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Abstract. On internet today, an overabundance of information can be
accessed, making it difficult for users to process and evaluate options
and make appropriate choices. This phenomenon is known as informa-
tion overload. Over time, various methods of information filtering have
been introduced in order to assist users in choosing what may be of their
interest. Recommender Systems (RS) [14] are techniques for information
filtering which play an important role in e-commerce, advertising, e-mail
filtering, etc. Therefore, RS are an answer, though partial, to the problem
of information overload. Recommendation algorithms need to be contin-
uously updated because of a constant increase in both the quantity of
information and ways of access to that information, which define the
different contexts of information use. The research of more effective and
more efficient methods than those currently known in literature is also
stimulated by the interests of industrial research in this field, as demon-
strated by the Netflix Prize Contest, the open competition for the best
algorithm to predict user ratings for films, based on previous ratings. The
contest showed the superiority of mathematical methods that discover
latent factors which drives user-item similarity, with respect to classical
collaborative filtering algorithms. With the ever-increasing information
available in digital archives and textual databases, the challenge of im-
plementing personalized filters has become the challenge of designing
algorithms able to manage huge amounts of data for the elicitation of
user needs and preferences. In recent years, matrix factorization tech-
niques have proved to be a quite promising solution to the problem of
designing efficient filtering algorithms in the Big Data Era. The main
contribution of this paper is an analysis of these methods, which focuses
on tensor factorization techniques, as well as the definition of a method
for tensor factorization suitable for recommender systems.

Keywords: Recommender Systems, Matrix Factorization, Tensor Fac-
torization, PARAFAC/CANDECOMP.

1 Matrix Factorization

Recommender systems guide users in a personalized way to interesting or use-
ful objects in a large space of possible options, by providing a list of suggested
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items that fits their interests. For example, Netflix, a provider of on-demand In-
ternet streaming video and flat rate DVD-by-mail in the United States, adopts a
recommendation algorithm to predict user interests for films, based on feedback
provided by users on previously watched items. The most widely adopted recom-
mendation techniques in literature are content-based and collaborative filtering
ones.

Matrix Factorization (MF) techniques fall in the class of collaborative filtering
(CF) methods and, particularly, in the class of latent factor models [I0], which
assume that similarity between users and items is induced by some factors hidden
in the data. These models attempt to explain the ratings by charactering both
items and users with the objective of disclosing the latent features deducted
from ratings. In the same way a person can naturally define the characteristics
of a movie (such as genre, key players, duration, etc.), methods based on latent
factors infer this characteristic data without exactly knowing each feature. In this
case, latent factor models build a matrix of users and items (movies) and each
element is associated with a vector of characteristics. MF techniques represent
users and items by vectors of features derived from ratings given by users for the
items seen or tried. A high correspondence between user and item factors leads
to a recommendation. RS data are collected in a matrix called user-item matriz:
rows are referred to users and columns to items; the intersection between one
row and one column is the rating given by the user. Missing values correspond
to movies not rated by the user.

Let U be the set of users, D the set of items, R the matrix of ratings. MF aims
to factorize R into two matrices P and () such that their product approximates
R: R~ PxQ". Each row of P represents the strength of the association between
user and k latent features. Similarly, each column of @) represents the strength
of the association between an item and the latent features. Let p; be the i-th
row of P and g; the j-th row of Q). They are the user profile vector and the item
profile vector respectively, which represent the projection of user ¢ and item j
in a common space of k latent features. The scalar product p; - qu approximates
the rating r;; of user ¢ for item j: 7;; = p;- q]T. Once these vectors are discovered,
recommendations are calculated using the expression of 7;;. A factorization used
in the literature is Singular Value Decomposition (SVD), introduced by Simon
Funk in the NetFlix Prize [5], [3], has the objective of reducing the dimensional-
ity, i.e. the rank, of the user-item matrix, in order to capture latent relationships
between users and items [15]. Different SVD algorithms were used in RS lit-
erature: in [I5], the authors uses a small SVD obtained retaining only k& < r
singular values by discarding other entries; in [I1], the authors propose an algo-
rithm to perform SVD on large matrices, by focusing the study on parameters
that affect the convergence speed; in [9], Koren presents an approach oriented
on factor models which projected users and items in the same latent space where
some measures for comparison are defined. He propose several versions of SVD
with the objective of having better recommendations as well as good scalability.
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2 Tensor Factorization

The main limitation of MF techniques is that they take into account only the
standard profile of users and items. This does not allow to integrate further
information such as context. For example, if a user watches a movie at home
with his children, he will choose a movie whose genre is suitable for families.
Indeed, in another context (friends or colleagues), the same user might prefer
other kind of movies. Contextual information (the place where the user see the
movie, the device, the company, etc.) cannot be managed with simple user-item
matrices. Tensors, which can be seen as higher-dimensional arrays of numbers
[8], might be exploited in order to include additional contextual information in
the recommendation process [2]. In standard multivariate data analysis, data are
arranged in a two-dimensional structure, but for a wide variety of domains, more
appropriate structures are required for taking into account more dimensions. The
techniques that generalize the MF factorization can also be applied to tensors.
Two particular tensor decompositions [§] can be considered to be higher-order
extensions of matrix singular value decomposition:

— PARallel FACtor analysis or CANonical DECOMPosition (PARAFAC/
CANDECOMP) [], [6], which decomposes a tensor as a sum of rank-one
tensors;

— High Order Singular Value Decomposition (HOSVD) [12], which is a
higher-order form of Principal Component Analysis (PCA).

In RS literature, the most frequently used technique for Tensor Factorization
(TF) is HOSVD, which is a generalization of the SVD for matrices. This tech-
nique decomposes the initial tensor in N matrices (where N is the size of the
tensor) and a tensor whose size is smaller than the original one.

HOSVD is used in [7], where the factorization of a tensor is applied to manage
data for users, movies, user ratings and contextual information such as age, day
of the week, companion. A third-order tensor is constructed and HOSVD is
applied to factorize it into three matrices and one core tensor. Recommendation
score for a single user 7, item j and context k is computed by using these matrices
and tensor. Another application of HOSVD for TF is described in [13], in the
context of social tagging to predict a personalized list of tags for a user. Users’
data, items and tags are stored in a third-order tensor which is factored by
HOSVD, with the aim of discovering latent factors which bind the associations
user-item, user-tag and tag-item. In [I7], HOSVD is applied to the factorization
of a tensor coming from a system of personalized web search, in order to discover
the hidden relationships between objects typical of internet search: users, queries,
web pages. Data related to user, query and web pages are collected in a third-
order tensor that is decomposed with the technique of HOSVD.

The major advantage of HOSVD is the ability of simultaneously taking into
account more dimensions. This allows for a better data modeling than standard
SVD, since dimensionality reduction can be performed not only in one dimension
but also separately for each dimension. But HOSVD is not an optimal tensor
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decomposition, in the sense of least squares data fitting: the computation of
HOSVD needs standard SVD computation only and has not the truncation
property of the SVD, where truncating the first n singular values allows to find
the best n-rank approximation of a given matrix. Despite this, the approximation
obtained is not far from the optimal one and can be computed much faster. Since
HOSVD cannot deal with missing values, they are treated as 0.

PARAFAC (PARallel FACtor analysis) is a decomposition method, which
can be seen as a generalization of bilinear PCA. The PARAFAC model was
independently proposed by Harshman [6] and by Carroll & Chang [4] who named
the model CANDECOMP (CANonical DECOMPosition). A PARAFAC model
of a three-dimensional array is given by three loading matrices A, B, and C
with typical elements a;f¢, b;f, and ciy. The PARAFAC model is defined by the
following structural model:

F
Zije =) aisbjseny. (1)
f=1

where F is the number of rank-one components. PARAFAC is an alternative to
HOSVD. One of the advantages of the PARAFAC is its simplicity which allows to
use an analytical expression for solving the decomposition problem and to achieve
linear scalability. Another advantage is linear computation time compared to
HOSVD. PARAFAC does not collapse data, but it retains its natural three-
dimensional structure. Despite PARAFAC mode’s lack of ortogonalithy, Kruskal
[8] showed that components are unique, up to permutation and scaling, under
mild conditions.

In [I6], PARAFAC is exploited for the computation of top-N context-aware
recommendations of mobile applications. A tensor of three dimensions (users,
items and context types) is factorized with PARAFAC. These dimensions are
associated with the three factor matrices and used to calculate user prefer-
ence for item ¢ under context type k. In [I], PARAFAC is applied focusing
on missing data. The authors developed a scalable algorithm called CP-WOPT
(CP Weighted OPTimization), which uses first-order optimization to solve the
weighted least squares objective function. Using extensive numerical experiments
on simulated data sets, Acar et al. showed that CP-WOPT can successfully factor
tensors with noise and up to 70% missing data. Moreover, CP-WOPT is signif-
icantly faster and accurate than the best published method in the literature [1§].

3 CP-WOPT Adaptation: Preliminary Experiments

Our idea is to adapt CP-WOPT and to introduce it in the RS field, where the
problem of missing values is very relevant, since the algorithm is suitable for
very sparse user-items matrices. The adaptation allows the computation of a
weighted factorization that models only know values, rather to simply employ
0 values for missing data. The main goal is to consider contextual information
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about users and to apply the weighted PARAFAC decomposition to achieve
precise recommendations. In order to reach this goal, we made a preliminary
user study with 7 real users who were asked to rate a fixed number of movies
(11) in the Movielens 100k dataset on the basis of three contextual factors: if
they like to see the movie (i) at home or cinema,; (ii) with friends or with partner;
(iii) with or without family. Ratings range from 1 to 5 in the sense that, for each
contextual comparison:

— rating 1 and 2 express a strong and a modest preference, respectively, for
the first term;

— rating 3 expresses neutrality;

— rating 4 and 5 express a modest and a strong preference, respectively, for
the second term.

Results are measured in terms of accuracy (acc), i.e. the percentage of known
values correctly reconstructed and coverage (cov), i.e. the percentage of non-zero
values returned. Under the assumption of 10° maximum iterations, we obtained
acc = 94.4% and cov = 91.7%. Although coming from a limited study, the
values of these measures suggest we are moving in a correct direction and seem
to promise encouraging results when applying the algorithm to more complex
context-aware recommendation scenarios. Moreover, the experiment showed that
it is possible to express, through the n-dimensional factorization, not only the
recommendations for the single user, but also more specific suggestions about
the consumption of an item. For instance, American Pie is tipically watched at
home, with friends and without family, while Titanic is preferably watched at
cinema, with partner or family.

We performed also an in vitro preliminary experiment to test the adapted
version of CP-WOPT on a subset of Movielens 100k dataset. We gave as input
a tensor of dimensions 100 users, 150 movies, 21 occupations (the contextual
factor) and we measured, besides acc and cov, also the classic Mean Average
Error (MAE) and Root Mean Square Error (RMSE), in order to compare the
results with those known in literature. The algorithm achieved: acc = 92.09%,
cov = 99.96%, MAE = 0.60 and RMSFE = 0.93, which are in line with results
reported in literature.

In future we want to extend the evaluation of our version of CP-WOPT on
tensor having high dimensionality extracted form Movielens dataset. In particu-
lar, we will investigate methods to assess whether contextual factors (occupation,
company) influences the users’ preferences, by using data mining techniques such
as clustering. We plan also to test our approach in other domains such as news
recommendation.
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