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Abstract. The 2-Handed Assembly Model (2HAM) is a tile-based self-
assembly model in which, typically beginning from single tiles, arbitrarily
large aggregations of static tiles combine in pairs to form structures.
The Signal-passing Tile Assembly Model (STAM) is an extension of the
2HAM in which the tiles are dynamically changing components which are
able to alter their binding domains as they bind together. In this paper,
we prove that there exists a 3D tile set in the 2HAM which is intrinsically
universal for the class of all 2D STAM+ systems at temperature 1 and
2 (where the STAM+ does not make use of the STAM’s power of glue
deactivation and assembly breaking, as the tile components of the 2HAM
are static and unable to change or break bonds). This means that there is
a single tile set U in the 3D 2HAM which can, for an arbitrarily complex
STAM+ system S, be configured with a single input configuration which
causes U to exactly simulate S at a scale factor dependent upon S.
Furthermore, this simulation uses only 2 planes of the third dimension.

To achieve this result, we also demonstrate useful techniques and
transformations for converting an arbitrarily complex STAM+ tile set
into an STAM+ tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of “signals” they can send,
with a trade off in scale factor.

While the first result is of more theoretical interest, showing the power
of static tiles to simulate dynamic tiles when given one extra plane in
3D, the second is of more practical interest for the experimental imple-
mentation of STAM tiles, since it provides potentially useful strategies
for developing powerful STAM systems while keeping the complexity of
individual tiles low, thus making them easier to physically implement.
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1 Introduction

Self-assembling systems are those in which large, disorganized collections of rela-
tively simple components autonomously, without external guidance, combine to
form organized structures. Self assembly drives the formation of a vast multitude
of naturally forming structures, across a wide range of sizes and complexities
(from the crystalline structure of snowflakes to complex biological structures
such as viruses). Recognizing the immense power and potential of self-assembly
to manufacture structures with precision down to the molecular level, researchers
have been pursuing the creation and study of artificial self-assembling systems.
This research has led to steadily increasing sophistication of both the theo-
retical models (from the Tile Assembly Model (TAM) [21], to the 2-Handed
Assembly Model (2HAM) [4, 8], and many others [1–3, 8, 12]) as well as ex-
perimentally produced building blocks and systems (a mere few of which in-
clude [5, 13, 15, 16, 19, 20]). While a number of models exist for passive self-
assembly, as can be seen above, research into modeling active self-assembly is
just beginning [18, 22]. Unlike passive self-assembly where structures bind and
remain in one state, active self-assembly allows for structures to bind and then
change state.

A newly developed model, the Signal-passing Tile Assembly Model (STAM)
[18], is based upon the 2HAM but with a powerful and important difference.
Tiles in the aTAM and 2HAM are static, unchanging building blocks which can
be thought of as analogous to write-once memory, where a location can change
from empty to a particular value once and then never change again. Instead,
the tiles of the STAM each have the ability to undergo some bounded number
of transformations as they bind to an assembly and while they are connected.
Each transformation is initiated by the binding event of a tile’s glue, and consists
of some other glue on that tile being turned either “on” or “off”. By chaining
together sequences of such events which propagate across the tiles of an assembly,
it is possible to send “signals” which allow the assembly to adapt during growth.
Since the number of transitions that any glue can make is bounded, this doesn’t
provide for “fully reusable” memory, but even with the limited reuse it has been
shown that the STAM is more powerful than static models such as the aTAM
and 2HAM (in 2D), for instance being able to strictly self-assemble the Sierpinski
triangle [18]. A very important feature of the STAM is its asynchronous nature,
meaning that there is no timeframe during which signals are guaranteed to fully
propagate, and no guaranteed ordering to the arrival of multiple signals. Besides
providing a useful theoretical framework of asynchronous behavior, the design
of the STAM was carefully aligned to the physical reality of implementation by
DNA tiles using cascades of strand-displacement. Capabilities in this area are
improving, and now include the linear transmission of signals, where one glue
binding event can activate one other glue on a DNA tile [17].

Although the STAM is intended to provide both a powerful theoretical frame-
work and a solid basis for representing possible physical implementations, often
those two goals are at odds. In fact, in the STAM it is possible to define tiles which
have arbitrary signal complexity in terms of the numbers of glues that they have on
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any given side and the number of signals that each tile can initiate. Clearly, with
increasing complexity of individual tiles, the ease of making them in the laboratory
diminishes. Therefore, in this paper our first set of results provide a variety ofmeth-
ods for simplifying the tiles in STAM systems. Besides reducing just the general
signal complexity of tiles, we also seek to reduce and/or remove certain patterns of
signals which may be more difficult to build into DNA-based tiles, namely fan-out
(which occurs when a single signal must split into multiple paths and have multi-
ple destinations), fan-in (which occurs when multiple signals must converge and
join into one path to arrive at a single glue), and mutual activation (which occurs
when both of the glues participating in a particular binding event initiate their
own signals). By trading signal complexity for tile complexity and scale factor, we
show how to use some simple primitive substitutions to reduce STAM tile sets to
those with much simpler tiles. Note that while in the general STAM it is possible
for signals to turn glues both “on” and “off”, our results pertain only to systems
which turn glues “on” (which we call STAM+ systems).

In particular, we show that the tile set for any temperature 1 STAM+ system,
with tiles of arbitrary complexity, can be converted into a temperature 1 STAM+

system with a tile set where no tile has greater then 2 signals and either fan-out
or mutual activation are completely eliminated. We show that any temperature
2 STAM+ system can be converted into a temperature 2 STAM+ system where
no tile has greater than 1 signal and both fan-out and mutual activation are
eliminated. Importantly, while both conversions have a worst case scale factor of
|T 2|, where T is the tile set of the original system, and worst case tile complexity
of |T 2|, those bounds are required for the extremely unrealistic case where every
glue is on every edge of some tile and also sends signals to every glue on every side
of that tile. Converting from a more realistic tile set yields factors which are on
the order of the square of the maximum signal complexity for each side of a tile,
which is typically much smaller. Further, the techniques used to reduce signal
complexity and remove fan-out and mutual activation are likely to be useful
in the original design of tile sets rather than just as brute force conversions of
completed tile sets.

We next consider the topic of intrinsic universality, which was initially de-
veloped to aid in the study of cellular automata [6, 7]. The notion of intrinsic
universality was designed to capture a strong notion of simulation, in which one
particular automaton is capable of simulating the behavior of any automaton
within a class of automata. Furthermore, to simulate the behavior of another
automaton, the simulating automaton must evolve in such a way that a trans-
lated rescaling (rescaled not only with respect to rectangular blocks of cells, but
also with respect to time) of the simulator can be mapped to a configuration
of the simulated automaton. The specific rescaling depends on the simulated
automaton and gives rise to a global rule such that each step of the simulated
automaton’s evolution is mirrored by the simulating automaton, and vice versa
via the inverse of the rule.

In this way, it is said that the simulator captures the dynamics of the sim-
ulated system, acting exactly like it, modulo scaling. This is in contrast to a
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computational simulation, for example when a general purpose digital computer
runs a program to simulate a cellular automata while the processor’s compo-
nents don’t actually arrange themselves as, and behave like, a grid of cellular
automata. In [11], it was shown that the aTAM is intrinsically universal, which
means that there is a single tile set U such that, for any aTAM tile assembly
system T (of any temperature), the tiles of U can be arranged into a seed struc-
ture dependent upon T so that the resulting system (at temperature 2), using
only the tiles from U , will faithfully simulate the behaviors of T . In contrast,
in [9] it was shown that no such tile set exists for the 2HAM since, for every
temperature, there is a 2HAM system which cannot be simulated by any system
operating at a lower temperature. Thus no tile set is sufficient to simulate 2HAM
systems of arbitrary temperature.

For our main result, we show that there is a 3D 2HAM tile set U which is
intrinsically universal (IU) for the class C of all STAM+ systems at temperature
1 and 2. For every T ∈ C, a single input supertile can be created, and using
just copies of that input supertile and the tiles from U , at temperature 2 the
resulting system with faithfully simulate T . Furthermore, the simulating system
will use only 2 planes of the third dimension. (The signal tile set simplification
results are integral in the construction for this result, especially in allowing it
to use only 2 planes.) This result is noteworthy especially because it shows
that the dynamic behavior of signal tiles (excluding glue deactivation) can be
fully duplicated by static tile systems which are allowed to “barely” use three
dimensions. Furthermore, for every temperature τ > 1 there exists a 3D 2HAM
tile set which can simulate the class of all STAM+ systems at temperature τ .

2 Preliminaries

Here we provide informal descriptions of the models and terms used in this paper.
Due to space limitations, the formal definitions can be found in [14].

2.1 Informal Definition of the 2HAM

The 2HAM [4,8] is a generalization of the abstract Tile Assembly Model (aTAM)
[21] in that it allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other. Since we must allow that the assemblies might
require translation before they can bind, we define a supertile to be the set of
all translations of a τ -stable assembly, and speak of the attachment of supertiles
to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the d-dimensional 2HAM,
for d ∈ {2, 3}, which is normally defined as a 2D model but which we extend to
3D as well, in the natural and intuitive way.

A tile type is a unit square if d = 2, and cube if d = 3, with each side
having a glue consisting of a label (a finite string) and strength (a non-negative
integer). We assume a finite set T of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. A supertile is (the set of all
translations of) a positioning of tiles on the integer lattice Zd. Two adjacent
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tiles in a supertile interact if the glues on their abutting sides are equal and
have positive strength. Each supertile induces a binding graph, a grid graph
whose vertices are tiles, with an edge between two tiles if they interact. The
supertile is τ-stable if every cut of its binding graph has strength at least τ ,
where the weight of an edge is the strength of the glue it represents. That is,
the supertile is stable if at least energy τ is required to separate the supertile
into two parts. A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where
T is a finite tile set and τ is the temperature, usually 1 or 2. (Note that this
is considered the “default” type of 2HAM system, while a system can also be
defined as a triple (T, S, τ), where S is the initial configuration which in the
default case is just infinite copies of all tiles from T , but in other cases can
additionally or instead consist of copies of pre-formed supertiles.) Given a TAS
T = (T, τ), a supertile is producible, written as α ∈ A[T ], if either it is a single
tile from T , or it is the τ -stable result of translating two producible assemblies
without overlap. Note that if d = 3, or if d = 2 but it is explicitly mentioned
that planarity is to be preserved, it must be possible for one of the assemblies
to start infinitely far from the other and by merely translating in d dimensions
arrive into a position such that the combination of the two is τ -stable, without
ever requiring overlap. This prevents, for example, binding on the interior of
a region completely enclosed by a supertile. A supertile α is terminal, written
as α ∈ A�[T ], if for every producible supertile β, α and β cannot be τ -stably
attached. A TAS is directed if it has only one terminal, producible supertile.

2.2 Informal Description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to
only one glue per side as in the TAM and 2HAM). Tiles have an initial state in
which each glue is either “on” or “latent” (i.e. can be switched on later). Tiles
also each implement a transition function which is executed upon the binding
of any glue on any edge of that tile. The transition function specifies, for each
glue g on a tile, a set of glues (along with the sides on which those glues are
located) and an action, or signal which is fired by g’s binding, for each glue in
the set. The actions specified may be to: 1. turn the glue on (only valid if it is
currently latent), or 2. turn the glue off (valid if it is currently on or latent).
This means that glues can only be on once (although may remain so for an
arbitrary amount of time or permanently), either by starting in that state or
being switched on from latent (which we call activation), and if they are ever
switched to off (called deactivation) then no further transitions are allowed for
that glue. This essentially provides a single “use” of a glue (and the signal sent
by its binding). Note that turning a glue off breaks any bond that that glue
may have formed with a neighboring tile. Also, since tile edges can have multiple
active glues, when tile edges with multiple glues are adjacent, it is assumed that
all matching glues in the on state bind (for a total binding strength equal to the
sum of the strengths of the individually bound glues). The transition function
defined for each tile type is allowed a unique set of output actions for the binding
event of each glue along its edges, meaning that the binding of any particular
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glue on a tile’s edge can initiate a set of actions to turn an arbitrary set of the
glues on the sides of the same tile either on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur be-
tween tiles contained in pairs of arbitrarily sized supertiles. In order to allow for
physical mechanisms which implement the transition functions of tiles but are ar-
bitrarily slower or faster than the average rates of (super)tile attachments and de-
tachments, rather than immediately enacting the outputs of transition functions,
each output action is put into a set of “pending actions” which includes all actions
which have not yet been enacted for that glue (since it is technically possible for
more than one action to have been initiated, but not yet enacted, for a particular
glue). Any event can be randomly selected from the set, regardless of the order of
arrival in the set, and the ordering of either selecting some action from the set or
the combination of two supertiles is also completely arbitrary. This provides fully
asynchronous timing between the initiation, or firing, of signals (i.e. the execution
of the transition function which puts them in the pending set) and their execution
(i.e. the changing of the state of the target glue), as an arbitrary number of supertile
binding events may occur before any signal is executed from the pending set, and
vice versa.

An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of producible
assemblies which starts with the initial tiles and then contains any supertiles
which can be formed by doing the following to any producible assembly: 1.
executing any entry from the pending actions of any one glue within a tile
within that supertile (and then that action is removed from the pending set), 2.
binding with another supertile if they are able to form a τ -stable supertile, or 3.
breaking into 2 separate supertiles along a cut whose total strength is < τ .

The STAM, as formulated, is intended to provide a model based on exper-
imentally plausible mechanisms for glue activation and deactivation. However,
while the model allows for the placement of an arbitrary number of glues on each
tile side and for each of them to signal an arbitrary number of glues on the same
tile, this is (currently quite) limited in practice. Therefore, each system can be
defined to take into account a desired threshold for each of those parameters,
not exceeding it for any given tile type, and so we have defined the notion of
full-tile signal complexity as the maximum number of signals on any tile in a set
(see [14] ) to capture the maximum complexity of any tile in a given set.

Definition 1. We define the STAM+ to be the STAM restricted to using only
glue activation, and no glue deactivation. Similarly, we say an STAM+ tile set
is one which contains no defined glue deactivation transitions, and an STAM+

system T = (T, τ) is one in which T is an STAM+ tile set.

As the main goal of this paper is to show that self-assembly by systems using
active, signalling tiles can be simulated using the static, unchanging tiles of
the 3D 2HAM, since they have no ability to break apart after forming τ -stable
structures, all of our results are confined to the STAM+.

A detailed, technical definition of the STAM model is provided in [14].
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2.3 Informal Definitions for Simulation

Here we informally describe what it means for one 2HAM or STAM TAS to
“simulate” another. Formal definitions, adapted from those of [9], can be found
in [14] .

Let U = (U, SU , τU ) be the system which is simulating the system T =
(T, ST , τT ). There must be some scale factor c ∈ N at which U simulates T , and
we define a representation function R which maps each c×c square (sub)assembly
in U to a tile in T (or empty space if it is incomplete). Each such c× c block is
referred to as a macrotile, since that square configuration of tiles from set U rep-
resent a single tile from set T . We say that U simulates T under representation
function R at scale c.

To properly simulate T , U must have 1. equivalent productions, meaning that
every supertile producible in T can be mapped via R to a supertile producible
in U , and vice versa, and 2. equivalent dynamics, meaning that when any two
supertiles α and β, which are producible in T , can combine to form supertile
γ, then there are supertiles producible in U which are equivalent to α and β
which can combine to form a supertile equivalent to γ, and vice versa. Note
that especially the formal definitions for equivalent dynamics include several
technicalities related to the fact that multiple supertiles in U may map to a
single supertile in T , among other issues. Please see [14] for details.

We say that a tile set U is intrinsically universal for a class of tile assembly
systems if, for every system in that class, a system can be created for which 1.
U is the tile set, 2. there is some initial configuration which consists of supertiles
created from tiles in U , where those “input” supertiles are constructed to encode
information about the system being simulated, and perhaps also singleton tiles
from U , 3. a representation function which maps macrotiles in the simulator
to tiles in the simulated system, and 4. under that representation function, the
simulator has equivalent productions and equivalent dynamics to the simulated
system. Essentially, there is one tile set which can simulate any system in the
class, using only custom configured input supertiles.

3 Transforming STAM+ Systems from Arbitrary to
Bounded Signal Complexity

In this section, we demonstrate methods for reducing the signal complexity of
STAM+ systems with τ = 1 or τ > 1 and results related to reducing signal
complexity. First, we define terms related to the complexity of STAM systems,
and then state our results for signal complexity reduction.

We now provide informal definitions for fan-out and mutual activation. For
more rigorous definitions, see [14].

Definition 2. For an STAM system T = (T, σ, τ), we say that T contains fan-
out iff there exists a glue g on a tile t ∈ T such that whenever g binds, it triggers
the activation or deactivation of more than 1 glue on t.
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Definition 3. For an STAM system T = (T, σ, τ), we say that T contains
mutual activation iff ∃t1, t2 ∈ T with glue g on adjacent edges of t1 and t2
such that whenever t1 and t2 bind by means of glue g, the binding of g causes
the activation or deactivation of other glues on both t1 and t2.

3.1 Impossibility of Eliminating Both Fan-Out and Mutual
Activation at τ = 1

fA f

f

f
Bf

Fig. 1. An example of a tile set
where fan-out and mutual acti-
vation cannot be completely re-
moved. The glue f on the west
edge of tile type B signals two
other glues.

We now discuss the impossibility of com-
pletely eliminating both fan-out and mutual
activation at temperature 1. Consider the sig-
nal tiles in Figure 1 and let T = (T, 1) be the
STAM+ system where T consists of exactly
those tiles. Theorem 1 shows that at tempera-
ture 1, it is impossible to completely eliminate
both fan-out and mutual activation. In other
words, any STAM+ simulation of T must con-
tain some instance of either fan-out or mu-
tual activation. The intuitive idea is that the
only mechanism for turning on glues is bind-
ing, and at temperature 1 we cannot control
when glues in the on state bind. Hence any binding pair of glues that triggers
some other glue must do so by means of a sequence of glue bindings leading
from the source of the signal to the signal to be turned on. Hence there must
be paths to both of the triggered glues from the single originating glue where at
some point a single binding event fires two signals. We will see that this is not
the case at temperature 2 since we can control glue binding through cooperation
there.

Theorem 1. At temperature 1, there exists an STAM+ system T such that any
STAM+ system S that simulates T contains fan-out or mutual activation.

The proof of Theorem 1 can be found in [14].

3.2 Eliminating Either Fan-Out or Mutual Activation

In this section we will discuss the possibility of eliminating fan-out from an
STAM+ system. We do this by simulating a given STAM+ system with a sim-
plified STAM+ system that contains no fan-out, but does contain mutual activa-
tion. A slight modification to the construction that we provide then shows that
mutual activation can be swapped for fan-out.

Definition 4. An n-simplified STAM tile set is an STAM tile set which has
the following properties: (1) the full-tile signal complexity is limited to a fixed
constant n ∈ N, (2) there is no fan-out, and (3) fan-in is limited to 2. We say
that an STAM system T = (T, σ, τ) is n-simplified if T is n-simplified.
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Theorem 2. For every STAM+ system T = (T, σ, τ), there exists a 2-simplified
STAM+ system S = (S, σ′, τ) which simulates T with scale factor O(|T |2) and
tile complexity O(|T |2).

To prove Theorem 2, we construct a macrotile such that every pair of signal
paths that run in parallel are never contained on the same tile. This means that
at most two signals are ever on one tile since it is possible for a tile to contain at
most two non-parallel (i.e. crossing) signals. In place of fan-out, we use mutual
activation gadgets (see Figure 3) within the fan-out zone. Similarly, we use a fan-
in zone consisting of tiles that merge incoming signals two at a time, in order to
reduce fan-in. For examples of these zones, see Figure 2. Next, we print a circuit
(a system of signals) around the perimeter of the macrotile which ensures that
the external glues (the glues on the edges of the macrotiles that cause macrotiles
to bind to one another) are not turned on until a macrotile is fully assembled.
More details of the construction can be found in [14] .

a b

a

c

a

c

b

Fan-in zoneFan-out zone

Macrotile

Fan out zone

bc

a b

ca

Fan-out Zone Fan-in Zone

Fig. 2. A tile with 5 signals (left) and the STAM+ macrotile that simulates it (right).
Here, the yellow squares represent glue a, the blue square represents glue b and the
orange squares represent glue c. The color of each frame corresponds to the glue of the
same color. For example on the tile to be simulated (left) there is a signal that runs
from glue a to glue c. In order to simulate this signaling, a signal runs from the fan-out
zone of glue a (the yellow glue) to the frame associated with glue a on the north edge.
The signal then wraps around the frame until it reaches the east side on which glue c
lies. Then the signal enters the fan-in zone of glue c.

To further minimize the number of signals per tile at τ > 1, cooperation
allows us to reduce the number of signals per tile required to just 1. To achieve
this result, we modify the construction used to show Theorem 2, and prove
Theorem 3. The details of the modification are in [14] .
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Theorem 3. For every STAM+ system T = (T, σ, τ) with τ > 1, there exists
a 1-simplified STAM+ system S = (S, σ′, τ) which simulates T with scale factor
O(|T |2) and tile complexity O(|T |2).

g gg

f
b b

A B

g g

f
b

T

Fig. 3. An example of a mutual activation gadget consisting of tiles A and B without
fan-out simulating, at τ = 1, the functionality of tile T which has fan-out. The glue b
represents the generic glues which holds the macrotile together. The idea is to “split”
the signals from the west glue g on tile A into two signals without using fan-out. Once
the west glue g on tile A binds, it turns on the east glue g on tile A. Then, when the
east glue g on tile A binds to tile B, it triggers glue f . Thus, the east glue g triggers
both the west glue g and glue f without fan-out.

3.3 Summary of Results

At temperature 1, the minimum signal complexity obtainable in general is 2 and
while it is possible to eliminate either fan-in or mutual activation, it is impossible
to eliminate both. For temperatures greater than 1, cooperation allows for signal
complexity to be reduced to just 1 and for both fan-in and mutual activation to
be completely eliminated. Table 1 gives a summary of these two cases of reducing
signal complexity and shows the cost of such reductions in terms of scale factor
and tile complexity.

Table 1. The cost of reducing signal complexity at τ = 1 and at τ > 1

Temperature Signal Scale Factor Tile Complexity Contains Fan-In /
per Tile Mutual Activation

1 2 O(|T |2) O(|T |2) one or the other

> 1 1 O(|T |2) O(|T |2) neither

4 A 3D 2HAM Tile Set Which Is IU for the STAM+

In this section we present our main result, namely a 3D 2HAM tile set which can
be configured to simulate any temperature 1 or 2 STAM+ system, at temperature
2. It is notable that although three dimensions are fundamentally required by
the simulations, only two planes of the third dimension are required.

Theorem 4. There is a 3D tile set U such that, in the 2HAM, U is intrinsically
universal at temperature 2 for the class of all 2D STAM+ systems where τ ∈
{1, 2}. Further, U uses no more than 2 planes of the third dimension.



100 J. Hendricks et al.

To prove Theorem 4, we let T ′ = (T ′, S′, τ) be an arbitrary STAM+ system
where τ ∈ {1, 2}. For the first step of our simulation, we define T = (T, S, τ) as a
2-simplified STAM+ system which simulates T ′ at scale factorm′ = O(|T ′|2), tile
complexity O(|T ′|2), as given by Theorem 2, and let the representation function
for that simulation be R′ : BT

m′ ��� T ′. We now show how to use tiles from a
single, universal tile set U to form an initial configuration ST so that the 3D
2HAM system UT = (U, ST , 2) simulates T at scale factor m = O(|T | log |T |)
under representation function R : BU

m ��� T . This results in UT simulating T ′ at
a scale factor of O(|T ′|4 log(|T ′|2)) via the composition of R and R′. Note that
throughout this section, τ refers to the temperature of the simulated systems T
and T ′, while the temperature of UT ′ is always 2.

4.1 Construction Overview

In this section, due to restricted space we present the 3D 2HAM construction at
a very high level. Please see [14] for more details.

Assuming that T is a 2-simplified STAM+ tile set derived from T ′, we note
that for each tile in T : 1. glue deactivation is not used, 2. it has ≤ 2 signals,
3. it has no fan-out, and 4. fan-in is limited to 2. To simulate T , we create an
input supertile σT from tiles in U so that σT fully encodes T in a rectangular
assembly where each row fully encodes the definition of a single tile type from
T . Beginning with an initial configuration containing an infinite count of that
supertile and the individual tile types from U , assembly begins with the growth
of a row on top of (i.e. in the z = 1 plane) each copy of σT . The tiles forming
this row nondeterministically select a tile type t ∈ T for the growing supertile to
simulate, allowing each supertile the possibility of simulating exactly one t ∈ T ,
and each such t to be simulated. Once enough tiles have attached, that supertile
maps to the selected t via the representation function R, and at this point we
call it a macrotile.

Each such macrotile grows as an extension of σT in z = 0 to form a square
ring with a hole in the center. The growth occurs clockwise from σT , creating
the west, north, east, then south sides, in that order. As each side grows, the
information from the definition of t which is relevant to that side is rotated so
that it is presented on the exterior edge of the forming macrotile. The second
to last stage of growth for each side is the growth of geometric “bumps and
dents” near the corners, which ensure that any two macrotiles which attempt
to combine along adjacent edges must have their edges in perfect alignment for
any binding to occur. The final stage of growth for each side is to place the glues
which face the exterior of the macrotile and are positioned correctly to represent
the glues which begin in the on state for that side.

Once the first side of a macrotile completes (which is most likely to be the
west side, but due to the nondeterministic ordering of tile additions it could
potentially be any side), that macrotile can potentially bind to another macrotile,
as long as the tiles that they represent would have been able to do so in T .
Whenever macrotiles do bind to each other, the points at which any binding
glues exist allow for the attachment of duples (supertiles consisting of exactly 2
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Fig. 4. A high level sketch of the components and formation of a macrotile, including
dimensions, not represented to scale

tiles) on top of the two binding tiles (in z = 1). These duples initiate the growth
of rows in z = 1 which move inward on each macrotile to determine if there is
information encoded which specifies a signal for that simulated glue to fire. If
not, that row terminates. If so, it continues growth by reading the information
about that signal (i.e. the destination side and glue), and then growth continues
which carries that information inward to the hole in the center of the macrotile.
Once there, it grows clockwise in z = 0 until arriving at the correct side and
glue, where it proceeds to initiate the growth of a row in z = 1 out to the edge
of the macrotile in the position representing the correct glue. Once it arrives, it
initiates the addition of tiles which effectively change the state of the glue from
latent to on by exposing the necessary glue(s) to the exterior of the macrotile.

The width of the center hole is carefully specified to allow for the maximum
necessary 2 “tracks” along which fired signals can travel, and growth of the signal
paths is carefully designed to occur in a zig-zag pattern such that there are well-
defined “points of competition” which allow two signals which are possibly using
the same track to avoid collisions, with the second signal to arrive growing over
the first, rotating toward the next inward track, and then continuing along that
track. Further, the positioning of the areas representing the glues on each edge
is such that there is always guaranteed to be enough room for the signals to
perform the necessary rotations, inward, and outward growth. If it is the case
that both signals are attempting to activate the same glue on the same side, when
the second signal arrives, the row growing from the innermost track toward the
edge of the macrotile will simply run into the “activating” row from the first
signal and halt, since there is no need for both to arrive and in the STAM such a
situation simply entails that signal being discarded. (Note that this construction
can be modified to allow for any arbitrary full-tile signal complexity n for a
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given tile set by simply increasing the number of tracks to n, and all growth will
remain correct and restricted to z ∈ {0, 1}.)

This construction allows for the faithful simulation of T by exploiting the fact
that the activation of glues by fired signals is completely asynchronous in the
STAM, as is the attachment of any pair of supertiles, and both processes are
being represented through a series of supertile binding events which are simi-
larly asynchronous in the 2HAM. Further, since the signals of the STAM+ only
ever activate glues (i.e. change their states from latent to on ), the constantly
“forward” direction of growth (until terminality) in both models ensures that
the simulation by UT can eventually produce representations of all supertiles in
T , while never generating supertiles that don’t correctly map to supertiles in T
(equivalent production), and also that equivalent dynamics are preserved.

Theorem 5. For every τ > 1, there is a 3D tile set Uτ such that, in the 2HAM,
Uτ is IU at temperature τ for the class of all 2D STAM+ systems where of
temperature τ . Further, U uses no more than 2 planes of the third dimension.

To prove Theorem 5, we create a new tile set Uτ for each τ from the tile set of
Theorem 4 by simply creating O(τ) new tile types which can encode the value
of the strength of the glues of T in σT , and which can also be used to propagate
that information to the edges of the macrotiles. For the exterior glues of the
macrotiles, just as strength 2 glues were split across two tiles on the exterior of
the macrotiles, so will τ -strength glues, with one being of strength �τ/2� and the
other  τ/2!. All glues which appear on the interior of the macrotile are changed
so that, if they were strength 1 glues they become strength �τ/2�, and if they
were strength 2 they become strength τ . In this way, the new tile set Uτ will
form macrotiles exactly as before, while correctly encoding glues of strengths
1 through τ on their exteriors, and the systems using it will correctly simulate
STAM+ systems at temperature τ .

5 Conclusion

We have shown how to transform STAM+ systems (at temperature 1 or > 1)
of arbitrary signal complexity into STAM+ systems which simulate them while
having signal complexity no greater than 2 and 1, respectively. However, if the
original tile set being simulated is T , the scale factor and tile complexity of the
simulating system are approximately O(|T |2). It seems that these factors cannot
be reduced in the worst case, i.e. when a tile of T has a copy of every glue of
the tile set on each side, and each copy of each glue on the tile activates every
other, yielding a signal complexity of O(|T |2). However, whether or not this is
a true lower bound remains open, as well as what factors can be achieved for
more “typical” systems with much lower signal complexity.

A significant open problem which remains is that of generalizing both con-
structions (the signal reduction and the 3D 2HAM simulation) to the unre-
stricted STAM. Essentially, this means correctly handling glue deactivation and
possible subassembly dissociation. While this can’t be handled within the stan-
dard 3D 2HAM where glue bonds never change or break, it could perhaps be



Signal Transmission across Tile Assemblies 103

possible if negative strength (i.e. repulsive) glues are allowed (see [10] for a dis-
cussion of various formulations of models with negative strength glues). However,
it appears that since both constructions use scaled up macrotiles to represent
individual tiles of the systems being simulated, there is a fundamental barrier.
The STAM assumes that whenever two tiles are adjacent, all pairs of matching
glues across the adjacent edge which are both currently on will immediately bind
(which is in contrast to other aspects of the model, which are asynchronous).
Since both constructions trade the ability of individual tile edges in the STAM to
have multiple glues with scaled up macrotiles which distribute those glues across
individual tiles of the macrotile edges, it appears to be difficult if not impossible
to maintain the correct simulation dynamics. Basically, a partially formed side of
a macrotile could have only a subset of its initially on glues in place, but enough
to allow it to bind to another macrotile. At that point, if glue deactivations are
initiated which result in the dissociation of the macrotile before the remaining
glues of the incomplete macrotile side assemble, then in the simulating system,
those additional glues won’t ever bind. However, in the simulated system they
would have. This results in a situation where, after the dissociation, the simu-
lated system would potentially have additional pending glue actions (initiated
by the bindings of the additional glues) which the simulating system would not,
breaking the simulation.

Overall, laboratory experiments continue to show the plausibility of physically
implementing signalling tiles [17], while previous theoretical work [18] shows some
of their potential, and the results in this paper demonstrate how to obtain much
of that power with simplified tiles. We feel that research into self-assembly with
active components has a huge amount of potential for future development, and
continued studies into the various tradeoffs (i.e. complexity of components, num-
ber of unique component types, scale factor, etc.) between related models provide
important context for such research. We hope that our results help to contribute
to continued advances in both theoretical and experimental work along these lines.
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