
Chapter 6
Integrating Knowledge Engineering
with Knowledge Discovery in Database:
TOM4D and TOM4L

Laura Pomponio and Marc Le Goc

Abstract Knowledge Engineering (KE) provides resources to build a conceptual
model from experts’ knowledge which is sometimes deficient to interpret the input
data flow coming from a concrete process. On the other hand, data mining techniques
in a process of Knowledge Discovery in Databases (KDD) can be used in order to
obtain representative patterns of data which could allow to improve the model to be
constructed. However, interpreting these patterns is difficult due to the gap which
exists between the expert’s conceptual universe and that of the process instrumen-
tation. This chapter proposes then a global approach which combines KE with KDD
in order to allow the construction of Knowledge Models for Knowledge Based
Systems from expert knowledge and knowledge discovered in data. This approach is
grounded in the Theory of Timed Observations on which both a KE methodology
and a KDD process are based, so that the resulting models can be compared.

6.1 Introduction

A Knowledge Based System (KBS) carries out a set of knowledge intensive tasks
for the purpose of putting in practice problem-solving capabilities, comparable to
those of a domain expert, from an input data flow produced by a process.

In particular, a knowledge intensive task requires, by construction, a Knowledge
Model in order to interpret the input data flow according to the task to be achieved,
to identify an eventual problem to be solved and to produce a solution to this one.
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The Knowledge Engineering (KE) discipline provides methods, techniques and
tools which facilitate and improve the modelling task of expert knowledge. In this
field of study, most approaches model separately expert knowledge regarding the
expert’s reasoning mechanisms from expert knowledge specific to the domain of
interest. Thus, a model of the expert’s knowledge, called Expert Model (or
Knowledge Model), obtained through this discipline will be generally made up of a
model describing how the expert reasons about the process (a conceptual model of
the expert’s reasoning tasks) and of a representation of the knowledge used in the
involved reasoning (a conceptual model of the domain knowledge). This latter is
derived from the Process Model utilized by the expert in order to formulate his
own knowledge. Knowledge Engineering allows then to establish a back and forth
way between the expert’s knowledge and the built Expert Model where the validity
of this latter can be evaluated. However, two of the main drawbacks with the KE
approaches are (1) the cost of knowledge acquisition and modelling process, which
is too long for economic domains that use technologies with short life cycles and
(2) the validation of the Expert Model which is mainly oriented to ‘‘case-based’’.

An interesting alternative to deal with these problems is to resort to the process
of Knowledge Discovery in Database (KDD) which uses Data Mining techniques
in order to obtain knowledge from data. In this approach, the process data flow is
recorded by a program in a database where the data contained in such a database
are analysed by means of Data Mining techniques in a KDD process with the
purpose of discovering ‘‘patterns’’ of data. An n-ary relation among data can be
considered a pattern when this relation has a power of representativeness
according to the data contained in a database. This representativeness is related to
a form of recurrence within the data; that is to say, an n-ary relation among data of
a given set is a pattern, when this relation is ‘‘often’’ observed in the database.
Thereby, a set of patterns is then considered as the observable manifestation of the
existence of an underlying model of the process data contained in the database.
Nevertheless, establishing the meaning, regarding the expert’s semantics, of such a
Data Model entails a difficult task. One of the reasons for this difficulty is the deep
difference between the universe of the process instrumentation, from where the
data come, and the conceptual universe of the expert’s reasoning where exist
scientific theories and theirs underlying hypothesis. As a consequence, the vali-
dation of a Data Model is an intrinsically difficult task and a lot of work has to be
done to constitute a knowledge corpus from a validated Data Model.

Thus, in this last decade the idea of combining Knowledge Engineering with
Knowledge Discovery in Database emerges with purpose of taking the advantages
of both disciplines in order to reduce the construction cost of suitable Knowledge
Models for Knowledge Based Systems. The main idea is to make possible the
cross-validation of an Expert Model and a Data Model. This aims to define a
general perspective, by combining Knowledge Engineering with Knowledge
Discovery in Database in a global approach of knowledge creation carried out
from experts and knowledge discovered in data. The key point to achieve this is
then to find a KE methodology and a KDD process which allow to produce Expert
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Models and Data Models comparable each other by knowledge engineers and
easily interpretable by experts.

As far as we know, only the KE methodology and the KDD process which are
based on the Theory of Timed Observations [1] allow to compare their models
each other. This theory has been established to provide a general mathematical
framework for modelling dynamic processes from timed data by combining the
Markov Chain Theory, the Poisson Process Theory, the Shannon’s Communica-
tion Theory [2] and the Logical Theory of Diagnosis [3]. Thus, this theoretical
framework provides the principles that allow to define a KE methodology,
denominated TOM4D (Timed Observation Modelling For Diagnosis) [4–7], and a
KDD process called TOM4L (Timed Observation Mining For Learning) [8–13].
Owing to that, both TOM4D and TOM4L are based on the same theory, the
models constructed through both can be easily related and compared to each other.

The purpose of this chapter is to describe the way the Theory of Timed
Observations builds a bridge between Knowledge Engineering and Knowledge
Discovery in Database. In line with this aim, a global knowledge creation per-
spective which combines experts’ knowledge with knowledge discovered in a
database is presented. In order to show how models built through this perspective
can be collated and complement each other, the proposed approach is applied to a
very simple didactic example of the diagnosis of a vehicle taken from the book by
Schreiber et al. [14].

The next section completes this introduction by presenting arguments about the
need of a global approach which fuses Knowledge Engineering and Knowledge
Discovery in Database. The main concepts of the Theory of Timed Observations
are then introduced in order to present the TOM4D KE methodology and the basic
principles of the TOM4L KDD process. Next, both TOM4D and TOM4L are
applied to the didactic example above mentioned in order to show how the
corresponding Expert Models and Data Models can be compared to each other.
Finally, the conclusion section synthesizes this chapter and refers to some appli-
cations of our approach of knowledge creation on real world problems.

6.2 Two Knowledge Sources, Two Different Approaches

Creating or capturing knowledge can be originated from psychological and social
processes or, alternatively, from data analysis and interpretation. That is to say, the
two significant ways to capture knowledge are: synthesis of new knowledge
through socialization with experts (a primarily people-driven approach) and dis-
covery by finding interesting patterns through observation and intertwining of data
(a primarily data-driven or technology-driven approach) [15].
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6.2.1 Knowledge Engineering: A Primarily People-Driven
Approach

Considering knowledge as intellectual capital in individuals or groups of them, the
creation of new intellectual capital is carried out through combining and
exchanging existing knowledge. With this perspective, Nonaka’s knowledge spiral
[16, 17], illustrated in Fig. 6.1, is considered in the literature as a foundational
stone in knowledge creation. Nonaka characterizes knowledge creation as a
spiralling process of interactions between explicit and tacit knowledge. The former
can be articulated, codified, and communicated in symbolic form and/or natural
language [18], the latter is highly personal and hard to formalize, making it
difficult to communicate or share with others [19]. Each interaction between both
existing knowledges gives as result new knowledge. Thus, this process is con-
ceptualized in four phases: Socialization (the sharing of tacit knowledge between
individuals), Externalization (the conversion of tacit into explicit knowledge: the
articulation of tacit knowledge and its translation into comprehensible forms that
can be understood by others), Combination (the conversion of explicit knowledge
into new and more complex explicit knowledge) and Internalization (the

Fig. 6.1 Spiral evolution of knowledge conversion and self-transcending process [20, p. 43]
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conversion of explicit knowledge into tacit knowledge: the individuals can
broaden, extend and reframe their own tacit knowledge).

The tacit knowledge is, among other things, the knowledge of experts who
intuitively know what to do in performing their duties but which is difficult to
express because it refers to sub-symbolic skills. Such knowledge is frequently
based on intuitive evaluations of sensory inputs of smell, taste, feel, sound or
appearance. Eliciting such knowledge can be a major obstacle in attempts to build
Knowledge Based Systems (KBSs). Knowledge Engineering (KE) arises then as
the need of transforming the art of building KBSs into an engineering discipline
[21, 22] providing thus techniques and tools that help to treat with the expert’s tacit
knowledge and to build KBSs. This discipline motived the development of a
number of methodologies and frameworks such as Roles-Limiting Methods and
Generic Tasks [23], and later, CommonKADS [14, 24], Protégé [25], MIKE [26,
27], KAMET II [28, 29] and VITAL [30]. In particular, CommonKADS is a KE
methodology of great significance which proposes a structured approach in the
construction of KBSs. Essentially, it consists in the creation of a collection of
models that capture different aspects of the system to be developed, among which
is the Knowledge Model (or Expert Model) that describes the knowledge and
reasoning requirements of a system, that is, expert knowledge. Other two impor-
tant modelling frameworks are MIKE and PROTÉGÉ, where the former focuses
on executable specifications while the latter exploits the notion of ontology. All
these frameworks or methodologies aim, of one or another way, to build a model
of the expert’s knowledge.

6.2.2 Knowledge Discovery in Database: A Primarily Data-
Driven Approach

The traditional method of turning data into knowledge is based on data manual
analysis and interpretation. For example, in the health-care industry, specialists
periodically analyse trends and changes regarding health in the data. Then, they
detail the analysis in a report which becomes the basis for future decision making
in the domain of health. However, when data volumes grow exponentially and
their manipulation is beyond human capacity, resorting to automatic analysis is
absolutely necessary. Thus, computational techniques help to discover meaningful
structures and patterns from data.

The field of Knowledge Discovery in Database (KDD) is concerned with the
development of methods and techniques for making sense of data. The phrase
knowledge discovery in database was coined at the first KDD workshop in 1989
[31] to emphasize that knowledge is the end product of a data-driven discovery.
Although the terms KDD and Data Mining are often used interchangeably, KDD
refers to the overall process of discovering useful knowledge from data, and Data
Mining refers to a particular step in the mentioned process [32]. More precisely,
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this step consists of the application of specific algorithms in order to extract
patterns from data.

The typical KDD process is depicted in Fig. 6.2 and summarized as follows
[33]. The starting point is to learn the application domain and its goals. Next, to
select a dataset or a subset of variables on which discovery is to be performed.
Then preprocessing takes place which involves removing noise, collecting the
necessary information to account for noise, deciding on strategies for handling
missing data field, etc. The following step is data transformation which includes
finding useful features to represent the data, depending on the goal of the task, and
to reduce the effective number of variables under consideration or to find invariant
representation for the data. After that, data mining is carried out. In general terms,
this involves selecting data mining methods and choosing algorithms; and through
these ones, searching for patterns of interest. Finally, the mined patterns are
interpreted removing those that are redundant or irrelevant, and translating the
useful ones into terms understandable by users. This discovered knowledge can be
incorporated in systems or simply documented and reported to interested parties.

In a KDD process, finding patterns in data can be carried out through different
techniques such as Decision Trees [34], Hidden Markov Chain [35], Neural
Networks [36], Bayesian Networks [37], K Nearest-Neighbour [38], SVM [39],
etc. All these techniques allow to obtain a model representative of the studied data
where this model have to be interpreted and validated by expert knowledge.

6.2.3 The Need of One Integral Approach

The model-building of an observed process can be carried out through KE or
KDD. As Fig. 6.3 depicts, given a process about which an expert has knowledge, a
model Me of this process can be constructed from expert knowledge by applying
KE techniques. In turn, the process can be observed through sensors by a program
which records data describing its evolution. Thus, these data can be analysed by
applying data mining techniques in a KDD process in order to obtain a model Md

of the process. In an ideal world, both Me and Md would complement each other in
order to have a process model MPR more complete and suitable. That is, Me must
be validated with the process data perceived through sensors and Md must be
validated with expert knowledge. Nevertheless, some drawbacks arise. Knowledge
Engineering approaches do not address the treatment of knowledge discovered in

Fig. 6.2 Overview of the steps constituting the KDD process [33, p. 29]
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databases, that is to say, sometimes the interpretation of discovered patterns is not
trivial for an expert. Besides, relating models Me and Md obtained through KE and
KDD, respectively, proves to be difficult owing to the different theories and the
different natures of the representation formalisms used in both disciplines.

As [15] establishes, although capturing knowledge is the central focus of both
fields of study, knowledge creation has tended to be approached from one or the
other perspective, rather than from a combined perspective. Thus, a holistic view
of knowledge creation that combines a people-dominated perspective with a data-
driven approach is considered vital. In line with this need, this article proposes to
integrate a KE methodology with data mining techniques in a KDD process in
order to define a human–machine learning process.

6.3 Two Knowledge Sources, One Integral Approach

Models obtained through Knowledge Engineering (KE) and Knowledge Discovery
in Database (KDD) will be able to be related and collated each other, if a bridge
between the mentioned areas is established. We believe that fusing KE and KDD
into a global approach of learning or knowledge acquisition, nourished with
knowledge discovered in data and experts’ knowledge, requires a theory on which

Fig. 6.3 Building a process model from two knowledge sources
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to base both disciplines. The integral approach presented in this chapter and
illustrated in Fig. 6.4 combines a KE methodology called Timed Observation
Modelling For Diagnosis (TOM4D) [4–7] with a data mining technique, named
Timed Observation Mining For Learning (TOM4L) [8–13]. Both TOM4D and
TOM4L are based on the Theory of Timed Observations [1], a stochastic approach
framework for discovering temporal knowledge from timed data.

The TOM4D methodology is a primarily syntax-driven approach for modelling
dynamic processes where semantic content is introduced in a gradual and con-
trolled way through the CommonKADS conceptual approach [14], Formal Logic
and the Tetrahedron of States [40]. TOM4L is a probabilistic and temporal
approach to discover temporal relations from initial timed data registered in a
database. The time stamps are used to provide a partial order within the data in the
database (i.e. two data can have the same time stamp) and to discover the temporal
dimension of knowledge when needed. Owing to that, the underling theory is the
same, TOM4D models and TOM4L models can be compared to each other in
order to build a suitable model of the observed process. In particular, TOM4D
allows to build a process model which, by construction, can be directly related to
the knowledge model provided by the expert, i.e. a CommonKADS Knowledge
Model; and besides, it can be collated with models obtained from data.

Figure 6.4 depicts the proposed overall view where a process model can be
built through TOM4D from a knowledge source and then the constructed model
can be validated by experts. In turn, an observation program H X;Dð Þ requires a
model of the observed process for recording data in respect of the evolution of this
one. These data are then analysed by means of TOM4L to produce a process
model. This model can be directly related to the TOM4D model built from the
expert’s knowledge and consequently, it can be either validated by the expert or it

Fig. 6.4 Human-machine learning integral approach
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can be utilized as pieces of new knowledge when the learning approach is applied
to an unknown process. In this way, the built model can be defined through a back
and forth way between experts’ knowledge and knowledge discovered in data,
establishing thus, an integral human–machine learning approach.

6.4 Introduction to the Theory of Timed Observations

The Theory of Timed Observations (TTO) [1] provides a general framework for
modelling dynamic processes from timed data by combining the Markov Chain
Theory, the Poisson Process Theory, the Shannon’s Communication Theory [2] and
the Logical Theory of Diagnosis [3]. The main concepts of the TTO, required in
order to introduce the TOM4D KE methodology and the TOM4L KDD process,
will be described in this section. These concepts are the notions of timed obser-
vation and observation class.

The Theory of Timed Observations defines a dynamic process as an arbitrarily
constituted set XðtÞ ¼ x1ðtÞ; . . .; xnðtÞf g of n functions xiðtÞ of continuous time
t 2 <. The set XðtÞ of functions implicitly defines a set X ¼ x1; . . .; xnf g of n
variable names xi. The dynamic process XðtÞ is monitored by a program HðX;DÞ
which observes the functions xiðtÞ of XðtÞ; and then, it establishes, records and
informs their evolution over time with a finite set D ¼ dj

� �
j¼1;...;m of constants di

(i.e. a number or a string). The program HðX;DÞ usually accounts for the functions
progression through messages recorded in a database. These messages can be
alarms, warnings or reporting events.

This theory considers a message at time tk as a timed observation ðd; tkÞ where d
is a constant value of D and tk is the moment in which the observation occurs. For
example, let us suppose that timed data recorded in a database are of the form
‘‘yymmdd-hhmmss/message_value’’ where yymmdd-hhmmss is a time stamp and
message_value is a value determined by a monitoring program. The message
‘‘080313-132225/TEMPERATURE/very_high’’ can be represented with a timed
observation ðd; tkÞ where tk = 080313-132225 and d = /TEMPERATURE/
very_high. That is, (d, tk) = (TEMPERATURE/very_high, 080313-132225).

In general terms, a timed observation ðd; tkÞ is written by an observer program
Hðfxg; fdgÞ when a function xðtÞ of continuous time enters in a specific interval of
values. The specification of such an observer program refers to a threshold value
Wj 2 < and two immediately successive values xðtk�1Þ 2 < and xðtkÞ 2 < so that,

xðtk�1Þ\Wj ^ xðtkÞ�Wj ) writeððd; tkÞÞ: ð6:1Þ

In this program, write(msg) is a predicate which denotes that the element msg is
recorded in a memory. For example, Fig. 6.5 illustrates a temperature function
xiðtÞ, where values above Wj are interpreted by an observer program Hðfxig;
{TEMPERATURE/very_high}) as very high temperature; that is, when
xiðtÞ 2 ½Wj;þ1Þ. Thus, given a sequence of values w ¼ ðxiðt1Þ; . . .; xiðtk�1Þ;
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xiðtkÞ; xiðtkþ1ÞÞ, the program Hðfxig;{TEMPERATURE/very_high}) will write a
timed observation (TEMPERATURE/very_high, tk), which indicates that the
function xiðtÞ entered the interval ½Wj;þ1Þ at time tk.

The Theory of Timed Observations establishes that the existence of a timed
observation ðd; tkÞ, recorded in a database, allows to infer that the mentioned
observation has been recorded by an unknown program Hðfxg; fdgÞ which
implements the abstract logical equation described in (6.2).

8tk 2 C; hðx; d; tkÞ 2 H) ðd; tkÞ 2 X ð6:2Þ

This sentence associates the set H of all the assignations to a ternary predicate
hðxh; dh; thÞ with the set X of all the timed observations carried out by the
program Hðfxg; fdgÞ (i.e., the database). A timed observation ðd; tkÞ is then
interpreted as the logical consequence of the assignation of the values x, d and tk to
a ternary predicate hðxh; dh; thÞ. In other words, this means that the timed
observation ðd; tkÞ was recorded when the program Hðfxg; fdgÞ assigned the
values x, d and tk to the predicate hðxh; dh; thÞ.

Given the sentences (6.1) and (6.2), the general meaning ‘‘is’’ can be always
provided to the predicate h so that the timed observation ðd; tkÞ is interpreted as ‘‘at
time tk, x is d’’. Considering that x is associated with a function xðtÞ, the meaning
‘‘equal’’ can also be attributed to the predicate h, which leads to the following
abuse of language: hðx; d; tkÞ means ‘‘Equalðx; d; tkÞ’’ (i.e. ‘‘xðtkÞ ¼ d’’).
Consequently, the Theory of Timed Observations considers that a message con-
tained in a database is a timed observation ðd; tkÞ written by a program HðX;DÞ
which observes a time function xðtÞ and implements the abstract Eq. (6.2). In our
example, the timed observation (TEMPERATURE/very_high, tk) indicates that a
program HðxðtÞ; fdgÞ, observing a time function xiðtÞ and defining implicitly a
predicate hðxh; dh; thÞ, has considered h(xi, TEMPERATURE/very_high, tk) true
and then it has written the timed observation (TEMPERATURE/very_high, tk) in
the database X. This example illustrates the abuse of language frequently carried
out, which associates the meaning ‘‘xi(tk) = very_high’’ with the interpretation of
the function ‘‘xiðtÞ’’ as a temperature.

According to the Definition 6.1, the interpretation of a timed observation ðd; tkÞ
is precisely the assigned predicate hðx; d; tkÞ. It is noteworthy that the program
Hðfxg; fdgÞ could have errors; that is to say, a timed observation ðd; tkÞ could have
been written in a database although the assertion hðxi; d; tkÞ is not really true.

Fig. 6.5 Function of
temperature
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Definition 6.1 Let XðtÞ ¼ fxiðtÞgi¼1;...;n be a finite set of time functions; let X ¼
fxigi¼1;...;n be the corresponding finite set of variable names; let D ¼ fdjgj¼1;...;m be
a finite set of constant values; let HðX;DÞ be a program observing the evolution of
the functions of XðtÞ; let C ¼ ftkgk2< be a set of arbitrary time instants; and let
hðxh; dh; thÞ be a predicate implicitly determined by HðX;DÞ. Then,

• a timed observation ðd; tkÞ 2 D� C on xiðtÞ is the assignation of values xi, d
and tk to the predicate hðxh; dh; thÞ such that hðxi; d; tkÞ;

• by definition oðtkÞ denotes a timed observation; i.e., oðtkÞ, ðd; tkÞ1 and,
• a finite set O � D� C of timed observations is disjointly partitioned and

ordered in a scenario X defined as a set of temporally ordered sequences of
timed observations; that is, X ¼ fw : f1; . . .; ng ! Ogjn 2 @ ^ 8i; j
2 f1; . . .; ng; i\j;ðwðiÞ ¼ oðtkÞ ^ wðjÞ ¼ oðtrÞ ) tk � trÞg ^

T

w2X
=ðwÞ ¼ ;

^
S

w2X
=ðwÞ ¼ O where =ðwÞ denotes the image or range of w, i.e. the obser-

vations of the sequence w 2 X.
Moreover, as follows from that previously explained, timed observations on a

particular function implicitly determine a variable, which assumes discrete values
and describes the function evolution according to an interpretation of the observer
program. That is to say, when H considers h(xi, TEMPERATURE/very_high, tk)
true and then writes (TEMPERATURE/very_high, tk), it is implicitly defining a
discrete variable which assumes the value TEMPERATURE/very_high. Conse-
quently, a timed observation and the implicit existence of an associated discrete
variable enable to define the notion of observation class, other important concept
in this theory. An observation class associated with a variable x, that assumes
values d 2 D, is a set Cx ¼ fðx; dÞ j d 2 Dg. For simplicity reasons, Cx is often
defined as a singleton Cx ¼ fðx; dÞg; d 2 D. Thus, this concept establishes the link
between a constant d 2 D and a variable x 2 X and then, a timed observation ðd; tkÞ
is an occurrence of an observation class Cx ¼ fðx; dÞg. Definition 6.2 specifies
this concept.

Definition 6.2 Let XðtÞ ¼ fxiðtÞgi¼1;...;n be a set of time functions whose evolu-
tions are observed by a program H; let X ¼ fxigi¼1;...;n be a set of discrete variables
where each xi is associated with a time function xiðtÞ and its value is determined by
an interpretation of H about the evolution of xiðtÞ; and, let D ¼

S

xi2X
Dxi be such that

Dxi is a set of values which can be assumed by xi 2 X. Then we say that an
observation class associated with a variable xi 2 X is a set Ci ¼ fðxi; dÞ j d 2 Dxig.

In summary, from a message (TEMPERATURE/very_high, tk) written in a
database, the Theory of Timed Observations allows to consider that there exists a
program Hðfxig;{TEMPERATURE/very_high}) which wrote the message, by
means of observing a time function, maybe unknown for us, noted as xiðtÞ. This

1 The symbol , denotes rewriting or ‘‘corresponds to’’.

6 Integrating Knowledge Engineering with Knowledge Discovery in Database 199



message is then a timed observation (TEMPERATURE/very_high, tk) indicating
that a certain predicate h(xi, TEMPERATURE/very_high, tk) was assumed true by
the program Hðfxig;{TEMPERATURE/very_high}). Then, there is tacitly a dis-
crete variable xi which takes at least the value TEMPERATURE/very_high.
Therefore, we can define an observation class Ci = {(xi, TEMPERATURE/ver-
y_high)}, so that the timed observation (TEMPERATURE/very_high, tk) is an
occurrence of Ci. When knowing that the time function xiðtÞ represents the
evolution of temperature, it is inferred that (1) xi denotes a variable of temperature,
(2) the observation class Ci can then be written as Ci = {(very_high)} denoting that
the temperature is very high and (3) the timed observation (TEMPERATURE/
very_high, tk) is an occurrence of this class, which means ‘‘at time tk, temperature is
very high’’.

For sake of generality, it is important to note that a predicate hðxh; dh; thÞ is
satisfied when the corresponding time function xiðtÞ matches against a behavioural
model [41]. Such a model can be as simple as the switch of an interrupter or
requiring complex techniques, as signal processing techniques for artificial vision.

The TOM4D KE methodology and the TOM4L KDD process are based on
these notions of timed observation and observation class, as the next sections
describe below.

6.5 TOM4D KE Methodology

TOM4D is a modelling approach for dynamic systems focused on timed obser-
vations. The objective of this one is to produce suitable models for dynamic
process diagnosis from timed observations and experts’ a priori knowledge. This
methodology combines then the modelling of the experts’ cognitive process, using
CommonKADS [14, 24], with a multi-modelling approach for dynamic systems
[40, 42]. In addition, TOM4D is a primarily syntax-driven approach [5–7] which
resorts to CommonKADS, Formal Logic and the Tetrahedron of States (ToS) [40]
as interpretation frameworks and paradigms in order to introduce, in the modelling
process, semantic content in a gradual and controlled way.

6.5.1 Multi-Modelling

In this methodology, a system is represented by means of four models, the three
models described in the conceptual multi-modelling framework introduced in [43]
and a complementary model called Perception Model [6].

The models of the multi-modelling framework are Structural Model (SM),
Behavioural Model (BM) and Functional Model (FM) which describe different
types of knowledge. The SM contains knowledge relative to the system compo-
nents and their structural organization, that is to say, the relations between these
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ones. The BM specifies knowledge about the phenomena which act inside the
system in order to transform an input flow into an output flow. Such transfor-
mations are measured through the evolution of the values of a set of variables.
Thus, these changes in the values define the possible sequences of observation
classes that can occur and therefore, the discernible states between them. Finally,
the FM describes knowledge about the relations among the values that the
variables can assume.

For its part, the Perception Model (PM) contains knowledge about the
following elements and aspects of the process: variables and their thresholds,
operating goals, and normal and abnormal operating modes.

The relations between the first three models are determined by the notion of
variable as Fig. 6.6 illustrates. A variable used in a function of the Functional
Model is associated with a component of the Structural Model and, a discrete event
of the Behavioural Model is the assignment of a value to the variable. Indeed,
any specification in these models must be consistent with that one made in the
Perception Model.

6.5.2 Interpretation Frameworks

CommonKADS [14, 24] is a methodology which offers a structured approach in
the development of KBSs by proposing three groups of models. The first group
regarding the organizational context and environment, the second one with respect
to the conceptual description of the knowledge applied in a task, and the last one
concerning the technical aspects of the software artefact.

In particular, the CommonKADS Knowledge Model which belongs to the
second group is utilized in our approach. This model describes the types and
structures of the knowledge required to accomplish a particular task and thus, it
acts as a tool that helps to clarify the structure of a knowledge-intensive infor-
mation-processing task. This model is developed, in a way that is understandable
by humans, as part of the analysis process and therefore, it does not contain any

Fig. 6.6 Relations between
TOM4D models
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implementation-specific term. Thus, this one is an important vehicle for commu-
nication with experts and users about the problem-solving aspects. Consequently,
TOM4D uses the aforementioned model as a mean of interpreting and structuring
the available knowledge.

Formal logic is also used by the proposed methodology as a resource which
provides reasoning mechanisms and gives the possibility of utilizing Reiter’s
Theory of Diagnosis [44]. In turn, in order to give a physical interpretation to the
variables, the Tetrahedron of States (ToS) [40, 45, 46] can be incorporated in the
analysis process. The ToS is a framework that describes a set of generalized
equations (Fig. 6.7) which are common to a wide variety of physical domains
(electromagnetism, fluid dynamics, thermodynamics, etc.). This one allows to map
physical variables of a specific domain into four classes of generalized variables
(effort, flow, impulse and displacement) and to identify the set of relationships
among these ones. For example, in the electric domain (Electric ToS), current is
mapped to generalized flow, electric charge to generalized displacement, voltage
to generalized effort and magnetic flux to generalized impulse; thus, the relations
among the electric domain variables can be established according to the ToS. Our
modelling approach then resorts to Formal Logic and ToS as paradigms of
interpretation and analysis of knowledge.

6.5.3 TOM4D Modelling Process

The modelling approach of this methodology is based on three principles [7]. The
first one is that each symbol of an entity used in one of the three models introduced
in Sect. 6.5.1 (structural, functional and behavioural models) denotes a concept
that is defined at the level of domain knowledge of a CommonKADS model [14].

Fig. 6.7 Tetrahedron of
states (ToS) (based on [40,
p. 1728])
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This means that the introduction of a symbol that is not associated with an element
of the domain knowledge model is prohibited. The second principle is that a
variable is always associated with a component or a component aggregate defined
in the structural model. The third principle is that a transition between two states is
conditioned by the assignment of a new value to a variable. The notion of variable,
as aforementioned in Sect. 6.5.1, constitutes thus the common point of the three
models.

The modelling process aims to produce a generic model of a system from
available knowledge and data, where the three fundamental modelling phases are
knowledge interpretation, process definition and generic modelling. Figure 6.8
illustrates a structure of logical dependences that describe the TOM4D reasoning
process for obtaining a model of an observed system. Therefore, how the control
flow of the modelling process is carried out, is not part of this structure. The
illustrated process, introduced below, gives a general guide in order to understand
the principal objectives of this approach. Clearly, the modelling is generally

Fig. 6.8 General structure of the TOM4D modelling process
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cyclical and each stage can require to return to previous phases with the objective
of revising the expert’s knowledge, results, ideas, modelling decisions, etc.

1. Knowledge Interpretation

The objective of this phase is to define a scenario model. In general terms,
a scenario X of a system is a set of observations or measures over time on the
variables of the system, where these measures describe a certain evolution of
the process that drives the system dynamic. Definition 6.1 in Sect. 6.4 introduces
the meaning of scenario and other concepts such as timed observation and
observation class. In short, a scenario is a set of sequences of timed observations
describing partially the behaviour of a process.

The construction of a scenario model MðXÞ ¼\SMðXÞ;FMðXÞ;BMðXÞ[
consists of the definition of a structural model SMðXÞ, a functional model FMðXÞ
and a behavioural one BMðXÞ of X.

For the purpose of defining a model MðXÞ, a CommonKADS template is
utilized to interpret and to organize the available knowledge. This knowledge is
provided by a scenario X and a knowledge source where the latter can be an
expert, a set of documents, etc. Thus, the outcome of this phase is an organized
description of knowledge and available information.

2. Process Definition

The process definition step aims to define the process XðtÞ that governs a
system; that is, the boundary of the process, the operating goals and the normal and
abnormal operating modes of this one. In this phase, the available knowledge, the
scenario model MðXÞ and the concepts of Formal Logic or the Tetrahedron of
States (ToS) can be used to achieve the objective. As described in Sect. 6.5.2, the
last two are interpretation frameworks which allows, along with CommonKADS,
to introduce semantic content in a controlled way, providing contexts of logical
and physical interpretation of variables. The result of this phase must then be a
perception model of the process, that is, PMðXðtÞÞ.

3. Generic Modelling

This stage aims to define a generic model of a process XðtÞ. The definition of this
model consists of the perception model defined in previous steps and structural,
functional and behavioural models associated with the process XðtÞ; that is,
MðXðtÞÞ ¼\PMðXðtÞÞ; SMðXðtÞÞ;FMðXðtÞÞ;BMðXðtÞÞ[ . The objective is then
to define a model already not relative to a particular scenario X, but to a type of
process. This model should be more general and more abstract than the scenario
model and thus, more useful for diagnosis. This stage can be accomplished using
the available knowledge, the Perception Model and analyses through Formal Logic
and the ToS.

The results of applying TOM4D to a didactic example will be presented later in
order to show how the built TOM4D model can be related to a TOM4L model
automatically obtained from data.
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6.6 TOM4L KDD Process

TOM4L [12], based on the Theory of Timed Observations [1], is a probabilistic
and temporal approach to discover temporal relations for description, diagnosis
and prediction from initial timed data X registered in a database (i.e. a set of timed
observation sequences). The aim is to discover n-ary temporal relations which are
representative of the process behaviour which gave rise to X.

In particular, the TOM4L approach is implemented by the ElpLab Java soft-
ware, so that the n-ary temporal relations can be discovered in an automatic way.

6.6.1 Temporal Relations

As described in Sect. 6.4, sequences of timed observations ðd; tkÞ 2 D� C
recorded by a program observing a process allow to establish a set of discrete
variables x 2 X; and consequently, a set C of corresponding observation classes
Ci 2 C. For example, if C1a ¼ fðxi; daÞg is defined as an observation class asso-
ciated with xi, then a timed observation ðda; tkÞ is an occurrence at time tk of the
class C1a. In order to specify that an observation is of a certain class, the symbol
‘::’ is used; e.g., ðda; tkÞ :: C1a.

TOM4L aims to discover temporal characteristics present in the data that
describe the evolution of a process; therefore, detailed descriptions about variables
and particular values that these variables can assume are not necessary in this
context. In particular, we shall refer to timed observations and observation classes.
We recall that the timed observation ðda; tkÞ can be rewritten as oðtkÞ (Definition
6.1); thus, we refer to this observation like oðtkÞ and we specify its class with the
symbol ‘::’ like oðtkÞ :: C1a.

A temporal relation between two observation classes describes a temporal
constraint between observations of the involved classes. By considering I ¼
f½s�; sþ� j ½s�; sþ� � <g a set of time intervals and C a set of observation classes,
a temporal relation between two observation classes is a pair ðq;�iÞ where q 2
C � C and �i 2 I. Thus, a temporal relation ðq;�iÞ ¼ ððCi;CjÞ; ½s�; sþ�Þ specifies a
temporal constraint between timed observations of the observation classes
Ci;Cj 2 C. Figure 6.9 illustrates this relation according to the ElpLab
representation.

In particular, two observations verify the aforesaid relation if the elapsed time
between an occurrence of Ci and an occurrence of Cj is greater than or equal to
s� and less than or equal to sþ. That is to say, two observations oðtkÞ; oðtrÞ 2
D� C verify the relation ððCi;CjÞ; ½s�; sþ�Þ if oðtkÞ :: Ci ^ oðtrÞ :: Cj ^ ðtr � tkÞ
2 ½s�; sþ�.

For its part, an n-ary temporal relation is a sequence m of temporal relations.
Thus, a sequence of timed observations verifies an n-ary temporal relation m if the
mentioned sequence verifies each temporal relation in m, even if in the middle of

6 Integrating Knowledge Engineering with Knowledge Discovery in Database 205



the observation sequence there exist occurrences of classes that are not present in
m.

As an example, we consider the observation classes C1a, C2b, C3c and the n-ary
temporal relation m ¼ ðððC1a;C2bÞ; ½2; 5�Þ; ððC2b;C3cÞ; ½0; 4�ÞÞ , as illustrated in
Fig. 6.10. Besides, we suppose the sequence of timed observations w ¼
ðoð19Þ; oð20Þ; oð22Þ; oð24ÞÞ such that oð19Þ :: C1a, oð20Þ :: C3c, oð22Þ :: C2b and
oð24Þ :: C3c, also illustrated in the figure. In this case, w verifies m owing to the
following. Firstly, the class of the first observation coincides with the first class in
the n-ary relation (i.e., oð19Þ :: C1a) and the class of the last observation in w
coincides with the last class in m (i.e., oð24Þ :: C3c). In addition, the sequence of
relations m ¼ ðððC1a;C2bÞ; ½2; 5�Þ; ððC2b;C3cÞ; ½0; 4�ÞÞ is verified in w. That is to
say, ððC1a;C2bÞ; ½2; 5�Þ specifies that the elapsed time between an occurrence of the
observation class C1a and an observation of the class C2b is greater than or equal to
2 and less than or equal to 5. Thus, in w, oð19Þ and oð22Þ verify this temporal
constraint since that oð19Þ :: C1a, oð22Þ :: C2b, 22 - 19 = 3 and 2� 3� 5. In a
similar way, oð22Þ and oð24Þ verify ððC2b;C3cÞ; ½0; 4�Þ . It is noteworthy that
between oð19Þ and oð22Þ, the observation oð20Þ takes place. However, this does
not invalidate that the relation ððC1a;C2bÞ; ½2; 5�Þ is verified, along with the
complete n-ary relation, in the sequence of observations w.

In this way, given a set of data describing the behaviour of a process, dis-
covering the n-ary temporal relations that are representative of these data is the
central focus in the TOM4L KDD process.

Fig. 6.9 Binary temporal
relation ððCi;CjÞ; ½s�; sþ�Þ
between two observation
classes

Fig. 6.10 Sequence w ¼ ðoð19Þ; oð20Þ; oð22Þ; oð24ÞÞ of timed observations that satisfies the n-
ary temporal relation m ¼ ðððC1a;C2bÞ; ½2; 5�Þ; ððC2b;C3cÞ; ½0; 4�ÞÞ
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6.6.2 Stochastic Approach

In TOM4L, the analysis of a sequence w of timed observations consists of finding
the more representative sequential relations between observation classes and
establishing the temporal constraints in each relation. Thus, the study of the
mentioned relations is addressed by resorting the Markov chain theory and
the estimation of temporal constraints is dealt with the Poisson process theory.
Consequently, in this framework, a sequence w of timed observations has a
stochastic representation that consists of associating with w a superposition of the
Poisson process and a Markov chain.

Given a finite set O � D� C of timed observations, w is the sequence of all
observations in O (i.e., the image of w is equal to O, or w : @ ! O and =ðwÞ ¼ O)
and C is the set of the n classes of observations in w. A stochastic representation of
w consists then of a set of matrices reflecting different properties, where the rows
and columns refer to the observations classes in C; that is to say, matrices n� n
where the element of row i, column j refers to the sequential relation between the
class Ci and the class Cj. We denote by PðCj j CiÞ the conditional probability
PðwðkÞ :: Cj j wðk � 1Þ :: CiÞ of observing an occurrence of Cj having immedi-
ately before observed an occurrence of Ci and we denote by PððCi ; CjÞÞ the
probability Pððwðk � 1Þ :: Ci ; wðkÞ :: CjÞÞ of observing an occurrence of Ci fol-
lowed immediately by an occurrence of Cj. Thus, the stochastic representation of
w is given by the set of the following matrices. N ¼ ðNijÞn�n is a matrix where
each Nij establishes the number of observations of Ci followed immediately by an
observation of Cj in w. The matrix P ¼ ðpijÞn�n establishes the transition proba-
bilities between two observation classes, where the value pij corresponds to
PðCj j CiÞ and is calculated, based on N, as the rate between the number of the
occurrences of Ci followed immediately by an occurrence of Cj and the number of
occurrences of Ci followed immediately by an occurrence of any class.

The temporal constraints between two observation classes are calculated by
analysing only the two subsequences of w whose observations are of the classes in
question. In other words, w is partitioned in a set X of sequences wr, where the
observations in each wr are of a same class Cr. By considering wi;wj 2 X the
subsequences of w whose observations are of the classes Ci and Cj respectively,
the temporal constraint ½s�; sþ� of a relation ððCi;CjÞ; ½s�; sþ�Þ is computed from
the average of the elapsed times between an observation of class Ci and the
following and first observation of class Cj, when overlapping wi and wj.

Based on theses calculations, an algorithm called BJT computes the stochastic
representation of a sequence w under study, and an algorithm called BJT4T, based
on the mentioned representation and on an abductive reasoning, builds a three of
n-ary temporal relations associated with a given observation class Ci, i.e., paths
ended in Ci representative of w. Both algorithms belonging to the TOM4L
framework are implemented by ELpLab.
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6.6.3 BJ-Measure and the Bayesian Networks Building

The BJ-measure [12] is a measure based on information entropy. Considering a
superimposition of occurrences of two timed observation classes, this measure
allows to evaluate the strength of intertwining of the mentioned superimposition;
that is to say, the strength of an oriented binary relation between two observation
classes taken from an arbitrarily built set.

Given an ordered binary relation ðCi; CjÞ between two observation classes, if
these classes are independent, the probability of observing an occurrence of Cj at a
time tk is equal to the probability of observing an occurrence of Cj at that time
having observed an occurrence of class Ci at the previous time tk�1; that is,
PðCj j CiÞ ¼ PðCjÞ. However, according to [12], if the classes are not independent,
an occurrence of Ci at a time tk provides information about an occurrence (or not)
of Cj at the subsequent time tkþ1. In particular, the interest is in a measure indi-
cating that an occurrence of class Ci at the time tk increases the probability of
observing an occurrence of class Cj at the time tkþ1; that is, PðCj j CiÞ�PðCjÞ.
Thus, the BJ-measure is based on the Kullback–Leibler distance [47] between two
probability distributions which can be interpreted as the amount of information lost
when a probability distribution is approximated by another distribution. The
general idea is then the analysis, on the base of this distance measure, of the
distance between PðCj j CiÞ and PðCjÞ in order to establish if the relation ðCi; CjÞ
is strong or weak.

Consequently, the BJ-measure BJMðCi; CjÞ is defined from associating a
sequential relation ðCi; CjÞ with a discrete memoryless communication channel
[2] and from using the Kullback–Leibler distance. In particular, the BJ-measure
verifies the properties of monotony, dissymmetry, positivity, independence and
triangular inequality. Thus, if BJMðCi; CjÞ is negative, the relation ðCi; CjÞ is
weak; otherwise it is considered a possibly strong relation, or of interest.

The maximum and minimum values of the BJ-Measure depend on the rate ~hij

between the number of observations of class Ci and the number of observations of
class Cj in the studied sequence w. In particular, [12] shows that a sequential
relation ðCi; CjÞ is credible in the sense of the BJ-Measure if and only if
1
4 \~hij\4. This condition allows to select then relations of interest that provide a
representative model of the sequence w.

TOM4L proposes an algorithm called Tom4BN [10, 11] to build Naive
Bayesian Networks from timed data. Inspired by Cheng et al.’s algorithm [48],
Tom4BN uses the properties of monotony, dissymmetry, positivity, independence
and triangular inequality of the BJ-Measure to build a Naive Bayesian Network.

The general idea of the Tom4BN algorithm is to remove the sequential relations
ðCi; CjÞ that are not of interest when building, from a set of timed data, the
structure of a Naive Bayesian Network associated with a given observation class.
For example, if RBN 	 C � C is the set of all binary sequential relations ðCi; CjÞ
with which paths in a Bayesian Network can be built, in principle RBN ¼ C � C;
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then, relations ðCi; CjÞ where BJMðCi; CjÞ� 0 or BJMðCi; CjÞ\BJMðCj; CiÞ
are removed from RBN . These and other criteria based on the aforesaid properties
allow to select the binary sequential relations suitable for building a Bayesian
Network from a data set. Consequently, given a goal class, the structure of the
Bayesian Network associated with this one is constructed by the aforementioned
algorithm from the mentioned criteria.

Based on properties which follow from the discrete memoryless communication
channel, the tables of conditional probability for the Bayesian Network are defined
from the matrix N ¼ ðNijÞn�n established by the stochastic representation. That is
to say, are defined the probability PðCiÞ of a root node, the probability PðCi; CjÞ
for a simple sequential relation and the probabilities for two sequential relations
ðCi; CjÞ and ðCz; CjÞ associated with the same class Cj (i.e., PðCj j Ci; CzÞ,
PðCj j :Ci; CzÞ, PðCj j Ci; :CzÞ, PðCj j :Ci; :CzÞ). Thus, from the mentioned
definitions, probabilities as for example Pð:Cj j CiÞ can be calculated as
Pð:Cj j CiÞ ¼ 1� PðCj j CiÞ; and Pð:Cj j Ci; :CzÞ as Pð:Cj j Ci; :CzÞ ¼ 1
�PðCj j Ci; :CzÞ.

Thereby, given a goal class, the Bayesian Network associated with this one can
be automatically built through the Tom4BN algorithm from a data set.

6.6.4 Signatures

An n-ary temporal relation m is considered representative of a sequence w of timed
observations from evaluating two rates, anticipation rate and coverage rate [13].

Considering w a sequence of observations, let m be a sequence of temporal
relations and let ms be the sequence resultant of eliminating from m the last binary
relation. The anticipation rate TA of m in w is the rate between the number of
subsequences wj of w that satisfy m (i.e., wjYw ^ satisfiesðwj;mÞ) and the number
of subsequences of w that satisfy ms, as illustrated in Fig. 6.11. That is to say, the
percentage of cases in which after observing an instance of ms, an occurrence of
the last relation in m takes place. Clearly, TA is of great interest in the diagnosis
task when allowing to anticipate the occurrence of an observation class, in par-
ticular the last class of the model m; i.e., Ci in Fig. 6.11.

In the TOM4L framework, a signature [13] is a model m that has certain
representativeness in the data, that is, in the sequence w under study. In particular,
this representativeness is given when the anticipation rate TA is above a certain
value TAmin (typically, 50 %). In other words, a sequence of temporal relations m is
a signature in the sequence w of timed observations if and only if the anticipation
rate TA of m in w is greater than or equal to TAmin. Thus, for anticipating the
occurrence of an observation class Ci, a signature ending in Ci can be used as
predictive model.

In some cases, although the anticipation rate TA of a model m is above the value
established TAmin (i.e. m is a signature), the number of occurrences of m in w is
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low; or put in another way, the number of occurrences of the class Ci to be
predicted is low. Therefore, in order to discard signatures where the occurrences of
the last class are not significant in w, the coverage rate is established and illustrated
in Fig. 6.12. Thus, the coverage rate TC of m in w is the rate between the number
of subsequences of w that satisfy m and the number of occurrences of the last
observation class in m.

TOM4L aims, among other things, to discover from a given sequence w, a
minimal set of signatures able to predict the maximal number of observations
classes defined. That is, to discover a minimal set of temporal relations m whose
anticipation rate TA and coverage rate TC in w are above the established threshold.

6.6.5 TOM4L Process

The general structure of the TOM4L KDD process is illustrated in Fig. 6.13 and is
implemented by the ElpLab Java software, which allows to apply this data mining
approach in an automatic way.

As depicted in the figure, stochastic and temporal properties of binary relations
are obtained from a stochastic representation which associates a superposition of
the Poisson process and a Markov chain with a set X of timed observations.
A minimal set R ¼ frjgj¼1;...;r of binary temporal relations which satisfies a
criterion of interest is then induced from this stochastic representation, where the
used criterion of interest is based on the BJ-measure described in Sect. 6.6.3.

From the mentioned minimal set, the TOM4L KDD process allows to compute
a Naive Bayesian Network by means of the Tom4BN algorithm and a set of

Fig. 6.11 Anticipation rate of m with regard to w (based on [13, p. 47])

Fig. 6.12 Coverage rate of m with regard to w (based on [13, p. 47])
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representative n-ary temporal relations. This latter is built through an abductive
reasoning which is carried out on R in order to build a minimal set M ¼ fmigi¼1;...;s

of n-ary temporal relations mi which would represent some properties of the
process. In particular, the depth of abduction is controlled by heuristics based on
the BJ-measure.

In the next stage, an exhaustive search is accomplished to extract from M the
minimal set S 	 M of n-ary temporal relations which satisfy a criterion of rep-
resentativeness adapted to temporal relations. These n-ary relations are called
signatures and their predictive ability allows to anticipate the occurrence of
observable events. Searching for signatures consists in identifying all n-ary tem-
poral relations mi which finish in a particular observation class Cj (all paths and
sub-paths to Cj) whose representativeness in X is sufficient. This representative-
ness is calculated from the coverage and the anticipation rates. The coverage rate
of an n-ary relation mi is the rate between the number of instances of mi and the
number of observation occurrences of class Cj; and, the anticipation rate of an
n-ary relation mi is the rate between the number of instances of the relation mi and
the number of instances of the relation m0i, where m0i is the result of removing the
last observation class Cj of the path mi.

Models obtained through the TOM4L process, both signatures and Bayesian
Networks, can be related to TOM4D models as described in the next section.

lli

Fig. 6.13 TOM4L KDD
process [12, p. 40]
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6.7 Application to a Didactic Example

In this section, the proposed modelling approach combining TOM4D with TOM4L
is described by means of a case study about the diagnosis of problems with a car.
This case study has been taken from the book by Schreiber et al. [14] where it is
presented by the authors in order to describe concepts and components of a
CommonKADS Knowledge Model. Figure 6.14 depicts the domain knowledge of
this case study where nine rules constitute the knowledge provided by an expert.
These ones can be interpreted as ðR1Þ if the fuse is blown then the result of the fuse
inspection is broken, ðR2Þ if the fuse is blown then the power is off, ðR7Þ if the
power is off then the engine does not start, and so on.

From the introduced didactic problem, a summary description of applying
TOM4D and TOM4L to this example, along with the relation between the
obtained models, will be presented below. For the interested reader, the complete
description of TOM4D modelling process applied to the example can be found in
[4], and the detailed application of the TOM4L algorithms to the same example
can be found in [8].

6.7.1 TOM4D Models

The interpretation of available knowledge requires an organization of this one.
Thus, organizing and structuring knowledge is the first step in the modelling
activity of the TOM4D KE methodology.

6.7.1.1 Organizing Available Knowledge

CommonKADS is an important methodology in terms of modelling experts’
knowledge and therefore, it is utilized by TOM4D as a framework of interpretation
and organization of knowledge. CommonKADS provides a collection of predefined
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Fig. 6.14 Classification and organization of knowledge pieces
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sets of model elements such as task templates and inference catalogues, which
detail tasks and inferences typical for resolving a problem of a particular type.
These templates also propose a characteristic structure for specifying the domain
knowledge from the point of view of the selected type of task. In this case, we shall
consider the diagnosis template.

The diagnosis template presents a typical domain schema in which each system
being diagnosed can be characterized in terms of two types of features: those ones
that can be observed and those ones that can represent an internal state of the
system. Consequently, as Fig. 6.14 illustrates, the concepts fuse inspection, bat-
tery dial and gas dial are considered observable features; and fuse, battery, fuel
tank, power, gas in engine and engine behaviour are considered concepts that
allow to represent the states of the car. In particular, engine behaviour refers to a
state which can be perceived in some way; therefore, the last concepts associated
with car states can in turn be classified as visible or invisible.

Considering the previous classification, the arrows in Fig. 6.14 show depen-
dences between the knowledge pieces. These dependences are rules which indicate
relations between domain concepts. For example, ‘‘if there is no gas in engine,
engine stops’’ establishes a causal relation between the concepts ‘‘gas in engine’’
and ‘‘engine behavior’’: gas-in-engine.status=false ) engine-behaviour.status=
stops. In this case study, two types of dependences can be observed: rules that
indicate that a value assumed by an entity causes a certain value in other entity;
and rules which establish that a value assumed by an entity has a particular
manifestation in other entity.

Thus, the previous reasoning, illustrated in Fig. 6.14, describing dependence
types and concept types in the specific domain determines the following domain
rules specified in (6.3) in the language CLM (Conceptual Modelling Language,
[14]).

fuse.status = blown HAS-MANIFESTATION ( 1R )
fuse-inspection.value = broken;

fuse.status = blown CAUSES power.status = off; ( 2R )
battery.status = low CAUSES power.status = off; ( 3R )
battery.status = low HAS-MANIFESTATION ( 4R )

battery-dial.value = zero;

fuel-tank.status = empty HAS-MANIFESTATION ( 5R )
gas-dial.value = zero;

fuel-tank.status = empty CAUSES ( 6R )
gas-in-engine.status = false;

power.status = off CAUSES ( 7R )
engine-behaviour.status = does-not-start;

gas-in-engine.status = false CAUSES ( 8R )
engine-behaviour.status = does-not-start;

gas-in-engine.status = false CAUSES ( 9R )
engine-behaviour.status = stops;

ð6:3Þ
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Considering the aforementioned analysis and the three TOM4D principles
introduced in Sect. 6.5.3, the next objective is to define a scenario model MðXÞ ¼
\SMðXÞ;FMðXÞ;BMðXÞ[ from the given knowledge and a set X of sequences
of timed measures or observations which describe certain modes of functioning of
the car. In a real case, it would be desirable to have a set of timed observations
describing the evolution over time of the process under study. In this case, X has
not been provided; nevertheless, we shall deduce on the basis of the existing
domain knowledge a scenario X to be assumed.

6.7.1.2 Knowledge Interpretation

The rules in (6.3) represent causal relations which implicitly define the notion of
timed sequence of events; thus, from these rules, a set of sequences of timed
observations can be assumed, that is, a scenario X. Taking in consideration
ðR1Þand ðR2Þ in (6.3), if the fuse blows at the instant t0, the fuse inspection will
result equal to broken at a subsequent moment t0 þ Dti and the electric supply will
be off at another moment t0 þ Dtj. Affirming the order of sequence between t0 þ
Dti and t0 þ Dtj is not possible from the available information; nevertheless, we
assume that all sensors properly work and quickly react, therefore, the order
t0 þ Dti\t0 þ Dtj will be considered. In other words, first the fuse blows, then the
fuse inspection result is equal to broken and, after that, the electric supply is
switched off. Analogously, other two assumptions are: first the level of battery falls
below the minimum, then the battery-dial is equal to zero and later the electric
supply is turned off; and besides, first the fuel-tank is empty, then the gas-dial is
equal to zero and after that the gas supply is empty.

Thus, considering the previous assumptions, it is supposed a scenario X of
timed observations such that X ¼ fw1;w2;w3;w4g where

w1 ¼ððblown; t10Þ; ðbroken; t10 þ Dt11Þ; ðoff ; t10 þ Dt11 þ Dt12Þ;
ðdoes not start; t10 þ Dt11 þ Dt12 þ Dt13ÞÞ

w2 ¼ððlow; t20Þ; ðbattery zero; t20 þ Dt21Þ; ðoff ; t20 þ Dt21 þ Dt22Þ;
ðdoes not start; t20 þ Dt21 þ Dt22 þ Dt23ÞÞ

w3 ¼ððempty; t30Þ; ðgas zero; t30 þ Dt31Þ; ðfalse; t30 þ Dt31 þ Dt32Þ
ðdoes not start; t30 þ Dt31 þ Dt32 þ Dt33ÞÞ

w4 ¼ððempty; t40Þ; ðgas zero; t40 þ Dt41Þ; ðfalse; t40 þ Dt41 þ Dt42Þ;
ðstop; t40 þ Dt41 þ Dt42 þ Dt43ÞÞ

ð6:4Þ

From the interpretation of the available knowledge, the concepts fuse, battery,
fuel-tank, battery-dial and gas-dial are considered as components of the system.
However, the concepts fuse-inspection, power, gas-in-engine and engine-
behaviour denote physical entities which are unknown or whose information is
insufficient. Consequently, abstract components (or component aggregates) such as
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tools that allow fuse inspection, electric supply, gas supply and engine will be
defined to represent these concepts. In addition, the knowledge interpretation from
CommonKADS enables to identify the variables of the system such as fuse.status,
gas-dial.value, engine-behaviour.status, etc. Thus, these variables and components
are defined in (6.5) where the value that, in principle, a variable xi ði ¼ 1; . . .; 9Þ
can assume, is described in the corresponding set Dxi presented in (6.6), denoting
/i an unknown value.

Variables X ¼ fx1; . . .; x9g Components COMPS ¼ fc1; . . .; c9g
x1, fuse:status c1, fuse

x2, battery:status c2, battery

x3, fuel�tank:status c3, fuel�tank
x4, fuse�inspection:value c4, fuseinspectiontools

x5, battery�dial:value c5, battery�dial
x6, gas�dial:value c6, gas�dial
x7, power:status c7, electricsupply

x8, gas�in�engine:status c8, gassupply

x9, engine�behaviour:status c9, engine

ð6:5Þ

Dx1 ¼ fblown;/1g Dx4 ¼ fbroken;/4g Dx7 ¼ foff ;/7g
Dx2 ¼ flow;/2g Dx5 ¼ fbattery zero;/5g Dx8 ¼ ffalse;/8g
Dx3 ¼ fempty;/3g Dx6 ¼ fgas zero;/6g Dx9 ¼ fstops; does not startg

ð6:6Þ

In the first phase the scenario model MðXÞ ¼\SMðXÞ;FMðXÞ;BMðXÞ[ is
defined. Although the detailed specification of this model will not be presented, we
shall mention the principal points of this one. This model organizes and describes
the information and the knowledge available. SMðXÞ describes the 9 components
in (6.5) and the interconnections between them; and FMðXÞ specifies the relation
among the values that the variables can assume through the definition of a set of
functions. For example, rule R5 allows to establish an interconnection between the
components c3 (fuel-tank) and c6 (gas-dial); and also, the relation between the
values of x3 and x6 through a function f1 : Dx3 ! Dx6 such that f1ðemptyÞ ¼
gas zero, f1ð/3Þ ¼ /6, and where x6 ¼ f1ðx3Þ. Besides, BMðXÞ specifies an initial
behavioural model that, because of the 9 existent binary variables, consists of 18
observation classes (e.g., C1;1 ¼ fðx1; blownÞg, C1;2 ¼ fðx1;/1Þg are observation
classes related to x1) and 29 ¼ 512 characterized states (e.g., a state in which
x1 ¼ blown, x2 ¼ low, x3 ¼ empty, x4 ¼ /4, x5 ¼ battery zero, x6 ¼ gas zero,
x7 ¼ off , x8 ¼ false, x9 ¼ stops). However, this model, which describes the
available knowledge, is inadequate for analysing or diagnosing behaviour
problems. It should be noticed that the existence of only 9 binary components
determines 512 discernible states, a number significant with respect to the small
number of units. Presumably, certain states in BMðXÞ are irrelevant for the
pursued objectives or, they are meaningless since are impossible physically. Then,
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the two following stages in the modelling process, illustrated in Fig. 6.8,
Sect. 6.5.3, aim to deal with these aspects.

6.7.1.3 Process Definition

In the phase of process definition, the perception model PMðXðtÞÞ is defined,
where the boundaries and operating constraints such as the set of variables of
interest, operating goals, normal and abnormal operating modes are established.
After that, in the stage of generic modelling, the objective is to define a model
already not of a particular scenario, but a more general model of the car func-
tioning. These two stages resort to the Formal Logic and the Tetrahedron of States
in order to carry out a logical and a physical interpretation of the variables as
Table 6.1 describes.

From Formal Logic, the components ci ði ¼ 1; . . .; 9Þ in (6.5) can be considered
as logical components cBi described with first order predicate logic where Reiter’s
diagnosis theory [44] can be applied. Thus, the variables xi ði ¼ 1; . . .; 9Þ can be
interpreted as logical variables �xi ði ¼ 1; . . .; 9Þ which assume values 1 (true) or 0
(false). For example, in Table 6.1, x1 ¼ blown is logically interpreted as �x1 ¼ 0
(false).

In principle, the components c4 (fuse inspection tools), c5 (battery-dial) and c6

(gas-dial) being sensors, they simply replicates the behaviour of the components
c1 (fuse), c2 (battery) and c3 (fuel-tank). Consequently, and for reducing the
complexity, it is assumed that the former work correctly (i.e. sensors are supposed
to never fail) and then they are not necessary in the resultant model. Thus, the
logical model of the process is depicted in Fig. 6.15 and the logical relations

Table 6.1 Logical and physical interpretations

Knowledge Logical interpretation Physical interpretation

x1 ¼ blown �x1 ¼ 0 RðtÞ ¼ 1 (xp
1 ¼ 1)

x1 ¼ :blown �x1 ¼ 1 RðtÞ ¼ cr (xp
1 ¼ cr)

x2 ¼ low �x2 ¼ 0 QðtÞ ¼ 0 (xp
2 ¼ 0)

x2 ¼ :low �x2 ¼ 1 QðtÞ 6¼ 0 (xp
2 6¼ 0)

x3 ¼ empty �x3 ¼ 0 VðtÞ ¼ 0 (xp
3 ¼ 0)

x3 ¼ :empty �x3 ¼ 1 VðtÞ 6¼ 0 (xp
3 6¼ 0)

x7 ¼ off �x7 ¼ 0 UðtÞ ¼ 0 (xp
7 ¼ 0)

x7 ¼ :off �x7 ¼ 1 UðtÞ 6¼ 0 (xp
7 6¼ 0)

x8 ¼ false �x8 ¼ 0 QvðtÞ ¼ 0 (xp
8 ¼ 0)

x8 ¼ :false �x8 ¼ 1 QvðtÞ 6¼ 0 (xp
8 6¼ 0)

x9 ¼ :works �x9 ¼ 0 a:UðtÞ:QvðtÞ ¼ 0a (xp
9 ¼ 0)

x9 ¼ works �x9 ¼ 1 a:UðtÞ:QvðtÞ 6¼ 0 (xp
9 6¼ 0)

aa 2 f0; 1g models the car key (off/on) allowing to interpret x9 ¼ :works as the car is stopped
(owing to that it is off, there is no voltage or there is no gas). However, we do not have
information about a, so we assume that it can not be observed
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among the variables are presented in Table 6.2. In the figure, the boxes cB7, cB8

and cB9 represent logical ‘‘AND’’ components, and the components cB1, cB2 and
cB3 represent boolean value generators. This interpretation allows to specify
clearly conditions of normal and abnormal behaviour on the variables and, as
mentioned, it allows to resort to Reiter’s theory.

Nevertheless, Reiter’s theory tacitly assumes that logically consistent states
correspond to normal and desired behaviour, and the inconsistent states, denoting
a problem with at least one component, coincide with abnormal and undesired
behaviour. The problem is that this correspondence sometimes is not compatible
with a physical interpretation of the variables; thus, a logical model is a strong tool
for reasoning but is not sufficient. For example, when observing Fig. 6.15, a state
in which �x3 ¼ 0 and �x8 ¼ 1 results in an inconsistent state and in the mentioned
theory, this would indicate that the component cB8 does not work. However, in this
inconsistent state, the fuel tank is empty ð�x3 ¼ 0Þ and there is gas in the engine
ð�x8 ¼ 1Þ; consequently, the mentioned situation can not be associated with the
problem of a component. On the contrary, this state is transient and corresponds to
normal behaviour, although it is not a state of interest for the diagnosis task and it
should not be considered. However, in the logical model, it is identified as a state
of abnormal behaviour.

The example shows that the logical interpretation of variables required by
Reiter’s theory must be completed with a physical interpretation. For this purpose,
[40] proposes to utilize the Tetrahedron of States (ToS), introduced in Sect. 6.5.2,
where the given variables can be mapped to physical variables of the ToS and thus,
the relations among them established. In this way, the introduction of semantic
content in the physical interpretation of variables is controlled through the ToS
framework. In particular, the ToS of hydraulic domain and that one of electric
domain, shown respectively in Fig. 6.16a, b, are used in this example.

Each given variable xi 2 X is mapped to a physical variable of the corre-
sponding ToS. For example, using the Hydraulic ToS in Fig. 6.16a, the variable x3

(fuel tank status) is associated with the gas volume VðtÞ in the tank, as Table 6.1
specifies where VðtÞ is also noted as xp

3. Thus, x3 ¼ empty which is logically
interpreted as �x3 ¼ 0 (false), is physically interpreted through the ToS as VðtÞ ¼ 0;
and, x3 ¼ :empty (or x3 ¼ /3), related to �x3 ¼ 1 (true), is physically interpreted as
VðtÞ 6¼ 0.

Table 6.2 Logical and physical functional relations

Logical relations Physical relations

�x7 ¼ �x1 ^ �x2 xp
7 ¼ xp

1 �
dxp

2
dt ðUðtÞ ¼ RðtÞ � dQðtÞ

dt
;

ðRðtÞ ¼ 1 _ QðtÞ ¼ 0Þ ) UðtÞ ¼ 0Þ
�x8 ¼ �x3 xp

8 ¼
dxp

3
dt

ðQvðtÞ ¼ dVðtÞ
dt ;VðtÞ ¼ 0) QvðtÞ ¼ 0Þ

�x9 ¼ �x7 ^ �x8 xp
9 ¼ a � xp

7 � x
p
8 ððUðtÞ ¼ 0 _ QvðtÞ ¼ 0Þ ) a � UðtÞ � QvðtÞ ¼ 0Þ
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Thereby, the variables are mapped with physical variables as illustrated in
Fig. 6.16 and specified in Table 6.1 where the relations among the variables are
established as Table 6.2 presents. Thus, the physical model of the process is
illustrated in Fig. 6.17.

This interpretation allows to determine conditions on the variables in order to
identify transient states which can be discarded from the model to be built. For
example, the states in which VðtÞ ¼ 0 and QvðtÞ 6¼ 0 (see Fig. 6.17) can be
eliminated from the model; or, what is the same thing, the states in which
�x3 ¼ 0 ^ �x8 ¼ 1.

From this interpretation and a suitable analysis, the transient or physically
impossible states can be removed from the model to be built, which results in 21
states of interest.

6.7.1.4 Generic Modelling

From the consideration of the two previous interpretations, a generic model of the
process MðXðtÞÞ ¼\PMðXðtÞÞ; SMðXðtÞÞ;FMðXðtÞÞ;BMðXðtÞÞ[ is defined.
Details of the analysis carried out for establishing this model will not be described.
Nevertheless, we shall limit ourselves to present the resultant model of the process
formally specified in the TOM4D formalism [4].

In order to facilitate the analysis, the logical variables are used to describe the
model; considering always that it is possible to reinterpret them like the variables
and components described in (6.5) through Table 6.1. Thereby, observing
Fig. 6.15, the models are the following ones.

The perception model PMðXðtÞÞ of the process consists of the set X of vari-
ables, the set W of threshold values described in Sect. 6.4 which in this case are not
present and a set Rq of sentences describing objectives and operating modes. This
model is specified as follows:

PMðXðtÞÞ ¼\X;W;Rq [ where

X ¼ f�x1;�x2;�x3;�x7;�x8;�x9g; D�xi ¼ f0; 1g; i ¼ 1; 2; 3; 7; 8; 9

W ¼ fWigi¼1;2;3;7;8;9 ðthreshold values of the time functions

which we do not knowÞ
Rq ¼ Rgoal [ Rn [ Rab such that

Rgoal describes the process operating goals �x9 ¼ 1

Rn describes the conditions of the normal operating mode :

ð�x1 ¼ 1 ^ �x2 ¼ 1 ^ �x3 ¼ 1 ^ �x7 ¼ 1 ^ �x8 ¼ 1 ^ �x9 ¼ 1Þ_
ðððð�x1 ¼ 0 _ �x2 ¼ 0Þ ^ �x7 ¼ 0Þ _ ð�x3 ¼ 0 ^ �x8 ¼ 0ÞÞ ^ �x9 ¼ 0Þ
Rab describes the conditions of the abnormal operating mode :

ð�x1 ¼ 1 ^ �x2 ¼ 1 ^ �x7 ¼ 0Þ _ ð�x3 ¼ 1 ^ �x8 ¼ 0Þ _ ð�x7 ¼ 1 ^ �x8 ¼ 1 ^ �x9 ¼ 0Þ
ð6:7Þ
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The structural model SMðXðtÞÞ, defined in (6.8), describes the set COMPS of
components, the set Rport specifying the interconnections between output ports
with input ports of components (e.g., outðcB1Þ ¼ in1ðcB7Þ) and the set Rxport

associating each variable with an output port (e.g., outðcB1Þ ¼ �x1).

SMðXðtÞÞ ¼\COMPS;Rport;Rxport [ where

COMPS ¼ fcB1; cB2; cB3; cB7; cB8; cB9g
Rport ¼ foutðcB1Þ ¼ in1ðcB7Þ; outðcB2Þ ¼ in2ðcB7Þ; outðcB7Þ ¼ in1ðcB9Þ;

outðcB3Þ ¼ in1ðcB8Þ; outðcB3Þ ¼ in2ðcB8Þ; outðcB8Þ ¼ in2ðcB9Þg
Rxport ¼ foutðcB1Þ ¼ �x1; outðcB2Þ ¼ �x2; outðcB3Þ ¼ �x3;

outðcB7Þ ¼ �x7; outðcB8Þ ¼ �x8; outðcB9Þ ¼ �x9g
ð6:8Þ

The functional model FMðXðtÞÞ describes the relations among the values that
the variables can assume, as defined in (6.9). This model consists of the set D of
values belonging to the domain and the image of the functions defined in the set F,
the mentioned set F and the set Rf that establishes the relation among the variables
(e.g., �x7 ¼ fB4ð�x1;�x2Þ).

Fig. 6.15 Logical model of the process

(a) (b)

Fig. 6.16 Physical interpretation of variables
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FMðXðtÞÞ

D�xi ¼ f0; 1g; i ¼ 1; 2; 3; 7; 8; 9

F ¼ ffB4; fB5; fB6g with

fB4 : D�x1 � D�x2 ! D�x7

fB5 : D�x3 ! D�x8

fB6 : D�x7 � D�x8 ! D�x9 and such that

fB4ðy1; y2Þ ¼ and ðy1; y2Þ ^ fB5ðyÞ ¼ andðy; yÞ^
fB6ðy1; y2Þ ¼ and ðy1; y2Þ

Rf ¼ f�x7 ¼ fB4ð�x1;�x2Þ; �x8 ¼ fB5ð�x3Þ; �x9 ¼ fB6ð�x7;�x8Þg

ð6:9Þ

For readability and clarity, we consider to reinterpret from Table 6.1 the logical
variables �xi (i ¼ 1; 2; 3; 7; 8; 9) like their corresponding xi (i ¼ 1; 2; 3; 7; 8; 9). This
reinterpretation then allows us to see the functional model as depicted in Fig. 6.18.

The behavioural model requires the set of observation classes, which is defined
as C ¼ fC1;1;C1;2;C2;1;C2;2;C3;1;C3;2;C7;1;C7;2;C8;1;C8;2;C9;1;C9;2g where

C1;1 ¼ fð�x1; 0Þg; C2;2 ¼ fð�x2; 1Þg; C7;1 ¼ fð�x7; 0Þg; C8;2 ¼ fð�x8; 1Þg;
C1;2 ¼ fð�x1; 1Þg; C3;1 ¼ fð�x3; 0Þg; C7;2 ¼ fð�x7; 1Þg; C9;1 ¼ fð�x9; 0Þg;
C2;1 ¼ fð�x2; 0Þg; C3;2 ¼ fð�x3; 1Þg; C8;1 ¼ fð�x8; 0Þg; C9;2 ¼ fð�x9; 1Þg

ð6:10Þ

From this set and the a priori knowledge, the possible sequences of observations
classes are defined, as Fig. 6.19 depicts; that is, it is considered possible that after
an occurrence of the class C1;1 (i.e., the fuse is blown) an occurrence of the class
C7;1 (the power is off) is observed, then the sequential relation ðC1;1;C7;1Þ is
present in the figure.

Fig. 6.17 Physical model of
the process
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The occurrence of an observation class entails the assignation of a value to a
variable; that is to say, an occurrence of C1;1 entails that the value 0 is assumed by
�x1. Consequently, the previous value of �x1 was not 0. Thus, the possible states
between two observation classes can be characterized and established. Recall that
only 21 characterized states were considered of interest from the logical and
physical interpretations.

Fig. 6.18 Functional model

Fig. 6.19 Graphical representation of the possible sequences of observation classes
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Thereby, the behavioural model BMðXðtÞÞ, defined in (6.11) and illustrated in
Fig. 6.20, consists of the set S of characterized states, the set C of observation
classes and the transition function c.

BMðXðtÞÞ ¼\S;C; c[ where

S ¼fs8; s11; s17; s18; s20; s21; s23; s24; s27; s28; s29; s30; s31; s32;

s50; s53; s56; s61; s62; s63; s64g such that
ð6:11Þ

S ¼ fs : VAR! VALUEj
sðxÞ ¼ d; x 2 X 	 VAR; d 2 D 	 VALUEg

S �x1 �x2 �x3 �x7 �x8 �x9

s8 1 0 1 0 0 0
s11 0 1 1 0 0 0
s17 1 1 1 0 0 0
s18 1 1 0 1 0 0
s20 1 0 1 1 0 0
s21 1 0 1 0 1 0
s23 0 1 1 1 0 0
s24 0 1 1 0 1 0
s27 1 1 1 1 0 0
s28 1 1 1 0 1 0
s29 1 1 0 1 1 0
s30 1 0 1 1 1 0
s31 0 1 1 1 1 0
s32 1 1 1 1 1 0
s50 1 1 0 1 0 1
s53 1 0 1 0 1 1
s56 0 1 1 0 1 1
s61 1 1 0 1 1 1
s62 1 0 1 1 1 1
s63 0 1 1 1 1 1
s64 1 1 1 1 1 1

C ¼ fC1;1;C1;2;C2;1;C2;2;C3;1;C3;2;C7;1;C7;2;C8;1;C8;2;C9;1;C9;2g where

C1;1 ¼ fð�x1; 0Þg; C2;2 ¼ fð�x2; 1Þg; C7;1 ¼ fð�x7; 0Þg; C8;2 ¼ fð�x8; 1Þg;
C1;2 ¼ fð�x1; 1Þg; C3;1 ¼ fð�x3; 0Þg; C7;2 ¼ fð�x7; 1Þg; C9;1 ¼ fð�x9; 0Þg;
C2;1 ¼ fð�x2; 0Þg; C3;2 ¼ fð�x3; 1Þg; C8;1 ¼ fð�x8; 0Þg; C9;2 ¼ fð�x9; 1Þg

c : S� C ! S such that
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cðs8;C2;2Þ ¼ s17; cðs31;C7;1Þ ¼ s24; cðs11;C1;2Þ ¼ s17; cðs32;C1;1Þ ¼ s31;
cðs17;C7;2Þ ¼ s27; cðs32;C9;2Þ ¼ s64; cðs18;C3;2Þ ¼ s27; cðs32;C3;1Þ ¼ s29;
cðs20;C7;1Þ ¼ s8; cðs32;C2;1Þ ¼ s30; cðs21;C2;2Þ ¼ s28; cðs50;C9;1Þ ¼ s18;
cðs23;C7;1Þ ¼ s11; cðs53;C9;1Þ ¼ s21; cðs24;C1;2Þ ¼ s28; cðs56;C9;1Þ ¼ s24;
cðs27;C1;1Þ ¼ s23; cðs61;C8;1Þ ¼ s50; cðs27;C2;1Þ ¼ s20; cðs62;C7;1Þ ¼ s53;
cðs27;C8;2Þ ¼ s32; cðs63;C7;1Þ ¼ s56; cðs28;C7;2Þ ¼ s32; cðs64;C1;1Þ ¼ s63;
cðs29;C8;1Þ ¼ s18; cðs64;C2;1Þ ¼ s62; cðs30;C7;1Þ ¼ s21; cðs64;C3;1Þ ¼ s61

As a result of this analysis, we consider that the construction of a generic model
of the process requires interpretations of the expert’s knowledge both in logical
and physical terms. These interpretations along with modelling decisions allowed
a reduction from 512 to only 21 states physically possible and of interest for
diagnosing behaviour problems. The logical model of Fig. 6.15 describes the
structure of the expert’s diagnosis reasoning and the physical model of Fig. 6.17
provides the diagnosis knowledge required for this reasoning. Thus, both logical
and physical models are necessary and complement each other. We believe that
these models are, ultimately, those ones ‘‘constructed’’ by experts where, in
practice, the combination of these ones simplifies the diagnosis task.

Moreover, the resultant model MðXðtÞÞ admits the application of model-based
diagnosis techniques and, simultaneously, introduce the dimension of time
allowing to model the dynamic of the process in a behavioural model. This model
is a crucial element in the supervision of processes since generally it is collated
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Fig. 6.20 Behavioural model of the process P(t)
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with the real process evolution. This quadripartite structure of the model dis-
criminates the different types of knowledge about the process and then allows
greater understanding of the problem and better communication with experts.

6.7.2 TOM4L Models

The models described in this section have been automatically provided by the
ElpLab Java software which implements the complete TOM4L KDD process as
illustrated in Fig. 6.13, Sect. 6.6.5. For this purpose, based on the scenario X
defined in (6.4), Sect. 6.7.1.2, and from the method described in [49], a set of 100
occurrences of the observation classes C1;1, C2;1, C3;1, C7;1, C8;1 and C9;1, with a
stochastic distribution of time according to Table 6.3, was built.

As described in Sect. 6.6, the TOM4L learning approach groups data mining
algorithms and techniques which provide the possibility of finding n-ary temporal
relations among observation classes in timed data. Thus, from the sequence w
which is made up the 100 timed observations, a Functional Model and a Behav-
ioural Model of the car functioning can be obtained when applying TOM4L.

6.7.2.1 Functional Model

The algorithm Tom4BN [8, 10] which allows to discover naive Bayesian Networks
(Sect. 6.6.3) from timed data is applied to the 100 observations of the car example,
giving as a result the Bayesian Network shown in Fig. 6.21a.

In this example, classes Ci;j are singletons of the form Ci;j ¼ fðxi; djÞg and
PðCi;jÞ, equivalent to Pðxi ¼ djÞ, is the prior probability of observing an occur-
rence of the class Ci;j ¼ fðxi; djÞg in w. Besides, it should be noted that ‘‘:xi’’
refers to any equality except ‘‘xi ¼ dj’’ or, put in another way, ‘‘:xi’’ denotes
‘‘xi ¼ dk ^ dk 6¼ dj’’.

Thus, this Bayesian Network enables the definition of the Functional Model of
Fig. 6.21b, whose functions correspond to those ones of the TOM4D Functional
Model (Fig. 6.18, Sect. 6.7.1.4); but unlike the last one, these functions have
probabilities associated which provide a certain level of confidence about the
established relations among values. For example, the probability of observing that
the power is off having observed that the battery is low and the fuse is blown is
0.684; that is, Pðx7jx1; x2Þ ¼ 0:684 in Fig. 6.21a. Thus, the level of confidence

Table 6.3 Prior probabilities of the car example [10, p. 76]
Pðfðx1; blownÞgÞ Pðfðx2; lowÞgÞ Pðfðx3; emptyÞgÞ Pðfðx7; off ÞgÞ Pðfðx8; falseÞgÞ Pðfðx9;:lowÞgÞ
PðC1;1Þ PðC2;1Þ PðC3;1Þ PðC7;1Þ PðC8;1Þ PðC9;1Þ
0.05 0.15 0.3 0.2 0.2 0.1
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when considering off ¼ f4ðblown; lowÞ is approximately 68 % as Fig. 6.21b
depicts. Another example is the probability of /7 ¼ f4ð/1;/2Þ, which can be
obtained from Pðx7j:x1;:x2Þ ¼ 0:087 when calculating Pð:x7j:x1;:x2Þ ¼ 1
�Pðx7j:x1;:x2Þ.

Hence, the Functional Model with probabilities automatically obtained from
data can be compared with the Functional Model defined from experts’ knowl-
edge; and thus, both models can be analysed together complementing each other.

(a)

(b)

Fig. 6.21 Functional model obtained through TOM4L [10, pp. 81, 83]
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6.7.2.2 Behavioural Model

A behavioural model can also be obtained from timed data through the TOM4L
process. The algorithm BJT4S [9] is applied to the set of observation sequences,
and consequently, the model in Fig. 6.22 is automatically obtained.

The figure presents the sequences of observation classes discovered from data
where the values between brackets denote the average maximum and minimum
time periods between two occurrences of observation classes; that is, the temporal
constraints as described in Sect. 6.6.1. This model is a tree whose branches (called
signatures [13, 49] and described in Sect. 6.6.4) define n-ary temporal relations
among observation classes and verify certain anticipation and coverage rates. For
example, as shown in Fig. 6.22, m ¼ ððC1;1;C7;1; ½0; 4s�Þ; ðC7;1;C9;1; ½0; 6s�ÞÞ is a
signature which denotes the sequence of the type C1;1;C7;1;C9;1 with its temporal
constraints. In the figure, the anticipation rate of the mentioned signature m indi-
cates that in 40 % of the cases, when an occurrence of C1;1 is followed by an
occurrence of C7;1 in at most 4s, then an occurrence of C9;1 takes place in at most 6s.
For its part, its coverage rate means that in 20 % of the cases in which an occurrence
of C9;1 is observed, the signature m ¼ ððC1;1;C7;1; ½0; 4s�Þ; ðC7;1;C9;1; ½0; 6s�ÞÞ was
verified.

Clearly, this model is a sub-model of that one in Fig. 6.19, Sect. 6.7.1.4,
describing sequences of observation classes built through TOM4D. Therefore, the
model of Fig. 6.22 implicitly determines a behavioural model which is included in
the TOM4D Behavioural Model defined from experts’ knowledge (Fig. 6.20,
Sect. 6.7.1.4). In particular, the model obtained from data provides, in addition,
knowledge about temporal constraints between event occurrences. Thus, once
again, these models belonging to different disciplines, such as KE and KDD are,
can be easily related and compared to each other.

Owing to that, TOM4L models can be related with TOM4D models and the
latter are directly related with a CommonKADS conceptual model, the commu-
nication with experts about the first one is easier. That is to say, the meaning of the
signature m ¼ ððC1;1;C7;1; ½0; 4s�Þ; ðC7;1;C9;1; ½0; 6s�ÞÞ can be easily explained by

Fig. 6.22 Behavioural model obtained through TOM4L. Signature tree of the observation class
C9;1 [10]
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saying that in the 40 % of cases, when observing the fuse blown, in at most 4s the
power is observed off and subsequently, in at most 6s, it is observed that the engine
does not work. Thus, TOM4D establishes a bridge between experts’ knowledge
and data, and TOM4L allows automatic learning from these last ones.

6.8 Conclusion

Knowledge acquisition, as a topic of interest in sciences, has been generally
addressed from two different perspectives. One approach has been to consider
knowledge acquisition as a psychological and social process that consists in the
synthesis of new knowledge through socialization with experts. The other approach
has been to consider knowledge acquisition as an interpretation and analysis
process of data, based on discovering patterns of interest through observation,
analysis and intertwining of the data. These two perspectives are, respectively,
central issues in Knowledge Engineering (KE) and in Knowledge Discovery in
Database (KDD).

Nevertheless, as highlighted by N. Wickramasinghe [15], although knowledge
acquisition is the main and central question in both disciplines, the issue has been
traditionally approached from one or the other perspective, rather than from an
integrative view. We consider then that a whole approach is necessary in order to
accelerate the global learning process and even, in extremely complex cases, to
provide viability.

Results about probabilistic information and temporal constraints, as well as
discovered event sequences which could be unexpected, extend the knowledge
about a real process and provide resources to build a more suitable model of this
one. However, relating this knowledge to the expert’s one is not a trivial task
because, generally, the formalisms used by Knowledge Engineering methodologies
and by Knowledge Discovery in Database processes to represent knowledge models
are different. As a consequence, the comparison between both models can not be in
principle carried out. We then believe that the main difficulty for relating the
mentioned disciplines stems from the lack of a global approach based on a same
theory and consequently, from the lack of representation formalisms that can be
used in both domains.

Thereby, the central focus of this chapter was the definition of a global human–
machine learning process which combines a Knowledge Engineering methodology
called TOM4D (i.e. Timed Observation Modelling for Diagnosis) with a Knowl-
edge Discovery in Database process called TOM4L (i.e. Timed Observation
Mining for Learning). Thus, with the aim of defining this integral view, the Theory
of Timed Observations [1] has been established as a basis for the development of
the proposed approach. This theory defines, among other things, the notions
of timed observation and observation class, concepts that enable to specify the
traditional notion of discrete event and the Artificial Intelligence notion of alarm
(or warning).
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This chapter presented then the TOM4D Knowledge Engineering methodology,
which allows to build models, by basing on the Theory of Timed Observations,
from experts’ knowledge. The models built through this methodology are not
experts’ Knowledge Models but models of the process about which experts have
knowledge. By construction, TOM4D models are consistent with and easily
relatable to CommonKADS Knowledge Models built from experts’ knowledge,
CommonKADS being one of the principal KE methodologies. Therefore, models
of a process built through TOM4D facilitate the communication with the expert,
and thus, the validation of the Knowledge Models. Besides, the chapter introduced
the basic elements of the TOM4L Knowledge Discovery in Database process to
obtain knowledge from data. The TOM4L process allows to find n-ary temporal
relations of observation classes representative of the process that gives rise to data,
by using an entropy-based measure called the BJ-measure [9, 12]. In addition,
through the aforesaid measure, TOM4L enables to build Bayesian Networks from
timed data [8, 10, 11]. Thus, TOM4L models are directly relatable to TOM4D
models.

In summary, it was presented a human–machine learning process nourished
from experts’ knowledge and knowledge discovered in data which, in our opinion,
is ultimately a virtuous circle that establishes a positive and corrective feedback to
each step. Therefore, a process model which meets the expectation in the
knowledge intensive tasks performed by a Knowledge Based System can be built
in a more suitable way.

Real world problems have been addressed though this approach. In particular,
the security of the dam of Cublize (France), where the resultant models have been
validated by the hydraulic dam experts of the French governmental organization
(Irstea) which controls the security of hydraulic civil engineering structures in the
corresponding country [6, 50]. Moreover, nowadays we are utilizing the presented
approach in order to model human behaviour from gerontologists’ knowledge and
smart environments data, in the context of the GerHome Project of the Centre
Scientifique et Technique du Bâtiment (CSTB) of Sophia Antipolis, France [4, 51].

We believe that binding the KE and KDD universes enriches and facilitates the
modelling task. Nevertheless, there still exists a difficulty with regard to the
discursive and conceptual levels in which each universe is developed. That to say,
sometimes, even being able to link the mentioned disciplines, relating models
obtained from knowledge discovered in data to models obtained from experts’
knowledge is very difficult, because experts’ conceptual abstraction level is very
high or is far from those concepts at data level. Although this topic has been
beyond the scope of the present chapter, we consider of interest to mention that
this issue has been addressed by means of a theoretical framework of abstraction
levels that we have defined [4, 52, 53], where in each level a KE methodology, like
TOM4D, can be combined with a KDD process, like TOM4L, in order to built a
set of models linking the data abstraction level (e.g. sensor level) to the expert’s
conceptual level.
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