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Preface

This volume contains the refereed proceedings of DNA19: the 19th International
Conference on DNA Computing and Molecular Programming, held September
22-27, 2013, at Arizona State University, Arizona, USA.

Research in DNA computing and molecular programming draws together
many disciplines (including mathematics, computer science, physics, chemistry,
materials science, and biology) to address the analysis, design, and synthesis of
information-based molecular systems. This annual meeting is the premier forum
where scientists with diverse backgrounds come together with the common pur-
pose of applying principles and tools of computer science, physics, chemistry
and mathematics to advance molecular-scale computation and nanoengineer-
ing. Continuing this tradition, the 19th International Conference on DNA Com-
puting and Molecular Programming (DNA19), organized under the auspices of
the International Society for Nanoscale Science, Computation, and Engineering
(ISNSCE), focused on important recent experimental and theoretical results.

This year the Program Committee received 29 full paper submissions and
30 one-page abstracts. The Committee selected 14 full papers for oral presenta-
tion and inclusion in these proceedings, and 14 abstracts were selected for oral
presentation only. Many of the remaining submissions were selected for poster
presentation, along with posters chosen from 51 additional poster-only submis-
sions. The topics were well-balanced between theoretical and experimental work,
with submissions from 18 countries, reflecting the diversity of the community.

The scientific program also included six invited speakers: Alessandra
Carbone (Pierre and Marie Curie University), Hendrik Dietz (Technical Uni-
versity of Munich), Eric Goles (Adolfo Ibdnez University), Chengde Mao (Pur-
due University), Lulu Qian (California Institute of Technology), and Yannick
Rondelez (University of Tokyo).

Following the conference, a one-day workshop, Nanoday 2013, was held fea-
turing current topics in nanotechnology. The speakers included Nadrian Seeman
(New York University), Friedrich Simmel (Technical University Munich), John
Spence (Arizona State University), Kurt Gothelf (Aarhus University), Tim Liedl
(Ludwig Maximilians University of Munich), William Shih (Harvard Medical
School), John Chaput (Arizona State University), Paul Steinhardt (Princeton
University), Hanadi Sleiman (McGill University), Peng Yin (Harvard Medical
School), and Dongsheng Liu (Tsinghua University).

The editors would like to thank the members of the Program Committee
and the external referees for their hard work in reviewing submissions and of-
fering constructive suggestions to the authors. They also thank the Organizing
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and Steering Committees, and particularly Hao Yan and Natasha Jonoska, the
respective Committee Chairs, for their invaluable help and advice. Finally, the
editors would like to thank all the sponsors, authors, and attendees for support-
ing the DNA computing and molecular programming community, and helping
to make the conference a success.

July 2013 David Soloveichik
Bernard Yurke
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Extending DN A-Sticker Arithmetic
to Arbitrary Size Using Staples

Mark G. Arnold

XLNS Research

Abstract. The simple-sticker model uses robotic processing of DNA
strands contained in a fixed number of tubes to implement massively-
parallel processing of bit strings. The bits whose value are ‘1’ are recorded
by short DNA “stickers” that hybridize at specific places on the strand.
Other DNA models, like folded origami, use “staples” that hybridize to
disjoint portions of a single strand. This paper proposes an extended-
sticker paradigm that uses staples to hybridize to contiguous portions of
two substrands, forming virtual strands. The problem of redundant bits is
solved by blotting out old values. As an example of the novel extended-
sticker paradigm, a log-time summation algorithm outperforms (with
an ideal implementation) any electronic supercomputer conceivable in
the near future for large data sets. JavaScript and CUDA simulations
validate the theoretical operation of the proposed algorithm.

Keywords: DNA arithmetic, sticker system, DNA staples, addition.

1 Introduction

Roweis et al. [19] introduced the sticker system, for processing information en-
coded using carefully-designed species of single-stranded DNA contained in a
small set of tubes. Using an ordinary embedded microprocessor, the molecular-
level steps for the user’s algorithm are performed by macro-scale robotic pro-
cessing (moving, warming, cooling, and filtering) of water in particular tubes
carrying DNA strands. Although in recent years DNA-sticker computation has
largely been neglected by the molecular computing community that it helped
establish, there appears to be some renewed interest in sticker-like computation
[3,4]. Stickers were suggested as having the yet-to-be-realized parallel process-
ing power to outperform electronic supercomputers (assuming the application is
large and errors could be managed); newer non-sticker models of DNA computa-
tion avoid such comparisons, focusing on different paradigms, like nano-assembly.
This paper proposes novel extensions to the sticker model that enhance its ability
to solve larger problems. Although these ideas are specific to stickers, they may
be worth considering in the broader context of molecular computing because of
theoretical issues (e.g., sharing information between molecules) and implementa-
tion challenges (e.g., scaling up molecular computation to realistic applications)
this paper considers.

Like most other DNA-computation models, the sticker system exploits the
proclivity of a single-strand of DNA to hybridize with another single strand

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

D. Soloveichik and B. Yurke (Eds.): DNA 2013, LNCS 8141, pp. 1-15, 2013.
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when the two strands are perfect Watson-Crick complements of each other. The
literature suggests it is possible to design artificial [11] or discover naturally-
occurring [18] sequences of DNA that hybridize with high-probability only at
the sites expected in the user’s high-level model.

The sticker system, as originally proposed [19], is one of the simplest models of
DNA computation. At the user’s level, it can be conceptualized without reference
to the underlying biochemical implementation as processing k-bit strings in a
finite set of containers (i.e., tubes). This model is isomorphic to punch-card data
processing, which was widely used for automated business applications (e.g.,
radix-sort) between 1900 and 1960.

As envisioned in [19], the “address” of each of the k bits is represented by a
distinct pattern of m >> log, (k) nucleotides. The choice of m must be much
larger than the information-theoretical bound to avoid unwanted hybridization
of strands and stickers in the wrong places. The choice of the constants k& and
m determines the number and complexity of the species of DNA used to imple-
ment Roweis’ simple-sticker system [19]. This simple-sticker model is capable of
universal computation assuming k is large enough. Unfortunately, many prob-
lems need k larger than is practical (given the number of DNA species that can
be managed simultaneously). The novel approach proposed here is an extended-
sticker system, which allows solution of unbounded-size problems using a number
of DNA species similar to a fixed-k simple-sticker system.

Unlike Adelman’s complicated multi-tube method [1] using species of DNA
created for a particular instance of a problem (i.e., Hamiltonian path), the
simple-sticker system avoids using enzymes and permits recycling. Unlike single-
tube DNA origami [18], where a long DNA strand is folded and held together by
many species of staples, which consist of two (& m-sized) regions that are com-
plementary to disjoint portions of the long strand, each simple sticker consists
of one region that is complementary to a contiguous region of the long strand.

Unlike single-tube strand-displacement systems [17] that implement digital-
circuit cascades autonomously, sticker systems need an electronic controller to
initiate robotic processing between tubes. Strand-displacement systems involve
toehold regions that define reversible hybridization reactions, unlike the simple-
sticker system, where each sticker defines an essentially irreversible hybridization
reaction (unless temperature or pH are changed by the controller).

Early simple-sticker applications focused on NP-complete algorithms [19,12].
Biochemical computation is less reliable than electronic computation. Compen-
sating for this unreliability with redundancy [7] is now considered as too expen-
sive for NP-complete problems[15]. Recently, Arnold [3] proposed biochemical
unreliability can be useful in a different paradigm (Monte-Carlo arithmetic [16]).

There has been renewed interest in the simple-sticker paradigm for computer-
arithmetic algorithms [22,10,2]. For example, Chang et al. [5] uses simple-sticker
arithmetic for RSA cryptanalysis. Arnold [2,3] describes a new 50%-more-reliable-
sticker algorithm for (tube-encoded) integer addition that does not need stickers to
record carries, and uses half the time and tubes, and suggests Logarithmic Num-
ber Systems (LNS) for real multiplication, division and square root. The novel
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extended-sticker approach proposed in this paper is compatible with all sticker-
arithmetic methods in the literature, but yields the greatest performance with the
tube-encoded methods [2].

2 Simple Sticker System

The simple-sticker system [19,12] consists of four types of DNA species. First,
there is one kind of a long (mk-sized) single-stranded DNA molecule, which is
referred to simply as the strand (since there is only one kind ever used). Second,
there are k species of stickers, which are short (m-sized) complementary DNA
molecules which hybridize only at one position in the long strand and never
hybridize with each other. Whether a sticker is present or not at an arbitrary
bit position in a particular strand determines whether that bit is treated as a
‘1’ or as a ‘0’. Injecting a higher concentration of a particular type of sticker
molecule will cause the associated bit to become ‘1’ in essentially every strand.
Third, there are k species of probes, with a subset of the DNA sequences (of the
associated k stickers) covalently bonded to a substituent that can be macroscop-
ically manipulated (e.g., magnetic bead) to separate the probe (and the strand it
might hybridize) without disturbing other strands or unhybridized stickers. This
allows strands to be separated into two different tubes depending on the value of
the bit at the associated position. If a sticker is there, the probe cannot stick. If
a sticker is not there, the strand will be transferred to a different tube along with
the probe. The DNA sequence of the probes should probably be shorter than m,
allowing the probe to be melted off the strand without disturbing the stickers on
the strand in the new tube. Fourth, k anti-probes are used at the end of a prob-
lem after melting all stickers off the strands. Anti-probes allow for sorting and
recycling of the k species of stickers for use in the next problem in the simple-
sticker system. Like an operating system’s privileged instructions, anti-probes
are used only by the system and are not available to the user (e.g., combining
probes and anti-probes in the same tube would incapacitate the system).

In addition to the ny user tubes visible to the algorithm, an additional 3k
system tubes hold the stickers, probes and anti-probes that implement individual
sticker operations. The fundamental O(1) user-level operations in the simple-
sticker model [19,12] operate on bit positions 0 < ¢ < k within user tubes
0<t, tg,t1,t2 < ny:

— separate(ty, to, ) strands of tube ¢y that have a one at position ¢ into tube
t1 and leave those that have a zero at that position in tube tg.

— set(t,4): bit position i equal to 1 for every strand of tube t.

— discard(t): Recycle the contents of tube ¢ back to the system tubes.

— combine(ty, t): Transfer all of tube ¢y into tube ¢;.

— split(ty,tp): Transfer half of tube ¢y into tube ¢;.

Another operation, clear(t, i), which makes bit position i equal to 0, is often
provided, but its biochemical implementation is considered problematic [12]. A
more general form separate3(t1,to,t2,4) is also provided that transfers each
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strand from ¢o into ¢; or to based on bit i. separate(t,tg,4) means the same
as separate3(ty,to, to, 7). These operations are implemented in JavaScript and
CUDA simulators [2,3,21] which represent each sticker bit abstractly as an ac-
tual bit in the computer and do not consider lower-level DNA encoding. The
JavaScript simulator uses that language’s interpreter to evaluate (e.g., eval())
high-level sticker code supplied by a user on its web page; the much faster CUDA
simulator requires the user to compile code (with nvcc) that calls on macros
for the sticker operations. The CUDA code exploits the multi-core nature of
GPUs to run each sticker as a separate thread, allowing for parallelism up to
the amount of GPU hardware available. Two versions of the CUDA code exist:
one which (like the JavaScript) assumes flawless operation; the other allows a
user-supplied probability of misclassification (as in [7]). The former allows for
simulation of larger systems because the latter must implement a pseudo-random
number generator in each thread. These non-random simulators (that assume
flawless sticker operation) were the starting points for the the extended-sticker
simulators used later in this paper to validate the theoretical operation of the
novel ideas presented here.

3 Novel Extended Sticker System

This paper proposes three novel extensions to the simple sticker system which
allow unbounded-size data to be processed without adding significant complexity
beyond that of the simple-sticker system. First, this paper proposes weak stick-
ers that can be bulk erased without disturbing other stickers. Second, this paper
suggests instead of putting all data on a single strand, with bits numbered con-
secutively from 0 to k—1, the data be distributed on several (ns) substrands, with
each substrand holding disjoint subsets of those bits. Third, this paper considers
using staples to concatenate such substrands under programmed control. With
these features, three new operations are available to the sticker programmer:

— clearweak(t) Remove all weak stickers from all strands in tube ¢.

— setweak(t,7): Make bit 7 equal to a weak 1 for every strand of tube t.

— staple(t1,1,j,to): Randomly staple any substrand in tube ¢; whose bit at
position 7 is zero to any substrand from tube t; whose bit at position j is
zero. When finished, fully-stapled and completely-unstapled substrands from
both tubes reside in ¢; (as if a combine had occured); half-stapled exceptions
(if any) are placed in tube tg.

Let’s discuss each of these three novel features in more detail. First, weak
stickers are simply stickers that are shorter than ordinary strong stickers, and
therefore will melt away from the strand at lower temperature than the strong
stickers. The mechanism is similar to how probes work. By itself, clearweak
does not overcome the lack of a general clear. To understand why, consider a
simple iterative algorithm, a;11 = f(a;), that attempts to reuse an a field in a
strand. Since any bit in the result might depend on any bit in the argument, there
needs to be at least one other similar-sized field, b, that will hold a copy of a.
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If we clear all bits of b at the start using a clearweak, we may then implement
the assignment b=a using only separates and sets. The problem is we must
also clear the previous value held in a before we can compute a=f (b). If we
attempted to use clearweak again here, we would lose the information needed
to compute f(b). The different reason for clearweak here will be illustrated
shortly. (Algorithms like a;+1 = f(a;) can be solved using techniques similar to
those described below.)

Second, using substrands allows data to be processed independently (possibly
in different tubes) prior to joining together into a data structure.

Third, staples are the key to making substrands join together. The implemen-
tation of staple(ty, i, j, to) shares aspects similar to combine and set. Like set,
a larger concentration of short single-stranded DNA will be injected into ¢; and
then filtered out. (The main distinction is these short molecules are &~ 2m-sized
staples rather than & m-sized stickers.) Like combine, substrands from to will
be moved to ¢1. (Unlike combine, exceptions are moved to ¢y when there are an
excess of substrands in ¢; which causes some of them to become half-stapled.)
The staple operation includes both combining, injecting and exception-filtering
aspects as one user-level operation since it is necessary to return the excess sta-
ples to the system tubes prior to combining and there is no user-level command
to do this because it involves anti-probes. If the unhybridized staples were not
removed in the middle of the staple operation, some substrands from both tubes
would end up half stapled, unable to connect to substrands from the opposite
tube. As mentioned previously, the other way half-stapling can occur is when
there are too many substrands in tube ¢;. Again, the filtering of these exceptions
to tube tg is included as part of the intrinsic staple operation because it involves
anti-probes.

Because only a small number of staple and substrand types are provided,
repeated stapling will result in a wvirtual strand with redundant copies of the
same bit that do not necessarily agree in value. The nature of the separate
operation (a probe may attach to any part of the virtual strand that does not
have a sticker for this redundantly-occurring bit address), the bit value tested will
be the logical conjunction of those redundant bits. The novel solution proposed
here is to “blot” old values of these fields with ones, so that the result of the
separate operation will be based only on the most recent value. In effect, this
overcomes the lack of a general clear operation, at the cost of keeping “waste”
product as part of the virtual substrand. This waste does not interfere with the
theoretical operation of the system, but may impede practical implementation.

Fig. 1 a) shows the distinct single-stranded molecules in the novel extended-
sticker/staple system with & = 6, m = 7 and number of substrands, ns = 2.
There are k = 6 stickers (solid-line backbones above the bases), four weak
stickers (dashed-line backbones), ns = 2 staples (longer backbones above the
bases) and ns = 2 substrands (even longer backbones below the bases). (In many
algorithms—Iike the one presented later—positions that have a weak sticker (5,
3,2, 0 in Fig. 1) may not also need a strong sticker.) The bit position on sub-
strands can be determined by counting As; the bit position of staples or stickers
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Fig. 1. Examples of Proposed Extended Sticker System

can be determined by counting Ts. The middle-bit positions (4 represented by
GTAAAAC and 1 represented by GTTTTAC) of each substrand type may be
used to store data; the other positions are intended to provide structural link-
age. We will refer to the two substrand types in Fig. 1 as § and o via two
user-accessible system tubes, T and T,, respectively. (The additional a-type
used by the ng = 3 algorithm in the next section is not used here.) In addition,
here ns = 2 types of staples (each consisting of 2m bases) are provided: S-to-o
(also called BS which connects bit BS=3 on f to bit BS =2 on o) and o-to-3
(also called SB which connects bits SB=0 on ¢ to SB =5 on [3). The next section
example uses different staple types and bit numbers.

Fig. 1 b) gives an example using a weak sticker on a §-type substrand (in tube
T1) as a result of setweak(7%,5). As in the next section, the bit position could
be symbolically referred to as SB , (the side of the o-to-f sticker that attaches to
B), but as Fig. 1 is a low-level example, the 5 more clearly identifies the concrete
operation on left-most bit of the left substrand (GAAAAAC). The utility of such
a weak staple will be explained in the next section.

Fig. 1 ¢) continues the example using a staple to join two substrands together
as a result of staple(Ty,3,2,Ty); the concatenated virtual strand result will be
in tube T7,. The user must return unstapled o substrands to T,; these can be
identified by bit 2=0 (has neither staple nor sticker on GTTTAAC).

Fig. 1 d) gives a further example of staple(Ty,0,5,T) which uses an addi-
tional S-type sticker to increase the length of the virtual strand. This causes a
problem: the result has redundant GTAAAAC regions.
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Fig. 1 e) shows how the novel solution proposed here is to “blot out” the
GTAAAAC region in the virtual strand before the last staple operation, resulting
in the structure shown. Because of the way sticker hardware operates, later
operations will ignore the bit that was blotted out.

4 Log-Time Summation

This section will illustrate the extended-sticker system at a higher level than the
low-level details of Fig. 1 using a simple application: adding a set of numbers.
The conventional simple-sticker approach to add a pair of numbers [2] would
be to have a single strand subdivided into three n-bit wide data fields, a (bits
(2n — 1)..n), b (bits (n — 1)..0) and s=a+b (bits (3n — 1)..2n). To add more
numbers would require an ever longer single strand. Instead, as illustrated in
Fig. 2, bits (3n — 1)..2n will be assigned to s substrands, bits (2n — 1)..n will
be assigned to a substrands and bits (n — 1)..0 will be assigned to b substrands.
Prior to joining these together, they will reside in separate tubes.

a) AS staple sB_staple
3n+2 3n+3 3n+4 3n+5
l 3n+1 l 2n-1...n 3n+2 H 3n+3 | 3n-1...2n 3n+4 ‘ 3n+5 n-1...0 l 3n ‘
BA. a _AS AS_ s _SB SB_ b _BA
b) AS staple SB_staple
11 12 13 i
l 10 I 5 4 3 11 H 12 8 7 6 13 H 14 2 1 0 I 9 ‘
BA. N _AS AS_ S _SB SB_ b _BA

Fig. 2. Bit Layout in (asb) Virtual Strand. a) in general. b) n = 3.

Unlike folding single-strand origami [18], we ensure two substrands are in-
volved by designing substrands to have distinct bits, numbered 3n or above,
which will be assigned uniquely to receive staples for each substrand type. In
the example, the simple linear data structure to be created has an a substrand
stapled to an s substrand, which in turn is stapled to a b substrand, which
might itself be stapled to another a substrand, etc. This means there are two
extra bits in each substrand: one for stapling onto the left structure and an-
other for stapling onto the right structure. The numbering of these bits that
receive staples is arbitrary, for example, we could define BA=3n, BA =3n + 1,
AS=3n+2,AS =3n+3, SB=3n+4 and SB =3n+ 5, where the underscore rep-
resents the substrand on which the specific bit number is located, and the letters
represent the kind of staple which attaches to that bit position. For example,
BA is part of the b substrand whilst BA is the associated bit that is part of the
a substrand. (Using contiguous numbers for user-level data bits helps simplify
algorithmic design. The numbering is an arbitrary notation and does not nec-
essarily describe the physical placement on the strand, as was done for simplicity
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in Fig. 1. Biochemical and physical considerations, like how the 3" and 5’ sides
of the substrands and staples come together, must be taken into account, but
will be ignored here.) The operation staple(tl, BA,BA ,t0) introduces to tube
t1 staples (for joining a and b together), which consist of the Watson-Crick
complements that represent bit addresses 3n and 3n + 1. In addition to this
BA-kind of staple, the addition example uses two other types: AS and SB. The
staple-target bits for this example are: 3n and 3n 45 in b; 3n+ 1 and 3n+ 2 in
a; and 3n+ 3 and 3n+4 in s. Fig. 2 shows the layout of bits in a simple example
of a virtual strand.

Because the staple targets are ordinary bits, whether specific substrands ac-
cept staples is under programmed control. If a prior set (or setweak) occured on
a particular substrand, the staple will be rejected (analogously to how a probe
would be rejected). For a linear structure like this example, the number of staple
types and the number of substrand types will be the same (ng), and the number
of bit positions dedicated to staples will be 2ns. For more complicated branching-
data structures (such as might occur in DNA-encoding of large databases [4]),
more staple types may be needed. A three-operand problem (like this addition
example), needs at least three staple types.

In order to describe abstractly the values in each substrand, three distinct
notations will be used. An uninitialized (all zero) substrand (from a vast supply
in a system tube), will be denoted with the Greek equivalent to the name of
the field; a field currently being processed will be denoted with the equivalent
lower-case Roman italic; and a retired field (which has been blotted out) will
be denoted with the equivalent upper-case Roman italic. For example, the field
b may start uninitialized as §; then be shown as b whilst it is processed; and
this same portion of the molecule will be shown as B after it has been blotted
out. The extent of a virtual strand (constructed by zero or more staples) will be
shown by a parenthesis. For example, (asb) shown in Fig. 2 is a virtual strand
consisting of three substrands held together by two staples (AS and SB). This
virtual strand can grow and have some of its substrands blotted out, for example,
(bASB) consists of four substrands held together by three staples (BA, AS and
SB). Because of the blotted substrands, its value (as observable by separate
operations) would be the same as the simple substrand (b).

The goal here is to compute the summation of all a; and b; substrands, i.e.,
Zf\i_ol a; + Zf\i_ol b;, assuming that each value is recorded in a single molecule.
(A realistic system probably would record each value with redundant molecules
and use refinement [7] to achieve Monte-Carlo distribution of errors [3]. Summing
this is analogous to averaging the redundant values, with the effect of improving
the accuracy of the Monte-Carlo arithmetic[16].) This paper ignores how the
input a; and b; substrands were formed; for the large size of N considered here
they could not have been individually input. Perhaps we could imagine [2] they
are the result of previous sticker computation on random distributions shaped
by a small number of input parameters. Many useful iterative algorithms [14]
need much smaller input sets than the internal values they process.



Extending DNA-Sticker Arithmetic to Arbitrary Size Using Staples 9

Because of associativity and commutativity, there is an astronomical number
of ways to compute partial sums yet yield the correct final sum. Of course, the
most obvious linear-time approach could be used, in which one a value and one b
value would be stapled onto a partial result at each stage. Given the slowness of
biochemical operations, for N approaching the Avogadro constant, a linear-time
approach would be much too slow to be feasible. Instead, consider a log-time
approach, which uses the massive parallelism possible in the extended-sticker
method. It will be convenient to start with the left operands (a substrands) in
tube TL and the right operands (b substrands) in tube TR. To simplify the initial
presentation of the algorithm, assume the number (N) of a substrands exactly
matches the number of b substrands, and is a power of two. Of course, this
is unrealistic as some unmatched, stray substrands will undoubtedly exist, but
it is more convenient to ignore this at first. In addition to the input tubes TR
and TL, system tubes TALPH, TBET and TSIG have a large supply of uninitialized
substrands, and temporary tubes (like TLT and TRT) are available. The algorithm
consists of [log, (V)] iterations of Fig. 3.

staple(TL, _AS,AS_,TSIG);

separate3(TL,TSIG,TL,AS_);

staple(TL,_SB,SB_,TR);

fixstrays();

for (i=0;i<n;i++) //"s=a+b"in TL..TL+3
fulladd((2#n+i),i, (n+i),TL);

combine (TL, (TL+2)) ;

for (i=0;i<2*n;i++)//blot "a,b"

set(TL,i);
split(TR,TL);
setweak (TL,BA_); setweak (TR,_BA);
staple(TL,_BA,BA_,TALPH); staple(TR,BA_, _BA,TBET);
separate3(TL,TALPH,TL,BA_) ; separate3(TR,TBET,TR, _BA) ;
clearweak (TL) ; /*BA_x/ clearweak (TR) ; /*_BAx/
for (i=0;i<n;i++) //a=s in TL, b=s in TR, blot s in both
{ separate(TLT,TL, (i+2+%n)); separate (TRT, TR, (i+2%n));
set (TLT, (i+n)) ;set(TL, (i+2#n)); set(TRT,i);set (TR, (i+2*n));
combine (TL,TLT) ; combine (TR, TRT) ; }

Fig. 3. Log-time Summation Algorithm

4.1 Algorithm Trace

A summary of the first two iterations of the algorithm is given in Table 1.
The algorithm starts by stapling (o) substrands from a system tube to the (a)
substrands in TL. Excess (o) substrands are returned to the system tube. The
(b) substrands in TR are combined with the (aco) virtual strands in TL. These
two substrands are stapled together, ignoring the fixstrays routine since we
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assume the number of (b) strands and (ao) virtual strands match perfectly.
The algorithm computes s=a+b using n iterations of the fulladd routine from
[2]. (The combine(TL, (TL+2)) is part of the algorithm from [2].) Any dyadic
operation implementable with stickers could be used at this point; it is desirable
for the operation to be commutative and at least approximately associative.
(For example, real LNS addition [2], which needs a small number of scratch
bits, could have these bits as part of an s substrand slightly-wider than a or
b. Floating-point operations are also possible, but the number of scratch bits
would be greater.) The input data, a and b, are blotted to A and B by setting
bits (2n — 1)..0, leaving only s with detectable data. At this point, the virtual
strands (AsB) are split (for the sake of discussion, perfectly) in half between TL
and TR.

From this point on, operations that are listed on the same line can be per-
formed in parallel. If we left the target bits of the BA staple alone, an ambiguity
would occur. For example, in tube TR, we want to staple (5) on the left of (AsB)
using a BA staple. Unfortunately, both (8) and (AsB) have a BA target bit.
Without the setweak, sometimes (AsBAsB) would be formed instead of the
desired (8AsB). A similar problem would occur in tube TL, where we want to
staple (a) on the right of (AsB) using a BA staple. Using the setweaks, the
algorithm temporarily forces right concatenation in TL and left concatenation
in TR. Excess a and [ substrands are returned to the system tubes, and the
clearweaks will allow the structure to grow in the next iteration.

The reason for splitting into TL and TR is so that half of the s values can be
copied to a substrands and the other half to b substrands. Once this is done,
all s values can be blotted, producing (ASBa) in TL and (bASB) in TR, which
are effectively equivalent to (a) and (b), respectively, which these tubes held at
the beginning. Under the assumptions here, the number of (ASBa) and (bASDB)
will be exactly half the number of those initial inputs.

Table 1 shows iteration 2 of the same code, giving (ASBASBASBa) and
(bASBASBASB). Both results are the sum of four numbers (the middle ASB
segments held intermediate results).

4.2 Complexity

At the end of the jth iteration (1 < j < [logy(N)]), the combined number of
virtual strands in TL and TR will be 2M°82(NM)1-J the number of inputs processed
per virtual strand will be 27, and the number of substrands in each virtual strand
will be 3+ (27 — 1) + 1 (of which only one, either an a or b, contains actual data).
Considering parallism, the algorithm needs 9 time steps for statements outside
loops. With n iterations of fulladd from [2] (4n time steps using TL and three
other tubes: TL+1 through TL+3, which could be shared with TR, TRT and TLT),
2n iterations of one statement to blot a and b (2n time steps), and n iterations
of the bottom loop to copy and blot s (3n time steps), the algorithm uses four
tubes and takes [log,(N)](9n + 9) time steps. Suppose, hypothetically, we wish
to add N = 27 ~ 1 mole of 79-bit numbers contained in n = 161-bit substrands
(large enough to hold any partial sum; unbounded multiprecision integers, as
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in Common Lisp, would require extra staple and substrand types). Assuming
the time to staple remains the same as other operations as the virtual-strand
lengths increase, we need [logy(N)](9n +9) = 79 - 1458 ~ 1.2 - 10° time steps.
Using all of its parallel-processing abilities, the most powerful (60 petaFLOP)
electronic supercomputer available in 2013 would require 6-10%¢/(6-106) ~ 1010
seconds, or in other words, the biochemical supercomputer could outperform the
electronic one as long as its time steps are faster than 1019/(1.2-10°) ~ 8.3 - 10*
seconds = one day, which seems possible with margin to spare. Of course, adding
a mole of numbers at this rate is only hypothetical, since 10'° seconds is over 300
years, and the DNA-based computation is unlikely to be reliable as described.

4.3 Macro, Micro and Hybrid Implementation

The preceding analysis assumes tubes large enough to hold all of the substrands
at one time interconnected via macroscale tubes and pumps. A more promising
alternative is microfluidics [8,6], which has been suggested for the simple sticker
system [2,9] by partitioning the strands into (say 10~ mol) droplets processed
in parallel on several Micro-Electro-Mechanical System(MEMS) chips that also
contain the electronic components to control the movement and processing of the
droplets. Since the simple sticker system has no interstrand communication, such
partitioning does not diminish its capabilities. The smaller size of the droplet
suggests that reaction times[6], and therefore sticker time step will be reduced
compared to a macroscale tube.

A completely microfluidic implementation of the extended sticker system will
not be able to perform the log-time summation algorithm to completion. Instead,
it would generate a partial sum on each MEMS chip. To overcome this, a hybrid
electronic/biochemical approach could be used. For example, the proposed mole-
scale computation could be carried out by one million MEMS chips (comparable
to the number of chips in an electronic supercomputer) interconnected via a
very simple electronic network. Assuming the electronic network could transmit
one partial sum per microsecond, the problem could be completed in one second
after each MEMS chip has converted its result from biochemical to electronic
representation. The number of substrands processed on each individual MEMS
chip is one millionth of the macroscale implementation. In general, let 2V¢ be
the number of MEMS chips, N, = [logy(N)] — Ng, t. be the time to transmit
one value electronically, ¢, be the time to convert to electronic representation
and t, be the biochemical time step. The total time for the hybrid system is
te - 2Ne fte 4ty - (9n + 9)Np. When t., t. and t, are constant, this does not
vary by more than a factor of about two for 0 < N, < N/2, allowing the choice
for N, to based on MEMS cost and droplet size (with associated lower t3).
For the million-chip (N, = 59) example, the first two terms can be ignored.
Assuming the same biochemical clock of one day, the million-chip hybrid system
would complete in a still unrealistic 235 years. The advantage, though, of the
microfluidic implementation is that a much faster time step of a few minutes may
be possible, perhaps allowing completion of the algorithm in under one year.



12 M.G. Arnold

Table 1. Symbolic Trace

step TL TR
(a) (b)

staple(TL, AS,AS ,T,) (ao) (b)

staple(TL, SB,SB ,TR)) (aob)

s=a+b (asb)

blot a,b (AsB)

split (TR, TL) (AsB) (AsB)

staple(TL, BA,BA ,T.)

staple(TR, BA,BA ,Tg) (AsBa) (BAsB)

a=s in TL;b=s in TR (AsBa) (bAsB)

blot s in TL,TR (ASBa) (bASB)

staple(TL, AS,AS ,T,) (ASBao) (bASB)

staple(TL, SB,SB ,TR) (ASBacbASB)

s=at+b (ASBasbASB)

blot a,b (ASBAsBASB)

split (TR, TL) (ASBAsBASB) (ASBAsBASB)

staple(TL, BA,BA ,T,)

staple(TR, BA,BA ,Tg) (ASBAsBASBa) (BASBAsBASB)
a=s in TL;b=s in TR (ASBAsBASBa) (bASBAsBASB)
blot s in TL,TR (ASBASBASBa) (B ASBASBASB)

4.4 Stray Substrands

The discussion of the summation algorithm so far has ignored fixstrays().
This routine, shown in Fig. 4, is intended to deal with the likely situation that
when the substrands in TL and TR are stapled together with SB staples, the
number of substrands in the two tubes will not be exactly the same, and even if
they were, some substrands may not staple together. To overcome this problem,
fixstrays() uses TR (which at this point is either empty or has half-stapled
substrands) and a temporary tube (TB) to take the stray strands which did not
staple properly, and convert them into a format which will be compatible with
later steps in the addition algorithm. The routine tests the SB bit of the b
substrand; any substrands where this bit is zero did not receive a staple. Those
substrands are transferred to TB. (In a similar way, any substrands where the
SB bit is zero are transferred to TR; it is likely strays would already have been
transfered to TR as half-stapled exceptions from staple(TL, SB,SB ,RL).) At
this point, steps involving TR and TB may be executed in parallel.

The process for TB is slightly more complicated. The first step involves taking
the substrands that were just transferred into TB (which do not have a staple on
their 8B bit) and concatenating a new o substrand. Because there are a surplus
of these in the system tube, all the unstapled substrands from the previous step
will now have o substrand concatenated on the left. As in the earlier examples,
the user must return the unused o substrands to the system tube. Because the
goal is to make the stickers of tube TB have the same format as if they were
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fixstrays()
{ separate3(TL,TB,TL,SB_);
separate3(TL,TR,TL,_SB) ;
staple(TB,SB_,_SB,TSIG); staple(TR,_SB,SB_,TBET);
separate3(TB,TSIG,TB,_SB); separate3(TR,TBET,TR,SB_) ;
staple(TB,AS_, _AS,TALPH);

separate3(TB,TALPH,TB,_AS) ;
combine (TL,TB); combine(TL,TR); }

Fig. 4. Fixing Stray Substrands

the result of successful stapling in the calling routine, it is also necessary to
concatenate an « substrand using an AS staple. Again, the unused « substrands
need to be returned to the system tube.

The steps for tube TR are easier: concatenate a (3 substrand using an SB
staple and return the unused g substrands to the system tube. Even though
the majority of substrands already in TR are half-stapled exceptions, the user-
level command staple(TR, SB,SB ,TBET) insures they all become fully stapled
(again because of the surplus of § substrands in the system tube). This also takes
care of the few substrands that might not have had a staple. After the parallel
processing of TR and TB is complete, the contents of both tubes are combined
with TL, and the summation algorithm may resume.

Versions of the JavaScript and CUDA simple-sticker simulators [21] used in
[2,3] (which represent each sticker bit as an actual bit in the computer) were
augmented to simulate this algorithm with extended stickers. Since JavaScript
is slow but has powerful string operations (similar to Java), the JavaScript
extended-sticker simulator models each sticker bit as a lower-case character
(or space if it is zero) and each staple bit as an upper-case character (limiting
k < 26). This representation allows faithful modeling of half-staple exceptions,
and the exponential growth of virtual strands.

In contrast, the high-speed CUDA code running on a GPU was modified to
simulate only the non-blotted data as actual bits in the GPU’s device memory.
For efficiency, the blotted data is discarded after each iteration. This slightly less
faithful modeling (the half-staple exception cannot occur, instead being caught
by separate3(TL,TR,TL, SB)) increases performance. Six distinct CUDA ker-
nels are required to implement simple-sticker operations from the above algo-
rithm on the GPU; the staple operation is modeled by linear-time scanning of
arrays by the host CPU. A linear-time (Knuth/Fisher-Yates) shuffle [13] is used
to generate random permutations of tubes 77, and Tr on each iteration, which
exercises the fixstrays () routine extensively.

5 Conclusions

An extended-sticker system has been described in this paper that uses staples
to hybridize to contiguous portions of two substrands, forming virtual strands.
In contrast to the simple sticker system, which has all addressable bits in a
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single strand, different substrand types have distinct addressable bits. Using
staples, the system can initiate concatenation of substrands. Using weak stickers
to prevent undesired concatenation, the user may control whether concatenation
occurs on the left or right and, if desired, whether the concatenated substrand
is fresh (has bits that are zero). The weak stickers may then be melted away,
to allow the virtual strand to grow further. As virtual strand length increases,
redundant bits will occur. To overcome the ambiguity, this paper proposes blot-
ting out old values (setting all bits in the old substrand prior to concatenating
a similar-type substrand onto the virtual strand).

Using the proposed extended-sticker operations, a novel log-time summation
algorithm is described. It works by splitting the virtual strands into two tubes.
A virtual strand from one of these tubes is concatenated on the left of a new
substrand; a virtual strand from the other tube is concatenated on the right of
that new substrand. Once the three substrand types have been joined together,
conventional sticker addition [2] produces a partial sum, and the operands used to
produce this sum are blotted out. At the conclusion of one iteration, there are half
as many virtual substrands. Although longer, the virtual substrands at the end of
the iteration are in a format compatible with the input of the algorithm, which
means the time complexity is logarithmic. In theory, for large data sets, such
a log-time algorithm will outperform any electronic supercomputer conceivable
in the near future. In reality, issues of reliability, which are a concern for the
simple-sticker system [20], will be even more significant in the design of extended-
sticker systems. For example, in the simple-sticker system, the probability of a
misclassification is independent of the number of algorithm steps performed. In
the extended sticker system, it is unclear whether this will remain so as the
virtual strand length grows and many redundant bits have been blotted out.
An additional concern is the exponential growth of virtual strand length, which
may make handling the molecules more difficult than the simple-sticker system.
Further research is needed to characterize the kinds of failure modes possible in
the extended-sticker system, and their associated probabilities.

It is possible to imagine further extensions to the proposed system. For ex-
ample, including weak staples would allow programmed control over whether
a particular hybridization of substrands should be accepted. This would allow
more complex algorithms than the simple summation described in this paper. It
also could provide a means to control the exponential growth of virtual-strand
length and a means to eliminate waste products.
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for his encouragement.
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Abstract. We study the computational complexity of the recently pro-
posed nubots model of molecular-scale self-assembly. The model general-
izes asynchronous cellular automaton to have non-local movement where
large assemblies of molecules can be moved around, analogous to mil-
lions of molecular motors in animal muscle effecting the rapid move-
ment of large arms and legs. We show that nubots is capable of simu-
lating Boolean circuits of polylogarithmic depth and polynomial size, in
only polylogarithmic expected time. In computational complexity terms,
any problem from the complexity class NC is solved in polylogarithmic
expected time on nubots that use a polynomial amount of workspace.
Along the way, we give fast parallel algorithms for a number of prob-
lems including line growth, sorting, Boolean matrix multiplication and
space-bounded Turing machine simulation, all using a constant number
of nubot states (monomer types). Circuit depth is a well-studied notion
of parallel time, and our result implies that nubots is a highly paral-
lel model of computation in a formal sense. Thus, adding a movement
primitive to an asynchronous non-deterministic cellular automation, as
in nubots, drastically increases its parallel processing abilities.

1 Introduction

We study the theory of molecular self-assembly, working within the recently-
introduced nubots model by Woods, Chen, Goodfriend, Dabby, Winfree and
Yin [43]. Do we really need another new model of self-assembly? Consider the
biological process of embryonic development: a single cell growing into an organ-
ism of astounding complexity. Throughout this active, fast and robust process
there is growth and movement. For example, at an early stage in the develop-
ment of the fruit fly Drosophila, the embryo contains approximately 6,000 large
cells arranged on its ellipsoid-shaped surface. Suddenly, within 4-minutes, the
embryo changes shape to become invaginated, creating a large structure that be-
comes the mesoderm, and ultimately muscle. How does this fast rearrangement
occur? A large fraction of these cells undergo a rapid, synchronized and highly
parallel rearrangement of their internal structure where, in each cell, one end of
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the cell contracts and the other end expands. This is achieved by a mechanism
that seems to crucially involve thousands of molecular-scale motors known as
myosin pulling and pushing the cellular cytoskeleton to quickly effect this rear-
rangement [25]. At an abstract level one can imagine this as being analogous
to how millions of molecular motors in a muscle, each taking a tiny step but
acting in a highly parallel fashion, effect rapid long-distance muscle contraction.
This rapid parallel movement, combined with the constraint of a fixed cellular
volume, as well as variations in the elasticity properties of the cell membrane,
can explain this key step in embryonic morphogenesis. Indeed, molecular mo-
tors that together, in parallel, produce macro-scale movement are a ubiquitous
phenomenon in biology.

We wish to understand, at a high level of abstraction, the ultimate limita-
tions and capabilities of such molecular scale rearrangement and growth. We
do this by studying a theoretical model that includes these capabilities. As a
first step towards such understanding, we show in this paper that large numbers
of tiny motors (that can each pull or push a tiny amount) coupled with local
state changes on a grid, are sufficient to quickly solve problems deemed to be
inherently parallelizable. This result, described formally below in Section 1.2,
demonstrates that our model, the nubots model, is a highly parallel computer
in a computational complexity-theoretic sense.

Another motivation, and potential test-bed for our theoretical model and
results, is the fabrication of active molecular-scale structures. Examples include
DNA-based walkers, DNA origami that reconfigure, and simple structures called
molecular motors [45] that transition between a small number of discrete states
[43]. In these systems the interplay between structure and dynamics leads to
behaviors and capabilities that are not seen in static structures, nor in other
unstructured but active, well-mixed chemical reaction network type systems.
Our theoretical results here, and those in [43], provide a sound basis to motivate
the experimental investigation of large-scale active DNA nanostructures.

There are a number of theoretical models of molecular-scale algorithmic self-
assembly processes [33]. For example, the abstract Tile Assembly Model, where
individual square DNA tiles attach to a growing assembly lattice one at a
time [41, 36, 17], or the two-handed (hierarchical) model where large multi-
tile assemblies come together [1, 8, 12, 15], or the signal tile model where DNA
origami tiles that form an “active” lattice with DNA strand displacement signals
running along them [20, 30, 31], as well as models where one can program tile
geometry [13, 18], temperature [1, 22, 39], concentration [6, 9, 16, 23] mixing
stages [12, 14] and connectivity /flexibility [21].

The well-studied abstract Tile Assembly Model [41] is an asynchronous, and
nondeterministic, cellular automaton with the restriction that state changes are
irreversible and happen only along a crystal-like growth frontier. The nubots
model is a generalization of an asynchronous and nondeterministic cellular au-
tomaton, where we have a non-local movement primitive. Nubots is intended to
be a model of molecular-scale phenomena so it ignores friction and gravity, allows
for the creation/destruction of monomers (we assume an invisible “fuel” source)
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and has a notion of Brownian motion (called agitation, but not used in this pa-
per). Instances of the model evolve as continuous time Markov processes, hence
time is modeled as in stochastic chemical kinetics [5, 38]. The style of movement
in nubots is analogous to that seen in reconfigurable robotics [7, 37, 26|, and in-
deed results in these robotics models show that non-local movement can be used
to effect fast global reconfiguration [4, 3, 35]. The nubots model includes features
seen in cellular automata, Lindenmayer systems [34] and graph grammars [24].
See [43] for more detailed comparisons with these models.

1.1 Previous Work on Active Self-assembly with Movement

Previous work on the nubots model [43] showed that it is capable of building
large shapes and patterns exponentially quickly: e.g. lines and squares in time
logarithmic in their size. Reference [43] goes on to describe a general scheme to
build arbitrary computable (connected, 2D) size-n shapes in time and number of
monomer states (types) that are polylogarthmic in n, plus the time and states re-
quired for Turing machine simulation due to the inherent algorithmic complexity
of the shape. Furthermore, 2D patterns with at most n colored pixels, where the
color of each pixel is computable in time logo(l) n (i.e. polynomial in the length
of the binary description of pixel indices), are nubots-computable in time and
number of monomer types polylogarthmic in n [43]. The latter result is achieved
without going outside the pattern boundary and in a completely asynchronous
fashion. Many other models of self-assembly are not capable of this kind of par-
allelism. The goal of the present paper is to formalize the kind of parallelism
seen in nubots via computational complexity of classical decision problems.

Dabby and Chen [11] study an insertion-based model, where monomers insert
between, and push apart, other monomers. In this nice simplification of nubots
they build length-n lines in O(log®n) expected time and O(log?n) monomer
types in 1D. They also show relationships with regular and context-free lan-
guages, and give a design for implementation with DNA.

1.2 Our Results

In the nubots model a program is specified as a set of nubots rules N and is said
to decide a language L C {0, 1}* if, beginning with a word = € {0, 1}* encoded as
a sequence of |z| “binary monomers” at the origin, the system eventually reaches
a configuration with the 1 monomer at the origin if € L, and 0 otherwise. Let
NC denote the (well-known) class of problems solved by uniform polylogarthmic
depth and polynomial size Boolean circuits.! Our main result is stated as follows.

Theorem 1. For each language L € NC, there is a set of nubots rules N, that
decides L in polylogarthmic expected time, constant number of monomer states,
and polynomial space in the input string length. Moreover, for i > 1, NC' is
contained in the class of languages decided by nubots Tunning in O(logi+3 n)
expected time, O(1) monomer states, and polynomial space in input length n.

1 NC, or Nick’s class, is named after Nicholas Pippenger.
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NC problems are solved by circuits of shallow depth, hence they can be
thought of as those problems that can be solved on a highly parallel architec-
ture (simply run each layer of the circuit on a bunch of parallel processors, after
polylog parallel steps we are done). NC is contained in P—problems solved by
polynomial time Turing machines (this follows from the fact that NC circuits are
of polynomial size). Problems in NC (or the analogous function class) include
sorting, Boolean matrix multiplication, various kinds of maze solving and graph
reachability, and integer addition, multiplication and division. Besides its circuit
depth definition, NC has been characterized by a large number of other parallel
models of computation including parallel random access machines, vector ma-
chines, and optical computers [19, 44, 42]. It is widely conjectured, but unproven,
that NC is strictly contained in P. In particular, problems complete for P (such
as Turing machine and cellular automata [29] prediction, context-free grammar
membership and many others [19]) are believed to be “inherently sequential”—it
is conjectured that these problems are not solvable by parallel computers that
run for polylogarithmic time on a polynomial number of processors [19, 10].

Thus our main result gives a formal sense in which the nubots model is highly
parallel: our proof gives a nubots algorithm to efficiently solve any highly par-
allelizable (NC) problem in polylogarithmic expected time and constant states.
This stands in contrast to sequential machines like Turing machines, that cannot
read all of an n-bit input string in polylogarithmic time, and “somewhat parallel”
models like cellular automata and the abstract Tile Assembly Model, which can
not have all of n bits influence a single bit decision in polylogarithmic time.

In order to obtain this result we give a number of novel nubots constructions.
We show how to simulate function-computing logarithmic space deterministic
Turing machines in only polylogarithmic expected time on nubots. We also show
how to sort numbers in polylogarithmic expected time. Our sorting routine is
used throughout our construction and is inspired by mechanisms such as gel
electrophoresis that sort based on physical quantities (e.g. mass) [27]. We give a
polylogarithmic expected time Boolean matrix multiplication algorithm, as well
as a new line growing routine and a new synchronization (fast message passing)
routine. All of these constructions are carried out using only a constant number
of nubot monomers states and rules.

Previous results [43] on nubots were of the form: for each n € N there is a
set of nubot rules AV, (i.e. the number of rules is a function of n) to carry out
some task parametrized by n (examples: quickly grow a line of length n, or an
n X n square, grow some complicated computable pattern or shape whose size
is parametrized by n, etc.). For each NC problems our main result here gives a
single set of rules (i.e. of constant size), that works for all problem instances.

1.3 Future Work and Open Questions

The line growth algorithm in [43] runs in expected time O(logn), uses O(logn)
states and space O(n) x O(1) from a single seed monomer. In our construction
(see full paper) we give another line growth algorithm that runs in expected time
O(log® n), uses O(1) states and space O(n) x O(1) from a size O(logn) seed.
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Fig. 1. Overview of nubots model. (a) A nubot configuration showing a single nubot
monomer on the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are
local cellular automaton-like rules, whereas r7 effects a non-local movement. A flexible
bond is depicted as an empty red circle and a rigid bond is depicted as a solid red disk.

Is it possible to find a line-growth algorithm that does better than time X space
x states = £2(nlog?n)?

Theorem 1 gives a lower bound on nubots power. What is the upper bound on
confluent? polylogarthmic expected time nubots? One challenge involves finding
better Turing machine space, or circuit depth, bounds on computing the movable
set (see Section 2), and iterating this for many moves on a polynomial size (or
larger) nubots grid.

Can we tighten our NC lower bound? Is the case that NC* is contained in,
say, the class of problems solved in O(logk‘H n) expected time on nubots? Our
constructions make a lot of use of “synchronization” (where many monomers
are simultaneously signaled to transition to a single common state), one way to
improve our lower bound would be to see if it is possible to simulate circuits effi-
ciently without using synchronization. The proof of Theorem 7.1 in [43] contains
an example construction of a wide class of patterns that can be grown without
synchronization. What conditions are necessary and sufficient for composition
of arbitrary (unsynchronized) systems?

Is it possible to grow a structure of size 2(n), in expected time o(n) but
without using the movement rule? Here the only source of movement comes
from the “agitation” rule, which models the fact that in a liquid molecules are
bombarding each other and jiggling all around. Every self-assembed molecular-
scale structure was made under such conditions! Our question asks if we can
programmably exploit this random molecular motion to build structures quicker
than without it. Other open problems and further directions can be found in [43].

2 The Nubots Model and Other Definitions

In this section we formally define the nubots model. Figure 1 gives an overview

of the model and rules, and Figure 2 gives an example of the movement rule.
The model uses a two-dimensional triangular grid with a coordinate system

using axes = and y as shown in Figure 1(a). In the vector space induced by

2 By confluent we mean a kind of determinism where the system (rules with the input)
is assumed to always make a unique single terminal assembly.
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this coordinate system, the azial directions D = {iﬁ,i?, i?} are the unit
vectors along the grid axes. A pair T €72 is called a grid point and has the set
of six neighbors {P + U | W € D}. Let S be a finite set of monomer states. A
nubot monomer is a pair X = (s;, p(X)) where s; € S is a state and p(X) € Z2
is a grid point. Two monomers on neighboring grid points are either connected
by a flexible or rigid bond, or else have no bond (called a null bond). Bonds are
described in more detail below. A configuration C is a finite set of monomers
along with the bonds between them.

One configuration transitions to another via the application of a single rule,
r = (s1,s2,b, ) — (s1’,s2',b/, ") that acts on one or two monomers.> The
left and right sides of the arrow respectively represent the contents of the two
monomer positions before and after the application of rule r. Here sl,s2 €
S U {empty} are monomer states where at most one of s1, s2 is empty (denotes
lack of a monomer), b € {flexible, rigid, null} is the bond type between them, and
U € D is the relative position of the s2 monomer to the s1 monomer. If either
of s1 or s2 (respectively s1’ or s2') is empty then b (respectively ') is null. The
right is defined similarly, although there are some further restrictions on valid
rules (involving ' ) described below. A rule is only applicable in the orientation
specified by 7, and so rules are not rotationally invariant.

A rule may involve a movement (translation), or not. First, in the case of
no movement: @ = '. Thus we have a rule of the form r = (s1,s2,b, W) —
(sl’,s2’,b’,7). From above, at most one of s1,s2 is empty, hence we disallow
spontaneous generation of monomers from empty space. State change and bond
change occurs in a straightforward way, examples are shown in Figure 1(b). If
s; € {s1,s2} is empty and s} is not, then the rule induces the appearance of a
new monomer at the empty location specified by @ if s2 = empty, or — 4 if
s1 = empty. If one or both monomers go from non-empty to empty, the rule
induces the disappearance of monomer(s) at the orientation(s) given by .

For a movement rule it must be the case that @ # @’ and d(W,W’) = 1,
where d(u,v) is Manhattan distance on the triangular grid, and s1, s2, s1’, s2" €
S\ {empty}. If we fix @ € D, then there are two ©’ € D that satisfy d(u, ') =
1. A movement rule is applied both (i) locally and (ii) globally, as follows.

(i) Locally, one of the two monomers is chosen nondeterministically to be the
base (which remains stationary), the other is the arm (which moves). If the s2
monomer, denoted X, is chosen as the arm then X moves from its current po-
sition p(X) to a new position p(X) — @ + «’. After this movement @’ is the
relative position of the s2’ monomer to the s1’ monomer, as illustrated in Fig-
ure 1(b). Analogously, if the s1 monomer, Y, is chosen as the arm then Y moves
from p(Y) to p(Y)+ 7 —’. Again, i is the relative position of the 2’ monomer
to the s1’ monomer. Bonds and states may change during the movement.

3 In reference [43] the nubots model includes “agitation”: each monomer is repeatedly
subjected to random movements that are intended to model Brownian motion and
other uncontrolled fluid flows and movement. Our constructions work with or without
agitation, hence they are robust to random uncontrolled movements, but we choose
to ignore this issue and not formally define agitation for ease of presentation.
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Fig. 2. An example of a movement rule with two results depending on the choice of
arm or base. (a) Initial configuration. (b) Movement rule. (c) Result if the monomer
with state 1 is the base. (d) Result if the monomer with state 2 is the base. We can
think of (c) as pushing and (d) as pulling. Also, the affect on a flexible bonds (hollow
red circles) and null bonds are shown.

(i) Globally, the movement rule may push, or pull other monomers, or if it can
do neither then it is not applicable. This is formalized as follows, and an example
is shown in Figure 2. Let 7 € D be a unit vector. The 7—boundary of a set of
monomers S is defined to be the set of grid points outside .S that are unit distance
in the ¥ direction from monomers in S. Let C' be a configuration containing
adjacent monomers A and B, and let C’ be C except that the bond between A
and B is null in C” if not null in C. The movable set M = M(C, A, B, 7) is the
smallest subset of C’ that contains A but not B and can be translated by o
to give the set M 4 where the new configuration C” = (C'\ M) U M 3 is
such that: (a) monomer pairs in C that are joined by rigid bonds have the same
relative position in C”; (b) monomer pairs in C’ that are joined by flexible bonds
are neighbors in C”, and (c) the ¥'-boundary of M contains no monomers.

If M(C,A, B, ¥) # {}, then the movement where A is the arm (which should
be translated by @) and B is the base (which should not be translated) is
applied as follows: (1) the movable set M(C, A, B, ') moves unit distance along
o (2) the states of, and the bond between, A and B are updated according to
the rule; (3) the states of all the monomers besides A and B remain unchanged
and pairwise bonds remain intact (although monomer positions and flexible /null
bond orientations may change). If M(C, A, B,7) = {}, the movement rule is
inapplicable (the rule is “blocked” and thus A is prevented from translating).

An assembly system T = (Cy, N) is a pair where Cy is the initial configura-
tion, and N is the set of rules. If configuration C; transitions to C; by some
rule r € N, we write C; s Cj. A trajectory is a finite sequence of configura-
tions C1,Cy,...,C where C; Far Ciy1 and 1 <4 < k — 1. An assembly system
evolves as a continuous time Markov process. The rate for each rule applica-
tion is 1. If there are k applicable transitions for C; then the probability of
any given transition being applied is 1/k, and the time until the next transition
is applied is an exponential random variable with rate k (i.e. the expected time is



Parallel Computation Using Active Self-assembly 23

1/k).* The probability of a trajectory is then the product of the probabilities of
each of the transitions along the trajectory, and the expected time of a trajec-
tory is the sum of the expected times of each transition in the trajectory. Thus,
> e Prlt]time(t) is the expected time for the system to evolve from configura-
tion C; to configuration C}, where T is the set of all trajectories from C; to any
configuration isomorphic to Cj, that do not pass through any other configuration
isomorphic to Cj, and time(¢) is the expected time for trajectory ¢.

2.1 Nubots and Decision Problems

Let N ={0,1,2,...}. Given a binary string « € {0, 1}*, written z = zoz1 ... xk_1,
we let T denote a horizontal line of & nubot monomers that represent x using
one of two “binary” monomer states. We let |z] € N denote the number of
monomers in . Given a line of monomers A composed of m (previously de-
fined) line segments, the notation [A, i] means segment i of A, and [A4, {]; means
bit j of segment i of A. We next define what it means to decide a language (or
problem) with nubots.

Definition 1. A finite set of nubot rules N decides a language L C {0,1}*
if for all x € {0,1}* there is an initial configuration Cy consisting of exactly
the line T of monomers, positioned so that the left extent of T is at the origin
(0,0), where by applying the rule set N, the system always eventually reaches a
configuration where there is an “answer” monomer at the origin in one of two
states: (a) “accept” if x € L, or (b) ‘“reject” if x & L. Further, from the time it
first appears, the answer monomer never changes state.

2.2 Boolean Circuits and the Class NC

We define a Boolean circuit to be a directed acyclic graph, where the nodes
are called gates and each node has a label that is one of: input (with in-degree
0), constant 0 (in-degree 0), constant 1 (in-degree 0), V (OR, in-degree 1 or
2), A (AND, in-degree 1 or 2), = (NOT, in-degree 1). One of the gates is also
identified as the output gate. The depth of a circuit is the length of the longest
path from an input gate to the output gate. The size of a circuit is the number
of gates it contains. A circuit computes a Boolean (yes/no) function on a fixed
number of Boolean variables, by the inputs and constants defining the output
gate value in the standard way. In order to compute functions over an arbitrarily
number of variables, we define (usually, infinite) families of circuits. We say that
a family of circuits Cr = {¢, | ¢n is a circuit with n € N input gates} decides a
language L C {0, 1}* if for each x € {0, 1}* circuit ¢, € Cz on input = outputs 1
ifweLand0ifwé¢ L.

In a non-uniform family of circuits there is no required similarity, or relation-
ship, between family members. We use a uniformity function that algorithmically
specifies some similarity between members of a circuit family. Roughly speaking,

4 For simplicity, when counting the number of applicable rules for a configuration, a
movement rule is counted twice, to account for the two choices of arm and base.
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a uniform circuit family C is an infinite sequence of circuits with an associated
function f : {1}* — C that generates members of the family and is computable
within some resource bound. Here we care about logspace-uniform circuit fami-
lies:

Definition 2 (L-uniform circuit family). A circuit family C is L-uniform, if
there is function [ : {1}* — C that is computable on a deterministic logarithmic
space Turing machine, and where f(1") = ¢, for alln € N, and ¢, € C is a
description of a circuit with n input gates.

Without going into details, we assume reasonable encodings of circuits as strings.
There are stricter, but more technical to state, notions of uniformity used in the
literature [2, 46, 19, 28] (which we do not require since we are giving a lower
bound on power), and circuit classes are reasonably robust under these more
restrictive definitions.

Define NC* to be the class of all languages L C {0,1}* that are decided
by O(logi n) depth, polynomial size L-uniform Boolean circuit families. Define
NC = U;2, NC?, in other words NC is the class of languages decided by poly-
logarithmic depth and polynomial size L-uniform Boolean circuit families. Since
NC circuits are of polynomial size, they can be simulated by polynomial time
Turing machines, and so NC C P. It remains open whether this containment is
strict [19]. See [40] for more on circuits.

3 Proof Overview of Theorem 1

Here we give a high-level overview of the proof of Theorem 1. The full paper
contains the detailed proof, which includes novel parallel nubots algorithms for
line growth, sorting, Boolean matrix multiplication, space bounded function-
computing Turing machine simulation, parallel function evaluation for functions
of a certain form, Boolean circuit generation, and Boolean circuit simulation.

For each language L € NC, we show that there exists a finite set of nubots
rules N, that decides L in the sense of Definition 1. Let C, be the circuit family
that decides L. We begin with the observation that since L is in logspace-uniform
NC, there is a deterministic Turing machine M, that uses logarithmic space
(in its input size) such that on unary input 1", Mg (1") = ¢,, where ¢, is a
description of the unique circuit in Cy, that has n input gates.

Our initial nubots configuration consists of a length-n line of binary nubots
monomers denoted Z that represents some x € {0,1}*, and is located at the
origin. From this we create another length-n line of monomers that encode the
unary string 1" to be used for the creation of the circuit c,. The rule set N7,
includes a description of M. At a very abstract level, the system first generates
a circuit by simulating the computation of My on input 1", and producing a
nubots configuration (collection of monomers in a connected component) that
represents the circuit ¢,. The circuit is then simulated on input z. Both of these
tasks present a number of challenges.



Parallel Computation Using Active Self-assembly 25

3.1 Circuit Generation

Here we describe the fast parallel simulation of the logspace machine M.
Logspace Turing machines have a read-only input tape with n input symbols,
a read-write worktape of length O(logn), and a write-only output tape where
the output tape head is assumed to always move right after writing a symbol. A
configuration consists of the input tape head position, worktape contents, and
worktape head position. There are at most O(n¢) distinct configurations of this
form, for some ¢ € N, which comes from the O(logn) bound on the worktape
length. Hence M, runs in time O(n®). We assume that M, stops in a halt state
(we are simulating a halting, function-computing, deterministic machine, so it
can be assumed to always halt in a special halt state). As noted, M, runs in
time O(n®), however we require a nubots simulation that runs in expected time
that is merely polylogarithmic in n. To achieve this our simulation of My works
in a highly parallel fashion, described below.

First, we describe the adjacency matrix of the configuration graph G of My,
on input 1. A configuration graph G is a directed graph, where each node rep-
resents a configuration of My on (the fixed) input 1™ [32]. There is an edge
from node ¢ to node j if and only if My moves from configuration i to con-
figuration j in a single step. From the previously-mentioned basic facts about
logspace machines, the number of nodes in G is at most polynomial in n. Fur-
ther, nodes in G have out degree 0 or 1 (M, is deterministic), the “halt” node
has out degree 0 (we assume there are no transitions out of the halt state), and
there a unique halt configuration (M, completes its computation by wiping the
worktape, returning all tape heads to the beginning of their tapes, and entering
the halt state). The nubots system A7, begins by generating a representation of
the adjacency matrix of graph G of machine My, on input 1™. This is achieved
by building a “counter,” that grows from the n monomers (that encode 1™) to
become an O(n°) x O(log n) rectangle, the rows of which enumerate the syntacti-
cally correct configurations of the machine via the known time (O(n¢)) and space
(O(logn)) bounds (some of these configurations are reachable on this input, and
some are not). The list of configurations are grown in expected time O(log2 n),
polynomial space and only O(1) monomer states. We then make a copy of this
list, and pairwise compare every entry in the copy to that of the original—a
process achieved via iterative copying of the list along with some geometric re-
arrangement tricks. The comparisons are done in parallel, where for each i, j it
is checked whether configuration j is reachable from configuration i in one step
on My, (each such comparison depends only on configurations 4, j and so can be
computed in expected time O(logn) since the nubot rules N7, directly encode
the program My ). The result of this process is quickly (in parallel) rearranged
to form a new list (a line of monomers) that encodes the result of all of these
comparisons, and thus represents the entire binary adjacency matrix Mg.

After the adjacency matrix Mg is constructed, the nubots system computes
reachability on the graph G. Specifically, the rules A;, compute whether a path
exists from the node representing the initial configuration of My on input z
to the node representing the unique halting configuration in the halt state.
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However, this directed graph is of size polynomial in n, so a sequential algo-
rithm would be too slow for our purposes. We quickly (in polylog expected time)
solve this reachability problem by parallel iterated matrix squaring of the adja-
cency matrix Mg. More precisely, we iterate Mg := Mg; + Mg a total of O(logn)
times to give the matrix M{,. The column in MY, that represents the halt node
of graph G contains non-zero entries for exactly those nodes that have a path
to the halt node [32]. The Boolean matrix squaring is carried out as follows.
Mg is represented as a line of monomers, this line iscopied, and every entry of
the two copies is pairwise ANDed, this involves further copying and geometric
arrangement. The results are rearranged (using a novel nubots sorting algorithm
discussed below) and then ORed in parallel to give the Boolean matrix Mg;

This parallel matrix multiplication algorithm constitutes the main part of a con-
struction to simulate a logspace Turing machine that decides some language (if we
also take account of accept/reject states). However, here we wish to simulate a ma-
chine that computes a function: M’s output is a description of the circuit ¢,,, so
we are not yet done. We add the following assumption to M : it has a counter on its
worktape that starts at 0 and is immediately incremented each time M, writes to
the output tape (this counter merely adds a O(log n) term to the worktape length).
Thus only the “output-producing” configurations involve a counter incrementation.
We extract from the matrix M/, exactly those configurations that satisfy the fol-
lowing two criteria: (1) they are on a path from the input configuration to the halt
configuration (2) they produce output. To find (1) we simply filter out those nodes
(configurations) that correspond to non-zero entries in both the row of the initial
node, and the column of the halt node. To get (2) we sort, via a novel, fast paral-
lel sorting algorithm (discussed below), these configurations in increasing order of
the values on their workspace counters. Then we take this sorted list, and delete
everything (in parallel) except the encoded output tape write symbol from each
configuration. We use the counter to sort the write symbols and are left with a line
of ¢ = O(n*) monomers that represent the length-¢ output tape of M, on input 1".
This line of monomers, which we denote ¢, is an encoding of the circuit c,,.

The line of monomers ¢, is next geometrically rearranged for fast parallel cir-
cuit simulation. Here, ¢, reorganizes itself into a ladder-like form as shown in Fig-
ure 3(c) via fast parallel folding. Each layer i of the circuit ¢, as shown in Fig-
ures 3(a) is encoded as a row of nubot monomers, as shown in Figure 3(c) (our
circuits are assumed to be layered [40]). The circuit is now ready to be simulated.

3.2 Circuit Simulation

Recall that the circuit input bits (encoded as binary monomers) are located at
the origin, and that the entire circuit was “grown” from them. These monomers
move to the first (bottom) row of the encoded circuit (Figure 3(c)) and position
themselves so that each gate can “read” its 1 or 2 input bits. The jth gate on
layer ¢ > 1, is simulated by a single nubot monomer that reads its adjacent
1 or 2 input bits and then sends its “result bit” to the blue “wire address”
regions directly above it (Figure 3(d), in blue). After each gate computes its
bit, layer ¢ “synchronizes” via a logarithmic in n expected time message passing
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f output bit
output bit =
n input bits
Monomer
Boolean encoding of
circuit Boolean circuit
(a) (b) (©) (d)

Fig. 3. Encoding of a Boolean circuit as a nubots configuration. (a) Boolean circuit
with (b) detailed zoom-in. (¢) Nubots configuration encoding the circuit, with zoom-in
shown in (d). A wire leading out of a gate in (b) has a destination gate number encoded
in (d) as strips of O(log n) blue binary monomers (indices in red). After a gate computes
some Boolean function (one of V, A, =) the resulting bit is tagged onto the relevant
blue strip of monomers that encode the destination addresses (red numbers). Circuits
are not necessarily planar, so to handle wire crossovers these result bits are first sorted
in parallel based on their wire address, and then pushed up to the next layer of gates.

(a)

p— 5

—

—

—

S

p— 3 parallel merge
—

b
Tgrow

(b) heao (©

(d)

Fig. 4. High-level overview of the sorting algorithm. (a) A line of m[log m]| monomers,
split into m blue line segments (“heads”) each is the binary representation of a natural
number i < m. (b) A blue head that encodes value i is grown to height i by a green rod.
Purple “labels” are also grown at the bottom. (c) The heads are horizontally merged,
using the labels to synchronize, to be vertically aligned. (d) Merged heads rotate down
into a line configuration, giving the sorted list. Each stage occurs in expected time
polylogarithmic in m. See full paper for details.

algorithm [43]. Next, we wish to send the “result” bits from layer i to layer i + 1.
Circuits are not necessarily planar, so we need to deal with wire crossings.
Wire crossings are handled via a fast parallel sorting routine (also used in
earlier parts of the construction) that is loosely inspired by Murphy et al [27]
who show that physical techniques, such as gel electrophoresis, can be used to
sort numbers that are represented as the magnitude of some physical quantity.
The sorting routine is illustrated in Figure 4. It takes as input a line of m[log, m]
monomers, which is composed of m line segments each encoding a number in
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[log, m] binary monomers. Each segment grows to a height equal to its value,
segments are merged horizontally, and rotated down to vertical to give a sorted
list of segments, all in expected time polylogarithmic in m.

The blue “wire address” regions in the circuit (Figure 3(d)) are sorted in
increasing order from left to right, then appropriately padded with empty space
in between (using counters), and are passed up to the next level. After the
“output gate” monomer computes its Boolean function, it signals to the rest of
the circuit to destroy itself. It then moves itself to the origin and the system halts
(no more rules are applicable). This completes the overview of the simulation.

This overview ignores many details. In particular the nubots model is asyn-
chronous, that is, rule updates happen independently via stochastic chemical
kinetics. The construction includes a large number of synchronization steps and
signal passing to ensure that all parts of the construction are appropriately
staged, but yet the construction is free to carry out many fast, asynchronous,
parallel steps between these “sequential” synchronization steps.
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Abstract. Unlike their traditional, silicon counterparts, DNA computers have
natural interfaces with both chemical and biological systems. These can be used
for a number of applications, including the precise arrangement of matter at the
nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand
displacement systems (DSD) can evaluate non-trivial functions. However, these
systems can be slow and are susceptible to errors. It has been suggested that
localised hybridization reactions could overcome some of these challenges. Lo-
calised reactions occur in DNA ‘walker’ systems which were recently shown to
be capable of navigating a programmable track tethered to an origami tile. We
investigate the computational potential of these systems for evaluating Boolean
functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a
discrete stochastic model of DNA walker ‘circuits’ based on experimental data,
and demonstrate the merit of using probabilistic model checking techniques to
analyse their reliability, performance and correctness.

1 Introduction

The development of simple biomolecular computers is attractive for engineering and
health applications that require in vitro or in vivo information processing capabilities.
DNA computing models which use hybridization and strand displacement reactions to
perform computation have been particularly successful. DNA strand displacement sys-
tems (DSD) have been shown experimentally to simulate logic circuits [12, 13] and
are known to be Turing-universal [11]. However, computing with biomolecules cre-
ates many challenges. For example, reactions within a DSD are global in the following
sense: strands which are intended to react must first encounter one another in a mixed
solution. The mixing of all reactants may lead to unintended reactions between strands.
These systems do not, at present, ensure the spatial locality typical of other computing
models. Qian and Winfree suggested that tethering DNA based circuits to an origami tile
could overcome some of these challenges [12]. This idea was explored and expanded
upon by Chandran et al. [5], who investigate how such systems could be realised exper-
imentally, give constructions of composable circuits, and propose a biophysical model
for verification of tethered, hybridization-based circuits. Our work is largely inspired
by theirs, but we consider another setting which also exhibits localised reactions: DNA
walker systems [2, 7, 10, 14-16].
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Fig.1. (1) The walker strand carries a load (Q) that will quench fluorophores (F) when nearby.
The walker is attached to the initial anchorage and all other anchorages are blocked. By adding
unblocking strands, the selected track becomes unblocked. In this case the signal that opens up
the path labelled by =X is added. (2) The nicking enzyme (E) attaches to the walker-anchorage
complex, and cuts the anchorage. The anchorage top melts away from the walker, exposing 6
nucleotides as a toehold. (3) The exposed toehold becomes attached to the next anchorage. (4)
In a displacement reaction, the walker becomes completely attached to the new anchorage. The
stepping is energetically favourable, because it re-forms the base pairs that were lost after the pre-
vious anchorage was cut. (5) Repeating this process, the walker arrives at a junction. The walker
continues down the unblocked track, eventually reaching the final anchorage and quenching the
fluorophore.

Various DNA walkers have been experimentally realised — see [14] and references
therein. Single-legged DNA walkers were recently shown capable of navigating a pro-
grammable track of strands, called anchorages, that are tethered to a DNA origami
tile [14]. Movement of the walker between anchorages is shown in Fig. 1. Initially, all
tracks are blocked by hybridization to blocker strands. Anchorages and their blockers
are addressed by means of distinct toehold sequences (shown coloured): anchorages
are selectively unblocked by adding strands complementary to their blockers as input.
Much like field programmable gate arrays, these systems are easily reconfigured. By
using programmable anchorages at track junctions, Wickham et al. [14] demonstrate
that a walker can be directed to any leaf in a complete two-level binary tree using input
strands that unblock the intended path.

In Section 2, the computational expressiveness of such walker systems is explored,
using a theoretical framework that assumes ideal conditions. We highlight significant
limitations of current walker systems and motivate future work. In Section 3 we develop
a probabilistic model to analyse the impact of different sources of error that arise in
experiments on reliability, performance and correctness of the computation. The model
can be used to support the design and verification of DNA walker circuits.
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2 Computational Potential of DNA Walker Circuits

In this section we explore the computational potential of DNA walker systems. We fo-
cus on deterministic Boolean function evaluation and call the resulting constructions
DNA walker circuits. We begin by defining a model of computation that makes explicit
the underlying assumptions that characterize the DNA walker systems considered here.
These assumptions are consistent with current published experimental systems: in par-
ticular, we do not explore the potential for multiple walkers to interact within the same
circuit. However, we do consider the potential consequences for parallel computation.

2.1 A Model of Computation for DNA Walker Circuits

A DNA walker circuit is composed of straight, undirected, tracks (consecutive anchor-
ages), and gates (track junction points) that connect at most three tracks. A gate can
have at most one Boolean guard for each track that it connects. A particular guard
is implemented using one or more blocking strands that share a common toehold se-
quence; distinct guards use distinct toehold sequences. A track adjacent to a gate is
blocked if it has a guard that evaluates to false — its unblocking strands are not added
to solution — and is unblocked otherwise. For example, Fig. 1 depicts a circuit of a
single gate connecting three tracks. The track ending with the anchorage marked with
the red fluorophore (top right of panel 1) has the Boolean guard X, while the track
ending with the anchorage marked with the green fluorophore has the Boolean guard
—X. Panel 2 of Fig. 1 shows that the path to the green fluorophore is unblocked when
=X evaluates to true (i.e., the unblocking strands for =X are added to solution). In this
case, X evaluates to false and the path to the red fluorophore remains blocked (i.e., the
unblocking strands for X are not added to solution). We define a fork gate as having
at most one input track, and exactly two guarded output tracks. Each circuit has one
source — a fork gate with no input track denoting the initial position of a walker. A join
gate with an output track has at most two guarded input tracks. A join gate with no
output track is a sink and has at most three (unguarded) input tracks. Each circuit has
one or more true sinks and one or more false sinks.

In a circuit C with Boolean guards over n variables, a variable assignment A for
C is a truth assignment of those n variables. Consider any DNA walker circuit C and
variable assignment A for C. Let C[A] denote the set of reachable paths originating
from the source of C, after all guards are evaluated as blocked or unblocked, under
assignment A. We say that C is deterministic under assignment A if there is exactly
one path from the source to a sink in C[A]. Note that this definition of determinism
precludes the possibility of a deadlock, (i.e., when no path from the source can reach
a sink). Let VALUE (C[A]) be the output value of the circuit under assignment A (i.e.,
whether the reachable sink is a true sink or a false sink). Circuit C is deterministic if it
is deterministic under all possible variable assignments.

A circuit set S, consisting of one or more unconnected circuits, is deterministic if
and only if VALUE (C;[A]) = VALUE (C;[A4]), for each C;,C; € S, under any possible
assignment A. Let VALUE (S[A]) be the value of S under assignment A. The size of
S, denoted by SIZE(S), is the total count of component gates.! We define the worst

! We do not investigate circuit area in this paper.



34 F. Dannenberg et al.

case fime of a computation in S, denoted by TIME (S), as the longest reachable path
from a source to a sink. This notion of time captures the ability of multiple walkers to
simultaneously traverse disjoint paths (one per unconnected circuit).

Let S[A] denote the set of reachable paths in S under assignment A (one per uncon-
nected circuit). Given a circuit C; € S, we say that a gate G € C; is reachable in C;[A]
(equivalently S[A)) if there exists an unblocked path from the source of C; to G. Note
that, if every gate is reachable, this implies that every output track of a gate can be tra-
versed under some variable assignment. We call gates where this is not true redundant.
We will reason about circuit sets where all gates are reachable and non-redundant under
some variable assignment. When this is not the case, the circuit set can be simplified to
one that is logically equivalent.

2.2 Reporting Output in DNA Walker Circuits

Output of a DNA walker circuit can be reported with the use of different coloured
(spectrally resolvable) fluorophores and also quenchers. If a walker carries a quencher
cargo, then it has the potential to decrease one of a number of different fluorescent
signals from fluorophores positioned at the circuit sinks. This scenario is illustrated in
Fig. 2 (Left). In a circuit that decides a Boolean function, a single, quenching, walker
can only decrease the signal of a particular colour (corresponding to a particular flu-
orophore) by an amount that is inversely proportional to the number of sinks labelled
with that same colour. Accurate output reporting could be problematic in larger circuits

Y -Y Y -Y Y -Y Y -Y Y -Y Y -Y Y -Y Y -Y
| B :' ; f ; [ ; 2 [e]
f f f t t f f t t f f t t f
|:| track @ join gate E gionliured al.:lel?ecrhing

labeled hi coloured

Fig. 2. Reporting Boolean decisions with DNA walker circuits. (Left) A quenching walker with
red fluorophores labelling false sinks and green fluorophores labelling true sinks. A drop in signal
for one colour indicates the truth value of the circuit. However, the signal drop is inversely propor-
tional to the number of sinks of the same colour. (Center) A green coloured walker and quenching
true sinks. When the circuit evaluates to true the green signal is fully suppressed. However, the
fluorescence output from this circuit cannot distinguish between an incomplete computation and
a false one. (Right) Two parallel copies of the circuit, with different fluorophores labelling the
walkers and with quenching true sinks in one and quenching false sinks in the other: the compu-
tation is complete and unambiguously reported when one colour is suppressed.
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with many sinks. We will therefore focus only on reporting strategies that fully sup-
press a particular colour. Rather than carrying a quencher, a walker instead carries a
fluorophore of a single colour and either all true sinks or all false sinks are labelled with
quenchers. An example with quenching true sinks is shown in Fig. 2 (Center). This cir-
cuit can fully suppress the fluorophore signal when it evaluates to true, regardless of its
size. However, this is a one-sided reporting strategy as one cannot distinguish between
the case of an incomplete computation or one evaluating to false. As illustrated in Fig. 2
(Right) this shortcoming can be addressed by using two circuits in parallel with each
using a one-sided reporting strategy. Each of the two (otherwise identical) circuits uses
a different coloured walker: one has quenching false sinks and the other quenching true
sinks. In this circuit set, one colour will be fully suppressed when it is true, the other
when it is false, and neither will be suppressed until the computation completes.

2.3 Deterministic Fork and Join Gates in DNA Walker Circuits

If all gates in a circuit set S are deterministic, it follows that S is deterministic. The
following theorem shows that deterministic fork gates must have output guards that are
negations of each other.

—X
X
« Y
Y
A
Yl Ay
S(XVYVZ)
(Xv\;(vZ) (AA—-BAC)\:/(—-XAYAZ)
(@) (b)

Fig. 3. (a) A connectivity graph of a DNA walker circuit to evaluate the disjunction (X VYV Z).
There are two output tracks: one when the circuit evaluates to true, the other when it evaluates to
false. The resulting path when X = Y = f and Z = ¢ is shown highlighted. (b) Two conjunction
circuits are composed into the disjunction (AA=BAC)V (=X AY A Z). Two source nodes (two
walkers) are used to evaluate clauses in parallel. No assignment of guards to the join gate labelled
J can ensure that this circuit is deterministic. This is evident when A = C =Y = Z =t and
B=X=f.

Theorem 1. A fork gate in a DNA walker circuit is deterministic if and only if there
exists some guard G such that the left output track is guarded by G and the right is
guarded by —G.
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Proof. If neither output track is guarded, then any path that can reach the gate could be
extended via the left or the right output track and the gate would not be deterministic.
Similarly, this is true when only one output track is guarded and the guard evaluates
to false. (If the fork gate is only reachable when the single output guard evaluates to
true, then the gate is redundant as the output track with the guard is never used.) Thus,
consider when each output track is guarded and let the left output have guard Gz, and the
right have guard Gg. Note that G, # G as otherwise any path that reaches the gate
will result either in a deadlock — when both evaluate to false — or the path could be
extended via the left or the right output tracks — when both evaluate to true. Consider
any path p that can reach the gate and the case when G, evaluates to true and G to
false. It follows that, before reaching the gate, p must not traverse a track guarded by
=G, nor by G g. Since the gate is non-redundant, p must also be able to reach the gate
when G, evaluates to false and G i to true. It follows that, before reaching the gate, p
must not traverse a track guarded by G, nor by =G . Therefore, path p is independent
of the variables affecting guards G, and Gg. Thus, there exists a variable assignment
such that any path reaching the gate will result in a deadlock, or can be extended via
both output tracks, unless G = —-GRg. a

Given any Boolean function f : {0,1}™ — {0, 1}, there exists a deterministic DNA
walker circuit set S that can evaluate f, under any assignment to its n variables, such
that TIME (S) = O(n). One construction is to simply form a canonical binary deci-
sion tree over some fixed order of the n variables. However, in such a construction
SIZE(S) = O(2™). It is natural to consider more space efficient representations to
evaluate f, such as binary decision diagrams (BDDs) [4]. In particular, reduced or-
dered BDDs are capable of representing some Boolean functions in a compressed form
that can be exponentially smaller than its canonical binary decision tree representation.
Like walker circuits, BDDs have a unique source. Unlike general BDDs, DNA walker
circuits are necessarily planar. Either we are limited to considering planar BDD rep-
resentations or additional fork and join nodes must be added to a BDD representation
when realising it as a walker circuit. A significant difference, however, is that BDDs
form directed acyclic graphs while tracks in a DNA walker circuit are undirected. Con-
sider the case when a walker reaches a join gate via its left input track. Unless the right
input track is blocked, the walker is equally likely to continue on the right input track as
it is on the output track. Additional steps are necessary to compensate for the undirected
nature of tracks in walker circuits.

Unlike fork gates, it is not obvious whether all join gates can be made deterministic.
Theorem 2 characterizes both the necessary and sufficient conditions: a deterministic
join of two disjoint sets of paths, one for each input track, is only possible if they
were previously “forked” on some variable X (i.e., in one set all paths traverse an
edge guarded by X and in the other set all traverse an edge guarded by —X). This
property is exemplified by the contrast between the disjunction circuit of Fig. 3(a) and
the disjunction of two conjunctions circuit as shown in Fig. 3(b). In the latter, two
walkers are used in an attempt to parallelize the evaluation. However, as the clauses do
not have literals over a common variable, there are no guards that can be assigned to

% Tt is not a necessary condition that the two disjoint sets of paths reaching the join were forked
by a common gate, only that they can be partitioned based on the value of some variable.



DNA Walker Circuits: Computational Potential, Design, and Verification 37

the join gate labeled J to ensure the circuit is deterministic. Note that this limitation
is not caused by the restricted topology of walker circuits (i.e., their layout on a planar
surface), but rather by the property that their tracks are undirected.

Theorem 2. A join gate in a DNA walker circuit is deterministic if and only if there
exists some guard G such that the left input track is guarded by G, the right by =G and,
prior to reaching those guards, all paths that can reach the left input must traverse a
track guarded by G and all paths that can reach the right must traverse a track guarded
by -G.

Proof. (= if) Suppose the left input track is guarded by G, the right by =G and, prior
to reaching those guards, all paths that can reach the left input must traverse a track
guarded by G and all paths that can reach the right must traverse a track guarded by
—(@. There are two cases to consider. Suppose G evaluates to true. Then, no path can
reach the right input since, by the assumption, those paths must traverse a track guarded
by =G prior to reaching the gate. It follows that all paths that can reach the gate when
G evaluates to true must be to the left input. Furthermore, as the right input is guarded
by =G, those paths can only be extended via the output of the gate. The other case (G
evaluates to false) is symmetric. Furthermore, as the guards are negations of each other,
they cannot simultaneously evaluate to false and cause a potential deadlock.

(< only if) Let Gz, and G be the guards of the left and right inputs, respectively.
(If one or more of the input tracks is unguarded, then the gate cannot be deterministic
when both are reachable by at least one path.) First, consider all paths that can reach
the left input, guarded by G .. It must simultaneously be true that none of those paths
(i) traverse a track guarded by —~G, and (ii) all of those paths traverse a track guarded
by =G R. If condition (i) is not satisfied, then there would exist a path that traverses a
track guarded by =G, and, to extend past the join gate, must traverse another guarded
by G'1.. As this is not possible, the path would end in a deadlock and the gate would not
be deterministic. If condition (ii) is not satisfied then there would exist some path p that
does not traverse a track guarded by =G g, but may possibly traverse a track guarded
by G'r. In this case, there exists a variable assignment where G, and all other guards
on path p, evaluate to true. With such a variable assignment, path p could be extended
via the output track or the right input track. Thus, condition (ii) must also be satisfied,
as otherwise the gate would not be deterministic. The conditions (and the argument that
both are necessary) when considering all paths that can initially reach the right input,
guarded by G i, are symmetric.

The sufficiency argument (= if) shows the gate is deterministic when G, = -Gg. It
remains to show it is not deterministic otherwise. First, consider the consequence when
both G, and G g evaluate to true. By condition (ii) all paths leading to the left (right)
input traverse a track guarded by =G (—Gp). In this case, no paths can reach the gate.
Recall that the gate is non-trivial and therefore each input is reachable by at least one
path. Thus, consider when both G, and G'r evaluate to false. The conditions permit that
paths can reach the gate; however, if any path does it will deadlock as both inputs to the
gate are blocked. Thus, for all paths that can reach the gate, it will be deterministic only
when G, = -Gp. O
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2.4 Evaluating Boolean Formulas with DNA Walker Circuits

Despite the shortcomings of join gates in current DNA walker circuits, it is not the case
that Boolean formulas must be evaluated using a circuit forming a binary decision tree.
Any Boolean formula can be represented in one of its canonical forms. We will focus
on conjunctive normal form (CNF) which is a single conjunction of clauses, where each
clause is a disjunction over literals. A formula in CNF is said to be k-CNF if the largest
clause has size k. Using a standard transformation, a Boolean formula in k-CNF with
at most  total literals can be converted to a 3-CNF formula over O(!) variables, with at
most O(1) clauses (each having at most 3 literals). As such, we will reason exclusively
about circuits to evaluate 3-CNF formulas.

Constructing a walker circuit to represent a formula in 3-CNF with m clauses is
straightforward. Each clause can be represented by the disjunction circuit of Fig. 3(a).
The source of the circuit will be the first fork gate of the first clause. The output track
signalling the i-th clause is satisfied is connected to the input track of clause ¢ + 1.
Thus, the walker will only reach the single true sink of the circuit (output from clause
m) if the formula is satisfied for that particular variable assignment. To ensure that both
true and false signals can be reported deterministically, we use the reporting strategy
depicted in Fig. 2 (Right) which employs two parallel copies of the circuit, each using
different coloured walkers and different quenching sinks.

Theorem 3. Let F be any 3-CNF Boolean formula with m clauses. There exists a DNA
walker circuit set S, with SIZE(S) = ©(m) and TIME(S) = O(m), such that given any
variable assignment A for F, VALUE (S[A]) is the truth value of F under assignment
A.

Proof. The construction is described in Section 2.4 and it is easy to see that the circuit
is deterministic and that it correctly reports the truth value of F under assignment A.
What remains is to bound the circuit size and worst case time. The construction uses a
set of two circuits: Cr and Cr. Consider the circuit C used to evaluate if F is true under
assignment A. There are m clauses and each is simulated by a disjunction circuit of size
O(1). These circuits are composed in series to form Cr. Therefore, SIZE(Cr) = ©(m)
and TIME(Cy) = O(m). The arguments are the same for circuit Cr and, as both are
evaluated in parallel, the claim follows. O

While the construction of Theorem 3 can represent any Boolean formula, and some
in exponentially less space than a binary decision tree, the resulting circuit set is formula
specific. Given the effort of creating DNA walker circuits, a more uniform circuit— one
capable of evaluating many Boolean functions — is worth exploring. As with silicon
circuits, we can construct a uniform circuit to evaluate any 3-CNF formula, under any
variable assignment, up to some bound on the number of variables. Each variable can be
present in a clause as either a positive or negative literal, but not both. (The circuit can
be modified to handle this case if necessary.) Therefore, there are at most 23 (;‘) unique
clauses in any 3-CNF Boolean formula over n variables, and also for any formula over
m < n variables. In this general circuit, we supplement each possible clause with an
initial fork gate guarded on the condition of the clause being active or inactive in the
particular formula being evaluated. If it is inactive, the walker can pass through to the
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output track denoting true, without traversing guards for the literals of the clause. Note
that this only increases the size of each clause by a constant.

Corollary 1. There exists a DNA walker circuit set S, with SIZE(S) = O(n?) and
TIME(S) = O(n?), that can evaluate any 3-CNF Boolean formula over m < n vari-
ables under any variable assignment.

A 3-CNF formula with m clauses can be evaluated in polylogarithmic time (in m) us-
ing a silicon circuit in a straightforward manner: each clause can be evaluated in parallel
and those results can be combined using a binary reduction tree of height O(log m)—
only if all clauses are satisfied will the root of the reduction tree output true. Is the same
possible in DNA walker circuits? Unfortunately, this is not the case in general. Such a
circuit would require a new kind of join gate, outside of our current model of compu-
tation, to perform a conjunction of multiple walkers — one walker leaves the gate only
after all input walkers have arrived. Parallel evaluation of circuits representing formulas
in disjunctive normal form (DNF) does not fair better. Consider the case of a DNF for-
mula with m clauses where clause m — 1 and clause m have no literals over a common
variable. By Theorem 2, a join gate connecting the circuits for these clauses cannot be
deterministic. An example of this situation is given in Fig. 3(b).

3 Design and Verification of DNA Walker Circuits

We have so far assumed DNA walker circuits to work perfectly. In a real experiment
various errors can occur, for example, the walker may release from the track, or a block-
ade can fail to block an anchorage. In this section, we analyse the reliability and per-
formance of DNA walker circuits using probabilistic model checking. We develop a
continuous-time Markov chain model, based on a variety of DNA walker experiments
from [2, 14, 15], and analyse it against quantitative properties such as the probability
of the computation terminating or expected number of steps taken until termination.
We use the PRISM model checker [8], which accepts models described in a scripted
language and properties in the form of temporal logic. For example, if we label all
states of the model where a walker quenches any fluorophore by “finished”, then the
query P—»[ FIT"T! finished] yields the probability of all paths that eventually reach a
state where a walker has quenched a fluorophore (in other words, the computation ter-
minated) by time 7. A custom tool was developed to generate PRISM model scripts
with matching track-layout graphs. Different configurations of tracks are studied: linear
tracks are considered in Fig. 4 (Top), while branched tracks are used in Fig. 5 and Fig. 6.
We use the results of experiments on linear (Fig. 4) and single-branched tracks to estab-
lish model parameters, and match model predictions with observations on double-layer
tracks to evaluate the quality of our model.

Experiments show that the walker can step onto anchorages that are fixed as far away
as 19 nm. We assume non-zero rates for the walker to step onto any intact anchorage
within 24 nm distance. This range was chosen by taking into account the lengths of the
empty anchorage and walker-anchorage complex, estimated around 15 nm and 11 nm
respectively.
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Fig.4. Top: A small linear track of 8 anchorages with fluorophores on both the second and
last anchorage. Experiments were performed with one or more anchorages omitted [15]. Right:
Experimental results (reproduced with permission from the authors). The walker hardly reaches
the final anchorage when anchorage 7 is removed, due to the double penalty of a longer final step
and the mismatch in the final anchorage. Left: Model results. Dotted lines: Alternative model
where the walker can step onto already-cut anchorages with rate k, = ks /30.

A step taken by the walker corresponds to a single transition in the Markov chain,
although the real stepping process is more complex, as depicted in Fig. 1. Assume that
the stepping rate k depends on distance d between anchorages and some base stepping
rate ks. Denote by d, = 6.2 nm the average distance between anchorages in the ex-
periment shown in Fig. 4. Denote by dj; = 24 nm the maximal interaction distance
discussed earlier. Based on previous experimental estimates of [15], we fix the stepping
rate k as:

ks = 0.009s"!  whend < 1.5d,

§— ks /50 when 1.5d, < d < 2.5d, 0
) ks /100 when 2.5d, < d < dy;
0 otherwise

These rates define a sphere of reach around the walker-anchorage complex, allowing
the walker to step onto an uncut anchorage when it is nearby. In Fig. 5 the sphere
of reach is depicted to scale with walker circuits. There are two exceptions. Stepping
from the initial anchorage and stepping onfo the final anchorage occur at lower rates.
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The domain complementary to the walker on the initial anchorage is two bases longer
than the corresponding domain of a regular anchorage. Stepping from the initial an-
chorage was reported to happen 3 x more slowly: this is incorporated in the model. The
final anchorage includes a mismatched base that prevents cutting by the nicking en-
zyme. Based on the experimental data, we fit a tenfold reduction for the rate of stepping
onto the final absorbing anchorage (Fig. 4).

Three types of interaction that are known to occur are omitted from the model: all
three could be incorporated in future. Firstly, a rate of ks/5000 is reported [15] for
transfer of the walker between separate tracks built on different DNA origami tiles.
Transfer between tracks could be eliminated by binding the tiles to a surface, thus keep-
ing them apart. Secondly, the walker can move between infact anchorages in the ab-
sence of the nicking enzyme with a rate of ~ k;/13 [15]. With the enzyme present,
the walker spends little time attached to an intact anchorage, as enzymatic activity is
relatively fast.> Therefore we remove the rate altogether. In our model, the anchorage
is cut as soon as the walker attaches to it. Thirdly, the walker can step backward onto
cut anchorages. This requires a blunt-end strand-displacement reaction which is known
to be slow relative to toehold-mediated displacement [17]. A variant of the model with
a backward rate k = ks/30 is shown in dotted lines in Fig. 4 (Left). In this case the
model predicts significant quenching of fluorophore F2 at late times by walkers whose
forward motion is obstructed by omission of one or more anchorages: this does not
match experimental data. A reduced rate k, = k/500 (not plotted) has a similar effect.

The time-dependent responses of fluorescent probes F2 and F8 shown in Fig. 4 (Left)
are predicted by the Markov chain model using the rate parameters discussed above
without any further fitting: they correspond well to the experimental data.

An additional parameter is needed to model branched tracks (Fig. 5(a)). We introduce
a failure rate for the anchorage blocking mechanism which is assumed to be the same
for all junctions. We infer a failure rate of 30% by fitting to the results of the single-layer
branched-track experiment illustrated in Fig. 5 [14].

3.1 Model Results

Having used experiments on straight tracks and with a single layer of branching to de-
termine the parameters of the model, we use the two-layer junction experiments shown
in Fig. 5(c) to evaluate its quality. The model captures essential features of the walker
behaviour and is reasonably well aligned with experimental data. In the model, not all
walkers reach an absorbing anchorage by time 7" = 200min, although the predicted
quenching is much higher than observed. The reason for this discrepancy is not easily
determined and motivates further study.

We exercise the model by model checking them against temporal logic queries aimed
at quantifying the reliability and performance of the computation. We note that not
all the walkers that finish actually do quench the intended signal. In both the model
and the experiments we can identify a difference between paths that follow the side
of the track (paths LL and RR), and paths that enter the interior (paths RL and LR):

3 The cutting rate for enzymatic activity was measured at 0.17s~*, for which the enzyme bind-
ing to the DNA is considered not a rate limiting step [3].
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Fig. 5. Top: Track topology for single-layer (a) and double-layer (c,d) decision tracks. Initial in-
dicates the initial anchorage, Final indicates absorbing anchorages, and L, L, R and R’ indicate
anchorages that can be blocked by input. Coloured circles (b) indicate the range of interaction
of the walker to scale. Bottom: Experimental results [14] compared with results from the model.
Single layer track: R means a single blockade on the left, R means a two-anchorage blockade on
the left, L/R means single blockades on both the left and right. Double layer track: RL means an-
chorages labelled L and R’ are blocked, so that the walker goes right on the first decision, and left
on the second. Each blockade is of two consecutive anchorages. All properties are given at time
T = 200 min. Finishes, P=-[F (771 finished ], is the probability that a walker quenches any fluo-
rophore by time T'; Correct, P—-[FT"T!(“finished-correct”|“finished”)], is the probability that a
finished walker quenches the correct fluorophore by time T'; Deadlock, P—-[F (7T deadlock ], is
the probability for the walker to get stuck prematurely by time 7", with no intact anchorage within
reach; and Steps, R—> (steps) [C=T], indicates the expected number of steps taken by time 7".

the probability of a correct outcome for the side paths is greater. This is explained
by leakage transitions between neighbouring paths, for example, see the red dotted
line in Fig. 5(d). Walkers on an interior path can leak to both sides, but a path that
follows the side can only leak to one side. This effect can also be shown by inspecting
paths. By using the property P—;[ correct-path U<7 finished-correct |, which denotes
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Fig. 6. Performance analysis for a logic track expressing the XOR formula (X & Y'). Properties
as in Fig. 5.

the probability that a walker stays on the path until it quenches the correct fluorophore
by time 7', we can reason about the likelihood of the walker deviating from the intended
path. For the double-layer track in Fig. 5(d), we infer that the probability of staying on
the intended path and reaching the absorbing anchorage within 200 minutes is 55% for
paths LR and RL, and 58% for paths LL and RR. This shows that walkers on interior
paths are indeed more likely to deviate from the intended path than walkers on paths
that follow the sides.

The double-layer track can be optimized by reducing the probability of leakage from
the intended path. By decreasing the proximity of off-path anchorages and reducing the
track length, both the proportion of walkers finishing and correctness are increased (see
Fig. 5(d)). The asymmetry between paths (LL, RR vs. LR, RL) also disappears.

Smaller tracks are not always better. In Fig. 6 several variants of a XOR-logic cir-
cuit are shown. The ‘small’, ‘normal” and ‘large’ variants all use a total of four blocker
strands per decision node. The large track is approximately as correct as the normal
sized track, but a lower proportion of walkers reach an absorbing anchorage. The small
track has a greater proportion of walkers that finish than the normal sized track, but it
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is considerably less reliable. We note that the walker has a large range of interaction,
which causes leakage and affects the reliability of the computation.

We infer that larger circuits are more susceptible to deadlock, based on Fig. 5 and 6.
Deadlock occurs when a walker is isolated on a non-absorbing anchorage with no intact
anchorage in range. From a computational standpoint deadlock is undesirable, as it is
impossible to differentiate a deadlocked process from a live process.

The performance of PRISM [8] depends on the model checking method. For small
tracks as in Fig. 4, verification by PRISM can be achieved using uniformisation with
a precision of 10~¢ within 10ms on common hardware [1]. Properties for the single
layer circuit in Fig. 5 were model checked within 3s to a precision of < 1076 using fast
adaptive uniformisation [6]. For the dual-layer track in the same figure, single-threaded
simulation of 10° paths, each of which is checked against the property, yields a 95%
confidence interval of size < 0.4% within 23s [1].

4 Conclusions

The capability for an autonomous DNA walker to navigate a programmable track has
been recently demonstrated [14]. We have considered the potential for this system to
implement DNA walker ‘circuits’. Working from experimental observations, we have
developed a simple model that explains the influence of track architecture, blockade
failure and stepping characteristics on the reliability and performance of walker cir-
cuits. The model can be further extended as more detailed experimental measurements
become available. Model checking enables analysis of path properties and quantitative
measures such as the expected number of steps, which cannot be established using tra-
ditional ODE frameworks. A major advantage of our approach is that circuit designs
can be manipulated to study the properties of variant architectures.

We have shown that walker circuits can be designed to evaluate any Boolean func-
tion. In the experimental system we have considered, paths within a circuit can only
be joined under specific conditions, resulting in a number of theoretical consequences.
One motivation for implementing circuits with a DNA walker system, instead of a DNA
strand displacement system (DSD), is the potential for faster reaction times due to spa-
tial locality. However, the walker system we have considered has severely limited po-
tential for parallel circuit evaluation using multiple walkers. As this is not an issue in
a DSD, it is the case that this walker system requires exponentially more time to com-
pute certain Boolean functions than a corresponding DSD. This is not necessarily true
of all walker systems. The problem arises in the system under consideration due to the
undirected nature of the tracks that are traversed by a walker.

Another autonomous walker system with directed tracks has been demonstrated [16]
and, in principle, could be extended to have programmable (directed) tracks. In ad-
dition to implementing circuits that could be evaluated efficiently by many walkers in
parallel, such a system could also benefit from well established design techniques to im-
prove overall circuit reliability [9]. Furthermore, current walker technology ‘destroys’
the track that is traversed. New mechanisms that can either replenish the track, or can
avoid ‘destroying’ it, will lead to reusable circuits. Finally, it would be interesting to ex-
plore the information processing capabilities of DNA walkers beyond circuit evaluation
and the potential for multiple interacting walkers to exhibit emergent behaviour.
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Abstract. This paper answers an open question of Chen, Doty, and
Soloveichik [5], who showed that a function f: N* — N is deterministi-
cally computable by a stochastic chemical reaction network (CRN) if and
only if the graph of f is a semilinear subset of N**!. That construction
crucially used “leaders”: the ability to start in an initial configuration
with constant but non-zero counts of species other than the k species
X1,..., X\ representing the input to the function f. The authors asked
whether deterministic CRNs without a leader retain the same power.

We answer this question affirmatively, showing that every semilinear
function is deterministically computable by a CRN whose initial config-
uration contains only the input species Xi,..., X, and zero counts of
every other species. We show that this CRN completes in expected time
O(n), where n is the total number of input molecules. This time bound is
slower than the O(log® n) achieved in [5], but faster than the O(nlogn)
achieved by the direct construction of [5].

1 Introduction

In the last two decades, theoretical and experimental studies in molecular pro-
gramming have shed light on the problem of integrating logical computation
with biological systems. One goal is to re-purpose the descriptive language of
chemistry and physics, which describes how the natural world works, as a pre-
scriptive language of programming, which prescribes how an artificially engi-
neered system should work. When the programming goal is the manipulation of
individual molecules in a well-mixed solution, the language of chemical reaction
networks (CRNs) is an attractive choice. A CRN is a finite set of reactions such
as X +Y — X 4+ Z among abstract molecular species, each describing a rule for
transforming reactant molecules into product molecules.

CRNs may model the “amount” of a species as a real number, namely its
concentration (average count per unit volume), or as a nonnegative integer (to-
tal count in solution, requiring the total volume of the solution to be specified
as part of the system). The latter integer counts model is called “stochastic”
because reactions that discretely change the state of the system are assumed
to happen probabilistically, with reactions whose reactants have high molecular
counts more likely to happen first than reactions whose molecular counts are
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smaller. The computational power of CRNs has been investigated with regard
to simulating boolean circuits [12], neural networks [10], digital signal process-
ing [11], and simulating bounded-space Turing machines with an arbitrary small,
non-zero probability of error with only a polynomial slowdown [3]. CRNs are even
efficiently Turing-universal, again with a small, nonzero probability of error over
all time [13]. Certain CRN termination and producibility problems are undecid-
able [8,16], and others are PSPACE-hard [15]. It is also difficult to design a CRN
to “delay” the production of a certain species [6,7]. Using a theoretical model of
DNA strand displacement, it was shown that any CRN can be transformed into a
set of DNA complexes that approximately emulate the CRN [4]. Therefore even
hypothetical CRNs may one day be reliably implementable by real chemicals.

While these papers focus on the stochastic behaviour of chemical kinetics,
our focus is on CRNs with deterministic guarantees on their behavior. Some
CRNs have the property that they deterministically progress to a correct state,
no matter the order in which reactions occur. For example, the CRN with the
reaction X — 2Y is guaranteed eventually to reach a state in which the count
of Y is twice the initial count of X, i.e., computes the function f(z) = 2z,
representing the input by species X and the output by species Y. Similarly, the
reactions X7 — 2Y and X5 + Y — &, under arbitrary choice of sequence of the
two reactions, compute the function f(x1,z2) = max{0,2x; — z2}.

Angluin, Aspnes and Eisenstat [2] investigated the computational behaviour
of deterministic CRNs under a different name known as population protocols [1].
They showed that the input sets S C N* decidable by deterministic CRNs (i.e.
providing “yes” or “no” answers by the presence or absence of certain indicator
species) are precisely the semilinear subsets of N¥.1 Chen, Doty, and Solove-
ichik [5] extended these results to function computation and showed that pre-
cisely the semilinear functions (functions f whose graph { (x,y) € N¥*! | f(x) =
v } is a semilinear set) are deterministically computable by CRNs. We say a func-
tion f: NF — N is stably (a.k.a., deterministically) computable by a CRN C if
there are “input” species X1, ..., Xy and “output” species Y7, ..., Y] such that, if
C starts with x1, ...,z copies of Xy, ..., X respectively, then with probability
one, it reaches a count-stable configuration in which the counts of Yi,...,Y; are
expressed by the vector f(x1,...,zx), and these counts never again change [5].

The method proposed in [5] uses some auxiliary “leader” species present ini-
tially, in addition to the input species. To illustrate their utility, suppose that
we want to compute function f(z) =z + 1 with CRNs. Using the previous ap-
proach, we have an input species X (with initial count z), an output species Y
and an auxiliary “leader” species L (with initial count 1). The following reactions
compute f(x):

X =Y
L—Y

! Semilinear sets are defined formally in Section 2. Informally, they are finite unions
of “periodic” sets, where the definition of “periodic” is extended in a natural way to
multi-dimensional spaces such as N*.
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However, it is experimentally difficult to prepare a solution with a single copy
(or a small constant number) of a certain species. The authors of [5] asked
whether it is possible to do away with the initial “leader” molecules, i.e., to
require that the initial configuration contains initial count x1, x2, ..., 2% of input
species X1, Xa,..., X, and initial count 0 of every other species. It is easy to
“elect” a single leader molecule from an arbitrary initial number of copies using
a reaction such as L + L — L, which eventually reduces the count of L to 1.
However, the problem with this approach is that, since L is a reactant in other
reactions, there is no way in general to prevent L from participating in these
reactions until the reaction L + L — L has reduced it to a single copy.

Despite these difficulties, we answer the question affirmatively, showing that
each semilinear function can be computed by a “leaderless” CRN, i.e., a CRN
whose initial configuration contains only the input species. To illustrate one idea
used in our construction, consider the function f(x) = x 4+ 1 described above.
In order to compute the function without a leader (i.e., the initial configuration
has = copies of X and 0 copies of every other species), the following reactions
suffice:

X —>B+2Y (1.1)
B+B—-B+K (1.2)
Y+ K- o (1.3)

Reaction 1.1 produces x copies of B and 2x copies of Y. Reaction 1.2 consumes all
copies of B except one, so reaction 1.2 executes precisely x — 1 times, producing
x — 1 copies of K. Therefore reaction 1.3 consumes x — 1 copies of output species
Y, eventually resulting in 22 — (z — 1) = x + 1 copies of Y. Note that this
approach uses a sort of leader election on the B molecules.

In Section 3, we generalize this example, describing a leaderless CRN con-
struction to compute any semilinear function. We use a similar framework to
the construction of [5], decomposing the semilinear function into a finite union
of affine partial functions (linear functions with an offset; defined formally in
Section 2). We show how to compute each affine function with leaderless CRNs,
using a fundamentally different construction than the affine-function computing
CRNs of [5]. This result, Lemma 3.1, is the primary technical contribution of
this paper. Next, in order to decide which affine function should be applied to a
given input, we employ the leaderless semilinear predicate computation of An-
gluin, Aspnes, and Eisenstat [3]; this latter part of the construction is actually
identical to the construction of [5], but we include it because our time analysis
is different.

Let n = ||x]| = ||x]|1 = Zle x(7) be the number of molecules present initially,
as well as the volume of the solution. The authors of [5] showed, for each semilin-
ear function f, a direct construction of a CRN that computes f (using leaders)
on input x in expected time O(nlogn). They then combined this direct, error-
free construction in parallel with a fast (O(log®n)) but error-prone CRN that
uses a leader to compute any computable function (including semilinear), using
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the error-free computation to change the answer of the error-prone computation
only if the latter is incorrect. This combination speeds up the computation from
expected time O(nlogn) for the direct construction to expected time O(log” n)
for the combined construction.

Since we assume no leaders may be supplied in the initial configuration, and
since the problem of computing arbitrary computable functions without a leader
remains a major open problem [3], this trick does not work for speeding up our
construction. However, we show that with some care in the choice of reactions,
the direct stable computation of a semilinear function can be done in expected
time O(n), improving upon the O(nlogn) bound of the direct construction of [5].

2 Preliminaries

Given a vector x € N*_let ||x|| = ||x||, = Zle |x(7)|, where x(7) denotes the ith
coordinate of x. A set A C N*¥ is linear if there exist vectors b, uy, ..., u, € NF
such that

A={b+nu +...+npuy | n1,...,np, €N }.

A is semilinear if it is a finite union of linear sets. If f : N¥ — N' is a function,
define the graph of f to be the set { (x,y) € N* x N/ ’ f(x) =y }. A function
is semilinear if its graph is semilinear.

We say a partial function f : N¥ ——s N! is affine if there exist kl rational

numbers ay 1,...,ar; € Q and [+k nonnegative integers by, ...,b;,¢c1,...,c €N
such that, if y = f(x), then for each j € {1,...,1}, y(j) = b; + Zle a; ;(x(i) —
¢i), and for eachi € {1,...,k}, x(i)—¢; > 0. In matrix notation, there exist a kx!

rational matrix A and vectors b € N! and ¢ € N¥ such that f(x) = A(x—c)+b.

This definition of affine function may appear contrived; see [5] for an expla-
nation of its various intricacies. For reading this paper, the main utility of the
definition is that it satisfies Lemma 3.2.

Note that by appropriate integer arithmetic, a partial function f : N¥ -—» N!

is affine if and only if there exist £kl integers ny1,...,n%,; € Z and 2/ 4 k non-
negative integers by,...,b;,¢1,..., ¢k, d1, ...,
d; € N such that, if y = f(x), then for each j € {1,...,i}, y(j) = b; +
dlj Zle n;,;(x(i) — ¢;), and for each i € {1,...,k}, x(¢) — ¢; > 0. Each d; may
be taken to be the least common multiple of the denominators of the rational
coefficients in the original definition. We employ this latter definition, since it is
more convenient for working with integer-valued molecular counts.

2.1 Chemical Reaction Networks

If A is a finite set (in this paper, of chemical species), we write N to denote
the set of functions f : A — N. Equivalently, we view an element ¢ € N4 as
a vector of |/A] nonnegative integers, with each coordinate “labeled” by an ele-
ment of A. Given X € A and ¢ € N4, we refer to c(X) as the count of X in c.
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We write ¢ < ¢’ to denote that ¢(X) < ¢/(X) for all X € A. Given ¢,c¢’ € N4,
we define the vector component-wise operations of addition ¢ + ¢’, subtraction
c—c/, and scalar multiplication nc for n € N. If A C A, we view a vector ¢ € N2
equivalently as a vector ¢ € N4 by assuming c¢(X) =0 for all X € A\ A.

Given a finite set of chemical species A, a reaction over A is a triple a =
(r,p,k) € N4 x N4 x RT, specifying the stoichiometry of the reactants and
products, respectively, and the rate constant k. If not specified, assume that
k =1 (this is the case for all reactions in this paper), so that the reaction o =
(r,p, 1) is also represented by the pair (r, p) . For instance, given A = {A, B,C},
the reaction A+2B — A+ 3C is the pair ((1,2,0),(1,0,3)). A (finite) chemical
reaction network (CRN) is a pair C = (A, R), where A is a finite set of chemical
species, and R is a finite set of reactions over A. A configuration of a CRN
C = (A, R) is a vector ¢ € N4, If some current configuration c is understood
from context, we write #X to denote c(X).

Given a configuration ¢ and reaction « = (r,p), we say that « is applicable
to c if r < ¢ (i.e., ¢ contains enough of each of the reactants for the reaction
to occur). If « is applicable to ¢, then write a(c) to denote the configuration
c+ p —r (i.e., the configuration that results from applying reaction « to c). If
¢’ = a(c) for some reaction a € R, we write ¢ —¢ ¢/, or merely ¢ — ¢’ when C
is clear from context. An ezecution (a.k.a., execution sequence) £ is a finite or
infinite sequence of one or more configurations & = (cg, c1, Co, . . .) such that, for
all i € {1,...,|€] — 1}, ci—1 — c;. If a finite execution sequence starts with ¢
and ends with ¢/, we write ¢ —% ¢/, or merely ¢ —* ¢/ when the CRN C is clear
from context. In this case, we say that ¢’ is reachable from c.

Turing machines, for example, have different semantic interpretations depend-
ing on the computational task under study (deciding a language, computing a
function, etc.). Similarly, in this paper we use CRNs to decide subsets of N* (for
which we reserve the term “chemical reaction decider” or CRD) and to com-
pute functions f : N¥ — N! (for which we reserve the term “chemical reaction
computer” or CRC). In the next two subsections we define two semantic inter-
pretations of CRNs that correspond to these two tasks. We use the term CRN to
refer to either a CRD or CRC when the statement is applicable to either type.

These definitions differ slightly from those of [5], because ours are specialized
to “leaderless” CRNs: those that can compute a predicate or function in which
no species are present in the initial configuration other than the input species.
In the terminology of [5], a CRN with species set A and input species set X' is
leaderless if it has an initial context o : A\ X — N such that o(S) = 0 for all
S € A\ X. The definitions below are simplified by assuming this to be true of
all CRNs.

We also use the convention of Angluin, Aspnes, and Eisenstat [2] that for a
CRD, all species “vote” yes or no, rather than only a subset of species as in [5],
since this convention is convenient for proving time bounds.
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2.2 Stable Decidability of Predicates

We now review the definition of stable decidability of predicates introduced by
Angluin, Aspnes, and Eisenstat [2].2 Intuitively, the set of species is partitioned
into two sets: those that “vote” yes and those that vote no, and the system sta-
bilizes to an output when a consensus vote is reached (all positive-count species
have the same vote) that can no longer be changed (no species voting the other
way can ever again be produced). It would be too strong to characterize deter-
ministic correctness by requiring all possible executions to achieve the correct
answer; for example, a reversible reaction such as A =B could simply be chosen
to run back and forth forever, starving any other reactions. In the more refined
definition that follows, the determinism of the system is captured in that it is
impossible to stabilize to an incorrect answer, and the correct stable output is
always reachable.

A (leaderless) chemical reaction decider (CRD) is a tuple D = (A4, R, X,7),
where (A, R) is a CRN, X' C A is the set of input species, and 7" C A is the set of
yes voters, with species in A\ 7 referred to as no voters. An input to D will be an
initial configuration i € N¥ (equivalently, i € N¥ if we write ¥ = {X1,..., X;}
and assign X; to represent the i’th coordinate); that is, only input species are
allowed to be non-zero. If we are discussing a CRN understood from context to
have a certain initial configuration i, we write #¢X to denote i(X).

We define a global output partial function @ : N4 --» {0, 1} as follows. &(c)
is undefined if either ¢ = 0, or if there exist Sy € A\ Y and S; € T such that
c(So) > 0 and c(S1) > 0. Otherwise, either (VS € A)(c(S) >0 = S e7)
or (VS € A)(c(S) >0 = S € A\7T); in the former case, the output &(c) of
configuration c is 1, and in the latter case, ¢(c) = 0.

A configuration o is output stable if (o) is defined and, for all ¢ such that
0 —* ¢, &(c) = #(0). We say a CRD D stably decides the predicate 1) : N¥ —
{0, 1} if, for any initial configuration i € N*, for all configurations ¢ € N4,i —* ¢
implies ¢ —* o such that o is output stable and ®(o) = (i). Note that this
condition implies that no incorrect output stable configuration is reachable from
i. We say that D stably decides a set A € NF if it stably decides its indicator
function.

The following theorem is due to Angluin, Aspnes, and Eisenstat [2]:

Theorem 2.1 ([2]). A set A C N* is stably decidable by a CRD if and only if
it is semalinear.

The model they use is defined in a slightly different way; the differences (and
those differences’ lack of significance to the questions we explore) are explained
in [5].

2 Those authors use the term “stably compute”, but we reserve the term “compute” to
apply to the computation of non-Boolean functions. Also, we omit discussion of the
definition of stable computation used in the population protocols literature, which
employs a notion of “fair” executions; the definitions are proven equivalent in [5].
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2.3 Stable Computation of Functions

We now define a notion of stable computation of functions similar to those above
for predicates. Intuitively, the inputs to the function are the initial counts of input
species X1,..., X, and the outputs are the counts of output species Y7,...,Y].
The system stabilizes to an output when the counts of the output species can no
longer change. Again determinism is captured in that it is impossible to stabilize
to an incorrect answer and the correct stable output is always reachable.

A (leaderless) chemical reaction computer (CRC) is a tuple C = (A, R, X, I'),
where (A, R) is a CRN, X' C A is the set of input species, I' C A is the set of
output species, such that YNI" = &. By convention, we let X = {X1, Xo, ..., Xk}
and I' = {¥1,Ys,...,Y;}. We say that a configuration o is output stable if, for
every c¢ such that o —* ¢ and every Y; € I', o(Y;) = c(Y;) (i.e., the counts of
species in I" will never change if o is reached). As with CRD’s, we require initial
configurations i € N* in which only input species are allowed to be positive. We
say that C stably computes a function f : N¥ — N if for any initial configuration
i € N¥ i »* ¢ implies ¢ —* o such that o is an output stable configuration
with f(i) = (o(Y1),0(Y2),...,0(Y})). Note that this condition implies that no
incorrect output stable configuration is reachable from i.

If a CRN stably decides a predicate or stably computes a function, we say the
CRN is stable (a.k.a., deterministic).

2.4 Kinetic Model

The following model of stochastic chemical kinetics is widely used in quantitative
biology and other fields dealing with chemical reactions between species present
in small counts [9]. It ascribes probabilities to execution sequences, and also
defines the time of reactions, allowing us to study the computational complexity
of the CRN computation in Section 3.

In this paper, the rate constants of all reactions are 1, and we define the kinetic
model with this assumption. The rate constants do not affect the definition
of stable computation; they only affect the time analysis. Our time analyses
remain asymptotically unaffected if the rate constants are changed (although the
constants hidden in the big-O notation would change). A reaction is unimolecular
if it has one reactant and bimolecular if it has two reactants. We use no higher-
order reactions in this paper.

The kinetics of a CRN is described by a continuous-time Markov process as
follows. Given a fixed volume v € R™ and current configuration c, the propensity
of a unimolecular reaction « : X — ... in configuration c is p(c, &) = ¢(X). The
propeunsity of a bimolecular reaction o : X +Y — ..., where X #Y, is p(c,a) =
C(X)UC(Y). The propensity of a bimolecular reaction a: X + X — ... is p(c, ) =
éc(x)(c(x)fl). The propensity function determines the evolution of the system
as follows. The time until the next reaction occurs is an exponential random
variable with rate p(c) = > . p(c,a) (note that p(c) = 0 if no reactions are
applicable to ¢). Therefore, the expected time for the next reaction to occur is

1

p(c)”
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The kinetic model is based on the physical assumption of well-mixedness valid
in a dilute solution. Thus, we assume the finite density constraint, which stip-
ulates that a volume required to execute a CRN must be proportional to the
maximum molecular count obtained during execution [14]. In other words, the
total concentration (molecular count per volume) is bounded. This realistically
constrains the speed of the computation achievable by CRNs. Note, however,
that it is problematic to define the kinetic model for CRNs in which the reach-
able configuration space is unbounded for some start configurations, because
this means that arbitrarily large molecular counts are reachable.?> We apply the
kinetic model only to CRNs with configuration spaces that are bounded for each
start configuration, choosing the volume to be equal to the reachable configura-
tion with the highest molecular count (in this paper, this will always be within
a constant multiplicative factor of the number of input molecules).

It is not difficult to show that if a CRN is stable and has a finite reach-
able configuration space from any initial configuration i, then under the kinetic
model (in fact, for any choice of rate constants), with probability 1 the CRN will
eventually reach an output stable configuration.

We require the following lemmas, whose proofs we omit in this extended
abstract.

Lemma 2.2. Let A= {A,..., A} be a set of species with the property that
they appear only in applicable reactions of the form A; — >, B;, where B; ¢ A.
Then starting from a configuration ¢ in which for all i € {1,...,m}, c(4;) =
O(n), with volume O(n), the expected time to reach a configuration in which
none of the described reactions can occur is O(logn).

Lemma 2.3. Let A= {A,..., A} be a set of species with the property that
they appear only in applicable reactions of the form A;+A; — Ap+) ", B, where
By ¢ A, and for all 4,5 € {1,...,m}, there is at least one reaction A, +A; — .. ..
Then starting from a configuration ¢ in which for all i € {1,...,m}, c(4;) =
O(n), with volume O(n), the expected time to reach a configuration in which
none of the described reactions can occur is O(n).

Lemma 2.4. Let C = {C1,...,Cy,} and A = {A4,...,4,} be two sets of
species with the property that they appear only in applicable reactions of the
form C; + A; — C; + Y, Bi, where B; ¢ A. Then starting from a configura-
tion ¢ in which for all ¢ € {1,...,m}, c¢(C;) = 2(n), and for all j € {1,...,p},
c(4;) = O(n), with volume O(n), the expected time to reach a configuration in
which none of the described reactions can occur is O(logn).

3 Leaderless CRCs Can Compute Semilinear Functions

To supply an input vector x € N¥ to a CRN, we use an initial configuration with
x(7) molecules of input species X;. Throughout this section, we let n = ||x||1 =

3 One possibility is to have a “dynamically” growing volume as in [14].
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Zle x(7) denote the initial number of molecules in solution. Since all CRNs we
employ have the property that they produce at most a constant multiplicative
factor more molecules than are initially present, this implies that the volume
required to satisfy the finite density constraint is O(n).

Suppose the CRC C stably computes a function f : N* --s N!. We say that C
stably computes f monotonically if its output species are not consumed in any
reaction.*

We show in Lemma 3.1 that affine partial functions can be computed in ex-
pected time O(n) by a leaderless CRC. For its use in proving Theorem 3.4, we
require that the output molecules be produced monotonically. If we used a di-
rect encoding of the output of the function, this would be impossible for general
affine functions. For example, consider the function f(z1,2z2) = 21 — 22 where
dom f ={ (x1,22) | 1 > x2 }. By withholding a single copy of X» and letting
the CRC stabilize to the output value #Y = x1 —x2 + 1, then allowing the extra
copy of X5 to interact, the only way to stabilize to the correct output value
r1 — T9 is to consume a copy of the output species Y. Therefore Lemma 3.1
computes f indirectly via an encoding of f’s output that allows monotonic pro-
duction of outputs, encoding the output value y(j) as the difference between the
counts of two monotonically produced species YjP and ch, a concept formalized
by the following definition.

Let f : N¥ ——5» N! be a partial function. We say that a partial function
f ‘NF > NP x N is a diff-representation of f if dom f = dom f and, for all
x € dom f, if (yp,yc) = f(x), where yp,yc € N!, then f(x) = yp — yc, and
yp = O(f(x)). In other words, f represents f as the difference of its two outputs
yp and yco, with the larger output yp possibly being larger than the original
function’s output, but at most a multiplicative constant larger.

The following lemma is the main technical result required for proving our main
theorem, Theorem 3.4. It shows that every affine function can be computed (via
a diff-representation) in time O(n) by a leaderless CRC.

Lemma 3.1. Let f : Nk ——» N! be an affine partial function. Then there is a
diff-representation f : I\}k -—> N x N of f and a leaderless CRC' that monoton-
ically stably computes f in expected time O(n).

Proof. If f is affine, then there exist kI integers nq1,...,nk; € Z and 2l + k
nonnegative integers by,...,b;,c1,...,¢k,d1,...,d; € N such that, if y = f(x),
then for each j € {1,...,1}, y(j) = b; + dlj Zle n;,;(x(i) — ¢;), and for each
i€ {1,...,k}, x(4) — ¢; > 0. Define the CRC as follows. It has input species
Y ={X1,..., Xy} and output species I' = {YV}¥,..., ;P YC ... .Y,

There are three main components of the CRN, separately handling the ¢;
offset, the n; j/d; coefficient, and the b; offset.

The latter two components both make use of ch molecules to account for
production of Yjp molecules in excess of y(j) to ensure that #oonP — #OOYJC =

4 Tts output species could potentially be reactants so long as they are catalytic, mean-
ing that the stoichiometry of the species as a product is at least as great as its
stoichiometry as a reactant, e.g. X +Y - Z4+Y or A+Y Y +Y.
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v(j), which establishes that the CRC stably computes a diff-representation of
f. It is clear by inspection of the reactions that #oonP = O(y(5)).
Add the reaction

X1 =011+ Bi+Ba+ ...+ B+ 0 Y+ Y + . 0T (3.1)

The first product C,; will be used to handle the ¢; offset, and the remaining
products will be used to handle the b; offsets. For each i € {2,...,k}, add the
reaction

Xi — Ci,l (32)

By Lemma 2.2, reactions (3.1) and (3.2) take time O(logn) to complete.
We now describe the three components of the CRC separately.

¢; offset: Reactions (3.1) and (3.2) produce x(i) copies of C; 1. We must reduce
this number by ¢;, producing x(i) — ¢; copies of X!, the species that will be
used by the next component to handle the n; ;/d; coefficient. A high-order
reaction implementing this is (¢; + 1)C; 1 — ¢;C; 1 + X/, since that reaction
will eventually happen exactly x(i) — ¢; times (stopping when #C; ; reaches
¢;). This is implemented by the following bimolecular reactions.
Foreachi € {1,...,k} and m,p € {1,...,¢}, if m+p < ¢;, add the reaction

Ciim + Cip = Cimtp-
If m 4+ p > ¢;, add the reaction
Ci,m + Ci,p — Ci,ci, + (m +p— Ci)XZ‘/~

By Lemma 2.3, these reactions complete in expected time O(n).
n,;/d; coefficient: For each i € {1,...,k}, add the reaction

Xz/ - Xi’l +Xi’2 —+ ... +Xi,l

This allows each output to be associated with its own copy of the input. By
Lemma 2.2, these reactions complete in expected time O(logn).
For each i € {1,...,k} and j € {1,...,1}, add the reaction

X . ni,ijl, if N5 > 0;
bJ (fni,j)Dfl, if n;; <O0.

By Lemma 2.2, these reactions complete in expected time O(logn).
We must now divide #Df ; and #Dg1 by d;. This is accomplished by the
high-order reactions def 1 YjP and d; Dfl — YjC. Similarly to the previ-
ous component, we implement these with the following reactions for d; > 1.
We first handle the case d; > 1. Foreach j € {1,...,[} andm,p € {1,...,d;—
1}, if m+p <d; — 1, add the reactions

Dfm + Dfp - Dfm+p

C C C
Dj’m + Dj,p - Dj,erp
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If m+p > ¢;, add the reactions

P P P P
Djm+Dip = Djmip—a; TYj
C C C C
Dion +Dip = Djpip—a; TY;

By Lemma 2.3, these reactions complete in expected time O(n).
When d; = 1, we only have the following unimolecular reactions.

P P
Dj, =Y

C C
Diy =Y

By Lemma 2.2, these reactions complete in expected time O(logn).

These reactions will produce dlj Zm,j>0 n;;(x(i) — ¢;) copies of YjP and
—dlj Zn 4<0 n;;(x(i) — ¢;) copies of ch. Therefore, letting #CoeijP and
#CoeijC denote the number of copies of YjP and ch eventually produced just
by this component, it holds that #CoeijP — #CoeijC = dlj Zle n;;(x(7) —

Ci)~
b; offset: For each j € {1,...,1}, add the reaction

Bj+ B; = B + b;Yf (3.3)

By Lemma 2.3, these reactions complete in expected time O(n).

Reaction (3.1) produces b; copies of YjP for each copy of B; produced, which
is x(¢). Reaction (3.3) occurs precisely x(¢) —1 times. Therefore reaction (3.3)
produces precisely b; fewer copies of ch than reaction (3.1) produces of
YjP . This implies that when all copies of ch are eventually produced by
reaction (3.3), the number of Y/”’s produced by reaction (3.1) minus the
number of Y,7’s produced by reaction (3.3) is b;. a

We require the following lemma, proven in [5].

Lemma 3.2 ([5]). Let f : N* — N! be a semilinear function. Then there is a
finite set {f1 : NF > NL ... £, : N¥ -5 N'} of affine partial functions, where
each dom f; is a linear set, such that, for each x € N¥ if fi(x) is defined, then
f(x) = fi(x), and |J;~, dom f; = N*.

We require the following theorem, due to Angluin, Aspnes, and Eisenstat [3,
Theorem 5], which states that any semilinear predicate can be decided by a CRD
in expected time O(n).

Theorem 3.3 ([3]). Let ¢ : N* — {0,1} be a semilinear predicate. Then there
is a leaderless CRD D that stably decides ¢, and the expected time to reach an
output-stable configuration is O(n).

The following is the main theorem of this paper. It shows that semilinear
functions can be computed by leaderless CRCs in linear expected time.
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Theorem 3.4. Let f : N* — N! be a semilinear function. Then there is a
leaderless CRC that stably computes f in expected time O(n).

Proof. The CRC will have input species X' = {X1,..., X, } and output species
I = {Y1,...,Y;}. By Lemma 3.2, there is a finite set F = {f; : N¥ ——»
N ..., fm @ NP ——s N'} of affine partial functions, where each dom f; is a
linear set, such that, for each x € N¥_ if f;(x) is defined, then f(x) = fi(x).
We compute f on input x as follows. Since each dom f; is a linear (and there-
fore semilinear) set, by Theorem 3.3 we compute each semilinear predicate ¢; =
“x € dom f; and (Vi’ € {1,...,i—1}) x € dom f?” by separate parallel CRD’s
each stabilizing in expected time O(n). (The latter condition ensures that for
each x, precisely one of the predicates is true, in case the domains of the partial
functions have nonempty intersection.)

By Lemma 3.1, for each i € {1,...,m}, there is a diff-representation fz of
fi that can be stably computed by parallel CRC’s. Assume that for each i €
{1,...,m} and each j € {1,...,l}, the jth pair of outputs yp(j) and yc(j) of

the th function is represented by species YZIZ and YZCJ We interpret each Y£
and }A’ZC; as an “inactive” version of “active” output species Yf; and YZC;

For each i € {1,...,m}, for the CRD D; = (4, R, ¥,T) computing the predi-
cate ¢;, let L} represent any species in 7', and LY represent any species in A\ 7,
and that once D; reaches an output stable configuration, #L? = 2(n), where
b is the output of D;. Then add the following reactions for each i € {1,...,m}

and each j € {1,...,1}:

LI +YE - L +vE +v; (3.4)
LY+ Y5 — LY + My

The latter two reactions implement the reverse direction of the first reaction —
using LY as a catalyst instead of L} — using only bimolecular reactions. Also add
the reactions

LI 4YE o L YE (3.7)
0 c 0, v C
and
YVE+YS = K (3.9)
K, +Y;, - o (3.10)

That is, a “yes” answer for function i activates the ith output and a “no”
answer deactivates the ith output. Eventually each CRD stabilizes so that pre-
cisely one i has L} present, and for all i # i, LY is present. We now claim
that at this point, all outputs for the correct function fz will be activated
and all other outputs will be deactivated. The reactions enforce that at any
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time, #Y; = #K; + Zil(#Yzi + #M,; ;). In particular, #Y; > #K, and
#Y,; > #M, ; at all times, so there will never be a K; or M; ; molecule that
cannot participate in the reaction of which it is a reactant. Eventually #Yif; and
#YC stabilize to 0 for all but one value of 7 (by reactions (3.5), (3.6), (3.8)), and
for this value of i, #Y;" stabilizes to y(j) and #Y,5 stabilizes to 0 (by reaction
(3.9)). Eventually #K; stabilizes to 0 by the last reaction. Eventually #M; ;
stabilizes to 0 since L? is absent for the correct function fz. This ensures that
#Y; stabilizes to y(j).

It remains to analyze the expected time to stabilization. Let n = ||x||. By
Lemma 3.1, the expected time for each affine function computation to complete
is O(n). Slnce the YP are produced monotonically, the most YP» molecules that

are ever produced is #.Y; j Since we have m computations in parallel, the
expected time for all of them to complete is O(nm) = O(n) (since m depends
on f but not n). We must also wait for each predicate computation to complete.
By Theorem 3.3, each of these predicates takes expected time O(n) to complete,
so all of them complete in expected time O(mn) = O(n).

At this point, the L} leaders must convert inactive output species to active,
and Lf)' (for ¢/ # i) must convert active output species to inactive. By Lemma 2.4,
reactions (3.4), (3.5), (3.7), and (3.8) complete in expected time O(logn). Once
this is completed, by Lemma 2.3, reaction (3.6) completes in expected time
O(n). Reaction (3.9) completes in expected time O(n) by Lemma 2.3. Once this
is done, reaction (3.10) completes in expected time O(n) by Lemma 2.3. O

4 Conclusion

The clearest shortcoming of our leaderless CRC, compared to the leader-
employing CRC of [5], is the time complexity. Our CRC takes expected time O(n)
to complete with n input molecules, versus O(log5 n) for the CRC of Theorem
4.4 of [5]. However, we do obtain a modest speedup (O(n) versus O(nlogn)),
compared to the direct construction of Theorem 4.1 of [5]. The indirect con-
struction of Theorem 4.1 of [5] relied heavily on the use of a fast, error-prone
CRN which computes arbitrary computable functions, and which crucially uses
a leader. The major open question is, for each semilinear function f : N¥ — N/,
is there a leaderless CRC that stably computes f on input of size n in expected
time ¢(n), where ¢ is a sublinear function? This may relate to the question of
whether there is a sublinear time CRN that solves the leader election problem,
i.e., in volume n with an initial state with n copies of species X and no other
species initially present, produce a single copy of a species L. However, it is
conceivable that there is a direct way to compute semilinear functions quickly
without needing to use a leader election.

If this is not possible for all semilinear functions, another interesting open
question is to precisely characterize the class of functions that can be stably
computed by a leaderless CRC in polylogarithmic time. For example, the class
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of linear functions with positive integer coefficients (e.g., f(z1,22) = 321 + 2x2)
has this property since they are computable by O(logn)-time unimolecular re-
actions such as X; — 3Y, Xs — 2Y. However, most of the CRN programming
techniques used to generalize beyond such functions seem to require some bi-
molecular reaction A + B — ... in which it is possible to have #A = #B = 1,
making the expected time at least n just for this reaction.

Acknowledgement. We are indebted to Anne Condon for helpful discussions
and suggestions.
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for Robust Algorithmic Self-assembly
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Abstract. A major challenge in practical DNA tile self-assembly is the
minimization of errors. Using the kinetic Tile Assembly Model, a theoret-
ical model of self-assembly, it has been shown that errors can be reduced
through abstract tile set design. In this paper, we instead investigate
the effects of “sticky end” sequence choices in systems using the kinetic
model along with the nearest-neighbor model of DNA interactions. We
show that both the sticky end sequences present in a system and their
positions in the system can significantly affect error rates, and propose
algorithms for sequence design and assignment.

1 Introduction

Self-assembly of DNA tiles is a promising technique for the assembly of com-
plex nanoscale structures. Assembly of tiles can be programmed by designing
short complementary single-stranded DNA “sticky ends.” While assembly using
unique tile types or simple lattices is often studied [26,16], algorithmic growth,
where small sets with few tile types can form complex assemblies, is particularly
powerful theoretically, and has been studied extensively through the abstract
Tile Assembly Model (aTAM) [28,8,17].

A number of different designs for tile structure are used for assembly [26,21,16].
As an example, the DAO-E tile design (Fig. 1(a)) consists of two helices con-
nected by two crossovers, with four 5 nucleotide (nt) sticky ends, one at each
end of each helix. Experimentally, conditions are usually used such that tiles will
favorably attach by two bonds between sticky-end regions, adding cooperativity
to binding. In the abstract Tile Assembly Model, this is modelled by individual
tiles attaching to edges of the current assembly when they can make at least two
correct bonds to adjacent tiles (T' = 2), and never detaching once attached.

The Pascal mod 3 (PM3) system shown in Fig. 1(b) is a simple example. The
tiles implement addition modulo 3, akin to Pascal’s triangle. Tiles attach by
their two lower-left ends, and then provide ends for future tiles to attach that
sum the logical values of the two “input” ends. Growth proceeds to the upper-
right, controlled by a V-shaped seed of tiles that attach by strength-2 bonds and
provide edges of logical 1s.

A more sophisticated example, the counter system from Barish et al [3], is
shown in Fig. 1(c). In this system, a ribbon of tiles grows from a large seed
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corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15
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(&) = > (b)
GCGGTTGT  CCARCTTAN/GGTCTAGG ACATCTCG
CTCTA CGCCAACA GGTTGAAT P CCAGATCC ~TGTAGAGC _ATCTC
A:GTGA GGCAATCC TGTAACGTN/GOCGAACA GGCAAGCG AGTGA
CEGTTAGE ACATTGCA XK CGECTTET _CCGTTCEE
Ax Ax
CTG GAGAT GCG
GAC CTCTA CGC pr—
- CTG GAGAT GCG

GAC CTGTA CGC

CTG GAGAT GCG
GAC TCTAG __CGC

i

Fig. 1. Tile systems, structures and the kinetic trapping model. (a) shows an example
DAO-E tile structure [21], along with examples of complementary and partially mis-
matched sticky end attachments. (b) shows the Pascal mod 3 tile system along with a
potential perfect assembly. Blue, green and red correspond to ends with logical values
0, 1, and 2, respectively, while black indicates double-strength bonds of the V-shaped
seed. (c) shows the tiles (top) in the Barish counter system, along with an illustration
of zig-zag ribbon growth (left) and an Xgrow simulation of growth from an origami
seed (blue), where each pixel represents one tile. Orange and brown tiles indicate tiles
with logical values of 1 and 0, respectively, while gray tiles are boundary and nucleation
barrier tiles, and incrementing tiles are green. (d) illustrates the states and transition
rates in the kinetic trapping model of growth errors.

structure of DNA origami. Rows of tiles grow in a zig-zag fashion, with each
new row being started by a double tile that is equivalent to two permanently-
attached single tiles. On “downward” rows tiles increment a bit string with two
tiles per bit from the previous row, while on “upward” rows, corresponding
tiles copy the newly-incremented row. These tiles implement a binary counter
starting from whatever bit string was specified on the original origami seed and
incrementing every two rows of tiles.

In examining algorithmic growth of experimental systems, the kinetic Tile
Assembly Model provides better physical relevance [28]. Tiles are assumed to
be in solution at a particular concentration, which is usually assumed to be
constant. Tiles attach to empty lattice sites at a rate ry dependent only on their
concentration, and detach at a rate r, (b =1,2,...) dependent upon the number
of correct “sticky end” attachments they have to the assembly:

T§ = ke=Gme ry = ke PG (1)

Here G, is a dimensionless free energy analogue related to tile concentration
by [c] = e~ Cmete G, is the sign-reversed dimensionless free energy of a single
bond, b is the number of correct bonds, and k is an adjusted forward rate constant
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k = kye®, where kj is the usual second-order mass action rate constant for tile
attachment, typically ky = 105 /M/s. This model has been used for numerous
theoretical and computational simulation studies of algorithmic tile assembly
[29,6,10,8,17], and has fit well with experimental findings both qualitatively and
quantitatively [9,11].

As the kinetic model allows any tile to attach regardless of correctness, it is
challenging to design tile systems that exhibit algorithmic behavior while keep-
ing erroneous growth low enough to obtain high yields of correct assemblies.
Growth errors in the kinetic model are well studied, and often modelled by the
kinetic trapping model. The model considers tiles attaching and detaching at a
single lattice location, while having a rate for an attached tile to become “frozen’
in place by further growth. This rate, r* = ke=Gme — ke=2C:¢_is related to the
overall growth rate of the system [28]. As tiles that attach without any correct
bonds (“doubly-mismatched” tiles) will detach very quickly, to first approxima-
tion, the only states that need to be considered are empty (E), correct tile (C),
and “almost correct tile” (A)—a tile that is attached by one correct bond—along
with frozen states for correct and almost correct tiles (FC and FA). These states
are described in Fig. 1(d).

Numerous techniques have been studied to reduce such error rates, especially
“proofreading” transformations that transform individual tiles into multiple tile
blocks or sets of tiles [29,6,4,20]. These techniques have been shown to signifi-
cantly reduce error rates both in simulation and experimentally [11,6,3]. Such
techniques rely on changing tile systems at an abstract level, and reduce error
rates of even ideal systems. However, in implementing the abstract logic of a tile
system in actual DNA tiles, design complexities cause the system’s kinetics to
deviate from the default KTAM parameters. In particular, the single-stranded
“sticky ends” that implement the abstract ends must be chosen from a finite
sequence space to be both as uniform in binding energy and as orthogonal as
possible. Deviations here can introduce further errors [10].

)

2 Theoretical Model

In the KTAM, G, and G,,. are by default considered to be constant and inde-
pendent of both tiles and sticky ends. A more detailed model cannot assume this.
Gme is dependent upon tile concentration: the value may be different for each
tile type, and may change as free tiles are depleted by attachment. However, as
experimental techniques exist to keep tile concentrations approximately constant
throughout assembly [23], we will assume a time-invariant (but possibly tile type
dependent) G-

Gse, on the other hand, will depend upon the bonds between sticky ends.
Ends with different sequences will have different free energies for binding to
their complements, and some ends may be able to partially bind to ends that
are only partially complementary (Fig. 1(a)). This results in a G%, for each pair
of sticky ends (i, 7). In the default kTAM, all non-diagonal terms will be zero, and
all diagonal terms will be equal. G, can thus be defined in terms of deviations
from a reference Gge:
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G?sze = Gse + 52 G?Sje = Siste for 4 ¢‘7 ’ (2)

Non-uniform sticky ends, with non-zero d;, will affect the detachment rate
of correct and almost-correct tile attachments, while spurious non-orthogonal
binding strengths s;; will only decrease detachment rates for almost-correct and
doubly-mismatched tile attachments. In the following theoretical analysis, the
much lower likelihood doubly-mismatched interactions are ignored. For simula-
tions, done with the Xgrow kTAM simulator [2], these interactions are taken
into account when there is non-orthogonal binding.

2.1 Uniformity

Non-uniform sticky end energies have been simulated previously [10], but have
not been studied analytically. In the kKTAM, the growth rate of an assembly
depends on the difference between on and off rates [28], which we approximate
for a uniform system as r* = ke=Gme — fe=2Cse,

For a system with non-uniform energies, a tile attaching by two i bonds will have

r* = ke*Gmc _ k672G56726i — ke*QGse (ee _ 672&)

where we define € = 2G4 — Gpe, a measure of supersaturation: for an ideal
system, € = 0 results in unbiased growth, whereas ¢ > 0 results in forward
growth and € < 0 causes crystals to shrink. As can be seen, the growth rate will
depend on the §;’s of the bonds in the growth region. With 4; < —;e (negative
4 corresponds to weaker binding), growth in a region won’t be favorable.

In the worst case, where tiles attaching by two bonds with the smallest §;
form a sufficiently large region, growth can only be ensured if € > —2 min {J;},
and error rates can be approximated by the kTAM with this minimum e value.
The kinetic trapping model in the default kTAM results in an error rate Peyp.o &~
me~ %t for m possible incorrect tile attachments [28], so the worst-case error
rate for a given dpi, = min {§;} would be

Poror & me—Gse—QtSmin ) (3)

Fig. 2(a) shows simulations of the PM3 system with € adjusted along the lines
of our worst-case growth requirements. For positive deviations, where most ends
remain at the same strength, assembly time is largely unchanged, while the error
rate increases. For negative (weaker bond) deviations, where € is adjusted, the
error rate rises per Eq. 3, while the assembly time decreases sharply as most
tiles attach with the same G% but are at a higher concentration.

While this method to adjust tile concentrations ensures crystal growth, it may
not obtain the optimal trade-off between growth rate and error rate. This trade-
off has been addressed for perfect sticky ends [5,12], but is more complicated
with imperfect sticky ends and complex tile sets. Rather than simply adjusting
all concentrations uniformly, the assumption can be made, which is not neces-
sarily optimal, that error rates for a complex tile set can be reduced by ensuring
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(a) Error Rates with Min. G,c (b) Error Rates with Adj. Conc.
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Fig. 2. Error rates for Pascal mod 3 systems with non-uniform end interactions sim-
ulated in Xgrow. In both (a) and (b), single sticky ends have been changed so that
GY = G4e + 6, while all others have remained at Gse. In (a), the e for the system has
been uniformly changed to always allow forward-growth by two of the weakest bond
types by setting Gpmc. In (b), the tiles with deviating ends have had their concentration
adjusted so that all tiles have the same growth rate r* = ke Cme — l%eiG?e*GJSJe, where
tile type n attaches using sticky end types ¢ and j. Blue circles show error rates; green
triangles show the time taken to construct an 8000 tile assembly, the line in (a) shows
Eq. 3. For these simulations, we set base parameters of Gs. = 10 and G = 19.2.

that the overall growth rate remains uniform throughout the crystal. This can
be achieved by modifying the concentrations of tiles to modify their G,,. val-
ues such that the r* for each tile type is the same. Fig. 2(b) shows simulations
of this form of concentration-adjustment with the PM3 system. As expected,
assembly time remains almost completely unchanged across a large range of de-
viations. Meanwhile negative deviations do not significantly increase error rates,
and positive deviations increase error rates in a manner similar to Fig. 2(a).

2.2 Orthogonality

Unlike non-uniformity, the kinetic trapping model for growth errors can be easily
extended to account for non-orthogonality. Assuming s;; < 1, growth errors will
be primarily caused by almost-correct tiles attaching by one correct and one
incorrect bond, as in the ideal case. A uniform incorrect bond strength of s, and
m possible almost-correct tiles for a given lattice site, then gives the following
rates of change between the different states shown in Fig. 1(d):

E C A FC FA
E —2ry T2 T(1+s) 0 0
. C ry —rg — 1" 0 0 0
P(t) = A mry 0 —T(14s) =T 0 0 P(t) . (4)
FC 0 r* 0 0 0
FA 0 0 r* 0 0

Here P(t) is a vector of probabilities at time ¢ that the site will be in a state
[E,C, A, FC, F A]. The steady state of this is not useful, as any combination of
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Fig. 3. Error rates with non-orthogonal interactions. (a) shows interactions for the PM3
system; circles and solid lines show simulated and theoretical error rates, respectively,
with single pairs interacting. Squares and dashed lines show error rates for a uniform
non-orthogonal interaction between every pair. (b) shows error rates for sensitive single
non-orthogonal pairs in the Barish counter system, along with lines showing e~ (¢ =7)Gse
for various values of o chosen to roughly follow the worst pairs of each sensitivity. Small
dots represent individual pairs, while large dots show averages for sensitivity classes.
For (a) Gse = 10 and Gme = 19.2, for (b) Gse = 8.35 and Gme = 17.8.

FC and FA will be a steady state. Instead, the eventual probability of being in
F A after starting only in state E at ¢t = 0 will provide an error rate per additional
tile in an assembly. This can be treated as a flow problem, where we consider the
differential accumulation into FC and F A from E, as in Winfree [28]. From this,
the probability of an almost-correct tile being trapped in place is:

m 1

rptrige 1 (1—5)Gse—e
T Tyt+r2 1+ m© -

Perror == ~ me(571)GSE+€ . (5)

While tile systems will have a different number of possible almost-correct tiles
for different lattice sites, making this result less applicable, the PM3 system has
an equal number for every possible lattice site. Fig. 3(a) shows error rates in
simulations with interactions between single pairs of ends and for a uniform
non-orthogonal interaction energy between every pair. In both cases, error rates
largely follow Eq. 5.

2.3 Sticky End Sensitivity

When non-orthogonal sticky end interactions are not uniform, the degree of
their influence on error rates may depend on which tile types they appear on
and the logical interactions within the tile set. In systems where a tile never has
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the opportunity to attach with strength 1 4+ s;;, interactions between ¢ and j
may be less relevant, whereas other pairs of ends in the system may allow tiles
to erroneously attach during correct growth and be simply locked in place by
continued growth. For example, Fig. 3(b) shows error rates for the Barish counter
system when non-orthogonal interactions are introduced between single pairs of
sticky ends. These pairs have been organized into sets (INGO, 2NGO, 1GO, and
2GO) based on a model described below of how interactions between them may
affect the tile system. As can be seen, this model has some success in predicting
the impact different pairs will have on error rates.

We start by assuming that all attachments in growth occur with single tiles
attaching by exactly two correct strength-1 bonds. Assuming that each tile in
the system can have its ends labelled as inputs or outputs, and that every growth
site has a unique tile that can attach by inputs, all lattice locations possible in
the system will eventually be filled by a specific tile. Rather than looking at lat-
tice sites that actually appear in correct growth, which would require simulation,
we can combinatorially investigate all possible local neighborhoods that might
appear, and conservatively examine them for possible problems. For example,
whether there exists a tile that can attach with strength 1 + s;; can be approx-
imated by whether there are two tiles that share a common input bond on one
side but not the other, so that when one tile incorrectly attaches where the other
could attach correctly, it forms a strength 1 bond for the common bond and a
strength s;; bond for the mismatch (as in Fig. 4(a)).

We describe end pairs where such tiles exist as being in the set of “first-
order sensitive” end pairs. If the sides of the tiles are inputs for at least one tile
type, and thus the tiles can attach in normal forward growth, the end pair is
in the set of first-order growth oriented sensitive (1GO) pairs, whereas without
consideration of input and output sides, the end pair is in the set of first-order
non-growth-oriented sensitive (INGO) pairs. End pairs (¢, j) that are in INGO
but not 1GO have tiles that can attach with strength 1+ s;; only during growth
after an error or at sites where there is no correct tile.

While end pairs in these sets have tiles that allow the first, erroneous tile
attachment in the kinetic trapping model, the model also requires that a second
tile be able attach by two correct bonds to the erroneous tile and adjacent tiles to
trap the error in place. This is also not necessarily possible: an incorrect attach-
ment could result in there being no adjacent correct attachment, and designing
systems where this is the case is in fact the goal of proofreading systems [29].

Thus we can devise “second-order sensitive” sets of end pairs that allow this
second, correct tile attachment, and are therefore expected to be more likely to
cause errors. Consider a pair of tiles A and X with a common bond on one side
but not the other, satisfying the criteria for a first-order sensitive pair. Whether
a further tile can attach with strength 2 can be approximated by whether there
is some second pair of tiles, B and Y, that can each attach to some third side of
their respective original tiles, and also share a common bond on another side. In
a plausible local neighborhood where A and B could attach correctly in sequence,
it is possible for X to first attach erroneously, with strength 1+s;; (in the location
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Fig. 4. lllustration of end pair sensitivity sets. For simplicity, all left and bottom sides
are considered inputs. (a) shows, for given tiles, examples of possible local neighbor-
hoods they could attach to and tiles that could erroneously attach via first-order sensi-
tivity. (b) shows, for given pairs of tiles A and B, examples of local neighborhoods the
pair could attach to in sequence, and a pair of tiles X and Y that could erroneously
attach via second-order sensitivity. (c) shows examples of tiles satisfying various crite-
ria for the shown end pairs to be in different sensitivity sets; arrows show examples of
required input sides for growth-oriented sets.

where A could have bound), then for Y to attach with strength 2 (where B could
have bound after A) owing to the second commond bond, as in Fig. 4(b).

As with first-order sensitivity, if the common and differing sides of the first
pair of tiles are inputs, and sides of the second pair of tiles that are shared or
attach to the first pair are also inputs, then the end pair involved is in the set of
second-order growth oriented sensitive (2GO) pairs, whereas without considera-
tion of inputs, the pair is in the set of second-order non-growth-oriented sensitive
(2NGO) pairs.

These sets can be summarized more formally as follows, while examples of
satisfying tiles are shown in Fig. 4(c):

— An end pair (¢,7) is in the set of first-order sensitive end pairs if there exist
at least two tiles in the tile system where both tiles share a common end k
on one side, and on some other side, one tile has end 7 and the other has end
j. If at least one of the two tiles has k and either 4 or j as inputs, then the
end pair is in 1GO and INGO, otherwise, it is only in INGO.

— To determine if a first-order sensitive end pair (,5) is in the set of second-
order sensitive end pairs, consider a pair of tiles that satisfy the first-order
criteria, and additional pairs of tiles that can attach to the first pair by
bonds [ and m (possibly the same) on a third side. If there exist a pair of
these additional tiles that also share a common bond 7, then the end pair is
second-order sensitive. If at least one of the first tiles has k& and either i or
j as inputs, and one of the additional tiles attaching to it has n and either
[ or m as an input, then the end pair is in 2GO and 2NGO, otherwise, it is
only in 2NGO.
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Note that this analysis is done without determining what assemblies and thus
what local neighborhoods actually form, so the combinations of inputs being
considered might never appear during the growth of a correct assembly. As such,
it is conceivable that, for example, an end pair could be in 2GO without ever
having an effect in correct growth of an assembly. While this is a significant
limitation, determining if a combination of inputs ever occurs, or if two tiles are
ever assembled adjacent to each other, is in general undecidable by reduction to
the Halting problem [27]. Furthermore, our current software treats all bonds as
strength-1, and all tiles as single tiles, with double tiles being represented by a
pair of single tiles with a fake bond that is then excluded from the sets; whilst
the set definitions could be extended to account for double tiles and strength-2
bonds, we have not yet investigated the complexities involved.

Also, while pairs may be in either or both of 1GO or 2NGO, in all systems
we have considered, all pairs in 1GO have also been in 2NGO, and there have
been no pairs that are only in INGO. End pairs that aren’t in any of these sets,
and can be described as “zeroth-order,” should have interactions between them
that have a negligible effect on error rates in the kinetic trapping model.

Very rough theoretical estimates of the contributions that sensitive end pairs
will have on a system can be obtained by considering the number of tiles that
need to attach incorrectly. For pairs in 2GO, as only the initial tile will need
to attach incorrectly before it can be locked in place by a correct attachment,
the probablity of an error every time such a situation occurs is ~ e(s~1)Gse,
For those in 1GO but not 2GO, since there is no correct attachment after the
first tile attaches incorrectly, at least one further incorrect attachment will be
required, giving a probability of error ~ e(5=2&5¢ or lower. For pairs only in
2NGO or INGO, the probability that the first tile can attach incorrectly will
depend upon the likelihood that growth is proceeding in an incorrect direction,
which in turn will depend upon numerous factors, but will usually require at
least one previous incorrect attachment, giving another factor of ~ e~%*¢ on top
of their GO counterparts.

For the Barish counter, there are 342 pairs of ends (helix direction prevents
around half the ends from attaching to the other half). Of these, 22 are 2NGO,
9 are both 1GO and 2NGO, and 3 are also 2GO. Fig. 3(b) shows error rates
for increasing values of s;; where one pair has its value increased and all other
spurious pairs are left with s;; = 0. Each pair has been classified by its “worst”
set. As can be seen, 2NGO pairs have little impact on error rates beyond those
seen in the ideal kTAM, 1GO pairs start to have an effect after around s;; > 0.4,
and 2GO pairs are the most sensitive. In the case of the three 2GO pairs in
the Barish counter, two cause errors that prevent correct growth in the next
row without an additional error, explaining the significant difference between
the most sensitive 2GO pair and the two less sensitive pairs.
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3 Sequence Design and Assignment

3.1 Sequence Design

DNA sequence set design for molecular computation is a widely-studied problem.
Different applications necessitate different constraints and approaches: longer se-
quences with less stringent requirements can be constrained with combinatorial
methods like Hamming distance [13], while work on sequences with more strin-
gent requirements have used thermodynamic constraints [25]. However, the basic
goal shared throughout most of these algorithms is to find the largest set of DNA
sequences that hybridize to their complements significantly better than to any
other sequences in the set, or to find a set of a certain size with the best pos-
sible “quality”; in this the problem is similar to the maximum independent set
problem, which is NP complete [7,18].

For sticky ends, the sequence lengths required, especially the 5 to 6 nt ends
of DAO-E tiles, are shorter, and provide a smaller sequence space, than most
other work has considered, with a few exceptions that have largely generated
very small sets [25]. Using the end pair sensitivity model, we can reduce errors
from non-orthogonal interactions by changing the assignment of sequences to
abstract ends, as described later. However, we have no corresponding model to
allow us to compensate for non-uniform energies.

The goal for our sequence design, therefore, is to find a requested number of
sequences that (a) have non-orthogonal interactions less than a set constraint,
and (b) have binding energies (melting temperatures) as uniform as possible
given the orthogonality constraints. This contrasts with many sequence design
algorithms, where a minimum melting temperature is of primary importance [24],
and from algorithms that simply constrain melting temperatures to be within
set constraints [25], in that our algorithm chooses a sequence with the closest
melting temperature at each step.

All Interactions Complementary Interactions

number of end pairs

7.5 8

8.5 9.0

.0 .
Gii . RT

Fig. 5. Histograms of end pair interactions with the original Barish sequences (red)
and newly designed sequences (blue). (a) shows all end pairs, (b) shows a zoomed-in
area containing all end-complement pairs. All energies were calculated using the energy
model in our sequence designer at 37 °C.
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As the lengths of sticky end sequences are short, complex secondary structure
is limited, and thus our algorithm uses an approximation of minimum free en-
ergy (MFE) for thermodynamic calculations. Similar to the “h-measure” used
in Phan et al [18], the algorithm considers hybridization between two sequences
with every possible offset, and uses the nearest-neighbor interaction data from
SantaLucia et al [22], including values for symmetric loops, dangles, single-base
mismatched pairs, and coaxial stacking with core sequences. Furthermore, for
DAO-E tiles, core helix bases adjacent to the sticky ends affect energetics, and
need to be designed alongside the sticky end sequences.

Our algorithm works as follows, for length L sticky ends.

1. Generate a set of all possible available sequences A that fit user requirements.

With adjacent bases considered, this could be as many as 4“2 sequences.

2. Calculate end-complement binding energies Gg’e/ for all sequences in A, and

(to speed up computation) remove any sequence that falls outside a user-

specified range around the median foe/ of all sequences initially in A, which

we call Gge.
3. For each sequence needed:

(a) Randomly choose a sequence i from all sequences in A that are closest
to Gse, and add this to the set of chosen sequences C'.

(b) Calculate the G%, between i and every remaining sequence j in A, and
remove all sequences from A with a G% greater than a user-specified
value.

4. Stop when either A is empty, or a sufficient number of sequences have been
generated.

Gse is chosen as the desired ideal G in order to ensure a large number of
sequences with similar G%s will be available, for 5 nt ends, the desired value
is Gse - RT = 8.35 kecal/mol at 37°C. By adjusting parameters, the maximum
number of sequences that can be chosen can be changed as shown in Table 1;
running the algorithm repeatedly will also find different numbers of sequences.

Sets chosen by this algorithm are guaranteed to have all ends interact less
than a set amount s;; < Sdesirea With ends other than their complements, and
to deviate from the desired correct interaction by less than a set amount |J;| <
ddesired, though when generating sets of a fixed size the largest d;s will often be
much smaller, as the software selects for the smallest §; values possible.

Fig. 5 shows a comparison between end pair interactions in the original Bar-
ish counter system and new sequences designed with our sequence design soft-
ware. As can be seen, our software prevents large non-orthogonal interactions of
4 kecal/mol < GY - RT < 6 kcal/mol, but does not significantly reduce interac-
tions with G% - RT < 4 kcal/mol. However, for complementary interactions, our
software is able to find a significantly more uniform set of ends.

The practical value of this designer depends on the accuracy of the under-
lying energy model, of course, but the same algorithm can be used with differ-
ent energy models as understanding of sticky end energetics is improved. The
algorithm, with some energy model modifications, may also be of use in other
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Table 1. Examples of the number of sticky ends found by our designer for varying
user-specified parameters (bold). For lengths 5 and 6, examples are the best out of 100
runs, while for length 10, the example is a single run.

Length (nt) Gse - RT max(s;;) # found std(d;) maxd;

5 8.354 0.2 5 0.04Gsc  0.1Gse

5 8.354 0.4 21 0.01Gse 0.038G .

5 8.354 0.5 40 0.01Gse 0.036G s

6 9.818 0.4 29 0.004Gse 0.015G e

10 15.454 0.4 183 0.01Gse 0.05Gse
Random Assignment Sequences Optimized Assignment
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Fig. 6. Illustration of end assignment for the Barish counter set with new sequences.
For conciseness, only a portion of the ends are shown.

areas of DNA computation where very short sequences with very similar melting
temperatures and low non-orthogonal interactions are needed, such as toehold
regions in strand displacement systems. However, it does not consider a number
of factors important for actual strand displacement regions, and starts to become
computationally intractable for sequences longer than 10 or 11 nt.

3.2 Sequence Assignment

The sequence designer is able to find sets of ends with very similar complemen-
tary interactions, and low non-orthogonal interactions. However, by ensuring
that sequences are assigned to ends in a system such that end pairs with higher
sensitivity have lower interactions, errors can further be reduced, and perhaps
more importantly, the chance that a poor choice of sequences is made for a
critical pair of ends can be minimized.

We assigned ends using a simulated annealing algorithm that used, as a score,
the sum of rough error estimates for each end pair (see Fig. 4):

S (assignment) = Z e~ (51=1.1)Gse 4 Z o~ (5ij=1.5)Ce 6)
1,j€2GO i,jE1GO and ¢2GO
+ Z ef(sijfl.GS)Gse + Z ef(sij72)Gse )
1,j€2NGO and ¢1GO ,jEINGO and ¢2NGO

We call the resulting assignment ‘optimized’, although of course it is not
guaranteed to be a global optimum. Offset values in the exponents were set
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Error Rates for Barish Counter
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Fig. 7. Error rates for the Barish counter system with different sticky end sequences.
Error rates are calculated from the percentage of correct assemblies formed of size 673.
Gse values are calculated from ends, or are uniformly Gs. - RT = 8.35 kcal/mol in the
ideal case. G values were varied between 17.6 and 17.9. 1000 simulations were run
for each G value.

by rough estimates of the worst errors for different classes in the simulations
shown in Fig. 4, and terms here for 2GO, 1GO and 2NGO are shown by solid
lines in that figure. For INGO, the —2 parameter is chosen simply to be lower
than other classes, as no system we have examined has end pairs that are only
INGO. Since the sequence designer chooses adjacent bases as well as sticky
end sequences, sequences can be consistently assigned to ends on all tiles, as in
Fig. 6. The sequences and tiles for the Barish counter cannot be assigned in the
same way, as different tiles with the same sticky end types often have different
adjacent base pairs, modifying their interactions. Furthermore, as the sequence
assignment algorithm only considers non-orthogonal interactions, results on a
system with significant non-uniformity will likely be inconsistent.

Fig. 7 shows simulated error rates and assembly time for counters using se-
quences from Barish et al [3], sequences designed by our sequence designer and
randomly assigned, and the same designed sequences assigned by our simulated
annealing algorithm to both minimize and maximize the score in Eq. 6, along
with error rates and assembly time for the system under ideal KTAM conditions.
For a range of G,,. values and resultant assembly times, there is at least a 3-
fold improvement in error rate between new sequences that are pessimally and
optimally assigned by our scoring function, with increasing improvement as the
assembly rate, and thus ideal error rate, decreases. For optimally assigned se-
quences, error remains close to the ideal error rate. The original sequences and
assignment for the Barish counter perform slightly better than the pessimally
assigned new sequences.
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4 Conclusions and Discussion

These methods of sticky end design and assignment serve two purposes: firstly,
to design experimental systems with error rates as close to the ideal kTAM as
possible, and secondly, to reduce the chance that a poor choice of sequences, or
even a poor assignment of sequences to tiles, might significantly impact exper-
imental results. The methods should be relevant for most types of DNA tiles,
and most tile systems with deterministic algorithmic behavior. Our software for
these algorithms is available online [1].

The simulation results here, and the methods themselves, are reliant on the
accuracy of the energy model used. While some research has been done on sticky-
end energetics [15,19,14,9], usually for individual pairs of tiles, it is not known
how well nearest-neighbor models of DNA energetics apply to sticky ends on
DNA tiles in lattices. Different tile structures may also require slightly different
models, especially with regard to coaxial stacking with base pairs adjacent to
the sticky ends.

It is possible that extending end sensitivity definitions to higher orders, con-
sidering more than two tile attachments, may be a useful area of investigation,
especially when considering tile systems making use of similarly higher order
proofreading. Indeed, proofreading can counteract at a more fundamental level
some of the same errors that arise from non-orthogonal interactions. The ef-
fects of non-uniform sticky end energies, however, may still significantly impact
proofreading sets, and remain a potentially fruitful area of research beyond our
simplistic modeling and concentration adjustment technique.
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Abstract. We propose a novel molecular computing approach based on reser-
voir computing. In reservoir computing, a dynamical core, called a reservoir, is
perturbed with an external input signal while a readout layer maps the reservoir
dynamics to a target output. Computation takes place as a transformation from
the input space to a high-dimensional spatiotemporal feature space created by
the transient dynamics of the reservoir. The readout layer then combines these
features to produce the target output. We show that coupled deoxyribozyme os-
cillators can act as the reservoir. We show that despite using only three coupled
oscillators, a molecular reservoir computer could achieve 90% accuracy on a
benchmark temporal problem.

1 Introduction

A reservoir computer is a device that uses transient dynamics of a system in a critical
regime—a regime in which perturbations to the system’s trajectory in its phase space
neither spread nor die out—to transform an input signal into a desired output [1]. We
propose a novel technique for molecular computing based on the dynamics of molecular
reactions in a microfluidic setting. The dynamical core of the system that contains the
molecular reaction is called a reservoir. We design a simple in-silico reservoir computer
using a network of deoxyribozyme oscillators [2], and use it to solve temporal tasks.
The advantage of this method is that it does not require any specific structure for the
reservoir implementation except for rich dynamics. This makes the method an attractive
approach to be used with emerging computing architectures [3].

We choose deoxyribozyme oscillators due to the simplicity of the corresponding
mathematical model and the rich dynamics that it produces. In principle, the design is
generalizable to any set of reactions that show rich dynamics. We reduce the oscillator
model in [2] to a form more amenable to mathematical analysis. Using the reduced
model, we show that the oscillator dynamics can be easily tuned to our needs. The
model describes the oscillatory dynamics of three product and three substrate species in
a network of three coupled oscillators. We introduce the input to the oscillator network
by fluctuating the supply of substrate molecules and we train a readout layer to map the
oscillator dynamics onto a target output. For a complete physical reservoir computing
design, two main problems should be addressed: (1) physical implementation of the
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reservoir and (2) physical implementation of the readout layer. In this paper, we focus
on a chemical design for the reservoir and assume that the oscillator dynamics can
be read using fluorescent probes and processed using software. We aim to design a
complete chemical implementation of the reservoir and the readout layer in a future
work (cf. Section 5). A similar path was taken by Smerieri et al. [4] to achieve an all-
analog reservoir computing design using an optical reservoir introduced by Paquot et
al. [5].

We use the molecular reservoir computer to solve two temporal tasks of different
levels of difficulty. For both tasks, the readout layer must compute a function of past
inputs to the reservoir. For Task A, the output is a function of two immediate past in-
puts, and for Task B, the output is a function of two past inputs, one 7T seconds ago
and the other gr seconds ago. We implement two varieties of reservoir computer, one
in which the readout layer only reads the dynamics of product concentrations and an-
other in which both product and substrate concentrations are read. We show that the
product-only version achieves about 70% accuracy on Task A and about 80% accuracy
on Task B, whereas the product-and-substrate version achieves about 80% accuracy on
Task A and 90% accuracy on Task B. The higher performance on Task B is due to the
longer time delay, which gives the reservoir enough time to process the input. Compared
with other reservoir computer implementations, the molecular reservoir computer per-
formance is surprisingly good despite the reservoir being made of only three coupled
oscillators.

2 Reservoir Computing

As reservoir computing (RC) is a relatively new paradigm, we try to convey the sense of
how it computes and explain why it is suitable for molecular computing. RC achieves
computation using the dynamics of an excitable medium, the reservoir [6]. We perturb
the intrinsic dynamics of the reservoir using a time-varying input and then read and
translate the traces of the perturbation on the system’s trajectory onto a target output.

RC was developed independently by Maass et al. [7] as a model of information pro-
cessing in cortical microcircuits, and by Jaeger [8] as an alternative approach to time-
series analysis using Recurrent Neural Networks (RNN). In the RNN architecture, the
nodes are fully interconnected and learning is achieved by updating all the connection
weights [8,9]. However, this process is computationally very intensive. Unlike the reg-
ular structure in RNN, the reservoir in RC is built using sparsely interconnected nodes,
initialized with fixed random weights. There are input and output layers which feed the
network with inputs and obtain the output, respectively. To get the desired output, we
have to compute only the weights on the connections from the reservoir to the output
layer using examples of input-output sequence.

Figure 1 shows a sample RC architecture with sparse connectivity between the input
and the reservoir, and between the nodes inside the reservoir. The output node is con-
nected to all the reservoir nodes. The input weight matrix is an 7 x N matrix W = [wi”J],
where [ is the number of input nodes, N is the number of nodes in the reservoir, and w;-'fi
is the weight of the connection from input node i to reservoir node j. The connection

weights inside the reservoir are represented by an N X N matrix W' = [wse,i] where
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input layer reservoir readout layer

L 1
7~£ nonlinear transfer function

Fig. 1. Schematic of a generic reservoir computer. The input is weighted and then fed into a
reservoir made up of a number of nodes with nonlinear transfer functions. The nodes are inter-
connected using the coupling matrix W’ = [w" ”] where w’j” is the weight from node j to node
i. The weights are selected randomly from identlcal and independent distributions. The output is
generated using linear combination of the values of the nodes in the reservoir using output weight
vector WO = [wo].

;"lz is the weight from node k to node j in the reservoir. The output weight matrix is

an N x O matrix W = [w{{], where O is the number of output nodes and w{y’ is the
weight of the connection from reservoir node k to output node /. All the welghts are
samples of i.i.d. random variables, usually taken to be normally distributed with mean
1 = 0 and standard deviation 6. We can tune i and o depending on the properties of
U (t) to achieve optimal performance. We represent the time-varying input signal by an
Ith order column vector U(r) = [u;(¢)], the reservoir state by an Nth order column vector
X(r) = [x;(¢)], and the generated output by an Oth order column vector Y(r) = [y;(¢)].
We compute the time evolution of each reservoir node in discrete time as:

xj(t+1) = fF(WF-X(t) + W"-U(1)), (1)

where f is the nonlinear transfer function of the reservoir nodes, - is the matrix dot
product, and W’ is the jth row of the reservoir weight matrix. The reservoir output is
then given by:

Y(t) = wp + W™ X(1), 2

where wy, is an inductive bias. One can use any regression method to train the output
weights to minimize the output error E = ||Y(¢) — Y(¢)||? given the target output Y (r).
We use linear regression and calculate the weights using the Moore-Penrose pseudo-
inverse method [10]:

Wout’ _ (X/T . X/)—l xX7T.y'. 3)

Here, W' is the output weight vector extended with a the bias wy,, X’ is the matrix
of observation from the reservoir state where each row is represent the state of the
reservoir at the corresponding time 7 and the columns represent the state of different
nodes extended so that the last column is constant 1. Finally, Y’ is the matrix of target
output were each row represents the target output at the corresponding time . Note
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input signal U(¢) actual output Y(r)
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reservoir state X(7)

update old weights

Fig. 2. Computation in a reservoir computer. The input signal U(z) is fed into every reservoir node
i with a corresponding weight wf” denoted with weight column vector W = [wf”]. Reservoir
nodes are themselves coupled with each other using the weight matrix W = [wlf]ef’}, where wlf]ef’
is the weight of the connection from node j to node i.

that this also works for multi-dimensional output, in which case W% " will be a matrix
containing connection weights between each pair of reservoir nodes and output nodes.

Conceptually, the reservoir’s role in RC is to act as a spatiotemporal kernel and
project the input into a high-dimensional feature space [6]. In machine learning, this
is usually referred to as feature extraction and is done to find hidden structures in data
sets or time series. The output is then calculated by properly weighting and combining
different features of the data [11]. An ideal reservoir should be able to perform fea-
ture extraction in a way that makes the mapping from feature space to output a linear
problem. However, this is not always possible. In theory an ideal reservoir computer
should have two features: a separation property of the reservoir and an approximation
property of the readout layer. The former means the reservoir perturbations from two
distinct inputs must remain distinguishable over time and the latter refers to the ability
of the readout layer to map the reservoir state to a given target output in a sufficiently
precise way.

Another way to understand computation in a high-dimensional recurrent systems
is through analyzing their attractors. In this view, the state-space of the reservoir is
partitioned into multiple basins of attraction. A basin of attraction is a subspace of the
system’s state-space, in which the system follows a trajectory towards its attractor. Thus
computation takes place when the reservoir jumps between basins of attraction due to
perturbations by an external input [12—15]. On the other hand, one could directly ana-
lyze computation in the reservoir as the reservoir’s average instantaneous information
content to produce a desired output [16].

There has been much research to find the optimal reservoir structure and readout
strategy. Jaeger [17] suggests that in addition to the separation property, the reservoir
should have fading memory to forget past inputs after some period of time. He achieves
this by adjusting the standard deviation of the reservoir weight matrix ¢ so that the
spectral radius of W™ remains close to 1, but slightly less than 1. This ensures that
the reservoir can operate near critical dynamics, right at the edge between ordered and
chaotic regimes. A key feature of critical systems is that perturbations to the system’s
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trajectory neither spread nor die out, independent of the system size [18], which makes
adaptive information processing robust to noise [14]. Other studies have also suggested
that the critical dynamics is essential for good performance in RC [16, 19-22].

The RC architecture does not assume any specifics about the underlying reservoir.
The only requirement is that it provides a suitable kernel to project inputs into a high-
dimensional feature space. Reservoirs operating in the critical dynamical regime usu-
ally satisfy this requirement. Since RC makes no assumptions about the structure of
the underlying reservoir, it is very suitable for use with unconventional computing
paradigms [3-5]. Here, we propose and simulate a simple design for a reservoir com-
puter based on a network of deoxyribozyme oscillators.

3 Reservoir Computing Using Deoxyribozyme Oscillators

To make a DNA reservoir computer, we first need a reservoir of DNA species with
rich transient dynamics. To this end, we use a microfluidic reaction chamber in which
different DNA species can interact. This must be an open reactor because we need to
continually give input to the system and read its outputs. The reservoir state consists of
the time-varying concentration of various species inside the chamber, and we compute
using the reaction dynamics of the species inside the reactor. To perturb the reservoir we
encode the time-varying input as fluctuations in the influx of species to the reactor. In [2,
23], a network of three deoxyribozyme NOT gates showed stable oscillatory dynamics
in an open microfluidic reactor. We extend this work by designing a reservoir computer
using deoxyribozyme-based oscillators and investigating their information-processing
capabilities.

The oscillator dynamics in [2] suffices as an excitable reservoir. Ideally, the readout
layer should also be implemented in a similar microfluidic setting and integrated with
the reservoir. However, as a proof of concept we assume that we can read the reservoir
state using fluorescent probes and calculate the output weights using software.

The oscillator network in [2] is described using a system of nine ordinary differ-
ential equations (ODEs), which simulate the details of a laboratory experiment of the
proposed design. However, this model is mathematically unwieldy. We first reduce the
oscillator ODE:s in [2] to a form more amenable to mathematical analysis:

MW — nB[s,)((G1] - [Ps) — ¢ [P], B =5 — hB[si]((Ga] — [P) — S 18],
W = 1BISA(1Go) — [P — ¢ [P), B =~ BISAI(Ga) — [P - $ 18], (4

M~ nBIS3)((Ga) - [P — ¢ B3], B =55 — hBIS3)(1Gs] - [Po]) — £[S3)-

In this model, [P], [Si], and [G;] are concentrations of three species of product
molecules, three species of substrate molecules, and three species of gate molecules
inside the reactor, and S}" is the influx rate of [S;]. The brackets [ -] indicate chemical
concentration and should not be confused with the matrix notation introduced above.
When explicitly talking about the concentrations at time ¢, we use P;(r) and S;(z). V is
the volume of the reactor, 4 the fraction of the reactor chamber that is well-mixed, e is
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the efflux rate, and f3 is the reaction rate constant for the gate-substrate reaction, which
is assumed to be identical for all gates and substrates, for simplicity.

To use this system as a reservoir we must ensure that it has transient or sustained os-
cillation. This can be easily analyzed by forming the Jacobian of the system. Observing
that all substrate concentrations reach an identical and constant value relative to their
magnitude, we can focus on the dynamics of the product concentrations and write an
approximation to the Jacobian of the system as follows:

d[p] d[p] d[P]

dPy] dP,] d[Ps] -y —hB[Si] 0
d|P,| d[Py] d[P: e

s[RI -] 0 w6
dlPy) d[Py) d[Py] —hB[S;] 0 —v

d[p] d[P,] d[P;]

Assuming that volume of the reactor V and the reaction rate constant  are given, the
Jacobian is a function of only the efflux rate e and the substrate concentrations [S;]. The
eigenvalues of the Jacobian are given by:

Ja = —hB((SiS2][83)3
R = YhB(SIIS:1[85])3 — § + % AB([S1]1S21[S3])
A3 = JRB((S1][S2][S5])% — & — Y hB([S1][S2][S5))

The existence of complex eigenvalues tells us that the system has oscillatory be-
havior near its critical points. The period of this oscillation is given by T =

i (6)

i

W= L=

2n \? hB([S1][S2] [S3})_% and can be adjusted by setting appropriate base values for
S, For sustained oscillation, the real part of the eigenvalues should be zero, which
can be obtained by a combination of efflux rate and substrate influx rates such that
LhB([S1][S21[3))3 — ¢ = 0.

This model works as follows. The substrate molecules enter the reaction chamber
and are bound to and cleaved by active gate molecules that are immobilized inside
the reaction chamber, e.g., on beads. This reaction turns substrate molecules into the
corresponding product molecule. However, the presence of each product molecule con-
centration suppresses the reaction of other substrates and gates. These three coupled
reaction and inhibition cycles give rise to the oscillatory behavior of the products’ con-
centrations (Figure 4). Input is given to the system as fluctuation to one or more of the
substrate influx rates. In Figure 3a we see that the concentration of §; varies rapidly as
a response to the random fluctuations in S7". This will result in antisymmetric concen-
trations of the substrate species inside the chamber and thus irregular oscillation of the
concentration of product molecules. This irregular oscillation embeds features of the
input fluctuation within it (Figure 3a). To keep the volume fixed, there is a continuous
efflux of the chamber content. The Equation 4 assumes ([G;] — [P;]) > 0, which should
be taken into account while choosing initial concentrations and constants to simulate
the system.

To perturb the intrinsic dynamics inside the reactor, an input signal can modulate
one or more substrate influx rates. In our system, we achieve this by fluctuating S7". In
order to let the oscillators react to different values of S7, we keep each new value of S7*
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Fig. 3. The random fluctuation in substrate influx rate S* leaves traces on the oscillator dynamics
that can be read off a readout layer. We observe the traces of the substate influx rate fluctuation
both in the dynamics of the substrate concentrations (a) and the product concentrations (b). Both
substrate and product concentrations potentially carry information about the input. Substrate con-
centration S is directly affected by S7* and therefore shows very rapid fluctuations.

constant for 7 seconds. In a basic setup, the initial concentrations of all the substrates
inside the reactor are zero. Two of the product concentrations P»(0) and P;(0) are also
set to zero, but to break the symmetry in the system and let the oscillation begin we set
P;1(0) = 1000 nM. The gate concentrations are set uniformly to [G;] = 2500 nM. This
ensures that ([G;] — [P;]) > 0 in our setup. The base values for substrate-influx rates
are set to 5.45 x 107% nmols~!. Figure 3 shows the traces of computer simulation of
this model, where 7 = 30 s. We use the reaction rate constant from [2], f =5 x 1077
nMs~!. Although the kinetics of immobilized deoxyribozyme may be different, for
simplicity we use the reaction rate constant of free deoxyribozymes and we assume that
we can find deoxyribozymes with appropriate kinetics when immobilized. The values
for the remaining constants are e = 8.8750 X 1072 nLs~ ! and h = 0.7849, i.e., the av-
erage fraction of well-mixed solution calculated in [2]. We assume the same microscale
continuous stirred-tank reactor (UCSTR) as [2,23,24], which has volume V = 7.54 nL.
The small volume of the reactor lets us achieve high concentration of oligonucleotides
with small amounts of material; a suitable experimental setup is described in [25].

P, b’w
Py
P \j

—efflux

influx—— <

Fig. 4. Three products form an inhibitory cycle that leads to oscillatory behavior in the reser-
voir. Each product P; inhibits the production of P by the corresponding deoxyribozyme (cf.
Equation 4).
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The dynamics of the substrates (Figure 3a) and products (Figure 3a) are instructive as
to what we can use as our reservoir state. Our focus will be the product concentrations.
However, the substrate concentrations also show interesting irregular behavior that can
potentially carry information about the input signals. This is not surprising since all
of the substrate and product concentrations are connected in our oscillator network.
However, the one substrate that is directly affected by the influx (S in this case) shows
the most intense fluctuations that are directly correlated with the input. In some cases
providing this extra information to the readout layer can help to find the right mapping
between the reservoir state and the target output.

In the next section, we build two different reservoir computers using the dynamics of
the concentrations in the reactor and use them to solve sample temporal tasks. Despite
the simplicity of our system, it can retain the memory of past inputs inside the reservoir
and use it to produce output.

4 Task Solving Using a Deoxyribozyme Reservoir Computer

We saw in the preceding section that we can use substrate influx fluctuation as input
to our molecular reservoir. We now show that we can train a readout layer to map the
dynamics of the oscillator network to a target output. Recall that 7 is the input hold time
during which we keep S' constant so that the oscillators can react to different values of
S, In other words, at the beginning of each 7 interval a new random value for substrate
influx is chosen and held fixed for 7 seconds. Here, we set the input hold time 7 = 100 s.
In addition, before computing with the reservoir we must make sure that it has settled in
its natural dynamics, otherwise the output layer will see dynamical behavior that is due
to the initial conditions of the oscillators and not the input provided to the system. In
the model, the oscillators reach their stable oscillation pattern within 500 s. Therefore,
we start our reservoir by using a fixed S7" as described in Section 3 and run it for 500 s
before introducing fluctuations in S7'.

To study the performance of our DNA reservoir computer we use two different tasks,
Task A and Task B, as toy problems. Both have recursive time dependence and therefore
require the reservoir to remember past inputs for some period of time, and both are
simplified versions of a popular RC benchmark, NARMA [8]. We define the input as
ST(t) = SR, where ST is the influx rate used for the normal working of the oscillators
(5.45x 107° nmols~! in our experiment) and R is a random value between 0 and 1
sampled from a uniform distribution. We define the target output Y(t) of Task A as
follows:

Y(1)=S"(t—1)+287(t—2). 7)

For Task B, we increase the length of the time dependence and make it a function of
input hold time 7. We define the target output as follows:

1, 3
Y (t—zr). (8)

Y(r)=8"(c—1)+ 5



84 A. Goudarzi, M.R. Lakin, and D. Stefanovic

3.00 =
| —Y i
o 2:50 ---Y after training
S 2.00¢ Y x 10719 before training

time (s)

Fig. 5. Target output and the output of the molecular reservoir computer on Task A (Equation 7)
before and after training. After 500 s the input starts to fluctuate randomly every 7 seconds. In this
example, the output of the system before training is 10 orders of magnitude larger than the target
output. We rescaled the output before training to be able to show it in this plot. After training, the
output is in the range of the target output and it tracks the fluctuations in the target output more
closely.

Note that the vectors Y(¢) and Y(¢) have only one row in this example. Figure 5
shows an example of the reservoir output Y () and the target output Y(¢) calculated
using Equation 7 before and after training. In this example, the reservoir output before
training is 10 orders of magnitude off the target.

Our goal is to find a set of output weights so that Y(¢) tracks the target output as
closely as possible. We calculate the error using normalized root-mean-square error
(NRMSE) as follows:

NRMSE =

I (Y(f) — 2
. w;,:tl(Y(r) Yo o

Yiax — Y n

where Y, and Y,,;, are the maximum and the minimum of the Y(¢) during the time
interval t; <t < t,. The denominator Yinax — Ymin is to ensure that 0 < NRMSE < 1,
where NRMSE = 0 means Y(¢) matches Y (¢) perfectly.

Now we propose two different ways of calculating the output from the reservoir: (1)
using only the dynamics of the product concentrations and (2) using both the product
and substrate concentrations. To formalize this using the block matrix notation, for the
product-only version the reservoir state is given by X(t) = P(¢) = [Py (t) Ps(t) P3(¢)]".
For the product-and-substrate version the reservoir state is given by vertically appending
S(t) = [S1(¢) S2(t) S3(1)]T to P(t), i.e., X(¢) = [P(¢) S(t)]T, where P(t) is the column
vector of the product concentrations as before and S(¢) is the column vector of the
substrate concentrations. We use 2000 s of the reservoir dynamics X(z) to calculate the
output weight matrix W using linear regression. We then test the generalization, i.e.,
how well the output Y(¢) tracks the target Y(¢) during another 2000 s period that we
did not use to calculate the weights.
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Fig. 6. Generalization NRMSE of the product-only and the product-and-substrate molecular
reservoir computer on Task A (Equation 7) and Task B (Equation 8) averaged over 100 trials.
The bars and error bars show the mean and the standard deviation of NRMSE respectively.

Figure 6 shows the mean and standard deviation of NRMSE of the reservoir com-
puter using two different readout layer solving Task A and Task B. The product-and-
substrate reservoir achieves a mean NRMSE of 0.23 and 0.11 on Task A and Task
B with standard deviations 0.05 and 0.02 respectively, and the product-only reservoir
achieves a mean NRMSE of 0.30 and 0.19 on Task A and Task B with standard de-
viations 0.04 and 0.03 respectively. As expected, the product-and-substrate reservoir
computer achieves about 10% improvement over the product-only version owing to
its higher phase space dimensionality. Furthermore, both reservoirs achieve a 10% im-
provement on Task B over Task A. This is surprising at first because Task B requires the
reservoir to remember the input over a time interval of g 7, but Task A only requires the
last two time steps. However, to extract the features in the input signal, the input needs
to percolate in the reservoir, which takes more than just two time steps. Task B requires
more memory of the input, but also gives the reservoir enough time to process the input
signal, which results in higher performance. Similar effects have been observed in [16].
Therefore, despite the very simple reservoir structure (three coupled oscillators), we can
compute simple temporal tasks with 90% accuracy. Increasing the number of oscillators
and using the history of the oscillators dynamics similar to [26] could potentially lead
to even higher performance.

5 Discussion and Related Work

DNA chemistry is inherently programmable and highly versatile, and a number of dif-
ferent techniques have been developed, such as building digital and analog circuits using
strand displacement cascades [27, 28], developing game-playing molecular automata
using deoxyribozymes [29], and directing self-assembly of nanostructures [30-32].
All of these approaches require precise design of DNA sequences to form the required
structures and perform the desired computation. In this paper, we proposed a reservoir-
computing approach to molecular computing. In nature, evidence for reservoir comput-
ing has been found in systems as simple as a bucket of water [33], simple organisms
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such as E. Coli [34], and in systems as complex as the brain [35]. This approach does not
require any specific behavior from the reactions, except that the reaction dynamics must
result in a suitable transient behavior that we can use to compute [6]. This could give
us a new perspective in long-term sensing, and potentially controlling, gene expression
patterns over time in a cell. This would require appropriate sensors to detect cell state,
for example the pH-sensitive DNA nanomachine recently reported by Modi et al. [36].
This may result in new methods for smart diagnosis and treatment using DNA signal
translators [37-39].

In RC, computation takes place as a transformation from the input space to a high-
dimensional spatiotemporal feature space created by the transient dynamics of the reser-
voir. Mathematical analysis suggests that all dynamical systems show the same infor-
mation processing capacity [40]. However, in practice, the performance of a reservoir is
significantly affected by its dynamical regime. Many studies have shown that to achieve
a suitable reservoir in general, the underlying dynamical system must operate in the
critical dynamical regime [8, 16,20,21].

We used the dynamics of the concentrations of different molecular species to extract
features of an input signal and map them to a desired output. As a proof of concept,
we proposed a reservoir computer using deoxyribozyme oscillator network and showed
how to provide it with input and read its outputs. However, in our setup, we assumed that
we read the reservoir state using fluorescent probes and process them using software. In
principle, the mapping from the reservoir state to target output can be carried out as an
integrated part of the chemistry using an approach similar to the one reported in [28],
which implements a neural network using strand displacement. In [41], we proposed a
chemical reaction network inspired by deoxyribozyme chemistry that can learn a linear
function and repeatedly use it to classify input signals. In principle, these methods could
be used to implement the regression algorithm and therefore the readout layer as an
integrated part of the molecular reservoir computer. A microfluidic reactor has been
demonstrated in [25] that would be suitable for implementing our system. Therefore,
the molecular reservoir computer that we proposed here is physically plausible and can
be implemented in the laboratory using microfuidics.

6 Conclusion and Future Work

We have proposed and simulated a novel approach to DNA computing based on the
reservoir computing paradigm. Using a network of oscillators built from deoxyri-
bozymes we can extract hidden features in a given input signal and compute any desired
output. We tested the performance of this approach on two simple temporal tasks. This
approach is generalizable to different molecular species so long as they possess rich
reaction dynamics. Given the available technology today this approach is plausible
and can lead to many innovations in biological signal processing, which has important
applications in smart diagnosis and treatment techniques. In future work, we shall study
the use of other sets of reactions for the reservoir. Moreover, for any real-world applica-
tion of this technique, we have to address the chemical implementation of the readout
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layer. An important open question is the complexity of molecular reactions necessary to
achieve critical dynamics in the reservoir. For practical applications, the effect of sparse
input and sparse readout needs thorough investigation, i.e., how should one distribute
the input to the reservoir and how much of the reservoir dynamics is needed for the
readout layer to reconstruct the target output accurately? It is also possible to use the
history of the reservoir dynamics to compute the output, which would require addition
of a feedback channel to the reactor. The molecular readout layer could be set up to read
the species concentration along the feedback channel. Another possibility is to connect
many reactors to create a modular molecular reservoir computer, which could be used
strategically to scale up to more complex problems.
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Abstract. The 2-Handed Assembly Model (2HAM) is a tile-based self-
assembly model in which, typically beginning from single tiles, arbitrarily
large aggregations of static tiles combine in pairs to form structures.
The Signal-passing Tile Assembly Model (STAM) is an extension of the
2HAM in which the tiles are dynamically changing components which are
able to alter their binding domains as they bind together. In this paper,
we prove that there exists a 3D tile set in the 2HAM which is intrinsically
universal for the class of all 2D STAM™ systems at temperature 1 and
2 (where the STAM™ does not make use of the STAM’s power of glue
deactivation and assembly breaking, as the tile components of the 2HAM
are static and unable to change or break bonds). This means that there is
a single tile set U in the 3D 2HAM which can, for an arbitrarily complex
STAMT™ system S, be configured with a single input configuration which
causes U to exactly simulate S at a scale factor dependent upon S.
Furthermore, this simulation uses only 2 planes of the third dimension.

To achieve this result, we also demonstrate useful techniques and
transformations for converting an arbitrarily complex STAM™ tile set
into an STAM™ tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of “signals” they can send,
with a trade off in scale factor.

While the first result is of more theoretical interest, showing the power
of static tiles to simulate dynamic tiles when given one extra plane in
3D, the second is of more practical interest for the experimental imple-
mentation of STAM tiles, since it provides potentially useful strategies
for developing powerful STAM systems while keeping the complexity of
individual tiles low, thus making them easier to physically implement.
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1 Introduction

Self-assembling systems are those in which large, disorganized collections of rela-
tively simple components autonomously, without external guidance, combine to
form organized structures. Self assembly drives the formation of a vast multitude
of naturally forming structures, across a wide range of sizes and complexities
(from the crystalline structure of snowflakes to complex biological structures
such as viruses). Recognizing the immense power and potential of self-assembly
to manufacture structures with precision down to the molecular level, researchers
have been pursuing the creation and study of artificial self-assembling systems.
This research has led to steadily increasing sophistication of both the theo-
retical models (from the Tile Assembly Model (TAM) [21], to the 2-Handed
Assembly Model (2HAM) [4, 8], and many others [1-3, 8,12]) as well as ex-
perimentally produced building blocks and systems (a mere few of which in-
clude [5,13, 15,16, 19, 20]). While a number of models exist for passive self-
assembly, as can be seen above, research into modeling active self-assembly is
just beginning [18,22]. Unlike passive self-assembly where structures bind and
remain in one state, active self-assembly allows for structures to bind and then
change state.

A newly developed model, the Signal-passing Tile Assembly Model (STAM)
[18], is based upon the 2HAM but with a powerful and important difference.
Tiles in the aTAM and 2HAM are static, unchanging building blocks which can
be thought of as analogous to write-once memory, where a location can change
from empty to a particular value once and then never change again. Instead,
the tiles of the STAM each have the ability to undergo some bounded number
of transformations as they bind to an assembly and while they are connected.
Each transformation is initiated by the binding event of a tile’s glue, and consists
of some other glue on that tile being turned either “on” or “off”. By chaining
together sequences of such events which propagate across the tiles of an assembly,
it is possible to send “signals” which allow the assembly to adapt during growth.
Since the number of transitions that any glue can make is bounded, this doesn’t
provide for “fully reusable” memory, but even with the limited reuse it has been
shown that the STAM is more powerful than static models such as the aTAM
and 2HAM (in 2D), for instance being able to strictly self-assemble the Sierpinski
triangle [18]. A very important feature of the STAM is its asynchronous nature,
meaning that there is no timeframe during which signals are guaranteed to fully
propagate, and no guaranteed ordering to the arrival of multiple signals. Besides
providing a useful theoretical framework of asynchronous behavior, the design
of the STAM was carefully aligned to the physical reality of implementation by
DNA tiles using cascades of strand-displacement. Capabilities in this area are
improving, and now include the linear transmission of signals, where one glue
binding event can activate one other glue on a DNA tile [17].

Although the STAM is intended to provide both a powerful theoretical frame-
work and a solid basis for representing possible physical implementations, often
those two goals are at odds. In fact, in the STAM it is possible to define tiles which
have arbitrary signal complezity in terms of the numbers of glues that they have on
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any given side and the number of signals that each tile can initiate. Clearly, with
increasing complexity of individual tiles, the ease of making them in the laboratory
diminishes. Therefore, in this paper our first set of results provide a variety of meth-
ods for simplifying the tiles in STAM systems. Besides reducing just the general
signal complexity of tiles, we also seek to reduce and /or remove certain patterns of
signals which may be more difficult to build into DNA-based tiles, namely fan-out
(which occurs when a single signal must split into multiple paths and have multi-
ple destinations), fan-in (which occurs when multiple signals must converge and
join into one path to arrive at a single glue), and mutual activation (which occurs
when both of the glues participating in a particular binding event initiate their
own signals). By trading signal complexity for tile complexity and scale factor, we
show how to use some simple primitive substitutions to reduce STAM tile sets to
those with much simpler tiles. Note that while in the general STAM it is possible
for signals to turn glues both “on” and “off”, our results pertain only to systems
which turn glues “on” (which we call STAM™ systems).

In particular, we show that the tile set for any temperature 1 STAM™ system,
with tiles of arbitrary complexity, can be converted into a temperature 1 STAM™
system with a tile set where no tile has greater then 2 signals and either fan-out
or mutual activation are completely eliminated. We show that any temperature
2 STAMT system can be converted into a temperature 2 STAM™ system where
no tile has greater than 1 signal and both fan-out and mutual activation are
eliminated. Importantly, while both conversions have a worst case scale factor of
|T2|, where T is the tile set of the original system, and worst case tile complexity
of |T?|, those bounds are required for the extremely unrealistic case where every
glue is on every edge of some tile and also sends signals to every glue on every side
of that tile. Converting from a more realistic tile set yields factors which are on
the order of the square of the maximum signal complexity for each side of a tile,
which is typically much smaller. Further, the techniques used to reduce signal
complexity and remove fan-out and mutual activation are likely to be useful
in the original design of tile sets rather than just as brute force conversions of
completed tile sets.

We next consider the topic of intrinsic universality, which was initially de-
veloped to aid in the study of cellular automata [6,7]. The notion of intrinsic
universality was designed to capture a strong notion of simulation, in which one
particular automaton is capable of simulating the behavior of any automaton
within a class of automata. Furthermore, to simulate the behavior of another
automaton, the simulating automaton must evolve in such a way that a trans-
lated rescaling (rescaled not only with respect to rectangular blocks of cells, but
also with respect to time) of the simulator can be mapped to a configuration
of the simulated automaton. The specific rescaling depends on the simulated
automaton and gives rise to a global rule such that each step of the simulated
automaton’s evolution is mirrored by the simulating automaton, and vice versa
via the inverse of the rule.

In this way, it is said that the simulator captures the dynamics of the sim-
ulated system, acting exactly like it, modulo scaling. This is in contrast to a
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computational simulation, for example when a general purpose digital computer
runs a program to simulate a cellular automata while the processor’s compo-
nents don’t actually arrange themselves as, and behave like, a grid of cellular
automata. In [11], it was shown that the aTAM is intrinsically universal, which
means that there is a single tile set U such that, for any aTAM tile assembly
system T (of any temperature), the tiles of U can be arranged into a seed struc-
ture dependent upon 7 so that the resulting system (at temperature 2), using
only the tiles from U, will faithfully simulate the behaviors of 7. In contrast,
in [9] it was shown that no such tile set exists for the 2HAM since, for every
temperature, there is a 2HAM system which cannot be simulated by any system
operating at a lower temperature. Thus no tile set is sufficient to simulate 2HAM
systems of arbitrary temperature.

For our main result, we show that there is a 3D 2HAM tile set U which is
intrinsically universal (IU) for the class € of all STAM™ systems at temperature
1 and 2. For every 7 € €, a single input supertile can be created, and using
just copies of that input supertile and the tiles from U, at temperature 2 the
resulting system with faithfully simulate 7. Furthermore, the simulating system
will use only 2 planes of the third dimension. (The signal tile set simplification
results are integral in the construction for this result, especially in allowing it
to use only 2 planes.) This result is noteworthy especially because it shows
that the dynamic behavior of signal tiles (excluding glue deactivation) can be
fully duplicated by static tile systems which are allowed to “barely” use three
dimensions. Furthermore, for every temperature 7 > 1 there exists a 3D 2HAM
tile set which can simulate the class of all STAM™ systems at temperature 7.

2 Preliminaries

Here we provide informal descriptions of the models and terms used in this paper.
Due to space limitations, the formal definitions can be found in [14].

2.1 Informal Definition of the 2HAM

The 2HAM [4,8] is a generalization of the abstract Tile Assembly Model (aTAM)
[21] in that it allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other. Since we must allow that the assemblies might
require translation before they can bind, we define a supertile to be the set of
all translations of a 7-stable assembly, and speak of the attachment of supertiles
to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the d-dimensional 2HAM,
for d € {2,3}, which is normally defined as a 2D model but which we extend to
3D as well, in the natural and intuitive way.

A tile type is a unit square if d = 2, and cube if d = 3, with each side
having a glue consisting of a label (a finite string) and strength (a non-negative
integer). We assume a finite set T" of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. A supertile is (the set of all
translations of) a positioning of tiles on the integer lattice Z?. Two adjacent
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tiles in a supertile interact if the glues on their abutting sides are equal and
have positive strength. Each supertile induces a binding graph, a grid graph
whose vertices are tiles, with an edge between two tiles if they interact. The
supertile is 7T-stable if every cut of its binding graph has strength at least 7,
where the weight of an edge is the strength of the glue it represents. That is,
the supertile is stable if at least energy 7 is required to separate the supertile
into two parts. A 2HAM tile assembly system (TAS) is a pair T = (T, 7), where
T is a finite tile set and 7 is the temperature, usually 1 or 2. (Note that this
is considered the “default” type of 2HAM system, while a system can also be
defined as a triple (7,.5,7), where S is the initial configuration which in the
default case is just infinite copies of all tiles from T, but in other cases can
additionally or instead consist of copies of pre-formed supertiles.) Given a TAS
T = (T, 1), a supertile is producible, written as « € A[T], if either it is a single
tile from T, or it is the 7-stable result of translating two producible assemblies
without overlap. Note that if d = 3, or if d = 2 but it is explicitly mentioned
that planarity is to be preserved, it must be possible for one of the assemblies
to start infinitely far from the other and by merely translating in d dimensions
arrive into a position such that the combination of the two is 7-stable, without
ever requiring overlap. This prevents, for example, binding on the interior of
a region completely enclosed by a supertile. A supertile « is terminal, written
as a € Ag[T], if for every producible supertile 8, a and 8 cannot be 7-stably
attached. A TAS is directed if it has only one terminal, producible supertile.

2.2 Informal Description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to
only one glue per side as in the TAM and 2HAM). Tiles have an initial state in
which each glue is either “on” or “latent” (i.e. can be switched on later). Tiles
also each implement a transition function which is executed upon the binding
of any glue on any edge of that tile. The transition function specifies, for each
glue g on a tile, a set of glues (along with the sides on which those glues are
located) and an action, or signal which is fired by ¢’s binding, for each glue in
the set. The actions specified may be to: 1. turn the glue on (only valid if it is
currently latent), or 2. turn the glue off (valid if it is currently on or latent).
This means that glues can only be on once (although may remain so for an
arbitrary amount of time or permanently), either by starting in that state or
being switched on from latent (which we call activation), and if they are ever
switched to off (called deactivation) then no further transitions are allowed for
that glue. This essentially provides a single “use” of a glue (and the signal sent
by its binding). Note that turning a glue off breaks any bond that that glue
may have formed with a neighboring tile. Also, since tile edges can have multiple
active glues, when tile edges with multiple glues are adjacent, it is assumed that
all matching glues in the on state bind (for a total binding strength equal to the
sum of the strengths of the individually bound glues). The transition function
defined for each tile type is allowed a unique set of output actions for the binding
event of each glue along its edges, meaning that the binding of any particular
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glue on a tile’s edge can initiate a set of actions to turn an arbitrary set of the
glues on the sides of the same tile either on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur be-
tween tiles contained in pairs of arbitrarily sized supertiles. In order to allow for
physical mechanisms which implement the transition functions of tiles but are ar-
bitrarily slower or faster than the average rates of (super)tile attachments and de-
tachments, rather than immediately enacting the outputs of transition functions,
each output action is put into a set of “pending actions” which includes all actions
which have not yet been enacted for that glue (since it is technically possible for
more than one action to have been initiated, but not yet enacted, for a particular
glue). Any event can be randomly selected from the set, regardless of the order of
arrival in the set, and the ordering of either selecting some action from the set or
the combination of two supertiles is also completely arbitrary. This provides fully
asynchronous timing between the initiation, or firing, of signals (i.e. the execution
of the transition function which puts them in the pending set) and their execution
(i.e. the changing of the state of the target glue), as an arbitrary number of supertile
binding events may occur before any signal is executed from the pending set, and
vice versa.

An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of producible
assemblies which starts with the initial tiles and then contains any supertiles
which can be formed by doing the following to any producible assembly: 1.
executing any entry from the pending actions of any one glue within a tile
within that supertile (and then that action is removed from the pending set), 2.
binding with another supertile if they are able to form a 7-stable supertile, or 3.
breaking into 2 separate supertiles along a cut whose total strength is < .

The STAM, as formulated, is intended to provide a model based on exper-
imentally plausible mechanisms for glue activation and deactivation. However,
while the model allows for the placement of an arbitrary number of glues on each
tile side and for each of them to signal an arbitrary number of glues on the same
tile, this is (currently quite) limited in practice. Therefore, each system can be
defined to take into account a desired threshold for each of those parameters,
not exceeding it for any given tile type, and so we have defined the notion of
full-tile signal complexity as the maximum number of signals on any tile in a set
(see [14] ) to capture the maximum complexity of any tile in a given set.

Definition 1. We define the STAM™ to be the STAM restricted to using only
glue activation, and no glue deactivation. Similarly, we say an STAMT tile set
is one which contains no defined glue deactivation transitions, and an STAMT
system T = (T, 7) is one in which T is an STAM™ tile set.

As the main goal of this paper is to show that self-assembly by systems using
active, signalling tiles can be simulated using the static, unchanging tiles of
the 3D 2HAM, since they have no ability to break apart after forming 7-stable
structures, all of our results are confined to the STAM™.

A detailed, technical definition of the STAM model is provided in [14].
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2.3 Informal Definitions for Simulation

Here we informally describe what it means for one 2HAM or STAM TAS to
“simulate” another. Formal definitions, adapted from those of [9], can be found
in [14] .

Let U = (U,Sy,7v) be the system which is simulating the system 7 =
(T, ST, mr). There must be some scale factor ¢ € N at which ¢ simulates 7, and
we define a representation function R which maps each ¢Xxc square (sub)assembly
in U to a tile in T (or empty space if it is incomplete). Each such ¢ x ¢ block is
referred to as a macrotile, since that square configuration of tiles from set U rep-
resent a single tile from set 7. We say that U simulates 7 under representation
function R at scale c.

To properly simulate 7, Y must have 1. equivalent productions, meaning that
every supertile producible in T can be mapped via R to a supertile producible
in U, and vice versa, and 2. equivalent dynamics, meaning that when any two
supertiles a and 3, which are producible in 7, can combine to form supertile
v, then there are supertiles producible in ¢ which are equivalent to a and
which can combine to form a supertile equivalent to ~, and vice versa. Note
that especially the formal definitions for equivalent dynamics include several
technicalities related to the fact that multiple supertiles in &/ may map to a
single supertile in 7, among other issues. Please see [14] for details.

We say that a tile set U is intrinsically universal for a class of tile assembly
systems if, for every system in that class, a system can be created for which 1.
U is the tile set, 2. there is some initial configuration which consists of supertiles
created from tiles in U, where those “input” supertiles are constructed to encode
information about the system being simulated, and perhaps also singleton tiles
from U, 3. a representation function which maps macrotiles in the simulator
to tiles in the simulated system, and 4. under that representation function, the
simulator has equivalent productions and equivalent dynamics to the simulated
system. Essentially, there is one tile set which can simulate any system in the
class, using only custom configured input supertiles.

3 Transforming STAM™ Systems from Arbitrary to
Bounded Signal Complexity

In this section, we demonstrate methods for reducing the signal complexity of
STAM™ systems with 7 = 1 or 7 > 1 and results related to reducing signal
complexity. First, we define terms related to the complexity of STAM systems,
and then state our results for signal complexity reduction.

We now provide informal definitions for fan-out and mutual activation. For
more rigorous definitions, see [14].

Definition 2. For an STAM system T = (T, 0,7), we say that T contains fan-
out iff there exists a glue g on a tilet € T such that whenever g binds, it triggers
the activation or deactivation of more than 1 glue on t.
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Definition 3. For an STAM system T = (T,0,7), we say that T contains
mutual activation iff Jt1,t2 € T with glue g on adjacent edges of t1 and to
such that whenever t1 and ty bind by means of glue g, the binding of g causes
the activation or deactivation of other glues on both t1 and ts.

3.1 Impossibility of Eliminating Both Fan-Out and Mutual
Activation at T =1

We now discuss the impossibility of com-
pletely eliminating both fan-out and mutual
activation at temperature 1. Consider the sig-
nal tiles in Figure 1 and let 7 = (T, 1) be the f
STAM™ system where T consists of exactly
those tiles. Theorem 1 shows that at tempera-
ture 1, it is impossible to completely eliminate Fig.1. An example of a tile set
both fan-out and mutual activation. In other Wwhere fan-out and mutual acti-
words, any STAM* simulation of 7 must con- vation cannot be completely re-
tain some instance of either fan-out or mu- ™oved. The glue f on the west
tual activation. The intuitive idea is that the edge of tile type B signals two
. . . other glues.

only mechanism for turning on glues is bind-

ing, and at temperature 1 we cannot control

when glues in the on state bind. Hence any binding pair of glues that triggers
some other glue must do so by means of a sequence of glue bindings leading
from the source of the signal to the signal to be turned on. Hence there must
be paths to both of the triggered glues from the single originating glue where at
some point a single binding event fires two signals. We will see that this is not
the case at temperature 2 since we can control glue binding through cooperation
there.

Theorem 1. At temperature 1, there exists an STAM™ system T such that any
STAM?" system S that simulates T contains fan-out or mutual activation.

The proof of Theorem 1 can be found in [14].

3.2 Eliminating Either Fan-Out or Mutual Activation

In this section we will discuss the possibility of eliminating fan-out from an
STAMT system. We do this by simulating a given STAM™T system with a sim-
plified STAM™ system that contains no fan-out, but does contain mutual activa-
tion. A slight modification to the construction that we provide then shows that
mutual activation can be swapped for fan-out.

Definition 4. An n-simplified STAM tile set is an STAM tile set which has
the following properties: (1) the full-tile signal complexity is limited to a fized
constant n € N, (2) there is no fan-out, and (3) fan-in is limited to 2. We say
that an STAM system T = (T,0,7) is n-simplified if T is n-simplified.
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Theorem 2. For every STAM" system T = (T, 0,7), there exists a 2-simplified
STAMYT system S = (S,0’,7) which simulates T with scale factor O(|T|*) and
tile complezity O(|T|?).

To prove Theorem 2, we construct a macrotile such that every pair of signal
paths that run in parallel are never contained on the same tile. This means that
at most two signals are ever on one tile since it is possible for a tile to contain at
most two non-parallel (i.e. crossing) signals. In place of fan-out, we use mutual
activation gadgets (see Figure 3) within the fan-out zone. Similarly, we use a fan-
in zone consisting of tiles that merge incoming signals two at a time, in order to
reduce fan-in. For examples of these zones, see Figure 2. Next, we print a circuit
(a system of signals) around the perimeter of the macrotile which ensures that
the external glues (the glues on the edges of the macrotiles that cause macrotiles
to bind to one another) are not turned on until a macrotile is fully assembled.
More details of the construction can be found in [14] .

Fan-out Zone Fan-in Zone
M

TN

b

Macrotile

ofl

Fig. 2. A tile with 5 signals (left) and the STAM™ macrotile that simulates it (right).
Here, the yellow squares represent glue a, the blue square represents glue b and the
orange squares represent glue c¢. The color of each frame corresponds to the glue of the
same color. For example on the tile to be simulated (left) there is a signal that runs
from glue a to glue c. In order to simulate this signaling, a signal runs from the fan-out
zone of glue a (the yellow glue) to the frame associated with glue a on the north edge.
The signal then wraps around the frame until it reaches the east side on which glue ¢
lies. Then the signal enters the fan-in zone of glue c.

To further minimize the number of signals per tile at 7 > 1, cooperation
allows us to reduce the number of signals per tile required to just 1. To achieve
this result, we modify the construction used to show Theorem 2, and prove
Theorem 3. The details of the modification are in [14] .
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Theorem 3. For every STAM™ system T = (T,0,7) with 7 > 1, there exists
a 1-simplified STAM™ system S = (S, ¢’, ) which simulates T with scale factor
O(|T|?) and tile complezity O(|T|?).

T A B

Fig. 3. An example of a mutual activation gadget consisting of tiles A and B without
fan-out simulating, at 7 = 1, the functionality of tile T which has fan-out. The glue b
represents the generic glues which holds the macrotile together. The idea is to “split”
the signals from the west glue g on tile A into two signals without using fan-out. Once
the west glue g on tile A binds, it turns on the east glue g on tile A. Then, when the
east glue g on tile A binds to tile B, it triggers glue f. Thus, the east glue g triggers
both the west glue g and glue f without fan-out.

3.3 Summary of Results

At temperature 1, the minimum signal complexity obtainable in general is 2 and
while it is possible to eliminate either fan-in or mutual activation, it is impossible
to eliminate both. For temperatures greater than 1, cooperation allows for signal
complexity to be reduced to just 1 and for both fan-in and mutual activation to
be completely eliminated. Table 1 gives a summary of these two cases of reducing
signal complexity and shows the cost of such reductions in terms of scale factor
and tile complexity.

Table 1. The cost of reducing signal complexity at 7 =1 and at 7 > 1

Temperature  Signal  Scale Factor Tile Complexity Contains Fan-In /

per Tile Mutual Activation
1 2 o(IT1?) o(IT1?) one or the other
>1 1 o(T)?) o(T)?) neither

4 A 3D 2HAM Tile Set Which Is IU for the STAMT

In this section we present our main result, namely a 3D 2HAM tile set which can
be configured to simulate any temperature 1 or 2 STAM™ system, at temperature
2. It is notable that although three dimensions are fundamentally required by
the simulations, only two planes of the third dimension are required.

Theorem 4. There is a 3D tile set U such that, in the 2HAM, U is intrinsically
universal at temperature 2 for the class of all 2D STAM™ systems where T €
{1,2}. Further, U uses no more than 2 planes of the third dimension.
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To prove Theorem 4, we let 7/ = (T”,S’,7) be an arbitrary STAM™ system
where 7 € {1, 2}. For the first step of our simulation, we define 7 = (T, S, 7) as a
2-simplified STAM ™ system which simulates 7" at scale factor m’ = O(|T"|?), tile
complexity O(|T"]?), as given by Theorem 2, and let the representation function
for that simulation be R’ : B7Tn, --» T'. We now show how to use tiles from a
single, universal tile set U to form an initial configuration St so that the 3D
2HAM system U = (U, S7,2) simulates T at scale factor m = O(|T|log |T|)
under representation function R : BY --» T'. This results in U7 simulating 77 at
a scale factor of O(|T"|*log(|T’|?)) via the composition of R and R’. Note that
throughout this section, 7 refers to the temperature of the simulated systems 7~
and 7', while the temperature of Uy is always 2.

4.1 Construction Overview

In this section, due to restricted space we present the 3D 2HAM construction at
a very high level. Please see [14] for more details.

Assuming that T is a 2-simplified STAM™ tile set derived from T”, we note
that for each tile in T 1. glue deactivation is not used, 2. it has < 2 signals,
3. it has no fan-out, and 4. fan-in is limited to 2. To simulate 7, we create an
input supertile o7 from tiles in U so that o7 fully encodes 7 in a rectangular
assembly where each row fully encodes the definition of a single tile type from
T. Beginning with an initial configuration containing an infinite count of that
supertile and the individual tile types from U, assembly begins with the growth
of a row on top of (i.e. in the z = 1 plane) each copy of o7. The tiles forming
this row nondeterministically select a tile type ¢ € T for the growing supertile to
simulate, allowing each supertile the possibility of simulating exactly one ¢t € T',
and each such t to be simulated. Once enough tiles have attached, that supertile
maps to the selected t via the representation function R, and at this point we
call it a macrotile.

Each such macrotile grows as an extension of o7 in z = 0 to form a square
ring with a hole in the center. The growth occurs clockwise from o, creating
the west, north, east, then south sides, in that order. As each side grows, the
information from the definition of ¢ which is relevant to that side is rotated so
that it is presented on the exterior edge of the forming macrotile. The second
to last stage of growth for each side is the growth of geometric “bumps and
dents” near the corners, which ensure that any two macrotiles which attempt
to combine along adjacent edges must have their edges in perfect alignment for
any binding to occur. The final stage of growth for each side is to place the glues
which face the exterior of the macrotile and are positioned correctly to represent
the glues which begin in the on state for that side.

Once the first side of a macrotile completes (which is most likely to be the
west side, but due to the nondeterministic ordering of tile additions it could
potentially be any side), that macrotile can potentially bind to another macrotile,
as long as the tiles that they represent would have been able to do so in 7.
Whenever macrotiles do bind to each other, the points at which any binding
glues exist allow for the attachment of duples (supertiles consisting of exactly 2
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Fig. 4. A high level sketch of the components and formation of a macrotile, including
dimensions, not represented to scale

tiles) on top of the two binding tiles (in z = 1). These duples initiate the growth
of rows in z = 1 which move inward on each macrotile to determine if there is
information encoded which specifies a signal for that simulated glue to fire. If
not, that row terminates. If so, it continues growth by reading the information
about that signal (i.e. the destination side and glue), and then growth continues
which carries that information inward to the hole in the center of the macrotile.
Once there, it grows clockwise in z = 0 until arriving at the correct side and
glue, where it proceeds to initiate the growth of a row in z = 1 out to the edge
of the macrotile in the position representing the correct glue. Once it arrives, it
initiates the addition of tiles which effectively change the state of the glue from
latent to on by exposing the necessary glue(s) to the exterior of the macrotile.

The width of the center hole is carefully specified to allow for the maximum
necessary 2 “tracks” along which fired signals can travel, and growth of the signal
paths is carefully designed to occur in a zig-zag pattern such that there are well-
defined “points of competition” which allow two signals which are possibly using
the same track to avoid collisions, with the second signal to arrive growing over
the first, rotating toward the next inward track, and then continuing along that
track. Further, the positioning of the areas representing the glues on each edge
is such that there is always guaranteed to be enough room for the signals to
perform the necessary rotations, inward, and outward growth. If it is the case
that both signals are attempting to activate the same glue on the same side, when
the second signal arrives, the row growing from the innermost track toward the
edge of the macrotile will simply run into the “activating” row from the first
signal and halt, since there is no need for both to arrive and in the STAM such a
situation simply entails that signal being discarded. (Note that this construction
can be modified to allow for any arbitrary full-tile signal complexity n for a
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given tile set by simply increasing the number of tracks to n, and all growth will
remain correct and restricted to z € {0,1}.)

This construction allows for the faithful simulation of 7 by exploiting the fact
that the activation of glues by fired signals is completely asynchronous in the
STAM, as is the attachment of any pair of supertiles, and both processes are
being represented through a series of supertile binding events which are simi-
larly asynchronous in the 2HAM. Further, since the signals of the STAM™ only
ever activate glues (i.e. change their states from latent to on ), the constantly
“forward” direction of growth (until terminality) in both models ensures that
the simulation by U7 can eventually produce representations of all supertiles in
T, while never generating supertiles that don’t correctly map to supertiles in T
(equivalent production), and also that equivalent dynamics are preserved.

Theorem 5. For every T > 1, there is a 3D tile set U, such that, in the 2HAM,
U, is IU at temperature T for the class of all 2D STAMY systems where of
temperature 7. Further, U uses no more than 2 planes of the third dimension.

To prove Theorem 5, we create a new tile set U, for each 7 from the tile set of
Theorem 4 by simply creating O(7) new tile types which can encode the value
of the strength of the glues of T' in o7, and which can also be used to propagate
that information to the edges of the macrotiles. For the exterior glues of the
macrotiles, just as strength 2 glues were split across two tiles on the exterior of
the macrotiles, so will T-strength glues, with one being of strength [7/2] and the
other |7/2]. All glues which appear on the interior of the macrotile are changed
so that, if they were strength 1 glues they become strength [7/2], and if they
were strength 2 they become strength 7. In this way, the new tile set U, will
form macrotiles exactly as before, while correctly encoding glues of strengths
1 through 7 on their exteriors, and the systems using it will correctly simulate
S