1

0 j2 C .x2 � x1/jz1 � zk�1
1 j2�

o
: (10.3)

Differently from the previous case, now we have to compute a gradient as a
function of z0 and z1, the constant values of u respectively on .x0; x1/ and .x1; x2/.
Hence, the Euler equations for (10.3) give the following system for zk0 and zk1 :

.x1 � x0/
zk0 � zk�1

0

�
D � 1

�"

�
g0
�

zk0
"

�
� g0

�
zk1 � zk0
"

��
; (10.4)

.x2 � x1/
zk1 � zk�1

1

�
D � 1

�"

�
g0
�

zk1 � zk0
"

�
� g0

�
1 � zk1
"

��
: (10.5)

For the sake of illustration, we may take the same g as in the previous example,
so that (10.4) and (10.5) become

.x1 � x0/
zk0 � zk�1

0

�
D � "

�

�
1

."C zk0/
2

� 1

."C zk1 � zk0/
2

�
; (10.6)

.x2 � x1/
zk1 � zk�1

1

�
D � "

�

�
1

."C zk1 � zk0 /
2

� 1

."C 1 � zk1/
2

�
: (10.7)

This suggests the scale

� D "; (10.8)

and with this choice the limit equations for z0.t/ and z1.t/ are

z0
0 D � z1.z1 � 2z0/

.x1 � x0/z20.z1 � z0/2
; (10.9)

z0
1 D � 1 � z20 � 2z1.1 � z0/

.x2 � x1/.z1 � z0/2.1 � z1/2
: (10.10)

In this time scale, it is easy to see that the gradient is zero when .z0; z1/ D
. z1
2
; 1Cz0

2
/, so we can have the following different behaviors:

• Equilibrium point. For the initial datum .z0; z1/ D . 1
3
; 2
3
/ the motion is trivial.

• If z0 is larger than the equilibrium point, then z0
0 > 0 and the constant value z0

will increase towards z1, otherwise it will decrease towards zero. The same holds
for z1 between z0 and 1.

It must be noted that if the initial datum is not an equilibrium point then after a
finite time one of the jump sizes vanishes, after which we are back to the previous
example. In Figs. 10.2–10.5 we picture four stages of the evolution computed
numerically.
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Fig. 10.2 Initial conditions

Fig. 10.3 Iteration n. 30

A further simplified example is obtained by taking symmetric initial data
x2 � x1 D x1 � x0 DW L and z0.0/ D 1

2
� w0 and z1.0/ D 1

2
C w0 with

0 < w0 < 1=2, for which the motion is described by a single parameter w.t/
satisfying

w0 D 3
�
1
2

C w
��

w � 1
6

�

4L
�
1
2

� w
�
w2

;

in which case the equilibrium point corresponds to w0 D 1=6, and otherwise after a
finite either we have w D 0 (which gives z0 D z1 D 1=2; i.e., the equilibrium point
with two jumps) or w D 1

2
(which gives z0 D 0 and z1 D 1; i.e., a final state with

only one jump point).
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Fig. 10.4 Iteration n. 60

Fig. 10.5 Iteration n. 100

Example 10.5. We consider another approximation of the Mumford–Shah
functional: the (scaled) Perona–Malik functional. In the notation for discrete
functionals (see Sect. 4.4), we may define

F".u/ D
NX
iD1

1

j log "j log
�
1C "j log "j

ˇ̌
ˇui � ui�1

"

ˇ̌
ˇ
2�
:

Note that also the pointwise limit on piecewise-H1 functions gives the
Mumford–Shah functional since

lim
"!0

1

"j log "j log
�
1C "j log "jz2

�
D z2
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and

lim
"!0

1

j log "j log
�
1C j log "jw2

"

�
D 1

for all w ¤ 0.
As in Example 10.3, we consider the case when competing functions are non-

negative piecewise constants with S.u/ � S.u0/ D fx0; x1g and satisfying the
boundary conditions u.0�/ D 0; u.1C/ D 1. The computation is then reduced
to a one-dimensional problem with unknown the constant value zk defined by the
minimization

min
n 1

�j log "j
�

log
�
1C j log "j z2

"

�
C log

�
1C j log "j .z � 1/2

"

��

C 1

2�
.x1 � x0/.z � zk�1/2

o
;

which gives the equation

.x1 � x0/
zk � zk�1

�
D � 2

�

� z

"C j log "jz2 C z � 1
"C j log "j.z � 1/2

�
:

This suggests the time scale

� D 1

j log "j ;

and gives the equation for z.t/

z0 D � 2

.x1 � x0/
� 1 � 2z

z.1 � z/
;

which provides a qualitative behaviour of z similar to the previous example.

Example 10.6. We now consider the sharp-interface model with

F.u/ D #.S.u/\ Œ0; 1//

defined on all piecewise-constant 1-periodic functions with values in ˙1. For F all
functions are local minimizers.

We take

F".u/ D #.S.u/\ Œ0; 1//�
X

xi2Œ0;1/\S.u/
e� xiC1�xi

" ;

where fxi g D S.u/ is a numbering of S.u/ with xi < xiC1.
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We take as initial datum u0 with #.S.u0// D 2; hence, S.u0/ D fx0; y0g, and,
after identifying u0 with A0 D Œx0; y0�, apply the Almgren–Taylor–Wang variant
of the iterative minimization process, where the distance term 1

2�
ku � uk�1k2 is

substituted by

1

�

Z

A4Ak�1

dist.x; @Ak�1/ dx:

The computation of A1 D Œx1; y1� is obtained by the minimization problem

min
n
� 1
�

�
e� .y�x/

" C e� .1Cx�y/
"

�
C 1

2�
..x � x0/2 C .y � y0/

2/
o
;

which gives

x1 � x0

�
D 1

"�

�
e� .y1�x1/

" � e� .1Cx1�y1/
"

�

y1 � y0

�
D � 1

"�

�
e� .y1�x1/

" � e� .1Cx1�y1/
"

�
:

Let y0 � x0 < 1=2; we argue that the scaled time scale is

� D 1

"
e� y0�x0

" ;

for which we have

x1 � x0

�
D
�
e� .y1�y0�x1Cx0/

" � e� .1Cx1�x0�y1Cy0/
"

�

y1 � y0

�
D �

�
e� .y1�y0�x1Cx0/

" � e� .1Cx1�x0�y1Cy0/
"

�
:

In terms of Lk D yk � xk this can be written as

L1 � L0

�
D �2

�
e� .L1�L0/

" � e� .1CL0�L1/
"

�
:

Under the assumption � << " we have in the limit

L0 D �2
�
eo.1/ � e� 1

"Co.1/� D �2;

which shows that the two closer interfaces move towards each other shortening
linearly their distance.
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10.2 Reversed Time

In a finite-dimensional setting, a condition that ensures the possibility of defining a
minimizing movement for F is that

u 7! F.u/C 1

2�
ju � uj2 (10.11)

be lower semicontinuous and coercive for all u and for � sufficiently small. This is
not in contrast with requiring that also

u 7! �F.u/C 1

2�
ju � uj2 (10.12)

satisfy the same conditions; for example if F is continuous and of quadratic growth.
Note that this can be seen as a further extension of the time-scaling argument in
the previous sections with � D �1. If the iterative scheme gives a solution for the
gradient flow, a minimizing movement u for the second scheme produces a solution
v.t/ D u.�t/ to the backward problem

(
v0.t/ D �rF.v.t// for t � 0

v.0/ D u0

In an infinite-dimensional setting, the two requirements of being able to define
both the minimizing movement (10.11) and (10.12) greatly limits the choice
of F , and rules out all interesting cases. A possible approach to the definition
of a backward minimizing movement is then to introduce a (finite-dimensional)
approximation F" to F , for which we can define a minimizing motion along �F".

We now give an example in the context of crystalline motion, where we consider
a negative scaling of time.

Example 10.7 (Nucleation). We consider in R
2

F.A/ D
Z

@A

k�k1dH 1;

and F" the restriction of F to the sets of the form

[
i2B

�
"i C

�
� "
2
;
"

2

�2�
;

where B is a subset of Z2. Hence, we may identify these union of "-squares with
the correspondingB . Even though this is not a finite-dimensional space, we will be
able to apply the Almgren–Taylor–Wang scheme.
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Fig. 10.6 Nucleating sets

We choose (with the identifications with subsets of Z2) as initial datum

A"0 D f.0; 0/g D
�
� "
2
;
"

2

�2
;

and solve iteratively

min
n
� 1
�
F".A/C 1

�

Z

AnA"k�1

dist1.x; @A"k�1/ dx
o
;

with � D �" > 0 to be determined. In the interpretation as a reversed-time scheme,
this means that we are solving a problem imposing the extinction at time 0.

Note that taking F in place of F" would immediately give the value �1 in the
minimum problem above; e.g., by considering sets of the form (in polar coordinates)

Aj D f.�; 	/ W � � 3"C " sin.j	/g;

which contain A"0, are contained in B4".0/ and have a perimeter larger than 4j".
Under the assumption that " << � , all minimizing sets are the checkerboard

structure corresponding to indices i 2 Z
2 with i1C i2 even contained in a squareQk

centered in 0 (see Fig. 10.6). We may take the sidesLk of those squares as unknown.
The incremental problems can be rewritten as

min
n
� 2

"�
..Lk�1 C�L/2 � L2k�1/C 1

�
.Lk�1.�L/2 C rk.�L/

2/
o
;

with rk negligible as � ! 0. For the interfacial part, we have taken into account
that for " small the number of "-squares contained in a rectangle is equal to its
area divided by 2"2 and each of the squares gives an energy contribution of 4";
for the distance part, we note that the integral can be equivalently taken on half of
Qk nQk�1. Minimization in �L gives

�L

�
D 2

"�

�
1C �L

Lk�1

�
:
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Choosing � D 1
"
, we obtain a linear growth

L.s/ D 2s:

The checkerboard structures converge (meaning, e.g., that their convex envelopes
converge as sets) to squares, whose side length L increases linearly, L.s/ D 2s.

What we have obtained is the description of the structure of "-squares
(the checkerboard one) along which the increase of the perimeter is maximal (and,
in a sense, the decrease of the perimeter is maximal for the reverse-time problem).

Appendix

The literature on long-time behaviour and backward equations, even though not by
the approach by minimizing movements, is huge. The long-time motion of interfaces
in one space dimension by energy methods has been studied in a paper by Bronsard
and Kohn [1].

Example 10.4 has been part of the course exam of C. Sorgentone and S. Tozza
at Sapienza University in Rome, who kindly provided the pictures for the numerical
simulations.

Example 10.7 is contained in a paper by Braides and Scilla [2]. It is a pleasure to
acknowledge the suggestion of J.W. Cahn to use finite-dimensional approximations
to define backward motion of sets.
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Chapter 11
Stability Theorems

We now face the problem of determining conditions under which the
minimizing-movement scheme commutes with � -convergence. Let F" � -converge
to F , with initial data x" converging to x0. We have seen in Sect. 8.2 that by
suitably choosing " D ".�/ the minimizing movement along the sequence F" from
x" converges to a minimizing movement for the limit F from x0. A further issue
is whether, by assuming some further properties on F", we may deduce that the
same thing happens for any choice of ". In order to give an answer, we will use
results from the theory of gradient flows recently elaborated by Ambrosio, Gigli
and Savaré, and by Sandier and Serfaty.

11.1 Stability for Convex Energies

In this section we use general results in the theory of gradient flows to deduce a
stability property for functionals satisfying some convexity assumptions. For the
sake of simplicity, we will assume that X is a Hilbert space and all F" are convex.

11.1.1 Convergence Estimates

We first recall some results on minimizing movements for a single convex
functional F .

Proposition 11.1. Let F be convex, z 2 X and let w be a minimizer of

min
n
F.x/C 1

2�
kx � zk2

o
: (11.1)

A. Braides, Local Minimization, Variational Evolution and �-Convergence,
Lecture Notes in Mathematics 2094, DOI 10.1007/978-3-319-01982-6__11,
© Springer International Publishing Switzerland 2014
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Then

kx � wk2 � kx � zk2 � 2�.F.x/ � F.w// (11.2)

for all x 2 X .

Proof. We recall that the inequality

ksx C .1� s/w � zk2 � skx � zk2 C .1� s/kw � zk2 � s.1� s/kx � wk2 (11.3)

holds for all x;w; z 2 X and s 2 Œ0; 1�. Using this property and the convexity of F ,
thanks to the minimality of w we have

F.w/C 1

2�
kw � zk2 � F.sx C .1 � s/w/C 1

2�
ksx C .1 � s/w � zk2

� sF.x/C .1 � s/F.w/

C 1

2�
.skx � zk2 C .1 � s/kw � zk2 � s.1 � s/kx � wk2/:

After regrouping and dividing by s, from this we have

1

2�
.kw � zk2 C .1 � s/kx � wk2 � kx � zk2/ � F.x/ � F.w/;

and then the desired inequality (11.2) after letting s ! 0 and dropping the positive
term kw � zk2. ut
Remark 11.1. Let fzkg D fz�kg be a minimizing scheme for F from z0 with time-
step �. Then (11.2) gives

kx � zkC1k2 � kx � zkk2 � 2�.F.x/ � F.zkC1// (11.4)

for all x 2 X .

We now fix � > 0 and two initial data x0 and y0. We will compare the resulting
fxkg D fx�kg obtained by iterated minimization with time-step � and initial datum

x0 and fykg D fy�=2k g with time-step �=2 and initial datum y0. Note that the
corresponding continuous-time interpolations are

u� .t/ WD xbt=�c; v�=2.t/ D yb2t=�c; (11.5)

so that the comparison must be performed between xk and y2k .

Proposition 11.2. For all j 2 N we have

kxj � y2j k2 � kx0 � y0k2 � 2�F.x0/:
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Proof. We first give an estimate between x1 and y2. We apply (11.4) with � D � ,
zk D x0, zkC1 D y1 and x D y2 which gives

ky2 � x1k2 � ky2 � x0k2 � 2�.F.y2/ � F.x1//: (11.6)

If instead we apply (11.4) with � D �=2, zk D y0, zkC1 D y1 and x D x0, or
zk D y1, zkC1 D y2 and x D x0 we get, respectively,

kx0 � y1k2 � kx0 � y0k2 � �.F.x0/� F.y1//

kx0 � y2k2 � kx0 � y1k2 � �.F.x0/� F.y2//;

so that, summing up,

kx0 � y2k2 � kx0 � y0k2 � 2�F.x0/� �F.y1/ � F.y2/ � 2�.F.x0/� F.y2//;

(11.7)

where we have used that F.y2/ � F.y1/ in the last inequality. Summing up (11.6)
and (11.7) we obtain

kx1 � y2k2 � kx0 � y0k2 � 2�.F.x0/� F.x1//: (11.8)

We can repeat the same argument with x0 and y0 substituted by x1 and y2, so that
we get

kx2 � y4k2 � kx1 � y2k2 � 2�.F.x1/ � F.x2//; (11.9)

and, summing (11.8),

kx2 � y4k2 � kx0 � y0k2 � 2�.F.x0/� F.x2//: (11.10)

By iterating this process we get

kxj � y2jk2 � kx0 � y0k2 � 2�.F.x0/� F.xj // � 2�F.x0/ (11.11)

as desired. ut
Theorem 11.1. Let F be convex and let F.x0/ < C1. Then there exists a unique
minimizing movement u for F from x0 such that, if u� is defined by (11.5), then

ku� .t/ � u.t/k � 6
p
F.x0/

p
�

for all t � 0.
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Proof. With fixed � we first prove the convergence of u2
�j � as j ! C1.

By Proposition 11.2 applied with y0 D x0 and 2�j � in place of � we have

ku2
�j � .t/ � u2

�j�1� .t/k � 2�j=2p2�
p
F.x0/ (11.12)

for all t . This shows the convergence to a limit u� .t/, which in particular satisfies

ku� .t/ � u� .t/k � p
2

1X
jD0

2�j=2p�
p
F.x0/ � 6

p
F.x0/

p
�: (11.13)

The limit u� can be characterized as follows: with fixed x, inequality (11.4)
applied to zk D u2

�j � ..k � 1/2�j �/ (k � 1) can be seen as describing in the
sense of distribution the derivative

d

dt

1

2
kx � u2

�j � .t/k2 �
1X
kD1

�
F.x/ � F

�
u2

�j � ..k � 1/2�j �/
��
2�j � ık2�j � :

(11.14)

Note in fact that x 7! 1
2
kx � u2

�j �k2 is a piecewise-constant function with
discontinuities in 2�j �Z, whose size is controlled by (11.4). Since the measures

�j D
1X
kD1

2�j � ık2�j �

converge to the Lebesgue measure, and u2
�j � .t/ ! u� .t/ for all t , so that by the

lower semicontinuity of F

F.u� .t// � lim inf
j!C1F

�
u2

�j � .t/
�
;

we deduce that

d

dt

1

2
kx � u� .t/k2 � F.x/ � F.u� .t// (11.15)

for all x. Equation (11.15) is sufficient to characterize u� . We only sketch the
argument: suppose otherwise that (11.15) is satisfied by some other v.t/. Then we
have

hx � u� ;ru�i � F.x/ � F.u� / and hx � v;rvi � F.x/ � F.v/
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for all x. Inserting x D v.t/ and x D u� .t/ respectively, and summing the two
inequalities we have

d

dt

1

2
kv.t/ � u� .t/k2 D hv � u� ;rv � ru�i � 0:

Since v.0/ D u� .0/ we then have v D u� .
This argument shows that u D u� does not depend on � . We then have the

convergence of the whole sequence. Inequality (11.13) provides the desired estimate
of ku� � uk. ut

11.1.2 Stability Along Sequences of Convex Energies

From the estimates in the previous section, and the convergence argument in
Sect. 8.2, we can deduce the following stability results.

Theorem 11.2. Let F" be a equi-coercive sequence of lower-semicontinuous
coercive positive convex energies � -converging to F , and let x"0 ! x0 with
sup" F".x

"
0/ < C1. Then

(i) For every choice of � and " converging to 0, the family u" introduced in
Definition 8.1 converges to the unique u given by Theorem 11.1.

(ii) The sequence of minimizing movements u" for F" from x"0 (given by
Theorem 11.1 with F" in place of F ) also converge to the same minimizing
movement u.

Proof. We first show (ii). Indeed, by the estimate in Theorem 11.1 we have that,
after defining u�" following the notation of that theorem,

ku� � uk1 � M
p
�; ku�" � u"k1 � M

p
�;

where

M D 6 sup
"

F".x
"
0/:

In order to show that u" ! u it suffices to show that u�" ! u� for fixed � .
That has already been noticed to hold in Sect. 8.2 by the Fundamental Theorem
of � -convergence.

In order to prove (i) it suffices to use the triangular inequality

ku�" � uk � ku�" � u"k C ku" � uk � M
p
� C o.1/

by Theorem 11.1 and (ii). ut
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Remark 11.2 (Compatible topologies). We may weaken the requirement that F"
be equi-coercive with respect to the X -convergence. It suffices to require that the
� -limit be performed with respect to a topology with respect to which the energies
are equi-coercive and be compatible with the X -norm; i.e., such that there exist
X -converging recovery sequences. In this way, the � -convergence of F" to F

ensures that F".x/ C Ckx � x0k2 � -converges to F.x/ C Ckx � x0k2 for fixed
C and x0, and we still have u�" ! u� in the proof above.

Example 11.1 (Parabolic homogenization). We can consider X D L2.0; T /,

F".u/ D
Z T

0

a
�x
"

�
ju0j2 dx; F .u/ D a

Z T

0

ju0j2 dx

with the notation of Sect. 2.4. We take as initial datum u0 independent of ". Since
all functionals are convex, lower semicontinuous and coercive, from Theorem 11.2
we deduce the converge of the corresponding minimizing movements. From this we
deduce the convergence of the solutions of the parabolic problem with oscillating
coefficients

8
ˆ̂<
ˆ̂:

@u"
@t

D @

@x

�
a
�x
"

�@u"
@x

�

u".x; 0/ D u0.x/

to the solution of the heat equation

8
ˆ̂̂<
ˆ̂̂:

@u

@t
D a

@2u

@x2

u".x; 0/ D u0.x/:

Example 11.2 (High-contrast media). We consider a discrete system parameterized
on f0; : : : ; N g with N even. We set " D 1=N and consider the energies

F".u/ D 1

2

N=2X
lD1

"
ˇ̌
ˇu2l � u2l�2

"

ˇ̌
ˇ
2 C c"

2

NX
jD1

"
ˇ̌
ˇuj � uj�1

"

ˇ̌
ˇ
2

with the periodic boundary condition uN D u0.
This is a simple model where two elliptic energies interact, possibly on different

scales. The critical regime is c" 	 "2. We will assume that

c" D "2
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in the rest of the example. The first sum is a strong next-to-nearest-neighbor
interaction between even points, and the second one is a weak nearest-neighbor
interaction between all points.

Upon identifying ui with the piecewise-constant function u 2 L2.0; 1/ with
u.x/ D ubx="c, we may regard F" as defined on X D L2.0; 1/ and consider the
minimizing movement of F" with respect to the L2-norm, which we can write

kuk2 D
NX
jD1

"jui j2

on the domain of F", so that the iterated minimum problem giving uk reads

min

(
1

2

N=2X
lD1

"
ˇ̌
ˇu2l � u2l�2

"

ˇ̌
ˇ
2 C 1

2

NX
jD1

"3
ˇ̌
ˇuj � uj�1

"

ˇ̌
ˇ
2 C 1

2�

NX
jD1

".uj � uk�1
j /2

)
:

We consider as initial datum (the sampling on "Z \ Œ0; 1� of) a smooth 1-periodic
datum u0 (for simplicity independent of ").

Since all F" are convex, we may describe their minimizing movement through
the gradient flow of their � -limit. Since F" is not equi-coercive with respect to the
L2 norm, we have to choose a different topology for the � -limit.

Among the different choices we may consider the following two:

(1) We choose the strong L2-convergence of the even piecewise-constant interpo-
lations only; i.e.,

ku � vk2even D
NX
jD1

"ju2j � v2j j2:

Note that F" are equi-coercive and their � -limit is simply

F s.u/ D
Z 1

0

ju0j2 dx:

To check this it suffices to remark that, if we consider the even piecewise-affine
interpolation Qu of ui , then we have

N=2X
lD1

"
ˇ̌
ˇu2l � u2l�2

"

ˇ̌
ˇ
2 D 2

N=2X
lD1

2"
ˇ̌
ˇu2l � u2l�2

2"

ˇ̌
ˇ
2 D 2

Z 1

0

jQu0j2 dx;

so that F s is a lower bound, while a recovery sequence is simply obtained by
taking u" the interpolation of u, for which

F".u"/ D
Z 1

0

ju0j2 dx C "2

2

Z 1

0

ju0j2 dx C o.1/:
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(2) We choose the strong L2-convergence of the even piecewise-constant
interpolations and the weak L2-convergence of the odd piecewise-constant
interpolations. A function u is then identified with a pair .ue; uo/ (even and odd
piecewise-constant interpolations), so that

F".u/ D F w.ue; uo/ WD
Z 1

0

ju0
ej2 dx C 1

2

Z 1

0

jue � uoj2 dx:

The functional F w thus defined is the � -limit in this topology, which is
compatible with the L2-distance (interpreted as the sum of the L2-distances
of the even/odd piecewise-constant interpolations).

We can apply Theorem 11.2, together with Remark 11.2, and deduce that the
minimizing movement for F" is given by the solution .ue; uo/ D .ue.x; t/; uo.x; t//
of the gradient flow for F w, which is

8
ˆ̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
ˆ̂:

@ue
@t

D 2
@2ue
@x2

� ue C uo

@uo
@t

D uo � ue

uo.x; 0/ D ue.x; 0/ D u0.x/;

with periodic boundary conditions for ue.
Note that F s is not compatible with the L2-norm since it does not contain the

odd interpolations, and its gradient flow is simply a heat equation. Note however
that we may use ue as a single parameter with respect to which to describe the
minimizing movement of F", as suggested by the choice of F s as � -limit. Indeed,
we may integrate the second equation of the system above expressing uo in terms
of ue. Plugging its expression in the first equation we obtain the integro-differential
problem satisfied by ue

8
ˆ̂̂
<
ˆ̂̂
:

@u.x; t/

@t
D 2

@2u.x; t/

@x2
� u.x; t/C u0.x/e�t C

Z t

0

es�tu.x; s/ ds

u.x; 0/ D u0.x/

with periodic boundary conditions.

11.2 Sandier–Serfaty Theory

We have already remarked that for some non-convex problems minimizing move-
ments commute with � -convergence, as for approximations of the Mumford–Shah
functional. We conclude this section by giving a brief (and simplified) account of
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another very fruitful approach to gradient flows that allows to prove the stability of
certain solutions with respect to � -convergence related to non-convex energies.

11.2.1 Convergence of Gradient Flows

We consider a family of Hilbert spaces X" and functionals F" W X" ! .�1;C1�,
which are C1 on their domain. We denote by rX"F" the gradient of F" in X".

Definition 11.1. Let T > 0; we say that u" 2 H1.Œ0; T /IX"/ is a a.e. solution for
the gradient flow of F" if

@u"
@t

D �rX"F".u"/

almost everywhere on .0; T /. Such solution for the a gradient flow is conservative if

F".u".0//� F".u".s// D
Z s

0

			@u"
@t

			
2

X"
dt

for all � 2 .0; T /.
We suppose that there exist a Hilbert space X and a notion of metrizable

convergence x" ! x of families of elements ofX" to an element ofX . With respect
to that convergence, we suppose that F" � -converge to a functionalF , which is also
C1 on its domain.

Theorem 11.3 (Sandier–Serfaty Theorem). Let F" and F be as above with F"
� -converging to F , let u" be a family of conservative solutions for the gradient flow
of F" with initial data u".0/ D u" converging to u0. Suppose furthermore that:

• (well-preparedness of initial data) u" is a recovery sequence for F.u0/.
• (lower bound) upon subsequences u" converges to some u 2 H1..0; T /IX/ and

lim inf
"!0

Z s

0

			@u"
@t

			
2

X"
dt �

Z s

0

			@u

@t

			
2

X
dt (11.16)

lim inf
"!0

		rX"F".u".s//
		2
X"

� 		rXF.u.s//
		2
X

(11.17)

for all s 2 .0; T /.
Then u is a solution for the gradient flow of F with initial datum u0, u".t/ is a

recovery sequence for F.u.t// for all t and the inequalities in (11.16) and (11.17)
are equalities.
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Proof. Using the fact that u" is conservative and that for all t

			rX"F".u"/C @u"
@t

			
2

X"
D 0;

and hence

�
D
rX"F".u".t//;

@u"
@t

E
D 1

2

�		rX"F".u".t//
		2
X"

C
			@u"
@t

			
2

X"

�
;

we then get

F".u".0//� F".u".t// D
Z t

0

			@u"
@t

			
2

X"
ds

D �
Z t

0

D
rX"F".u"/;

@u"
@t

E
X"

ds

D 1

2

Z t

0

�		rX"F".u"/
		2
X"

C
			@u"
@t

			
2

X"

�
ds

By the lower-bound assumption then we have

lim inf
"!0

�
F".u".0//� F".u".t//

� � 1

2

Z t

0

�		rXF.u/
		2
X

C
			@u

@t

			
2

X

�
ds

� �
Z t

0

D
rXF.u/;

@u

@t

E
X

ds: (11.18)

The last term equals

�
Z t

0

d

dt
F.u/ ds D F.u.0//� F.u.t//;

so that we have

lim inf
"!0

�
F".u".0//� F".u".t//

� � F.u.0//� F.u.t//:

Since u".0/ is a recovery sequence for F.u.0// we then have

F.u.t// � lim sup
"!0

F".u".t//; (11.19)

so that u".t/ is a recovery sequence for u.t/ and indeed we have equality in (11.19)
and hence both inequalities in (11.18) are equalities. The second one of those shows
that

			rXF.u/C @u

@t

			
2

X
D 0;

for all t , and hence the thesis. ut
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Example 11.3 (Ginzburg–Landau vortices). The theory outlined above has been
successfully applied by Sandier and Serfaty to obtain the motion of vortices as the
limit of the gradient flows of Ginzburg–Landau energies. We give a short account
of their setting without entering into details.

Let˝ be a bounded regular open subset of R2 andN 2 N; the Hilbert spacesX"
and X are chosen as

X" D L2.˝IR2/; X D R
2N

with scalar products

hu; viX" D 1

j log "j
Z

˝

hu.x/; v.x/iR2 dx; hx; yiX D 1

�
hx; yiR2N ;

respectively.
The energies F" W H1.˝IR2/ ! R are defined as

F".u/ D 1

2

Z

˝

�
jruj2 C 1

"2
.1 � juj2/2

�
dx:

The convergence of u" is defined as follows: if we write in polar coordinates

u".x/ D �".x/e
i'".x/

then u" ! .x1; : : : ; xN / if we have

lim
"!0

curl.�2"r'"/ D 2�

NX
jD1

dj ıxj

weak� in the sense of measures for some integers dj , where

curl.A1; A2/ D @A1

@x2
� @A2

@x1
:

This convergence describes the location of vortices at the points xj with a degree dj .
For u".x/ ! x=jxj we have N D 1, x1 D 0 and d1 D 1.

It can be proved that there exists a functionW D W.d1;:::;dN / such that

� - lim
"!0

�
F".u/� �N j log "j

�
D W.x1; : : : ; xN /:

The functionW can be characterized in terms of the Green function of˝ . Its precise
definition is not relevant to this example.
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The well-preparedness condition for the initial data amounts to requiring that

u0" ! .x10 ; : : : ; x
N
0 / and dj 2 f�1; 1g:

Under these conditions we may apply Theorem 11.3 to the scaled energies
F" � �N j log "j. This yields solutions u" D u".x; t/ to the equation

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

1

j log "j
@u"
@t

D �u C 1

"2
u".1� ju"j2/ in ˝

@u"
@n

D 0 on @˝

u".x; 0/ D u0".x/

converging to x.t/ D .x1.t/; : : : ; xN .t// D .x1.t/; : : : ; x2N .t//. The limit vortices
move following the system of ODE

dxi
dt

D � 1

�

@W.x/

@xi
:

This description is valid until the first collision time T � when xj .T �/ D xk.T
�/

for some j and k with j ¤ k.

11.2.2 Convergence of Stable Critical Points

The Sandier–Serfaty approach can be extended to analyze the convergence of
critical points, for which Theorem 11.3 is trivial.

Theorem 11.4. Let u" be a family of critical points of F" with u" ! u, such that
the following holds: for any V 2 X , we can find v".t/ defined in a neighborhood of
t D 0, such that @t v".0/ depends on V in a linear and one-to-one manner, and

v".0/ D u".0/ (11.20)

lim
"!0

d

dt
F".v".t//jtD0 D d

dt
F.u C tV /jtD0 D hdF.u/; V i (11.21)

lim
"!0

d 2

dt2
F".v".t//jtD0 D d2

dt2
F.u C tV /jtD0 D Q.u/.V /: (11.22)

Then

– If (11.20)–(11.21) are satisfied, then u is a critical point of F .
– If (11.20)–(11.21)–(11.22) are satisfied, then if u" are critical points of E" with

positive Hessian, u is a critical point of F with positive Hessian.
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We do not enter in the details of this result, but only remark that in this case the
� -convergence of F" to F is not required, in analogy to the conditions analyzed
in Chap. 6.

Appendix

The results in Sect. 11.1.1 and part (ii) of Theorem 11.1 are a simplified version
of the analogous results for geodesic-convex energies in metric spaces, that can be
found in the notes by Ambrosio and Gigli [1]. Example 11.2 is a simplified version
of a result by Braides et al. [2].

The result by Sandier and Serfaty (with weaker hypotheses than those reported
here) is contained in the seminal paper [4]. An account of their approach is contained
in the notes by Serfaty [6].

The convergence of stable points has been considered by Serfaty in [5] and
further analyzed by Jerrard and Sternberg in [3].
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