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Preface

This volume contains the refereed proceedings of DNA19: the 19th International
Conference on DNA Computing and Molecular Programming, held September
22–27, 2013, at Arizona State University, Arizona, USA.

Research in DNA computing and molecular programming draws together
many disciplines (including mathematics, computer science, physics, chemistry,
materials science, and biology) to address the analysis, design, and synthesis of
information-based molecular systems. This annual meeting is the premier forum
where scientists with diverse backgrounds come together with the common pur-
pose of applying principles and tools of computer science, physics, chemistry
and mathematics to advance molecular-scale computation and nanoengineer-
ing. Continuing this tradition, the 19th International Conference on DNA Com-
puting and Molecular Programming (DNA19), organized under the auspices of
the International Society for Nanoscale Science, Computation, and Engineering
(ISNSCE), focused on important recent experimental and theoretical results.

This year the Program Committee received 29 full paper submissions and
30 one-page abstracts. The Committee selected 14 full papers for oral presenta-
tion and inclusion in these proceedings, and 14 abstracts were selected for oral
presentation only. Many of the remaining submissions were selected for poster
presentation, along with posters chosen from 51 additional poster-only submis-
sions. The topics were well-balanced between theoretical and experimental work,
with submissions from 18 countries, reflecting the diversity of the community.

The scientific program also included six invited speakers: Alessandra
Carbone (Pierre and Marie Curie University), Hendrik Dietz (Technical Uni-
versity of Munich), Eric Goles (Adolfo Ibáñez University), Chengde Mao (Pur-
due University), Lulu Qian (California Institute of Technology), and Yannick
Rondelez (University of Tokyo).

Following the conference, a one-day workshop, Nanoday 2013, was held fea-
turing current topics in nanotechnology. The speakers included Nadrian Seeman
(New York University), Friedrich Simmel (Technical University Munich), John
Spence (Arizona State University), Kurt Gothelf (Aarhus University), Tim Liedl
(Ludwig Maximilians University of Munich), William Shih (Harvard Medical
School), John Chaput (Arizona State University), Paul Steinhardt (Princeton
University), Hanadi Sleiman (McGill University), Peng Yin (Harvard Medical
School), and Dongsheng Liu (Tsinghua University).

The editors would like to thank the members of the Program Committee
and the external referees for their hard work in reviewing submissions and of-
fering constructive suggestions to the authors. They also thank the Organizing
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and Steering Committees, and particularly Hao Yan and Natasha Jonoska, the
respective Committee Chairs, for their invaluable help and advice. Finally, the
editors would like to thank all the sponsors, authors, and attendees for support-
ing the DNA computing and molecular programming community, and helping
to make the conference a success.

July 2013 David Soloveichik
Bernard Yurke
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Extending DNA-Sticker Arithmetic

to Arbitrary Size Using Staples

Mark G. Arnold

XLNS Research

Abstract. The simple-sticker model uses robotic processing of DNA
strands contained in a fixed number of tubes to implement massively-
parallel processing of bit strings. The bits whose value are ‘1’ are recorded
by short DNA “stickers” that hybridize at specific places on the strand.
Other DNA models, like folded origami, use “staples” that hybridize to
disjoint portions of a single strand. This paper proposes an extended-
sticker paradigm that uses staples to hybridize to contiguous portions of
two substrands, forming virtual strands. The problem of redundant bits is
solved by blotting out old values. As an example of the novel extended-
sticker paradigm, a log-time summation algorithm outperforms (with
an ideal implementation) any electronic supercomputer conceivable in
the near future for large data sets. JavaScript and CUDA simulations
validate the theoretical operation of the proposed algorithm.

Keywords: DNA arithmetic, sticker system, DNA staples, addition.

1 Introduction

Roweis et al. [19] introduced the sticker system, for processing information en-
coded using carefully-designed species of single-stranded DNA contained in a
small set of tubes. Using an ordinary embedded microprocessor, the molecular-
level steps for the user’s algorithm are performed by macro-scale robotic pro-
cessing (moving, warming, cooling, and filtering) of water in particular tubes
carrying DNA strands. Although in recent years DNA-sticker computation has
largely been neglected by the molecular computing community that it helped
establish, there appears to be some renewed interest in sticker-like computation
[3,4]. Stickers were suggested as having the yet-to-be-realized parallel process-
ing power to outperform electronic supercomputers (assuming the application is
large and errors could be managed); newer non-sticker models of DNA computa-
tion avoid such comparisons, focusing on different paradigms, like nano-assembly.
This paper proposes novel extensions to the sticker model that enhance its ability
to solve larger problems. Although these ideas are specific to stickers, they may
be worth considering in the broader context of molecular computing because of
theoretical issues (e.g., sharing information between molecules) and implementa-
tion challenges (e.g., scaling up molecular computation to realistic applications)
this paper considers.

Like most other DNA-computation models, the sticker system exploits the
proclivity of a single-strand of DNA to hybridize with another single strand

D. Soloveichik and B. Yurke (Eds.): DNA 2013, LNCS 8141, pp. 1–15, 2013.
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2 M.G. Arnold

when the two strands are perfect Watson-Crick complements of each other. The
literature suggests it is possible to design artificial [11] or discover naturally-
occurring [18] sequences of DNA that hybridize with high-probability only at
the sites expected in the user’s high-level model.

The sticker system, as originally proposed [19], is one of the simplest models of
DNA computation. At the user’s level, it can be conceptualized without reference
to the underlying biochemical implementation as processing k-bit strings in a
finite set of containers (i.e., tubes). This model is isomorphic to punch-card data
processing, which was widely used for automated business applications (e.g.,
radix-sort) between 1900 and 1960.

As envisioned in [19], the “address” of each of the k bits is represented by a
distinct pattern of m >> log4(k) nucleotides. The choice of m must be much
larger than the information-theoretical bound to avoid unwanted hybridization
of strands and stickers in the wrong places. The choice of the constants k and
m determines the number and complexity of the species of DNA used to imple-
ment Roweis’ simple-sticker system [19]. This simple-sticker model is capable of
universal computation assuming k is large enough. Unfortunately, many prob-
lems need k larger than is practical (given the number of DNA species that can
be managed simultaneously). The novel approach proposed here is an extended-
sticker system, which allows solution of unbounded-size problems using a number
of DNA species similar to a fixed-k simple-sticker system.

Unlike Adelman’s complicated multi-tube method [1] using species of DNA
created for a particular instance of a problem (i.e., Hamiltonian path), the
simple-sticker system avoids using enzymes and permits recycling. Unlike single-
tube DNA origami [18], where a long DNA strand is folded and held together by
many species of staples, which consist of two (≈ m-sized) regions that are com-
plementary to disjoint portions of the long strand, each simple sticker consists
of one region that is complementary to a contiguous region of the long strand.

Unlike single-tube strand-displacement systems [17] that implement digital-
circuit cascades autonomously, sticker systems need an electronic controller to
initiate robotic processing between tubes. Strand-displacement systems involve
toehold regions that define reversible hybridization reactions, unlike the simple-
sticker system, where each sticker defines an essentially irreversible hybridization
reaction (unless temperature or pH are changed by the controller).

Early simple-sticker applications focused on NP-complete algorithms [19,12].
Biochemical computation is less reliable than electronic computation. Compen-
sating for this unreliability with redundancy [7] is now considered as too expen-
sive for NP-complete problems[15]. Recently, Arnold [3] proposed biochemical
unreliability can be useful in a different paradigm (Monte-Carlo arithmetic [16]).

There has been renewed interest in the simple-sticker paradigm for computer-
arithmetic algorithms [22,10,2]. For example, Chang et al. [5] uses simple-sticker
arithmetic for RSA cryptanalysis. Arnold [2,3] describes a new 50%-more-reliable-
sticker algorithm for (tube-encoded) integer addition that does not need stickers to
record carries, and uses half the time and tubes, and suggests Logarithmic Num-
ber Systems (LNS) for real multiplication, division and square root. The novel
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extended-sticker approach proposed in this paper is compatible with all sticker-
arithmetic methods in the literature, but yields the greatest performance with the
tube-encoded methods [2].

2 Simple Sticker System

The simple-sticker system [19,12] consists of four types of DNA species. First,
there is one kind of a long (mk-sized) single-stranded DNA molecule, which is
referred to simply as the strand (since there is only one kind ever used). Second,
there are k species of stickers, which are short (m-sized) complementary DNA
molecules which hybridize only at one position in the long strand and never
hybridize with each other. Whether a sticker is present or not at an arbitrary
bit position in a particular strand determines whether that bit is treated as a
‘1’ or as a ‘0’. Injecting a higher concentration of a particular type of sticker
molecule will cause the associated bit to become ‘1’ in essentially every strand.
Third, there are k species of probes, with a subset of the DNA sequences (of the
associated k stickers) covalently bonded to a substituent that can be macroscop-
ically manipulated (e.g., magnetic bead) to separate the probe (and the strand it
might hybridize) without disturbing other strands or unhybridized stickers. This
allows strands to be separated into two different tubes depending on the value of
the bit at the associated position. If a sticker is there, the probe cannot stick. If
a sticker is not there, the strand will be transferred to a different tube along with
the probe. The DNA sequence of the probes should probably be shorter than m,
allowing the probe to be melted off the strand without disturbing the stickers on
the strand in the new tube. Fourth, k anti-probes are used at the end of a prob-
lem after melting all stickers off the strands. Anti-probes allow for sorting and
recycling of the k species of stickers for use in the next problem in the simple-
sticker system. Like an operating system’s privileged instructions, anti-probes
are used only by the system and are not available to the user (e.g., combining
probes and anti-probes in the same tube would incapacitate the system).

In addition to the nt user tubes visible to the algorithm, an additional 3k
system tubes hold the stickers, probes and anti-probes that implement individual
sticker operations. The fundamental O(1) user-level operations in the simple-
sticker model [19,12] operate on bit positions 0 ≤ i < k within user tubes
0 ≤ t, t0, t1, t2 < nt:

– separate(t1, t0, i) strands of tube t0 that have a one at position i into tube
t1 and leave those that have a zero at that position in tube t0.

– set(t, i): bit position i equal to 1 for every strand of tube t.
– discard(t): Recycle the contents of tube t back to the system tubes.
– combine(t1, t0): Transfer all of tube t0 into tube t1.
– split(t1, t0): Transfer half of tube t0 into tube t1.

Another operation, clear(t, i), which makes bit position i equal to 0, is often
provided, but its biochemical implementation is considered problematic [12]. A
more general form separate3(t1, t0, t2, i) is also provided that transfers each
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strand from t2 into t1 or t0 based on bit i. separate(t1, t0, i) means the same
as separate3(t1, t0, t0, i). These operations are implemented in JavaScript and
CUDA simulators [2,3,21] which represent each sticker bit abstractly as an ac-
tual bit in the computer and do not consider lower-level DNA encoding. The
JavaScript simulator uses that language’s interpreter to evaluate (e.g., eval())
high-level sticker code supplied by a user on its web page; the much faster CUDA
simulator requires the user to compile code (with nvcc) that calls on macros
for the sticker operations. The CUDA code exploits the multi-core nature of
GPUs to run each sticker as a separate thread, allowing for parallelism up to
the amount of GPU hardware available. Two versions of the CUDA code exist:
one which (like the JavaScript) assumes flawless operation; the other allows a
user-supplied probability of misclassification (as in [7]). The former allows for
simulation of larger systems because the latter must implement a pseudo-random
number generator in each thread. These non-random simulators (that assume
flawless sticker operation) were the starting points for the the extended-sticker
simulators used later in this paper to validate the theoretical operation of the
novel ideas presented here.

3 Novel Extended Sticker System

This paper proposes three novel extensions to the simple sticker system which
allow unbounded-size data to be processed without adding significant complexity
beyond that of the simple-sticker system. First, this paper proposes weak stick-
ers that can be bulk erased without disturbing other stickers. Second, this paper
suggests instead of putting all data on a single strand, with bits numbered con-
secutively from 0 to k−1, the data be distributed on several (ns) substrands, with
each substrand holding disjoint subsets of those bits. Third, this paper considers
using staples to concatenate such substrands under programmed control. With
these features, three new operations are available to the sticker programmer:

– clearweak(t) Remove all weak stickers from all strands in tube t.
– setweak(t, i): Make bit i equal to a weak 1 for every strand of tube t.
– staple(t1, i, j, t0): Randomly staple any substrand in tube t1 whose bit at

position i is zero to any substrand from tube t0 whose bit at position j is
zero. When finished, fully-stapled and completely-unstapled substrands from
both tubes reside in t1 (as if a combine had occured); half-stapled exceptions
(if any) are placed in tube t0.

Let’s discuss each of these three novel features in more detail. First, weak
stickers are simply stickers that are shorter than ordinary strong stickers, and
therefore will melt away from the strand at lower temperature than the strong
stickers. The mechanism is similar to how probes work. By itself, clearweak
does not overcome the lack of a general clear. To understand why, consider a
simple iterative algorithm, ai+1 = f(ai), that attempts to reuse an a field in a
strand. Since any bit in the result might depend on any bit in the argument, there
needs to be at least one other similar-sized field, b, that will hold a copy of a.
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If we clear all bits of b at the start using a clearweak, we may then implement
the assignment b=a using only separates and sets. The problem is we must
also clear the previous value held in a before we can compute a=f(b). If we
attempted to use clearweak again here, we would lose the information needed
to compute f(b). The different reason for clearweak here will be illustrated
shortly. (Algorithms like ai+1 = f(ai) can be solved using techniques similar to
those described below.)

Second, using substrands allows data to be processed independently (possibly
in different tubes) prior to joining together into a data structure.

Third, staples are the key to making substrands join together. The implemen-
tation of staple(t1, i, j, t0) shares aspects similar to combine and set. Like set,
a larger concentration of short single-stranded DNA will be injected into t1 and
then filtered out. (The main distinction is these short molecules are ≈ 2m-sized
staples rather than ≈ m-sized stickers.) Like combine, substrands from t0 will
be moved to t1. (Unlike combine, exceptions are moved to t0 when there are an
excess of substrands in t1 which causes some of them to become half-stapled.)
The staple operation includes both combining, injecting and exception-filtering
aspects as one user-level operation since it is necessary to return the excess sta-
ples to the system tubes prior to combining and there is no user-level command
to do this because it involves anti-probes. If the unhybridized staples were not
removed in the middle of the staple operation, some substrands from both tubes
would end up half stapled, unable to connect to substrands from the opposite
tube. As mentioned previously, the other way half-stapling can occur is when
there are too many substrands in tube t1. Again, the filtering of these exceptions
to tube t0 is included as part of the intrinsic staple operation because it involves
anti-probes.

Because only a small number of staple and substrand types are provided,
repeated stapling will result in a virtual strand with redundant copies of the
same bit that do not necessarily agree in value. The nature of the separate

operation (a probe may attach to any part of the virtual strand that does not
have a sticker for this redundantly-occurring bit address), the bit value tested will
be the logical conjunction of those redundant bits. The novel solution proposed
here is to “blot” old values of these fields with ones, so that the result of the
separate operation will be based only on the most recent value. In effect, this
overcomes the lack of a general clear operation, at the cost of keeping “waste”
product as part of the virtual substrand. This waste does not interfere with the
theoretical operation of the system, but may impede practical implementation.

Fig. 1 a) shows the distinct single-stranded molecules in the novel extended-
sticker/staple system with k = 6, m = 7 and number of substrands, ns = 2.
There are k = 6 stickers (solid-line backbones above the bases), four weak
stickers (dashed-line backbones), ns = 2 staples (longer backbones above the
bases) and ns = 2 substrands (even longer backbones below the bases). (In many
algorithms—like the one presented later—positions that have a weak sticker (5,
3, 2, 0 in Fig. 1) may not also need a strong sticker.) The bit position on sub-
strands can be determined by counting As; the bit position of staples or stickers
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Fig. 1. Examples of Proposed Extended Sticker System

can be determined by counting Ts. The middle-bit positions (4 represented by
GTAAAAC and 1 represented by GTTTTAC) of each substrand type may be
used to store data; the other positions are intended to provide structural link-
age. We will refer to the two substrand types in Fig. 1 as β and σ via two
user-accessible system tubes, Tβ and Tσ, respectively. (The additional α-type
used by the ns = 3 algorithm in the next section is not used here.) In addition,
here ns = 2 types of staples (each consisting of 2m bases) are provided: β-to-σ
(also called BS which connects bit BS=3 on β to bit BS =2 on σ) and σ-to-β
(also called SB which connects bits SB=0 on σ to SB =5 on β). The next section
example uses different staple types and bit numbers.

Fig. 1 b) gives an example using a weak sticker on a β-type substrand (in tube
TL) as a result of setweak(TL, 5). As in the next section, the bit position could
be symbolically referred to as SB , (the side of the σ-to-β sticker that attaches to
β), but as Fig. 1 is a low-level example, the 5 more clearly identifies the concrete
operation on left-most bit of the left substrand (GAAAAAC). The utility of such
a weak staple will be explained in the next section.

Fig. 1 c) continues the example using a staple to join two substrands together
as a result of staple(TL, 3, 2, Tσ); the concatenated virtual strand result will be
in tube TL. The user must return unstapled σ substrands to Tσ; these can be
identified by bit 2=0 (has neither staple nor sticker on GTTTAAC).

Fig. 1 d) gives a further example of staple(TL, 0, 5, Tβ) which uses an addi-
tional β-type sticker to increase the length of the virtual strand. This causes a
problem: the result has redundant GTAAAAC regions.
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Fig. 1 e) shows how the novel solution proposed here is to “blot out” the
GTAAAAC region in the virtual strand before the last staple operation, resulting
in the structure shown. Because of the way sticker hardware operates, later
operations will ignore the bit that was blotted out.

4 Log-Time Summation

This section will illustrate the extended-sticker system at a higher level than the
low-level details of Fig. 1 using a simple application: adding a set of numbers.
The conventional simple-sticker approach to add a pair of numbers [2] would
be to have a single strand subdivided into three n-bit wide data fields, a (bits
(2n − 1)..n), b (bits (n − 1)..0) and s=a+b (bits (3n − 1)..2n). To add more
numbers would require an ever longer single strand. Instead, as illustrated in
Fig. 2, bits (3n − 1)..2n will be assigned to s substrands, bits (2n − 1)..n will
be assigned to a substrands and bits (n− 1)..0 will be assigned to b substrands.
Prior to joining these together, they will reside in separate tubes.

3n+1  2n–1 … n 3n+2 3n+5   n–1 … 0 3n3n+3 3n–1 … 2n 3n+4

a
BA_ _AS bSB_ _BAsAS_ _SB

3n+2       3n+3 3n+4       3n+5

AS staple SB staple

  10   5     4     3   11   14  2     1     0    912  8     7     6  13

a
BA_ _AS bSB_ _BAsAS_ _SB

  11           12  13            14

AS staple SB stapleb)

a)

Fig. 2. Bit Layout in (asb) Virtual Strand. a) in general. b) n = 3.

Unlike folding single-strand origami [18], we ensure two substrands are in-
volved by designing substrands to have distinct bits, numbered 3n or above,
which will be assigned uniquely to receive staples for each substrand type. In
the example, the simple linear data structure to be created has an a substrand
stapled to an s substrand, which in turn is stapled to a b substrand, which
might itself be stapled to another a substrand, etc. This means there are two
extra bits in each substrand: one for stapling onto the left structure and an-
other for stapling onto the right structure. The numbering of these bits that
receive staples is arbitrary, for example, we could define BA=3n, BA =3n + 1,
AS=3n+2, AS =3n+3, SB=3n+4 and SB =3n+5, where the underscore rep-
resents the substrand on which the specific bit number is located, and the letters
represent the kind of staple which attaches to that bit position. For example,
BA is part of the b substrand whilst BA is the associated bit that is part of the
a substrand. (Using contiguous numbers for user-level data bits helps simplify
algorithmic design. The numbering is an arbitrary notation and does not nec-
essarily describe the physical placement on the strand, as was done for simplicity
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in Fig. 1. Biochemical and physical considerations, like how the 3’ and 5’ sides
of the substrands and staples come together, must be taken into account, but
will be ignored here.) The operation staple(t1, BA,BA ,t0) introduces to tube
t1 staples (for joining a and b together), which consist of the Watson-Crick
complements that represent bit addresses 3n and 3n + 1. In addition to this
BA-kind of staple, the addition example uses two other types: AS and SB. The
staple-target bits for this example are: 3n and 3n+5 in b; 3n+ 1 and 3n+ 2 in
a; and 3n+3 and 3n+4 in s. Fig. 2 shows the layout of bits in a simple example
of a virtual strand.

Because the staple targets are ordinary bits, whether specific substrands ac-
cept staples is under programmed control. If a prior set (or setweak) occured on
a particular substrand, the staple will be rejected (analogously to how a probe
would be rejected). For a linear structure like this example, the number of staple
types and the number of substrand types will be the same (ns), and the number
of bit positions dedicated to staples will be 2ns. For more complicated branching-
data structures (such as might occur in DNA-encoding of large databases [4]),
more staple types may be needed. A three-operand problem (like this addition
example), needs at least three staple types.

In order to describe abstractly the values in each substrand, three distinct
notations will be used. An uninitialized (all zero) substrand (from a vast supply
in a system tube), will be denoted with the Greek equivalent to the name of
the field; a field currently being processed will be denoted with the equivalent
lower-case Roman italic; and a retired field (which has been blotted out) will
be denoted with the equivalent upper-case Roman italic. For example, the field
b may start uninitialized as β; then be shown as b whilst it is processed; and
this same portion of the molecule will be shown as B after it has been blotted
out. The extent of a virtual strand (constructed by zero or more staples) will be
shown by a parenthesis. For example, (asb) shown in Fig. 2 is a virtual strand
consisting of three substrands held together by two staples (AS and SB). This
virtual strand can grow and have some of its substrands blotted out, for example,
(bASB) consists of four substrands held together by three staples (BA, AS and
SB). Because of the blotted substrands, its value (as observable by separate

operations) would be the same as the simple substrand (b).
The goal here is to compute the summation of all ai and bi substrands, i.e.,∑N−1
i=0 ai +

∑N−1
i=0 bi, assuming that each value is recorded in a single molecule.

(A realistic system probably would record each value with redundant molecules
and use refinement [7] to achieve Monte-Carlo distribution of errors [3]. Summing
this is analogous to averaging the redundant values, with the effect of improving
the accuracy of the Monte-Carlo arithmetic[16].) This paper ignores how the
input ai and bi substrands were formed; for the large size of N considered here
they could not have been individually input. Perhaps we could imagine [2] they
are the result of previous sticker computation on random distributions shaped
by a small number of input parameters. Many useful iterative algorithms [14]
need much smaller input sets than the internal values they process.
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Because of associativity and commutativity, there is an astronomical number
of ways to compute partial sums yet yield the correct final sum. Of course, the
most obvious linear-time approach could be used, in which one a value and one b
value would be stapled onto a partial result at each stage. Given the slowness of
biochemical operations, for N approaching the Avogadro constant, a linear-time
approach would be much too slow to be feasible. Instead, consider a log-time
approach, which uses the massive parallelism possible in the extended-sticker
method. It will be convenient to start with the left operands (a substrands) in
tube TL and the right operands (b substrands) in tube TR. To simplify the initial
presentation of the algorithm, assume the number (N) of a substrands exactly
matches the number of b substrands, and is a power of two. Of course, this
is unrealistic as some unmatched, stray substrands will undoubtedly exist, but
it is more convenient to ignore this at first. In addition to the input tubes TR

and TL, system tubes TALPH, TBET and TSIG have a large supply of uninitialized
substrands, and temporary tubes (like TLT and TRT) are available. The algorithm
consists of �log2(N)� iterations of Fig. 3.

staple(TL,_AS,AS_,TSIG);

separate3(TL,TSIG,TL,AS_);

staple(TL,_SB,SB_,TR);

fixstrays();

for (i=0;i<n;i++) //"s=a+b"in TL..TL+3

fulladd((2*n+i),i,(n+i),TL);

combine(TL,(TL+2));

for (i=0;i<2*n;i++)//blot "a,b"

set(TL,i);

split(TR,TL);

setweak(TL,BA_); setweak(TR,_BA);

staple(TL,_BA,BA_,TALPH); staple(TR,BA_,_BA,TBET);

separate3(TL,TALPH,TL,BA_); separate3(TR,TBET,TR,_BA);

clearweak(TL);/*BA_*/ clearweak(TR);/*_BA*/

for (i=0;i<n;i++) //a=s in TL, b=s in TR, blot s in both

{ separate(TLT,TL,(i+2*n)); separate(TRT,TR,(i+2*n));

set(TLT,(i+n));set(TL,(i+2*n)); set(TRT,i);set(TR,(i+2*n));

combine(TL,TLT); combine(TR,TRT);}

Fig. 3. Log-time Summation Algorithm

4.1 Algorithm Trace

A summary of the first two iterations of the algorithm is given in Table 1.
The algorithm starts by stapling (σ) substrands from a system tube to the (a)
substrands in TL. Excess (σ) substrands are returned to the system tube. The
(b) substrands in TR are combined with the (aσ) virtual strands in TL. These
two substrands are stapled together, ignoring the fixstrays routine since we
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assume the number of (b) strands and (aσ) virtual strands match perfectly.
The algorithm computes s=a+b using n iterations of the fulladd routine from
[2]. (The combine(TL,(TL+2)) is part of the algorithm from [2].) Any dyadic
operation implementable with stickers could be used at this point; it is desirable
for the operation to be commutative and at least approximately associative.
(For example, real LNS addition [2], which needs a small number of scratch
bits, could have these bits as part of an s substrand slightly-wider than a or
b. Floating-point operations are also possible, but the number of scratch bits
would be greater.) The input data, a and b, are blotted to A and B by setting
bits (2n − 1)..0, leaving only s with detectable data. At this point, the virtual
strands (AsB) are split (for the sake of discussion, perfectly) in half between TL

and TR.
From this point on, operations that are listed on the same line can be per-

formed in parallel. If we left the target bits of the BA staple alone, an ambiguity
would occur. For example, in tube TR, we want to staple (β) on the left of (AsB)
using a BA staple. Unfortunately, both (β) and (AsB) have a BA target bit.
Without the setweak, sometimes (AsBAsB) would be formed instead of the
desired (βAsB). A similar problem would occur in tube TL, where we want to
staple (α) on the right of (AsB) using a BA staple. Using the setweaks, the
algorithm temporarily forces right concatenation in TL and left concatenation
in TR. Excess α and β substrands are returned to the system tubes, and the
clearweaks will allow the structure to grow in the next iteration.

The reason for splitting into TL and TR is so that half of the s values can be
copied to a substrands and the other half to b substrands. Once this is done,
all s values can be blotted, producing (ASBa) in TL and (bASB) in TR, which
are effectively equivalent to (a) and (b), respectively, which these tubes held at
the beginning. Under the assumptions here, the number of (ASBa) and (bASB)
will be exactly half the number of those initial inputs.

Table 1 shows iteration 2 of the same code, giving (ASBASBASBa) and
(bASBASBASB). Both results are the sum of four numbers (the middle ASB
segments held intermediate results).

4.2 Complexity

At the end of the jth iteration (1 ≤ j ≤ �log2(N)�), the combined number of
virtual strands in TL and TR will be 2�log2(N)�−j , the number of inputs processed
per virtual strand will be 2j , and the number of substrands in each virtual strand
will be 3 · (2j − 1)+1 (of which only one, either an a or b, contains actual data).
Considering parallism, the algorithm needs 9 time steps for statements outside
loops. With n iterations of fulladd from [2] (4n time steps using TL and three
other tubes: TL+1 through TL+3, which could be shared with TR, TRT and TLT),
2n iterations of one statement to blot a and b (2n time steps), and n iterations
of the bottom loop to copy and blot s (3n time steps), the algorithm uses four
tubes and takes �log2(N)�(9n+ 9) time steps. Suppose, hypothetically, we wish
to add N = 279 ≈ 1 mole of 79-bit numbers contained in n = 161-bit substrands
(large enough to hold any partial sum; unbounded multiprecision integers, as
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in Common Lisp, would require extra staple and substrand types). Assuming
the time to staple remains the same as other operations as the virtual-strand
lengths increase, we need �log2(N)�(9n + 9) = 79 · 1458 ≈ 1.2 · 105 time steps.
Using all of its parallel-processing abilities, the most powerful (60 petaFLOP)
electronic supercomputer available in 2013 would require 6·1026/(6·1016) ≈ 1010

seconds, or in other words, the biochemical supercomputer could outperform the
electronic one as long as its time steps are faster than 1010/(1.2 · 105) ≈ 8.3 · 104
seconds ≈ one day, which seems possible with margin to spare. Of course, adding
a mole of numbers at this rate is only hypothetical, since 1010 seconds is over 300
years, and the DNA-based computation is unlikely to be reliable as described.

4.3 Macro, Micro and Hybrid Implementation

The preceding analysis assumes tubes large enough to hold all of the substrands
at one time interconnected via macroscale tubes and pumps. A more promising
alternative is microfluidics [8,6], which has been suggested for the simple sticker
system [2,9] by partitioning the strands into (say 10−6 mol) droplets processed
in parallel on several Micro-Electro-Mechanical System(MEMS) chips that also
contain the electronic components to control the movement and processing of the
droplets. Since the simple sticker system has no interstrand communication, such
partitioning does not diminish its capabilities. The smaller size of the droplet
suggests that reaction times[6], and therefore sticker time step will be reduced
compared to a macroscale tube.

A completely microfluidic implementation of the extended sticker system will
not be able to perform the log-time summation algorithm to completion. Instead,
it would generate a partial sum on each MEMS chip. To overcome this, a hybrid
electronic/biochemical approach could be used. For example, the proposed mole-
scale computation could be carried out by one million MEMS chips (comparable
to the number of chips in an electronic supercomputer) interconnected via a
very simple electronic network. Assuming the electronic network could transmit
one partial sum per microsecond, the problem could be completed in one second
after each MEMS chip has converted its result from biochemical to electronic
representation. The number of substrands processed on each individual MEMS
chip is one millionth of the macroscale implementation. In general, let 2Ne be
the number of MEMS chips, Nb = �log2(N)� − Ne, te be the time to transmit
one value electronically, tc be the time to convert to electronic representation
and tb be the biochemical time step. The total time for the hybrid system is
te · 2Ne + tc + tb · (9n + 9)Nb. When te, tc and tb are constant, this does not
vary by more than a factor of about two for 0 ≤ Ne ≤ N/2, allowing the choice
for Ne to based on MEMS cost and droplet size (with associated lower tb).
For the million-chip (Nb = 59) example, the first two terms can be ignored.
Assuming the same biochemical clock of one day, the million-chip hybrid system
would complete in a still unrealistic 235 years. The advantage, though, of the
microfluidic implementation is that a much faster time step of a few minutes may
be possible, perhaps allowing completion of the algorithm in under one year.
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Table 1. Symbolic Trace

step TL TR

(a) (b)
staple(TL, AS,AS ,Tσ) (aσ) (b)
staple(TL, SB,SB ,TR)) (aσb)
s=a+b (asb)
blot a,b (AsB)

split(TR,TL) (AsB) (AsB)

staple(TL, BA,BA ,Tα)

staple(TR, BA,BA ,Tβ) (AsBα) (βAsB)

a=s in TL;b=s in TR (AsBa) (bAsB)

blot s in TL,TR (ASBa) (bASB)

staple(TL, AS,AS ,Tσ) (ASBaσ) (bASB)
staple(TL, SB,SB ,TR) (ASBaσbASB)
s=a+b (ASBasbASB)
blot a,b (ASBAsBASB)

split(TR,TL) (ASBAsBASB) (ASBAsBASB)

staple(TL, BA,BA ,Tα)

staple(TR, BA,BA ,Tβ) (ASBAsBASBα) (βASBAsBASB)

a=s in TL;b=s in TR (ASBAsBASBa) (bASBAsBASB)

blot s in TL,TR (ASBASBASBa) (bASBASBASB)

4.4 Stray Substrands

The discussion of the summation algorithm so far has ignored fixstrays().
This routine, shown in Fig. 4, is intended to deal with the likely situation that
when the substrands in TL and TR are stapled together with SB staples, the
number of substrands in the two tubes will not be exactly the same, and even if
they were, some substrands may not staple together. To overcome this problem,
fixstrays() uses TR (which at this point is either empty or has half-stapled
substrands) and a temporary tube (TB) to take the stray strands which did not
staple properly, and convert them into a format which will be compatible with
later steps in the addition algorithm. The routine tests the SB bit of the b

substrand; any substrands where this bit is zero did not receive a staple. Those
substrands are transferred to TB. (In a similar way, any substrands where the
SB bit is zero are transferred to TR; it is likely strays would already have been
transfered to TR as half-stapled exceptions from staple(TL, SB,SB ,RL).) At
this point, steps involving TR and TB may be executed in parallel.

The process for TB is slightly more complicated. The first step involves taking
the substrands that were just transferred into TB (which do not have a staple on
their SB bit) and concatenating a new σ substrand. Because there are a surplus
of these in the system tube, all the unstapled substrands from the previous step
will now have σ substrand concatenated on the left. As in the earlier examples,
the user must return the unused σ substrands to the system tube. Because the
goal is to make the stickers of tube TB have the same format as if they were
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fixstrays()

{ separate3(TL,TB,TL,SB_);

separate3(TL,TR,TL,_SB);

staple(TB,SB_,_SB,TSIG); staple(TR,_SB,SB_,TBET);

separate3(TB,TSIG,TB,_SB); separate3(TR,TBET,TR,SB_);

staple(TB,AS_,_AS,TALPH);

separate3(TB,TALPH,TB,_AS);

combine(TL,TB); combine(TL,TR); }

Fig. 4. Fixing Stray Substrands

the result of successful stapling in the calling routine, it is also necessary to
concatenate an α substrand using an AS staple. Again, the unused α substrands
need to be returned to the system tube.

The steps for tube TR are easier: concatenate a β substrand using an SB

staple and return the unused β substrands to the system tube. Even though
the majority of substrands already in TR are half-stapled exceptions, the user-
level command staple(TR, SB,SB ,TBET) insures they all become fully stapled
(again because of the surplus of β substrands in the system tube). This also takes
care of the few substrands that might not have had a staple. After the parallel
processing of TR and TB is complete, the contents of both tubes are combined
with TL, and the summation algorithm may resume.

Versions of the JavaScript and CUDA simple-sticker simulators [21] used in
[2,3] (which represent each sticker bit as an actual bit in the computer) were
augmented to simulate this algorithm with extended stickers. Since JavaScript
is slow but has powerful string operations (similar to Java), the JavaScript
extended-sticker simulator models each sticker bit as a lower-case character
(or space if it is zero) and each staple bit as an upper-case character (limiting
k ≤ 26). This representation allows faithful modeling of half-staple exceptions,
and the exponential growth of virtual strands.

In contrast, the high-speed CUDA code running on a GPU was modified to
simulate only the non-blotted data as actual bits in the GPU’s device memory.
For efficiency, the blotted data is discarded after each iteration. This slightly less
faithful modeling (the half-staple exception cannot occur, instead being caught
by separate3(TL,TR,TL, SB)) increases performance. Six distinct CUDA ker-
nels are required to implement simple-sticker operations from the above algo-
rithm on the GPU; the staple operation is modeled by linear-time scanning of
arrays by the host CPU. A linear-time (Knuth/Fisher-Yates) shuffle [13] is used
to generate random permutations of tubes TL and TR on each iteration, which
exercises the fixstrays() routine extensively.

5 Conclusions

An extended-sticker system has been described in this paper that uses staples
to hybridize to contiguous portions of two substrands, forming virtual strands.
In contrast to the simple sticker system, which has all addressable bits in a



14 M.G. Arnold

single strand, different substrand types have distinct addressable bits. Using
staples, the system can initiate concatenation of substrands. Using weak stickers
to prevent undesired concatenation, the user may control whether concatenation
occurs on the left or right and, if desired, whether the concatenated substrand
is fresh (has bits that are zero). The weak stickers may then be melted away,
to allow the virtual strand to grow further. As virtual strand length increases,
redundant bits will occur. To overcome the ambiguity, this paper proposes blot-
ting out old values (setting all bits in the old substrand prior to concatenating
a similar-type substrand onto the virtual strand).

Using the proposed extended-sticker operations, a novel log-time summation
algorithm is described. It works by splitting the virtual strands into two tubes.
A virtual strand from one of these tubes is concatenated on the left of a new
substrand; a virtual strand from the other tube is concatenated on the right of
that new substrand. Once the three substrand types have been joined together,
conventional sticker addition [2] produces a partial sum, and the operands used to
produce this sum are blotted out. At the conclusion of one iteration, there are half
as many virtual substrands. Although longer, the virtual substrands at the end of
the iteration are in a format compatible with the input of the algorithm, which
means the time complexity is logarithmic. In theory, for large data sets, such
a log-time algorithm will outperform any electronic supercomputer conceivable
in the near future. In reality, issues of reliability, which are a concern for the
simple-sticker system [20], will be even more significant in the design of extended-
sticker systems. For example, in the simple-sticker system, the probability of a
misclassification is independent of the number of algorithm steps performed. In
the extended sticker system, it is unclear whether this will remain so as the
virtual strand length grows and many redundant bits have been blotted out.
An additional concern is the exponential growth of virtual strand length, which
may make handling the molecules more difficult than the simple-sticker system.
Further research is needed to characterize the kinds of failure modes possible in
the extended-sticker system, and their associated probabilities.

It is possible to imagine further extensions to the proposed system. For ex-
ample, including weak staples would allow programmed control over whether
a particular hybridization of substrands should be accepted. This would allow
more complex algorithms than the simple summation described in this paper. It
also could provide a means to control the exponential growth of virtual-strand
length and a means to eliminate waste products.
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Abstract. We study the computational complexity of the recently pro-
posed nubots model of molecular-scale self-assembly. The model general-
izes asynchronous cellular automaton to have non-local movement where
large assemblies of molecules can be moved around, analogous to mil-
lions of molecular motors in animal muscle effecting the rapid move-
ment of large arms and legs. We show that nubots is capable of simu-
lating Boolean circuits of polylogarithmic depth and polynomial size, in
only polylogarithmic expected time. In computational complexity terms,
any problem from the complexity class NC is solved in polylogarithmic
expected time on nubots that use a polynomial amount of workspace.
Along the way, we give fast parallel algorithms for a number of prob-
lems including line growth, sorting, Boolean matrix multiplication and
space-bounded Turing machine simulation, all using a constant number
of nubot states (monomer types). Circuit depth is a well-studied notion
of parallel time, and our result implies that nubots is a highly paral-
lel model of computation in a formal sense. Thus, adding a movement
primitive to an asynchronous non-deterministic cellular automation, as
in nubots, drastically increases its parallel processing abilities.

1 Introduction

We study the theory of molecular self-assembly, working within the recently-
introduced nubots model by Woods, Chen, Goodfriend, Dabby, Winfree and
Yin [43]. Do we really need another new model of self-assembly? Consider the
biological process of embryonic development: a single cell growing into an organ-
ism of astounding complexity. Throughout this active, fast and robust process
there is growth and movement. For example, at an early stage in the develop-
ment of the fruit fly Drosophila, the embryo contains approximately 6,000 large
cells arranged on its ellipsoid-shaped surface. Suddenly, within 4-minutes, the
embryo changes shape to become invaginated, creating a large structure that be-
comes the mesoderm, and ultimately muscle. How does this fast rearrangement
occur? A large fraction of these cells undergo a rapid, synchronized and highly
parallel rearrangement of their internal structure where, in each cell, one end of
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the cell contracts and the other end expands. This is achieved by a mechanism
that seems to crucially involve thousands of molecular-scale motors known as
myosin pulling and pushing the cellular cytoskeleton to quickly effect this rear-
rangement [25]. At an abstract level one can imagine this as being analogous
to how millions of molecular motors in a muscle, each taking a tiny step but
acting in a highly parallel fashion, effect rapid long-distance muscle contraction.
This rapid parallel movement, combined with the constraint of a fixed cellular
volume, as well as variations in the elasticity properties of the cell membrane,
can explain this key step in embryonic morphogenesis. Indeed, molecular mo-
tors that together, in parallel, produce macro-scale movement are a ubiquitous
phenomenon in biology.

We wish to understand, at a high level of abstraction, the ultimate limita-
tions and capabilities of such molecular scale rearrangement and growth. We
do this by studying a theoretical model that includes these capabilities. As a
first step towards such understanding, we show in this paper that large numbers
of tiny motors (that can each pull or push a tiny amount) coupled with local
state changes on a grid, are sufficient to quickly solve problems deemed to be
inherently parallelizable. This result, described formally below in Section 1.2,
demonstrates that our model, the nubots model, is a highly parallel computer
in a computational complexity-theoretic sense.

Another motivation, and potential test-bed for our theoretical model and
results, is the fabrication of active molecular-scale structures. Examples include
DNA-based walkers, DNA origami that reconfigure, and simple structures called
molecular motors [45] that transition between a small number of discrete states
[43]. In these systems the interplay between structure and dynamics leads to
behaviors and capabilities that are not seen in static structures, nor in other
unstructured but active, well-mixed chemical reaction network type systems.
Our theoretical results here, and those in [43], provide a sound basis to motivate
the experimental investigation of large-scale active DNA nanostructures.

There are a number of theoretical models of molecular-scale algorithmic self-
assembly processes [33]. For example, the abstract Tile Assembly Model, where
individual square DNA tiles attach to a growing assembly lattice one at a
time [41, 36, 17], or the two-handed (hierarchical) model where large multi-
tile assemblies come together [1, 8, 12, 15], or the signal tile model where DNA
origami tiles that form an “active” lattice with DNA strand displacement signals
running along them [20, 30, 31], as well as models where one can program tile
geometry [13, 18], temperature [1, 22, 39], concentration [6, 9, 16, 23] mixing
stages [12, 14] and connectivity/flexibility [21].

The well-studied abstract Tile Assembly Model [41] is an asynchronous, and
nondeterministic, cellular automaton with the restriction that state changes are
irreversible and happen only along a crystal-like growth frontier. The nubots
model is a generalization of an asynchronous and nondeterministic cellular au-
tomaton, where we have a non-local movement primitive. Nubots is intended to
be a model of molecular-scale phenomena so it ignores friction and gravity, allows
for the creation/destruction of monomers (we assume an invisible “fuel” source)
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and has a notion of Brownian motion (called agitation, but not used in this pa-
per). Instances of the model evolve as continuous time Markov processes, hence
time is modeled as in stochastic chemical kinetics [5, 38]. The style of movement
in nubots is analogous to that seen in reconfigurable robotics [7, 37, 26], and in-
deed results in these robotics models show that non-local movement can be used
to effect fast global reconfiguration [4, 3, 35]. The nubots model includes features
seen in cellular automata, Lindenmayer systems [34] and graph grammars [24].
See [43] for more detailed comparisons with these models.

1.1 Previous Work on Active Self-assembly with Movement

Previous work on the nubots model [43] showed that it is capable of building
large shapes and patterns exponentially quickly: e.g. lines and squares in time
logarithmic in their size. Reference [43] goes on to describe a general scheme to
build arbitrary computable (connected, 2D) size-n shapes in time and number of
monomer states (types) that are polylogarthmic in n, plus the time and states re-
quired for Turing machine simulation due to the inherent algorithmic complexity
of the shape. Furthermore, 2D patterns with at most n colored pixels, where the
color of each pixel is computable in time logO(1) n (i.e. polynomial in the length
of the binary description of pixel indices), are nubots-computable in time and
number of monomer types polylogarthmic in n [43]. The latter result is achieved
without going outside the pattern boundary and in a completely asynchronous
fashion. Many other models of self-assembly are not capable of this kind of par-
allelism. The goal of the present paper is to formalize the kind of parallelism
seen in nubots via computational complexity of classical decision problems.

Dabby and Chen [11] study an insertion-based model, where monomers insert
between, and push apart, other monomers. In this nice simplification of nubots
they build length-n lines in O(log3 n) expected time and O(log2 n) monomer
types in 1D. They also show relationships with regular and context-free lan-
guages, and give a design for implementation with DNA.

1.2 Our Results

In the nubots model a program is specified as a set of nubots rules N and is said
to decide a language L ⊆ {0, 1}∗ if, beginning with a word x ∈ {0, 1}∗ encoded as
a sequence of |x| “binary monomers” at the origin, the system eventually reaches
a configuration with the 1 monomer at the origin if x ∈ L, and 0 otherwise. Let
NC denote the (well-known) class of problems solved by uniform polylogarthmic
depth and polynomial size Boolean circuits.1 Our main result is stated as follows.

Theorem 1. For each language L ∈ NC, there is a set of nubots rules NL that
decides L in polylogarthmic expected time, constant number of monomer states,
and polynomial space in the input string length. Moreover, for i ≥ 1, NCi is
contained in the class of languages decided by nubots running in O(logi+3 n)
expected time, O(1) monomer states, and polynomial space in input length n.

1 NC, or Nick’s class, is named after Nicholas Pippenger.
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NC problems are solved by circuits of shallow depth, hence they can be
thought of as those problems that can be solved on a highly parallel architec-
ture (simply run each layer of the circuit on a bunch of parallel processors, after
polylog parallel steps we are done). NC is contained in P—problems solved by
polynomial time Turing machines (this follows from the fact that NC circuits are
of polynomial size). Problems in NC (or the analogous function class) include
sorting, Boolean matrix multiplication, various kinds of maze solving and graph
reachability, and integer addition, multiplication and division. Besides its circuit
depth definition, NC has been characterized by a large number of other parallel
models of computation including parallel random access machines, vector ma-
chines, and optical computers [19, 44, 42]. It is widely conjectured, but unproven,
that NC is strictly contained in P. In particular, problems complete for P (such
as Turing machine and cellular automata [29] prediction, context-free grammar
membership and many others [19]) are believed to be “inherently sequential”—it
is conjectured that these problems are not solvable by parallel computers that
run for polylogarithmic time on a polynomial number of processors [19, 10].

Thus our main result gives a formal sense in which the nubots model is highly
parallel: our proof gives a nubots algorithm to efficiently solve any highly par-
allelizable (NC) problem in polylogarithmic expected time and constant states.
This stands in contrast to sequential machines like Turing machines, that cannot
read all of an n-bit input string in polylogarithmic time, and “somewhat parallel”
models like cellular automata and the abstract Tile Assembly Model, which can
not have all of n bits influence a single bit decision in polylogarithmic time.

In order to obtain this result we give a number of novel nubots constructions.
We show how to simulate function-computing logarithmic space deterministic
Turing machines in only polylogarithmic expected time on nubots. We also show
how to sort numbers in polylogarithmic expected time. Our sorting routine is
used throughout our construction and is inspired by mechanisms such as gel
electrophoresis that sort based on physical quantities (e.g. mass) [27]. We give a
polylogarithmic expected time Boolean matrix multiplication algorithm, as well
as a new line growing routine and a new synchronization (fast message passing)
routine. All of these constructions are carried out using only a constant number
of nubot monomers states and rules.

Previous results [43] on nubots were of the form: for each n ∈ N there is a
set of nubot rules Nn (i.e. the number of rules is a function of n) to carry out
some task parametrized by n (examples: quickly grow a line of length n, or an
n × n square, grow some complicated computable pattern or shape whose size
is parametrized by n, etc.). For each NC problems our main result here gives a
single set of rules (i.e. of constant size), that works for all problem instances.

1.3 Future Work and Open Questions

The line growth algorithm in [43] runs in expected time O(log n), uses O(log n)
states and space O(n) × O(1) from a single seed monomer. In our construction
(see full paper) we give another line growth algorithm that runs in expected time
O(log2 n), uses O(1) states and space O(n) × O(1) from a size O(log n) seed.
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Fig. 1. Overview of nubots model. (a) A nubot configuration showing a single nubot
monomer on the triangular grid. (b) Examples of nubot monomer rules. Rules r1-r6 are
local cellular automaton-like rules, whereas r7 effects a non-local movement. A flexible
bond is depicted as an empty red circle and a rigid bond is depicted as a solid red disk.

Is it possible to find a line-growth algorithm that does better than time × space
× states = Ω(n log2 n)?

Theorem 1 gives a lower bound on nubots power. What is the upper bound on
confluent2 polylogarthmic expected time nubots? One challenge involves finding
better Turing machine space, or circuit depth, bounds on computing the movable
set (see Section 2), and iterating this for many moves on a polynomial size (or
larger) nubots grid.

Can we tighten our NC lower bound? Is the case that NCk is contained in,
say, the class of problems solved in O(logk+1 n) expected time on nubots? Our
constructions make a lot of use of “synchronization” (where many monomers
are simultaneously signaled to transition to a single common state), one way to
improve our lower bound would be to see if it is possible to simulate circuits effi-
ciently without using synchronization. The proof of Theorem 7.1 in [43] contains
an example construction of a wide class of patterns that can be grown without
synchronization. What conditions are necessary and sufficient for composition
of arbitrary (unsynchronized) systems?

Is it possible to grow a structure of size Ω(n), in expected time o(n) but
without using the movement rule? Here the only source of movement comes
from the “agitation” rule, which models the fact that in a liquid molecules are
bombarding each other and jiggling all around. Every self-assembed molecular-
scale structure was made under such conditions! Our question asks if we can
programmably exploit this random molecular motion to build structures quicker
than without it. Other open problems and further directions can be found in [43].

2 The Nubots Model and Other Definitions

In this section we formally define the nubots model. Figure 1 gives an overview
of the model and rules, and Figure 2 gives an example of the movement rule.

The model uses a two-dimensional triangular grid with a coordinate system
using axes x and y as shown in Figure 1(a). In the vector space induced by

2 By confluent we mean a kind of determinism where the system (rules with the input)
is assumed to always make a unique single terminal assembly.
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this coordinate system, the axial directions D = {±−→w,±−→x ,±−→y } are the unit
vectors along the grid axes. A pair −→p ∈ Z2 is called a grid point and has the set
of six neighbors {−→p + −→u | −→u ∈ D}. Let S be a finite set of monomer states. A
nubot monomer is a pair X = (si, p(X)) where si ∈ S is a state and p(X) ∈ Z2

is a grid point. Two monomers on neighboring grid points are either connected
by a flexible or rigid bond, or else have no bond (called a null bond). Bonds are
described in more detail below. A configuration C is a finite set of monomers
along with the bonds between them.

One configuration transitions to another via the application of a single rule,
r = (s1, s2, b,−→u ) → (s1′, s2′, b′,−→u ′) that acts on one or two monomers.3 The
left and right sides of the arrow respectively represent the contents of the two
monomer positions before and after the application of rule r. Here s1, s2 ∈
S ∪ {empty} are monomer states where at most one of s1, s2 is empty (denotes
lack of a monomer), b ∈ {flexible, rigid, null} is the bond type between them, and
−→u ∈ D is the relative position of the s2 monomer to the s1 monomer. If either
of s1 or s2 (respectively s1′ or s2′) is empty then b (respectively b′) is null. The
right is defined similarly, although there are some further restrictions on valid
rules (involving −→u ′) described below. A rule is only applicable in the orientation
specified by −→u , and so rules are not rotationally invariant.

A rule may involve a movement (translation), or not. First, in the case of
no movement: −→u = −→u ′. Thus we have a rule of the form r = (s1, s2, b,−→u ) →
(s1′, s2′, b′,−→u ). From above, at most one of s1, s2 is empty, hence we disallow
spontaneous generation of monomers from empty space. State change and bond
change occurs in a straightforward way, examples are shown in Figure 1(b). If
si ∈ {s1, s2} is empty and s′i is not, then the rule induces the appearance of a
new monomer at the empty location specified by −→u if s2 = empty, or −−→u if
s1 = empty. If one or both monomers go from non-empty to empty, the rule
induces the disappearance of monomer(s) at the orientation(s) given by −→u .

For a movement rule it must be the case that −→u �= −→u ′ and d(−→u ,−→u ′) = 1,
where d(u, v) is Manhattan distance on the triangular grid, and s1, s2, s1′, s2′ ∈
S \{empty}. If we fix −→u ∈ D, then there are two −→u ′ ∈ D that satisfy d(−→u ,−→u ′) =
1. A movement rule is applied both (i) locally and (ii) globally, as follows.

(i) Locally, one of the two monomers is chosen nondeterministically to be the
base (which remains stationary), the other is the arm (which moves). If the s2
monomer, denoted X , is chosen as the arm then X moves from its current po-
sition p(X) to a new position p(X) − −→u + −→u ′. After this movement −→u ′ is the
relative position of the s2′ monomer to the s1′ monomer, as illustrated in Fig-
ure 1(b). Analogously, if the s1 monomer, Y , is chosen as the arm then Y moves
from p(Y ) to p(Y )+−→u −−→u ′. Again,−→u ′ is the relative position of the s2′ monomer
to the s1′ monomer. Bonds and states may change during the movement.

3 In reference [43] the nubots model includes “agitation”: each monomer is repeatedly
subjected to random movements that are intended to model Brownian motion and
other uncontrolled fluid flows and movement. Our constructions work with or without
agitation, hence they are robust to random uncontrolled movements, but we choose
to ignore this issue and not formally define agitation for ease of presentation.
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Fig. 2. An example of a movement rule with two results depending on the choice of
arm or base. (a) Initial configuration. (b) Movement rule. (c) Result if the monomer
with state 1 is the base. (d) Result if the monomer with state 2 is the base. We can
think of (c) as pushing and (d) as pulling. Also, the affect on a flexible bonds (hollow
red circles) and null bonds are shown.

(ii) Globally, the movement rule may push, or pull other monomers, or if it can
do neither then it is not applicable. This is formalized as follows, and an example
is shown in Figure 2. Let −→v ∈ D be a unit vector. The −→v -boundary of a set of
monomers S is defined to be the set of grid points outside S that are unit distance
in the −→v direction from monomers in S. Let C be a configuration containing
adjacent monomers A and B, and let C′ be C except that the bond between A
and B is null in C′ if not null in C. The movable set M = M(C,A,B,−→v ) is the
smallest subset of C′ that contains A but not B and can be translated by −→v
to give the set M+−→v where the new configuration C′′ = (C′ \ M) ∪ M+−→v is
such that: (a) monomer pairs in C′ that are joined by rigid bonds have the same
relative position in C′′, (b) monomer pairs in C′ that are joined by flexible bonds
are neighbors in C′′, and (c) the −→v -boundary of M contains no monomers.

If M(C,A,B,−→v ) �= {}, then the movement where A is the arm (which should
be translated by −→v ) and B is the base (which should not be translated) is
applied as follows: (1) the movable set M(C,A,B,−→v ) moves unit distance along
−→v ; (2) the states of, and the bond between, A and B are updated according to
the rule; (3) the states of all the monomers besides A and B remain unchanged
and pairwise bonds remain intact (although monomer positions and flexible/null
bond orientations may change). If M(C,A,B,−→v ) = {}, the movement rule is
inapplicable (the rule is “blocked” and thus A is prevented from translating).

An assembly system T = (C0,N ) is a pair where C0 is the initial configura-
tion, and N is the set of rules. If configuration Ci transitions to Cj by some
rule r ∈ N , we write Ci �N Cj . A trajectory is a finite sequence of configura-
tions C1, C2, . . . , Ck where Ci �N Ci+1 and 1 ≤ i ≤ k − 1. An assembly system
evolves as a continuous time Markov process. The rate for each rule applica-
tion is 1. If there are k applicable transitions for Ci then the probability of
any given transition being applied is 1/k, and the time until the next transition
is applied is an exponential random variable with rate k (i.e. the expected time is
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1/k).4 The probability of a trajectory is then the product of the probabilities of
each of the transitions along the trajectory, and the expected time of a trajec-
tory is the sum of the expected times of each transition in the trajectory. Thus,∑

t∈T Pr[t]time(t) is the expected time for the system to evolve from configura-
tion Ci to configuration Cj , where T is the set of all trajectories from Ci to any
configuration isomorphic to Cj , that do not pass through any other configuration
isomorphic to Cj , and time(t) is the expected time for trajectory t.

2.1 Nubots and Decision Problems

LetN = {0, 1, 2, . . .}. Given a binary string x ∈ {0, 1}∗, written x = x0x1 . . . xk−1,
we let x̃ denote a horizontal line of k nubot monomers that represent x using
one of two “binary” monomer states. We let |x̃| ∈ N denote the number of
monomers in x̃. Given a line of monomers A composed of m (previously de-
fined) line segments, the notation [A, i] means segment i of A, and [A, i]j means
bit j of segment i of A. We next define what it means to decide a language (or
problem) with nubots.

Definition 1. A finite set of nubot rules NL decides a language L ⊆ {0, 1}∗
if for all x ∈ {0, 1}∗ there is an initial configuration C0 consisting of exactly
the line x̃ of monomers, positioned so that the left extent of x̃ is at the origin
(0, 0), where by applying the rule set NL, the system always eventually reaches a
configuration where there is an “answer” monomer at the origin in one of two
states: (a) “accept” if x ∈ L, or (b) “reject” if x �∈ L. Further, from the time it
first appears, the answer monomer never changes state.

2.2 Boolean Circuits and the Class NC

We define a Boolean circuit to be a directed acyclic graph, where the nodes
are called gates and each node has a label that is one of: input (with in-degree
0), constant 0 (in-degree 0), constant 1 (in-degree 0), ∨ (OR, in-degree 1 or
2), ∧ (AND, in-degree 1 or 2), ¬ (NOT, in-degree 1). One of the gates is also
identified as the output gate. The depth of a circuit is the length of the longest
path from an input gate to the output gate. The size of a circuit is the number
of gates it contains. A circuit computes a Boolean (yes/no) function on a fixed
number of Boolean variables, by the inputs and constants defining the output
gate value in the standard way. In order to compute functions over an arbitrarily
number of variables, we define (usually, infinite) families of circuits. We say that
a family of circuits CL = {cn | cn is a circuit with n ∈ N input gates} decides a
language L ⊆ {0, 1}∗ if for each x ∈ {0, 1}∗ circuit c|x| ∈ CL on input x outputs 1
if w ∈ L and 0 if w /∈ L.

In a non-uniform family of circuits there is no required similarity, or relation-
ship, between family members. We use a uniformity function that algorithmically
specifies some similarity between members of a circuit family. Roughly speaking,

4 For simplicity, when counting the number of applicable rules for a configuration, a
movement rule is counted twice, to account for the two choices of arm and base.
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a uniform circuit family C is an infinite sequence of circuits with an associated
function f : {1}∗ → C that generates members of the family and is computable
within some resource bound. Here we care about logspace-uniform circuit fami-
lies:

Definition 2 (L-uniform circuit family). A circuit family C is L-uniform, if
there is function f : {1}∗ → C that is computable on a deterministic logarithmic
space Turing machine, and where f(1n) = cn for all n ∈ N, and cn ∈ C is a
description of a circuit with n input gates.

Without going into details, we assume reasonable encodings of circuits as strings.
There are stricter, but more technical to state, notions of uniformity used in the
literature [2, 46, 19, 28] (which we do not require since we are giving a lower
bound on power), and circuit classes are reasonably robust under these more
restrictive definitions.

Define NCi to be the class of all languages L ⊆ {0, 1}∗ that are decided
by O(logi n) depth, polynomial size L-uniform Boolean circuit families. Define
NC =

⋃∞
i=0 NC

i, in other words NC is the class of languages decided by poly-
logarithmic depth and polynomial size L-uniform Boolean circuit families. Since
NC circuits are of polynomial size, they can be simulated by polynomial time
Turing machines, and so NC ⊆ P. It remains open whether this containment is
strict [19]. See [40] for more on circuits.

3 Proof Overview of Theorem 1

Here we give a high-level overview of the proof of Theorem 1. The full paper
contains the detailed proof, which includes novel parallel nubots algorithms for
line growth, sorting, Boolean matrix multiplication, space bounded function-
computing Turing machine simulation, parallel function evaluation for functions
of a certain form, Boolean circuit generation, and Boolean circuit simulation.

For each language L ∈ NC, we show that there exists a finite set of nubots
rules NL that decides L in the sense of Definition 1. Let CL be the circuit family
that decides L. We begin with the observation that since L is in logspace-uniform
NC, there is a deterministic Turing machine ML that uses logarithmic space
(in its input size) such that on unary input 1n, ML(1

n) = cn, where cn is a
description of the unique circuit in CL that has n input gates.

Our initial nubots configuration consists of a length-n line of binary nubots
monomers denoted x̃ that represents some x ∈ {0, 1}∗, and is located at the
origin. From this we create another length-n line of monomers that encode the
unary string 1n to be used for the creation of the circuit cn. The rule set NL

includes a description of ML. At a very abstract level, the system first generates
a circuit by simulating the computation of ML on input 1n, and producing a
nubots configuration (collection of monomers in a connected component) that
represents the circuit cn. The circuit is then simulated on input x. Both of these
tasks present a number of challenges.



Parallel Computation Using Active Self-assembly 25

3.1 Circuit Generation

Here we describe the fast parallel simulation of the logspace machine ML.
Logspace Turing machines have a read-only input tape with n input symbols,
a read-write worktape of length O(log n), and a write-only output tape where
the output tape head is assumed to always move right after writing a symbol. A
configuration consists of the input tape head position, worktape contents, and
worktape head position. There are at most O(nc) distinct configurations of this
form, for some c ∈ N, which comes from the O(log n) bound on the worktape
length. Hence ML runs in time O(nc). We assume that ML stops in a halt state
(we are simulating a halting, function-computing, deterministic machine, so it
can be assumed to always halt in a special halt state). As noted, ML runs in
time O(nc), however we require a nubots simulation that runs in expected time
that is merely polylogarithmic in n. To achieve this our simulation of ML works
in a highly parallel fashion, described below.

First, we describe the adjacency matrix of the configuration graph G of ML

on input 1n. A configuration graph G is a directed graph, where each node rep-
resents a configuration of ML on (the fixed) input 1n [32]. There is an edge
from node i to node j if and only if ML moves from configuration i to con-
figuration j in a single step. From the previously-mentioned basic facts about
logspace machines, the number of nodes in G is at most polynomial in n. Fur-
ther, nodes in G have out degree 0 or 1 (ML is deterministic), the “halt” node
has out degree 0 (we assume there are no transitions out of the halt state), and
there a unique halt configuration (ML completes its computation by wiping the
worktape, returning all tape heads to the beginning of their tapes, and entering
the halt state). The nubots system NL begins by generating a representation of
the adjacency matrix of graph G of machine ML on input 1n. This is achieved
by building a “counter,” that grows from the n monomers (that encode 1n) to
become an O(nc)×O(logn) rectangle, the rows of which enumerate the syntacti-
cally correct configurations of the machine via the known time (O(nc)) and space
(O(log n)) bounds (some of these configurations are reachable on this input, and
some are not). The list of configurations are grown in expected time O(log2 n),
polynomial space and only O(1) monomer states. We then make a copy of this
list, and pairwise compare every entry in the copy to that of the original—a
process achieved via iterative copying of the list along with some geometric re-
arrangement tricks. The comparisons are done in parallel, where for each i, j it
is checked whether configuration j is reachable from configuration i in one step
on ML (each such comparison depends only on configurations i, j and so can be
computed in expected time O(log n) since the nubot rules NL directly encode
the program ML). The result of this process is quickly (in parallel) rearranged
to form a new list (a line of monomers) that encodes the result of all of these
comparisons, and thus represents the entire binary adjacency matrix MG.

After the adjacency matrix MG is constructed, the nubots system computes
reachability on the graph G. Specifically, the rules NL compute whether a path
exists from the node representing the initial configuration of ML on input x
to the node representing the unique halting configuration in the halt state.
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However, this directed graph is of size polynomial in n, so a sequential algo-
rithm would be too slow for our purposes. We quickly (in polylog expected time)
solve this reachability problem by parallel iterated matrix squaring of the adja-
cency matrix MG. More precisely, we iterate MG := M2

G+MG a total of O(log n)
times to give the matrix M ′

G. The column in M ′
G that represents the halt node

of graph G contains non-zero entries for exactly those nodes that have a path
to the halt node [32]. The Boolean matrix squaring is carried out as follows.
MG is represented as a line of monomers, this line iscopied, and every entry of
the two copies is pairwise ANDed, this involves further copying and geometric
arrangement. The results are rearranged (using a novel nubots sorting algorithm
discussed below) and then ORed in parallel to give the Boolean matrix M2

G.
This parallelmatrixmultiplication algorithm constitutes the main part of a con-

struction to simulate a logspace Turing machine that decides some language (if we
also take account of accept/reject states). However, here we wish to simulate a ma-
chine that computes a function: ML’s output is a description of the circuit cn, so
we are not yet done.We add the following assumption toML: it has a counter on its
worktape that starts at 0 and is immediately incremented each timeML writes to
the output tape (this counter merely adds aO(log n) term to the worktape length).
Thus only the “output-producing” configurations involvea counter incrementation.
We extract from the matrix M ′

G exactly those configurations that satisfy the fol-
lowing two criteria: (1) they are on a path from the input configuration to the halt
configuration (2) they produce output. To find (1) we simply filter out those nodes
(configurations) that correspond to non-zero entries in both the row of the initial
node, and the column of the halt node. To get (2) we sort, via a novel, fast paral-
lel sorting algorithm (discussed below), these configurations in increasing order of
the values on their workspace counters. Then we take this sorted list, and delete
everything (in parallel) except the encoded output tape write symbol from each
configuration.We use the counter to sort the write symbols and are left with a line
of � = O(nk)monomers that represent the length-� output tape ofML on input 1n.
This line of monomers, which we denote ĉn, is an encoding of the circuit cn.

The line of monomers ĉn is next geometrically rearranged for fast parallel cir-
cuit simulation. Here, ĉn reorganizes itself into a ladder-like form as shown in Fig-
ure 3(c) via fast parallel folding. Each layer i of the circuit cn as shown in Fig-
ures 3(a) is encoded as a row of nubot monomers, as shown in Figure 3(c) (our
circuits are assumed to be layered [40]). The circuit is now ready to be simulated.

3.2 Circuit Simulation

Recall that the circuit input bits (encoded as binary monomers) are located at
the origin, and that the entire circuit was “grown” from them. These monomers
move to the first (bottom) row of the encoded circuit (Figure 3(c)) and position
themselves so that each gate can “read” its 1 or 2 input bits. The jth gate on
layer i ≥ 1, is simulated by a single nubot monomer that reads its adjacent
1 or 2 input bits and then sends its “result bit” to the blue “wire address”
regions directly above it (Figure 3(d), in blue). After each gate computes its
bit, layer i “synchronizes” via a logarithmic in n expected time message passing
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Fig. 3. Encoding of a Boolean circuit as a nubots configuration. (a) Boolean circuit
with (b) detailed zoom-in. (c) Nubots configuration encoding the circuit, with zoom-in
shown in (d). A wire leading out of a gate in (b) has a destination gate number encoded
in (d) as strips of O(log n) blue binary monomers (indices in red). After a gate computes
some Boolean function (one of ∨, ∧, ¬) the resulting bit is tagged onto the relevant
blue strip of monomers that encode the destination addresses (red numbers). Circuits
are not necessarily planar, so to handle wire crossovers these result bits are first sorted
in parallel based on their wire address, and then pushed up to the next layer of gates.

Fig. 4. High-level overview of the sorting algorithm. (a) A line of m�logm� monomers,
split into m blue line segments (“heads”) each is the binary representation of a natural
number i ≤ m. (b) A blue head that encodes value i is grown to height i by a green rod.
Purple “labels” are also grown at the bottom. (c) The heads are horizontally merged,
using the labels to synchronize, to be vertically aligned. (d) Merged heads rotate down
into a line configuration, giving the sorted list. Each stage occurs in expected time
polylogarithmic in m. See full paper for details.

algorithm [43]. Next, we wish to send the “result” bits from layer i to layer i+1.
Circuits are not necessarily planar, so we need to deal with wire crossings.

Wire crossings are handled via a fast parallel sorting routine (also used in
earlier parts of the construction) that is loosely inspired by Murphy et al [27]
who show that physical techniques, such as gel electrophoresis, can be used to
sort numbers that are represented as the magnitude of some physical quantity.
The sorting routine is illustrated in Figure 4. It takes as input a line ofm�log2 m�
monomers, which is composed of m line segments each encoding a number in
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�log2 m� binary monomers. Each segment grows to a height equal to its value,
segments are merged horizontally, and rotated down to vertical to give a sorted
list of segments, all in expected time polylogarithmic in m.

The blue “wire address” regions in the circuit (Figure 3(d)) are sorted in
increasing order from left to right, then appropriately padded with empty space
in between (using counters), and are passed up to the next level. After the
“output gate” monomer computes its Boolean function, it signals to the rest of
the circuit to destroy itself. It then moves itself to the origin and the system halts
(no more rules are applicable). This completes the overview of the simulation.

This overview ignores many details. In particular the nubots model is asyn-
chronous, that is, rule updates happen independently via stochastic chemical
kinetics. The construction includes a large number of synchronization steps and
signal passing to ensure that all parts of the construction are appropriately
staged, but yet the construction is free to carry out many fast, asynchronous,
parallel steps between these “sequential” synchronization steps.
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2. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility.
Journal of the ACM 57, 14:1–14:36 (2010)

3. Aloupis, G., Collette, S., Damian, M., Demaine, E., Flatland, R., Langerman,
S., O’rourke, J., Pinciu, V., Ramaswami, S., Sacristán, V., Wuhrer, S.: Efficient
constant-velocity reconfiguration of crystalline robots. Robotica 29(1), 59–71 (2011)

4. Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V., Wuhrer,
S.: Reconfiguration of cube-style modular robots using O(log n) parallel moves. In:
Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369,
pp. 342–353. Springer, Heidelberg (2008)

5. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer,
Heidelberg (2006)
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Abstract. Unlike their traditional, silicon counterparts, DNA computers have
natural interfaces with both chemical and biological systems. These can be used
for a number of applications, including the precise arrangement of matter at the
nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand
displacement systems (DSD) can evaluate non-trivial functions. However, these
systems can be slow and are susceptible to errors. It has been suggested that
localised hybridization reactions could overcome some of these challenges. Lo-
calised reactions occur in DNA ‘walker’ systems which were recently shown to
be capable of navigating a programmable track tethered to an origami tile. We
investigate the computational potential of these systems for evaluating Boolean
functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a
discrete stochastic model of DNA walker ‘circuits’ based on experimental data,
and demonstrate the merit of using probabilistic model checking techniques to
analyse their reliability, performance and correctness.

1 Introduction

The development of simple biomolecular computers is attractive for engineering and
health applications that require in vitro or in vivo information processing capabilities.
DNA computing models which use hybridization and strand displacement reactions to
perform computation have been particularly successful. DNA strand displacement sys-
tems (DSD) have been shown experimentally to simulate logic circuits [12, 13] and
are known to be Turing-universal [11]. However, computing with biomolecules cre-
ates many challenges. For example, reactions within a DSD are global in the following
sense: strands which are intended to react must first encounter one another in a mixed
solution. The mixing of all reactants may lead to unintended reactions between strands.
These systems do not, at present, ensure the spatial locality typical of other computing
models. Qian and Winfree suggested that tethering DNA based circuits to an origami tile
could overcome some of these challenges [12]. This idea was explored and expanded
upon by Chandran et al. [5], who investigate how such systems could be realised exper-
imentally, give constructions of composable circuits, and propose a biophysical model
for verification of tethered, hybridization-based circuits. Our work is largely inspired
by theirs, but we consider another setting which also exhibits localised reactions: DNA
walker systems [2, 7, 10, 14–16].
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Fig. 1. (1) The walker strand carries a load (Q) that will quench fluorophores (F) when nearby.
The walker is attached to the initial anchorage and all other anchorages are blocked. By adding
unblocking strands, the selected track becomes unblocked. In this case the signal that opens up
the path labelled by ¬X is added. (2) The nicking enzyme (E) attaches to the walker-anchorage
complex, and cuts the anchorage. The anchorage top melts away from the walker, exposing 6
nucleotides as a toehold. (3) The exposed toehold becomes attached to the next anchorage. (4)
In a displacement reaction, the walker becomes completely attached to the new anchorage. The
stepping is energetically favourable, because it re-forms the base pairs that were lost after the pre-
vious anchorage was cut. (5) Repeating this process, the walker arrives at a junction. The walker
continues down the unblocked track, eventually reaching the final anchorage and quenching the
fluorophore.

Various DNA walkers have been experimentally realised — see [14] and references
therein. Single-legged DNA walkers were recently shown capable of navigating a pro-
grammable track of strands, called anchorages, that are tethered to a DNA origami
tile [14]. Movement of the walker between anchorages is shown in Fig. 1. Initially, all
tracks are blocked by hybridization to blocker strands. Anchorages and their blockers
are addressed by means of distinct toehold sequences (shown coloured): anchorages
are selectively unblocked by adding strands complementary to their blockers as input.
Much like field programmable gate arrays, these systems are easily reconfigured. By
using programmable anchorages at track junctions, Wickham et al. [14] demonstrate
that a walker can be directed to any leaf in a complete two-level binary tree using input
strands that unblock the intended path.

In Section 2, the computational expressiveness of such walker systems is explored,
using a theoretical framework that assumes ideal conditions. We highlight significant
limitations of current walker systems and motivate future work. In Section 3 we develop
a probabilistic model to analyse the impact of different sources of error that arise in
experiments on reliability, performance and correctness of the computation. The model
can be used to support the design and verification of DNA walker circuits.
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2 Computational Potential of DNA Walker Circuits

In this section we explore the computational potential of DNA walker systems. We fo-
cus on deterministic Boolean function evaluation and call the resulting constructions
DNA walker circuits. We begin by defining a model of computation that makes explicit
the underlying assumptions that characterize the DNA walker systems considered here.
These assumptions are consistent with current published experimental systems: in par-
ticular, we do not explore the potential for multiple walkers to interact within the same
circuit. However, we do consider the potential consequences for parallel computation.

2.1 A Model of Computation for DNA Walker Circuits

A DNA walker circuit is composed of straight, undirected, tracks (consecutive anchor-
ages), and gates (track junction points) that connect at most three tracks. A gate can
have at most one Boolean guard for each track that it connects. A particular guard
is implemented using one or more blocking strands that share a common toehold se-
quence; distinct guards use distinct toehold sequences. A track adjacent to a gate is
blocked if it has a guard that evaluates to false — its unblocking strands are not added
to solution — and is unblocked otherwise. For example, Fig. 1 depicts a circuit of a
single gate connecting three tracks. The track ending with the anchorage marked with
the red fluorophore (top right of panel 1) has the Boolean guard X , while the track
ending with the anchorage marked with the green fluorophore has the Boolean guard
¬X . Panel 2 of Fig. 1 shows that the path to the green fluorophore is unblocked when
¬X evaluates to true (i.e., the unblocking strands for ¬X are added to solution). In this
case, X evaluates to false and the path to the red fluorophore remains blocked (i.e., the
unblocking strands for X are not added to solution). We define a fork gate as having
at most one input track, and exactly two guarded output tracks. Each circuit has one
source – a fork gate with no input track denoting the initial position of a walker. A join
gate with an output track has at most two guarded input tracks. A join gate with no
output track is a sink and has at most three (unguarded) input tracks. Each circuit has
one or more true sinks and one or more false sinks.

In a circuit C with Boolean guards over n variables, a variable assignment A for
C is a truth assignment of those n variables. Consider any DNA walker circuit C and
variable assignment A for C. Let C[A] denote the set of reachable paths originating
from the source of C, after all guards are evaluated as blocked or unblocked, under
assignment A. We say that C is deterministic under assignment A if there is exactly
one path from the source to a sink in C[A]. Note that this definition of determinism
precludes the possibility of a deadlock, (i.e., when no path from the source can reach
a sink). Let VALUE (C[A]) be the output value of the circuit under assignment A (i.e.,
whether the reachable sink is a true sink or a false sink). Circuit C is deterministic if it
is deterministic under all possible variable assignments.

A circuit set S, consisting of one or more unconnected circuits, is deterministic if
and only if VALUE (Ci[A]) = VALUE (Cj [A]), for each Ci, Cj ∈ S, under any possible
assignment A. Let VALUE (S[A]) be the value of S under assignment A. The size of
S, denoted by SIZE (S), is the total count of component gates.1 We define the worst

1 We do not investigate circuit area in this paper.
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case time of a computation in S, denoted by TIME (S), as the longest reachable path
from a source to a sink. This notion of time captures the ability of multiple walkers to
simultaneously traverse disjoint paths (one per unconnected circuit).

Let S[A] denote the set of reachable paths in S under assignment A (one per uncon-
nected circuit). Given a circuit Ci ∈ S, we say that a gate G ∈ Ci is reachable in Ci[A]
(equivalently S[A]) if there exists an unblocked path from the source of Ci to G. Note
that, if every gate is reachable, this implies that every output track of a gate can be tra-
versed under some variable assignment. We call gates where this is not true redundant.
We will reason about circuit sets where all gates are reachable and non-redundant under
some variable assignment. When this is not the case, the circuit set can be simplified to
one that is logically equivalent.

2.2 Reporting Output in DNA Walker Circuits

Output of a DNA walker circuit can be reported with the use of different coloured
(spectrally resolvable) fluorophores and also quenchers. If a walker carries a quencher
cargo, then it has the potential to decrease one of a number of different fluorescent
signals from fluorophores positioned at the circuit sinks. This scenario is illustrated in
Fig. 2 (Left). In a circuit that decides a Boolean function, a single, quenching, walker
can only decrease the signal of a particular colour (corresponding to a particular flu-
orophore) by an amount that is inversely proportional to the number of sinks labelled
with that same colour. Accurate output reporting could be problematic in larger circuits

Fig. 2. Reporting Boolean decisions with DNA walker circuits. (Left) A quenching walker with
red fluorophores labelling false sinks and green fluorophores labelling true sinks. A drop in signal
for one colour indicates the truth value of the circuit. However, the signal drop is inversely propor-
tional to the number of sinks of the same colour. (Center) A green coloured walker and quenching
true sinks. When the circuit evaluates to true the green signal is fully suppressed. However, the
fluorescence output from this circuit cannot distinguish between an incomplete computation and
a false one. (Right) Two parallel copies of the circuit, with different fluorophores labelling the
walkers and with quenching true sinks in one and quenching false sinks in the other: the compu-
tation is complete and unambiguously reported when one colour is suppressed.
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with many sinks. We will therefore focus only on reporting strategies that fully sup-
press a particular colour. Rather than carrying a quencher, a walker instead carries a
fluorophore of a single colour and either all true sinks or all false sinks are labelled with
quenchers. An example with quenching true sinks is shown in Fig. 2 (Center). This cir-
cuit can fully suppress the fluorophore signal when it evaluates to true, regardless of its
size. However, this is a one-sided reporting strategy as one cannot distinguish between
the case of an incomplete computation or one evaluating to false. As illustrated in Fig. 2
(Right) this shortcoming can be addressed by using two circuits in parallel with each
using a one-sided reporting strategy. Each of the two (otherwise identical) circuits uses
a different coloured walker: one has quenching false sinks and the other quenching true
sinks. In this circuit set, one colour will be fully suppressed when it is true, the other
when it is false, and neither will be suppressed until the computation completes.

2.3 Deterministic Fork and Join Gates in DNA Walker Circuits

If all gates in a circuit set S are deterministic, it follows that S is deterministic. The
following theorem shows that deterministic fork gates must have output guards that are
negations of each other.

(a) (b)

Fig. 3. (a) A connectivity graph of a DNA walker circuit to evaluate the disjunction (X ∨Y ∨Z).
There are two output tracks: one when the circuit evaluates to true, the other when it evaluates to
false. The resulting path when X = Y = f and Z = t is shown highlighted. (b) Two conjunction
circuits are composed into the disjunction (A∧¬B∧C)∨(¬X∧Y ∧Z). Two source nodes (two
walkers) are used to evaluate clauses in parallel. No assignment of guards to the join gate labelled
J can ensure that this circuit is deterministic. This is evident when A = C = Y = Z = t and
B = X = f .

Theorem 1. A fork gate in a DNA walker circuit is deterministic if and only if there
exists some guard G such that the left output track is guarded by G and the right is
guarded by ¬G.
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Proof. If neither output track is guarded, then any path that can reach the gate could be
extended via the left or the right output track and the gate would not be deterministic.
Similarly, this is true when only one output track is guarded and the guard evaluates
to false. (If the fork gate is only reachable when the single output guard evaluates to
true, then the gate is redundant as the output track with the guard is never used.) Thus,
consider when each output track is guarded and let the left output have guard GL and the
right have guard GR. Note that GL �≡ GR as otherwise any path that reaches the gate
will result either in a deadlock — when both evaluate to false — or the path could be
extended via the left or the right output tracks — when both evaluate to true. Consider
any path p that can reach the gate and the case when GL evaluates to true and GR to
false. It follows that, before reaching the gate, p must not traverse a track guarded by
¬GL nor by GR. Since the gate is non-redundant, p must also be able to reach the gate
when GL evaluates to false and GR to true. It follows that, before reaching the gate, p
must not traverse a track guarded by GL nor by ¬GR. Therefore, path p is independent
of the variables affecting guards GL and GR. Thus, there exists a variable assignment
such that any path reaching the gate will result in a deadlock, or can be extended via
both output tracks, unless GL ≡ ¬GR. ��

Given any Boolean function f : {0, 1}n → {0, 1}, there exists a deterministic DNA
walker circuit set S that can evaluate f , under any assignment to its n variables, such
that TIME (S) = O(n). One construction is to simply form a canonical binary deci-
sion tree over some fixed order of the n variables. However, in such a construction
SIZE (S) = Θ(2n). It is natural to consider more space efficient representations to
evaluate f , such as binary decision diagrams (BDDs) [4]. In particular, reduced or-
dered BDDs are capable of representing some Boolean functions in a compressed form
that can be exponentially smaller than its canonical binary decision tree representation.
Like walker circuits, BDDs have a unique source. Unlike general BDDs, DNA walker
circuits are necessarily planar. Either we are limited to considering planar BDD rep-
resentations or additional fork and join nodes must be added to a BDD representation
when realising it as a walker circuit. A significant difference, however, is that BDDs
form directed acyclic graphs while tracks in a DNA walker circuit are undirected. Con-
sider the case when a walker reaches a join gate via its left input track. Unless the right
input track is blocked, the walker is equally likely to continue on the right input track as
it is on the output track. Additional steps are necessary to compensate for the undirected
nature of tracks in walker circuits.

Unlike fork gates, it is not obvious whether all join gates can be made deterministic.
Theorem 2 characterizes both the necessary and sufficient conditions: a deterministic
join of two disjoint sets of paths, one for each input track, is only possible if they
were previously “forked”2 on some variable X (i.e., in one set all paths traverse an
edge guarded by X and in the other set all traverse an edge guarded by ¬X). This
property is exemplified by the contrast between the disjunction circuit of Fig. 3(a) and
the disjunction of two conjunctions circuit as shown in Fig. 3(b). In the latter, two
walkers are used in an attempt to parallelize the evaluation. However, as the clauses do
not have literals over a common variable, there are no guards that can be assigned to

2 It is not a necessary condition that the two disjoint sets of paths reaching the join were forked
by a common gate, only that they can be partitioned based on the value of some variable.
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the join gate labeled J to ensure the circuit is deterministic. Note that this limitation
is not caused by the restricted topology of walker circuits (i.e., their layout on a planar
surface), but rather by the property that their tracks are undirected.

Theorem 2. A join gate in a DNA walker circuit is deterministic if and only if there
exists some guardG such that the left input track is guarded byG, the right by ¬G and,
prior to reaching those guards, all paths that can reach the left input must traverse a
track guarded byG and all paths that can reach the right must traverse a track guarded
by ¬G.

Proof. (⇒ if) Suppose the left input track is guarded by G, the right by ¬G and, prior
to reaching those guards, all paths that can reach the left input must traverse a track
guarded by G and all paths that can reach the right must traverse a track guarded by
¬G. There are two cases to consider. Suppose G evaluates to true. Then, no path can
reach the right input since, by the assumption, those paths must traverse a track guarded
by ¬G prior to reaching the gate. It follows that all paths that can reach the gate when
G evaluates to true must be to the left input. Furthermore, as the right input is guarded
by ¬G, those paths can only be extended via the output of the gate. The other case (G
evaluates to false) is symmetric. Furthermore, as the guards are negations of each other,
they cannot simultaneously evaluate to false and cause a potential deadlock.

(⇐ only if) Let GL and GR be the guards of the left and right inputs, respectively.
(If one or more of the input tracks is unguarded, then the gate cannot be deterministic
when both are reachable by at least one path.) First, consider all paths that can reach
the left input, guarded by GL. It must simultaneously be true that none of those paths
(i) traverse a track guarded by ¬GL and (ii) all of those paths traverse a track guarded
by ¬GR. If condition (i) is not satisfied, then there would exist a path that traverses a
track guarded by ¬GL and, to extend past the join gate, must traverse another guarded
by GL. As this is not possible, the path would end in a deadlock and the gate would not
be deterministic. If condition (ii) is not satisfied then there would exist some path p that
does not traverse a track guarded by ¬GR, but may possibly traverse a track guarded
by GR. In this case, there exists a variable assignment where GR, and all other guards
on path p, evaluate to true. With such a variable assignment, path p could be extended
via the output track or the right input track. Thus, condition (ii) must also be satisfied,
as otherwise the gate would not be deterministic. The conditions (and the argument that
both are necessary) when considering all paths that can initially reach the right input,
guarded by GR, are symmetric.

The sufficiency argument (⇒ if ) shows the gate is deterministic when GL ≡ ¬GR. It
remains to show it is not deterministic otherwise. First, consider the consequence when
both GL and GR evaluate to true. By condition (ii) all paths leading to the left (right)
input traverse a track guarded by ¬GR (¬GL). In this case, no paths can reach the gate.
Recall that the gate is non-trivial and therefore each input is reachable by at least one
path. Thus, consider when both GL and GR evaluate to false. The conditions permit that
paths can reach the gate; however, if any path does it will deadlock as both inputs to the
gate are blocked. Thus, for all paths that can reach the gate, it will be deterministic only
when GL ≡ ¬GR. ��
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2.4 Evaluating Boolean Formulas with DNA Walker Circuits

Despite the shortcomings of join gates in current DNA walker circuits, it is not the case
that Boolean formulas must be evaluated using a circuit forming a binary decision tree.
Any Boolean formula can be represented in one of its canonical forms. We will focus
on conjunctive normal form (CNF) which is a single conjunction of clauses, where each
clause is a disjunction over literals. A formula in CNF is said to be k-CNF if the largest
clause has size k. Using a standard transformation, a Boolean formula in k-CNF with
at most l total literals can be converted to a 3-CNF formula over O(l) variables, with at
most O(l) clauses (each having at most 3 literals). As such, we will reason exclusively
about circuits to evaluate 3-CNF formulas.

Constructing a walker circuit to represent a formula in 3-CNF with m clauses is
straightforward. Each clause can be represented by the disjunction circuit of Fig. 3(a).
The source of the circuit will be the first fork gate of the first clause. The output track
signalling the i-th clause is satisfied is connected to the input track of clause i + 1.
Thus, the walker will only reach the single true sink of the circuit (output from clause
m) if the formula is satisfied for that particular variable assignment. To ensure that both
true and false signals can be reported deterministically, we use the reporting strategy
depicted in Fig. 2 (Right) which employs two parallel copies of the circuit, each using
different coloured walkers and different quenching sinks.

Theorem 3. Let F be any 3-CNF Boolean formula withm clauses. There exists a DNA
walker circuit set S, with SIZE(S) = Θ(m) and TIME(S) = O(m), such that given any
variable assignment A for F , VALUE (S[A]) is the truth value of F under assignment
A.

Proof. The construction is described in Section 2.4 and it is easy to see that the circuit
is deterministic and that it correctly reports the truth value of F under assignment A.
What remains is to bound the circuit size and worst case time. The construction uses a
set of two circuits: CT and CF . Consider the circuit CT used to evaluate if F is true under
assignment A. There are m clauses and each is simulated by a disjunction circuit of size
O(1). These circuits are composed in series to form CT . Therefore, SIZE(CT ) = Θ(m)
and TIME(CT ) = O(m). The arguments are the same for circuit CF and, as both are
evaluated in parallel, the claim follows. ��

While the construction of Theorem 3 can represent any Boolean formula, and some
in exponentially less space than a binary decision tree, the resulting circuit set is formula
specific. Given the effort of creating DNA walker circuits, a more uniform circuit — one
capable of evaluating many Boolean functions — is worth exploring. As with silicon
circuits, we can construct a uniform circuit to evaluate any 3-CNF formula, under any
variable assignment, up to some bound on the number of variables. Each variable can be
present in a clause as either a positive or negative literal, but not both. (The circuit can
be modified to handle this case if necessary.) Therefore, there are at most 23

(
n
3

)
unique

clauses in any 3-CNF Boolean formula over n variables, and also for any formula over
m ≤ n variables. In this general circuit, we supplement each possible clause with an
initial fork gate guarded on the condition of the clause being active or inactive in the
particular formula being evaluated. If it is inactive, the walker can pass through to the
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output track denoting true, without traversing guards for the literals of the clause. Note
that this only increases the size of each clause by a constant.

Corollary 1. There exists a DNA walker circuit set S, with SIZE(S) = O(n3) and
TIME(S) = O(n3), that can evaluate any 3-CNF Boolean formula over m ≤ n vari-
ables under any variable assignment.

A 3-CNF formula with m clauses can be evaluated in polylogarithmic time (inm) us-
ing a silicon circuit in a straightforward manner: each clause can be evaluated in parallel
and those results can be combined using a binary reduction tree of height O(logm)—
only if all clauses are satisfied will the root of the reduction tree output true. Is the same
possible in DNA walker circuits? Unfortunately, this is not the case in general. Such a
circuit would require a new kind of join gate, outside of our current model of compu-
tation, to perform a conjunction of multiple walkers — one walker leaves the gate only
after all input walkers have arrived. Parallel evaluation of circuits representing formulas
in disjunctive normal form (DNF) does not fair better. Consider the case of a DNF for-
mula with m clauses where clause m− 1 and clause m have no literals over a common
variable. By Theorem 2, a join gate connecting the circuits for these clauses cannot be
deterministic. An example of this situation is given in Fig. 3(b).

3 Design and Verification of DNA Walker Circuits

We have so far assumed DNA walker circuits to work perfectly. In a real experiment
various errors can occur, for example, the walker may release from the track, or a block-
ade can fail to block an anchorage. In this section, we analyse the reliability and per-
formance of DNA walker circuits using probabilistic model checking. We develop a
continuous-time Markov chain model, based on a variety of DNA walker experiments
from [2, 14, 15], and analyse it against quantitative properties such as the probability
of the computation terminating or expected number of steps taken until termination.
We use the PRISM model checker [8], which accepts models described in a scripted
language and properties in the form of temporal logic. For example, if we label all
states of the model where a walker quenches any fluorophore by “finished”, then the
query P=?[F

[T,T ] finished ] yields the probability of all paths that eventually reach a
state where a walker has quenched a fluorophore (in other words, the computation ter-
minated) by time T . A custom tool was developed to generate PRISM model scripts
with matching track-layout graphs. Different configurations of tracks are studied: linear
tracks are considered in Fig. 4 (Top), while branched tracks are used in Fig. 5 and Fig. 6.
We use the results of experiments on linear (Fig. 4) and single-branched tracks to estab-
lish model parameters, and match model predictions with observations on double-layer
tracks to evaluate the quality of our model.

Experiments show that the walker can step onto anchorages that are fixed as far away
as 19 nm. We assume non-zero rates for the walker to step onto any intact anchorage
within 24 nm distance. This range was chosen by taking into account the lengths of the
empty anchorage and walker-anchorage complex, estimated around 15 nm and 11 nm
respectively.
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Fig. 4. Top: A small linear track of 8 anchorages with fluorophores on both the second and
last anchorage. Experiments were performed with one or more anchorages omitted [15]. Right:
Experimental results (reproduced with permission from the authors). The walker hardly reaches
the final anchorage when anchorage 7 is removed, due to the double penalty of a longer final step
and the mismatch in the final anchorage. Left: Model results. Dotted lines: Alternative model
where the walker can step onto already-cut anchorages with rate kb = ks/30.

A step taken by the walker corresponds to a single transition in the Markov chain,
although the real stepping process is more complex, as depicted in Fig. 1. Assume that
the stepping rate k depends on distance d between anchorages and some base stepping
rate ks. Denote by da = 6.2 nm the average distance between anchorages in the ex-
periment shown in Fig. 4. Denote by dM = 24 nm the maximal interaction distance
discussed earlier. Based on previous experimental estimates of [15], we fix the stepping
rate k as:

k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ks = 0.009s−1 when d ≤ 1.5da

ks/50 when 1.5da < d ≤ 2.5da

ks/100 when 2.5da < d ≤ dM

0 otherwise

(1)

These rates define a sphere of reach around the walker-anchorage complex, allowing
the walker to step onto an uncut anchorage when it is nearby. In Fig. 5 the sphere
of reach is depicted to scale with walker circuits. There are two exceptions. Stepping
from the initial anchorage and stepping onto the final anchorage occur at lower rates.
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The domain complementary to the walker on the initial anchorage is two bases longer
than the corresponding domain of a regular anchorage. Stepping from the initial an-
chorage was reported to happen 3× more slowly: this is incorporated in the model. The
final anchorage includes a mismatched base that prevents cutting by the nicking en-
zyme. Based on the experimental data, we fit a tenfold reduction for the rate of stepping
onto the final absorbing anchorage (Fig. 4).

Three types of interaction that are known to occur are omitted from the model: all
three could be incorporated in future. Firstly, a rate of ks/5000 is reported [15] for
transfer of the walker between separate tracks built on different DNA origami tiles.
Transfer between tracks could be eliminated by binding the tiles to a surface, thus keep-
ing them apart. Secondly, the walker can move between intact anchorages in the ab-
sence of the nicking enzyme with a rate of ∼ ks/13 [15]. With the enzyme present,
the walker spends little time attached to an intact anchorage, as enzymatic activity is
relatively fast.3 Therefore we remove the rate altogether. In our model, the anchorage
is cut as soon as the walker attaches to it. Thirdly, the walker can step backward onto
cut anchorages. This requires a blunt-end strand-displacement reaction which is known
to be slow relative to toehold-mediated displacement [17]. A variant of the model with
a backward rate k = ks/30 is shown in dotted lines in Fig. 4 (Left). In this case the
model predicts significant quenching of fluorophore F2 at late times by walkers whose
forward motion is obstructed by omission of one or more anchorages: this does not
match experimental data. A reduced rate kb = k/500 (not plotted) has a similar effect.

The time-dependent responses of fluorescent probes F2 and F8 shown in Fig. 4 (Left)
are predicted by the Markov chain model using the rate parameters discussed above
without any further fitting: they correspond well to the experimental data.

An additional parameter is needed to model branched tracks (Fig. 5(a)). We introduce
a failure rate for the anchorage blocking mechanism which is assumed to be the same
for all junctions. We infer a failure rate of 30% by fitting to the results of the single-layer
branched-track experiment illustrated in Fig. 5 [14].

3.1 Model Results

Having used experiments on straight tracks and with a single layer of branching to de-
termine the parameters of the model, we use the two-layer junction experiments shown
in Fig. 5(c) to evaluate its quality. The model captures essential features of the walker
behaviour and is reasonably well aligned with experimental data. In the model, not all
walkers reach an absorbing anchorage by time T = 200min, although the predicted
quenching is much higher than observed. The reason for this discrepancy is not easily
determined and motivates further study.

We exercise the model by model checking them against temporal logic queries aimed
at quantifying the reliability and performance of the computation. We note that not
all the walkers that finish actually do quench the intended signal. In both the model
and the experiments we can identify a difference between paths that follow the side
of the track (paths LL and RR), and paths that enter the interior (paths RL and LR):

3 The cutting rate for enzymatic activity was measured at 0.17s−1, for which the enzyme bind-
ing to the DNA is considered not a rate limiting step [3].
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Single layer Single layer 2-Layer 2-Layer Small 2-layer
Experiment Model Experiment Model Model

% R R2 L/R R R2 L/R RR RL LR LL RR RL LR LL RR RL LR LL
Finishes 65 56 56 97 96 92 33 40 22 33 90 89 89 90 94 92 94 92
Correct 76 87 50 78 85 50 70 65 55 76 77 74 74 77 78 78 78 78
Deadlock .081 .16 .0064 1.0 1.7 1.7 1.1 0.0 0.0 0.0 0.0
Steps 7.1 7.0 6.6 11.7 11.8 11.8 11.7 5.1 5.1 5.1 5.1

Fig. 5. Top: Track topology for single-layer (a) and double-layer (c,d) decision tracks. Initial in-
dicates the initial anchorage, Final indicates absorbing anchorages, and L, L’, R and R’ indicate
anchorages that can be blocked by input. Coloured circles (b) indicate the range of interaction
of the walker to scale. Bottom: Experimental results [14] compared with results from the model.
Single layer track: R means a single blockade on the left, R2 means a two-anchorage blockade on
the left, L/R means single blockades on both the left and right. Double layer track: RL means an-
chorages labelled L and R’ are blocked, so that the walker goes right on the first decision, and left
on the second. Each blockade is of two consecutive anchorages. All properties are given at time
T = 200 min. Finishes, P=?[F

[T,T ] finished ], is the probability that a walker quenches any fluo-
rophore by time T ; Correct, P=?[F

[T,T ](“finished-correct”|“finished”)], is the probability that a
finished walker quenches the correct fluorophore by time T ; Deadlock, P=?[F

[T,T ] deadlock ], is
the probability for the walker to get stuck prematurely by time T , with no intact anchorage within
reach; and Steps, R=? (steps) [C≤T ], indicates the expected number of steps taken by time T .

the probability of a correct outcome for the side paths is greater. This is explained
by leakage transitions between neighbouring paths, for example, see the red dotted
line in Fig. 5(d). Walkers on an interior path can leak to both sides, but a path that
follows the side can only leak to one side. This effect can also be shown by inspecting
paths. By using the property P=?[ correct-path U≤T finished-correct ], which denotes
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Small track Normal track Large track Single block Triple block
% TT TF FT FF TT TF FT FF TT TF FT FF TT TF FT FF TT TF FT FF
Finishes 94 92 94 92 93 89 92 90 85 84 85 84 92 92 92 92 86 94 86 94
Correct 64 63 64 63 71 68 71 68 70 70 70 70 60 60 60 60 76 72 76 71
Deadlock 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.4 1.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Steps 5.8 5.9 5.8 5.9 7.8 7.6 7.8 7.6 11.0 11.6 11.0 11.6 8.9 8.5 8.9 8.5 7.7 6.9 7.7 6.9

Fig. 6. Performance analysis for a logic track expressing the XOR formula (X ⊕ Y ). Properties
as in Fig. 5.

the probability that a walker stays on the path until it quenches the correct fluorophore
by time T , we can reason about the likelihood of the walker deviating from the intended
path. For the double-layer track in Fig. 5(d), we infer that the probability of staying on
the intended path and reaching the absorbing anchorage within 200 minutes is 55% for
paths LR and RL, and 58% for paths LL and RR. This shows that walkers on interior
paths are indeed more likely to deviate from the intended path than walkers on paths
that follow the sides.

The double-layer track can be optimized by reducing the probability of leakage from
the intended path. By decreasing the proximity of off-path anchorages and reducing the
track length, both the proportion of walkers finishing and correctness are increased (see
Fig. 5(d)). The asymmetry between paths (LL, RR vs. LR, RL) also disappears.

Smaller tracks are not always better. In Fig. 6 several variants of a XOR-logic cir-
cuit are shown. The ‘small’, ‘normal’ and ‘large’ variants all use a total of four blocker
strands per decision node. The large track is approximately as correct as the normal
sized track, but a lower proportion of walkers reach an absorbing anchorage. The small
track has a greater proportion of walkers that finish than the normal sized track, but it
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is considerably less reliable. We note that the walker has a large range of interaction,
which causes leakage and affects the reliability of the computation.

We infer that larger circuits are more susceptible to deadlock, based on Fig. 5 and 6.
Deadlock occurs when a walker is isolated on a non-absorbing anchorage with no intact
anchorage in range. From a computational standpoint deadlock is undesirable, as it is
impossible to differentiate a deadlocked process from a live process.

The performance of PRISM [8] depends on the model checking method. For small
tracks as in Fig. 4, verification by PRISM can be achieved using uniformisation with
a precision of 10−6 within 10ms on common hardware [1]. Properties for the single
layer circuit in Fig. 5 were model checked within 3s to a precision of < 10−6 using fast
adaptive uniformisation [6]. For the dual-layer track in the same figure, single-threaded
simulation of 105 paths, each of which is checked against the property, yields a 95%
confidence interval of size < 0.4% within 23s [1].

4 Conclusions

The capability for an autonomous DNA walker to navigate a programmable track has
been recently demonstrated [14]. We have considered the potential for this system to
implement DNA walker ‘circuits’. Working from experimental observations, we have
developed a simple model that explains the influence of track architecture, blockade
failure and stepping characteristics on the reliability and performance of walker cir-
cuits. The model can be further extended as more detailed experimental measurements
become available. Model checking enables analysis of path properties and quantitative
measures such as the expected number of steps, which cannot be established using tra-
ditional ODE frameworks. A major advantage of our approach is that circuit designs
can be manipulated to study the properties of variant architectures.

We have shown that walker circuits can be designed to evaluate any Boolean func-
tion. In the experimental system we have considered, paths within a circuit can only
be joined under specific conditions, resulting in a number of theoretical consequences.
One motivation for implementing circuits with a DNA walker system, instead of a DNA
strand displacement system (DSD), is the potential for faster reaction times due to spa-
tial locality. However, the walker system we have considered has severely limited po-
tential for parallel circuit evaluation using multiple walkers. As this is not an issue in
a DSD, it is the case that this walker system requires exponentially more time to com-
pute certain Boolean functions than a corresponding DSD. This is not necessarily true
of all walker systems. The problem arises in the system under consideration due to the
undirected nature of the tracks that are traversed by a walker.

Another autonomous walker system with directed tracks has been demonstrated [16]
and, in principle, could be extended to have programmable (directed) tracks. In ad-
dition to implementing circuits that could be evaluated efficiently by many walkers in
parallel, such a system could also benefit from well established design techniques to im-
prove overall circuit reliability [9]. Furthermore, current walker technology ‘destroys’
the track that is traversed. New mechanisms that can either replenish the track, or can
avoid ‘destroying’ it, will lead to reusable circuits. Finally, it would be interesting to ex-
plore the information processing capabilities of DNA walkers beyond circuit evaluation
and the potential for multiple interacting walkers to exhibit emergent behaviour.
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Abstract. This paper answers an open question of Chen, Doty, and
Soloveichik [5], who showed that a function f : Nk → Nl is deterministi-
cally computable by a stochastic chemical reaction network (CRN) if and
only if the graph of f is a semilinear subset of Nk+l. That construction
crucially used “leaders”: the ability to start in an initial configuration
with constant but non-zero counts of species other than the k species
X1, . . . , Xk representing the input to the function f . The authors asked
whether deterministic CRNs without a leader retain the same power.

We answer this question affirmatively, showing that every semilinear
function is deterministically computable by a CRN whose initial config-
uration contains only the input species X1, . . . , Xk, and zero counts of
every other species. We show that this CRN completes in expected time
O(n), where n is the total number of input molecules. This time bound is
slower than the O(log5 n) achieved in [5], but faster than the O(n log n)
achieved by the direct construction of [5].

1 Introduction

In the last two decades, theoretical and experimental studies in molecular pro-
gramming have shed light on the problem of integrating logical computation
with biological systems. One goal is to re-purpose the descriptive language of
chemistry and physics, which describes how the natural world works, as a pre-
scriptive language of programming, which prescribes how an artificially engi-
neered system should work. When the programming goal is the manipulation of
individual molecules in a well-mixed solution, the language of chemical reaction
networks (CRNs) is an attractive choice. A CRN is a finite set of reactions such
as X + Y → X +Z among abstract molecular species, each describing a rule for
transforming reactant molecules into product molecules.

CRNs may model the “amount” of a species as a real number, namely its
concentration (average count per unit volume), or as a nonnegative integer (to-
tal count in solution, requiring the total volume of the solution to be specified
as part of the system). The latter integer counts model is called “stochastic”
because reactions that discretely change the state of the system are assumed
to happen probabilistically, with reactions whose reactants have high molecular
counts more likely to happen first than reactions whose molecular counts are
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smaller. The computational power of CRNs has been investigated with regard
to simulating boolean circuits [12], neural networks [10], digital signal process-
ing [11], and simulating bounded-space Turing machines with an arbitrary small,
non-zero probability of error with only a polynomial slowdown [3]. CRNs are even
efficiently Turing-universal, again with a small, nonzero probability of error over
all time [13]. Certain CRN termination and producibility problems are undecid-
able [8,16], and others are PSPACE-hard [15]. It is also difficult to design a CRN
to “delay” the production of a certain species [6,7]. Using a theoretical model of
DNA strand displacement, it was shown that any CRN can be transformed into a
set of DNA complexes that approximately emulate the CRN [4]. Therefore even
hypothetical CRNs may one day be reliably implementable by real chemicals.

While these papers focus on the stochastic behaviour of chemical kinetics,
our focus is on CRNs with deterministic guarantees on their behavior. Some
CRNs have the property that they deterministically progress to a correct state,
no matter the order in which reactions occur. For example, the CRN with the
reaction X → 2Y is guaranteed eventually to reach a state in which the count
of Y is twice the initial count of X , i.e., computes the function f(x) = 2x,
representing the input by species X and the output by species Y . Similarly, the
reactions X1 → 2Y and X2 + Y → ∅, under arbitrary choice of sequence of the
two reactions, compute the function f(x1, x2) = max{0, 2x1 − x2}.

Angluin, Aspnes and Eisenstat [2] investigated the computational behaviour
of deterministic CRNs under a different name known as population protocols [1].
They showed that the input sets S ⊆ Nk decidable by deterministic CRNs (i.e.
providing “yes” or “no” answers by the presence or absence of certain indicator
species) are precisely the semilinear subsets of Nk.1 Chen, Doty, and Solove-
ichik [5] extended these results to function computation and showed that pre-
cisely the semilinear functions (functions f whose graph { (x,y) ∈ Nk+l | f(x) =
y } is a semilinear set) are deterministically computable by CRNs. We say a func-
tion f : Nk → Nl is stably (a.k.a., deterministically) computable by a CRN C if
there are “input” speciesX1, . . . , Xk and “output” species Y1, . . . , Yl such that, if
C starts with x1, . . . , xk copies of X1, . . . , Xk respectively, then with probability
one, it reaches a count-stable configuration in which the counts of Y1, . . . , Yl are
expressed by the vector f(x1, ..., xk), and these counts never again change [5].

The method proposed in [5] uses some auxiliary “leader” species present ini-
tially, in addition to the input species. To illustrate their utility, suppose that
we want to compute function f(x) = x + 1 with CRNs. Using the previous ap-
proach, we have an input species X (with initial count x), an output species Y
and an auxiliary “leader” species L (with initial count 1). The following reactions
compute f(x):

X → Y

L → Y

1 Semilinear sets are defined formally in Section 2. Informally, they are finite unions
of “periodic” sets, where the definition of “periodic” is extended in a natural way to
multi-dimensional spaces such as Nk.
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However, it is experimentally difficult to prepare a solution with a single copy
(or a small constant number) of a certain species. The authors of [5] asked
whether it is possible to do away with the initial “leader” molecules, i.e., to
require that the initial configuration contains initial count x1, x2, . . . , xk of input
species X1, X2, . . . , Xk, and initial count 0 of every other species. It is easy to
“elect” a single leader molecule from an arbitrary initial number of copies using
a reaction such as L + L → L, which eventually reduces the count of L to 1.
However, the problem with this approach is that, since L is a reactant in other
reactions, there is no way in general to prevent L from participating in these
reactions until the reaction L+ L → L has reduced it to a single copy.

Despite these difficulties, we answer the question affirmatively, showing that
each semilinear function can be computed by a “leaderless” CRN, i.e., a CRN
whose initial configuration contains only the input species. To illustrate one idea
used in our construction, consider the function f(x) = x + 1 described above.
In order to compute the function without a leader (i.e., the initial configuration
has x copies of X and 0 copies of every other species), the following reactions
suffice:

X → B + 2Y (1.1)

B +B → B +K (1.2)

Y +K → ∅ (1.3)

Reaction 1.1 produces x copies ofB and 2x copies of Y . Reaction 1.2 consumes all
copies of B except one, so reaction 1.2 executes precisely x− 1 times, producing
x−1 copies of K. Therefore reaction 1.3 consumes x−1 copies of output species
Y , eventually resulting in 2x − (x − 1) = x + 1 copies of Y . Note that this
approach uses a sort of leader election on the B molecules.

In Section 3, we generalize this example, describing a leaderless CRN con-
struction to compute any semilinear function. We use a similar framework to
the construction of [5], decomposing the semilinear function into a finite union
of affine partial functions (linear functions with an offset; defined formally in
Section 2). We show how to compute each affine function with leaderless CRNs,
using a fundamentally different construction than the affine-function computing
CRNs of [5]. This result, Lemma 3.1, is the primary technical contribution of
this paper. Next, in order to decide which affine function should be applied to a
given input, we employ the leaderless semilinear predicate computation of An-
gluin, Aspnes, and Eisenstat [3]; this latter part of the construction is actually
identical to the construction of [5], but we include it because our time analysis
is different.

Let n = ‖x‖ = ‖x‖1 =
∑k

i=1 x(i) be the number of molecules present initially,
as well as the volume of the solution. The authors of [5] showed, for each semilin-
ear function f , a direct construction of a CRN that computes f (using leaders)
on input x in expected time O(n log n). They then combined this direct, error-
free construction in parallel with a fast (O(log5 n)) but error-prone CRN that
uses a leader to compute any computable function (including semilinear), using
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the error-free computation to change the answer of the error-prone computation
only if the latter is incorrect. This combination speeds up the computation from
expected time O(n logn) for the direct construction to expected time O(log5 n)
for the combined construction.

Since we assume no leaders may be supplied in the initial configuration, and
since the problem of computing arbitrary computable functions without a leader
remains a major open problem [3], this trick does not work for speeding up our
construction. However, we show that with some care in the choice of reactions,
the direct stable computation of a semilinear function can be done in expected
time O(n), improving upon the O(n log n) bound of the direct construction of [5].

2 Preliminaries

Given a vector x ∈ Nk, let ‖x‖ = ‖x‖1 =
∑k

i=1 |x(i)|, where x(i) denotes the ith
coordinate of x. A set A ⊆ Nk is linear if there exist vectors b,u1, . . . ,up ∈ Nk

such that
A = { b+ n1u1 + . . .+ npup | n1, . . . , np ∈ N } .

A is semilinear if it is a finite union of linear sets. If f : Nk → Nl is a function,
define the graph of f to be the set

{
(x,y) ∈ Nk × Nl

∣∣ f(x) = y
}
. A function

is semilinear if its graph is semilinear.
We say a partial function f : Nk ��� Nl is affine if there exist kl rational

numbers a1,1, . . . , ak,l ∈ Q and l+k nonnegative integers b1, . . . , bl, c1, . . . , ck ∈ N

such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj +
∑k

i=1 ai,j(x(i)−
ci), and for each i ∈ {1, . . . , k}, x(i)−ci ≥ 0. In matrix notation, there exist a k×l
rational matrix A and vectors b ∈ Nl and c ∈ Nk such that f(x) = A(x−c)+b.

This definition of affine function may appear contrived; see [5] for an expla-
nation of its various intricacies. For reading this paper, the main utility of the
definition is that it satisfies Lemma 3.2.

Note that by appropriate integer arithmetic, a partial function f : Nk ��� Nl

is affine if and only if there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l + k non-
negative integers b1, . . . , bl, c1, . . . , ck, d1, . . . ,
dl ∈ N such that, if y = f(x), then for each j ∈ {1, . . . , l}, y(j) = bj +
1
dj

∑k
i=1 ni,j(x(i) − ci), and for each i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Each dj may

be taken to be the least common multiple of the denominators of the rational
coefficients in the original definition. We employ this latter definition, since it is
more convenient for working with integer-valued molecular counts.

2.1 Chemical Reaction Networks

If Λ is a finite set (in this paper, of chemical species), we write NΛ to denote
the set of functions f : Λ → N. Equivalently, we view an element c ∈ NΛ as
a vector of |Λ| nonnegative integers, with each coordinate “labeled” by an ele-
ment of Λ. Given X ∈ Λ and c ∈ NΛ, we refer to c(X) as the count of X in c.
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We write c ≤ c′ to denote that c(X) ≤ c′(X) for all X ∈ Λ. Given c, c′ ∈ NΛ,
we define the vector component-wise operations of addition c + c′, subtraction
c−c′, and scalar multiplication nc for n ∈ N. If Δ ⊂ Λ, we view a vector c ∈ NΔ

equivalently as a vector c ∈ NΛ by assuming c(X) = 0 for all X ∈ Λ \Δ.
Given a finite set of chemical species Λ, a reaction over Λ is a triple α =

〈r,p, k〉 ∈ NΛ × NΛ × R+, specifying the stoichiometry of the reactants and
products, respectively, and the rate constant k. If not specified, assume that
k = 1 (this is the case for all reactions in this paper), so that the reaction α =
〈r,p, 1〉 is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C},
the reaction A+2B → A+3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical
reaction network (CRN) is a pair C = (Λ,R), where Λ is a finite set of chemical
species, and R is a finite set of reactions over Λ. A configuration of a CRN
C = (Λ,R) is a vector c ∈ NΛ. If some current configuration c is understood
from context, we write #X to denote c(X).

Given a configuration c and reaction α = 〈r,p〉, we say that α is applicable
to c if r ≤ c (i.e., c contains enough of each of the reactants for the reaction
to occur). If α is applicable to c, then write α(c) to denote the configuration
c + p− r (i.e., the configuration that results from applying reaction α to c). If
c′ = α(c) for some reaction α ∈ R, we write c →C c′, or merely c → c′ when C
is clear from context. An execution (a.k.a., execution sequence) E is a finite or
infinite sequence of one or more configurations E = (c0, c1, c2, . . .) such that, for
all i ∈ {1, . . . , |E| − 1}, ci−1 → ci. If a finite execution sequence starts with c
and ends with c′, we write c →∗

C c′, or merely c →∗ c′ when the CRN C is clear
from context. In this case, we say that c′ is reachable from c.

Turing machines, for example, have different semantic interpretations depend-
ing on the computational task under study (deciding a language, computing a
function, etc.). Similarly, in this paper we use CRNs to decide subsets of Nk (for
which we reserve the term “chemical reaction decider” or CRD) and to com-
pute functions f : Nk → Nl (for which we reserve the term “chemical reaction
computer” or CRC). In the next two subsections we define two semantic inter-
pretations of CRNs that correspond to these two tasks. We use the term CRN to
refer to either a CRD or CRC when the statement is applicable to either type.

These definitions differ slightly from those of [5], because ours are specialized
to “leaderless” CRNs: those that can compute a predicate or function in which
no species are present in the initial configuration other than the input species.
In the terminology of [5], a CRN with species set Λ and input species set Σ is
leaderless if it has an initial context σ : Λ \ Σ → N such that σ(S) = 0 for all
S ∈ Λ \ Σ. The definitions below are simplified by assuming this to be true of
all CRNs.

We also use the convention of Angluin, Aspnes, and Eisenstat [2] that for a
CRD, all species “vote” yes or no, rather than only a subset of species as in [5],
since this convention is convenient for proving time bounds.
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2.2 Stable Decidability of Predicates

We now review the definition of stable decidability of predicates introduced by
Angluin, Aspnes, and Eisenstat [2].2 Intuitively, the set of species is partitioned
into two sets: those that “vote” yes and those that vote no, and the system sta-
bilizes to an output when a consensus vote is reached (all positive-count species
have the same vote) that can no longer be changed (no species voting the other
way can ever again be produced). It would be too strong to characterize deter-
ministic correctness by requiring all possible executions to achieve the correct
answer; for example, a reversible reaction such as A−⇀↽−B could simply be chosen
to run back and forth forever, starving any other reactions. In the more refined
definition that follows, the determinism of the system is captured in that it is
impossible to stabilize to an incorrect answer, and the correct stable output is
always reachable.

A (leaderless) chemical reaction decider (CRD) is a tuple D = (Λ,R,Σ, Υ ),
where (Λ,R) is a CRN, Σ ⊆ Λ is the set of input species, and Υ ⊆ Λ is the set of
yes voters, with species in Λ\Υ referred to as no voters. An input to D will be an
initial configuration i ∈ NΣ (equivalently, i ∈ Nk if we write Σ = {X1, . . . , Xk}
and assign Xi to represent the i’th coordinate); that is, only input species are
allowed to be non-zero. If we are discussing a CRN understood from context to
have a certain initial configuration i, we write #0X to denote i(X).

We define a global output partial function Φ : NΛ ��� {0, 1} as follows. Φ(c)
is undefined if either c = 0, or if there exist S0 ∈ Λ \ Υ and S1 ∈ Υ such that
c(S0) > 0 and c(S1) > 0. Otherwise, either (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Υ )
or (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Λ \ Υ ); in the former case, the output Φ(c) of
configuration c is 1, and in the latter case, Φ(c) = 0.

A configuration o is output stable if Φ(o) is defined and, for all c such that
o →∗ c, Φ(c) = Φ(o). We say a CRD D stably decides the predicate ψ : NΣ →
{0, 1} if, for any initial configuration i ∈ Nk, for all configurations c ∈ NΛ, i →∗ c
implies c →∗ o such that o is output stable and Φ(o) = ψ(i). Note that this
condition implies that no incorrect output stable configuration is reachable from
i. We say that D stably decides a set A ∈ Nk if it stably decides its indicator
function.

The following theorem is due to Angluin, Aspnes, and Eisenstat [2]:

Theorem 2.1 ([2]). A set A ⊆ Nk is stably decidable by a CRD if and only if
it is semilinear.

The model they use is defined in a slightly different way; the differences (and
those differences’ lack of significance to the questions we explore) are explained
in [5].

2 Those authors use the term “stably compute”, but we reserve the term “compute” to
apply to the computation of non-Boolean functions. Also, we omit discussion of the
definition of stable computation used in the population protocols literature, which
employs a notion of “fair” executions; the definitions are proven equivalent in [5].
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2.3 Stable Computation of Functions

We now define a notion of stable computation of functions similar to those above
for predicates. Intuitively, the inputs to the function are the initial counts of input
species X1, . . . , Xk, and the outputs are the counts of output species Y1, . . . , Yl.
The system stabilizes to an output when the counts of the output species can no
longer change. Again determinism is captured in that it is impossible to stabilize
to an incorrect answer and the correct stable output is always reachable.

A (leaderless) chemical reaction computer (CRC) is a tuple C = (Λ,R,Σ, Γ ),
where (Λ,R) is a CRN, Σ ⊂ Λ is the set of input species, Γ ⊂ Λ is the set of
output species, such that Σ∩Γ = ∅. By convention, we letΣ = {X1, X2, . . . , Xk}
and Γ = {Y1, Y2, . . . , Yl}. We say that a configuration o is output stable if, for
every c such that o →∗ c and every Yi ∈ Γ , o(Yi) = c(Yi) (i.e., the counts of
species in Γ will never change if o is reached). As with CRD’s, we require initial
configurations i ∈ NΣ in which only input species are allowed to be positive. We
say that C stably computes a function f : Nk → Nl if for any initial configuration
i ∈ NΣ, i →∗ c implies c →∗ o such that o is an output stable configuration
with f(i) = (o(Y1),o(Y2), . . . ,o(Yl)). Note that this condition implies that no
incorrect output stable configuration is reachable from i.

If a CRN stably decides a predicate or stably computes a function, we say the
CRN is stable (a.k.a., deterministic).

2.4 Kinetic Model

The following model of stochastic chemical kinetics is widely used in quantitative
biology and other fields dealing with chemical reactions between species present
in small counts [9]. It ascribes probabilities to execution sequences, and also
defines the time of reactions, allowing us to study the computational complexity
of the CRN computation in Section 3.

In this paper, the rate constants of all reactions are 1, and we define the kinetic
model with this assumption. The rate constants do not affect the definition
of stable computation; they only affect the time analysis. Our time analyses
remain asymptotically unaffected if the rate constants are changed (although the
constants hidden in the big-O notation would change). A reaction is unimolecular
if it has one reactant and bimolecular if it has two reactants. We use no higher-
order reactions in this paper.

The kinetics of a CRN is described by a continuous-time Markov process as
follows. Given a fixed volume v ∈ R+ and current configuration c, the propensity
of a unimolecular reaction α : X → . . . in configuration c is ρ(c, α) = c(X). The
propensity of a bimolecular reaction α : X+Y → . . ., where X �= Y , is ρ(c, α) =
c(X)c(Y )

v . The propensity of a bimolecular reaction α : X +X → . . . is ρ(c, α) =
1
2
c(X)(c(X)−1)

v . The propensity function determines the evolution of the system
as follows. The time until the next reaction occurs is an exponential random
variable with rate ρ(c) =

∑
α∈R ρ(c, α) (note that ρ(c) = 0 if no reactions are

applicable to c). Therefore, the expected time for the next reaction to occur is
1

ρ(c) .
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The kinetic model is based on the physical assumption of well-mixedness valid
in a dilute solution. Thus, we assume the finite density constraint, which stip-
ulates that a volume required to execute a CRN must be proportional to the
maximum molecular count obtained during execution [14]. In other words, the
total concentration (molecular count per volume) is bounded. This realistically
constrains the speed of the computation achievable by CRNs. Note, however,
that it is problematic to define the kinetic model for CRNs in which the reach-
able configuration space is unbounded for some start configurations, because
this means that arbitrarily large molecular counts are reachable.3 We apply the
kinetic model only to CRNs with configuration spaces that are bounded for each
start configuration, choosing the volume to be equal to the reachable configura-
tion with the highest molecular count (in this paper, this will always be within
a constant multiplicative factor of the number of input molecules).

It is not difficult to show that if a CRN is stable and has a finite reach-
able configuration space from any initial configuration i, then under the kinetic
model (in fact, for any choice of rate constants), with probability 1 the CRN will
eventually reach an output stable configuration.

We require the following lemmas, whose proofs we omit in this extended
abstract.

Lemma 2.2. Let A = {A1, . . . , Am} be a set of species with the property that
they appear only in applicable reactions of the form Ai →

∑
l Bl, where Bl �∈ A.

Then starting from a configuration c in which for all i ∈ {1, . . . ,m}, c(Ai) =
O(n), with volume O(n), the expected time to reach a configuration in which
none of the described reactions can occur is O(log n).

Lemma 2.3. Let A = {A1, . . . , Am} be a set of species with the property that
they appear only in applicable reactions of the form Ai+Aj → Ak+

∑
l Bl, where

Bl �∈ A, and for all i, j ∈ {1, . . . ,m}, there is at least one reaction Ai+Aj → . . ..
Then starting from a configuration c in which for all i ∈ {1, . . . ,m}, c(Ai) =
O(n), with volume O(n), the expected time to reach a configuration in which
none of the described reactions can occur is O(n).

Lemma 2.4. Let C = {C1, . . . , Cm} and A = {A1, . . . , Ap} be two sets of
species with the property that they appear only in applicable reactions of the
form Ci + Aj → Ci +

∑
l Bl, where Bl �∈ A. Then starting from a configura-

tion c in which for all i ∈ {1, . . . ,m}, c(Ci) = Ω(n), and for all j ∈ {1, . . . , p},
c(Aj) = O(n), with volume O(n), the expected time to reach a configuration in
which none of the described reactions can occur is O(log n).

3 Leaderless CRCs Can Compute Semilinear Functions

To supply an input vector x ∈ Nk to a CRN, we use an initial configuration with
x(i) molecules of input species Xi. Throughout this section, we let n = ||x||1 =

3 One possibility is to have a “dynamically” growing volume as in [14].
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i=1 x(i) denote the initial number of molecules in solution. Since all CRNs we

employ have the property that they produce at most a constant multiplicative
factor more molecules than are initially present, this implies that the volume
required to satisfy the finite density constraint is O(n).

Suppose the CRC C stably computes a function f : Nk ��� Nl. We say that C
stably computes f monotonically if its output species are not consumed in any
reaction.4

We show in Lemma 3.1 that affine partial functions can be computed in ex-
pected time O(n) by a leaderless CRC. For its use in proving Theorem 3.4, we
require that the output molecules be produced monotonically. If we used a di-
rect encoding of the output of the function, this would be impossible for general
affine functions. For example, consider the function f(x1, x2) = x1 − x2 where
dom f = { (x1, x2) | x1 ≥ x2 }. By withholding a single copy of X2 and letting
the CRC stabilize to the output value #Y = x1−x2+1, then allowing the extra
copy of X2 to interact, the only way to stabilize to the correct output value
x1 − x2 is to consume a copy of the output species Y . Therefore Lemma 3.1
computes f indirectly via an encoding of f ’s output that allows monotonic pro-
duction of outputs, encoding the output value y(j) as the difference between the
counts of two monotonically produced species Y P

j and Y C
j , a concept formalized

by the following definition.
Let f : Nk ��� Nl be a partial function. We say that a partial function

f̂ : Nk ��� Nl × Nl is a diff-representation of f if dom f = dom f̂ and, for all
x ∈ dom f , if (yP ,yC) = f̂(x), where yP ,yC ∈ Nl, then f(x) = yP − yC , and

yP = O(f(x)). In other words, f̂ represents f as the difference of its two outputs
yP and yC , with the larger output yP possibly being larger than the original
function’s output, but at most a multiplicative constant larger.

The following lemma is the main technical result required for proving our main
theorem, Theorem 3.4. It shows that every affine function can be computed (via
a diff-representation) in time O(n) by a leaderless CRC.

Lemma 3.1. Let f : Nk ��� Nl be an affine partial function. Then there is a
diff-representation f̂ : Nk ��� Nl ×Nl of f and a leaderless CRC that monoton-
ically stably computes f̂ in expected time O(n).

Proof. If f is affine, then there exist kl integers n1,1, . . . , nk,l ∈ Z and 2l + k
nonnegative integers b1, . . . , bl, c1, . . . , ck, d1, . . . , dl ∈ N such that, if y = f(x),

then for each j ∈ {1, . . . , l}, y(j) = bj +
1
dj

∑k
i=1 ni,j(x(i) − ci), and for each

i ∈ {1, . . . , k}, x(i) − ci ≥ 0. Define the CRC as follows. It has input species
Σ = {X1, . . . , Xk} and output species Γ = {Y P

1 , . . . , Y P
l , Y C

1 , . . . , Y C
l }.

There are three main components of the CRN, separately handling the ci
offset, the ni,j/dj coefficient, and the bj offset.

The latter two components both make use of Y C
j molecules to account for

production of Y P
j molecules in excess of y(j) to ensure that #∞Y P

j −#∞Y C
j =

4 Its output species could potentially be reactants so long as they are catalytic, mean-
ing that the stoichiometry of the species as a product is at least as great as its
stoichiometry as a reactant, e.g. X + Y → Z + Y or A+ Y → Y + Y .
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y(j), which establishes that the CRC stably computes a diff-representation of
f . It is clear by inspection of the reactions that #∞Y P

j = O(y(j)).
Add the reaction

X1 → C1,1 +B1 +B2 + . . .+Bl + b1Y
P
1 + b2Y

P
2 + . . . blY

P
l (3.1)

The first product C1,1 will be used to handle the c1 offset, and the remaining
products will be used to handle the bj offsets. For each i ∈ {2, . . . , k}, add the
reaction

Xi → Ci,1 (3.2)

By Lemma 2.2, reactions (3.1) and (3.2) take time O(log n) to complete.
We now describe the three components of the CRC separately.

ci offset: Reactions (3.1) and (3.2) produce x(i) copies of Ci,1. We must reduce
this number by ci, producing x(i)− ci copies of X

′
i, the species that will be

used by the next component to handle the ni,j/dj coefficient. A high-order
reaction implementing this is (ci + 1)Ci,1 → ciCi,1 +X ′

i, since that reaction
will eventually happen exactly x(i)− ci times (stopping when #Ci,1 reaches
ci). This is implemented by the following bimolecular reactions.
For each i ∈ {1, . . . , k} and m, p ∈ {1, . . . , ci}, if m+p ≤ ci, add the reaction

Ci,m + Ci,p → Ci,m+p.

If m+ p > ci, add the reaction

Ci,m + Ci,p → Ci,ci + (m+ p− ci)X
′
i.

By Lemma 2.3, these reactions complete in expected time O(n).
ni,j/dj coefficient: For each i ∈ {1, . . . , k}, add the reaction

X ′
i → Xi,1 +Xi,2 + . . .+Xi,l

This allows each output to be associated with its own copy of the input. By
Lemma 2.2, these reactions complete in expected time O(log n).
For each i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, add the reaction

Xi,j →
{
ni,jD

P
j,1, if ni,j > 0;

(−ni,j)D
C
j,1, if ni,j < 0.

By Lemma 2.2, these reactions complete in expected time O(log n).
We must now divide #DP

j,1 and #DC
j,1 by dj . This is accomplished by the

high-order reactions djD
P
j,1 → Y P

j and djD
C
j,1 → Y C

j . Similarly to the previ-
ous component, we implement these with the following reactions for dj ≥ 1.
We first handle the case dj > 1. For each j ∈ {1, . . . , l} andm, p ∈ {1, . . . , dj−
1}, if m+ p ≤ dj − 1, add the reactions

DP
j,m +DP

j,p → DP
j,m+p

DC
j,m +DC

j,p → DC
j,m+p
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If m+ p > ci, add the reactions

DP
j,m +DP

j,p → DP
j,m+p−dj

+ Y P
j

DC
j,m +DC

j,p → DC
j,m+p−dj

+ Y C
j

By Lemma 2.3, these reactions complete in expected time O(n).
When dj = 1, we only have the following unimolecular reactions.

DP
j,1 → Y P

j

DC
j,1 → Y C

j

By Lemma 2.2, these reactions complete in expected time O(log n).
These reactions will produce 1

dj

∑
ni,j>0 ni,j(x(i) − ci) copies of Y P

j and

− 1
dj

∑
ni,j<0 ni,j(x(i) − ci) copies of Y C

j . Therefore, letting #coefY
P
j and

#coefY
C
j denote the number of copies of Y P

j and Y C
j eventually produced just

by this component, it holds that #coefY
P
j −#coefY

C
j = 1

dj

∑k
i=1 ni,j(x(i)−

ci).
bj offset: For each j ∈ {1, . . . , l}, add the reaction

Bj +Bj → Bj + bjY
C
j (3.3)

By Lemma 2.3, these reactions complete in expected time O(n).
Reaction (3.1) produces bj copies of Y

P
j for each copy of Bj produced, which

is x(i). Reaction (3.3) occurs precisely x(i)−1 times. Therefore reaction (3.3)
produces precisely bj fewer copies of Y C

j than reaction (3.1) produces of

Y P
j . This implies that when all copies of Y C

j are eventually produced by

reaction (3.3), the number of Y P
j ’s produced by reaction (3.1) minus the

number of Y C
j ’s produced by reaction (3.3) is bj. ��

We require the following lemma, proven in [5].

Lemma 3.2 ( [5]). Let f : Nk → Nl be a semilinear function. Then there is a
finite set {f1 : Nk ��� Nl, . . . , fm : Nk ��� Nl} of affine partial functions, where
each dom fi is a linear set, such that, for each x ∈ Nk, if fi(x) is defined, then
f(x) = fi(x), and

⋃m
i=1 dom fi = Nk.

We require the following theorem, due to Angluin, Aspnes, and Eisenstat [3,
Theorem 5], which states that any semilinear predicate can be decided by a CRD
in expected time O(n).

Theorem 3.3 ([3]). Let φ : Nk → {0, 1} be a semilinear predicate. Then there
is a leaderless CRD D that stably decides φ, and the expected time to reach an
output-stable configuration is O(n).

The following is the main theorem of this paper. It shows that semilinear
functions can be computed by leaderless CRCs in linear expected time.
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Theorem 3.4. Let f : Nk → Nl be a semilinear function. Then there is a
leaderless CRC that stably computes f in expected time O(n).

Proof. The CRC will have input species Σ = {X1, . . . , Xk} and output species
Γ = {Y1, . . . , Yl}. By Lemma 3.2, there is a finite set F = {f1 : Nk ���
Nl, . . . , fm : Nk ��� Nl} of affine partial functions, where each dom fi is a
linear set, such that, for each x ∈ Nk, if fi(x) is defined, then f(x) = fi(x).
We compute f on input x as follows. Since each dom fi is a linear (and there-
fore semilinear) set, by Theorem 3.3 we compute each semilinear predicate φi =
“x ∈ dom fi and (∀i′ ∈ {1, . . . , i− 1}) x �∈ dom fi′?” by separate parallel CRD’s
each stabilizing in expected time O(n). (The latter condition ensures that for
each x, precisely one of the predicates is true, in case the domains of the partial
functions have nonempty intersection.)

By Lemma 3.1, for each i ∈ {1, . . . ,m}, there is a diff-representation f̂i of
fi that can be stably computed by parallel CRC’s. Assume that for each i ∈
{1, . . . ,m} and each j ∈ {1, . . . , l}, the jth pair of outputs yP (j) and yC(j) of
the ith function is represented by species Ŷ P

i,j and Ŷ C
i,j . We interpret each Ŷ P

i,j

and Ŷ C
i,j as an “inactive” version of “active” output species Y P

i,j and Y C
i,j .

For each i ∈ {1, . . . ,m}, for the CRD Di = (Λ,R,Σ, Υ ) computing the predi-
cate φi, let L

1
i represent any species in Υ , and L0

i represent any species in Λ \Υ ,
and that once Di reaches an output stable configuration, #Lb

i = Ω(n), where
b is the output of Di. Then add the following reactions for each i ∈ {1, . . . ,m}
and each j ∈ {1, . . . , l}:

L1
i + Ŷ P

i,j → L1
i + Y P

i,j + Yj (3.4)

L0
i + Y P

i,j → L0
i +Mi,j (3.5)

Mi,j + Yj → Ŷ P
i,j (3.6)

The latter two reactions implement the reverse direction of the first reaction –
using L0

i as a catalyst instead of L1
i – using only bimolecular reactions. Also add

the reactions

L1
i + Ŷ C

i,j → L1
i + Y C

i,j (3.7)

L0
i + Y C

i,j → L0
i + Ŷ C

i,j (3.8)

and

Y P
i,j + Y C

i,j → Kj (3.9)

Kj + Yj → ∅ (3.10)

That is, a “yes” answer for function i activates the ith output and a “no”
answer deactivates the ith output. Eventually each CRD stabilizes so that pre-
cisely one i has L1

i present, and for all i′ �= i, L0
i′ is present. We now claim

that at this point, all outputs for the correct function f̂i will be activated
and all other outputs will be deactivated. The reactions enforce that at any
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time, #Yj = #Kj +
∑m

i=1(#Y P
i,j + #Mi,j). In particular, #Yj ≥ #Kj and

#Yj ≥ #Mi,j at all times, so there will never be a Kj or Mi,j molecule that
cannot participate in the reaction of which it is a reactant. Eventually #Y P

i,j and

#Y C
i,j stabilize to 0 for all but one value of i (by reactions (3.5), (3.6), (3.8)), and

for this value of i, #Y P
i,j stabilizes to y(j) and #Y C

i,j stabilizes to 0 (by reaction
(3.9)). Eventually #Kj stabilizes to 0 by the last reaction. Eventually #Mi,j

stabilizes to 0 since L0
i is absent for the correct function f̂i. This ensures that

#Yj stabilizes to y(j).
It remains to analyze the expected time to stabilization. Let n = ‖x‖. By

Lemma 3.1, the expected time for each affine function computation to complete
is O(n). Since the Ŷ P

i,j are produced monotonically, the most Y P
i,j molecules that

are ever produced is #∞Ŷ P
i,j . Since we have m computations in parallel, the

expected time for all of them to complete is O(nm) = O(n) (since m depends
on f but not n). We must also wait for each predicate computation to complete.
By Theorem 3.3, each of these predicates takes expected time O(n) to complete,
so all of them complete in expected time O(mn) = O(n).

At this point, the Li
1 leaders must convert inactive output species to active,

and Li′
0 (for i′ �= i) must convert active output species to inactive. By Lemma 2.4,

reactions (3.4), (3.5), (3.7), and (3.8) complete in expected time O(log n). Once
this is completed, by Lemma 2.3, reaction (3.6) completes in expected time
O(n). Reaction (3.9) completes in expected time O(n) by Lemma 2.3. Once this
is done, reaction (3.10) completes in expected time O(n) by Lemma 2.3. ��

4 Conclusion

The clearest shortcoming of our leaderless CRC, compared to the leader-
employing CRC of [5], is the time complexity. Our CRC takes expected time O(n)
to complete with n input molecules, versus O(log5 n) for the CRC of Theorem
4.4 of [5]. However, we do obtain a modest speedup (O(n) versus O(n logn)),
compared to the direct construction of Theorem 4.1 of [5]. The indirect con-
struction of Theorem 4.1 of [5] relied heavily on the use of a fast, error-prone
CRN which computes arbitrary computable functions, and which crucially uses
a leader. The major open question is, for each semilinear function f : Nk → Nl,
is there a leaderless CRC that stably computes f on input of size n in expected
time t(n), where t is a sublinear function? This may relate to the question of
whether there is a sublinear time CRN that solves the leader election problem,
i.e., in volume n with an initial state with n copies of species X and no other
species initially present, produce a single copy of a species L. However, it is
conceivable that there is a direct way to compute semilinear functions quickly
without needing to use a leader election.

If this is not possible for all semilinear functions, another interesting open
question is to precisely characterize the class of functions that can be stably
computed by a leaderless CRC in polylogarithmic time. For example, the class
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of linear functions with positive integer coefficients (e.g., f(x1, x2) = 3x1 +2x2)
has this property since they are computable by O(log n)-time unimolecular re-
actions such as X1 → 3Y,X2 → 2Y . However, most of the CRN programming
techniques used to generalize beyond such functions seem to require some bi-
molecular reaction A + B → . . . in which it is possible to have #A = #B = 1,
making the expected time at least n just for this reaction.

Acknowledgement. We are indebted to Anne Condon for helpful discussions
and suggestions.
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6. Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less haste, less waste: On recycling
and its limits in strand displacement systems. Journal of the Royal Society Inter-
face 2, 512–521 (2012); In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937,
pp. 84–99. Springer, Heidelberg (2011)
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Abstract. A major challenge in practical DNA tile self-assembly is the
minimization of errors. Using the kinetic Tile Assembly Model, a theoret-
ical model of self-assembly, it has been shown that errors can be reduced
through abstract tile set design. In this paper, we instead investigate
the effects of “sticky end” sequence choices in systems using the kinetic
model along with the nearest-neighbor model of DNA interactions. We
show that both the sticky end sequences present in a system and their
positions in the system can significantly affect error rates, and propose
algorithms for sequence design and assignment.

1 Introduction

Self-assembly of DNA tiles is a promising technique for the assembly of com-
plex nanoscale structures. Assembly of tiles can be programmed by designing
short complementary single-stranded DNA “sticky ends.” While assembly using
unique tile types or simple lattices is often studied [26,16], algorithmic growth,
where small sets with few tile types can form complex assemblies, is particularly
powerful theoretically, and has been studied extensively through the abstract
Tile Assembly Model (aTAM) [28,8,17].

A number of different designs for tile structure are used for assembly [26,21,16].
As an example, the DAO-E tile design (Fig. 1(a)) consists of two helices con-
nected by two crossovers, with four 5 nucleotide (nt) sticky ends, one at each
end of each helix. Experimentally, conditions are usually used such that tiles will
favorably attach by two bonds between sticky-end regions, adding cooperativity
to binding. In the abstract Tile Assembly Model, this is modelled by individual
tiles attaching to edges of the current assembly when they can make at least two
correct bonds to adjacent tiles (T = 2), and never detaching once attached.

The Pascal mod 3 (PM3) system shown in Fig. 1(b) is a simple example. The
tiles implement addition modulo 3, akin to Pascal’s triangle. Tiles attach by
their two lower-left ends, and then provide ends for future tiles to attach that
sum the logical values of the two “input” ends. Growth proceeds to the upper-
right, controlled by a V-shaped seed of tiles that attach by strength-2 bonds and
provide edges of logical 1s.

A more sophisticated example, the counter system from Barish et al [3], is
shown in Fig. 1(c). In this system, a ribbon of tiles grows from a large seed

D. Soloveichik and B. Yurke (Eds.): DNA 2013, LNCS 8141, pp. 61–75, 2013.
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TGTAGAGC  ATCTC

CGGCTTGT  CCGTTCGCCCGTTAGG  ACATTGCA

CTCTA  CGCCAACA

AGTGA  GGCAATCC GGCAAGCG  AGTGAGCCGAACA

CCAGATCC
GCGGTTGT  CCAACTTA

TGTAACGT

GGTTGAAT
GGTCTAGG  ACATCTCG

B*

A*

B*

A*

CTG  GAGAT
GAC CTCTA  CGCC

GCGG

CTG  GAGAT
GAC TCTAG  CGCC

GCGG

CTG  GAGAT
GAC CTGTA  CGCC

GCGG

Fig. 1. Tile systems, structures and the kinetic trapping model. (a) shows an example
DAO-E tile structure [21], along with examples of complementary and partially mis-
matched sticky end attachments. (b) shows the Pascal mod 3 tile system along with a
potential perfect assembly. Blue, green and red correspond to ends with logical values
0, 1, and 2, respectively, while black indicates double-strength bonds of the V-shaped
seed. (c) shows the tiles (top) in the Barish counter system, along with an illustration
of zig-zag ribbon growth (left) and an Xgrow simulation of growth from an origami
seed (blue), where each pixel represents one tile. Orange and brown tiles indicate tiles
with logical values of 1 and 0, respectively, while gray tiles are boundary and nucleation
barrier tiles, and incrementing tiles are green. (d) illustrates the states and transition
rates in the kinetic trapping model of growth errors.

structure of DNA origami. Rows of tiles grow in a zig-zag fashion, with each
new row being started by a double tile that is equivalent to two permanently-
attached single tiles. On “downward” rows tiles increment a bit string with two
tiles per bit from the previous row, while on “upward” rows, corresponding
tiles copy the newly-incremented row. These tiles implement a binary counter
starting from whatever bit string was specified on the original origami seed and
incrementing every two rows of tiles.

In examining algorithmic growth of experimental systems, the kinetic Tile
Assembly Model provides better physical relevance [28]. Tiles are assumed to
be in solution at a particular concentration, which is usually assumed to be
constant. Tiles attach to empty lattice sites at a rate rf dependent only on their
concentration, and detach at a rate rb (b = 1, 2, . . .) dependent upon the number
of correct “sticky end” attachments they have to the assembly:

rf = k̂e−Gmc rb = k̂e−bGse . (1)

Here Gmc is a dimensionless free energy analogue related to tile concentration
by [c] = e−Gmc+α, Gse is the sign-reversed dimensionless free energy of a single

bond, b is the number of correct bonds, and k̂ is an adjusted forward rate constant
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k̂ ≡ kf e
α, where kf is the usual second-order mass action rate constant for tile

attachment, typically kf = 106 /M/s. This model has been used for numerous
theoretical and computational simulation studies of algorithmic tile assembly
[29,6,10,8,17], and has fit well with experimental findings both qualitatively and
quantitatively [9,11].

As the kinetic model allows any tile to attach regardless of correctness, it is
challenging to design tile systems that exhibit algorithmic behavior while keep-
ing erroneous growth low enough to obtain high yields of correct assemblies.
Growth errors in the kinetic model are well studied, and often modelled by the
kinetic trapping model. The model considers tiles attaching and detaching at a
single lattice location, while having a rate for an attached tile to become “frozen”
in place by further growth. This rate, r∗ = k̂e−Gmc − k̂e−2Gse, is related to the
overall growth rate of the system [28]. As tiles that attach without any correct
bonds (“doubly-mismatched” tiles) will detach very quickly, to first approxima-
tion, the only states that need to be considered are empty (E), correct tile (C),
and “almost correct tile” (A)—a tile that is attached by one correct bond—along
with frozen states for correct and almost correct tiles (FC and FA). These states
are described in Fig. 1(d).

Numerous techniques have been studied to reduce such error rates, especially
“proofreading” transformations that transform individual tiles into multiple tile
blocks or sets of tiles [29,6,4,20]. These techniques have been shown to signifi-
cantly reduce error rates both in simulation and experimentally [11,6,3]. Such
techniques rely on changing tile systems at an abstract level, and reduce error
rates of even ideal systems. However, in implementing the abstract logic of a tile
system in actual DNA tiles, design complexities cause the system’s kinetics to
deviate from the default kTAM parameters. In particular, the single-stranded
“sticky ends” that implement the abstract ends must be chosen from a finite
sequence space to be both as uniform in binding energy and as orthogonal as
possible. Deviations here can introduce further errors [10].

2 Theoretical Model

In the kTAM, Gse and Gmc are by default considered to be constant and inde-
pendent of both tiles and sticky ends. A more detailed model cannot assume this.
Gmc is dependent upon tile concentration: the value may be different for each
tile type, and may change as free tiles are depleted by attachment. However, as
experimental techniques exist to keep tile concentrations approximately constant
throughout assembly [23], we will assume a time-invariant (but possibly tile type
dependent) Gmc.

Gse, on the other hand, will depend upon the bonds between sticky ends.
Ends with different sequences will have different free energies for binding to
their complements, and some ends may be able to partially bind to ends that
are only partially complementary (Fig. 1(a)). This results in a Gij

se for each pair
of sticky ends (i, j). In the default kTAM, all non-diagonal terms will be zero, and
all diagonal terms will be equal. Gij

se can thus be defined in terms of deviations
from a reference Gse:
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Gii
se = Gse + δi Gij

se = sijGse for i �= j . (2)

Non-uniform sticky ends, with non-zero δi, will affect the detachment rate
of correct and almost-correct tile attachments, while spurious non-orthogonal
binding strengths sij will only decrease detachment rates for almost-correct and
doubly-mismatched tile attachments. In the following theoretical analysis, the
much lower likelihood doubly-mismatched interactions are ignored. For simula-
tions, done with the Xgrow kTAM simulator [2], these interactions are taken
into account when there is non-orthogonal binding.

2.1 Uniformity

Non-uniform sticky end energies have been simulated previously [10], but have
not been studied analytically. In the kTAM, the growth rate of an assembly
depends on the difference between on and off rates [28], which we approximate

for a uniform system as r∗ = k̂e−Gmc − k̂e−2Gse .
For a systemwith non-uniform energies, a tile attaching by two i bonds will have

r∗ = k̂e−Gmc − k̂e−2Gse−2δi = k̂e−2Gse
(
eε − e−2δi

)
where we define ε ≡ 2Gse − Gmc, a measure of supersaturation: for an ideal
system, ε = 0 results in unbiased growth, whereas ε > 0 results in forward
growth and ε < 0 causes crystals to shrink. As can be seen, the growth rate will
depend on the δi’s of the bonds in the growth region. With δi < − 1

2ε (negative
δ corresponds to weaker binding), growth in a region won’t be favorable.

In the worst case, where tiles attaching by two bonds with the smallest δi
form a sufficiently large region, growth can only be ensured if ε > −2 min {δi},
and error rates can be approximated by the kTAM with this minimum ε value.
The kinetic trapping model in the default kTAM results in an error rate Perror ≈
me−Gse+ε for m possible incorrect tile attachments [28], so the worst-case error
rate for a given δmin ≡ min {δi} would be

Perror ≈ me−Gse−2δmin . (3)

Fig. 2(a) shows simulations of the PM3 system with ε adjusted along the lines
of our worst-case growth requirements. For positive deviations, where most ends
remain at the same strength, assembly time is largely unchanged, while the error
rate increases. For negative (weaker bond) deviations, where ε is adjusted, the
error rate rises per Eq. 3, while the assembly time decreases sharply as most
tiles attach with the same Gii

se but are at a higher concentration.
While this method to adjust tile concentrations ensures crystal growth, it may

not obtain the optimal trade-off between growth rate and error rate. This trade-
off has been addressed for perfect sticky ends [5,12], but is more complicated
with imperfect sticky ends and complex tile sets. Rather than simply adjusting
all concentrations uniformly, the assumption can be made, which is not neces-
sarily optimal, that error rates for a complex tile set can be reduced by ensuring
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Fig. 2. Error rates for Pascal mod 3 systems with non-uniform end interactions sim-
ulated in Xgrow. In both (a) and (b), single sticky ends have been changed so that
Gii

se = Gse + δi, while all others have remained at Gse. In (a), the ε for the system has
been uniformly changed to always allow forward-growth by two of the weakest bond
types by setting Gmc. In (b), the tiles with deviating ends have had their concentration

adjusted so that all tiles have the same growth rate r∗ = k̂e−Gn
mc − k̂e−Gii

se−Gjj
se , where

tile type n attaches using sticky end types i and j. Blue circles show error rates; green
triangles show the time taken to construct an 8000 tile assembly, the line in (a) shows
Eq. 3. For these simulations, we set base parameters of Gse = 10 and Gmc = 19.2.

that the overall growth rate remains uniform throughout the crystal. This can
be achieved by modifying the concentrations of tiles to modify their Gmc val-
ues such that the r∗ for each tile type is the same. Fig. 2(b) shows simulations
of this form of concentration-adjustment with the PM3 system. As expected,
assembly time remains almost completely unchanged across a large range of de-
viations. Meanwhile negative deviations do not significantly increase error rates,
and positive deviations increase error rates in a manner similar to Fig. 2(a).

2.2 Orthogonality

Unlike non-uniformity, the kinetic trapping model for growth errors can be easily
extended to account for non-orthogonality. Assuming sij � 1, growth errors will
be primarily caused by almost-correct tiles attaching by one correct and one
incorrect bond, as in the ideal case. A uniform incorrect bond strength of s, and
m possible almost-correct tiles for a given lattice site, then gives the following
rates of change between the different states shown in Fig. 1(d):

Ṗ (t) =

⎛
⎜⎜⎜⎝

E C A FC FA

E −2rf r2 r(1+s) 0 0
C rf −r2 − r∗ 0 0 0
A mrf 0 −r(1+s) − r∗ 0 0
FC 0 r∗ 0 0 0
FA 0 0 r∗ 0 0

⎞
⎟⎟⎟⎠P (t) . (4)

Here P (t) is a vector of probabilities at time t that the site will be in a state
[E,C,A, FC, FA]. The steady state of this is not useful, as any combination of
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Fig. 3. Error rates with non-orthogonal interactions. (a) shows interactions for the PM3
system; circles and solid lines show simulated and theoretical error rates, respectively,
with single pairs interacting. Squares and dashed lines show error rates for a uniform
non-orthogonal interaction between every pair. (b) shows error rates for sensitive single
non-orthogonal pairs in the Barish counter system, along with lines showing e−(s−σ)Gse

for various values of σ chosen to roughly follow the worst pairs of each sensitivity. Small
dots represent individual pairs, while large dots show averages for sensitivity classes.
For (a) Gse = 10 and Gmc = 19.2, for (b) Gse = 8.35 and Gmc = 17.8.

FC and FA will be a steady state. Instead, the eventual probability of being in
FA after starting only in state E at t = 0 will provide an error rate per additional
tile in an assembly. This can be treated as a flow problem, where we consider the
differential accumulation into FC and FA from E, as in Winfree [28]. From this,
the probability of an almost-correct tile being trapped in place is:

Perror =
m

m+
rf+r1+s

rf+r2

≈ 1

1 + 1
me(1−s)Gse−ε

≈ me(s−1)Gse+ε . (5)

While tile systems will have a different number of possible almost-correct tiles
for different lattice sites, making this result less applicable, the PM3 system has
an equal number for every possible lattice site. Fig. 3(a) shows error rates in
simulations with interactions between single pairs of ends and for a uniform
non-orthogonal interaction energy between every pair. In both cases, error rates
largely follow Eq. 5.

2.3 Sticky End Sensitivity

When non-orthogonal sticky end interactions are not uniform, the degree of
their influence on error rates may depend on which tile types they appear on
and the logical interactions within the tile set. In systems where a tile never has
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the opportunity to attach with strength 1 + sij , interactions between i and j
may be less relevant, whereas other pairs of ends in the system may allow tiles
to erroneously attach during correct growth and be simply locked in place by
continued growth. For example, Fig. 3(b) shows error rates for the Barish counter
system when non-orthogonal interactions are introduced between single pairs of
sticky ends. These pairs have been organized into sets (1NGO, 2NGO, 1GO, and
2GO) based on a model described below of how interactions between them may
affect the tile system. As can be seen, this model has some success in predicting
the impact different pairs will have on error rates.

We start by assuming that all attachments in growth occur with single tiles
attaching by exactly two correct strength-1 bonds. Assuming that each tile in
the system can have its ends labelled as inputs or outputs, and that every growth
site has a unique tile that can attach by inputs, all lattice locations possible in
the system will eventually be filled by a specific tile. Rather than looking at lat-
tice sites that actually appear in correct growth, which would require simulation,
we can combinatorially investigate all possible local neighborhoods that might
appear, and conservatively examine them for possible problems. For example,
whether there exists a tile that can attach with strength 1 + sij can be approx-
imated by whether there are two tiles that share a common input bond on one
side but not the other, so that when one tile incorrectly attaches where the other
could attach correctly, it forms a strength 1 bond for the common bond and a
strength sij bond for the mismatch (as in Fig. 4(a)).

We describe end pairs where such tiles exist as being in the set of “first-
order sensitive” end pairs. If the sides of the tiles are inputs for at least one tile
type, and thus the tiles can attach in normal forward growth, the end pair is
in the set of first-order growth oriented sensitive (1GO) pairs, whereas without
consideration of input and output sides, the end pair is in the set of first-order
non-growth-oriented sensitive (1NGO) pairs. End pairs (i, j) that are in 1NGO
but not 1GO have tiles that can attach with strength 1+ sij only during growth
after an error or at sites where there is no correct tile.

While end pairs in these sets have tiles that allow the first, erroneous tile
attachment in the kinetic trapping model, the model also requires that a second
tile be able attach by two correct bonds to the erroneous tile and adjacent tiles to
trap the error in place. This is also not necessarily possible: an incorrect attach-
ment could result in there being no adjacent correct attachment, and designing
systems where this is the case is in fact the goal of proofreading systems [29].

Thus we can devise “second-order sensitive” sets of end pairs that allow this
second, correct tile attachment, and are therefore expected to be more likely to
cause errors. Consider a pair of tiles A and X with a common bond on one side
but not the other, satisfying the criteria for a first-order sensitive pair. Whether
a further tile can attach with strength 2 can be approximated by whether there
is some second pair of tiles, B and Y, that can each attach to some third side of
their respective original tiles, and also share a common bond on another side. In
a plausible local neighborhood where A and B could attach correctly in sequence,
it is possible for X to first attach erroneously, with strength 1+sij (in the location
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Fig. 4. Illustration of end pair sensitivity sets. For simplicity, all left and bottom sides
are considered inputs. (a) shows, for given tiles, examples of possible local neighbor-
hoods they could attach to and tiles that could erroneously attach via first-order sensi-
tivity. (b) shows, for given pairs of tiles A and B, examples of local neighborhoods the
pair could attach to in sequence, and a pair of tiles X and Y that could erroneously
attach via second-order sensitivity. (c) shows examples of tiles satisfying various crite-
ria for the shown end pairs to be in different sensitivity sets; arrows show examples of
required input sides for growth-oriented sets.

where A could have bound), then for Y to attach with strength 2 (where B could
have bound after A) owing to the second commond bond, as in Fig. 4(b).

As with first-order sensitivity, if the common and differing sides of the first
pair of tiles are inputs, and sides of the second pair of tiles that are shared or
attach to the first pair are also inputs, then the end pair involved is in the set of
second-order growth oriented sensitive (2GO) pairs, whereas without considera-
tion of inputs, the pair is in the set of second-order non-growth-oriented sensitive
(2NGO) pairs.

These sets can be summarized more formally as follows, while examples of
satisfying tiles are shown in Fig. 4(c):

– An end pair (i, j) is in the set of first-order sensitive end pairs if there exist
at least two tiles in the tile system where both tiles share a common end k
on one side, and on some other side, one tile has end i and the other has end
j. If at least one of the two tiles has k and either i or j as inputs, then the
end pair is in 1GO and 1NGO, otherwise, it is only in 1NGO.

– To determine if a first-order sensitive end pair (i, j) is in the set of second-
order sensitive end pairs, consider a pair of tiles that satisfy the first-order
criteria, and additional pairs of tiles that can attach to the first pair by
bonds l and m (possibly the same) on a third side. If there exist a pair of
these additional tiles that also share a common bond n, then the end pair is
second-order sensitive. If at least one of the first tiles has k and either i or
j as inputs, and one of the additional tiles attaching to it has n and either
l or m as an input, then the end pair is in 2GO and 2NGO, otherwise, it is
only in 2NGO.
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Note that this analysis is done without determining what assemblies and thus
what local neighborhoods actually form, so the combinations of inputs being
considered might never appear during the growth of a correct assembly. As such,
it is conceivable that, for example, an end pair could be in 2GO without ever
having an effect in correct growth of an assembly. While this is a significant
limitation, determining if a combination of inputs ever occurs, or if two tiles are
ever assembled adjacent to each other, is in general undecidable by reduction to
the Halting problem [27]. Furthermore, our current software treats all bonds as
strength-1, and all tiles as single tiles, with double tiles being represented by a
pair of single tiles with a fake bond that is then excluded from the sets; whilst
the set definitions could be extended to account for double tiles and strength-2
bonds, we have not yet investigated the complexities involved.

Also, while pairs may be in either or both of 1GO or 2NGO, in all systems
we have considered, all pairs in 1GO have also been in 2NGO, and there have
been no pairs that are only in 1NGO. End pairs that aren’t in any of these sets,
and can be described as “zeroth-order,” should have interactions between them
that have a negligible effect on error rates in the kinetic trapping model.

Very rough theoretical estimates of the contributions that sensitive end pairs
will have on a system can be obtained by considering the number of tiles that
need to attach incorrectly. For pairs in 2GO, as only the initial tile will need
to attach incorrectly before it can be locked in place by a correct attachment,
the probablity of an error every time such a situation occurs is ∼ e(s−1)Gse.
For those in 1GO but not 2GO, since there is no correct attachment after the
first tile attaches incorrectly, at least one further incorrect attachment will be
required, giving a probability of error ∼ e(s−2)Gse or lower. For pairs only in
2NGO or 1NGO, the probability that the first tile can attach incorrectly will
depend upon the likelihood that growth is proceeding in an incorrect direction,
which in turn will depend upon numerous factors, but will usually require at
least one previous incorrect attachment, giving another factor of ∼ e−Gse on top
of their GO counterparts.

For the Barish counter, there are 342 pairs of ends (helix direction prevents
around half the ends from attaching to the other half). Of these, 22 are 2NGO,
9 are both 1GO and 2NGO, and 3 are also 2GO. Fig. 3(b) shows error rates
for increasing values of sij where one pair has its value increased and all other
spurious pairs are left with sij = 0. Each pair has been classified by its “worst”
set. As can be seen, 2NGO pairs have little impact on error rates beyond those
seen in the ideal kTAM, 1GO pairs start to have an effect after around sij > 0.4,
and 2GO pairs are the most sensitive. In the case of the three 2GO pairs in
the Barish counter, two cause errors that prevent correct growth in the next
row without an additional error, explaining the significant difference between
the most sensitive 2GO pair and the two less sensitive pairs.
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3 Sequence Design and Assignment

3.1 Sequence Design

DNA sequence set design for molecular computation is a widely-studied problem.
Different applications necessitate different constraints and approaches: longer se-
quences with less stringent requirements can be constrained with combinatorial
methods like Hamming distance [13], while work on sequences with more strin-
gent requirements have used thermodynamic constraints [25]. However, the basic
goal shared throughout most of these algorithms is to find the largest set of DNA
sequences that hybridize to their complements significantly better than to any
other sequences in the set, or to find a set of a certain size with the best pos-
sible “quality”; in this the problem is similar to the maximum independent set
problem, which is NP complete [7,18].

For sticky ends, the sequence lengths required, especially the 5 to 6 nt ends
of DAO-E tiles, are shorter, and provide a smaller sequence space, than most
other work has considered, with a few exceptions that have largely generated
very small sets [25]. Using the end pair sensitivity model, we can reduce errors
from non-orthogonal interactions by changing the assignment of sequences to
abstract ends, as described later. However, we have no corresponding model to
allow us to compensate for non-uniform energies.

The goal for our sequence design, therefore, is to find a requested number of
sequences that (a) have non-orthogonal interactions less than a set constraint,
and (b) have binding energies (melting temperatures) as uniform as possible
given the orthogonality constraints. This contrasts with many sequence design
algorithms, where a minimum melting temperature is of primary importance [24],
and from algorithms that simply constrain melting temperatures to be within
set constraints [25], in that our algorithm chooses a sequence with the closest
melting temperature at each step.
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Fig. 5. Histograms of end pair interactions with the original Barish sequences (red)
and newly designed sequences (blue). (a) shows all end pairs, (b) shows a zoomed-in
area containing all end-complement pairs. All energies were calculated using the energy
model in our sequence designer at 37 ◦C.
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As the lengths of sticky end sequences are short, complex secondary structure
is limited, and thus our algorithm uses an approximation of minimum free en-
ergy (MFE) for thermodynamic calculations. Similar to the “h-measure” used
in Phan et al [18], the algorithm considers hybridization between two sequences
with every possible offset, and uses the nearest-neighbor interaction data from
SantaLucia et al [22], including values for symmetric loops, dangles, single-base
mismatched pairs, and coaxial stacking with core sequences. Furthermore, for
DAO-E tiles, core helix bases adjacent to the sticky ends affect energetics, and
need to be designed alongside the sticky end sequences.

Our algorithm works as follows, for length L sticky ends.

1. Generate a set of all possible available sequences A that fit user requirements.
With adjacent bases considered, this could be as many as 4L+2 sequences.

2. Calculate end-complement binding energies Gii′
se for all sequences in A, and

(to speed up computation) remove any sequence that falls outside a user-
specified range around the median Gii′

se of all sequences initially in A, which
we call Gse.

3. For each sequence needed:

(a) Randomly choose a sequence i from all sequences in A that are closest
to Gse, and add this to the set of chosen sequences C.

(b) Calculate the Gij
se between i and every remaining sequence j in A, and

remove all sequences from A with a Gij
se greater than a user-specified

value.

4. Stop when either A is empty, or a sufficient number of sequences have been
generated.

Gse is chosen as the desired ideal Gse in order to ensure a large number of
sequences with similar Gii

ses will be available, for 5 nt ends, the desired value
is Gse · RT = 8.35 kcal/mol at 37◦C. By adjusting parameters, the maximum
number of sequences that can be chosen can be changed as shown in Table 1;
running the algorithm repeatedly will also find different numbers of sequences.

Sets chosen by this algorithm are guaranteed to have all ends interact less
than a set amount sij < sdesired with ends other than their complements, and
to deviate from the desired correct interaction by less than a set amount |δi| <
δdesired, though when generating sets of a fixed size the largest δis will often be
much smaller, as the software selects for the smallest δi values possible.

Fig. 5 shows a comparison between end pair interactions in the original Bar-
ish counter system and new sequences designed with our sequence design soft-
ware. As can be seen, our software prevents large non-orthogonal interactions of
4 kcal/mol < Gij

se · RT < 6 kcal/mol, but does not significantly reduce interac-
tions with Gij

se · RT < 4 kcal/mol. However, for complementary interactions, our
software is able to find a significantly more uniform set of ends.

The practical value of this designer depends on the accuracy of the under-
lying energy model, of course, but the same algorithm can be used with differ-
ent energy models as understanding of sticky end energetics is improved. The
algorithm, with some energy model modifications, may also be of use in other
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Table 1. Examples of the number of sticky ends found by our designer for varying
user-specified parameters (bold). For lengths 5 and 6, examples are the best out of 100
runs, while for length 10, the example is a single run.

Length (nt) Gse · RT max(sij) # found std(δi) max δi
5 8.354 0.2 5 0.04Gse 0.1Gse

5 8.354 0.4 21 0.01Gse 0.038Gse

5 8.354 0.5 40 0.01Gse 0.036Gse

6 9.818 0.4 29 0.004Gse 0.015Gse

10 15.454 0.4 183 0.01Gse 0.05Gse

NNC CTGTT CNN

NNG TAGTG GNN
NNC ATCAC CNN

NNA CCCTT ANN
NNT GGGAA TNN

NNG GACAA GNN

NNG TCAGT GNN
NNC AGTCA CNN

Fig. 6. Illustration of end assignment for the Barish counter set with new sequences.
For conciseness, only a portion of the ends are shown.

areas of DNA computation where very short sequences with very similar melting
temperatures and low non-orthogonal interactions are needed, such as toehold
regions in strand displacement systems. However, it does not consider a number
of factors important for actual strand displacement regions, and starts to become
computationally intractable for sequences longer than 10 or 11 nt.

3.2 Sequence Assignment

The sequence designer is able to find sets of ends with very similar complemen-
tary interactions, and low non-orthogonal interactions. However, by ensuring
that sequences are assigned to ends in a system such that end pairs with higher
sensitivity have lower interactions, errors can further be reduced, and perhaps
more importantly, the chance that a poor choice of sequences is made for a
critical pair of ends can be minimized.

We assigned ends using a simulated annealing algorithm that used, as a score,
the sum of rough error estimates for each end pair (see Fig. 4):

S(assignment) =
∑

i,j∈2GO

e−(sij−1.1)Gse +
∑

i,j∈1GO and /∈2GO

e−(sij−1.5)Gse (6)

+
∑

i,j∈2NGO and /∈1GO

e−(sij−1.65)Gse +
∑

i,j∈1NGO and /∈2NGO

e−(sij−2)Gse .

We call the resulting assignment ‘optimized’, although of course it is not
guaranteed to be a global optimum. Offset values in the exponents were set
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Fig. 7. Error rates for the Barish counter system with different sticky end sequences.
Error rates are calculated from the percentage of correct assemblies formed of size 673.
Gse values are calculated from ends, or are uniformly Gse · RT = 8.35 kcal/mol in the
ideal case. Gmc values were varied between 17.6 and 17.9. 1000 simulations were run
for each Gmc value.

by rough estimates of the worst errors for different classes in the simulations
shown in Fig. 4, and terms here for 2GO, 1GO and 2NGO are shown by solid
lines in that figure. For 1NGO, the −2 parameter is chosen simply to be lower
than other classes, as no system we have examined has end pairs that are only
1NGO. Since the sequence designer chooses adjacent bases as well as sticky
end sequences, sequences can be consistently assigned to ends on all tiles, as in
Fig. 6. The sequences and tiles for the Barish counter cannot be assigned in the
same way, as different tiles with the same sticky end types often have different
adjacent base pairs, modifying their interactions. Furthermore, as the sequence
assignment algorithm only considers non-orthogonal interactions, results on a
system with significant non-uniformity will likely be inconsistent.

Fig. 7 shows simulated error rates and assembly time for counters using se-
quences from Barish et al [3], sequences designed by our sequence designer and
randomly assigned, and the same designed sequences assigned by our simulated
annealing algorithm to both minimize and maximize the score in Eq. 6, along
with error rates and assembly time for the system under ideal kTAM conditions.
For a range of Gmc values and resultant assembly times, there is at least a 3-
fold improvement in error rate between new sequences that are pessimally and
optimally assigned by our scoring function, with increasing improvement as the
assembly rate, and thus ideal error rate, decreases. For optimally assigned se-
quences, error remains close to the ideal error rate. The original sequences and
assignment for the Barish counter perform slightly better than the pessimally
assigned new sequences.
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4 Conclusions and Discussion

These methods of sticky end design and assignment serve two purposes: firstly,
to design experimental systems with error rates as close to the ideal kTAM as
possible, and secondly, to reduce the chance that a poor choice of sequences, or
even a poor assignment of sequences to tiles, might significantly impact exper-
imental results. The methods should be relevant for most types of DNA tiles,
and most tile systems with deterministic algorithmic behavior. Our software for
these algorithms is available online [1].

The simulation results here, and the methods themselves, are reliant on the
accuracy of the energy model used. While some research has been done on sticky-
end energetics [15,19,14,9], usually for individual pairs of tiles, it is not known
how well nearest-neighbor models of DNA energetics apply to sticky ends on
DNA tiles in lattices. Different tile structures may also require slightly different
models, especially with regard to coaxial stacking with base pairs adjacent to
the sticky ends.

It is possible that extending end sensitivity definitions to higher orders, con-
sidering more than two tile attachments, may be a useful area of investigation,
especially when considering tile systems making use of similarly higher order
proofreading. Indeed, proofreading can counteract at a more fundamental level
some of the same errors that arise from non-orthogonal interactions. The ef-
fects of non-uniform sticky end energies, however, may still significantly impact
proofreading sets, and remain a potentially fruitful area of research beyond our
simplistic modeling and concentration adjustment technique.
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Abstract. We propose a novel molecular computing approach based on reser-
voir computing. In reservoir computing, a dynamical core, called a reservoir, is
perturbed with an external input signal while a readout layer maps the reservoir
dynamics to a target output. Computation takes place as a transformation from
the input space to a high-dimensional spatiotemporal feature space created by
the transient dynamics of the reservoir. The readout layer then combines these
features to produce the target output. We show that coupled deoxyribozyme os-
cillators can act as the reservoir. We show that despite using only three coupled
oscillators, a molecular reservoir computer could achieve 90% accuracy on a
benchmark temporal problem.

1 Introduction

A reservoir computer is a device that uses transient dynamics of a system in a critical
regime—a regime in which perturbations to the system’s trajectory in its phase space
neither spread nor die out—to transform an input signal into a desired output [1]. We
propose a novel technique for molecular computing based on the dynamics of molecular
reactions in a microfluidic setting. The dynamical core of the system that contains the
molecular reaction is called a reservoir. We design a simple in-silico reservoir computer
using a network of deoxyribozyme oscillators [2], and use it to solve temporal tasks.
The advantage of this method is that it does not require any specific structure for the
reservoir implementation except for rich dynamics. This makes the method an attractive
approach to be used with emerging computing architectures [3].

We choose deoxyribozyme oscillators due to the simplicity of the corresponding
mathematical model and the rich dynamics that it produces. In principle, the design is
generalizable to any set of reactions that show rich dynamics. We reduce the oscillator
model in [2] to a form more amenable to mathematical analysis. Using the reduced
model, we show that the oscillator dynamics can be easily tuned to our needs. The
model describes the oscillatory dynamics of three product and three substrate species in
a network of three coupled oscillators. We introduce the input to the oscillator network
by fluctuating the supply of substrate molecules and we train a readout layer to map the
oscillator dynamics onto a target output. For a complete physical reservoir computing
design, two main problems should be addressed: (1) physical implementation of the
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reservoir and (2) physical implementation of the readout layer. In this paper, we focus
on a chemical design for the reservoir and assume that the oscillator dynamics can
be read using fluorescent probes and processed using software. We aim to design a
complete chemical implementation of the reservoir and the readout layer in a future
work (cf. Section 5). A similar path was taken by Smerieri et al. [4] to achieve an all-
analog reservoir computing design using an optical reservoir introduced by Paquot et
al. [5].

We use the molecular reservoir computer to solve two temporal tasks of different
levels of difficulty. For both tasks, the readout layer must compute a function of past
inputs to the reservoir. For Task A, the output is a function of two immediate past in-
puts, and for Task B, the output is a function of two past inputs, one τ seconds ago
and the other 3

2τ seconds ago. We implement two varieties of reservoir computer, one
in which the readout layer only reads the dynamics of product concentrations and an-
other in which both product and substrate concentrations are read. We show that the
product-only version achieves about 70% accuracy on Task A and about 80% accuracy
on Task B, whereas the product-and-substrate version achieves about 80% accuracy on
Task A and 90% accuracy on Task B. The higher performance on Task B is due to the
longer time delay, which gives the reservoir enough time to process the input. Compared
with other reservoir computer implementations, the molecular reservoir computer per-
formance is surprisingly good despite the reservoir being made of only three coupled
oscillators.

2 Reservoir Computing

As reservoir computing (RC) is a relatively new paradigm, we try to convey the sense of
how it computes and explain why it is suitable for molecular computing. RC achieves
computation using the dynamics of an excitable medium, the reservoir [6]. We perturb
the intrinsic dynamics of the reservoir using a time-varying input and then read and
translate the traces of the perturbation on the system’s trajectory onto a target output.

RC was developed independently by Maass et al. [7] as a model of information pro-
cessing in cortical microcircuits, and by Jaeger [8] as an alternative approach to time-
series analysis using Recurrent Neural Networks (RNN). In the RNN architecture, the
nodes are fully interconnected and learning is achieved by updating all the connection
weights [8, 9]. However, this process is computationally very intensive. Unlike the reg-
ular structure in RNN, the reservoir in RC is built using sparsely interconnected nodes,
initialized with fixed random weights. There are input and output layers which feed the
network with inputs and obtain the output, respectively. To get the desired output, we
have to compute only the weights on the connections from the reservoir to the output
layer using examples of input-output sequence.

Figure 1 shows a sample RC architecture with sparse connectivity between the input
and the reservoir, and between the nodes inside the reservoir. The output node is con-
nected to all the reservoir nodes. The input weight matrix is an I×N matrix Win = [win

i, j],
where I is the number of input nodes, N is the number of nodes in the reservoir, and win

j,i
is the weight of the connection from input node i to reservoir node j. The connection
weights inside the reservoir are represented by an N×N matrix Wres = [wres

j,k], where
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Fig. 1. Schematic of a generic reservoir computer. The input is weighted and then fed into a
reservoir made up of a number of nodes with nonlinear transfer functions. The nodes are inter-
connected using the coupling matrix Wres = [wres

i j ], where wres
i j is the weight from node j to node

i. The weights are selected randomly from identical and independent distributions. The output is
generated using linear combination of the values of the nodes in the reservoir using output weight
vector Wout = [wout

i ].

wres
j,k is the weight from node k to node j in the reservoir. The output weight matrix is

an N×O matrix Wout = [wout
l,k ], where O is the number of output nodes and wout

l,k is the
weight of the connection from reservoir node k to output node l. All the weights are
samples of i.i.d. random variables, usually taken to be normally distributed with mean
μ = 0 and standard deviation σ . We can tune μ and σ depending on the properties of
U(t) to achieve optimal performance. We represent the time-varying input signal by an
Ith order column vector U(t) = [ui(t)], the reservoir state by an Nth order column vector
X(t) = [x j(t)], and the generated output by an Oth order column vector Y(t) = [yl(t)].
We compute the time evolution of each reservoir node in discrete time as:

x j(t+ 1) = f (Wres
j ·X(t)+Win ·U(t)), (1)

where f is the nonlinear transfer function of the reservoir nodes, · is the matrix dot
product, and Wres

j is the jth row of the reservoir weight matrix. The reservoir output is
then given by:

Y(t) = wb+Wout ·X(t), (2)

where wb is an inductive bias. One can use any regression method to train the output
weights to minimize the output error E = ||Y(t)− Ŷ(t)||2 given the target output Ŷ(t).
We use linear regression and calculate the weights using the Moore-Penrose pseudo-
inverse method [10]:

Wout′ = (X′T ·X′)−1 ·X′T ·Y′. (3)

Here, Wout′ is the output weight vector extended with a the bias wb, X′ is the matrix
of observation from the reservoir state where each row is represent the state of the
reservoir at the corresponding time t and the columns represent the state of different
nodes extended so that the last column is constant 1. Finally, Ŷ′ is the matrix of target
output were each row represents the target output at the corresponding time t. Note
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Fig. 2. Computation in a reservoir computer. The input signal U(t) is fed into every reservoir node
i with a corresponding weight win

i denoted with weight column vector Win = [win
i ]. Reservoir

nodes are themselves coupled with each other using the weight matrix Wres = [wres
i j ], where wres

i j
is the weight of the connection from node j to node i.

that this also works for multi-dimensional output, in which case Wout′ will be a matrix
containing connection weights between each pair of reservoir nodes and output nodes.

Conceptually, the reservoir’s role in RC is to act as a spatiotemporal kernel and
project the input into a high-dimensional feature space [6]. In machine learning, this
is usually referred to as feature extraction and is done to find hidden structures in data
sets or time series. The output is then calculated by properly weighting and combining
different features of the data [11]. An ideal reservoir should be able to perform fea-
ture extraction in a way that makes the mapping from feature space to output a linear
problem. However, this is not always possible. In theory an ideal reservoir computer
should have two features: a separation property of the reservoir and an approximation
property of the readout layer. The former means the reservoir perturbations from two
distinct inputs must remain distinguishable over time and the latter refers to the ability
of the readout layer to map the reservoir state to a given target output in a sufficiently
precise way.

Another way to understand computation in a high-dimensional recurrent systems
is through analyzing their attractors. In this view, the state-space of the reservoir is
partitioned into multiple basins of attraction. A basin of attraction is a subspace of the
system’s state-space, in which the system follows a trajectory towards its attractor. Thus
computation takes place when the reservoir jumps between basins of attraction due to
perturbations by an external input [12–15]. On the other hand, one could directly ana-
lyze computation in the reservoir as the reservoir’s average instantaneous information
content to produce a desired output [16].

There has been much research to find the optimal reservoir structure and readout
strategy. Jaeger [17] suggests that in addition to the separation property, the reservoir
should have fading memory to forget past inputs after some period of time. He achieves
this by adjusting the standard deviation of the reservoir weight matrix σ so that the
spectral radius of Wres remains close to 1, but slightly less than 1. This ensures that
the reservoir can operate near critical dynamics, right at the edge between ordered and
chaotic regimes. A key feature of critical systems is that perturbations to the system’s
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trajectory neither spread nor die out, independent of the system size [18], which makes
adaptive information processing robust to noise [14]. Other studies have also suggested
that the critical dynamics is essential for good performance in RC [16, 19–22].

The RC architecture does not assume any specifics about the underlying reservoir.
The only requirement is that it provides a suitable kernel to project inputs into a high-
dimensional feature space. Reservoirs operating in the critical dynamical regime usu-
ally satisfy this requirement. Since RC makes no assumptions about the structure of
the underlying reservoir, it is very suitable for use with unconventional computing
paradigms [3–5]. Here, we propose and simulate a simple design for a reservoir com-
puter based on a network of deoxyribozyme oscillators.

3 Reservoir Computing Using Deoxyribozyme Oscillators

To make a DNA reservoir computer, we first need a reservoir of DNA species with
rich transient dynamics. To this end, we use a microfluidic reaction chamber in which
different DNA species can interact. This must be an open reactor because we need to
continually give input to the system and read its outputs. The reservoir state consists of
the time-varying concentration of various species inside the chamber, and we compute
using the reaction dynamics of the species inside the reactor. To perturb the reservoir we
encode the time-varying input as fluctuations in the influx of species to the reactor. In [2,
23], a network of three deoxyribozyme NOT gates showed stable oscillatory dynamics
in an open microfluidic reactor. We extend this work by designing a reservoir computer
using deoxyribozyme-based oscillators and investigating their information-processing
capabilities.

The oscillator dynamics in [2] suffices as an excitable reservoir. Ideally, the readout
layer should also be implemented in a similar microfluidic setting and integrated with
the reservoir. However, as a proof of concept we assume that we can read the reservoir
state using fluorescent probes and calculate the output weights using software.

The oscillator network in [2] is described using a system of nine ordinary differ-
ential equations (ODEs), which simulate the details of a laboratory experiment of the
proposed design. However, this model is mathematically unwieldy. We first reduce the
oscillator ODEs in [2] to a form more amenable to mathematical analysis:

d[P1]
dt = hβ [S1]([G1]− [P3])− e

V [P1],
d[S1]
dt =

Sm1
V − hβ [S1]([G1]− [P3])− e

V [S1],

d[P2]
dt = hβ [S2]([G2]− [P1])− e

V [P2],
d[S2]
dt =

Sm2
V − hβ [S2]([G2]− [P1])− e

V [S2],

d[P3]
dt = hβ [S3]([G3]− [P2])− e

V [P3],
d[S3]
dt =

Sm3
V − hβ [S3]([G3]− [P2])− e

V [S3].

(4)

In this model, [Pi], [Si], and [Gi] are concentrations of three species of product
molecules, three species of substrate molecules, and three species of gate molecules
inside the reactor, and Smi is the influx rate of [Si]. The brackets [ · ] indicate chemical
concentration and should not be confused with the matrix notation introduced above.
When explicitly talking about the concentrations at time t, we use Pi(t) and Si(t). V is
the volume of the reactor, h the fraction of the reactor chamber that is well-mixed, e is
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the efflux rate, and β is the reaction rate constant for the gate-substrate reaction, which
is assumed to be identical for all gates and substrates, for simplicity.

To use this system as a reservoir we must ensure that it has transient or sustained os-
cillation. This can be easily analyzed by forming the Jacobian of the system. Observing
that all substrate concentrations reach an identical and constant value relative to their
magnitude, we can focus on the dynamics of the product concentrations and write an
approximation to the Jacobian of the system as follows:

J=

⎡⎢⎢⎢⎢⎣
d[P1]
d[P1]

d[P1]
d[P2]

d[P1]
d[P3]

d[P2]
d[P1]

d[P2]
d[P2]

d[P2]
d[P3]

d[P3]
d[P1]

d[P3]
d[P2]

d[P3]
d[P3]

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎣
− e

V −hβ [S1] 0

0 − e
V −hβ [S2]

−hβ [S1] 0 − e
V

⎤⎥⎥⎦ (5)

Assuming that volume of the reactor V and the reaction rate constant β are given, the
Jacobian is a function of only the efflux rate e and the substrate concentrations [Si]. The
eigenvalues of the Jacobian are given by:

λ1 = −hβ ([S1][S2][S3])
1
3 − e

V

λ2 = 1
2hβ ([S1][S2][S3])

1
3 − e

V +
√

3
2 hβ ([S1][S2][S3])

1
3 i

λ3 = 1
2hβ ([S1][S2][S3])

1
3 − e

V −
√

3
2 hβ ([S1][S2][S3])

1
3 i

(6)

The existence of complex eigenvalues tells us that the system has oscillatory be-
havior near its critical points. The period of this oscillation is given by T =

2π
√

3
2 hβ ([S1][S2][S3])

− 1
3 and can be adjusted by setting appropriate base values for

Smi . For sustained oscillation, the real part of the eigenvalues should be zero, which
can be obtained by a combination of efflux rate and substrate influx rates such that
1
2hβ ([S1][S2][S3])

1
3 − e

V = 0.
This model works as follows. The substrate molecules enter the reaction chamber

and are bound to and cleaved by active gate molecules that are immobilized inside
the reaction chamber, e.g., on beads. This reaction turns substrate molecules into the
corresponding product molecule. However, the presence of each product molecule con-
centration suppresses the reaction of other substrates and gates. These three coupled
reaction and inhibition cycles give rise to the oscillatory behavior of the products’ con-
centrations (Figure 4). Input is given to the system as fluctuation to one or more of the
substrate influx rates. In Figure 3a we see that the concentration of S1 varies rapidly as
a response to the random fluctuations in Sm1 . This will result in antisymmetric concen-
trations of the substrate species inside the chamber and thus irregular oscillation of the
concentration of product molecules. This irregular oscillation embeds features of the
input fluctuation within it (Figure 3a). To keep the volume fixed, there is a continuous
efflux of the chamber content. The Equation 4 assumes ([Gi]− [Pj])> 0, which should
be taken into account while choosing initial concentrations and constants to simulate
the system.

To perturb the intrinsic dynamics inside the reactor, an input signal can modulate
one or more substrate influx rates. In our system, we achieve this by fluctuating Sm1 . In
order to let the oscillators react to different values of Smi , we keep each new value of Smi
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Fig. 3. The random fluctuation in substrate influx rate Sm1 leaves traces on the oscillator dynamics
that can be read off a readout layer. We observe the traces of the substate influx rate fluctuation
both in the dynamics of the substrate concentrations (a) and the product concentrations (b). Both
substrate and product concentrations potentially carry information about the input. Substrate con-
centration S1 is directly affected by Sm1 and therefore shows very rapid fluctuations.

constant for τ seconds. In a basic setup, the initial concentrations of all the substrates
inside the reactor are zero. Two of the product concentrations P2(0) and P3(0) are also
set to zero, but to break the symmetry in the system and let the oscillation begin we set
P1(0) = 1000 nM. The gate concentrations are set uniformly to [Gi] = 2500 nM. This
ensures that ([Gi]− [Pj]) > 0 in our setup. The base values for substrate-influx rates
are set to 5.45× 10−6 nmol s−1. Figure 3 shows the traces of computer simulation of
this model, where τ = 30 s. We use the reaction rate constant from [2], β = 5× 10−7

nM s−1. Although the kinetics of immobilized deoxyribozyme may be different, for
simplicity we use the reaction rate constant of free deoxyribozymes and we assume that
we can find deoxyribozymes with appropriate kinetics when immobilized. The values
for the remaining constants are e= 8.8750× 10−2 nL s−1 and h = 0.7849, i.e., the av-
erage fraction of well-mixed solution calculated in [2]. We assume the same microscale
continuous stirred-tank reactor (μCSTR) as [2,23,24], which has volumeV = 7.54 nL.
The small volume of the reactor lets us achieve high concentration of oligonucleotides
with small amounts of material; a suitable experimental setup is described in [25].

P1

P2

P3

influx efflux

Fig. 4. Three products form an inhibitory cycle that leads to oscillatory behavior in the reser-
voir. Each product Pi inhibits the production of Pi+1 by the corresponding deoxyribozyme (cf.
Equation 4).
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The dynamics of the substrates (Figure 3a) and products (Figure 3a) are instructive as
to what we can use as our reservoir state. Our focus will be the product concentrations.
However, the substrate concentrations also show interesting irregular behavior that can
potentially carry information about the input signals. This is not surprising since all
of the substrate and product concentrations are connected in our oscillator network.
However, the one substrate that is directly affected by the influx (S1 in this case) shows
the most intense fluctuations that are directly correlated with the input. In some cases
providing this extra information to the readout layer can help to find the right mapping
between the reservoir state and the target output.

In the next section, we build two different reservoir computers using the dynamics of
the concentrations in the reactor and use them to solve sample temporal tasks. Despite
the simplicity of our system, it can retain the memory of past inputs inside the reservoir
and use it to produce output.

4 Task Solving Using a Deoxyribozyme Reservoir Computer

We saw in the preceding section that we can use substrate influx fluctuation as input
to our molecular reservoir. We now show that we can train a readout layer to map the
dynamics of the oscillator network to a target output. Recall that τ is the input hold time
during which we keep Sm1 constant so that the oscillators can react to different values of
Sm1 . In other words, at the beginning of each τ interval a new random value for substrate
influx is chosen and held fixed for τ seconds. Here, we set the input hold time τ = 100 s.
In addition, before computing with the reservoir we must make sure that it has settled in
its natural dynamics, otherwise the output layer will see dynamical behavior that is due
to the initial conditions of the oscillators and not the input provided to the system. In
the model, the oscillators reach their stable oscillation pattern within 500 s. Therefore,
we start our reservoir by using a fixed Sm1 as described in Section 3 and run it for 500 s
before introducing fluctuations in Sm1 .

To study the performance of our DNA reservoir computer we use two different tasks,
Task A and Task B, as toy problems. Both have recursive time dependence and therefore
require the reservoir to remember past inputs for some period of time, and both are
simplified versions of a popular RC benchmark, NARMA [8]. We define the input as
Sm1 (t) = Sm∗

1 R, where Sm∗
1 is the influx rate used for the normal working of the oscillators

(5.45× 10−6 nmol s−1 in our experiment) and R is a random value between 0 and 1
sampled from a uniform distribution. We define the target output Ŷ(t) of Task A as
follows:

Ŷ(t) = Sm1 (t− 1)+ 2Sm1 (t− 2). (7)

For Task B, we increase the length of the time dependence and make it a function of
input hold time τ . We define the target output as follows:

Ŷ(t) = Sm1 (t− τ)+
1
2
Sm1 (t−

3
2
τ). (8)



84 A. Goudarzi, M.R. Lakin, and D. Stefanovic

0 2000 4000 6000
0.00

0.50

1.00

1.50

2.00

2.50

3.00

time (s)

ou
tp

ut
 ×

 1
0−

5

 

 
̂Y
Y after training

Y × 10−10 before training

Fig. 5. Target output and the output of the molecular reservoir computer on Task A (Equation 7)
before and after training. After 500 s the input starts to fluctuate randomly every τ seconds. In this
example, the output of the system before training is 10 orders of magnitude larger than the target
output. We rescaled the output before training to be able to show it in this plot. After training, the
output is in the range of the target output and it tracks the fluctuations in the target output more
closely.

Note that the vectors Ŷ(t) and Y(t) have only one row in this example. Figure 5
shows an example of the reservoir output Y(t) and the target output Ŷ(t) calculated
using Equation 7 before and after training. In this example, the reservoir output before
training is 10 orders of magnitude off the target.

Our goal is to find a set of output weights so that Y(t) tracks the target output as
closely as possible. We calculate the error using normalized root-mean-square error
(NRMSE) as follows:

NRMSE =
1

Ymax−Ymin

√
∑tn
t=t1(Ŷ(t)−Y(t))2

n
, (9)

where Ymax and Ymin are the maximum and the minimum of the Y(t) during the time
interval t1 < t < tn. The denominator Ymax −Ymin is to ensure that 0 ≤ NRMSE ≤ 1,
where NRMSE = 0 means Y(t) matches Ŷ(t) perfectly.

Now we propose two different ways of calculating the output from the reservoir: (1)
using only the dynamics of the product concentrations and (2) using both the product
and substrate concentrations. To formalize this using the block matrix notation, for the
product-only version the reservoir state is given by X(t) = P(t) = [P1(t) P2(t) P3(t)]T .
For the product-and-substrate version the reservoir state is given by vertically appending
S(t) = [S1(t) S2(t) S3(t)]T to P(t), i.e., X(t) = [P(t) S(t)]T , where P(t) is the column
vector of the product concentrations as before and S(t) is the column vector of the
substrate concentrations. We use 2000 s of the reservoir dynamics X(t) to calculate the
output weight matrix Wout using linear regression. We then test the generalization, i.e.,
how well the output Y(t) tracks the target Ŷ(t) during another 2000 s period that we
did not use to calculate the weights.
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Fig. 6. Generalization NRMSE of the product-only and the product-and-substrate molecular
reservoir computer on Task A (Equation 7) and Task B (Equation 8) averaged over 100 trials.
The bars and error bars show the mean and the standard deviation of NRMSE respectively.

Figure 6 shows the mean and standard deviation of NRMSE of the reservoir com-
puter using two different readout layer solving Task A and Task B. The product-and-
substrate reservoir achieves a mean NRMSE of 0.23 and 0.11 on Task A and Task
B with standard deviations 0.05 and 0.02 respectively, and the product-only reservoir
achieves a mean NRMSE of 0.30 and 0.19 on Task A and Task B with standard de-
viations 0.04 and 0.03 respectively. As expected, the product-and-substrate reservoir
computer achieves about 10% improvement over the product-only version owing to
its higher phase space dimensionality. Furthermore, both reservoirs achieve a 10% im-
provement on Task B over Task A. This is surprising at first because Task B requires the
reservoir to remember the input over a time interval of 3

2τ , but Task A only requires the
last two time steps. However, to extract the features in the input signal, the input needs
to percolate in the reservoir, which takes more than just two time steps. Task B requires
more memory of the input, but also gives the reservoir enough time to process the input
signal, which results in higher performance. Similar effects have been observed in [16].
Therefore, despite the very simple reservoir structure (three coupled oscillators), we can
compute simple temporal tasks with 90% accuracy. Increasing the number of oscillators
and using the history of the oscillators dynamics similar to [26] could potentially lead
to even higher performance.

5 Discussion and Related Work

DNA chemistry is inherently programmable and highly versatile, and a number of dif-
ferent techniques have been developed, such as building digital and analog circuits using
strand displacement cascades [27, 28], developing game-playing molecular automata
using deoxyribozymes [29], and directing self-assembly of nanostructures [30–32].
All of these approaches require precise design of DNA sequences to form the required
structures and perform the desired computation. In this paper, we proposed a reservoir-
computing approach to molecular computing. In nature, evidence for reservoir comput-
ing has been found in systems as simple as a bucket of water [33], simple organisms
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such as E. Coli [34], and in systems as complex as the brain [35]. This approach does not
require any specific behavior from the reactions, except that the reaction dynamics must
result in a suitable transient behavior that we can use to compute [6]. This could give
us a new perspective in long-term sensing, and potentially controlling, gene expression
patterns over time in a cell. This would require appropriate sensors to detect cell state,
for example the pH-sensitive DNA nanomachine recently reported by Modi et al. [36].
This may result in new methods for smart diagnosis and treatment using DNA signal
translators [37–39].

In RC, computation takes place as a transformation from the input space to a high-
dimensional spatiotemporal feature space created by the transient dynamics of the reser-
voir. Mathematical analysis suggests that all dynamical systems show the same infor-
mation processing capacity [40]. However, in practice, the performance of a reservoir is
significantly affected by its dynamical regime. Many studies have shown that to achieve
a suitable reservoir in general, the underlying dynamical system must operate in the
critical dynamical regime [8, 16, 20, 21].

We used the dynamics of the concentrations of different molecular species to extract
features of an input signal and map them to a desired output. As a proof of concept,
we proposed a reservoir computer using deoxyribozyme oscillator network and showed
how to provide it with input and read its outputs. However, in our setup, we assumed that
we read the reservoir state using fluorescent probes and process them using software. In
principle, the mapping from the reservoir state to target output can be carried out as an
integrated part of the chemistry using an approach similar to the one reported in [28],
which implements a neural network using strand displacement. In [41], we proposed a
chemical reaction network inspired by deoxyribozyme chemistry that can learn a linear
function and repeatedly use it to classify input signals. In principle, these methods could
be used to implement the regression algorithm and therefore the readout layer as an
integrated part of the molecular reservoir computer. A microfluidic reactor has been
demonstrated in [25] that would be suitable for implementing our system. Therefore,
the molecular reservoir computer that we proposed here is physically plausible and can
be implemented in the laboratory using microfuidics.

6 Conclusion and Future Work

We have proposed and simulated a novel approach to DNA computing based on the
reservoir computing paradigm. Using a network of oscillators built from deoxyri-
bozymes we can extract hidden features in a given input signal and compute any desired
output. We tested the performance of this approach on two simple temporal tasks. This
approach is generalizable to different molecular species so long as they possess rich
reaction dynamics. Given the available technology today this approach is plausible
and can lead to many innovations in biological signal processing, which has important
applications in smart diagnosis and treatment techniques. In future work, we shall study
the use of other sets of reactions for the reservoir. Moreover, for any real-world applica-
tion of this technique, we have to address the chemical implementation of the readout
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layer. An important open question is the complexity of molecular reactions necessary to
achieve critical dynamics in the reservoir. For practical applications, the effect of sparse
input and sparse readout needs thorough investigation, i.e., how should one distribute
the input to the reservoir and how much of the reservoir dynamics is needed for the
readout layer to reconstruct the target output accurately? It is also possible to use the
history of the reservoir dynamics to compute the output, which would require addition
of a feedback channel to the reactor. The molecular readout layer could be set up to read
the species concentration along the feedback channel. Another possibility is to connect
many reactors to create a modular molecular reservoir computer, which could be used
strategically to scale up to more complex problems.
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Abstract. The 2-Handed Assembly Model (2HAM) is a tile-based self-
assembly model in which, typically beginning from single tiles, arbitrarily
large aggregations of static tiles combine in pairs to form structures.
The Signal-passing Tile Assembly Model (STAM) is an extension of the
2HAM in which the tiles are dynamically changing components which are
able to alter their binding domains as they bind together. In this paper,
we prove that there exists a 3D tile set in the 2HAM which is intrinsically
universal for the class of all 2D STAM+ systems at temperature 1 and
2 (where the STAM+ does not make use of the STAM’s power of glue
deactivation and assembly breaking, as the tile components of the 2HAM
are static and unable to change or break bonds). This means that there is
a single tile set U in the 3D 2HAM which can, for an arbitrarily complex
STAM+ system S, be configured with a single input configuration which
causes U to exactly simulate S at a scale factor dependent upon S.
Furthermore, this simulation uses only 2 planes of the third dimension.

To achieve this result, we also demonstrate useful techniques and
transformations for converting an arbitrarily complex STAM+ tile set
into an STAM+ tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of “signals” they can send,
with a trade off in scale factor.

While the first result is of more theoretical interest, showing the power
of static tiles to simulate dynamic tiles when given one extra plane in
3D, the second is of more practical interest for the experimental imple-
mentation of STAM tiles, since it provides potentially useful strategies
for developing powerful STAM systems while keeping the complexity of
individual tiles low, thus making them easier to physically implement.
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1 Introduction

Self-assembling systems are those in which large, disorganized collections of rela-
tively simple components autonomously, without external guidance, combine to
form organized structures. Self assembly drives the formation of a vast multitude
of naturally forming structures, across a wide range of sizes and complexities
(from the crystalline structure of snowflakes to complex biological structures
such as viruses). Recognizing the immense power and potential of self-assembly
to manufacture structures with precision down to the molecular level, researchers
have been pursuing the creation and study of artificial self-assembling systems.
This research has led to steadily increasing sophistication of both the theo-
retical models (from the Tile Assembly Model (TAM) [21], to the 2-Handed
Assembly Model (2HAM) [4, 8], and many others [1–3, 8, 12]) as well as ex-
perimentally produced building blocks and systems (a mere few of which in-
clude [5, 13, 15, 16, 19, 20]). While a number of models exist for passive self-
assembly, as can be seen above, research into modeling active self-assembly is
just beginning [18, 22]. Unlike passive self-assembly where structures bind and
remain in one state, active self-assembly allows for structures to bind and then
change state.

A newly developed model, the Signal-passing Tile Assembly Model (STAM)
[18], is based upon the 2HAM but with a powerful and important difference.
Tiles in the aTAM and 2HAM are static, unchanging building blocks which can
be thought of as analogous to write-once memory, where a location can change
from empty to a particular value once and then never change again. Instead,
the tiles of the STAM each have the ability to undergo some bounded number
of transformations as they bind to an assembly and while they are connected.
Each transformation is initiated by the binding event of a tile’s glue, and consists
of some other glue on that tile being turned either “on” or “off”. By chaining
together sequences of such events which propagate across the tiles of an assembly,
it is possible to send “signals” which allow the assembly to adapt during growth.
Since the number of transitions that any glue can make is bounded, this doesn’t
provide for “fully reusable” memory, but even with the limited reuse it has been
shown that the STAM is more powerful than static models such as the aTAM
and 2HAM (in 2D), for instance being able to strictly self-assemble the Sierpinski
triangle [18]. A very important feature of the STAM is its asynchronous nature,
meaning that there is no timeframe during which signals are guaranteed to fully
propagate, and no guaranteed ordering to the arrival of multiple signals. Besides
providing a useful theoretical framework of asynchronous behavior, the design
of the STAM was carefully aligned to the physical reality of implementation by
DNA tiles using cascades of strand-displacement. Capabilities in this area are
improving, and now include the linear transmission of signals, where one glue
binding event can activate one other glue on a DNA tile [17].

Although the STAM is intended to provide both a powerful theoretical frame-
work and a solid basis for representing possible physical implementations, often
those two goals are at odds. In fact, in the STAM it is possible to define tiles which
have arbitrary signal complexity in terms of the numbers of glues that they have on
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any given side and the number of signals that each tile can initiate. Clearly, with
increasing complexity of individual tiles, the ease of making them in the laboratory
diminishes. Therefore, in this paper our first set of results provide a variety ofmeth-
ods for simplifying the tiles in STAM systems. Besides reducing just the general
signal complexity of tiles, we also seek to reduce and/or remove certain patterns of
signals which may be more difficult to build into DNA-based tiles, namely fan-out
(which occurs when a single signal must split into multiple paths and have multi-
ple destinations), fan-in (which occurs when multiple signals must converge and
join into one path to arrive at a single glue), and mutual activation (which occurs
when both of the glues participating in a particular binding event initiate their
own signals). By trading signal complexity for tile complexity and scale factor, we
show how to use some simple primitive substitutions to reduce STAM tile sets to
those with much simpler tiles. Note that while in the general STAM it is possible
for signals to turn glues both “on” and “off”, our results pertain only to systems
which turn glues “on” (which we call STAM+ systems).

In particular, we show that the tile set for any temperature 1 STAM+ system,
with tiles of arbitrary complexity, can be converted into a temperature 1 STAM+

system with a tile set where no tile has greater then 2 signals and either fan-out
or mutual activation are completely eliminated. We show that any temperature
2 STAM+ system can be converted into a temperature 2 STAM+ system where
no tile has greater than 1 signal and both fan-out and mutual activation are
eliminated. Importantly, while both conversions have a worst case scale factor of
|T 2|, where T is the tile set of the original system, and worst case tile complexity
of |T 2|, those bounds are required for the extremely unrealistic case where every
glue is on every edge of some tile and also sends signals to every glue on every side
of that tile. Converting from a more realistic tile set yields factors which are on
the order of the square of the maximum signal complexity for each side of a tile,
which is typically much smaller. Further, the techniques used to reduce signal
complexity and remove fan-out and mutual activation are likely to be useful
in the original design of tile sets rather than just as brute force conversions of
completed tile sets.

We next consider the topic of intrinsic universality, which was initially de-
veloped to aid in the study of cellular automata [6, 7]. The notion of intrinsic
universality was designed to capture a strong notion of simulation, in which one
particular automaton is capable of simulating the behavior of any automaton
within a class of automata. Furthermore, to simulate the behavior of another
automaton, the simulating automaton must evolve in such a way that a trans-
lated rescaling (rescaled not only with respect to rectangular blocks of cells, but
also with respect to time) of the simulator can be mapped to a configuration
of the simulated automaton. The specific rescaling depends on the simulated
automaton and gives rise to a global rule such that each step of the simulated
automaton’s evolution is mirrored by the simulating automaton, and vice versa
via the inverse of the rule.

In this way, it is said that the simulator captures the dynamics of the sim-
ulated system, acting exactly like it, modulo scaling. This is in contrast to a
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computational simulation, for example when a general purpose digital computer
runs a program to simulate a cellular automata while the processor’s compo-
nents don’t actually arrange themselves as, and behave like, a grid of cellular
automata. In [11], it was shown that the aTAM is intrinsically universal, which
means that there is a single tile set U such that, for any aTAM tile assembly
system T (of any temperature), the tiles of U can be arranged into a seed struc-
ture dependent upon T so that the resulting system (at temperature 2), using
only the tiles from U , will faithfully simulate the behaviors of T . In contrast,
in [9] it was shown that no such tile set exists for the 2HAM since, for every
temperature, there is a 2HAM system which cannot be simulated by any system
operating at a lower temperature. Thus no tile set is sufficient to simulate 2HAM
systems of arbitrary temperature.

For our main result, we show that there is a 3D 2HAM tile set U which is
intrinsically universal (IU) for the class C of all STAM+ systems at temperature
1 and 2. For every T ∈ C, a single input supertile can be created, and using
just copies of that input supertile and the tiles from U , at temperature 2 the
resulting system with faithfully simulate T . Furthermore, the simulating system
will use only 2 planes of the third dimension. (The signal tile set simplification
results are integral in the construction for this result, especially in allowing it
to use only 2 planes.) This result is noteworthy especially because it shows
that the dynamic behavior of signal tiles (excluding glue deactivation) can be
fully duplicated by static tile systems which are allowed to “barely” use three
dimensions. Furthermore, for every temperature τ > 1 there exists a 3D 2HAM
tile set which can simulate the class of all STAM+ systems at temperature τ .

2 Preliminaries

Here we provide informal descriptions of the models and terms used in this paper.
Due to space limitations, the formal definitions can be found in [14].

2.1 Informal Definition of the 2HAM

The 2HAM [4,8] is a generalization of the abstract Tile Assembly Model (aTAM)
[21] in that it allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other. Since we must allow that the assemblies might
require translation before they can bind, we define a supertile to be the set of
all translations of a τ -stable assembly, and speak of the attachment of supertiles
to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the d-dimensional 2HAM,
for d ∈ {2, 3}, which is normally defined as a 2D model but which we extend to
3D as well, in the natural and intuitive way.

A tile type is a unit square if d = 2, and cube if d = 3, with each side
having a glue consisting of a label (a finite string) and strength (a non-negative
integer). We assume a finite set T of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. A supertile is (the set of all
translations of) a positioning of tiles on the integer lattice Zd. Two adjacent
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tiles in a supertile interact if the glues on their abutting sides are equal and
have positive strength. Each supertile induces a binding graph, a grid graph
whose vertices are tiles, with an edge between two tiles if they interact. The
supertile is τ-stable if every cut of its binding graph has strength at least τ ,
where the weight of an edge is the strength of the glue it represents. That is,
the supertile is stable if at least energy τ is required to separate the supertile
into two parts. A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where
T is a finite tile set and τ is the temperature, usually 1 or 2. (Note that this
is considered the “default” type of 2HAM system, while a system can also be
defined as a triple (T, S, τ), where S is the initial configuration which in the
default case is just infinite copies of all tiles from T , but in other cases can
additionally or instead consist of copies of pre-formed supertiles.) Given a TAS
T = (T, τ), a supertile is producible, written as α ∈ A[T ], if either it is a single
tile from T , or it is the τ -stable result of translating two producible assemblies
without overlap. Note that if d = 3, or if d = 2 but it is explicitly mentioned
that planarity is to be preserved, it must be possible for one of the assemblies
to start infinitely far from the other and by merely translating in d dimensions
arrive into a position such that the combination of the two is τ -stable, without
ever requiring overlap. This prevents, for example, binding on the interior of
a region completely enclosed by a supertile. A supertile α is terminal, written
as α ∈ A�[T ], if for every producible supertile β, α and β cannot be τ -stably
attached. A TAS is directed if it has only one terminal, producible supertile.

2.2 Informal Description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to
only one glue per side as in the TAM and 2HAM). Tiles have an initial state in
which each glue is either “on” or “latent” (i.e. can be switched on later). Tiles
also each implement a transition function which is executed upon the binding
of any glue on any edge of that tile. The transition function specifies, for each
glue g on a tile, a set of glues (along with the sides on which those glues are
located) and an action, or signal which is fired by g’s binding, for each glue in
the set. The actions specified may be to: 1. turn the glue on (only valid if it is
currently latent), or 2. turn the glue off (valid if it is currently on or latent).
This means that glues can only be on once (although may remain so for an
arbitrary amount of time or permanently), either by starting in that state or
being switched on from latent (which we call activation), and if they are ever
switched to off (called deactivation) then no further transitions are allowed for
that glue. This essentially provides a single “use” of a glue (and the signal sent
by its binding). Note that turning a glue off breaks any bond that that glue
may have formed with a neighboring tile. Also, since tile edges can have multiple
active glues, when tile edges with multiple glues are adjacent, it is assumed that
all matching glues in the on state bind (for a total binding strength equal to the
sum of the strengths of the individually bound glues). The transition function
defined for each tile type is allowed a unique set of output actions for the binding
event of each glue along its edges, meaning that the binding of any particular
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glue on a tile’s edge can initiate a set of actions to turn an arbitrary set of the
glues on the sides of the same tile either on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur be-
tween tiles contained in pairs of arbitrarily sized supertiles. In order to allow for
physical mechanisms which implement the transition functions of tiles but are ar-
bitrarily slower or faster than the average rates of (super)tile attachments and de-
tachments, rather than immediately enacting the outputs of transition functions,
each output action is put into a set of “pending actions” which includes all actions
which have not yet been enacted for that glue (since it is technically possible for
more than one action to have been initiated, but not yet enacted, for a particular
glue). Any event can be randomly selected from the set, regardless of the order of
arrival in the set, and the ordering of either selecting some action from the set or
the combination of two supertiles is also completely arbitrary. This provides fully
asynchronous timing between the initiation, or firing, of signals (i.e. the execution
of the transition function which puts them in the pending set) and their execution
(i.e. the changing of the state of the target glue), as an arbitrary number of supertile
binding events may occur before any signal is executed from the pending set, and
vice versa.

An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of producible
assemblies which starts with the initial tiles and then contains any supertiles
which can be formed by doing the following to any producible assembly: 1.
executing any entry from the pending actions of any one glue within a tile
within that supertile (and then that action is removed from the pending set), 2.
binding with another supertile if they are able to form a τ -stable supertile, or 3.
breaking into 2 separate supertiles along a cut whose total strength is < τ .

The STAM, as formulated, is intended to provide a model based on exper-
imentally plausible mechanisms for glue activation and deactivation. However,
while the model allows for the placement of an arbitrary number of glues on each
tile side and for each of them to signal an arbitrary number of glues on the same
tile, this is (currently quite) limited in practice. Therefore, each system can be
defined to take into account a desired threshold for each of those parameters,
not exceeding it for any given tile type, and so we have defined the notion of
full-tile signal complexity as the maximum number of signals on any tile in a set
(see [14] ) to capture the maximum complexity of any tile in a given set.

Definition 1. We define the STAM+ to be the STAM restricted to using only
glue activation, and no glue deactivation. Similarly, we say an STAM+ tile set
is one which contains no defined glue deactivation transitions, and an STAM+

system T = (T, τ) is one in which T is an STAM+ tile set.

As the main goal of this paper is to show that self-assembly by systems using
active, signalling tiles can be simulated using the static, unchanging tiles of
the 3D 2HAM, since they have no ability to break apart after forming τ -stable
structures, all of our results are confined to the STAM+.

A detailed, technical definition of the STAM model is provided in [14].
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2.3 Informal Definitions for Simulation

Here we informally describe what it means for one 2HAM or STAM TAS to
“simulate” another. Formal definitions, adapted from those of [9], can be found
in [14] .

Let U = (U, SU , τU ) be the system which is simulating the system T =
(T, ST , τT ). There must be some scale factor c ∈ N at which U simulates T , and
we define a representation function R which maps each c×c square (sub)assembly
in U to a tile in T (or empty space if it is incomplete). Each such c× c block is
referred to as a macrotile, since that square configuration of tiles from set U rep-
resent a single tile from set T . We say that U simulates T under representation
function R at scale c.

To properly simulate T , U must have 1. equivalent productions, meaning that
every supertile producible in T can be mapped via R to a supertile producible
in U , and vice versa, and 2. equivalent dynamics, meaning that when any two
supertiles α and β, which are producible in T , can combine to form supertile
γ, then there are supertiles producible in U which are equivalent to α and β
which can combine to form a supertile equivalent to γ, and vice versa. Note
that especially the formal definitions for equivalent dynamics include several
technicalities related to the fact that multiple supertiles in U may map to a
single supertile in T , among other issues. Please see [14] for details.

We say that a tile set U is intrinsically universal for a class of tile assembly
systems if, for every system in that class, a system can be created for which 1.
U is the tile set, 2. there is some initial configuration which consists of supertiles
created from tiles in U , where those “input” supertiles are constructed to encode
information about the system being simulated, and perhaps also singleton tiles
from U , 3. a representation function which maps macrotiles in the simulator
to tiles in the simulated system, and 4. under that representation function, the
simulator has equivalent productions and equivalent dynamics to the simulated
system. Essentially, there is one tile set which can simulate any system in the
class, using only custom configured input supertiles.

3 Transforming STAM+ Systems from Arbitrary to
Bounded Signal Complexity

In this section, we demonstrate methods for reducing the signal complexity of
STAM+ systems with τ = 1 or τ > 1 and results related to reducing signal
complexity. First, we define terms related to the complexity of STAM systems,
and then state our results for signal complexity reduction.

We now provide informal definitions for fan-out and mutual activation. For
more rigorous definitions, see [14].

Definition 2. For an STAM system T = (T, σ, τ), we say that T contains fan-
out iff there exists a glue g on a tile t ∈ T such that whenever g binds, it triggers
the activation or deactivation of more than 1 glue on t.
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Definition 3. For an STAM system T = (T, σ, τ), we say that T contains
mutual activation iff ∃t1, t2 ∈ T with glue g on adjacent edges of t1 and t2
such that whenever t1 and t2 bind by means of glue g, the binding of g causes
the activation or deactivation of other glues on both t1 and t2.

3.1 Impossibility of Eliminating Both Fan-Out and Mutual
Activation at τ = 1

fA f

f

f
Bf

Fig. 1. An example of a tile set
where fan-out and mutual acti-
vation cannot be completely re-
moved. The glue f on the west
edge of tile type B signals two
other glues.

We now discuss the impossibility of com-
pletely eliminating both fan-out and mutual
activation at temperature 1. Consider the sig-
nal tiles in Figure 1 and let T = (T, 1) be the
STAM+ system where T consists of exactly
those tiles. Theorem 1 shows that at tempera-
ture 1, it is impossible to completely eliminate
both fan-out and mutual activation. In other
words, any STAM+ simulation of T must con-
tain some instance of either fan-out or mu-
tual activation. The intuitive idea is that the
only mechanism for turning on glues is bind-
ing, and at temperature 1 we cannot control
when glues in the on state bind. Hence any binding pair of glues that triggers
some other glue must do so by means of a sequence of glue bindings leading
from the source of the signal to the signal to be turned on. Hence there must
be paths to both of the triggered glues from the single originating glue where at
some point a single binding event fires two signals. We will see that this is not
the case at temperature 2 since we can control glue binding through cooperation
there.

Theorem 1. At temperature 1, there exists an STAM+ system T such that any
STAM+ system S that simulates T contains fan-out or mutual activation.

The proof of Theorem 1 can be found in [14].

3.2 Eliminating Either Fan-Out or Mutual Activation

In this section we will discuss the possibility of eliminating fan-out from an
STAM+ system. We do this by simulating a given STAM+ system with a sim-
plified STAM+ system that contains no fan-out, but does contain mutual activa-
tion. A slight modification to the construction that we provide then shows that
mutual activation can be swapped for fan-out.

Definition 4. An n-simplified STAM tile set is an STAM tile set which has
the following properties: (1) the full-tile signal complexity is limited to a fixed
constant n ∈ N, (2) there is no fan-out, and (3) fan-in is limited to 2. We say
that an STAM system T = (T, σ, τ) is n-simplified if T is n-simplified.
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Theorem 2. For every STAM+ system T = (T, σ, τ), there exists a 2-simplified
STAM+ system S = (S, σ′, τ) which simulates T with scale factor O(|T |2) and
tile complexity O(|T |2).

To prove Theorem 2, we construct a macrotile such that every pair of signal
paths that run in parallel are never contained on the same tile. This means that
at most two signals are ever on one tile since it is possible for a tile to contain at
most two non-parallel (i.e. crossing) signals. In place of fan-out, we use mutual
activation gadgets (see Figure 3) within the fan-out zone. Similarly, we use a fan-
in zone consisting of tiles that merge incoming signals two at a time, in order to
reduce fan-in. For examples of these zones, see Figure 2. Next, we print a circuit
(a system of signals) around the perimeter of the macrotile which ensures that
the external glues (the glues on the edges of the macrotiles that cause macrotiles
to bind to one another) are not turned on until a macrotile is fully assembled.
More details of the construction can be found in [14] .

a b

a

c

a

c

b

Fan-in zoneFan-out zone

Macrotile

Fan out zone

bc

a b

ca

Fan-out Zone Fan-in Zone

Fig. 2. A tile with 5 signals (left) and the STAM+ macrotile that simulates it (right).
Here, the yellow squares represent glue a, the blue square represents glue b and the
orange squares represent glue c. The color of each frame corresponds to the glue of the
same color. For example on the tile to be simulated (left) there is a signal that runs
from glue a to glue c. In order to simulate this signaling, a signal runs from the fan-out
zone of glue a (the yellow glue) to the frame associated with glue a on the north edge.
The signal then wraps around the frame until it reaches the east side on which glue c
lies. Then the signal enters the fan-in zone of glue c.

To further minimize the number of signals per tile at τ > 1, cooperation
allows us to reduce the number of signals per tile required to just 1. To achieve
this result, we modify the construction used to show Theorem 2, and prove
Theorem 3. The details of the modification are in [14] .
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Theorem 3. For every STAM+ system T = (T, σ, τ) with τ > 1, there exists
a 1-simplified STAM+ system S = (S, σ′, τ) which simulates T with scale factor
O(|T |2) and tile complexity O(|T |2).

g gg

f
b b

A B

g g

f
b

T

Fig. 3. An example of a mutual activation gadget consisting of tiles A and B without
fan-out simulating, at τ = 1, the functionality of tile T which has fan-out. The glue b
represents the generic glues which holds the macrotile together. The idea is to “split”
the signals from the west glue g on tile A into two signals without using fan-out. Once
the west glue g on tile A binds, it turns on the east glue g on tile A. Then, when the
east glue g on tile A binds to tile B, it triggers glue f . Thus, the east glue g triggers
both the west glue g and glue f without fan-out.

3.3 Summary of Results

At temperature 1, the minimum signal complexity obtainable in general is 2 and
while it is possible to eliminate either fan-in or mutual activation, it is impossible
to eliminate both. For temperatures greater than 1, cooperation allows for signal
complexity to be reduced to just 1 and for both fan-in and mutual activation to
be completely eliminated. Table 1 gives a summary of these two cases of reducing
signal complexity and shows the cost of such reductions in terms of scale factor
and tile complexity.

Table 1. The cost of reducing signal complexity at τ = 1 and at τ > 1

Temperature Signal Scale Factor Tile Complexity Contains Fan-In /
per Tile Mutual Activation

1 2 O(|T |2) O(|T |2) one or the other

> 1 1 O(|T |2) O(|T |2) neither

4 A 3D 2HAM Tile Set Which Is IU for the STAM+

In this section we present our main result, namely a 3D 2HAM tile set which can
be configured to simulate any temperature 1 or 2 STAM+ system, at temperature
2. It is notable that although three dimensions are fundamentally required by
the simulations, only two planes of the third dimension are required.

Theorem 4. There is a 3D tile set U such that, in the 2HAM, U is intrinsically
universal at temperature 2 for the class of all 2D STAM+ systems where τ ∈
{1, 2}. Further, U uses no more than 2 planes of the third dimension.
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To prove Theorem 4, we let T ′ = (T ′, S′, τ) be an arbitrary STAM+ system
where τ ∈ {1, 2}. For the first step of our simulation, we define T = (T, S, τ) as a
2-simplified STAM+ system which simulates T ′ at scale factorm′ = O(|T ′|2), tile
complexity O(|T ′|2), as given by Theorem 2, and let the representation function
for that simulation be R′ : BT

m′ ��� T ′. We now show how to use tiles from a
single, universal tile set U to form an initial configuration ST so that the 3D
2HAM system UT = (U, ST , 2) simulates T at scale factor m = O(|T | log |T |)
under representation function R : BU

m ��� T . This results in UT simulating T ′ at
a scale factor of O(|T ′|4 log(|T ′|2)) via the composition of R and R′. Note that
throughout this section, τ refers to the temperature of the simulated systems T
and T ′, while the temperature of UT ′ is always 2.

4.1 Construction Overview

In this section, due to restricted space we present the 3D 2HAM construction at
a very high level. Please see [14] for more details.

Assuming that T is a 2-simplified STAM+ tile set derived from T ′, we note
that for each tile in T : 1. glue deactivation is not used, 2. it has ≤ 2 signals,
3. it has no fan-out, and 4. fan-in is limited to 2. To simulate T , we create an
input supertile σT from tiles in U so that σT fully encodes T in a rectangular
assembly where each row fully encodes the definition of a single tile type from
T . Beginning with an initial configuration containing an infinite count of that
supertile and the individual tile types from U , assembly begins with the growth
of a row on top of (i.e. in the z = 1 plane) each copy of σT . The tiles forming
this row nondeterministically select a tile type t ∈ T for the growing supertile to
simulate, allowing each supertile the possibility of simulating exactly one t ∈ T ,
and each such t to be simulated. Once enough tiles have attached, that supertile
maps to the selected t via the representation function R, and at this point we
call it a macrotile.

Each such macrotile grows as an extension of σT in z = 0 to form a square
ring with a hole in the center. The growth occurs clockwise from σT , creating
the west, north, east, then south sides, in that order. As each side grows, the
information from the definition of t which is relevant to that side is rotated so
that it is presented on the exterior edge of the forming macrotile. The second
to last stage of growth for each side is the growth of geometric “bumps and
dents” near the corners, which ensure that any two macrotiles which attempt
to combine along adjacent edges must have their edges in perfect alignment for
any binding to occur. The final stage of growth for each side is to place the glues
which face the exterior of the macrotile and are positioned correctly to represent
the glues which begin in the on state for that side.

Once the first side of a macrotile completes (which is most likely to be the
west side, but due to the nondeterministic ordering of tile additions it could
potentially be any side), that macrotile can potentially bind to another macrotile,
as long as the tiles that they represent would have been able to do so in T .
Whenever macrotiles do bind to each other, the points at which any binding
glues exist allow for the attachment of duples (supertiles consisting of exactly 2
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Fig. 4. A high level sketch of the components and formation of a macrotile, including
dimensions, not represented to scale

tiles) on top of the two binding tiles (in z = 1). These duples initiate the growth
of rows in z = 1 which move inward on each macrotile to determine if there is
information encoded which specifies a signal for that simulated glue to fire. If
not, that row terminates. If so, it continues growth by reading the information
about that signal (i.e. the destination side and glue), and then growth continues
which carries that information inward to the hole in the center of the macrotile.
Once there, it grows clockwise in z = 0 until arriving at the correct side and
glue, where it proceeds to initiate the growth of a row in z = 1 out to the edge
of the macrotile in the position representing the correct glue. Once it arrives, it
initiates the addition of tiles which effectively change the state of the glue from
latent to on by exposing the necessary glue(s) to the exterior of the macrotile.

The width of the center hole is carefully specified to allow for the maximum
necessary 2 “tracks” along which fired signals can travel, and growth of the signal
paths is carefully designed to occur in a zig-zag pattern such that there are well-
defined “points of competition” which allow two signals which are possibly using
the same track to avoid collisions, with the second signal to arrive growing over
the first, rotating toward the next inward track, and then continuing along that
track. Further, the positioning of the areas representing the glues on each edge
is such that there is always guaranteed to be enough room for the signals to
perform the necessary rotations, inward, and outward growth. If it is the case
that both signals are attempting to activate the same glue on the same side, when
the second signal arrives, the row growing from the innermost track toward the
edge of the macrotile will simply run into the “activating” row from the first
signal and halt, since there is no need for both to arrive and in the STAM such a
situation simply entails that signal being discarded. (Note that this construction
can be modified to allow for any arbitrary full-tile signal complexity n for a
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given tile set by simply increasing the number of tracks to n, and all growth will
remain correct and restricted to z ∈ {0, 1}.)

This construction allows for the faithful simulation of T by exploiting the fact
that the activation of glues by fired signals is completely asynchronous in the
STAM, as is the attachment of any pair of supertiles, and both processes are
being represented through a series of supertile binding events which are simi-
larly asynchronous in the 2HAM. Further, since the signals of the STAM+ only
ever activate glues (i.e. change their states from latent to on ), the constantly
“forward” direction of growth (until terminality) in both models ensures that
the simulation by UT can eventually produce representations of all supertiles in
T , while never generating supertiles that don’t correctly map to supertiles in T
(equivalent production), and also that equivalent dynamics are preserved.

Theorem 5. For every τ > 1, there is a 3D tile set Uτ such that, in the 2HAM,
Uτ is IU at temperature τ for the class of all 2D STAM+ systems where of
temperature τ . Further, U uses no more than 2 planes of the third dimension.

To prove Theorem 5, we create a new tile set Uτ for each τ from the tile set of
Theorem 4 by simply creating O(τ) new tile types which can encode the value
of the strength of the glues of T in σT , and which can also be used to propagate
that information to the edges of the macrotiles. For the exterior glues of the
macrotiles, just as strength 2 glues were split across two tiles on the exterior of
the macrotiles, so will τ -strength glues, with one being of strength �τ/2� and the
other  τ/2!. All glues which appear on the interior of the macrotile are changed
so that, if they were strength 1 glues they become strength �τ/2�, and if they
were strength 2 they become strength τ . In this way, the new tile set Uτ will
form macrotiles exactly as before, while correctly encoding glues of strengths
1 through τ on their exteriors, and the systems using it will correctly simulate
STAM+ systems at temperature τ .

5 Conclusion

We have shown how to transform STAM+ systems (at temperature 1 or > 1)
of arbitrary signal complexity into STAM+ systems which simulate them while
having signal complexity no greater than 2 and 1, respectively. However, if the
original tile set being simulated is T , the scale factor and tile complexity of the
simulating system are approximately O(|T |2). It seems that these factors cannot
be reduced in the worst case, i.e. when a tile of T has a copy of every glue of
the tile set on each side, and each copy of each glue on the tile activates every
other, yielding a signal complexity of O(|T |2). However, whether or not this is
a true lower bound remains open, as well as what factors can be achieved for
more “typical” systems with much lower signal complexity.

A significant open problem which remains is that of generalizing both con-
structions (the signal reduction and the 3D 2HAM simulation) to the unre-
stricted STAM. Essentially, this means correctly handling glue deactivation and
possible subassembly dissociation. While this can’t be handled within the stan-
dard 3D 2HAM where glue bonds never change or break, it could perhaps be
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possible if negative strength (i.e. repulsive) glues are allowed (see [10] for a dis-
cussion of various formulations of models with negative strength glues). However,
it appears that since both constructions use scaled up macrotiles to represent
individual tiles of the systems being simulated, there is a fundamental barrier.
The STAM assumes that whenever two tiles are adjacent, all pairs of matching
glues across the adjacent edge which are both currently on will immediately bind
(which is in contrast to other aspects of the model, which are asynchronous).
Since both constructions trade the ability of individual tile edges in the STAM to
have multiple glues with scaled up macrotiles which distribute those glues across
individual tiles of the macrotile edges, it appears to be difficult if not impossible
to maintain the correct simulation dynamics. Basically, a partially formed side of
a macrotile could have only a subset of its initially on glues in place, but enough
to allow it to bind to another macrotile. At that point, if glue deactivations are
initiated which result in the dissociation of the macrotile before the remaining
glues of the incomplete macrotile side assemble, then in the simulating system,
those additional glues won’t ever bind. However, in the simulated system they
would have. This results in a situation where, after the dissociation, the simu-
lated system would potentially have additional pending glue actions (initiated
by the bindings of the additional glues) which the simulating system would not,
breaking the simulation.

Overall, laboratory experiments continue to show the plausibility of physically
implementing signalling tiles [17], while previous theoretical work [18] shows some
of their potential, and the results in this paper demonstrate how to obtain much
of that power with simplified tiles. We feel that research into self-assembly with
active components has a huge amount of potential for future development, and
continued studies into the various tradeoffs (i.e. complexity of components, num-
ber of unique component types, scale factor, etc.) between related models provide
important context for such research. We hope that our results help to contribute
to continued advances in both theoretical and experimental work along these lines.
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Abstract. Patterned self-assembly tile set synthesis (Pats) is the prob-
lem of finding a minimal tile set which uniquely self-assembles into a
given pattern. Czeizler and Popa proved the NP-completeness of Pats
and Seki showed that the Pats problem is already NP-complete for pat-
terns with 60 colors. In search for the minimal number of colors such that
Pats remains NP-complete, we introduce multiple bound Pats (mbPats)
where we allow bounds for the numbers of tile types of each color. We
show that mbPats is NP-complete for patterns with just three colors
and, as a byproduct of this result, we also obtain a novel proof for the
NP-completeness of Pats which is more concise than the previous proofs.

1 Introduction

Tile self-assembly is the autonomous formation of a structure from individual
tiles controlled by local attachment rules. One application of self-assembly is the
implementation of nanoscopic tiles by DNA strands forming double crossover
tiles with four unbounded single strands [10]. The unbounded single strands
control the assembly of the structure as two, or more, tiles can attach to each
other only if the bonding strength between these single strands is big enough.
The general concept is to have many copies of the same tile types in a solution
which then form a large crystal-like structure over time; often an initial structure,
the seed, is present in the solution from which the assembly process starts.

A mathematical model describing self-assembly systems is the abstract tile
self-assembly model (aTAM), introduced byWinfree [9]. Many variants of aTAMs
have been studied: a main distinction between the variants is whether the shape
or the pattern of a self-assembled structure is studied. In this paper we focus on
the self-assembly of patterns, where a property, modeled as color, is assigned to

� The research of L. K. and S. K. was supported by the NSERC Discovery Grant
R2824A01 and UWO Faculty of Science grant to L. K. The research of S. S. was
supported by the HIIT Pump Priming Project Grant 902184/T30606.

D. Soloveichik and B. Yurke (Eds.): DNA 2013, LNCS 8141, pp. 105–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was revised: The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4  15_

http://dx.doi.org/10.1007/978-3-319-01928-4_15


106 L. Kari, S. Kopecki, and S. Seki

each tile; see for example [6] where fluorescently labeled DNA tiles self-assemble
into Sierpinski triangles. Formally, a pattern is a rectilinear grid where each
vertex has a color: a k-coloredm×n-pattern P can be seen as a function P : [m]×
[n] → [k], where [i] = {1, 2, . . . , i}. The optimization problem of patterned self-
assembly tile set synthesis (Pats), introduced by Ma and Lombardi [4], is to
determine the minimal number of tile types needed to uniquely self-assemble a
given pattern starting from an L-shaped seed. In this paper, we consider the
decision variant of Pats, defined as follows:

Problem. (k-Pats)
Given: A k-colored pattern P and an integer m;
Output: “Yes” if P can uniquely be self-assembled by using m tile types.

Czeizler and Popa proved that Pats, where the number of colors on an input
pattern is not bounded, is NP-hard [1], but the practical interest lies in k-Pats.
Seki proved 60-Pats is NP-hard [8]. By the nature of the biological implemen-
tations, the number of distinct colors in a pattern can be considered small. In
search for the minimal number k for which k-Pats remains NP-hard, we inves-
tigate a modification of Pats: multiple bound Pats (mbPats) uses individual
bounds for the number of tile types of each color.

Problem. (k-mbPats)
Given: A pattern P with colors from [k] and m1, . . . ,mk ∈ N;
Output: “Yes” if P can uniquely be self-assembled by using mi tile types of

color i, for i ∈ [k].

The main contribution of this paper is a polynomial-time reduction from
Pats to 3-mbPats which proves the NP-hardness of 3-mbPats. However, our
reduction does not take every pattern as input, we only consider a restricted
subset of patterns for which Pats is known to remain NP-hard. The patterns
we use as input are exactly those patterns that are generated by a polynomial-
time reduction from 3-Sat to Pats. Using one of the reductions which were
presented in [1,8] as a foundation for our main result turned out to be unfeasible.
Therefore, we present a novel proof for the NP-hardness of Pats which serves
well as foundation for our main result. Furthermore, our reduction from 3-Sat to
Pats is more concise compared to previous reductions in the sense that in order
to self-assemble a pattern P we only allow three more tile types than colors in
P . In Czeizler and Popa’s approach the number of additional tile types is linear
in the size of the input formula and Seki uses 84 tile types with 60 colors.

Let us note first that the decision variants of Pats and mbPats can be solved
in NP by simple “guess and check” algorithms. Before we prove NP-hardness of
k-Pats, in Sect. 3, and 3-mbPats, in Sect. 4, we introduce the formal concepts
of patterned tile assembly systems, in Sect. 2. We only present some shortened
proofs for our lemmas. Full proofs for all lemmas as well as additional figures,
depicting our patter designs, can be found in the arXiv version [3].
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2 Rectilinear Tile Assembly Systems

In this section we formally introduce patterns and rectilinear tile assembly sys-
tems. An excellent introduction to the fundamental model aTAM is given in [7].

Let C be a finite alphabet of colors. An m× n-pattern P , for m,n ∈ N, with
colors from C is a mapping P : [m]× [n] → C. By C(P ) ⊆ C we denote the colors
in the pattern P , i. e., the codomain or range of the function P . The pattern
P is called k-colored if |C(P )| ≤ k. The width and height of P are denoted
by w(P ) = m and h(P ) = n, respectively. The pattern is arranged such that
position (1, 1) is on the bottom left and position (m, 1) is on the bottom right.

Let Σ be a finite alphabet of glues. A colored Wang tile, or simply tile, t ∈
C × Σ4 is a unit square with a color from C and four glues from Σ, one on
each of its edges. χ(t) ∈ C denotes the color of t and t(N), t(E), t(W ), and t(S)
denote the glues on the north, east, west, and south edges of t, respectively. We
also call the south and west glues the inputs of t while the north and east glues
are called outputs of t.

A rectilinear tile assembly system (RTAS) (T, σ) over C and Σ consists of a
set of colored Wang tiles T ⊆ C×Σ4 and an L-shaped seed σ. The seed σ covers
positions (0, 0) to (m, 0) and (0, 1) to (0, n) of a two-dimensional Cartesian grid
and it has north glues from Σ on the positions (1, 0) to (m, 0) and east glues
from Σ on positions (0, 1) to (0, n). We will frequently call T an RTAS without
explicitly mentioning the seed. The RTAS T describes the self-assembly of a
structure: starting with the seed, a tile t from T can attach to the structure
at position (x, y) ∈ [m] × [n], if its west neighbor at position (x − 1, y) and
south neighbor at position (x, y − 1) are present and the inputs of t match
the adjacent outputs of its south and west neighbors; the self-assembly stops
when no more tiles in T can be attached by this rule. Arbitrarily many copies
of a each tile type in T are considered to be present while the structure is self-
assembled, thus, one tile type can appear in multiple positions. A tile assignment
in T is a function f : [m]× [n] → T such that f(x, y)(W ) = f(x − 1, y)(E) and
f(x, y)(S) = f(x, y − 1)(N) for (x, y) ∈ [m] × [n]. The RTAS self-assembles a
pattern P if there is a tile assignment f in T such that the color of each tile in
the assignment f is the color of the corresponding position in P , i. e., χ ◦ f = P .
A terminological convention is to call the elements in T tile types while the
elements in a tile assignment are called tiles.

A directed RTAS (DRTAS) T is an RTAS where any two distinct tile types
t1, t2 ∈ T have different inputs, i. e., t1(S) �= t2(S) or t1(W ) �= t2(W ). A DRTAS
has at most one tile assignment and can self-assemble at most one pattern. If
T self-assembles an m× n-pattern P , it defines the function PT : [m]× [n] → T
such that PT (x, y) is the tile in position (x, y) of the tile assignment given by
T . In this paper, we investigate minimal RTASs which uniquely self-assemble
one given pattern P . As observed in [2], if P can be uniquely self-assembled by
an RTAS with m tile types, then P can also be (uniquely) self-assembled by a
DRTAS with m tile types.
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3 NP-Hardness of Pats

In this section, we prove the NP-hardness of Pats. The proof we present uses
many techniques that have already been employed in [1,8]. Let us also point out
that we do not intend to minimize the number of colors used in our patterns
or the size of our patterns. Our motivation is to give a proof that is easy to
understand and serves well as a foundation for the results in Sect. 4.

A boolean formula F over variables V in conjunctive normal form with three
literals per clause, 3-CNF for short, is a boolean formula such that

F = (c1,1 ∨ c1,2 ∨ c1,3) ∧ (c2,1 ∨ c2,2 ∨ c2,3) ∧ · · · ∧ (c
,1 ∨ c
,2 ∨ c
,3)

where ci,j ∈ {v,¬v | v ∈ V } for i ∈ [	] and j = 1, 2, 3. It is well known that
the problem 3-Sat, to decide whether or not a given formula F in 3-CNF is
satisfiable, is NP-complete; see e. g., [5]. The NP-hardness of Pats follows by
the polynomial-time reduction from 3-Sat to Pats, stated in Theorem 1.

Theorem 1. For every formula F in 3-CNF there exists a pattern PF such that
F is satisfiable if and only if PF can be self-assembled by a DRTAS with at most
|C(PF )|+3 tile types. Moreover, PF can be computed from F in polynomial time.

Theorem 1 follows by Lemmas 3 and 5, which are presented in the following.
The pattern PF consists of several rectangular subpatterns which we will de-

scribe in the following. None of the subpatterns will be adjacent to another sub-
pattern. The remainder of the pattern PF is filled with unique colors; a color c is
unique in a pattern P if it appears only in one position in P , i. e.,

∣∣P−1(c)
∣∣ = 1.

As a technicality that will become useful only in the proof of Theorem 2, we
require that each position adjacent to the L-shaped seed or to the north or east
border of pattern PF has a unique color. Clearly, for each unique color in PF

we require exactly one tile in any DRTAS which self-assembles PF . Since each
subpattern is surrounded by a frame of unique colors, the subpatterns can be
treated as if each of them would be adjacent to an L-shaped seed and we do not
have to care about the glues on the north border or east border of a subpattern.

or

A

0

0

0 or

B

1

1

0 or

C

1

0

1 or

D

1

1

1

Fig. 1. The four tile types used to implement the or-gate

As stated earlier, the number of tile types m that is required to self-assemble
PF , if F is satisfiable, is m = |C(PF )| + 3. Actually, every color in C(PF ) will
require one tile type only except for one color which is meant to implement an
or-gate; see Fig. 1. Each of the tile types with color or is supposed to have west
input w ∈ {0, 1}, south input s ∈ {0, 1}, east output w ∨ s, and an independent
north output.

Our first subpattern p, shown in Fig. 2, ensures that every DRTAS which
self-assembles the subpattern p contains at least three tile types with color or .
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X1 or

or Y1

X2 or

or Y2

X3 or

or Y3

X4 or

or Y4

X5 or

or Y5

X6 or

or Y6

X7 or

or Y7

X8 or

or Y8

Fig. 2. The subpattern p

For the upcoming proof of Theorem 2 we need a more precise observation which
draws a connection between the number of distinct output glues and the number
of distinct tile types with color or .

Lemma 1. A DRTAS T which self-assembles a pattern including the subpattern
p contains either

i.) three distinct tile types o1, o2, o3 ∈ T with color or all having distinct north
and east glues,

ii.) four distinct tile types o1, o2, o3, o4 ∈ T with color or all having distinct
north glues and together having at least two distinct east glues,

iii.) four distinct tile types o1, o2, o3, o4 ∈ T with color or all having distinct
east glues and together having at least two north glues, or

iv.) eight distinct tile types o1, . . . , o8 ∈ T with color or all having distinct east
or north glues.

Lemma 1 follows by the fact that each of the tiles with colors Y1 to Y8 has
the or-gate as west and south neighbors, hence, the number of east glues times
the number of north glues of all tile types with color or has to be at least eight.

We aim to have statement ii.) of Lemma 1 satisfied, but so far all four state-
ments are possible. The subpatterns q1 to q5 in Fig. 3 will enforce the function-
ality of the or-gate tile types.

Z1 Z2

Z3 a

0→ 0→

↑0

↑0

or

b

b

−−−
dc c A

q1

Z1 Z2

Z3 a

0→ 0→

↑1

↑1

or

b

b

+++

dc c B

q2

Z1 Z2

Z3 a

1→ 1→

↑0

↑0

or

b

b

+++

dc c C

q3

Z1 Z2

Z3 a

1→ 1→

↑1

↑1

or

b

b

+++

dc c D

q4

a ↑0 ↑1 ↑0 ↑1 b

0→ or or or or +++

c A B C D d

q5

Fig. 3. The subpatterns q1 to q5

Lemma 2. Let P be a pattern that contains the subpatterns p and q1 to q5, and
let m = |C(P )|+ 3. A DRTAS T with at most m tile types which self-assembles
pattern P contains four tile types with color or of the forms shown in Fig. 1.
For every other color in C(P ) there exists exactly one tile type in T . Moreover,
the tile type with color 0→ has east output 0 and the tile type with color +++ has
west input 1.

There are at least three or-gate tile types, thus, only the color of one tile type
in T is not determined yet. The clue of patterns q1 to q4 is that if, e. g., the two
tiles with colors c in q1 and q2 were of different types, there would be only
one tile type of the other colors, and in particular, their west neighbors would
be of the same type as well as their south neighbors. Thus, these two tile types



110 L. Kari, S. Kopecki, and S. Seki

would have the same inputs, which is prohibited for DRTAS by definition. This
implies that the tiles with colors A and B have the same west input and can
only be placed because their south neighbors, the or-gate tiles in q1 and q2, are
of different types. By analogous arguments the four or-gate tiles in q1 to q4 are
of four different types. Subpattern q5 ensures that the east and west glues of the
or-gates match in the way shown in Fig. 1.

Z4

v

v

v

r1(v)

Z4

v

¬v
ṽ

r2(v)

a v ¬v b

0→ or or +++

r3(v)

a c1 c2 c3 b

0→ or or or +++

s(C)

Fig. 4. The subpatterns r1(v) to r3(v) for a variable v ∈ V and the subpattern s(C)
for a clause C = (c1 ∨ c2 ∨ c3) in F where ci = v or ci = ¬v for some variable v ∈ V
and i = 1, 2, 3.

The subpatterns that we defined so far did not depend on the formula F . Now,
for each variable v ∈ V we define three subpatterns r1(v), r2(v), r3(v) and for a
clause C from F we define one more subpattern s(C); these patterns are given
by Fig. 4. For a formula F in 3-CNF we let PF be the pattern that contains
all the subpatterns p, q1 to q5, r1(v) to r3(v) for each variable v ∈ V , and s(C)
for each clause C from F , where each subpattern is placed to the right of the
previous subpattern with one column of unique colors in between. Then, PF has
height 6, because the top and bottom rows contain unique colors only, and PF

has width 45 + 11 · |V |+ 6 · 	. The next lemma follows from this observation.

Lemma 3. Given a formula F in 3-CNF, the pattern PF can be computed from
F in polynomial time.

The subpatterns r1(v) and r2(v) ensure that the two tile types with colors v

and ¬v have distinct north outputs. The subpattern r3(v) then implies that one
of the north glues is 0 and the other one is 1.

Lemma 4. Let PF be the pattern for a formula F over variables V in 3-CNF
and let T be a DRTAS with at most m = |C(PF )| + 3 tile types which self-
assembles pattern PF . For all variables v ∈ V , there is a unique tile type t⊕v ∈ T
with color v and a unique tile type t
v ∈ T with color ¬v such that either
t⊕v (N) = 1 and t
v (N) = 0 or t⊕v (N) = 0 and t
v (N) = 1.

Now, these glues serve as input for the or-gates in the subpatterns s(C). The
following lemma concludes the proof of Theorem 1.

Lemma 5. Let PF be the pattern for a formula F over variables V in 3-CNF
and let m = |C(PF )|+ 3. The formula F is satisfiable if and only if PF can be
self-assembled by a DRTAS T with at most m tile types.

The formula F is satisfiable if and only if there is a variable assignment
f : V → {0, 1} which satisfies every clause in F . In order for s(C) with C =
(c1 ∨ c2 ∨ c3) to self-assemble, one of the north glues of the tiles for c1, c2, or c3
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has to be 1. Let t⊕v and t
v for v ∈ V as before. Since t⊕v (N) and t
v (N) represent
opposite truth values, the pattern P can be self-assembled using m tile types
if and only if f(v) = t⊕v (N) satisfies every clause in F . How the remaining tile
types and glues in T can be chosen is shown in the arXiv version [3].

4 NP-Hardness of 3-mbPats

The purpose of this section is to prove the NP-hardness of 3-mbPats. Let us
define a set of restricted input pairs I for Pats. The set I contains all pairs
(P,m) where P = PF is the pattern for a formula F in 3-CNF as defined in
Sect. 3 and m = |C(P )|+ 3. Consider the following restriction of Pats.

Problem. (Modified Pats)
Given: A pair (P,m) from I;
Output: “Yes” if P can uniquely be self-assembled by using m tile types.

As we choose exactly those pairs (P,m) as input for the problem that are gen-
erated by the reduction, stated in Theorem 1, we obtain the following corollary
which forms the foundation for the result in this section.

Corollary 1. Modified Pats is NP-hard.

The NP-hardness of 3-mbPats follows by the polynomial-time reduction from
Modified Pats to 3-mbPats, stated in Theorem 2.

Theorem 2. For every input pair (P,m) ∈ I there exist a black/white/gray-
colored pattern Q and integers mb,mw,mg such that: P can be self-assembled
by a DRTAS with at most m tile types if and only if Q can be self-assembled
by a DRTAS with at most mb black tile types, mw white tile types, and mg

gray tile types. Moreover, the tuple (Q,mb,mw,mg) can be computed from P in
polynomial time.

Lemma 12 states the “if part” and Lemma 8 states the “only if part” of
Theorem 2. Lemma 6 states that (Q,mb,mw,mg) can be computed from P in
polynomial time.

For the remainder of this section, let (P,m) ∈ I be one fixed pair, let C =
C(P ) and k = |C|. We may assume that C = [k] is a subset of the positive
integers. The tile bounds are mb = 1 for black tile types, mw = 5k − 3(w(P ) +
h(P )) + 14 for white tile types, and mg = 2k + 3 for gray tile types. Note that,
due to the pattern design in Sect. 3, h(P ) = 6 is constant.

Let 	 = 5k+ 8. For a color c ∈ C, we define an 	× 	 square pattern as shown
in Fig. 5. We refer to this pattern as well as to its underlying tile assignment as
supertile. In contrast to the previous section, the positions in the supertile are
labeled which does not mean that the colors or the tiles used to self-assemble
the pattern are labeled; the colors are black, white, or gray. The horizontal and
vertical color counters are the c gray positions in the top row, respectively right
column, which are succeeded by a white tile in position D2, respectively D1.
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Fig. 5. Black/white/gray supertile which portrays a color c ∈ C

The color counters illustrate the color c that is portrayed by the supertile. The
patterns of two supertiles which portray two distinct colors differ only in the
place the white tile is positioned in its top row and right column.

For colors in the bottom row and left column of the pattern P we use incom-
plete supertiles: a supertile portraying a color c in the bottom row of pattern
P lacks the white row with positions A, B1, and C1; a supertile representing a
color c in the left column of pattern P lacks the white column with positions A,
B2, and C2. In particular, the supertile portraying color P (1, 1) does not contain
any of the positions A, B1, B2, C1, and C2. Recall that all incomplete supertiles
portray a color c that is unique in P .
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portraying
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Fig. 6. Black/white/gray pattern Q defined by the k-color pattern P with w = w(P )
and h = h(P )
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The pattern Q is shown in Fig. 6. By Q〈x, y〉 we denote the pattern of the
supertile covering the square area spanned by positions ((x − 1) · 	, (y − 1) · 	)
and (x · 	 − 1, y · 	 − 1) in Q; the incomplete supertiles cover one row and/or
column less. The pattern is designed such that supertile Q〈x, y〉 portrays the
color P (x, y) for all x ∈ [w(P )] and y ∈ [h(P )]. Additionally, Q contains three
gadget rows and three gadget columns which are explained in Fig. 7. The purpose
of these gadget rows and columns is to ensure that the color counters can only
be implemented in one way when using no more than mg gray tile types. All
together Q is of dimensions w(Q) = 	 · w(P ) + 2 times h(Q) = 	 · h(P ) + 2.
Obviously, the pattern Q can be computed from P in polynomial time.

Lemma 6. (Q,mb,mw,mg) can be computed from P in polynomial time.
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Fig. 7. The gadget rows on the north border of the pattern Q, the gadget columns are
symmetrical: the middle row (resp., column) contains gray tiles except for one white
tile in position k + 1; the upper and lower rows (resp., left and right columns) contain
gray tiles in positions above the gray column (resp., right of the gray row) of a supertile,
the other tiles are black.

For a DRTAS Θ which self-assembles Q, we extend our previous notion such
that QΘ〈x, y〉 denotes the tile assignment of supertile Q〈x, y〉 given by Θ. In the
following, we will prove properties of such a DRTAS Θ. Our first observation is
about the black and gray tile types plus two of the white tile types.

E

•

•

•

•

D1

� •

0

•

D2

•

�

•

0

i−1

•

i

•

•

i−
1

•

i F1

� •

�

•

F2

•

�

•

�

G

�

�

�

�

Fig. 8. The black tile type, two of the white tile types, and all gray tile types: the
labeled tile types are used in the corresponding positions of each supertile and the
gadget pattern; the unlabeled tile types, called counter tiles for i ∈ [k], implement the
vertical and horizontal color counters.

Lemma 7. Let Θ be a DRTAS which self-assembles the pattern Q using at most
mb = 1 black tile types and mg = 2k + 3 gray tile types. The black and gray tile
types in Θ are of the form shown in Fig. 8 and Θ contains two white tiles of
the form shown in the figure. In every supertile, the horizontal and vertical color
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counters are implemented by a subset of the counter tile types and for a position
E, D1, D2, F1, F2, or G the correspondingly labeled tile type is used. Furthermore,
the glues •,�, 0, 1, . . . , k are all distinct.

Since there is only one black tile type which can tile the black square area
in each supertile, the black tile type has to be of the given form. In particular,
no kind of information can be passed through the black square areas in the
supertiles. The k gray tiles, followed by one white tile in the gadget rows and
columns, ensure that some kind of horizontal and vertical counter tile types are
present in Θ. The three remaining gray tile types have to be used for positions
F1, F2, and G; it is easy to see that they are of the given forms.

Remark 1. Consider a DRTAS Θ that self-assembles the pattern Q using most
mb black tile types andmg gray tile types. If we have a look at the tile assignment
of the black square plus the gray column and row in a supertile, we see that this
block has inputs • on all edges except for edges where the color counters are
initialized and it has outputs • on all edges, except for its right-most and top-
most output edges which are �. This means that all information on how to
initialize the color counters has to be carried through the white lines and rows,
that are, the tiles in positions A, B1, B2, C1, C2. Moreover, the tile in position
A is the only one with non-generic input from other supertiles. This tile fully
determines the tile assignment of the supertile and can be seen as the control
tile or seed of the supertile. Henceforth, for a supertile s = QΘ〈x, y〉 we extend
our notion of glues such that s(S) and s(W ) denote the south and west input
of the tile in position A, respectively, s(N) and s(E) denote the north and east
output of the tiles in positions C2 and C1, respectively. For incomplete supertiles
only one of s(N) or s(E) is defined.

Two supertiles in QΘ are considered distinct if their tile assignment differs
in at least one position. By the observations above, two complete supertiles are
distinct if and only if their control tiles are of distinct types; this is equivalent to
require that the inputs of the two supertiles differ. Since incomplete supertiles
portray unique colors in P , they are distinct from any supertile in QΘ but itself.

There is some flexibility in how the white tile types are implemented in a
DRTAS Θ which self-assembles Q. Let us present one possibility which proves
the “only if part” of Theorem 2.

Lemma 8. If P can be self-assembled by a DRTAS T with m tile types, then
Q can be self-assembled by a DRTAS Θ using mb black tile types, mw white tile
types, and mg gray tile types.

Proof. Let Θ contain the tile types given in Fig. 8. For a supertile portraying a
color c ∈ C\{ or } we use the five tile types given in Fig. 9. Note that we need less
tile types for incomplete supertiles which leads to 5 ·(k−1)−3 ·(h(P )+w(P ))+1
white tile types in total. Thus, we have 16 white tile types left for the or-gate.
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Fig. 9. White tile types for the supertile portraying a color c ∈ C, except for the
or-gate, where t ∈ T with c = χ(t), n = t(N), e = t(E), s = t(S), and w = t(W )

Since three of the or-gates have the same east output, see Fig. 1, they can
share tile types in positions B1 and C1. The 16 white tile types in Fig. 10 are
used to self-assemble the supertiles representing the or-gates. The tile types are
designed such that they can self-assemble pattern Q. ��
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Fig. 10. White tile types for supertiles portraying the or-gate where o1, o2, o3, o4 ∈ T
are defined in Fig. 1

For the converse implication of Theorem 2, let us show how to obtain a DRTAS
that self-assembles P from the supertiles in QΘ. The following result follows from
the bijection between supertiles in QΘ and tiles in PT .

Lemma 9. Let Θ be a DRTAS which self-assembles Q using at most mb black
tile types and mg gray tile types, and let

S = {QΘ〈x, y〉 | x ∈ [w(P )], y ∈ [h(P )]}

be the set of all distinct supertiles in QΘ. There exists a DRTAS T with |S| tile
types which self-assembles P such that for each supertile s ∈ S there exists a tile
type ts ∈ T with the same glues on the respective edges and s portrays the color
of ts. For an incomplete supertile the statement holds for the defined glue.

We continue with the investigation of the white tile types that are used to
self-assemble the pattern Q. The next lemma follows by a case study of what
would go wrong if one tile type were used in two of the positions.

Lemma 10. Let Θ be a DRTAS which self-assembles the pattern Q using at
most mb black tile types and mg gray tile types. A white tile type from Θ which
is used in one of the positions A, B1, B2, C1, C2, D1, or D2 cannot be used in
another position in any supertile.
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Let B∗
1 be the right-most position B1 in a supertile, adjacent to position C1,

and let B∗
2 be the top-most position B2 in a supertile, adjacent to position C2. The

following argument is about tiles in the five positions K = {A,B∗
1 ,B

∗
2 ,C1,C2}

of each supertile. Following Remark 1 it is clear that a tile in position A fully
determines the supertile, tiles in positions B∗

1 and C1 carry the color and the
east glue of a supertile, whereas tiles in positions B∗

2 and C2 carry the color and
the north glue.

Lemma 11. Let Θ be a DRTAS which self-assembles Q using at most mb black
tile types and mg gray tile types. Let s1 and s2 be supertiles in QΘ.

i.) If s1 and s2 portray different colors, they cannot share any tile types in
positions from K.

ii.) If s1(E) �= s2(E), they cannot share any tile types in A, B∗
1, or C1.

iii.) If s1(N) �= s2(N), they cannot share any tile types in A, B∗
2 , or C2.

The three statements hold for all available positions in incomplete supertiles.

Let us conclude the proof of Theorem 2.

Lemma 12. The pattern P can be self-assembled by a DRTAS T with m tile
types if Q can be self-assembled by a DRTAS Θ with mb black tile types, mw

white tile types, and mg gray tile types.

Proof. We show that QΘ cannot contain more than m distinct supertiles, then,
the claim follows from Lemma 9. The black, gray, and two white tile types in Θ
are defined by Lemma 7. The number of distinct tile types in Θ that can be used
as control tiles, equals to the number of distinct complete supertiles of QΘ. By
Lemma 11 we need five white tile types for each complete supertile portraying
a color in C \ { or }; of these five tile types one can be used as control tile. For
incomplete supertiles we need just two white tile types, and none for the one
supertile portraying P (1, 1). There are 16 white tile types left for the or-gate
supertiles. From Lemma 1 and Lemma 9 we infer that among these 16 white tile
types we can have at most four control tiles. Therefore, the number of distinct
supertiles in QΘ is k + 3 = m — concluding the proof. ��

5 Conclusions

We prove that k-mbPats, a natural variant of k-Pats, is NP-complete for k = 3.
Furthermore, we present a novel proof for the NP-completeness of Pats and our
proof is more concise than previous proofs. We introduce several new techniques
for pattern design in our proofs, in particular in Sect. 4, and we anticipate that
these techniques can ultimately be used to prove that 2-mbPats and also 2-Pats
are NP-hard.
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Abstract. Chemical self-replicators are of considerable interest in the
field of nanomanufacturing and as a model for evolution. We introduce
the problem of self-replication of rectangular two-dimensional patterns in
the practically motivated Signal Tile Assembly Model (STAM) [9]. The
STAM is based on the Tile Assembly Model (TAM) which is a mathe-
matical model of self-assembly in which DNA tile monomers may attach
to other DNA tile monomers in a programmable way. More abstractly,
four-sided tiles are assigned glue types to each edge, and self-assembly
occurs when singleton tiles bind to a growing assembly, if the glue types
match and the glue binding strength exceeds some threshold. The signal
tile extension of the TAM allows signals to be propagated across assem-
blies to activate glues or break apart assemblies. Here, we construct a
pattern replicator that replicates a two-dimensional input pattern over
some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues,
and a signal complexity of O(1). Furthermore, we show that this repli-
cation system displays exponential growth in n, the number of replicates
of the initial patterned assembly.

1 Introduction

Artificial self-replicating systems have been the subject of various investigations
since John von Neumann first outlined a detailed conceptual proposal for a non-
biological self-replicating system [7]. Gunter von Kiedrowski, who demonstrated
the first enzyme-free abiotic replication system in 1986 [17], describes a model
that can be used to conceptualize template-directed self-replication [10]. In this
model, minimal template-directed self-replicating systems consist of an auto-
catalytic template molecule, and two or more substrate molecules that bind the
template molecule and join together to form another template molecule. To date,
simple self-replicating systems have been demonstrated in the laboratory with
nucleic acids, peptides, and other small organic molecules [11, 16, 17, 19].

Given that substrate molecules must come together without outside guidance
to replicate the template, a template-directed self-replicating system is necessar-
ily a self-assembling system. In theoretical computer science, the Tile Assembly
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Model (TAM) has become the most commonly used model to describe various
self-assembly processes [18]. Many model varients have been described since Erik
Winfree first introduced the TAM, however models that are most relevant to self-
replicating systems are those that allow for assembly breakage. These include
the enzyme staged assembly model [1], the temperature programming model [6],
the signal tile assembly model [8, 9], and the use of negative glues [12].

Replication of arbitrary 0-genus shapes has been shown within the staged
assembly system with the use of RNAse enzymes [1]. Replication and evolu-
tion of combinatorial ‘genomes’ via crystal-like growth and breakage have also
been demonstrated in the laboratory using DNA tile monomers [13]. Under this
replication mechanism, a DNA crystal ribbon has a sequence of information, or
genome, in each row. Upon chance breakage, the daughter crystal continues to
grow and copy the genome of the mother crystal. It was further shown that the
fidelity of the replication process is sufficiently high for Darwinian evolution.
Such simple, enzyme-free systems are of particular importance to the study of
the origins of life.

A template-directed method of exponential self-replication within the tile as-
sembly system, where the child molecule detaches from and is identical to the
parent (as is found in biological systems), has not yet been described. Here, we
present a theoretical basis for template-directed exponential self-replication in
the practically motivated Signal Tile Assembly Model (STAM), and in doing so
partially address an open question presented by Abel and colleagues [1]. Specifi-
cally, we consider the problem of self-replication of rectangular two-dimensional
patterns in the STAM. The STAM is a powerful model of tile self-assembly in
which activation, via binding, of a glue on an individual tile may turn other glues
either on or off elsewhere on the tile [9]. In this way, signals may be propagated
across distances greater than a single tile and assemblies may be broken apart.
DNA strand displacement reactions provide a plausible physical basis for the sig-
naling cascades used in the STAM. DNA strand displacement occurs when two
DNA strands with at least partial complementarity hybridize with each other,
which can displace pre-hybridized strands. In the STAM, these reactions may
be queued to result in a cascade that ultimately turns a glue “on” by releasing a
prehybridized strand. Conversely these queued reactions could turn a glue “off”
by binding a free strand, thus making it unavailable to interact with other glues.

An important objective of nanotechnology is to manufacture things inexpen-
sively, thus the prospect of self-replicating materials with useful patterns or
functions is enticing. Additionally, an enzyme-free self-replicator that can sup-
port and autonomously replicate an information-bearing genome could provide
the basis for a model of Darwinian evolution. Because true Darwinian selec-
tion necessitates exponential population growth [15], and this rate of growth is
also desirable for low-cost manufacturing of nanoscale devices, we approach this
problem with the goal of exponential growth in mind.
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1.1 Outline of Paper

The Signal Tile Assembly Model of [9] is briefly defined formally in Section 2,
followed by our formal definition of exponential replication. In Section 3, we
present our main result: there exists a single, general purpose 2D signal tile
system that exponentially replicates any rectangular 2D pattern (Theorem 1).
We present the signal tile system that achieves this replication, along with a
high-level sketch of how the system performs the replication, but omit a detailed
analysis due to space limitations in this version.

2 Definitions

2.1 Basic Definitions

Multisets. A multiset is an ordered pair (S,m) where S is a subset of some
universe set U and m is a function from U to N

⋃
{∞} with the property that

m(x) ≥ 1 for all x ∈ S and m(x) = 0 for all x /∈ S. A multiset models a collection
of items in which there are a positive number of copies m(x) of each element x
in the collection (called the multiplicity of x). For a multi-set A = (S,m) and
x ∈ S, we will use notation A(x) = m(x) to refer to the multiplicity of item
x. For multisets B = (b,m) and A = (a, n), define B

⊎
A to be the multiset

(a
⋃
b,m′) where m′(x) = m(x)+n(x). If m(x) ≥ n(x) for all x ∈ U , then define

B − A to be the multiset (b′,m′(x)) where b′ = {x ∈ b|m(x) − n(x) ≥ 1} and
m′(x) = m(x)− n(x).

Patterns. Let φ be a set of labels that contains at least one particular label
null ∈ φ which conceptually denotes a blank, non-existent label. Informally,
a 2D pattern is defined to be a mapping of 2D coordinates to elements of φ.
Further, as these patterns will denote patterns on the surface of free floating
tile assemblies, we add that patterns are equal up to translation. Formally, a
2D pattern over set φ is any set {fΔx,Δy (x, y)|Δx, Δy ∈ Z} where f : Z2 → φ,
and fΔx,Δy (x, y) = f(x +Δx, y +Δy). In this paper we focus on the the class
of rectangular patterns in which the null label occurs at all positions outside
of a rectangular box, with positions within the box labeled arbitrarily with non
null labels.

2.2 Signal Tile Model

In this section we define the signal tile assembly model (STAM) by defining the
concepts of an active tile consisting of a unit square with glue slots along the
faces of the tile, as well as assemblies which consist of a collection of active tiles
positioned on the integer lattice. We further define a set of three reactions (break
reactions, combination reactions, and glue-flip reactions) which define how a set
of assemblies can change over time. Figure 1 represents each of these concepts
pictorially to help clarify the following technical definitions. Please see [9] for a
more detailed presentation of the STAM.
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Fig. 1. This sequence (a-f) demonstrates the reaction types, glue states, and queued
commands defined in the STAM

Glue Slots. Glue slots are the signal tile equivalent of glues in the standard
tile assembly model with the added functionality of being able to be in one of
three states, on, off, or latent, as well as having a queued command of on, off,
or -, denoting if the glue is queued to be turned on, turned off, or has not been
queued to change state. Formally, we denote a glue slot as an ordered triple
(g, s, q) ∈ Σ × {on, off, latent}× {on, off,−} where Σ is some given set of labels
referred to as the glue type alphabet. For a given glue slot x = (g, s, q), we define
the type of x to be g, the state of x to be s, and the queued action of x to be q.

Active Tiles. An active tile is a 4-sided unit square with each edge having a
sequence of glue slots g1, . . . gr for some positive integer r, as well as an additional
label taken from a set of symbols φ. For simplicity of the model, we further require
that the glue type of each gi on each tile face is the same (although state and
queued commands may be different), and that the glue type of gi is distinct from
the glue type of gj if i �= j. For an active tile t, let td,i denote the glue slot gi on
face d of active tile t.

Finally, an active tile t has an associated signal function ft(d, i) which assigns
to each glue slot i on each tile side d a corresponding set of triples consisting
of a glue slot, a side, and a command, which together denote which glue slots
of each tile face should be turned on or off in the effect that slot i on face
d becomes bonded. Formally, each active tile t has an associated signal func-
tion f : {north, south, east, west} × {1, . . . r} → P({north, east, south, west} ×
{1, . . . r} × {on, off}). For the remainder of this paper we will use the term tile
and active tile interchangeably.

Assemblies. An assembly is a set of active tiles whose centers are located at
integer coordinates, and no two tiles in the set are at the same location. For an
assembly A, define the weighted graph GA = (V,E) such that V = A, and for
any pair of tiles a, b ∈ V , the weight of edge (a, b) is defined to be 0 if a and b
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do not have an overlapping face, and if a and b have overlapping faces da and
db, the weight is defined to be |{i : state(ada,i) = state(bdb,i) = on}|. That is,
the weight of two adjacent tiles is the total number of matching glue types from
a and b’s overlapping edges that are both in state on. Conceptually, each such
pair of equal, on glues represents a bond between a and b and thus increases
the bonding strength between the tiles by 1 unit. For a positive integer τ , an
assembly A is said to be τ -stable if the min-cut of the bond graph GA is at least
τ . For an assembly A, there is an associated pattern p(A) defined by mapping
the labels of each tile to corresponding lattice positions, and mapping the null

label to lattice positions corresponding to locations not covered by the assembly.

Reactions. A reaction is an ordered pair of sets of assemblies. Conceptually,
a reaction (A,B) represents the assemblies of set A replacing themselves with
the assemblies in set B. For a reaction r = (A,B), let rin denote the set A,
and rout denote the set B. For a set of reactions R, let Rin =

⋃
r∈R rin and

Rout =
⋃

r∈R rout.
A reaction (A,B) is said to be valid for a given temperature τ if it is either

a break, combination, or glue-flip reaction as defined below:

– Break reaction. A reaction (A = {a}, B = {b1, b2}) with |A| = 1 and
|B| = 2 is said to be a break reaction if the bond graph of a has a cut of
strength less than τ that separates a into assemblies b1 and b2.

– Combination reaction. A reaction (A = {a1, a2}, B = {b}) with |A| = 2
and |B| = 1 is said to be a combination reaction if a1 and a2 are combinable
into assembly b (see definition below).

– Glue-flip reaction. A reaction (A = {a}, B = {b}) with |A| = 1 and
|B| = 1 is said to be a glue-flip reaction if assembly b can be obtained from
assembly a by changing the state of a single glue slot x in b to either on

from latent if x has queued command on, or off from on or latent if x
has queued command off. Note that transitions among latent, on, and
off form an acyclic graph with sink state off, implying glues states can be
adjusted at most twice. This models the “fire once” property of signals.

Two assemblies a1 and a2 are said to be combinable if a1 and a2 can be
translated such that a1 and a2 have no overlapping tile bodies, but have at least τ
on, matching glues connecting tiles from a1 to tiles from a2. Given this translated
pair of assemblies, consider the product assembly b to be the assemblies a1 and
a2 merged with the queued commands for each glue slot set according to the
specifications of the glue functions for each tile with newly bonded on glues
along the cut between a1 and a2. In this case we say a1 and a2 are combinable
into assembly b. See Figure 1 for example reactions and [9] for a more detailed
presentation of the model.

Batches. A batch is a multi-set of assemblies in which elements may have either
a non-negative integer multiplicity or an ∞ multiplicity. A batch B is said to be
τ-transitional to a batch B′ if the application of one of the break, combination,
or transition rules at temperature τ can be applied to B to get B′. A batch
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sequence for some temperature τ is any sequence of batches 〈a1, . . . ar〉 such
that ai is τ -transitional to ai+1 for each i from 1 to r − 1.

Signal Tile System. A signal tile system is an ordered pair (B, τ) where B is a
batch referred to as the initial seed batch, and τ is a positive integer referred
to as the temperature of the system. Any batch B′ is said to be producible by
(B, τ) if there exists a valid assembly sequence 〈B1, . . . , Br〉 with respect to
temperature τ such that B′ = Br and B = B1, i.e., B

′ is reachable from B by
a sequence of τ -transitions.

2.3 Exponential Replication

Our first primary definition towards the concept of exponential replication de-
fines a transition between batches in which multiple reactions may occur in
parallel to complete the transition. By counting the number of such parallelized
transitions we are able to define the number of time steps taken for one batch
to transform into another, and in turn can define the concept of exponential
replication.

However, to avoid reliance on highly unlikely reactions, we parameterize our
definition with a positive integer c which dictates that any feasible combination
reaction should involve at least one combinate with at least multiplicity c. By
doing so, our exponential replication definition will be able to exclude systems
that might rely on the highly unlikely combination of low concentration combi-
nates (but will still consider such reactions in a worst-case scenario by requiring
the subsequent monotonicity requirement). The following definition formalizes
this concept.

Definition 1 ((τ, c)-transitional distance). We say a batch B is
(τ, c)-transitional to a batch B′, with notation B →τ,c B′, if there exists a set
of reactions R = COMBO

⋃
BREAK

⋃
FLIP, where COMBO, BREAK, and FLIP

partition R into the combination, break, and flip type reactions, such that:

1. B −Rin is defined and B′ = B −Rin +Rout.

2. For each ({x, y}, {z}) ∈ COMBO, the multiplicity of either x or y in B − Rin

is at least c.

Further, we use notation B →t
τ,c B′ if there exists a sequence 〈B1, . . . , Bt〉

such that B1 = B, Bt = B′, and Bi →τ,c Bi+1 for i from 1 to t− 1. We define
the (τ, c)-transitional distance from B to B′ to be the smallest positive integer t
such that B →t

τ,c B
′.

Our next primary concept used to define exponential replication is the concept
of monotonicity which requires that a sequence of batches (regardless of how
likely) has the property that each subsequent batch in the sequence is at least as
close (in terms of (τ, c)-transition distance) to becoming an element of a given
goal set of batches as any previous batch in the sequence.
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Definition 2 (Monotonicity). Let B be a batch of assemblies, τ a positive
integer, and G a set of (goal) batches. We say B grows monotonically towards G
at temperature τ if for all temperature τ batch sequences 〈B, . . . , B′〉, if B →t

τ,c g

for some g ∈ G, then B′ →t′
τ,c g

′ for some g′ ∈ G and t′ ≤ t.

Note that g′ in the above definition may differ from g. This means that B is
not required to grow steadily towards any particular element of G, but simply
must make steady progress towards becoming an element of G.

We now apply the concepts of (τ, c)-transition distance and monotonicity to
define exponential replication of patterns. Informally, an STAM system is said
to replicate the pattern of an assembly a if it is always guaranteed to have a
logarithmic (in n) sequence of feasible transitions that will create at least n
copies of a shape with a’s pattern for any integer n. Further, to ensure that the
system makes steady progress towards the goal of n copies, we further require the
property of monotonicity which states that the number of transitions needed to
attain the goal of n copies never increases, regardless of the sequence of reactions.

Definition 3 (Exponential Replication). Let Bn
p denote the set of all batches

which contain an n or higher multiplicity assembly with pattern p. A system
T = (B, τ) exponentially replicates the pattern of assembly a if for all positive
integers n and c:

1. B
⋃
a →t

τ,c B
′ for some B′ ∈ Bn

p(a) and t = O(poly(|a|) log(cn)).
2. B grows monotonically towards Bn

p(a).

Given the concept of a system replicating a specific assembly, we now denote
a system as a general exponential replicator if it replicates all patterns given
some reasonable format that maps patterns to input assemblies. Let M denote
a mapping from rectangular patterns over some alphabet φ to assemblies with
the property that for any rectangular pattern w over φ, it must be that 1)
w = p(M(w)) (The assembly representing pattern w must actually have pattern
w), 2) all tiles in M(w) with the same non-null label are the same active tile up
to translation, and 3) the number of tiles in M(w) is at most an additive constant
larger than the size of w. Such a mapping is said to be a valid format mapping
over φ. We now define what constitutes an exponential pattern replicator system.

Definition 4 (Exponential Replicator). A system T = (B, τ) is an exponen-
tial pattern replicator for patterns over φ if there exists a valid format mapping
M over φ such that for any rectangular pattern w over φ, T = (B, τ) exponen-
tially replicates M(w).

3 Replication of 2D Patterns in Two Dimensions

We first informally discuss the mechanism for replication of 2D patterns in two
dimensions with the tileset shown in Figure 3. Note that the same mechanism
can be used for the replication of 2D patterns in three dimensions, and that in
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such a case, the disassembly and reassembly of the template may be omitted.
For brevity, we do not show 2D pattern replication in three dimensions, as it
is a trivial simplification of the process described in this paper. The replication
process described here can be summarized in three phases. In the first phase,
template disassembly, a template R containing some pattern over some alphabet
φ is combined with the tile set that can replicate R. Initially, an inverted staircase
cooperatively grows along the west face of R (Fig. 2, Phase 1). The effect of this
tile growth is that each row of the original assembly R has a unique number of
tiles appended to its west side. These appendages are used in reassembly later
in the replication process. As the inverted staircase structure grows, rows of
the original template are signaled to detach from each other. In Phase 2, the
detached rows of the input assembly are available to serve as templates for the
formation of non-terminal replicates (Fig. 2, Phase 2). Two types of replicate
products are formed: terminal replicates (tr) and non-terminal replicates (ntr).
While the pattern of each type of replicate is identical to that of the parent, each
replicate type serves a different function. Non-terminal replicates may catalyze
the formation of more product while terminal replicates serve as a final product
and may not catalyze the formation of more product. After formation, this first
generation of non-terminal replicates detach from the parent and enter Phase 3.
In Phase 3, each non-terminal replicate may serve as a template for the formation
of another ntr and a tr concurrently. The tr detaches from the parent upon
completion and assembles, along with other terminal replicates, into a copy of
R. Also during Phase 3, when the new non-terminal replicate is fully formed, it
may detach from the parent and begin producing replicates (Fig. 2, Phase 3).

Theorem 1. For any alphabet φ, there exists an exponential pattern replicator
system Γ = (T, 2) for patterns over φ. Furthermore, the seed batch T consists of
O(φ) distinct singleton active tile types with a total of O(φ) unique glues.

We prove this theorem by construction and present such a tile set below. The
12 active tile types which comprise T are depicted in Figure 3d-f. Note that the
input pattern itself is not included in T . The input pattern to be replicated is of
the form shown in Figure 3c, and this, together with T , comprises the initial seed
batch. The pattern is mapped onto this input via the composition of the Label
signal tiles. Figure 3a shows the tile types for a binary alphabet, while Figure
3b shows the tile type for some ai of alphabet φ which consists of elements
a1, a2, . . . aφ.

Template disassembly and First Generation of Replicates. Upon addition of the
template assembly R to the replicating tile set T , an inverted staircase forms on
the west side of R (Fig. 4a). Concurrently, an end cap attaches to the east side of
R. Note that while the east-side end caps are attaching to R, it is possible that an
ntr tile type (white) found in Fig. 3e may attach to the north side of an end cap,
blocking the attachment of an endcap to a row. This does not adversely affect
replication, because given a temperature of 2, the template will still disassemble
and the end cap may attach to rows lacking end caps following this event. Also,
given that the north face label glues a′i of the northernmost template row are
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Fig. 2. The three phases shown above provide a general overview of the replication
system described in this paper. In Phase 1, an inverted staircase (green) cooperatively
grows along the west face of the pattern to be replicated (blue). Upon completion of the
staircase, the assembly splits into distinct rows. In Phase 2, each of these distinct rows
serves as a template for the production of a non-terminal replicates (ntr), shown in
white, which has an identical pattern. In Phase 3, these ntrs serve as templates for the
production of identical ntrs and terminal replicates (tr), which are shown in orange.
The trs reassemble to form a copy of the original pattern while the ntrs continue to
serve as templates for the production of more trs and ntrs.
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Fig. 3. a) Input assemby tile types for a binary alphabet b) The tile type for some ai

of alphabet φ which consists of elements a1, a2, . . . aφ c) General form of template to
be replicated R d) Tiles involved in inverted staircase construction and disassembly of
the original template. e) Tiles involved in formation of non-terminal replicates. f) Tiles
involved in formation of terminal replicates.

exposed, it is possible for this row to begin replicating immediately. In fact, this
is necessary for the row immediately below the northernmost row to detach.
Any row s of R may release the row below it by turning off its south face glues
(Fig. 4b). This can occur only if the row above s has activated the b glue on the
westernmost tile of s. A signal is then propagated from west to east in row s via
glue r and all south-face glues of s are turned off.

Following R disassembly, label glues a′i are exposed on the north face of each
row of the input assembly. Tiles involved in ntr formation (white) may attach
along the north face of the template row (blue/green) (Fig. 5a). Following at-
tachment, west face b glues are turned on. Once the westernmost Label tile has
attached, appendage tiles may cooperatively attach, sending a signal via b glues
from west to east and turning on r glues. (Fig. 5b). After the westernmost ap-
pendage tile has attached, a signal is propagated from west to east via glue
r queueing label glues a′i on the south face of the new ntr to turn off , thus
detaching the ntr from its parent (Fig. 5c). Label glues ai are also queued on.
These glues serve to generate a terminal replicate (tr) on the south face of the
ntr (Fig. 5d). Following the detachment of the ntr and the parent template, the
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Fig. 4. a) Growth of inverted staircase along the west face of R and a cap on the east
face of R. b) Row 1 is released after the b glue is activated on the westernmost tile of
Row 2.

parent template is available to generate another ntr, while the first-generation
ntr is immediately available to generate a tr.

Exponential Replication and Reassembly. After the formation of the first-
generation ntr, replication is free to proceed exponentially. Glues on the south
face of the ntr may bind label tiles from the tr tile set (Fig. 6a). Upon binding, b
glues are turned on on the west face of the tr label tiles, allowing for the binding
of appendage tiles on the western side of the growing tr assembly. Upon binding
of the first appendage tile (Fig. 6b), a signal is propagated through the tr via
glue b and r glues on the west faces of the tr tiles. After the next appendage tile
binds, the y glue on the tile adjacent to it is activated, which activates two g
glues on the north and south faces of the easternmost appendage tile (Fig. 6c).
These g glues will assist in proper reassembly of each row into a correct copy
of the template R. Also note that upon binding a tr tile, label glues a′i on the
north face of the ntr are turned on. This allows for synthesis of a new ntr on the
north side of the parent ntr while a new tr is being formed on the south face.
The synthesis of a new ntr from a parent ntr is not described in detail here,
as it is very similar to the process described in Figure 5. Upon attachment of
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Fig. 5. The above sequence outlines details of the production of non-terminal replicates.
For clarity, glues turned off and signals previously executed are not shown.

the westernmost appendage tile, a north face g glue of the tr is turned on as
well as a south face g glue on the tile immediately adjacent to it. Additionally, a
signal is propagated from west to east along the tr via glue r and the north face
glues of the tr are turned off. The tr then detaches from the parent ntr (Fig.
6d) and is available for reassembly into a copy of the original template R while
the parent ntr is available to produce a new ntr on its north face and a new tr
on its south face. The alignment of g glues enables the proper reassembly of the
terminal replicates into a copy of R (Fig. 7).

The detachment of the inverted staircase is not described here. If a signal
cascade were designed such that upon the complete assembly of a copy of the
original template pattern, the inverted staircase detached, it would be considered
a waste product. The number of these waste assemblies would grow proportion-
ally to the number of replicates of R. Similarly, if the replication process were
somehow halted, and the copies of R harvested, the ntrs might also be considered
waste. These, too, would have grown proportionally to the copies of R.
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Fig. 6. The above sequence shows details of the formation of terminal replicates. For
clarity, glues turned off and signals executed during template disassembly are not
shown.

Fig. 7. Terminal replicates reassemble into a copy of R
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4 Future Work

The results of this paper provide several directions for future work. One inter-
esting problem is the replication of shapes in the STAM, or more specifically,
patterned shapes. One might imagine a mechanism similar to the one presented
in this paper but where the growth of the inverted staircase is preceded by a
“rectangularization” of the shape to be replicated. The replication of a cuboid is
conceivable by extending the mechanism of template disassembly and reassem-
bly presented in Section 3 to three dimensions where layers of the cuboid might
be separated, replicated, and the replicates reassembled. Precise replication of a
certain number of copies could also be possible, as was considered in [1].

Another direction for future work is studying the extent to which staged self-
assembly systems can be simulated by non-staged active self-assembly systems
such as the signal tile model. In [3] efficient staged algorithms are developed
to assemble linear structures, while a signal tile system achieves a similar result
in [9]. Shape replication through stages and RNA based tiles are used to replicate
general shapes in [1], while this paper and future work suggests similar results
may be obtained with signal tiles. Can the complexity of the mixing algorithm
of a staged assembly algorithm be encoded into a signal tile system of similar
complexity? As a first step towards such a simulation we might consider the
case of 1D assemblies. Can the efficient construction of labeled linear assemblies
through staging shown in [4] be efficiently simulated with a signal tile system?

A final direction for future work involves the simulation of the signal tile model
through a passive model of self-assembly such as the abstract or two-handed tile
assembly model [2]. Recent work has shown how restricted classes of signal tile
systems can be simulated by passive 3D systems [5]. The ability for signal tile
systems to perform fuel-efficient computation was shown to be achievable within
passive 2D tile assembly given the added power of negative force glues [14]. Is it
possible to simulate any signal tile system with the use of negative glues? Can
this be done in 2D?

Acknowledgements. We would like to thank Jennifer Padilla for helpful dis-
cussions regarding the current state of experimental DNA implementations of
signal tile systems.
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Abstract. DNA strand displacement gates can be used to emulate arbitrary chem-
ical reactions, and a number of different schemes have been proposed to achieve
this. Here we develop modular correctness proofs for strand displacement en-
codings of chemical reaction networks and show how they may be applied to
two-domain strand displacement systems. Our notion of correctness is serializ-
ability of interleaved reaction encodings, and we infer this global property from
the properties of the gates that encode the individual chemical reactions. This
allows correctness to be inferred for arbitrary systems constructed using these
components, and we illustrate this by applying our results to a two-domain im-
plementation of a well-known approximate majority voting system.

1 Introduction

The behaviour and kinetics of arbitary chemical reaction networks can be emulated by
collections of DNA strand displacement gates [1,2]. A number of schemes for encoding
reactions using strand displacement gates have been proposed, such as four-domain [2],
three-domain [3,4] and two-domain schemes [5]. A common feature of these gates is
that they emulate a single-step reaction using a sequence of multiple reactions. These
additional steps introduce more opportunities for errors in the design, which may in-
clude subtle concurrency bugs that only manifest themselves when a gate is used in a
particular context. Therefore it is desirable to develop formal proofs that a given strand
displacement gate design is a correct implementation of the desired chemical reactions.

Two-domain encoding schemes are attractive candidates for experimental implemen-
tation because they use simple strands and gates without overhangs. However, this ne-
cessitates additional intermediate steps in the emulation of the reaction, such as garbage
collection steps that convert leftover species into unreactive waste to prevent them slow-
ing down certain reactions. Since a larger number of steps are often needed to encode
a given reaction, it is typically less obvious that the design is correct. In previous work
we have explored the use of probabilistic model checking for the verification of two-
domain strand displacement systems [6]. However, in that work we could only verify
particular populations of species, and this was severely limited by the explosion in the
size of the state space as the sizes of the species populations increased.

Here we introduce a framework for verification of DNA strand displacement emula-
tions of chemical reaction networks. We adopt a modular approach to proving correct-
ness, by showing that if all components of the system satisfy certain properties then the
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whole system may be deduced to be correct in a well-defined sense. Our approach is
inspired by the concept of serializability from database theory [7], which requires that
interleaved concurrent updates to a database must be equivalent to some serial sched-
ule of those updates. We consider a composition of reaction encodings to be correct if
all interleavings of their reactions are causally equivalent to some serial schedule, in
which there is no interleaving between the various reaction encodings. We use simple
rewriting rules on reaction traces to serialize them, and apply our technique to the veri-
fication of two-domain DNA strand displacement reaction gates [5,6]. We propose seri-
alizability as a reasonable notion of correctness for DNA strand displacement reaction
gates because serialized executions of encodings can be directly related to executions of
the underlying reactions. Gate designs that are not serializable may display erroneous
behaviours that do not correspond to possible behaviours of the underlying reactions,
because of unwanted crosstalk between gates. Our correctness criteria will allow us to
prove that gate designs do not have such problems.

2 Preliminaries

We now make some preliminary mathematical definitions that will be used throughout
the paper. Let N denote the set of natural numbers, including zero. Following the nota-
tion of [8], given a set X, we write NX for the set of multisets over X, defined as the
set of all functions f : X → N. By convention we use upper-case boldface symbols
for multisets and upper-case italics for sets. We may write multisets explicitly using
the notation {x1 = n1, . . . , xk = nk}, where ni is the count associated with the corre-
sponding xi. For multisets A,B ∈ NX we write A�B to mean that (A(x))� (B(x))
for all x ∈ X, where � is any binary relational operator, for example ≤. Similarly, we
define arithmetic operations on multisets so that (A± B)(x) = (A(x))± (B(x)) for
all x ∈ X. For subtraction we require that B ≤ A to avoid negative multiplicities. If
x ∈ X and n ∈ N, we write n · x for the multiset A ∈ NX such that A(x) = n and
such that A(x′) = 0 for x′ ∈ X where x′ �= x. We now define some key concepts.

Definition 1 (Chemical reaction networks). A chemical reaction network (CRN) is a
pair (X, R), where X is a set of chemical species and R is a set of chemical reactions
over X. A chemical reaction has the form R A P, where R, P ∈ NX represent the
reactants and products of the reaction, respectively. If r = (R A P) then we let r−1 =
(P A R) and observe that (r−1)−1 = r. Note that we do not consider reaction rates
at all in this paper. For well-formedness of reactions we will stipulate that R �= P, and
for well-formedness of CRNs we require that all constituent reactions are well-formed.
Henceforth we assume that all CRNs are well-formed.

Definition 2 (CRN states and reduction). A state S of a CRN C = (X, R) is just a
multiset drawn fromNX . A reaction r = (R A P) ∈ R is enabled in state S if R ≤ S,
written S �C r. Furthermore, if S′ = S − R+ P then we write S r−→ S′ to indicate
that applying the reaction r to S results in S′.

Definition 3 (CRN traces). Given a CRN C = (X, R), a trace τ is an ordered list
[r1, . . . , ri, . . . ] of elements of R. Traces may be finite or infinite, and we write length(τ)
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for the length of the finite trace τ. We write Traces(C) for the set of all traces that
may be generated using reactions from R. We write τ1 :τ2 for the trace obtained by
concatenating τ1 and τ2, and ε to denote the empty trace (i.e., length(ε) = 0).

Definition 4 (Valid reductions). A pair (S, τ) is a valid reduction of a CRN C , written
S �C τ, if τ ∈ Traces(C) and either (i) τ = ε or (ii) τ = [r]:τ′ and S r−→ S′ such that
S′ �C τ′ also holds. If τ is finite, we write finalC(S, τ) for the final state of the trace,
and say that S τ−→ S′ if S′ = finalC(S, τ).

Definition 5 (Reachable states). A state S′ is reachable from a state S under a CRN
C = (X, R) if S τ−→ S′ holds for some τ ∈ Traces(C). Furthermore, we say that a
state S′ is universally reachable from S under C if S′ is reachable from every state that
is reachable from S.

Definition 6 (Terminal states and traces). A state S is terminal under a CRN C =
(X, R) if no reaction r ∈ R is enabled in S. A terminal trace from a state S is any finite
trace τ ∈ Traces(C) such that finalC(S, τ) is a terminal state under C .

Definition 7 (Reversible and irreversible reactions). Given a CRN C = (X, R), a
reaction r ∈ R is reversible if the inverse reaction r−1 also appears in R, and it is
irreversible if S r−→ S′ implies that S is not reachable from S′ under C . Note that it
is not the case that every reaction is necessarily either reversible or irreversible in the
above sense: for example, consider the CRN with reactions a A b, b A c and c A a.
None of these reactions are reversible, but none of the reactions are irreversible either,
because there is always a route back to the previous state via the other two reactions.

3 Two-Domain DNA Strand Displacement Gates

We cannot develop a modular verification framework without a common language
in which to formalize the system components: this allows us to check for unwanted
crosstalk between modules in a uniform way. We will use the DSD language for formal-
izing DNA strand displacement systems [4,9]. Here we present a subset of the syntax
and reactions needed for the two-domain gates in this paper: see [4] for full definitions.

The syntax and graphical notation for two-domain DSD systems is presented in Ta-
ble 1. We write t^, u^, etc., for toehold domains, which are short enough to hybridize
reversibly (shown in black), and a, b, x, y, etc., for recognition domains, which are
long enough to hybridize irreversibly (shown in grey). We use the asterisk to denote
the Watson-Crick complement of a particular domain, and assume that the domains
are non-interfering, i.e., x will only hybridize with x*. Single strands S may be signals
<t^ x> or cosignals <x u^>. Following [6] and [5], we extend the basic two-domain
syntax with extended strands to enable irreversible product release, by including ex-
tended strands of the form <t^ x y> and <x y u^>. Finally, certain reactions can
produce waste strands of the form <x>, which are unreactive as they have no toehold
to interact with other species.

Figure 1 presents the set of possible reactions between two-domain DNA strands and
gates presented in Table 1, according to the Infinite DSD semantics [4]. In reaction (i), a
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Table 1. DSD syntax and graphical representation of two-domain DNA species. Here, G1 and G2
stand for arbitrary, non-empty gate structures.

Species category DSD syntax Graphical notation
Strands, S

Signal strand <t^ x>

Cosignal strand <x u^>

Extended signal strand <t^ x y>

Extended cosignal strand <x y u^>

Inert waste strand <x>

Gates, G

Exposed toehold gate segment {t^*}

Double-stranded signal gate segment [t^ x]

Double-stranded cosignal gate segment [x u^]

Collector gate segment [x]

Segment concatenation G1:G2 Lower strands joined

signal strand is consumed by a gate via an exposed complementary toehold, producing
a new gate with a different exposed toehold and a free cosignal strand. Note that this
reaction is reversible, since the cosignal can react with the product gate to release the
original signal into solution. Reactions (ii) and (iii) show irreversible consumption of
a cosignal and a signal respectively, by gates containing the appropriate combination
of a collector segment and an exposed complementary toehold, sealing off the toehold
and releasing an inert waste strand into solution. Finally, reactions (iv) and (v) show
irreversible consumption of an extended signal and an extended cosignal respectively.
These reactions seal off a toehold and release an inert waste strand and an output strand,
which is either a signal or a cosignal. (It is also possible to irreversibly consume an
extended strand using two neighbouring collector segments without releasing a signal
or cosignal, but we do not consider this because gate designs typically do not require
it.) The reactions from Figure 1 are all either reversible or irreversible in the sense of
Definition 7, and they are all bimolecular reactions that involve one gate and one strand
as reactants. We ignore unproductive reactions [4] in which a toehold binds but cannot
initiate a subsequent branch migration reaction.

4 Modular Chemical Reaction Encodings

The goal of this paper is to verify that a CRN involving DNA strand displacement re-
actions correctly encodes a particular CRN of interest. We specify CRN encodings in
a modular way, by defining subsystems which each encode a particular chemical reac-
tion, and composing these to form a single CRN. We refer to the species and reactions
of the CRN being encoded as formal species and reactions, and let α range over formal
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Fig. 1. Two-domain DNA strand displacement reactions employed in this paper. Here, G1 and G2
stand for arbitrary, possibly-empty gate structures.

reactions and F over formal CRNs. We will encode formal species using the family of
DSD species defined in Table 1, which interact via reactions derived from the rules in
Figure 1.

Definition 8 (Species encodings). For a set X of formal species, we define a bijective
species map M which maps every x ∈ X to a DSD species from Table 1. (As is stan-
dard, we assume that encoded formal species never interact directly.) In the case of
two-domain systems, we fix a global toehold domain t^ and choose our species map
such that M(x) = <t^ x> for all x ∈ X, i.e., each formal species is encoded by a
different domain. Writing x′ and S′ for encoded species and states respectively, we lift
M (and the inverse mappingM−1) to operate on states by simply ignoring the species
that are not present in their domain of definition, as follows.

(M(S))(x′) =

{
S(M−1(x′)) if x′ ∈ image(M)

0 otherwise.

(M−1(S′))(x) =

{
S′(M(x)) if x ∈ dom(M)

0 otherwise.

We will develop encodings of a formal CRN by constructing a reaction encoding �α�
for each constituent formal reaction α, as follows.

Definition 9 (Reaction encodings). An encoding �α� of a formal reaction α =
(Rα A Pα) is a multiset Fα of fuel species from Table 1 such that, if we let Sinit

α =

M(Rα) + Fα, then there exists a terminal state S
final
α that is universally reachable from

Sinit
α using the DSD reaction rules, and where M−1(Sinit

α ) = Rα and M−1(Sfinal
α ) =

Pα. We also require that no F < Fα has the above properties, meaning that Fα is the
minimal amount of fuel needed to completely execute a single copy of the encoding.

Finally, if Sinit
α

τ−→ Sfinal
α we say that the trace τ is an execution of �α�.

Intuitively, a reaction encoding �α� comprises the minimal amount of fuel Fα which,
when placed with the encoded reactants M(Rα), can execute the encoding of a single
instance of the formal reaction α. The definition also requires that the encoding always
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finishes in the same terminal state Sfinal
α , in which the only encoded formal species are

the products of α. Furthermore, the encoding can never get stuck in a state from which

Sfinal
α is not reachable.
We assume that the minimal fuel multiset is unique, as is the case in all existing pub-

lished reaction encodings. The fuel minimality condition could only be violated if there
were two redundant reaction pathways in the encoding, each requiring different fuel
species. Note that we refer to the species from Fα from Definition 9 as fuels, a term we
use to mean any species that must be present initially in order for the chemical reactions
in the encoding to run to completion. This encompasses not only the auxiliary single
strands typically referred to as “fuels” in the literature, but also the gate complexes that
must be present initially. Note that the requirement of a terminal state that is universally
reachable implies that there can only be a single terminal state: if there were a second
terminal state, then by definition the first would not be reachable from the second and
hence would not be universally reachable.

Definition 10 (CRN encodings). Suppose thatF is a formal CRN that contains formal
reactions α1, . . . , αn with corresponding encodings �α1�, . . . , �αn�. We use the individ-
ual reaction encodings to derive a CRN E = (XE , RE ) that encodes F , by

– forming the set of initial species, which comprises all fuel species from the multisets
Fα1 , . . . , Fαn and all encoded formal species M(x), where x is mentioned in one
of the formal reactions α1, . . . , αn, and then

– recursively computing the set XE of all reachable species and the set RE of all
possible reactions, using the reaction rules from Figure 1.

We refer the reader to previous work which formally defined the reaction enumer-
ation algorithm from the DSD compiler [4,10], which can be used to automate the
process described in Definition 10.

The most basic correctness property of reaction encodings is that they are capable of
emulating any valid trace of formal reactions. For a formal trace τ ∈ Traces(F ), we say
that a trace τ′ ∈ Traces(E ) in the encoded CRN is a serial execution of τ = [r1, . . . , rn]
if τ′ can be decomposed into subtraces τ1 : · · · :τn such that the ith subtrace τi is an
execution of ri. Since reaction encodings require fuel species to be present, any such
statement must be predicated on the amount of fuel available in the system. Thus it is
important to identify the minimal amount of fuel needed to emulate a given trace of
formal reactions.

Lemma 1 (Fuel required for emulation). Let τ = [α1, . . . , αn] ∈ Traces(F ) be a
finite trace of formal reactions, let S be a formal state such that S �F τ, and let τser ∈
Traces(E ) be a serial execution of τ. Then, (M(S) + F) �E τser iff F ≥ reqfuel(τ),
where the required fuel, reqfuel(τ), is defined as the sum of the fuel required by the
encoding of each reaction in the formal trace, i.e., reqfuel(τ) � Fα1 + · · ·+ Fαn . ��

It follows from Lemma 1 that we can emulate any finite formal trace by creating an
initial state with sufficient encoded species M(S) and fuels F so that the correspond-
ing serial execution can be run, and there is an obvious connection between the serial
execution and the formal trace.
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Theorem 1 (Completeness). Let τ ∈ Traces(F ) be a finite formal trace and let S be
a formal state. If S �F τ and F ≥ reqfuel(τ) then (M(S) + F) �E τser for some
τser ∈ Traces(E ) which is a serial execution of τ. ��

5 Soundness of CRN Encodings

The completeness result above only concerns one possible reduction trace of the en-
coding. In this section we prove a more involved soundness result, which shows that all
possible reduction traces of the encoding are equivalent to a serial execution of some
valid formal trace. This is a reasonable notion of correctness because this implies that
every possible trace of the encodings can be causally related to some valid formal trace.
To make this connection, we define a notion of rewriting on valid reaction traces, which
allows reactions to be moved around and deleted from the trace if doing so preserves
the causal relationships between reactions in the trace.

Definition 11 (Trace rewriting). The trace rewriting relation is indexed by a CRN C
and the starting state S. We write S �C τ � τ′ to mean that S �C τ and that a
derivation exists using the following inference rules.

(REFL)
S �C τ � τ

(TRANS)
S �C τ � τ′ S �C τ′ � τ′′

S �C τ � τ′′

(CANCEL)
S

τ1−→ S′ τ2−→ S′

S �C τ1:τ2:τ3 � τ1:τ3
(SWAP)

S �C τ1:τ3:τ2
S �C τ1:τ2:τ3:τ4 � τ1:τ3:τ2:τ4

The (CANCEL) rule allows the subtrace τ2 to be removed if its net effect is no change,
and the (SWAP) rule allows two neighbouring subtraces τ2 and τ3 to be swapped if
they may occur in either order. In the latter case, since executing a reaction trace is
essentially a series of addition and subtraction operations on the species populations,
which are commutative, it follows that τ1:τ2:τ3 and τ1:τ3:τ2 both produce the same final
state. It is not hard to show that trace rewriting preserves validity and the final states of
reductions, as stated below.1

Lemma 2. If S �C τ � τ′ then S �C τ′ and finalC(S, τ) = finalC(S, τ
′).

Note that it is not the case that any two valid traces from a given starting state must
be trace-equivalent—indeed, this is the crux of our analysis. Proving soundness is chal-
lenging because we must show that all possible interleavings of the various reaction
encodings can be rewritten to produce a serial execution of a valid formal trace. To ob-
tain this result, we must place additional constraints on the reaction encodings which
we will consider.

Definition 12 (Stratified chemical reaction networks). If a state S′ is reachable from
S under C , we write Λ(S, S′) for the length of the shortest trace τ ∈ Traces(C) such

1 A proof sketch for Lemma 2 is included in the appendices, which can be downloaded from the
first author’s webpage.
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that S τ−→ S′. Then, we say that the CRN C is stratified if, for any starting state S0 and
any states S and S′ which are reachable from S0 under C , it is the case that S r−→ S′

implies Λ(S0, S′) = Λ(S0, S)± 1.

We observe that reactions derived from Figure 1 always give rise to stratified CRNs,
since the reversible reactions can only be reversed by executing the corresponding in-
verse reaction and the irreversible reactions all produce an inert species which prevents
the system from returning to the previous state. Intuitively, this allows us to subdivide
the transitions in our reaction encodings into forward steps that move away from the
initial state S0 (i.e., transitions S r−→ S′ where Λ(S0, S′) = Λ(S0, S) + 1) and back-

ward steps that move back towards the initial state S0 (i.e., transitions S r−→ S′ where
Λ(S0, S′) = Λ(S0, S)− 1). We must also categorize the species involved in each re-
action encoding according to their role: we require that the set of all species involved
in the encoding �α�, denoted species(�α�), can be partitioned into:

– formals(�α�) (those species in the image of M);
– waste(�α�) (those species which are unreactive);
– fuels(�α�) (those species which appear in Fα); and
– intermediates(�α�) (the remaining species).

We now abuse the terminology of [11] to define a notion of copy tolerance, and use
this to state our restrictions on individual reaction encodings.

Definition 13 (Copy tolerance). A reaction encoding �α� is copy tolerant of a species
x if {τ | Sinit

α �E τ} = {τ | (Sinit
α + n · x) �E τ} for all n ∈ N, where E is the CRN

derived from �α� (extended to include x if necessary) and Sinit
α is the initial state of �α�.

Definition 14 (Transactional reaction encodings). Consider a formal reaction α =
(Rα A Pα), encoded as �α� via the fuel multiset Fα. Let S0 = Sinit

α = M(Rα) + Fα

denote the initial state consisting of just the required reactants and fuels, and let τ =
[r1, . . . , rn] ∈ Traces(E ) be a terminal trace of the encoding starting from S0, where
ri = (Ri A Pi) for i ∈ {1, . . . , n}. Labelling the corresponding sequence of states

as S0
r1−→ S1

r2−→ · · · rn−1−−−→ Sn−1
rn−→ Sn, we say that rj is a commit reaction if the

following criteria are all satisfied:

1. rj is the first irreversible reaction in τ;
2. if x ∈ formals(�α�) occurs in r1, . . . , rj−1 or Rj then x ∈ M(Rα), and these

occurrences are all either reactants of forward steps or products of backward steps;
3. if x ∈ formals(�α�) occurs in Pj or rj+1, . . . , rn then x ∈ M(Pα), and these

occurrences are all either products of forward steps or reactants of backward steps;
4. M−1(Sj−1 −Rj) = ∅.

We say that �α� is transactional if every terminal trace from S0 has a commit reaction
satisfying the above criteria and if every terminal trace visits the same set of states prior
to the commit reaction. We also require that �α� is copy tolerant of all formal and fuel
species involved in the encoding, and that the terminal state has the formM(Pα) +Lα,
where �α� is copy tolerant of every species in the multiset Lα of leftover species.
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In Definition 14, criterion 1 requires that the trace can be partitioned into two dis-
joint subtraces by the first irreversible reaction. Given the reaction rules from Figure 1,
this implies that all reactions before that point must be reversible. Criteria 2 and 3 re-
quire that only input formal species can engage in reactions before the commit reaction,
and only output formal species can engage in reactions after, and furthermore that the
consumption of input formal species before the commit reaction and the production
of output formal species after the commit reaction always drives the system forwards.
Criterion 4 ensures that all necessary reactants are in fact consumed by the time the
commit reaction is reached (this is needed in case the reactants and products have some
species in common). The restrictions on copy tolerance ensure that the behaviour of
the encoding is identical in the presence of additional copies of fuels or formal species:
note that any encoding is copy tolerant of waste species, but that the encoding may not
be copy tolerant to certain intermediate species. The restrictions on leftover species in
the terminal state delimit those species which may be safely left behind by a reaction
encoding that does not fully garbage collect its intermediate species.

Example 1 (Effect of a non-transactional reaction encoding). As a concrete example
[12] of what might go wrong when using a non-transactional reaction encoding, con-
sider the following set of formal reactions: {x A y, y+ a A y+ b}, and suppose that
our encoding of x A y is not transactional because the output y can be released before
the first irreversible step in the execution of the encoding. Then, from an initial state
corresponding to the formal state {x = 1, a = 1} the following sequence of operations
is possible:

1. Run the encoding of x A y until y is produced, but without executing any irre-
versible steps. This produces a new state corresponding to {y = 1, a = 1}.

2. Completely execute the encoding of y+ a A y+ b, which results in a state corre-
sponding to {y = 1, b = 1}.

3. Unwind the partial execution of x A y, which is possible because no irreversible
steps have been executed in this encoding. The final state corresponds to the formal
state {x = 1, b = 1}.

Note that the formal state {x = 1, b = 1} is not reachable from the initial state
{x = 1, a = 1} using the above set of formal reactions: our encoding of this CRN is
unsound. The specific problem here is that the y produced by the x A y reaction is
accessible before the encoding has executed an irreversible step to commit to its pro-
duction. Until there is no way for this product to be reclaimed by the gate that produced
it, it is unsound for other reactions to consume it.

We now define compatible reaction encodings, in which direct sharing of species
between the encodings is only permitted in certain situations.

Definition 15 (Compatible reaction encodings).We say that two reaction encodings,
�α� and �β�, are compatible if every shared species in species(�α�) ∩ species(�β�) ap-
pears in the same category (formal, waste, fuel or intermediate) in both encodings, and
if both encodings are copy tolerant of every shared species. Furthermore, we require
that a species from �α� can only interact with a species from �β� if at least one of those
species occurs in species(�α�) ∩ species(�β�).
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Hence, different reaction encodings may share formal species, waste species and
fuel strands. They may also share intermediate species provided that the presence of
additional copies of those species do not enable additional reaction pathways in either
reaction encoding. In all cases, shared species must appear in the same category in
both reaction encodings, and no species may interact with any species from a reaction
encoding in which it is not present as a species. We can use the DSD semantics and
compiler to check for unwanted interference between reaction encodings. We now state
some preliminary lemmas needed to prove our main result.2

Lemma 3 (Trace rewriting and reversible reactions). If τ ∈ Traces(C) consists
entirely of reversible reactions and S �C τ then there exists τ′ ∈ Traces(C) such that
S �C τ :τ′ � ε.

Lemma 4 (Serializability). Assume that all reaction encodings are transactional and
pairwise compatible, and suppose that S �E τ, where

τ = τ1:[rα
1 ]:· · ·:τk−1:[r

α
k−1]:τk :[r

α
com]:τk+1:[r

α
k+1]:· · ·:τn :[rα

n]:τrest,

where rα
com is the first commit reaction in τ, where τα = [rα

1 , . . . , r
α
k−1, r

α
com, r

α
k+1, . . . , r

α
n]

is an execution of �α� and where S �C rα
1 . Then, there exists τ′

rest such that S �E τ �
τα :τ′

rest. ��
We can now state and prove our main soundness theorem, which is valid for sys-

tems composed of reaction encodings that satisfy the criteria in Definition 14 and
Definition 15. Since the set of all traces includes incomplete executions of reaction
encodings, we require that any trace can be extended to produce a serializable ex-
ecution. In doing so we write pt(X, F) for the set of non-empty formal traces that
are valid from the formal state X and that can be emulated using the fuel F, i.e.,
pt(X, F) = {τ ∈ Traces(F ) | X �F τ ∧ reqfuel(τ) ≤ F ∧ τ �= ε}.

Theorem 2 (Soundness). For a formal CRN F with reactions α1, . . . , αn, assume that
the corresponding reaction encodings are all transactional and pairwise compatible.
Let X range over multisets of formal species, and let F range over multisets of fuels
such that F = Fαk1

+ · · · + Fαkj
, for k1, . . . , kj ∈ {1, . . . , n} (i.e., there are no in-

complete reaction encodings). Then, for all τ ∈ Traces(E ) and all X and F such that
(M(X) + F) �E τ, either:

– pt(X, F) = ∅ and there exists τ′ such that (M(X) + F) �E τ :τ′ � ε; or
– pt(X, F) �= ∅ and there exists τ′ such that (M(X) + F) �E τ :τ′ � τser, where

τser is a serial execution of some τformal ∈ pt(X, F). ��

6 Verification Example

In this section we present an example application of our modular verification strategy
to a two-domain strand displacement network [5]. We focus on the two-domain catalyst
gate introduced in [6], which implements a reaction of the form x+ y A x+ z. The
DSD code for this gate design is as follows.

2 Proof sketches for Lemma 4 and Theorem 2 are included in the appendices, which can be
downloaded from the first author’s webpage.
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(* DSD code for two-domain catalyst gate. *)
(* Use with Infinite DSD semantics. *)

(* Define a global toehold *)
new t

(* Catalyst gate module, x + y -> x + z *)
def C(N,x,y,z) = new a new c
( N * {t^*}[x t^]:[y t^]:[c]:[a t^]:[a]
| N * [x]:[t^ z]:[c]:[t^ y]:[t^ a]{t^*}
| N * <t^ c a>
| N * <z c t^> )

(* Example initial state *)
( C(1,x,y,z) | <t^ x> | <t^ y> )

The corresponding initial and terminal states of one such reaction gate implementing
the reaction x+ y A x+ z are shown in Figure 2. In previous work [6], we used these
gates to implement the approximate majority voting circuit of [13], by instantiating the
module to implement the four chemical reactions from the approximate majority cir-
cuit: (i) x+ y A y+ b, (ii) x+ y A x+ b, (iii) x+ b A x+ x, (iv) y+ b A y+ y.
Thus the catalyst gate module must function correctly both when the two products are
different species (for reactions (i) and (ii)) and when they are the same (for reactions
(iii) and (iv)). It is not difficult to show that each of the resulting reaction encodings sat-
isfies the correctness criteria from Definition 14, and that they are pairwise compatible
(Definition 15). The private domains declared within the scope of the gate definition
ensure that each reaction encoding involves unique gate species and fuel strands, and
the DSD reaction rules from Figure 1 can be used to verify that there are no interactions
between the species of the different reaction encodings.3 Therefore, by Theorem 1 and
Theorem 2 every trace produced by these reactions can be rewritten to produce a se-
rial execution of the four formal reactions above, so we view these gates as a correct
encoding of the approximate majority system.

7 Discussion

We have shown that any strand displacement system composed of reaction encodings
that meet the criteria from Definition 14 and Definition 15 is correct in the sense that all
traces can be rewritten using the rules from Definition 11 into a serialized trace in which
each execution of a reaction encoding runs to completion before the next one starts. This
notion of correctness is reasonable because reaction gates are intended to encode a sin-
gle rewriting step in the formal reactions, and if a trace cannot be rewritten in this way
there must be a concurrency bug in the reaction encodings that allows them to produce

3 Further details are included in the appendices, which can be downloaded from the first author’s
webpage.
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Fig. 2. Initial (left) and terminal (right) states for the catalyst gate which encodes the reaction
x+ y A y+ z.

a trace unrelated to any trace of the underlying formal reactions. Although we used
two-domain strand displacement reactions to define our encodings, in principle similar
results could be derived for other implementations of chemical reaction networks. It
is interesting that the correctness criteria from Definition 14 share much in common
with other notions from existing concurrency theory, such as two-phase locking [7], in
which each transaction has an initial phase of lock acquisition where exclusive access
is obtained to the necessary resources, followed by a phase of lock release where those
access rights are gradually relinquished. In our case, the first phase consumes the inputs
and the second phase produces the outputs.

To our knowledge, this paper is the first modular analysis of chemical reaction net-
work encodings. In Definition 14 and Definition 15 we aimed to allow the maximum
possible sharing of species between different reaction encodings without invalidating
the soundness result in Theorem 2. However, it is worth noting that certain previously
published designs for two-domain strand displacement gates fall foul of our restrictions
on the structure of reaction encodings and on the sharing of species between encodings.
The gate designs from [5] without irreversible product release do not involve a com-
mit reaction as defined in Definition 14, and therefore the soundness theorem does not
hold for these gates. Furthermore, certain combinations of these gates may violate our
requirement that shared species must fall into the same category in all reaction encod-
ings. In some gates from [5] it is possible for certain global cosignals to serve as an
intermediate in one reaction encoding and as a fuel in another, which could adversely
affect the kinetics of the reactions producing that strand as an intermediate if an ex-
cess quantity of that strand is supplied as fuel. This subtle point should be addressed in
future two-domain gate designs.

Our definition of species encodings works for any scheme in which there is a bijec-
tive mapping between the formal species and the DSD species which represent them,
such as the two-domain scheme. A straightforward generalization of our representation
language to handle wildcard domains should allow us to verify gate designs such as
those which use three- and four-domain species encodings using history domains [2,3].
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In these schemes a single formal species is encoded by a family of related DNA species
with similar structure but a different history domain. To extend our results to history
domains, it would suffice to prove that each reaction encoding can accept any variant
of the input strand, regardless of the history domain. Our other key results, such as
serializability and soundness, do not rely on a bijective species encoding and should
remain valid. Finally, we have demonstrated that the restrictions we imposed on reac-
tion encodings are sufficient to obtain a serializability result. Another important future
research direction will be to determine which restrictions are necessary to derive such
a result.

Prior work on CRN verification [12,14] has focused on analyzing full systems, and
we believe that there is a strong connection between our work and the weak bisimulation-
based approach of [14]. In other related work, Cardelli and Laneve [15,16] developed a
theory of reversible computational structures with a strong relationship to DNA strand
displacement reaction gates. However, that work did not take the initial state of a com-
putation into account and was therefore not capable of distinguishing between traces
where reactions involving the same species could be safely permuted. Existing work
on reachability in CRNs [11], and in particular the notion of copy tolerance, is directly
related to our work, as is previous work on CRN programmability [17,18].

Our modular approach provides a path to verification of module definitions, for ex-
ample, checking that a definition which maps arbitrary species w, x, y and z to the
corresponding reaction encoding �w+ x A y+ z� produces a correct reaction encod-
ing for any values of w, x, y and z, some of which might in fact represent the same
formal species. Note that in Section 6 we did not verify the module definition directly,
but rather a number of specific instantiations of it. Expressing our correctness criteria
in a temporal logic would allow module definitions to be checked automatically using
a model checker, in order to cover all possible input patterns.

Finally, we note that our formalism and proofs do not take account of reaction rates.
Expressing correctness in terms of reachability is both important and natural from a
computer science perspective. However, unfavourable kinetics might cause gates that
satisfy our reachability criteria to function poorly in practice, as discussed above. Fur-
thermore, certain gate designs that fail to satisfy the criteria might function acceptably in
practice due to favourable kinetics, as exemplified by the “wisdom of crowds” example
[6,5]. Proving soundness of gate designs is already challenging without considering re-
action rates, and indeed it is not clear how such a correctness result would be formulated
in a modular setting when considering reaction rates. Previous work [2] presented sim-
ilar proofs for a particular encoding of chemical reaction networks using DNA strand
displacement, and future extensions of our work may enable such results to be proved
for arbitrary reaction encodings in a modular way. For instance, it may be possible to
relate the expected time to fully execute a reaction encoding to the rate of the corre-
sponding formal reaction, either by solving the corresponding continuous-time Markov
chain analytically or by using a probabilistic model checker such as PRISM [19]. How-
ever, such efforts would be complicated by the fact that the output species from a re-
action encoding are typically released gradually, some time before the final irreversible
reaction that concludes the execution of the encoding. Hence, it is not obvious which
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point in time should be considered as the end of the execution of the encoding for the
purposes of proving results about the kinetics.
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Abstract. We propose an iterative approach to constructing regular shapes by
self-assembly. Unlike previous approaches, which construct a shape in one go,
our approach constructs a final shape by alternating the steps of assembling and
disassembling, increasing the size of the shape iteratively. This approach is em-
bedded into an extended hexagonal tile assembly system, with dynamic strength
transformation and temperature control. We present the construction of equilat-
eral triangles as an example and prove the uniqueness of the final shape. The tile
complexity of this approach is O(1).

Keywords: Algorithmic self-assembly, hexagonal tiles, strength transformation,
temperature control.

1 Introduction

The tile assembly system (TAS) contains a self-assembly process in which small tiles
autonomously attach to a seed, assembling into a larger and more complex shape. TAS
dates back to the late 1990s. In 1998, Winfree proposed a mathematical model of DNA
self-assembly [1] with the operations of Annealing, Ligation, and Denaturation. The
same year, Winfree et al. presented a tile assembly model [2] which connected tiling the-
ory with structural DNA nanotechnology, using the double-crossover molecules (DX)
to implement the model. In 2000, Rothemund and Winfree proposed the abstract tile
assembly model (aTAM) [3], in which the tiles are squares with sticky ends on each
side. Adleman et al. extended this model with stochastic time complexity [4].

Later works concerning the aTAM or TAS have been mainly extensions aimed at
improving the complexity or exploring more final shapes that can be self-assembled.
Instead of the original square tiles, triangular, hexagonal [5,6], and string tiles [7] can
also implement the TAS. Aggarwal et al. extended the standard TAS by allowing the
assembly of the super tiles [8]. Demaine et al. proposed a staged self-assembly model,
where the tiles can be added in sequence [9].The tile complexity problem usually stud-
ies the cost of building an N×N square in terms of the number of tile types required.
Compared with the previous result N2 [3] at temperature1 1, geometric tiles [10] use
only Θ(

√
logN) tile types. An extended model with a mechanism of temperature pro-

gramming [11,12] uses only O(1) tile types. Besides an N ×N square, other regular

1 The temperature is a threshold value that determines if a shape is stable.
D. Soloveichik and B. Yurke (Eds.): DNA 2013, LNCS 8141, pp. 147–159, 2013.
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shapes can be self-assembled using the TAS. Cook et al. showed that a Sierpinski trian-
gle can be formed by 7 different square tiles [13]. Kari et al. presented a triangular tile
self-assembly system [14] where an equilateral triangle of size N can be formed using
N2 tile types at temperature 1, and 2N−1 tile types at temperature 2. Woods et al. pro-
posed an active self-assembly model [15] to construct algorithmic shapes and patterns
in polylogarithmic time.

Here we propose an iterative approach to self-assembly, with a tile complexity of
O(1). The approach extends a tile assembly system with dynamic strength transforma-
tion and temperature control. Unlike previous TAS models, where the final stable shape
is formed in one go, our approach constructs regular shapes of increasing size in each
iteration in a geometric progression. This iterative process consists of assembling an
n-size shape from an n-size seed cluster2 and disassembling it into two pieces which
then form a new seed cluster with a larger size for the next iteration. In other words, our
approach alternates the steps of assembling and disassembling. We demonstrate how
this approach works on the example of constructing equilateral triangles; the rest of the
paper treats a specific tile assembly system for triangles.

In the following, we first give an overview of our iterative approach in Section 2. In
Section 3, a formal definition of the extended hexagonal TAS is given. In Section 4, we
present a concrete example of enlarging an equilateral triangle from size four to size
six3. In Section 5, we prove that an equilateral triangle is the only final stable shape that
can be self-assembled within this system.

2 Overview of the Approach

Our iterative approach repeats two steps: assembling and disassembling. In the assem-
bling step, we start from a seed cluster, which is one of the three sides of the triangle
when an iteration ends. The free individual tiles present in solution attach to this seed
cluster, updating the shape until an equilateral triangle is completed. The assembling
step takes place under a constant temperature τ1, which is also the threshold value to
determine if a shape is stable4. The disassembling step begins when we raise the tem-
perature to τ2, which will make the τ1-stable shape become unstable under τ2, and lead
to disassembly. The original shape then disassembles into two smaller shapes that are
τ2-stable. We then lower the temperature down to τ3 to make the two shapes form a new
seed cluster with larger size. When we change the temperature from τ3 back to τ1, the
next iteration starts.

The assembling and disassembling step are enabled by two new features added to
the hexagonal TAS. Strength transformation changes some of the bond strengths of
the τ1-stable shape and two strand strengths, in preparation for the disassembling step.
Temperature control implements the switch between the two steps. These two features
are supported by the Rule set and the Operation set in the extended hexagonal TAS,
which we will discuss in the next section.

2 A seed cluster of size n is a line consisting of n hexagonal tiles.
3 The size of an equilateral triangle is denoted as its edge length.
4 If a shape does not disassemble under temperature τ , it is τ-stable.
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3 Formal Definition of the Extended Hexagonal TAS

In this section, we give a formal expression of the extended hexagonal TAS, with de-
tailed explanations of each term. We then introduce the set of tile types in this system
and illustrate the whole procedure of our iterative approach. Finally, we consider plau-
sible chemical implementations of some operations included in the strength transfor-
mation.

3.1 A Formal Expression

The extended hexagonal TAS is formally a tuple M = {Σ ,S,B,Ω ,U,R,O}, where Σ is
a temperature set, S is a strand set, B is a bond set, Ω is a tile set, U is a stable shape
set, R is a rule set, and O is an operation set.

Temperature Set. Σ = {τ|τ ∈ Z>0} is the set of the temperatures.
In our example of constructing an equilateral triangle, there are three threshold tem-

peratures in this system. Σ = {τ1 = 3,τ2 = 7,τ3 = 5}.

Strand Set And Bond Set. S = {x|x ∈ A}∪{x̄|x ∈ A} is the set of DNA strand types,
where A denotes a symbol set. Two complementary strands x and x̄ can form a bond
with the corresponding strength. We use bond(x, x̄ ‖ w) to represent a bond and its
sticking strength w, where w ∈ Z>0. B is the set of bonds. Thus, for all b ∈ B, we have
b =bond(x, x̄‖w) such that x, x̄ ∈ S. Here, w is the bond strength as well as the strength
of strand x and x̄.

In our example, S = {a,y,γ,Y}∪{ā, ȳ, γ̄,Ȳ}. Table 1 shows all the strands we use.
For example, a, ā form a bond with strength 1.

Tile Set. Ω is the set of tiles. Each tile t = (s1,s2,s3...,s6) is abstracted as a hexagon,
each side represents a strand. An example is shown in Figure 1. In our graphical rep-
resentation, if a side does not have any strand, we use the dotted line to represent it.
A pair of complementary strands, e.g., a and ā, are represented by a single solid line
and a double solid line respectively. The number labeled next to the strand indicates
the strand strength.The sequence of si(1 ≤ i≤ 6) ∈ S∪{⊥} represents each side of the
hexagon from the top right clockwise to the top left. A side without any strand is de-
noted as ⊥. Tiles are allowed to rotate, but not to flip. Therefore, if there are two tiles
t1 = (s1,s2...,s6), t2 = (s′1,s

′
2...,s

′
6) and if ∃i, j (1 ≤ i, j ≤ 6 and j = 7 − i) such that

(s′i,s
′
i+1...,s

′
6) = (s1,s2...,s j) and (s′1,s

′
2...,s

′
i−1) = (s j+1,s j+2...,s6), we say that t1 and

t2 are the same tile. We assume that the strands of the tiles are fixed in their positions,
thus the angles between each two are fixed as well.

Stable Shape Set. U is the set of stable shapes. 1. ∀t ∈Ω , t ∈U ; 2. each shape T ∈U
is either T = {t}∪T ′ or T = T1 ∪T2, where t ∈Ω and T ′,T1,T2 are also stable shapes.
That is, a stable shape is a single tile or a set of tiles that are grouped together because of
the bonds between them. A stable shape can be formed in two ways—either a single tile
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Table 1. Strand strength

Strand type x a, ā y, ȳ γ , γ̄ Y , Ȳ
Strand strength 1 2 5 7

1

1
2

2

y

ȳ a

ā

Fig. 1. This figure shows an example of a hexagon tile: t = (y, ā,a, ȳ,⊥,⊥). The numbers labeled
next to the lines indicates the strengths of the strands.

attaches to an existing stable shape or two stable shapes attach to each other. Both ways
are based on the premise that the sum of the interacting strengths equals or exceeds the
current temperature, which is expressed as the “assembling” rule that will be discussed
shortly.

Rule Set. R = {assembling,stability− checking,disassembling} is a set of rules that
guide this system, shown in Figure 2.

assembling step

temperature is raised

temperature is lowered

Rule: assembling

Rule: stability-checking

Rule: disassembling

disassembling step

stability checking

disassembling

not stable

Fig. 2. How the rules guide the steps of assembling and disassembling

If the temperature is not changed, the assembling rule is applied. Whenever the tem-
perature is raised, the stability-checking rule and the disassembling rule are applied to
execute the disassembling step. We use the stability-checking rule to check the stability
of the shape. If the shape is stable, there is no change to the shape, otherwise the disas-
sembling rule is applied to break the shape. Whenever the temperature is lowered, the
assembling rule is applied.
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Rule 1: Assembling. The assembling rule guides the procedure of shape formation. For
T = {t}∪T ′ under temperature τ , where T ′ is an existing stable shape, the interaction
strength sum E between t and T ′ must be E ≥ τ , otherwise T will not be stable. Sim-
ilarly, for T = T1 ∪T2 where T1,T2 are stable, the interaction strength sum E between
T1 and T2 must be E ≥ τ as well, otherwise shape T will be disassembled into the two
smaller but stable shapes T1 and T2. Under the assembling rule, the formed shape is
guaranteed to be stable.

Rule 2: Stability-Checking. The stability-checking rule is applied to check the stability
of a shape after the temperature is raised. There are two levels of checking. Suppose that
we have a shape T and the temperature is raised to τ . We first check if each tile t ∈ T is
stable in the shape, then check if every two sub-shapes T1,T2 are stably attached to each
other(T1 ∪T2 = T ) if the first-level stability is not achieved. In the first level, for every
tile t ∈ T , we compare the sum of the interaction strength between t and T − t with τ2.
If the sum < τ , T is not stable. Otherwise, we proceed to the second-level checking.
In the second level, if there exists a cut that splits T into two sub-shapes T1,T2 and the
sum of interaction strengths between T1 and T2 is less than τ , T is not stable. Only when
both levels of checking succeed, can we say that shape T is stable.

Rule 3: Disassembling. The disassembling rule is applied when the shape is not stable.
It works together with the stability-checking rule to disassemble the shape into smaller
stable shapes. There are two levels of disassembling. The first level makes certain single
tiles fall off from the shape; the second level splits the shape into two new shapes. In
the first-level disassembling, we execute the first-level stability checking to find the tiles
whose interaction strengths are the weakest among those tiles with interaction strength
less than the current temperature, and remove these tiles from the shape. In the second-
level disassembling, we execute the second-level stability checking to find the cut that
needs the minimum strengths, and split the shape into two new shapes. The first-level
and the second-level disassembling cannot happen at the same time, the one that needs
minimum strengths takes place first. If the strengths needed are the same, the first-level
disassembling comes first. The stability-checking rule is applied to the new shapes after
either level disassembling is executed. If the shapes are not stable, the disassembling
rule is applied to the current shapes, otherwise the disassembling step ends.

Operation Set. O = O1 ∪O2 ∪ {End} is a set of operations allowed in the system.
Set O1 includes the operations related to the strength transformation. These operations
need the help of some specific restriction enzymes, ligase and auxiliary tiles. Operation
Opi→ j ∈ O1(i, j ∈ Z>0) changes the strength from i to j. Set O2 includes the opera-
tions related to the temperature control, operation τi → τ j ∈ O2(τi,τ j ∈ Σ ) changes the
temperature from τi to τ j. The last set contains only one operation. When End is exe-
cuted, the construction procedure ends. These operations are executed when the current
shapes are all stable, in other words, during an assembling step or a disassembling step,
the experimentalist should not execute any operation.

In our example,O= {Op5→2, ligation,Op2→5}∪{τ1 → τ2,τ2 → τ3,τ3 → τ1}∪{End}.
Op5→2 changes a bond from strength 5 to strength 2(with Enzyme I, Enzyme II), Op2→5
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changes a strand from strength 2 to strength 5(with Enzyme III and the Op2→5 helper).
The operation of ligation needs the help of a ligase, changing a bond from strength 2
to strength 7. Enzyme I, Enzyme II and Enzyme III are restriction enzymes, which will
be discussed with details in Section 3.4. The Op2→5 helper is explained in Section 3.2.

3.2 Tile Types

In the system of constructing an equilateral triangle, there are four categories of tiles:
initial component tiles, free tiles, functional tiles, and variant tiles. The first three are
directly made manually; the variant tiles result from reactions with enzymes. Initial
component tiles form a seed cluster of size four; it is the first stable shape existing
in the solution before any reaction begins. Free tiles remain in the solution all the
time. Functional tiles come in two flavors, one (Op2→5 helper) is included in the op-
eration Op2→5, while the other (ending tile) will end the whole procedure with an
equilateral triangle. The functional tiles are added to the solution by the experimen-
talist at certain time points. Variant tiles only appear when one of the operations in
{Op5→2, ligation,Op2→5} is executed. The initial component tiles, free tiles and func-
tional tiles are shown in Figure 3. We will explain the transformations to the variant
tiles in Section 3.4, together with the implementations of some operations. In Figure 3,
yadp and ȳadp are two special strands on Op2→5 helper tile. Strands yadp and ȳ can form
a special bond, and likewise the strands ȳadp and y.

initial component tiles

aā ā a

Ȳ

y
2

7 Y

ȳ
2

7 γ Ȳ

1 1

5 7 Y γ̄
1

1

7 5

edge tile middle tile

free tiles

a

ā

a

ā

a

a

ā

ā

y

ȳ
2

2

1

1

1
1

1

11

1

helperOp2→3 ending tile

functional tiles

ȳadp yadp yȳ

2
2

2
2

Fig. 3. Tile types is shown in this figure. The dotted lines represent “no strand”. Each strand is
represented by a single or double solid line with a name label and a strength label.

3.3 The Procedure of the Iterative Approach

The assembling step and the disassembling step together constitute one iteration of the
construction. There are two parameters associated with each iteration. One is the seed
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cluster, which is one edge of the triangle at the beginning of each iteration; the other
is the current temperature τ . In each iteration, the assembling step starts with τ = 3
and a seed cluster, and ends with an equilateral triangle with the last piece left; the
disassembling step starts with τ = 7 and ends with two symmetric shapes that will form
the new seed cluster at τ = 5. When τ = 3, the next iteration starts. Table 2 summarizes
the actions during an iteration. The “Action” column is the operation executed at each
step, the “State” column expresses the current condition of the shape and temperature.
Notice that at step 1 we have two branches — choosing the End operation will end the
iteration with an equilateral triangle of size l, otherwise we proceed to the next step. At
step 2, bond(y, ȳ‖2) is transformed to bond(Y,Ȳ‖7). At step 3, bond(γ, γ̄‖5) is broken
into strands y and ȳ that will form bond(y, ȳ‖2) later.

Table 2. The procedure of an iteration and how to stop the iteration

Step No. Action State

0 seed cluster of size l, τ = 3

1
an equilateral triangle with the last piece left

End iteration ends with an equilateral triangle of size l
2 ligation bond(y, ȳ‖2) → bond(Y,Ȳ ‖7)
3 Op5→2 bond(γ , γ̄‖5) → y and ȳ → bond(y, ȳ‖2)
4 Op2→5 y→ γ , ȳ→ γ̄
5 τ1 → τ2 two symmetric shapes, τ = 7
6 τ2 → τ3 new seed cluster of size l = 2l−2 is formed, τ = 5
7 τ3 → τ1 go to step 0

3.4 Proposed Implementation of the Operations

Figure 4 and Figure 5 show some plausible implementations of operations Op5→2,
Op2→5, and ligation. For each implementation, we provide a high-level picture on the
top to show how that operation changes the tiles. Tiles to the right of the arrow are the
variant tiles. Below each high-level picture are the details concerning the strands.

In Figure 4, the left column shows the steps of transforming strand ȳ into strand
γ̄ . The operation orders are important. Enzyme III must be added after the tile Op2→5

helper attaches to the shape, otherwise it might be difficult to tell if γ̄ is formed. Enzyme
III is a restriction enzyme which is assumed to recognize the specific sequences on B-
B’ part. When the helper tile attaches to the shape, by observing the shape, we are sure
that the intermediate product shown in (2) is formed, which will be transformed into γ̄
after the cutting in (3). If we add Enzyme III before the helper tile fills in its position,
the sequence 2 and 5 might be cut off from the helper tile so that the helper tile cannot
attach to the shape. In this case, whether the intermediate product is formed is hard to
know, so it is hard to know if strand γ̄ is formed. The right column follows the similar
steps, transforming strand y into strand γ .

In Figure 5, the left part is the implementation of operation Op5→2, the right part is
the implementation of operation ligation. In the implementation of Op5→2, two restric-
tion enzymes are used to cut the sequences at two different positions, which is shown
in (2). After the cutting, bond(γ, γ̄‖5) is broken into two strands (y, ȳ) and sequence
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Enzyme III

+
A’
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(1)

A’

A
(2)

Enzyme III
A’
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5

(3)

A’

A(4)

B

5

5

(1) +

(2)
5’

(3)

Enzyme III

5’
(4)

Op2→5 : y → γ, ȳ → γ̄
Enzyme III

Op2→5

2
2

77

1 1 ȳadp yadp

5 5

7
7

1 1

ȳ

ȳ

ȳ

γ̄

y

y

y

γ

yadp

yadp

yadp

ȳadp

ȳadp

ȳadp

1 1
1 1

2
2

Fig. 4. This figure shows the plausible implementation of operation Op2→5. Letters A, B and
numbers 2, 5 indicate different sequences. A’, B’, 2’ and 5’ are the corresponding complementary
sequences. There are two sides for each strand, the side with the strand name is fixed on the tile,
the other side is free. For example, in (1) of the left column, the left ends of A’ and A are fixed,
the right end of 2’ is free.The left column shows the steps of transforming strand ȳ into strand
γ̄ . The 2’ end on ȳ sticks to the 2 end on ȳadp, forming (2). Enzyme III is a restriction enzyme
which is assumed to recognize the specific sequences on B-B’ part. It can cut (2) at the position
indicated by the two vertical dotted lines, transforming ȳ into γ̄ , which is shown in (3) and (4).
The small circle between the sequence A and 2 means no connection. The right column follows
the similar steps, transforming strand y into strand γ .

fragments (sequence 2, 5 and sequence 5’, 2). Strand y and ȳ form a new bond later,
which is shown in (3). The sequence fragments leave the tiles. In the implementation of
ligation, ligase is used to connect the sequence A and 2, transforming bond(y, ȳ‖2) into
bond(Y,Ȳ‖7).

4 Constructing an Equilateral Triangle from Size 4 to 6

Figure 6 and Figure 7 show the complete procedure of constructing an equilateral trian-
gle of size 6 from one of size 4. The number labeled next to the hexagon side indicates
the strength of the strand that side represents. The strands with strength 1 are not labeled
for convenience in the figures. The initial state is a seed cluster of size 4 and tempera-
ture τ = τ1 = 3. While the temperature is not changed, the edge tiles and middle tiles in
solution attach to the seed cluster one by one, constructing a stable shape shown in state
1. The operation ligation transforms the bonds of strength 2 into the bonds of strength
7, updating the shape to state 2. We then execute the Op5→2 operation, which needs
the help of Enzyme I and Enzyme II. After that, the shape is updated to state 3, where
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Enzyme I Enzyme II
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γ̄

ȳ ȳ

γ

γ

y y

yȳ

Ȳ Y

Fig. 5. This figure shows the plausible implementations of operation Op5→2 and ligation. (a) The
operation Op5→2 is implemented by cutting twice. (1) shows the bond formed by γ and γ̄ . In (2),
there are two restriction enzymes. We assume that Enzyme I recognizes the sequences within the
left square, and it can cut the bond as indicated by the dashed line. We assume that Enzyme II
recognizes the sequences within the right square, and it can cut the bond as indicated by the thick
line. After the cutting, what are left on the tiles are the strands ȳ and y, which can form a new
bond(y, ȳ‖2) later. (b) In the part of ligation, the small circle between two sequences means no
connection. In (1), the bond formed by y and ȳ has strength 2. This strength is proportional to the
length of their interacting part, which is 2-2’ here. After ligation, parts A and 2 are connected,
which means that the interacting part between the two strands is A-A’ plus 2-2’ now. Since this
is longer, the strength of the bond is stronger. We define the new bond formed by A-A’ and 2-2’
has strength 7, and use bond(Y,Ȳ ‖7) to represent it.

the bond of strength 5 is transformed into a bond of strength 2. At that point, operation
Op2→5 is executed. This operation has two phases: in phase (a), the helper tile fills in
the top position of the shape, forming two special bonds (the bond consisting of yadp,
ȳ and the bond consisting of ȳadp,y); in phase (b), two restriction enzymes are added
into the solution. They find the two special bonds, cut them at a specific position, which
transforms y (single solid line with 2) into γ (single solid line with 5) and ȳ (double solid
line with 2) into γ̄ (double solid line with 5), updating the shape to state 4. When we
raise the temperature from τ1 to τ2, the disassembling step begins. The middle tile falls
off from the shape first, since its total interaction strengths to the shape sum to 6, less
than the current temperature τ2 = 7. The shape is then disassembled from the middle
into two symmetric shapes as shown in state 5, since cutting the shape from the middle
only needs strength 3, which is less than τ2. When we change the temperature from τ2

to τ3, two free ends labeled as 5 can form a bond of strength 5, which constructs a new
seed cluster as shown in state 6. Finally, we change the temperature to τ1 again to start
the next iteration. In Figure 7, the second iteration starts with a seed cluster of size 6,
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Fig. 6. Constructing an equilateral triangle of side 6 from 4: the first iteration
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Fig. 7. Constructing an equilateral triangle of side 6 from 4: the second iteration

which is shown in state 0. Putting the ending tile into the solution ends the construction
with an equilateral triangle as shown in state 1. The stable final shape is an equilateral
triangle of side 6.

5 Equilateral Triangle Is the Only Stable Final Shape

To prove that within this extended TAS the equilateral triangle is the only stable final
shape, we need to prove (1) during the assembling step, no other shape except for an
equilateral triangle is formed; (2) after the disassembling, there are only two shapes in
solution; (3) at temperature 5, the two shapes formed after the disassembling step will
bond together to form the new seed cluster for the next iteration.

(1) During the assembling step, τ = 3, no two free tiles can bond together, since the
strands on them have strength of 2 at most. There is only one stable shape in solution,
which is the seed cluster, so the only way that a new shape is formed is that one free
tile attaches to the seed cluster, updating the shape, then comes another free tile. For the
edge tile, it can only stick to the leftmost position or the rightmost position of the seed
cluster. For the middle tile, it can only stick to the seed cluster with the help of one of its
neighbors. That is, the assembling procedure is level-by-level and from-edge-to-center.
In addition to the angle design, the only stable shape formed is the equilateral triangle.

(2) When τ = 7, the middle tiles in the one-piece-left triangle start to fall off first
since they have the smallest sum of interaction strengths. After that, two bonds b1 =
bond(a, ā‖1), b2 = bond(y,y‖2) are broken, which splits the current shape into two
stable shapes.

(3) When the temperature τ = 5, the free strands that can stick together are γ and
γ̄ . Because the two shapes each have one of them, bond(γ, γ̄‖5) will be formed, which
groups the two shapes together to form a new seed cluster.
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6 Conclusion and Future Work

The iterative approach we propose in this paper uses only O(1) tile types to construct an
equilateral triangle of size n, where n= 2i+2 (i is an integer and i≥ 1). This approach
approximately doubles the size of the cluster after each iteration, which means we can
start from a small-size seed cluster instead of needing a large one proportional to the
final size.

A future direction is to generalize this approach to construct other kinds of shapes,
e.g., a square. The iterative characteristic is supported by the dynamic strength trans-
formation and temperature control. Since we only need to switch between three tem-
peratures, it is not hard to control the temperature in lab in this case. We also propose an
implementation of the strength transformation by using conceptual enzymes, a ligase
and specific restriction enzymes, as a blueprint for realizing the system in the laboratory
which we hope to do.
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Abstract. We present a biomolecular probabilistic model driven by the
action of a DNA toolbox made of a set of DNA templates and enzymes
that is able to perform Bayesian inference. The model will take single-
stranded DNA as input data, representing the presence or absence of
a specific molecular signal (the evidence). The program logic uses dif-
ferent DNA templates and their relative concentration ratios to encode
the prior probability of a disease and the conditional probability of a
signal given the disease. When the input and program molecules in-
teract, an enzyme-driven cascade of reactions (DNA polymerase exten-
sion, nicking and degradation) is triggered, producing a different pair of
single-stranded DNA species. Once the system reaches equilibrium, the
ratio between the output species will represent the application of Bayes’
law: the conditional probability of the disease given the signal. In other
words, a qualitative diagnosis plus a quantitative degree of belief in that
diagnosis. Thanks to the inherent amplification capability of this DNA
toolbox, the resulting system will be able to to scale up (with longer cas-
cades and thus more input signals) a Bayesian biosensor that we designed
previously.

1 Introduction

Dynamic DNA nanotechnology is one of the areas of biomolecular computing
that has developed most over the past decade. Many different models of DNA
processors have been implemented since Adleman’s seminal work [1]. We can find
examples of DNA automata driven by restriction enzymes [2], deoxyribozyme-
based DNA automata [3,4], DNA polymerase-based computers [5] or strand dis-
placement circuits [6,7,8,9,10,11,12].

Most of the above models are designed as “use once” devices. This is a conse-
quence of their operating principle: a set of molecules in a non-equilibrium state
undertaking reactions and conformational changes until they reach a practically
irreversible equilibrium state. Although this feature seems to be consistent with
the objectives of structural DNA nanotechnology (e.g. DNA origami [13]), when
we move to dynamic DNA nanotechnology the “use once” feature is a drawback
rather than an advantage. Although they can still have very interesting appli-
cations (e.g. in vitro sensors and genetic diagnosis), every computation would
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require a new DNA device. In order to achieve more complex behaviors, such as
bistability or oscillations, biomolecular computing models need to be driven by
a continuous input flux of energy [14]. This could be achieved, for example, by
the DNAzyme-driven [3,4] and catalytic enzyme-free [10,11] models cited above,
as long as there is a continuous supply of input ribonucleated strands and fuel
strands, respectively, in the environment (e.g. in an open reactor). The design of
other biomolecular computing models depends fundamentally on the existence
of an input energy flux. For example, RNA computers work with a continuous
supply of NTP, used by RNA polymerase as fuel in the transcription process
[15,16].

DNA polymerase was one of the first computational primitives used in the
early models of DNA computing [1,17]. It was therefore not surprising to find
it in the first autonomous DNA computer model: the Whiplash machine [5].
However, after that milestone, DNA polymerase-driven models remained outside
the mainstream for years, mainly due to the need for thermal cycles. Interest
in this topic rekindled after some breakthroughs exploiting isothermal DNA
amplification protocols [18], such as an improved Whiplash model [19] or the
DNA toolbox developed by Rondelez’s team [20,21,22].

The DNA toolbox is specially interesting due to its similarities with RNA
computers: it is also driven by a continuous supply of NTP, which is used to
extend input DNA strands and produce output strands. It has recently led to
impressive achievements, such as reliable oscillations [20], bistability [21] or pop-
ulation dynamics models like predator-prey [22]. Its operation is based on the
action of a set of enzymes (DNA polymerase, an isothermal DNA nicking en-
zyme and a single-strand specific exonuclease) on the input strands and a set
of single-stranded DNA templates, enabling the following set of basic reactions
(see Figure 1):

– Polymerization and nicking. After the hybridization of an input DNA strand−→
A 1 at the 3’ end of a DNA template

←−−
AB, DNA polymerase produces the

double strand
←→
AB. Since the duplex

←→
A contains the recognition sequence of

the nicking enzyme, the newly polymerized strand is cleaved in two fragments−→
A and

−→
B , which will dissociate from the template due to their shorter length.−→

B can also be displaced by further DNA polymerase activity. As result of
this process, the input strands

−→
A periodically generate new strands

−→
B (see

left panel in Figure 1).
– Inactivation. A special type of input DNA strand

−→
B can be used to inactivate

a template
←−−
DE.

−→
B does not fully bind the recognition sequence of the nicking

enzyme in the template, and since it is longer than the regular inputs
−→
D ,

−→
B

wins the competition to bind the template almost irreversibly. Moreover, its
3’ end does not bind the template, avoiding the action of DNA polymerase
(see right bottom panel in Figure 1).

1 A DNA strand denoted
−→
A is supposed to be Watson-Crick complementary to a DNA

strand denoted
←−
A , and would form a duplex

←→
A when both molecules hybridize.
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A B
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ø

exo.exo.

ø
B C

B

C

pol.
nick.

D E

B

If B activator:

If B inhibitor:

Fig. 1. DNA toolbox. The left panel shows the basic catalytic operation of the tool-
box: the input strand

−→
A binds the 3’ end of the DNA template

←−
AB, allowing DNA

polymerase to extend it forming the duplex
←→
AB. Then the enzyme nickase binds to its

recognition sequence in
←→
A (bold line) and cleaves the newly polymerized upper strand−→

AB in two fragments
−→
A and

−→
B , which can either dissociate from the template due to

their shorter length, or let
−→
B be displaced by a new DNA polymerization of

−→
A . The

right panel shows the two possible operating modes of the output
−→
B : as an activator

it will enable the polymerization of another DNA strand
−→
C (see the motif at the top);

as an inhibitor, it would bind in the middle of a DNA template
←−−
DE, inhibiting nicking

and polymerization. All the DNA strands except the templates are subject to periodic
degradation (see arrows pointing to φ).

– Degradation. Species dynamically generated by DNA polymerase are de-
graded by a single-strand specific exonuclease. DNA templates are protected
from the action of the exonuclease thanks to DNA backbone modifications
at their 5’ end.

Inspired by recent works presented above by Rondelez’s team, we have identi-
fied their DNA toolbox as an alternative to implementing probabilistic reasoning,
which can be used when we want to consider diagnostic accuracy or uncertainty
of tests in our clinical decisions (i.e., classic systems like Mycin [23]). With the
aim of designing a model that can process this uncertainty, this article presents
a Bayesian biosensor that reasons probabilistically and whose output represents
the probability (value between 0 and 1) of a disease. Such a device can be used
to estimate and update the probability of any diagnosis based in the light of new
evidence, i.e., the presence or absence of a new specific signal (or set of signals).
The DNA sensor device encodes two different probabilities as program data: the
conditional probability of the signal given the disease (P (signal|disease)) and
the prior probability of the disease (P (disease)). Then, when the sensor inter-
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acts with an input representing the evidence of a signal (its presence or absence),
Bayes’ law is autonomously computed by means of enzymatic reaction cascades,
releasing a set of DNA species whose concentration ratio encodes the posterior
probability of the disease given the input (P (disease|signal)). We presented a
similar model in [24], which used DNA strand displacement instead of Rondelez’s
DNA toolbox.

The rest of the chapter is structured as follows. Section 2 includes an example
of Bayesian inference that can be performed with the model. Sections 3, 4 and
5 show the encoding of input signals and prior and conditional probabilities,
respectively. Section 6 details how the model implements the Bayesian inference
process. Finally, Section 8 summarizes the conclusions and future work.

2 Example of Bayesian Inference

This section describes a basic Bayesian inference example.
Let us imagine that we want to diagnose whether a patient is affected by a

certain disease d, whose possible diagnosis is “disease present” (D1) or “disease
absent” (D0).

Based on empirical data, we can know upfront the prior probability of the
disease. For this example, we consider both diagnoses to be equiprobable, which
is represented as follows:

P (d) = 〈P (D = present), P (D = absent)〉 = 〈P (D1), P (D0)〉 = 〈0.5, 0.5〉.
Studying already diagnosed cases of this disease and its symptoms s (working

as input signals), we can also ascertain upfront the conditional probability of a
certain symptom (or signal) s given the disease d, P (s|d):

P (S = absent)|D = absent) = P (S0|D0) = 0.7
P (S = present)|D = absent) = P (S1|D0) = 0.3
P (S = absent)|D = present) = P (S0|D1) = 0.2
P (S = present)|D = present) = P (S1|D1) = 0.8.

Now we test whether the patient has symptom s, which we interpret as a
confirmation that the signal s is present (S1). In the light of this new evidence,
we can update our knowledge on the probability of the disease being present
given that the signal is present, P (D1|S1), applying the Bayes’ law:

P (d|s) = P (s|d) · P (d)

P (s)
= α · P (s|d) · P (d). (1)

Since we do not know the prior probability of the signal P (s), we can apply
the second derivation of Bayes’ law as stated in Equation 1:

P (D1|S1) = α · P (S1|D1) · P (D1) = α · 0.8 · 0.5 = α · 0.4.
In order to find α, we need to calculate P (D0|S1) as well:
P (D0|S1) = α · P (S1|D0) · P (D0) = α · 0.3 · 0.5 = α · 0.15.
According to the foundations of probability theory, we know P (D1|S1) +

P (D0|S1) = 1. We can use this knowledge to derive α = 1.81 and P (D1|S1) =
0.73.
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The biomolecular probabilistic inference devices described in the next sections
of the paper can autonomously update their output probability values, such that
they match the inference steps described in this example.

3 Encoding Input Evidences

Normally, a biomolecular device that senses real samples expecting a certain
input signal In would reason as follows: if molecules In are present, the signal
is present; otherwise the signal is absent. However, the devices that we propose
use a different type of input logic, where the presence and absence of the signal
are represented by the presence of different DNA species.

Thus, our input evidence is encoded using single-stranded DNA. A strand S1

encodes the presence of an input signal, whereas a strand S0 encodes the absence
of the signal. As we are dealing with evidences, only one species can be present
at a time: either S1 (meaning the signal is present) or S0 (meaning the signal is
not present). These input signals will tell the sensor that the prior probability
of the disease needs to be updated according to the given evidence.

However, if the system is to be able to deal with real biological samples, it
needs to translate the presence of an external input signal In into strands S1

(meaning input present in our system) and the absence of In into strands S0

(meaning input absent in our system). A recent bistable implementation us-
ing this DNA toolbox illustrated an excellent way of translating the respective
signals to produce strands S1 and S0 [21]. In this paper, a bistable switch pro-
ducing a certain type of DNA species (which could be our S0) in the absence of
a certain type of input species In switched to producing another type of DNA
species (which could be our S1) in the presence of In. This model meets all the
requirements to encode input evidence in the fashion described above. See [21]
for details, which are omitted here due to space constraints.

4 Encoding Prior Probabilities

As illustrated by the example of Section 2, the prior probability of a disease
is represented by the duple P (d) = 〈P (D1), P (D0)〉. Our model will use two
different single-stranded DNA species to encode each possible probability value:−→
D1 species representing P (D = present) and

−→
D0 representing P (D = absent).

These strands will be produced from two DNA templates,
←−−−
D1D1 and

←−−−
D0D0.

When
−→
Di strands interact with their respective

←−−−
DiDi templates,

−→
Di production

increases (see Figure 2). At the same time, exonuclease degrades the production
of

−→
Di at a certain rate. The equations below govern this behavior:

−→
Di +

←−−−
DiDi

ka−−−−−−⇀↽−−−−−−
k
Di
a ·KDi

d

−→
Di ·

←−−−
DiDi

k
Di
cat−−→ −→

Di +
−→
Di +

←−−−
DiDi (2)

−→
Di

k
Di
dec−−−→ φ , (3)



Probabilistic Reasoning with an Enzyme-Driven DNA Device 165

where ka is the association constant of
−→
Di, KDi

d is the dissociation constant
of

−→
Di from the DNA template, kDi

dec is the degradation rate of
−→
Di, and kDi

cat is
the rate of production of new strands

−→
Di. The constant really includes several

reactions (polymerization, nicking and dissociation), but is confined to one here
for reasons of space. Therefore, we would expect kDi

cat << kDi
a and thus the

respective Michaelis-Menten constant of the catalysis reaction would be KDi
m &

KDi

d (KDi
m = (kDi

a ·KDi

d + kDi
cat)/k

Di
a ).

When the system reaches equilibrium, the ratio between the concentration of
both species will encode the prior probability, such that

P (Di) =
[
−→
Di]

EQ

1∑
i=0

[
−→
Di]EQ

=
[
−→
Di]

EQ

λ
, (4)

where λ represents the sum of [
−→
D0] and [

−→
D1] that encodes the maximum proba-

bility 1. Each equilibrium concentration [
−→
Di]

EQ is a function of the initial con-
centration of the templates

−−−→
DiDi. Section 6 shows the derivation of this function.

ø ø

D0 D1D0

D0

D1

D0 D1 D1

Fig. 2. Encoding prior probabilities. Thick regions of the strands represent the nickase
recognition sequence. When a strand

−→
Di at the top of the figure binds a template strand←−−−

DiDi at the bottom of the figure, they form a complex
−→
Di:

←−−−
DiDi then DNA polymerase

extends the upper strand to form the duplex
−−−→
DiDi:

←−−−
DiDi and finally the enzyme nickase

cleaves the newly polymerized strand in the middle. After the
−→
Di strands dissociate

from the template due to their short length, they can either be degraded by the exonu-
clease (arrows pointing to φ) or be recruited again by the template to produce more
strands

−→
Di.

5 Encoding Conditional Probabilities

Conditional probabilities require the encoding of four different probability val-
ues: P (S0|D0), P (S0|D1), P (S1|D0) and P (S1|D1). Two different types of DNA
templates will be used in the encoding of each probability value (see left side of
Figure 3):

– Templates with format
←−−−−−−−−
Di :Di ∧ Sj produce species

−−−−−→
Di ∧ Sj in the presence

of input strands
−→
Di (see Figure 3), such that when the system reaches equi-

librium [
−−−−−→
Di ∧ Sj ]

EQ is a function of [
−→
Di]

EQ and [
←−−−−−−−−
Di :Di ∧ Sj ]. The relative
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concentration of the templates with format
←−−−−−−−−
Di :Di ∧ Sj encodes each condi-

tional probability value, such that:

P (Sj |Di) =
βij · [←−−−−−−−−Di :Di ∧ Sj ]
1∑

j=0

βij · [←−−−−−−−−Di :Di ∧ Sj ]

(5)

1∑
j=0

βij · [←−−−−−−−−Di :Di ∧ Sj ] =
1∑

j=0

βkj · [
←−−−−−−−−−
Dk :Dk ∧ Sj ] = γ , k �= i , (6)

where βij is a normalization coefficient and γ is the total normalized concen-
tration of strands [

←−−−−−−−−
Di :Di ∧ Sj ] that represents probability 1. Section 6 will

show the meaning of the βij coefficients and how [
−−−−−→
Di ∧ Sj ]

EQ is proportional
to the product of [

−→
Di]

EQ and [
←−−−−−−−−
Di :Di ∧ Sj ].

– Templates with format
←−−−−−−−−
Di ∧ Sj :D

′
i have a twofold objective. First, they gen-

erate the output species D′
i, whose relative concentration will encode the

posterior probability of the disease given the signal (P (d|s)). Second, in con-
junction with the input signal species Si, they select what posterior prob-
ability computation should be produced as output: when the input signal
is S1 (S0), it binds and inactivates the strands

←−−−−−−−−
Di ∧ S0 :D

′
i (

←−−−−−−−−
Di ∧ S1 :D

′
i)

(see the crossed-out arrows in Figure 3), so that there is only one source of
species D′

1 and another of D′
0, whose ratio will conform the output proba-

bility: the posterior probability P (Di|Sj) of the disease. All the templates
with format

←−−−−−−−−
Di ∧ Sj :D

′
i must have the same concentration, so that there are

no changes of relative proportions from [
−→
Di

′] in relation to their respective
source [

−−−−−→
Di ∧ Sj ].

The equations below govern the behaviour of these components:

−→
Di+

←−−−−−−−−
Di :Di ∧ Sj

ka−−−−−−⇀↽−−−−−−
K

Di
d

·kDi
a

−→
Di ·

←−−−−−−−−
Di :Di ∧ Sj

k
Di∧Sj
cat−−−−−→ −→

Di+
←−−−−−−
Di :DiSj+

−−−−−→
Di ∧ Sj (7)

−−−−−→
Di ∧ Sj +

←−−−−−−−−
Di ∧ Sj :D

′
i

ka−−−−−−−−−−⇀↽−−−−−−−−−−
K

Di∧Sj
d ·k

Di∧Sj
a

−−−−−→
Di ∧ Sj ·

←−−−−−−−−
Di ∧ Sj :D

′
i

k
D′

i
cat−−→ ...

...
k
D′

i
cat−−→ −−−−−→

Di ∧ Sj +
←−−−−−−−−
Di ∧ Sj :D

′
i +

−→
Di

′ (8)

−→
Sk +

←−−−−−−−−
Di ∧ Sj :D

′
i

ka−−−−−−⇀↽−−−−−−
K

Sk
d ·kSk

a

−→
Sk ·

←−−−−−−−−
Di ∧ Sj :D

′
i , k �= j (9)
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S0|D0

S0|D1

S1|D0

S1|D1

D0 S0D0 D0 S0 D0 '

S1

D1 D1 S0 D1 S0 D1 '

D0 D0 S1 D0 S1 D0 '

D1 D1 S1 D1 S1 D1 '

D1 ' D0 '

D1

D0

INPUT (new evidence)

prior P(d)

OUTPUT (posterior P(d|s))

[Di:Di S j ] P (S j Di)

[Di S j :Di ' ] = cst

Fig. 3. Encoding conditional probabilities. The prior probability strands
−→
Di bind the

templates on the left side, enabling the production of
←−−−−−
Di ∧ Sj strands (via polymer-

ization and nicking) used to encode conditional probability. These strands will then
activate the templates on the right side not protected by the input strands Sj (see
the crossed-out arrows), producing the output strands

−→
Di

′, whose concentration ratio
encodes the posterior probability P (d|s).

−−−−−→
Di ∧ Sj

k
Di∧Sj
dec−−−−−→ φ (10)

−→
Di

′ k
D′

i
dec−−−→ φ (11)

−→
Sj

k
Sj
dec−−−→ φ , (12)

where ka is the association rate of
−→
Di,

−−−−−→
Di ∧ Sj and

−→
Sk; KDi

d , KDi∧Sj

d and KSk

d are
their respective dissociation constants; kDiSj

cat and k
D′

i
cat are the production rates

of strands
−−−−−→
Di ∧ Sj and

−→
Di

′; kDi∧Sj

dec , kD
′
i

dec and k
Sj

dec are the degradation constants
of

−−−−−→
Di ∧ Sj and

−→
Di

′ and Sj .



168 I. Sainz de Murieta and A. Rodríguez-Patón

6 Inference Process

6.1 Inference Steps

A high-level description of the inference process follows:

Goal. Update the concentration of
−→
Di

′ strands once a new signal (
−→
S0 or

−→
S1) is

detected.
Initial set-up. Add templates

←−−−
DiDi (whose concentration is a parameter in the

encoding of prior probabilities), and templates
←−−−−−−−−
Di :Di ∧ Sj and

←−−−−−−−−
Di ∧ Sj :D

′
i

(whose concentrations are parameters in the encoding of conditional proba-
bilities).

Step 1. Add some
−→
Di, such that templates

←−−−
DiDi bring the production of strands−→

Di to its equilibrium concentration [
−→
Di]

EQ, which will be proportional to the
prior probability P (Di).

Step 2. The
−→
Di species bind the templates

←−−−−−−−−
Di :Di ∧ Sj , activating the pro-

duction (via polymerization and nicking) of
−−−−−→
Di ∧ Sj strands, whose equilib-

rium concentration [
−−−−−→
Di ∧ Sj ]

EQ is proportional to the conditional probability
P (Sj |Di).

Step 3. The newly created “conditional probability strands”
−−−−−→
Di ∧ Sj bind the

templates
←−−−−−−−−
Di ∧ Sj :D

′
i that are not protected by

−→
S0 or

−→
S1, activating the

production (via polymerization and nicking) of the output species D′
i.

Read-out. The new concentration ratio of
−→
Di

′ encodes the posterior probability
P (Di|Sj).

This description is refined below providing a more thorough analysis of the pro-
cess with estimations and derivations.

6.2 Modeling the Inference

From the equations presented in Sections 4 and 5, we can build a derivation
that relates the output concentrations [

−→
Di

′] to the initial concentrations of the
strands encoding prior and conditional probabilities.

Based on Equations 2, 3 and the Michaelis-Menten model [25], we can infer
how [

−→
Di] changes in time (see Equation 13) and, applying the equilibrium con-

dition (d[
−→
Di]/dt = 0), obtain derivations for [

−→
Di]

EQ (see Equation 14) and the
initial [

←−−−
DiDi] (see Equation 15):

d[
−→
Di]

dt
=

kDi
cat · [

−→
Di] · [

←−−−
DiDi]

KDi

d + [
−→
Di]

− kDi

dec · [
−→
Di] (13)

[
−→
Di]

EQ =
kDi
cat

kDi

dec

[
←−−−
DiDi]−KDi

d (14)
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[
←−−−
DiDi] =

kDi

dec

kDi
cat

([
−→
Di]

EQ +KDi

d ) . (15)

A similar procedure can be applied for
−−−−−→
Di ∧ Sj from Equations 7 and 10,

obtaining a derivation for [
−−−−−→
Di ∧ Sj ]

EQ (see Equations 16 and 17). We are as-
suming KDi

d >> [
−→
Di], which could be achieved with an appropriate temperature

increase:

d[
−−−−−→
Di ∧ Sj ]

dt
=

k
Di∧Sj

cat

KDi

d

[
−→
Di] · [

←−−−−−−
Di :DiSj ]− k

Di∧Sj

dec · [−−−−−→Di ∧ Sj ] (16)

[
−−−−−→
Di ∧ Sj ]

EQ =
k
Di∧Sj

cat

KDi

d · kDi∧Sj

dec

[
−→
Di] · [

←−−−−−−
Di :DiSj ] . (17)

The formulation of [
−→
Di

′] is a bit more intricate, because the Michaelis-Menten
derivation needs to consider the interaction of the inhibiting input species Si,
which represses the catalysis. Based on Equations 8, 9 and 11, and also assuming
K

Di∧Sj

d >> [
−−−−−→
Di ∧ Sj ], we can infer [

−→
Di

′]EQ (see Equations 18 and 19):

d[
−→
Di

′]

dt
=

1∑
j=0

k
D′

i
cat · [

−−−−−→
Di ∧ Sj] · [

←−−−−−−−−
Di ∧ Sj :D

′
i]

K
Di∧Sj

d · (1 + [Sk  =j
k ]

K
Sk
d

)
− k

D′
i

dec · [
−→
Di

′] (18)

[
−→
Di

′]EQ =

1∑
j=0

k
D′

i
cat

K
Di∧Sj

d · kD
′
i

dec · (1 +
[Sk  =j

k ]

K
Sk
d

)
[
−−−−−→
Di ∧ Sj ] · [

←−−−−−−−−
Di ∧ Sj :D

′
i] . (19)

Taking into account that species S0 and S1 are never present at the same
time, [

−→
Si] >> [

−−−−−→
Di ∧ Sj ]+ [

←−−−−−−−−
Di ∧ Sj :D

′
i] and KSk

d << K
Di∧Sj

d , we can neglect the
terms of the sum in Equation 19 where [

−→
Sk] > 0 and derive a simpler expression

for [
−→
Di

′]:

[
−→
Di

′]EQ

[Sj ]=0, [Sk  =j
k ]>0

=
k
D′

i
cat

K
Di∧Sj

d · kD
′
i

dec

[
−−−−−→
Di ∧ Sj ] · [

←−−−−−−−−
Di ∧ Sj :D

′
i] . (20)

Substituting Equation 17 in Equation 20, and reordering constant values to
the left and variables to the right:

[
−→
Di

′]EQ

[Sj]=0, [Sk  =j
k ]>0

=
k
D′

i
cat · k

Di∧Sj

cat · [
←−−−−−−−−
Di ∧ Sj :D

′
i]

K
Di∧Sj

d · kD
′
i

dec ·K
Di

d · kDi∧Sj

dec

[
←−−−−−−
Di :DiSj ] · [

−→
Di] =

= βij · [←−−−−−−Di :DiSj ] · [
−→
Di] . (21)
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In the above Equation 21, all the constant terms have been grouped in the pa-
rameter βij (already introduced in Equations 5 and 6). The term [

−→
Di] is propor-

tional to the prior probability (see Equation 4), and the product βij · [
←−−−−−−
Di :DiSj ]

is proportional to the conditional probability (see Equation 5). The derivation
below shows how the ratio between [

−→
D0

′]EQ and [
−→
D1

′]EQ determines posterior
probability P (d|s):

[
−→
Di

′]EQ

[
−→
D0

′]EQ + [
−→
D1

′]EQ
=

βij · [←−−−−−−Di :DiSj ] · [
−→
Di]

β0j · [←−−−−−−D0 :D0Sj ] · [
−→
D0] + β1j · [←−−−−−−D1 :D1Sj ] · [

−→
D1]

=

=
βij · γ

βij
· P (Sj |Di) · λ · P (Di)

β0j · γ
β0j

· P (Sj |D0) · λ · P (D0) + β1j · γ
β1j

· P (Sj |D1) · λ · P (D1)
=

=
P (Sj |Di) · P (Di)

P (Sj |D0) · P (D0) + P (Sj |D1) · P (D1)
=

P (Sj |Di) · P (Di)

P (Sj)
= P (Di|Sj) .

7 Discussion

The DNA biosensor presented here operates as a Bayesian inference device. It
is capable of introducing quantitative information, highlighted by the molecular
indicators or signals, into the tests. It builds on our previous work [24], but uses
the DNA toolbox recently introduced by Rondelez [20,21] instead of the DNA
strand displacement operation. Another aim was to map the basic concepts of
probability theory and Bayesian inference into the toolbox motifs, for use as
design patterns when implementing Bayesian reasoning with DNA.

The example detailed in Section 6 has used only one input signal. For this
model to have realistic applications in genetic diagnosis, however, it needs to
deal with more than one signal (s1, ..., sn) for the same disease d (superscripts
denote the signal number). According to Equation 1, the following formulation
of Bayes’ law would need to be solved: P (d|s1, ..., sn) = α · P (d) · P (s1, ..., sn|d).
Assuming conditional independence of the signals given the disease (as in the
naïve Bayes model [26]) we can derive the following expression: P (d|s1, ..., sn) =
α · P (d) · P (s1|d) · ... · P (sn|d), meaning the initial probability statement with
multiple input signals can be decomposed into conditional probability products,
which can be encoded by cascading the devices presented here.

This research has addressed the two main improvement opportunities of the
work that we presented elsewhere [24]:

Reusability. Devices are conceived for just one use. If the inputs are altered af-
ter the output signals become stable, the new output would not be correct
any more. We would need a new initialised set of devices to deal with a
new input. This research solves this problem with the action of the single-
strand specific exonuclease, which periodically degrades all the non-template
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strands not protected at their 5’ end. This way, when the initial intput
data flux Sk is stopped in favor of the new flux Sk′ (k �= k′; k, k′ ∈ 0..1),
the system will converge to the total elimination of Sk (since that species
is only degraded and not replenished). The same should happen with the
intermediate species

←−−−−−
Di ∧ Sj and output species

←−
D′

i, driving the system to
converge to a the correct output for input Sk′ .

Signal attenuation. In theory, the model in [24] was also able to deal with mul-
tiple input signals by cascading the outputs as inputs of other conditional
probability devices downstream. However, each inference iteration would at-
tenuate the signal by an average of 50%. The replacement of strand dis-
placement by an enzymatic catalysis, with inherent amplification capabili-
ties, overcomes this drawback allowing longer inference cascades and thus
more input signals.

8 Conclusions and Future Work

We have designed a biomolecular probabilistic expert system for genetic diagno-
sis. This is an enzyme-driven DNA device able to:

1. Encode diagnostic probabilistic information in single-stranded DNA.
2. Sense DNA inputs.
3. Process probabilistic information, encoded either as a steady state concen-

tration of single-stranded DNA (for prior probabilities) or as a fixed concen-
tration of single-stranded DNA (for conditional probabilities).

4. Release output molecules (duples of single-stranded DNA encoding a prob-
ability proportional to their concentration ratio).

5. Update the probability of the disease depending on the different single-
stranded DNA inputs detected following Bayes’ rule.

The model is autonomous and can be implemented according to the DNA
toolbox presented in [20,21]. We think this and the other model that we in-
troduced in [24] have the potential to deliver new quantitative applications of
probabilistic genetic diagnosis in vitro. We plan to build, improve and generalize
both models in a wet lab to work with all types of Bayesian networks (and not
just naïve Bayes approaches [26]).
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Abstract. Previous work by Demaine et al. (2012) developed a strong
connection between smallest context-free grammars and staged self-
assembly systems for one-dimensional strings and assemblies. We extend
this work to two-dimensional polyominoes and assemblies, comparing
staged self-assembly systems to a natural generalization of context-free
grammars we call polyomino context-free grammars (PCFGs).

We achieve nearly optimal bounds on the largest ratios of the smallest
PCFG and staged self-assembly system for a given polyomino with n
cells. For the ratio of PCFGs over assembly systems, we show that the
smallest PCFG can be an Ω(n/ log3 n)-factor larger than the smallest
staged assembly system, even when restricted to square polyominoes. For
the ratio of assembly systems over PCFGs, we show that the smallest
staged assembly system is never more than a O(log n)-factor larger than
the smallest PCFG and is sometimes an Ω(log n/ log log n)-factor larger.

1 Introduction

In the mid-1990s, the Ph.D. thesis of Erik Winfree [14] introduced a theoretical
model of self-assembling nanoparticles. In this model, which he called the abstract
tile assembly model (aTAM), square particles called tiles attach edgewise to each
other if their edges share a common glue and the bond strength is sufficient
to overcome the kinetic energy or temperature of the system. The products of
these systems are assemblies : aggregates of tiles forming via crystal-like growth
starting at a seed tile. Surprisingly, these tile systems have been shown to be
computationally universal [14,5], self-simulating [8,9], and capable of optimally
encoding arbitrary shapes [12,1,13].

In parallel with work on the aTAM, a number of variations on the model have
been proposed and investigated. One well-studied variant called the hierarchi-
cal [4] or two-handed assembly model (2HAM) [6] eliminates the seed tile and
allows tiles and assemblies to attach in arbitrary order. This model was shown
to be capable of (theoretically) faster assembly of squares [4] and simulation of
aTAM systems [2], including capturing the seed-originated growth dynamics. A
generalization of the 2HAM model proposed by Demaine et al. [6] is the staged
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assembly model, which allows the assemblies produced by one system to be used
as reagents (in place of tiles) for another system, yielding systems divided into
sequential assembly stages. They showed that such sequential assembly systems
can replace the role of glues in encoding complex assemblies, allowing the con-
struction of arbitrary shapes efficiently while only using a constant number of
glue types, a result impossible in the aTAM or 2HAM.

To understand the power of the staged assembly model, Demaine et al. [7]
studied the problem of finding the smallest system producing a one-dimensional
assembly with a given sequence of labels on its tiles, called a label string. They
proved that for systems with a constant number of glue types, this problem is
equivalent to the well-studied problem of finding the smallest context-free gram-
mar whose language is the given label string, also called the smallest grammar
problem (see [11,3]). For systems with unlimited glue types, they proved that the
ratio of the smallest context-free grammar over the smallest system producing
an assembly with a given label string of length n (which they call separation) is
Ω(

√
n/ logn) and O((n/ logn)2/3) in the worst case.

In this paper we consider the two-dimensional version of this problem: finding
the smallest staged assembly system producing an assembly with a given label
polyomino. For systems with constant glue types and no cooperative bonding, we
achieve separation of grammars over these systems of Ω(n/(log logn)2) for poly-
ominoes with n cells (Sect. 6.1), and Ω(n/ log3 n) when restricted to rectangular
(Sect. 6.2) or square (Sect. 6.3) polyominoes with a constant number of labels.
Adding the restriction that each step of the assembly process produces a single
product, we achieveΩ(n/ log3 n) separation for general polyominoes with a single
label (Sect. 6.1). For the separation of staged assembly systems over grammars,
we achieve bounds of Ω(log n/ log logn) (Sect. 4) and, constructively, O(log n)
(Sect. 5). For all of these results, we use a simple definition of context-free gram-
mars on polyominoes that generalizes the deterministic context-free grammars
(called RCFGs) of [7].

When taken together, these results give a nearly complete picture of how
smallest context-free grammars and staged assembly systems compare. For some
polyominoes, staged assembly systems are exponentially smaller than context-
free grammars (O(log n) vs. Ω(n/ log3 n)). On the other hand, given a polyomino
and grammar deriving it, one can construct a staged assembly system that is a
(nearly optimal) O(log n)-factor larger and produces an assembly with a label
polyomino replicating the polyomino.

2 Staged Self-assembly

An instance of the staged tile assembly model is called a staged assembly system
or system, abbreviated SAS. A SAS S = (T,G, τ,M,B) is specified by five
parts: a tile set T of square tiles, a glue function G : Σ(G)2 → {0, 1, . . . , τ}, a
temperature τ ∈ N, a directed acyclic mix graph M = (V,E), and a start bin
function B : VL → T from the leaf vertices VL ⊆ V of M with no incoming
edges.
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Each tile t ∈ T is specified by a 5-tuple (l, gn, ge, gs, gw) consisting of a label
l taken from an alphabet Σ(T ) (denoted l(t)) and a set of four non-negative
integers in Σ(G) = {0, 1, . . . , k} specifying the glues on the sides of t with
normal vectors 〈0, 1〉 (north), 〈1, 0〉 (east), 〈0,−1, 〉 (south), and 〈−1, 0〉 (west),
respectively, denoted gu(t). In this work we only consider glue functions with
the constraints that if G(gi, gj) > 0 then gi = gj, and G(0, 0) = 0.

A configuration is a partial function C : Z2 → T mapping locations on the
integer lattice to tiles. Any two locations p1 = (x1, y1), p2 = (x2, y2) in the
domain of C (denoted dom(C)) are adjacent if ||p2 − p1|| = 1 and the bond
strength between any pair of tiles C(p1) and C(p2) at adjacent locations is
G(gp2−p1(C(p1)), gp1−p2(C(p2)). A configuration is a τ-stable assembly or an
assembly at temperature τ if dom(C) is connected on the lattice and, for any
partition of dom(C) into two subconfigurations C1, C2, the sum of the bond
strengths between tiles at pairs of locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at
least τ . Any pair of configurations C1, C2 are equivalent if there exists a vector
v = 〈x, y〉 such that dom(C1) = {p+ v | p ∈ dom(C2)} and C1(p) = C2(p+ v)
for all p ∈ dom(C1). Two τ -stable assemblies A1, A2 are said to assemble into
a superassembly A3 if there exists a translation vector v = 〈x, y〉 such that
dom(A1) ∩ {p+ v | p ∈ A2} = ∅ and A3 defined by the partial functions A1 and
A′

2 with A′
2(p) = A2(p+ v) is a τ -stable assembly.

Each vertex of the mix graphM describes a two-handed assembly process. This
process starts with a set of τ -stable input assemblies I. The set of assembled
assemblies Q is defined recursively as I ⊆ Q, and for any pair of assemblies
A1, A2 ∈ Q with superassembly A3, A3 ∈ Q. Finally, the set of products P ⊆ Q
is the set of assemblies A such that for any assembly A′, no superassembly of A
and A′ is in Q.

The mix graphM = (V,E) of S defines a set of two-handed assembly processes
(calledmixings) for the non-leaf vertices ofM (called bins). The input assemblies
of the mixing at vertex v is the union of all products of mixings at vertices v′

with (v′, v) ∈ E. The start bin function B defines the lone single-tile product
of each mixings at a leaf bin. The system S is said to produce an assembly A if
some mixing of S has a single product, A. We define the size of S, denoted S, to
be |E|, the number of edges in M . If every mixing in a S has a single product,
then S is a singular self-assembly system (SSAS).

The results of Section 6.4 use the notion of a self-assembly system S ′ simu-
lating a system S by carrying out the same sequence of mixings and producing
a set of scaled assemblies. Formally, we say a system S ′ = (T ′, G′, τ,M ′, B′)
simulates a system S = (T,G, τ,M,B) at scale b if there exist two functions f ,
g with the following properties:

(1) The function f : (Σ(T ′) ∪ {∅})b2 → Σ(T ) ∪ {∅} maps the labels of b × b
regions of tiles (called blocks) to a label of a tile in T . The empty label ∅
denotes no tile.

(2) The function g : S′ → V maps a subset S′ of the vertices of the mix graph
M ′ to vertices of the mix graph M such that g is an isomorphism between
the subgraph induced by S′ in M ′ and the graph M .
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Fig. 1. A self-assembly system (SAS) consisting of a mix graph and tile types (left), and
the assemblies produced by carrying out the algorithmic process of staged self-assembly
(right).

(3) Let P (v) be the set of products of the bin corresponding to vertex v in a
mix graph. Then for each vertex v ∈ M with v′ = g−1(v), P (v) = {f(p) |
p ∈ P (v′)}.

Intuitively, f defines a correspondence between the b-scaled macrotiles in S ′

simulating tiles in S, and g defines a correspondence between bins in the systems.
Property (3) requires that f and g do, in fact, define correspondence between
what the systems produce.

The self-assembly systems constructed in Sections 5 and 6 produce only
mismatch-free assemblies : assemblies in which every pair of incident sides of two
tiles in the assembly have the same glue. A system is defined to be mismatch-free
if every product of the system is mismatch-free.

3 Polyomino Context-Free Grammars

Here we describe polyominoes, a generalization of strings, and polyomino context-
free grammars, a generalization of deterministic context-free grammars. These
objects replace the strings and restricted context-free grammars (RCFGs) of
Demaine et al. [7].

A labeled polyomino or polyomino P = (S,L) is defined by a connected set of
points S on the square lattice (called cells) containing (0, 0) and a label function
L : S → Σ(P ) mapping each cell of P to a label contained in an alphabet
Σ(P ). The size of P is the number of cells P contains and is denoted |P |.
The label of the cell at lattice point (x, y) is denoted L((x, y)) and we define
P (x, y) = L((x, y)) for notational convenience. We refer to the label or color of
a cell interchangeably.
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Define a polyomino context-free grammar (PCFG) to be a quadruple G =
(Σ,Γ, S,Δ). The set Σ is a set of terminal symbols and the set Γ is a set of non-
terminal symbols. The symbol S ∈ Γ is a special start symbol. Finally, the set Δ
consists of production rules, each of the form N → (R1, (x1, y1)) . . . (Rj , (xj , yj))
where N ∈ Γ and is the left-hand side symbol of only this rule, Ri ∈ N ∪T , and
each (xi, yi) is a pair of integers. The size of G is defined to be the total number
of symbols on the right-hand sides of the rules of Δ.

A polyomino P can be derived by starting with S, the start symbol of G,
and repeatedly replacing a non-terminal symbol with a set of non-terminal and
terminal symbols. The set of valid replacements is Δ, the production rules of G,
where a non-terminal symbol N with lower-leftmost cell at (x, y) can be replaced
with a set of symbols R1 at (x+x1, y+y1), R2 at (x+x2, y+y2), . . . , Rj at (x+
xj , y+ yj) if there exists a rule N → (R1, (x1, y1))(R2, (x2, y2)) . . . (Rj , (xj , yj)).
Additionally, the set of terminal symbol cells derivable starting with S must be
connected and pairwise disjoint.

The polyomino P derived by the start symbol of a grammar G is called the
language of G, denoted L(G), and G is said to derive P . In the remainder of
the paper we assume that each production rule has at most two right-hand side
symbols (equivalent to binary normal form for 1D CFGs), as any PCFG can be
converted to this form with only a factor-2 increase in size. Such a conversion
is done by iteratively replacing two right-hand side symbols Ri, Ri′ with a new
non-terminal symbol Q, and adding a new rule replacing Q with Ri and Ri′ .

Intuitively, a polyomino context-free grammar is a recursive decomposition
of a polyomino into smaller polyominoes. Because each non-terminal symbol is
the left-hand side symbol of at most one rule, each non-terminal corresponds
to a subpolyomino of the derived polyomino. Then each production rule is a
decomposition of a subpolyomino into smaller subpolyominoes (see Figure 2).

⇒

N → (R, (0, 0))(R, (3, 0))

a b c

c

b c

c

a a b c

c

a b c

c

Fig. 2. Each production rule in a PCFG generating a single shape is a decomposition of
the left-hand side non-terminal symbol’s polyomino into the right-hand side symbols’
polyominoes

In this interpretation, the smallest grammar deriving a given polyomino is
equivalent to a decomposition using the fewest distinct subpolyominoes in the
decomposition. As for the smallest CFG for a given string, the smallest PCFG
for a given polyomino is deterministic and finding such a grammar is NP-hard.
Moreover, even approximating the smallest grammar is NP-hard [3], and achiev-
ing optimal approximation algorithms remains open [10].
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In Section 5 we construct self-assembly systems that produce assemblies whose
label polyominoes are scaled versions of other polyominoes, with some amount
of “fuzz” in each scaled cell. A polyomino P ′ = (S′, L′) is said to be a (c, d)-
fuzzy replica of a polyomino P = (S,L) if there exists a vector 〈xt, yt〉 with the
following properties:

1. For each block of cells S ′
(i,j) = {(x, y) | xt + di ≤ x < xt + d(i+ 1), yt + dj ≤

y < yt+d(j+1)} (called a supercell), S ′
(i,j)∩S′ �= ∅ if and only if (i, j) ⊆ S.

2. For each supercell S ′
(i,j) containing a cell of P ′, the subset of label cells

{(x, y) | xt+di+(d−c)/2 ≤ x < xt+d(i+1)+(d−c)/2, yt+dj+(d−c)/2 ≤
y < yt + d(j + 1) + (d− c)/2} consists of c2 cells of P ′, with all cells having
identical label, called the label of the supercell and denoted L(i,j).

3. For each supercell S ′
(i,j), any cell that is not a label cell of S ′

(i,j) has a common

fuzz label in L′.
4. For each supercell S ′

(i,j), the label of the supercell L′
(i,j) = P (i, j).

Properties (1) and (2) define how sets of cells in P ′ replicate individual cells in
P , and the labels of these sets of cells and individual cells. Property (3) restricts
the region of each supercell not in the label region to contain only cells with a
common fuzz label. Property (4) requires that each supercell’s label matches the
label of the corresponding cell in P .

4 SAS over PCFG Separation Lower Bound

This result uses a set of shapes we call n-stagglers, an example is seen in Figure 3.
The shapes consist of logn bars of dimensions n/ logn × 1 stacked vertically
atop each other, with each bar horizontally offset from the bar below it by some
amount in the range −(n/ logn − 1), . . . , n/ logn − 1. We use the shorthand
that logn =  logn! for conciseness. Every sequence of logn − 1 integers, each
in the range [−(n/ logn − 1), n/ logn − 1], encodes a unique staggler and by
the pidgeonhole principle, some n-staggler requires log((2n/ logn − 1)logn−1 =
Ω(log2 n) bits to specify.

Lemma 1. Any n-staggler can be derived by a PCFG of size O(log n).

log 28 = 8

n/ log n = 28/8

Fig. 3. The 28-staggler specified by the sequence −18, 13, 9,−17,−4, 12,−10
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Proof. A set of O(log n) production rules deriving a bar (of size Θ(n/ log n)× 1)
can be constructed by repeatedly doubling the length of the bar, using an addi-
tional log n rules to form the bar’s exact length. The result of these production
rules is a single non-terminal B deriving a complete bar.

Using the non-terminal B, a stack of k bars can be described using a produc-
tion rule N → (B, (x1, 0))(B, (x2, 1)) . . . (B, (xk, k−1)), where the x-coordinates
x1, x2, . . . , xk encode the offsets of each bar relative to the bar below it. An equiv-
alent set of k − 1 production rules in binary normal form can be produced by
creating a distinct non-terminal for Ti each stack of the first i bars, and a pro-
duction rule Ti → (Ti−1, (0, 0))(B, (xi, i)) encoding the offset of the topmost bar
relative to the stack of bars beneath it.

In total, O(log n) rules are used to create B, the non-terminal deriving a bar,
and O(log n) are used to create the stack of bars, one per bar. So the n-staggler
can be constructed using a PCFG of size O(log n).

Lemma 2. For every n, there exists an n-staggler P such that any SAS or SSAS
producing an assembly with label polyomino P has size Ω(log2 n/ log logn).

Proof. The proof is information-theoretic. Recall that more than half of all n-
stagglers require Ω(log2 n) bits to specify. Now consider the number of bits
contained in a SAS S. Recall that |S| is the number of edges in the mix graph
of S. Any SAS can be encoded naively using O(|S| log |S|) bits to specify the
mix graph, O(|T | log |T |) bits to specify the tile set, and O(|S| log |T |) bits to
specify the tile type at each leaf node of the mix graph. Because the number
of tile types cannot exceed the size of the mix graph, |T | ≤ |S|. So the total
number of bits needed to specify S (and thus the number of bits of information
contained in S) is O(|S| log |S| + |T | log |T | + |S| log |S|) = O(|S| log |S|). So
some n-staggler requires a SAS S such that O(|S| log |S|) = Ω(log2 n) and thus
|S| = Ω(log2 n/ log logn).

Theorem 1. The separation of SASs and SSASs over PCFGs is Ω(logn/
log logn).

Proof. By the previous two lemmas, more than half of all n-stagglers require
SASs and SSASs of size Ω(log2 n/ log logn) and all n-stagglers have PCFGs of
size O(log n). So the separation is Ω(logn/ log logn).

We also note that scaling the n-staggler by a c-factor produces a shape which
is derivable by a CFG of size O(log n+ log c). That is, the result still holds for
n-stagglers scaled by any amount polynomial in n. For instance, the O(n)-factor
of the construction of Theorem 2.

At first it may not be clear how PCFGs achieve smaller encodings. After all,
each rule in a PCFG G or mixing in SAS S specifies either a set of right-hand
side symbols or set of input bins to use and so has up to O(log |G|) or O(log |S|)
bits of information. The key is the coordinate describing the location of each
right-hand side symbol. These offsets have up to O(log n) bits of information
and in the case that G is small, say O(log n), each rule has a number of bits
linear in the size of the PCFG!
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5 SAS over PCFG Separation upper Bound

Next we show that the separation lower bound of the last section is nearly large
as possible by giving an algorithm for converting any PCFG G into a SSAS S
with system size O(|G| log n) such that S produces an assembly that is a fuzzy
replica of the polyomino derived by G. Before describing the full construction,
we present approaches for efficiently constructing general binary counters and
for simulating glues using geometry.

0

1

1

0

10

00

Increment 0011b by 1, yielding 0100b.

Fig. 4. A binary counter row constructed using single-bit constant-sized assemblies.
Dark blue and green glues indicate 1-valued carry bits, light blue and green glues
indicate 0-valued carry bits.

The binary counter row assemblies used here are a generalization of those by
Demaine et al. [6] consisting of constant-sized bit assemblies, and an example is
seen in Figure 4. Our construction achieves O(log n) construction of arbitrary
ranges of rows and increment values, in contrast to the contruction of [6] that
only produces row sets of the form 0, 1, . . . , 22

m − 1 that increment by 1. To do
so, we show how to construct two special cases from which the generalization
follows easily.

Lemma 3. Let i, j, n be integers such that 0 ≤ i ≤ j < n. There exists a SSAS
of size O(log n) with a set of bins that, when mixed, assemble a set of j − i + 1
binary counter rows with values i, i+ 1, . . . , j incremented by 1.

Lemma 4. Let k, n be integers such that 0 ≤ k ≤ n and n = 2m. There exists a
SSAS of size O(log n) with a set of bins that, when mixed, assemble a set of 2m

binary counter rows with values 0, 1, . . . , 2m − 1 incremented by k.

Lemma 5. Let i, j, k, n be integers such that 0 ≤ i ≤ j < n and 0 ≤ k ≤ n.
There exists a SSAS of size O(log n) with a set of bins that, when mixed, assemble
a set of j− i+1 binary counter rows with values i, i+1, . . . , j incremented by k.

Proof. Combine the constructions used in the proofs of Lemmas 3 and 4 by using
mixing sequences as in the proof of Lemma 3 and sets of four subassemblies
encoding input, carry, and increment bit values as in the proof of Lemma 4.

Theorem 8 of Demaine et al. [6] describes how to reduce the number of glues
used in a system by replacing each tile with a large macrotile assembly, and
encoding the tile’s glues via unique geometry on the macrotile’s sides. We prove
a similar result for labeled tiles, used for proving Theorems 2, 3, and 7.
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Lemma 6. Any mismatch-free τ = 1 SAS (or SSAS) S = (T,G, τ,M) can
be simulated by a SAS (or SSAS) S ′ at τ = 1 with O(1) glues, system size
O(Σ(T )|T |+ |S|), and O(log |G|) scale.

Armed with these tools, we are ready to convert PCFGs into SSASs. Recall
that in Section 4 we showed that in the worst case, converting a PCFG into a
SSAS (or SAS) must incur an Ω(log n/ log logn)-factor increase in system size.
Here we achieve a O(log n)-factor increase.

Theorem 2. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S with |S| = O(|G| log n) producing an assembly with label poly-
omino P ′, where P ′ is a (O(log n), O(n))-fuzzy replica of P .

Proof. We combine the macrotile construction of Lemma 6, the generalized coun-
ters of Lemma 5, and a macrotile assembly invariant that together enable efficient
simulation of each production rule in a PCFG by a set of O(log n) mixing steps.

Macrotiles. The macrotiles used are extended versions of the macrotiles
in Lemma 6 with two modifications: a secondary, resevoir macroglue assembly
on each side of the tile in addition to a primary bonding macroglue, and a thin
cage of dimensions Θ(n) × Θ(log n) surrounding each resevoir macroglue (see
Figure 5).

Mixing a macrotile with a set of bins containing counter row assemblies con-
structed by Lemma 5 causes completed (and incomplete) counter rows to attach
to the macrotile’s macroglues. Because each macroglue’s geometry matches the
geometry of exactly one counter row, a partially completed counter row that
attaches can only be completed with bit assemblies that match the macroglue’s
value. As a result, mixing the bin sets of Lemma 5 with an assembly consisting
of macrotiles produces the same set of products as mixing a completed set of
binary counter rows with the assembly.

An attached counter row effectively causes the macroglue’s value to change, as
it presents geometry encoding a new value and covers the macroglue’s previous
value. The cage is constructed to have height sufficient to accomodate up to n
counter rows attached to the reservoir macroglue, but no more.

Because of the cage, no two macrotiles can attach by their bonding macroglues
unless the macroglue has more than n counter rows attached. Alternatively,
one can produce a thickened counter row with thickness sufficient to extend
beyond the cage.We call such an assembly amacroglue activator, as it “activates”
a bonding macroglue to being able to attach to another promoted macroglue
on another macrotile. Notice that a macroglue activator will never attach to
a bonding macroglue’s resevoir twin, as the cage is too small to contain the
activator.

An invariant. Counter rows and activators allow precise control of two prop-
erties of a macrotile: the identities of the macroglues on each side, and whether
these glues are activated. In a large assembly containing many macroglues, the
ability to change and activate glues allows precise encoding of how an assembly
can attach to others. In the remainder of the construction we maintain the in-
variant that every macrotile has the same glue identity on all four sides, and any
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Resevoir
macroglue

Bonding
macroglue

Cage

Core

Macroglue
activator

Counter row

Fig. 5. A macrotile used in converting a PCFG to a SAS, and examples of value
maintenance and offset preparation

macrotile assembly consists of macrotiles with glue identities forming a contigu-
ous interval, e.g. 4, 5, 6, 7. Intervals are denoted [i, i′], e.g. [g4, g7].

By Lemma 5, a set of row counters incrementing the glue identities of all glues
on a macrotile can be produced using O(log n) work. Activators, by virtue of
being nearly rectangular with O(log n) cells of bit geometry can also be produced
using O(log n) work.

Production rule simulation. Consider a PCFG with non-terminal N and
production rule N → (R1, (x1, y1))(R2, (x2, y2)) and a SSAS with two bins con-
taining assemblies A1, A2 with the label polyominoes of A1 and A2 being fuzzy
replicas of the polyominoes derived by R1 and R2. Also assume A1 and A2 are
assembled from the macrotiles just described, including the invariant that the
identities of the glues on A1 and A2 are identical on all sides of a macrotile and
contiguous across the assembly, i.e. the identities of the glues are [i1, j1] and
[i2, j2] on assemblies A1 and A2, respectively.

Select two cells cR1 , cR2 , in the polyominoes derived by R1 and R2 adjacent in
polyomino derived by N . Define the glue identities of the two macrotiles forming
the supercells mapped to cR1 and cR2 to be g1 and g2. Then the glue sets onA1 and
A2 can be decomposed into three subsets [i1, g1−1], [g1], [g1+1, j1] and [i2, g2−1],
[g2], [g2 + 1, j2], respectively. We change these glue values in three steps:
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1. Construct two sets of row counters that increment i1 through g1 by j1−i1+1
and i2 through g2 by g2−i2+1, and mix them in separate bins with A1 andA2

to produce two new assemblies A′
1 and A′

2. Assemblies A′
1 and A′

2 have glues
[g1+1, g1+ j1− i1+1] and [g2, g2+ j2− i2], respectively, and the macroglues
with values g1 and g2 now have values g′1 = g1+(g1−i1)+j1+1 and g′2 = g2,
i.e. the glues of A′

1 and A′
2 are [g′1 − (j1 − i1), g

′
1] and [g′2, g

′
2 + j2 − i2].

2. Construct a set of row counters that increment the values of all glues on
A′

2 by g′2 − g′1 + 1 if this value is positive, and mix the counters with A′
2 to

produce A′′
2 . Then the macroglue with value g′2 now has value g′′2 = g′1 + 1

and the glue values of A′
1 and A′′

2 are [g′1− (j1− i1), g
′
1] and [g′′2 , g

′′
2 + j2− i2].

3. Construct a pair of macroglue activators with values g′1 and g′′2 that attach
to the pair of macroglue sides matching the two adjacent sides of cells cR1

and cR2 . Mix each activator with the corresponding assembly A′
1 or A′′

2 .

Mixing A′
1 and A′′

2 with the pair of activated macroglues causes them to bond
in exactly one way to form a superassembly A3 whose label polyomino is a
fuzzy replica of the polyomino derived by N . Moreover, the glue values of the
macrotiles in A3 are [g

′
1−(j1−i1), g

′′
2+j2−i2], maintaining the invariant. Because

each macrotile has a resevoir macroglue on each side, any bonding macroglue
with an activator already attached has a resevoir macroglue that accepts the
matching row counter, so each mixing has a single product and specifically no
row counter products.

System scale The PCFG P contains at most n production rules. Also, each
step shifts glue identities by at most n (the number of distinct glues on the
macrotile), so the largest glue identity on the final macrotile assembly is n2. So
we produce macrotiles with core assemblies of size O(log n)×O(log n) and cages
of size O(n). Assembling the core assemblies, cages, and initial macroglue assem-
blies of the macrotiles takes O(|P | log n+logn+logn) = O(|P | log n) work, dom-
inated by the core assembly production. Simulating each production rule of the
grammar takes O(log n) work spread across a constant number of O(log n)-sized
sequences of mixings to produce sets of row counters and macroglue activators.

Applying Lemma 6 to the construction (creating macrotiles of macrotiles)
gives a constant-glue version of Theorem 2:

Theorem 3. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S ′ using O(1) glues with |S ′| = O(|G| log n) producing an assembly
with label polyomino P ′, where P ′ is a (O(log n log logn), O(n log logn))-fuzzy
replica of P .

Proof. The construction of Theorem 2 usesO(log n) glues, namely for the counter
row subconstruction of Lemma 5. With the exception of the core assemblies, all
tiles of S have a common fuzz (gray) label, so creating macrotile versions of these
tiles and carrying out all mixings involving these macrotiles and completed core
assemblies is possible with O(1·|T |+|S|) = O(|S|) mixings and scale O(log logn).
Scaled core assemblies of size Θ(n log logn)× Θ(n log logn) can be constructed
using constant glues and O(log(n log logn)) = O(log n) mixings, the same num-
ber of mixings as the unscaled Θ(n) × Θ(n) core assemblies of Theorem 2.
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So in total, this modified construction has system size O(|S|) = O(|G| log n)
and scale O(log logn). Thus it produces an assembly with label polyomino that
is a (O(log n log logn), O(n log logn))-fuzzy replica of P .

The results in this section and Section 4 achieve a “one-sided” correspondence
between the smallest PCFG and SSAS encoding a polyomino, i.e. the smallest
PCFG is approximately an upper bound for the smallest SSAS (or SAS). Since
the separation upper bound proof (Theorem 2) is constructive, the bound also
yields an algorithm for converting a a PCFG into a SSAS.

6 PCFG over SAS and SSAS Separation Lower Bound

Here we develop a sequence of PCFGs over SAS and SSAS separation results, all
within a polylogarithmic factor of optimal. The results also hold for polynomially
scaled versions of the polyominoes, which is used to prove Theorem 7 at the end
of the section. This scale invariance also surpasses the scaling of the fuzzy replicas
in Theorems 2 and 3, implying that this relaxation of the problem statement in
these theorems was not unfair.

Fig. 6. Two-bit examples of the weak (left), end-to-end (upper right), and block (lower
right) binary counters used to achieve separation of PCFGs over SASs and SSASs in
Section 6
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6.1 General Shapes

We show that the separation of PCFGs over SASs and SSASs is Ω(n/ logn) using
a weak binary counter, seen in Figure 6. These shapes are macrotile versions of
the doubly-exponential counters found in [6] with three modifications:

1. Each row is a single path of tiles, and any path through an entire row
uniquely identifies the row.

2. Adjacent rows do not have adjacent pairs of tiles, i.e. they do not touch.
3. Consecutive rows attach at alternating (east, west, east, etc.) ends.

Lemma 7. There exists a τ = 1 SAS of size O(b) that produces a 2b-bit weak
counter.

Lemma 8. For any PCFG G deriving a 2b-bit weak counter, |G| = Ω(22
b

).

Theorem 4. The separation of PCFGs over τ = 1 SASs for single-label poly-
omines is Ω(n/(log logn)2).

Proof. By the previous two lemmas, there exists a SAS of size O(b) producing

a b-bit weak counter, and any PCFG deriving this shape has size Ω(22
b

). The

assembly itself has size n = Θ(22
b

b), as it consists of 22
b

rows, each with b sub-
assemblies of constant size. So the separation is Ω((n/b)/b) = Ω(n/(log logn)2).

Corollary 1. The separation of PCFGs over τ = 1 SSASs for single-label poly-
ominoes is Ω(n/ log2 n).

6.2 Rectangles

For the weak counter construction, the lower bound in Lemma 8 depended on
the poor connectivity of the weak counter polyomino. This dependancy suggests
that such strong separation ratios may only be achievable for special classes
of “weakly connected” or “serpentine” shapes. Restricting the set of shapes to
rectangles or squares while keeping an alphabet size of 1 gives separation of at
most O(log n), as any rectangle of area n can be derived by a PCFG of size
O(log n).

But what about rectangles with a constant-sized alphabet? In this section
we achieve surprisingly strong separation of PCFGs over SASs and SSASs for
rectangular constant-label polyominoes, nearly matching the separation achieved
for single-label general polyominoes. A separation ofΩ(n/ logn) is achieved using
an end-to-end binary counter polyomino, seen in Figure 6.

Lemma 9. There exists a τ = 1 SAS of size O(b) that produces a b-bit end-to-
end counter.

Lemma 10. For any PCFG G deriving a b-bit end-to-end counter, |G| = Ω(2b).

Theorem 5. The separation of PCFGs over τ = 1 SASs for constant-label rect-
angles is Ω(n/ log3 n).
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6.3 Squares

The rectangular polyomino of the last section has exponential aspect ratio, sug-
gesting that this shape requires a large PCFG because it approximates a pat-
terned one-dimensional assemblies reminiscent of those in [7]. Creating a poly-
omino with better aspect ratio but significant separation is possible by extending
the polyomino’s labels vertically. For a square this approach gives a separation of
PCFGs over SASs of Ω(

√
n/ logn), non-trivial but far worse than the rectangle.

Our final result achieves Ω(n/ logn) separation of PCFGs over SASs for
squares using a block binary counter (seen in Figure 6). Each “row” of the counter
is actually a set of concentric square rings called a block.

Lemma 11. For even b, there exists a τ = 1 SAS of size O(b) that produces a
b-bit block counter.

Lemma 12. For any PCFG G deriving a b-bit block counter, |G| = Ω(2b).

Theorem 6. The separation of PCFGs over τ = 1 SASs for constant-label
squares is Ω(n/ log3 n).

6.4 Constant-Glue Constructions

Lemma 6 proved that any system S can be converted to a slightly larger system
(both in system size and scale) that simulates S. Applying this lemma to the
constructions of Section 6 yields identical results for constant-glue systems:

Theorem 7. All results in Section 6 hold for systems with O(1) glues.

7 Conclusion

As the results of this work show, efficient staged assembly systems may use a
number of techniques including, but not limited to, those described by local com-
bination of subassemblies as captured by PCFGs. It remains an open problem
to understand how the efficient assembly techniques of Section 5 and Section 6
relate to the general problem of optimally assembling arbitrary shapes.

Acknowledgements. We thank Benjamin Hescott and anonymous reviewers
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paper.
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Abstract. We present a method for the analysis of functional prop-
erties of large-scale DNA strand displacement (DSD) circuits based on
Satisfiability Modulo Theories that enables us to prove the functional
correctness of DNA circuit designs for arbitrary inputs, and provides
significantly improved scalability and expressivity over existing meth-
ods. We implement this method as an extension to the Visual DSD tool,
and use it to formalize the behavior of a 4-bit square root circuit, to-
gether with the components used for its construction. We show that our
method successfully verifies that certain designs function as required and
identifies erroneous computations in others, even when millions of copies
of a circuit are interacting with each other in parallel. Our method is
also applicable in the verification of properties for more general chemical
reaction networks.

1 Introduction

The engineering of nanoscale devices from DNA has emerged as a powerful tech-
nology, with potential applications in nanomedicine and nanomaterials. More
recently, DNA strand displacement (DSD) has attracted attention as a promis-
ing approach for engineering molecular devices with complex dynamics [24], and
has been shown to scale to large circuits [17]. In spite of this potential, many
challenges remain before the design of DSD circuits with predictable, robust be-
havior becomes routine. In addition to the experimental difficulties of synthesis,
assembly, and elimination of cross-talk, the massive parallelism and complexity
of DSD circuits make their manual design challenging and error-prone.

A number of computational methods and tools have been developed to facili-
tate the design process. In particular, the Visual DSD tool [14] computes the set
of all possible strand displacement reactions generated from an initial collection
of DNA species, and simulates these reactions over time. Methods have also been
developed for proving that a set of strand displacement reactions is equivalent
to a reduced set of reactions [18,7]. However, further work is needed to be able
to state and prove properties about the function that these reactions perform.
To help address this, methods based on probabilistic model checking have been
developed to prove properties about the states that a strand displacement circuit
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traverses, together with the expected time and probability of failure [13]. So far
however, these methods do not scale to realistic numbers of molecules. To help
improve scalability, a symbolic method called Z34Bio for analyzing large and po-
tentially infinite state spaces based on Satisfiability Modulo Theories (SMT) was
developed [21,22]. This technique has been applied to study structural properties
of DNA circuits, such as the presence of exposed DNA sequences.

In this paper we present a method that allows the desired properties of a DNA
strand displacement circuit to be formalized as a high-level functional specifi-
cation, and formally verified for realistic numbers of molecules. The method
extends the use of SMT-solvers for analyzing chemical reaction networks pre-
sented in [21], and is implemented within the Visual DSD tool using the Z34Bio
framework, which is based on the Z3 theorem prover and SMT-solver [6]. To
illustrate this approach, we study a model of the 4-bit square root circuit de-
scribed in [2], which was originally developed as a localized circuit in contrast
to the design from [17]. We formalize and analyze functional properties of the
individual components used to construct this system, and show that a modified
version of this design functions correctly, even when millions of copies interact
with each other in parallel. We illustrate how our method helps identify de-
sign errors at both the component and circuit level. Although the method has
been tailored specifically for DNA strand displacement systems, it is also more
generally applicable for the analysis of chemical reaction networks.

2 SMT Analysis of Chemical Reaction Networks

This section summarizes the SMT-based method for analyzing Chemical Reac-
tion Networks (CRNs) presented in [21], which will be used in the remainder of
the paper. We denote a finite set as S = {s0, . . . , sN}, where |S| = N + 1 is the
number of elements in S. We use S = {(s0, n0), . . . , (sN , nN )} to denote a finite
multiset where each pair (si, ni) denotes an element si and its multiplicity ni,
with ni > 0. Given a multiset S we use s ∈ S for ∃n . (s, n) ∈ S and S(s) = n
when (s, n) ∈ S and S(s) = 0 otherwise. We define a CRN as a pair (S,R),
where S is a finite set of species and R is a finite set of possible reactions. A
reaction r ∈ R is defined as a pair of multisets r = (Rr, Pr) denoting the reac-
tants and products of r, respectively. For (s, n) ∈ Rr (respectively Pr), s ∈ S
is a species and n is the stoichiometry indicating how many molecules of s are
consumed (respectively produced) when reaction r takes place.

To study the dynamics of a CRN with single-molecule resolution, we formalize
its behavior as the transition system T = (Q, q0, T ), where Q is the set of states,
q0 ∈ Q is the uniquely defined initial state, and T ⊆ Q × Q is the transition
relation. Each state q ∈ Q is a multiset of species and q(s) indicates how many
molecules of s are present in state q. A reaction r is enabled in q if there are
enough molecules of each of its reactants for it to trigger; i.e., enabled(r, q) ↔∧

s∈S q(s) ≥ Rr(s). A state q is terminal if it has no enabled reactions i.e.
terminal(q) ↔

∧
r∈R ¬enabled(r, q). The transition relation T is defined as
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Fig. 1. SMT-based Analysis. All trajec-
tories explored by Bounded Model Check-
ing represent valid computations from
q0 but Qk

r (e.g. k = 3, 7, 10) generally
under-approximates the reachable states
Qr. The over-approximation QInv allows
proving that state q′ is unreachable but
spurious states (e.g. q) may be included.

T (q, q′) ↔
∨
r∈R

(enabled(r, q) ∧
∧
s∈S

q′(s) = q(s)−Rr(s) + Pr(s)). (1)

Once a CRN (S,R) is encoded as a transition system T = (Q, q0, T ) with
some initial state q0 ∈ Q, a number of analysis questions are expressible as
logical formulas and resolvable using model checking methods and SMT solvers
such as Z3 [6]. In the following, we focus on safety properties [16] i.e. a given
state predicate P : Q → B holds for all reachable states. Let Qr ⊆ Q denote all
reachable states of T and let Qk

r ⊆ Q denote the set of states reachable in up to
k transitions from q0 (note that Qk

r ⊆ Qk+1
r ⊆ · · · ⊆ Qr).

We check the reachability of a state q ∈ Q such that ¬P (q) holds by using

an SMT solver to decide whether the formula ∃q1, . . . , qk .
∧k−1

i=0 T (qi, qi+1) ∧∨k
i=0 ¬P (qi) is satisfiable. The formula represents the unrolling of the transition

relation for k transitions from q0 (see Fig. 1 for an example). This type of ap-
proach is usually called Bounded Model Checking (BMC) [1] and is particularly
good at finding bugs in hardware and software, with the added advantage of
producing an explicit computation trace which demonstrates the behavior that
leads to the violation of P . However, since only bounded executions are consid-
ered and Qk

r generally under-approximates Qr for feasible choices of k (see [4]
for a discussion on the length of computation traces), this technique only serves
to prove that no errors are encountered in a finite number of transitions.

As a complementary approach based on inductive invariants, a state invariant
QInv such that Qr ⊆ QInv ⊆ Q, allows us to prove that all reachable states
satisfy P because

�q ∈ QInv . ¬P (q) → �q ∈ Qr . ¬P (q) → ∀q ∈ Qr . P (q) .

However, due to the over-approximation, this is not sufficient to prove the ex-
istence of reachable states violating the given property (see Fig. 1), since we
have

∃q ∈ QInv . ¬P (q) �→ ∃q ∈ Qr . ¬P (q) .

An invariant QInv is computable through strategies developed for the analysis of
Petri nets [11], metabolic networks [9], and DNA circuits [21], where it captures
constraints such as mass-conservation (various techniques from hardware and
software analysis, e.g., abstract interpretation [5] also apply).



192 B. Yordanov et al.

Fig. 2. FANOUT Gate

To analyze chemical reaction networks and DNA circuits, we combine the
BMC and state invariant approaches, where we prove that states with given
properties are unreachable in any number of steps using QInv but use BMC to
guarantee the reachability of states and identify finite computation traces with
specific behavior.

3 SMT Analysis of DNA Strand Displacement Circuits

In the following, we focus on circuits constructed as DNA strand displacement
(DSD) devices [24], which is the DNA computing paradigm supported in Vi-
sual DSD [14]. In [21] we utilized the known structure of DNA species in these
systems to develop an approach for the computation of constraints that was
specific to DSD circuits. Intuitively, the individual DNA strands from which
all species in the system are composed are preserved and their total amounts
remain unchanged. A set of constraints was computed to capture this conser-
vation of strands property, which allowed the computation of a state invariant
QInv (Sec. 2) based on the numbers of strands present initially (in state q0).
In Fig. 3 we illustrate this computation for the FANOUT gate shown in Fig. 2 (a
component of the circuit we study in Sec. 4), which produces multiple copies of
the output species O through a reporter R for a given input I, where the degree
of “fanout” is controlled through the amount of species F .

Throughout the rest of this section, we present new strategies extending the
approach and enabling the application of SMT-based methods to the analysis of
large scale DSD circuits.

3.1 Identification of Inactive Reactions

As discussed in Sec. 2, our analysis strategy based on state invariants (e.g.
computed using the method from [21] as in Fig. 3) is conservative, leading to the
possible identification of spurious (unreachable) states. We exemplify this1 on
the FANOUT gate (Fig. 2), for which the following constraints are derived when
the system is initialized in state q0 = {(R, 10), (F1, 2), (F, 1)}:
1 Note that this example is similar to the one from Fig. 3, with the exception of the
input q0(I) = 0.
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Fig. 3. Strand conservation along a computation of the FANOUT gate (Fig. 2). The
system is initialized in q0 = {(R, 10), (I, 1), (F1, 2), (F, 1)} (thick black border) and
terminates in the state shown with a red border. The total number of DNA strands (top
left box) remains unchanged in each state, which is captured using a set of constraints
(e.g. bottom right). Each constraint captures information about a DNA strand shared
between species (i.e. in each state, the sum of the molecule numbers of all species
sharing strand s is equal to the number of s present in the system), which defines a
state invariant QInv . See Eqn.(2) for a related example and [21] for additional details.

q ∈ QInv ↔ q ∈ Q ∧
[q(s2) + q(I) = 0] ∧ [q(s1) + q(F1) = 2] ∧ [q(s4) + q(F ) = 1] ∧
[q(s3) + q(s0) + q(F1) = 2] ∧ [q(O) + q(R) = 10] ∧ (2)

[q(s4) + q(s2) + q(F1) = 2] ∧ [q(s3) + q(R) = 10] .

Given these constraints, only two terminal states q1, q2 ∈ QInv are possible where
q1 = q0 and

q2 = {(R, 9), (O, 1), (F1, 1), (s1, 1), (s3, 1), (s4, 1)} .

While q1 satisfies the expected behavior of the circuit (no output is produced
without input) state q2 violates it. However, due to the over-approximation of
QInv (see Sec. 2), this does not directly imply that the FANOUT gate is flawed.

A closer inspection of this example reveals that, when initialized in state q0,
no reactions are enabled for this system but such information is not captured in
the derived constraints and therefore spurious terminal states are identified. To
decrease this conservativeness, we use the available constraints QInv to identify
reactions that are disabled for any reachable state of the system (this might
require a call to the SMT solver for each r ∈ R but does not involve deep
reasoning for most). Then, we use this information to identify species which
are never produced (resp. consumed) and constrain their abundances to only
decrease (resp. increase) from their initial values. The procedure is repeated
iteratively until no additional constraints are derived (see Alg. 1).
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Algorithm 1. Given a DSD circuit (S,R) encoded as T = (Q, q0, T ) and an
invariant QInv, derive additional constraints to produce Q′

Inv ⊆ QInv

1: Initialize Q′
Inv := QInv

2: repeat
3: Re := {r ∈ R | ∃q ∈ Q′

Inv . enabled(r, q)} {possibly enabled reactions}
4: Sp :=

⋃
r∈Re

{s ∈ S | s ∈ Pr} {producible species}
5: Sc :=

⋃
r∈Re

{s ∈ S | s ∈ Rr} {consumable species}
6: Qtmp := {q ∈ Q | ∧s∈(S\Sp)

q(s) ≤ q0(s) ∧∧
s∈(S\Sc)

q(s) ≥ q0(s)}
7: done := (Q′

Inv = Q′
Inv \Qtmp)

8: Q′
Inv := Q′

Inv \Qtmp

9: until done
10: return Q′

Inv

Applying Alg. 1 to the FANOUT gate produces the following additional con-
straints, which are sufficient to eliminate the spurious terminal state q2:

q ∈ Q′
Inv ↔ q ∈ QInv ∧

[q(F ) ≥ 1] ∧ [q(R) ≤ 10] ∧ [q(I) ≤ 0] ∧ [q(F ) ≤ 1] ∧ [q(s2) ≤ 0] ∧
[q(s1) ≤ 0] ∧ [q(s0) ≤ 0] ∧ [q(s4) ≤ 0] ∧ [q(F1) ≤ 2] ∧ [q(F1) ≥ 2] .

The use of Alg. 1 is not guaranteed to eliminate all unreachable states captured
in QInv. In other words, even though Q′

Inv ⊆ QInv, the invariant still over-
approximates the reachable states (i.e. in general, Qr ⊆ Q′

Inv) and, therefore,
unreachable states q �∈ Qr such that q ∈ Q′

Inv might still exist. Even so, the
invariant strengthening strategy implemented in Alg. 1 is useful, particularly for
the analysis of DNA circuits as the ones discussed in Sec. 4. For such designs,
system inputs are encoded using the availability of chemical species where, for
specific input values, certain species are not supplied. In these cases, Alg. 1
identifies reactions that are never enabled and restricts Q′

Inv accordingly.

3.2 Encoding Generalization

To identify erroneous computations for large DSD circuits such as the ones from
Sec. 3, a BMC strategy requires prohibitively long paths, since the transition
relation from Eqn. (1) only captures the execution of a single reaction per step.
In the following, we relax this requirement by abstracting the exact number of
consecutive executions of a reaction. Given states q, q′ ∈ Q

reach(q, q′, r, n) =

[
0 ≤ n ≤ mins∈Rr{ 

q(s)
Rr(s)

!} ∧∧
s∈S q′(s) = q(s)− nRr(s) + nPr(s)

]

expresses the property that state q′ is reachable from q through n consecutive
executions of reaction r ∈ R. The condition that the reaction is enabled is
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implicitly captured in the choice of n (i.e. if r is disabled, then 0 ≤ n ≤ 0). The
transition relation

T (q, q′) ↔ q′ ∈ QInv ∧
∨
r∈R

∃n . reach(q, q′, r, n)

captures multiple executions of the same reaction in a given step and therefore
allows us to consider shorter computation traces. Note that this does not influ-
ence the completeness of the approach as single-reaction steps are also allowed.
Furthermore, available constraints (e.g. derived as in Sec. 3.1) are captured di-
rectly in the transition relation.

Besides re-defining the transition relation, we generalize the transition system
representation of a DSD circuit to T = (T,Q0, Q) where Q0 ⊆ Q is a (possibly
infinite) set of initial states. While currently, a circuit is defined using a unique
initial state (population of species) within Visual DSD, it is natural to reason
about the behavior of certain systems under a range of possible inputs, encoded
through the abundances of chemical species at the beginning of a computation,
which we illustrate in Sec. 4. Note that an invariant computed as in [21] depends
on the initial state and is therefore denoted as QInv(q), q ∈ Q0 in the following.
While applying Alg. 1 to explicit initial states q0 ∈ Q0 was sufficient for the
circuits we consider in Sec. 3, additional strategies are required for other systems.

3.3 Implementation of Methods in Visual DSD

We developed a prototype implementation of the methods reviewed in Sec. 2,
together with the extension described in this section, as part of Visual DSD. The
implementation makes us of the Z3 theorem prover [6], which provides efficient
decision procedures for several theories including bit-vectors [20]. This allows us
to specify various system properties and automatically verify them during the
DSD circuit design process. The experimental results presented in Sec. 4 were
obtained on 2.5 GHz Intel L5420 CPU machines with a 2 GB memory limit
where computation required under a minute per benchmark.

4 Functional Analysis of a 4-bit Square Root Circuit

In this section, we study the 4-bit square root circuit design from [2]. First,
we formalize and analyze the functional behavior of the individual components
used for the construction of this system and then apply our method to study
properties of the full system, when multiple copies of the circuit are operating in
parallel. For each component, we define a set of initial states Q0 ⊂ Q capturing
the possible abundances of species (inputs, gates, etc) present at the beginning
of a computation and a property P (q0, q) that describes the expected output for
a given input, encoded as part of the initial state q0. To prove the correctness
of a circuit, we need to show that ∀q0 ∈ Q0, q ∈ Qr . terminal(q) → P (q0, q)
(i.e. for all input values, the correct output is produced when the computation
terminates, regardless of the initial abundances of other species). We compute



196 B. Yordanov et al.

Fig. 4. Modified FANOUT Gate with fanout degree of two

the state invariant QInv using the procedure from [21] illustrated in Fig. 3 (or
Q′

Inv extended through Alg. 1) and use it to prove that terminal(q)∧¬P (q0, q) is
not satisfiable for states q0 ∈ Q0 and q ∈ QInv(q0) (i.e. no terminal state exists
where incorrect output is produced). This formula is trivially unsatisfiable when
no terminal states exist (i.e. ∀q ∈ QInv . ¬terminal(q)) and, to conclude the
proof, we show that this is not the case. When incorrect behavior is identified
through this strategy (as is the case for one of the square root circuit designs we
explore), we use BMC (see Sec. 2) to identify an error trace.

FANOUT Gate. The FANOUT gate (Fig. 2) introduced in Sec. 3.1 is intended to
split a particular input species I into multiple copies of output O, where the
degree of fanout is controlled through species F . We define the set Q0 = {q ∈
Q′

Inv | q(s) > 0 if s ∈ {R,F1} and q(s) = 0 if s �∈ {R,F1, I, F}} (i.e gates
F1, reporters R and possibly fanout F and input I species are present initially).
We used our analysis approach to prove that, for all initial states q0 ∈ Q0 and
terminal states q ∈ Q′

Inv(q0) the behavior of the component formalized as

PFANOUT(q0, q) ↔ q(O) =

{
q0(I) + q0(F ) when q0(I) > 0
0 otherwise

holds, as long as the additional conditions q0(R) ≥ q0(I) + q0(F ) and q0(F1) ≥
I are satisfied (i.e. there is an excess of reporters and gates). Note that this
behavior holds regardless of the specific input q0(I) and fanout q0(F ) settings.
Thus, the component adds a constant to the input value (when input is present)
but replicates the desired behavior q(O) = m · q0(I) only when q0(F ) = (m −
1) · q0(I) and, as a result, q0(F ) must be precisely tuned for a specific input
value. To obtain the correct behavior for arbitrary inputs, we redesign the gate
for fanout m = 2 as in Fig. 4 and show that the expected behavior

PFANOUT2(q0, q) ↔ q(O) = 2 · q0(I)

is now satisfied when q0(F ) ≥ q0(I), q0(R) ≥ 2 · q0(I), and q0(F1) ≥ 2 · q0(F )
(i.e. gates and reporters are in excess).

AND Gate. The AND gate (Fig. 5) is a component designed to implement the
corresponding logical operation. We define the set Q0 = {q ∈ QInv | q(s) >
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Fig. 5. AND Gate

Fig. 6. OR Gate

0 if s ∈ {R,G} and q(s) = 0 if s �∈ {R,G, IA, IB}} (i.e gates G, reporters R and
possibly inputs IA, IB are present initially). We prove that, for all initial states
q0 ∈ Q0 and terminal states q ∈ QInv(q0),

PAND(q0, q) ↔ q(O) = min{q0(IA), q0(IB)} (3)

holds, as long as q0(R) ≥ q0(IA), q0(R) ≥ q0(IB), q0(G) ≥ q0(IA) and q0(G) ≥
q0(IB). The logical behavior of the AND gate is formalized using a threshold θ
where a signal represents the logical “true” if and only if the number of molecules
is greater than θ i.e. [q(O) > θ] ↔ [q0(IA) > θ]∧ [q0(IB) > θ], which implements
the desired logical operation. This behavior follows directly from Eqn. (3) and
was also verified using our approach for arbitrary values of θ.

OR Gate. The desired behavior of the OR gate (Fig. 6) is defined similarly
to the AND gate described above. We define the set Q0 = {q ∈ QInv | q(s) >
0 if s ∈ {R,GA, GB} and q(s) = 0 if s �∈ {R,GA, GB, IA, IB}} (i.e gates GA, GB ,
reporters R and possibly inputs IA, IB are present initially). We prove that, for
all initial states q0 ∈ Q0 and terminal states q ∈ QInv(q0),

POR(q0, q) ↔ q(O) = q0(IA) + q0(IB) (4)

holds, as long as q0(GA) ≥ q0(IA), q0(GB) ≥ q0(IB) and q0(R) ≥ q0(IA)+q0(IB).
As before, the logical behavior of the OR gate is formalized through a threshold θ
but here, a signal represents the logical “true” only if the number of molecules is
greater than θ i.e [q0(IA) > θ]∨ [q0(IB) > θ] → [q(O) > θ]. This behavior follows
from Eqn. (4) and was also verified using our approach for arbitrary values of θ.
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To avoid issues with the composition of multiple OR gates, the logical “false” is
left undefined for this component, which is sufficient for the implementation of
the square root circuit discussed next, where a dual-rail signal encoding is used.

Full Square Root Circuit. The square root circuit takes an input between
0 and 15 represented as a 4-bit binary number encoded using the concentra-
tions of 8 input chemical species (STRAND0, . . . , STRAND7) in dual-rail logic
(see [2,17] for details). The circuit computes the largest integer smaller than or
equal to the square root of the input and represents this 2-bit output using the
concentrations of 4 species (M0, L0,M1, L1). Following the design from [17], the
circuit is separated into a number of logical blocks (composed of the AND, OR,
and FANOUT gates studied above), each of which computes a separate part of the
output. Here, we study three different implementations of this circuit inspired
by the design from [2]. For one (referred to as SQRT1), distinct DNA domains
are used to prevent crosstalk between the logical blocks. However, this increases
the total number of domains required, which potentially increases the cost of
circuit construction. Motivated by this, we explore two simplified designs where
domains are shared between logical blocks and either the original FANOUT gate
design from Fig. 2 (SQRT2) or the modified one from Fig. 4 (SQRT3) is used. All
three circuits are designed to implement the mathematical operation

PSQRT(q0, q) ↔ O(q) =  
√
I(q0)!)

where I(q0) ∈ {0, . . . , 15} for q0 ∈ Q0 and O(q) ∈ {0, . . . , 3} for q ∈ Q denote
the input and output of a circuit, specific to each design.

For SQRT1, we assume that N copies of each functional block are operating in
parallel. We use the existing Visual DSD model from [2] which defines the inputs
I and outputs O to capture the requirement that each circuit copy computes
the correct output independently (e.g. O(q) = 0 ↔ [q(M0) = N ] ∧ [q(M1) =
0] ∧ [q(L0) = N ] ∧ [q(L1) = 0] and O(q) = 3 ↔ [q(M0) = 0] ∧ [q(M1) =
N ] ∧ [q(L0) = 0] ∧ [q(L1) = N ]). The strategy from Sec. 3.1 allows us to prove
that SQRT1 implements this behavior correctly for N = {1, 102, 103, 106}. Note
that this circuit is distinct from the original, localized setup from [2], where only
a single copy of the circuit is considered in isolation.

To obtain requirements for a population-based design that are independent of
the precise numbers of molecules used as inputs, we define thresholds θI and θO
where θO ≤ θI . An input bit is set to true by including more than θI molecules
of the corresponding species which defines I() (e.g. I(q0) = 0 ↔ [STRAND0 >
θI ] ∧ [STRAND2 > θI ] ∧ [STRAND4 > θI ] ∧ [STRAND6 > θI ]). Similarly, an
output bit is considered true if θO or more molecules of an output species are
present (e.g. O(q) = 0 ↔ [q(M0) ≥ θO]∧[q(M1) = 0]∧[q(L0) ≥ θO]∧[q(L1) = 0]).
In practice, the numbers of molecules for each gate of a circuit cannot be set
precisely at the beginning of a computation and therefore we consider thresholds
Gl and Gu where, for each initial state q0 ∈ Q0, Gl ≤ q0(s) ≤ Gu for a gate
s ∈ S. This defines the set of initial states Q0 for a dual-rail input encoding (i.e.
where ∀q0 ∈ Q0 . q0(STRANDi) = 0 ∨ q0(STRANDi+1) = 0 for i = 0, 2, 4, 6)
where no species other than gates and inputs are present initially. Finally, we
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Fig. 7. For the SQRT3 design with θO = 1, n = 0 and Gl = Gu = θI = 106 (i.e. one
million copies of both the circuit and its inputs are present), initialized in state q0
where I(q0) = 12 (input is 12) a computation trace producing incorrect output was
identified using the bounded model checking analysis method described in Sec. 2. In
each state, only the species with nonzero abundances and participating in the reaction
captured by the following transition are displayed. While part of the correct output
is produced (step 5), the full output is incorrect in the terminal state (highlighted in
red) and violates the dual-rail logical encoding (neither L0 nor L1 is produced). By
considering multiple executions of a reaction per transition, short computation traces
representing a large number of individual reactions are identified.

assume that the error with which gates are supplied n = Gu − Gl is set to an
arbitrary number, which simplifies the analysis but is not restrictive in practice.

We use the formulation described above to show that design SQRT2 leads
to erroneous behavior where, for some input combinations, no terminal states
are ever reached. In other words, there exists an initial state q0 ∈ Q0 such
that no state q ∈ QInv(q0) is terminal, which violates a requirement that all
computations eventually terminate.

For SQRT3, we prove that the required behavior is satisfied for all input and
gate settings, as long as (i) Gl > θO, (ii) θI > 3Gu, and (iii) Gl > nθO. These
additional constraints capture important properties of the circuit that ensure its
correct operation. Constraint (i) captures the property that it is only possible
to produce as much output as there are available reporter gates, (ii) ensures
that enough of the input is supplied to be processed by each logical block of
the circuit, and (iii) formalizes the accuracy with which the output must be
measured as a function of the absolute number Gl and error n with which the
circuit gates are supplied. Intuitively, to measure stronger output signal (i.e.
where θO is higher) the lowest possible number of gates Gl must be increased
while the error n is decreased, which might also require the addition of more
input (if θI is higher). To confirm these requirements we used our method to
find erroneous computation traces when Gl = Gu = θI (Fig. 7). Such behavior
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is also observed in stochastic simulations of a detailed models of the circuit
(capturing the chemical kinetics) but becomes rare as the number of gates is
increased and is easily missed (Fig. 8).

Fig. 8. For the SQRT3 design with θO =
1, n = 0 and Gl = Gu = θI = 20 (i.e. 20
copies of both the circuit and its inputs
are present), the correct outputs are not
produced for one out of the five simulated
trajectories when the circuit is initialized
in state q0 where I(q0) = 12 (input is
12). Output species M1 and L1 are repre-
sented by blue and red lines, respectively
(output species M0 and L0 remain absent
throughout these computations). The tra-
jectory capturing the erroneous computa-
tion (reaching a terminal state at around
1500s) is highlighted.

In the analysis described above, we show that if SQRT3 terminates, the cor-
rect output is produced. To prove that the system terminates for any choice of
inputs, we employ standard Petri Net theory techniques for the computation
of T-invariants [11], which reveal that, in this particular design, no cycles are
possible and, therefore, termination is guaranteed.

5 Discussion

Despite the theoretical complexity of DNA strand displacement analysis prob-
lems [19], we demonstrate that an SMT-based method enables the analysis of
properties of large-scale DNA computing systems and is capable of handling the
largest designs currently constructed in wet labs. Although we focus on strand
displacement, using the power of SMT methods and their underlying solvers to
address challenging analysis questions in other DNA computing paradigms re-
mains an interesting topic for future research. Besides improved scalability, a ma-
jor advantage of the method compared to previous analysis strategies (e.g. [15])
is that it enables us to formalize and prove the functional correctness of systems
under arbitrary inputs or large numbers of copies operating in parallel.

There are several potential uses we envision for these methods in the field.
First, formalizing functionality requirements during the circuit design process
and invoking the method to prove the correctness of a model is crucial in medical
and industrial applications of DNA computing. For flawed designs, our method
allows the identification of erroneous computation traces. Such formal “bug hunt-
ing” has become indispensable for the design of software and hardware [12] where
subtle errors are hard to detect using simulation alone. Enabling a designer to
explicitly state the expected functionality and related assumptions, is often suffi-
cient to identify potential problems when reusing components in larger designs.
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Furthermore, computation traces generated during analysis help identify spe-
cific inputs and conditions leading to a given behavior in the model, allowing
the actual behavior of the circuit to be examined in the lab.

Second, analysis methods are useful as “compiler optimizations”, for example
by detecting reactions that will not be enabled for given inputs (as in our method)
thereby speeding up simulation. A tighter integration with a compiler (e.g. Visual
DSD) also benefits the analysis - our preliminary investigation suggest that, in spe-
cific cases, disabled reactions can safely be removed from the system during com-
pilation rather than by using the more general procedure from Sec. 3.1. Incorpo-
rating analysis capabilities within DNA compilers also allows useful information
to be provided to the designer and helps in understanding circuit behavior.

Despite all analysis and design efforts, our methods only allow us to gain
confidence in the correctness of the available models, while the functionality
of a DNA circuit is ultimately determined experimentally in the lab. Even so,
models can be extended to include the additional complexities (e.g. unproductive
reactions, leak rates, etc.) required to capture the behavior of a circuit more
accurately. Furthermore, the ability to systematically analyze models has the
potential to aid the construction of circuits in the lab by allowing observed
experimental results that are also possible in the model (although potentially
rare) to be distinguished from situations where the modeling assumptions fail.

While the analysis of large-scale, single-molecule resolution models is the focus
in this paper, SMT-basedmethods also enable the encoding andanalysis of approx-
imations such as (non-linear) ODEs, where species concentrations are described as
continuous values but important system behavior is potentially missed. In our cur-
rent work, we focused specifically on a class of CRNs where computations do not
depend on reaction kinetics. Recently, the class of mathematical functions com-
putable in chemical reactionsnetworkswitharbitrarykineticswas characterized [3]
and practical advantages of such systemswere highlighted (e.g. only a set of inputs
is sufficient to initiate a computation [8]). Extending the method described here
to probabilistic systems to capture the additional complexity of chemical kinetics
(e.g. through the use of stochastic SMT [10]) is an ongoing effort. For instance, in
the present work, we study several DSD-circuits, inspired by the localized square
root circuit from [2]. Although this design is similar to the one from [17], it does not
use seesaw gates as a basic logical component. The seesaw gate is capable of imple-
menting either AND- or OR-type behavior, but relies on differential binding rates
between certain species to do so and, as a result, there is a low probability that the
circuit will compute the incorrect output. Since chemical kinetics are not currently
considered in our representation, low probability computation traces (e.g. where
an OR-gate behaves as an AND-gate) would be identified as erroneous using our
approach, without taking into account their actual probability.

In this paper we consider DSD circuits where all species and reactions are
generated a priori (which is often the case for circuits of practical interest,
but with notable exceptions [15]) and the output is measured once a state is
reached where no additional reactions are possible. For more general chemical
systems and other DSD circuits, this is not always the case (e.g. when an output
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signal is computed but other auxiliary reactions are still enabled). Thus, DNA
computing circuits may be viewed as reactive systems that continually perform
computation and react to external signals, rather than circuits that compute
some output and terminate. Richer specifications (e.g. as captured in temporal
logic) are useful for defining more general behavioral properties and are possible
in the proposed framework (e.g. through standard encodings as in [1]). Besides
capturing the functional properties discussed here, in [21] our methods proved
useful for studying certain structural properties such as the presence of exposed
DNA sequences in the transducer circuit designs from [15].

While termination is generally a challenging problem [23], it is possible to ob-
tain termination proofs for many concrete models. Here, we obtain such a proof by
adapting methods developed for Petri nets [11] to the particular circuit design we
study in this paper. Extending thismethodandadapting other recent techniques to
study termination in DSD circuits is a promising direction of future research.More
generally, several of the properties we study are closely related to ones defined for
Petri nets [11] and adapting techniques developed for their analysis is currently
ongoing. Notably, the use of Petri net methods (instead of the strand-conservation
strategy from [21]) to compute invariants for DSD circuits does not substitute the
strengthening procedure from Sec. 3.1 for the examples we consider.

The iterative strengthening of inductive invariants (as in our strategy from
Sec. 3.1) has been studied in the context of software and hardware verification,
and the development of such methods for DNA circuits is being investigated
within our framework. The application of such methods also provides a promising
strategy for automatically uncovering important properties of circuit designs,
such as the ones we defined for the square root circuit and its components.
Finally, we study and prove the correctness of components of complex DNA
circuits in isolation but cannot guarantee that this behavior is maintained when
these components are used within larger systems - modularizing the analysis of
DNA circuits is an auspicious future direction.
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