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In 1941 Kolmogorov and Obukhov [9, 12] proposed that there exists a statistical the-
ory of turbulence that should allow the computation of all the statistical quantities
that can be computed and measured in turbulent systems. These are quantities such
as the moments, the structure functions and the probability density functions (PDFs)
of the turbulent velocity field. The Kolmogorov-Obukhov ’41 theory predicted that
the structure functions of turbulence, that are the moments of the velocity differ-
ences at distances separated by a lag variable l, should scale with the lag variable
to a power p/3 for the pth structure function, multiplied by a universal constant.
This was found to be inconsistent with observations and in 1962 Kolomogorov and
Obukhov [10, 13] presented a refined scaling hypothesis, where the multiplicative
constants are not universal and the scaling exponents are modified to ζp = p/3+τp,
by the intermittency correction τp that are due to intermittency in the turbulent ve-
locity. It was still not clear what the values of τp should be, because the log-normal
exponents suggested by Kolmorogov turned out again to be inconsistent with ob-
servations. Then in 1994 She and Leveque [16] found the correct (log-Poissonian)
formulas for τp that are consistent with modern simulations and experiments.

In this paper we will outline how the statistical theory of Kolmogorov and
Obukhov is derived from the Navier-Stokes equation without getting into any of
the technical details. We start with the classical Reynolds decomposition of the ve-
locity into the mean (large scale) flow and the fluctuations or small scale flow. Then
we develop a stochastic Navier-Stokes equation [6], for the small scale flow. If we
assume that dissipation take place on all scales in the inertial range (defined below)
then it turns out that the noise in this stochastic Navier-Stokes equation is deter-
mined by well-known theorems in probability. The additive noise in the stochastic
Navier-Stokes equation is generic noise given by the central limit theorem and the
large deviation principle. The multiplicative noise consists of jumps multiplying the
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velocity, modeling jumps in the velocity gradient. We will explain how this form of
the noise follows from very general hypothesis.

Once the form of the noise in the stochastic Navier-Stokes equation for the small
scales is determined, we can estimate the structure functions of turbulence and
establish the Kolmogorov-Obukhov ’62 scaling hypothesis with the She-Leveque
intermittency corrections [5]. Then one can compute the invariant measure of tur-
bulence writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito
process and solving the linear Kolmogorov-Hopf [8] functional differential equation
for the invariant measure. Finally the invariant measure can be projected onto the
PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions
of Barndorff-Nilsen [1, 2], and compare well with PDFs from simulations and ex-
periments. The details of the proofs can be found in [5] and the background material
can be found in [6].

A general incompressible fluid flow satisfies the Navier-Stokes Equation

ut + u ·∇u= νΔu−∇p, u(x,0) = u0(x)

with the incompressibility condition ∇ · u = 0. Eliminating the pressure using the
incompressibility condition gives

ut + u ·∇u= νΔu+∇Δ−1trace(∇u)2, u(x,0) = u0(x).

The turbulence is quantified by the dimensionless Taylor-Reynolds number Reλ =
Uλ
ν [14].

Following the classical Reynolds decomposition [15], we decompose the velocity
into mean flow U and the fluctuations u. Then the velocity is written as U +u, where
U describes the large scale flow and u describes the small scale turbulence. We must
also decompose the pressure into mean pressure P and the fluctuations p, then the
equation for the large scale flow can be written as

Ut +U ·∇U = νΔU −∇P−∇ · (u⊗ u), (1)

where in coordinates ∇ · (u⊗ u) =
∂uiu j
∂x j

, that is ∇ is dotted with the rows of uiu j and

Ri j = u⊗ u is the Reynolds stress, see [3]. The Reynolds stress has the interpretation
of a turbulent momentum flux and the last term in (1) is also know as the eddy
viscosity. It describes how the small scales influence the large scales. In addition we
get divergence free conditions for U , and u

∇ ·U = 0, ∇ ·u = 0.

Together, (1) and the divergence free condition on U give Reynolds Averaged
Navier-Stokes (RANS) that forms the basis for most contemporary simulations of
turbulent flow.

Finding a constitutive law for the Reynolds stress u⊗ u is the famous closure
problem in turbulence and we will solve that by writing down a stochastic equation
for the small scale velocity u. The hypothesis is that the large scale influence the
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small scales directly, through the fluid instabilities and the noise in fully developed
turbulence. An example of this mechanics, how the instabilities magnify the tiny
ambient noise to produce large noise, in given in [4], see also Chapter 1 in [6].

Now consider the inertial range in turbulence. In Fourier space this is the range
of wave numbers k: 1

L ≤ |k| ≤ 1
η , where η = (ν3/ε)1/4 is the Kolmogorov length

scale, ε is the energy dissipation and L the size of the largest eddies, see [6]. If
we assume that dissipation takes place on all length scale in the inertial range then
the form of the dissipation processes are determined by the fundamental theorems of
probability. Namely, if we impose periodic boundary conditions (different boundary
conditions correspond to different basis vectores), then the central limit theorem and
the large deviation principle stipulate that the additive noise in the Navier-Stokes
equation for the small scale must be of the form:

∑
k �=0

c
1
2
k dbk

t ek(x)+ ∑
k �=0

dk|k|1/3dt ek(x),

where ek(x) = e2πik·x are the Fourier coefficient and c
1
2
k and dk are coefficients that

ensure the series converge in 3 dimensions. The first term describes the mean of
weakly coupled dissipation processes given by the central limit theorem and the
second term describes the large deviations of that mean, given by the large deviation
principle, see [6]. Thus together the two terms give a complete description of the
mean of the dissipation process similar to the mean of many processes in probability.
The factor |k|1/3 implies that the mean dissipation has only one scaling. The Fourier
coefficients of the first series contain independent Brownian motions bk

t and thus the
noise is white in time in the infinitely many directions in function space. The noise

cannot be white in space, hence the decaying coefficients c1/2
k and dk, because if it

was the small scale velocity u would be discontinuous in 3 dimension, see [5]. This
is contrary to what is observed in nature.

The other part of the noise, in fully developed turbulence, is multiplicative and
models the excursion (jumps) in the velocity gradient or vorticity concentrations.
If we let Nk

t denote the integer number of velocity excursion, associated with kth
wavenumber, that have occurred at time t, so that the differential dNk(t) = Nk(t +
dt)−Nk(t) denotes the number of excursions in the time interval (t, t +dt], then the
process d f 3

t = ∑M
k �=0

∫
R

hk(t,z)N̄k(dt,dz), gives the multiplicative noise term. One
can show that any noise corresponding to jumps in the velocity gradients must have
this multiplicative noise to leading order, see [5]. A detailed derivation of both the
noise terms can be found in [5] and [6].

Adding the additive noise and the multiplicative noise we get the stochastic
Navier-Stokes equations describing the small scales in fully developed turbulence

du = (νΔu− u ·∇u + ∇Δ−1tr(∇u)2)dt + ∑
k �=0

c
1
2
k dbk

t ek(x)+ ∑
k �=0

dk|k|1/3dt ek(x)

+ u(
M

∑
k �=0

∫

R

hkN̄k(dt,dz))−U ·∇u− u ·∇U, u(x,0) = u0(x), (2)
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where we have used the divergence free condition ∇ · u = 0 to eliminate the small
scale pressure p. Each Fourier component ek comes with its own Brownian motion
bk

t and a deterministic bound |k|1/3dt.
The next step is to figure out how the generic noise interacts with the Navier-

Stokes evolution. This is determined by the integral form of the equation (2),

u = eKte
∫ t

0 dqMtu
0 + ∑

k �=0

∫ t

0
eK(t−s)e

∫ t
s dqMt−s(c

1/2
k dβk

s + dkµkds)ek(x), (3)

where K is the operator K = νΔ+∇Δ−1tr(∇u∇), and we have omitted the terms
−U ·∇u−u ·∇U in (2), to simplify the exposition. We solve (2) using the Feynmann-
Kac formula, and the Cameron-Martin formula (or Girsanov’s Theorem) from prob-
ability theory, see [6], to get (3). The Cameron-Martin formula gives the Martingale
Mt = exp{−∫ t

0 u(Bs,s) ·dBs− 1
2

∫ t
0 |u(Bs,s)|2ds}. The Feynmann-Kac formula gives

the exponential of a sum of terms of the form
∫ t

s dqk =
∫ t

0

∫
R

ln(1+ hk)Nk(dt,dz)−∫ t
0

∫
R

hkmk(dt,dz), see [5] or [6] Chapter 2 for details. The form of the processes

e
∫ t

0
∫
R

ln(1+hk)N
k(dt,dz)−∫ t

0
∫
R

hkmk(dt,dz) = eNk
t lnβ+γ ln |k| = |k|γβNk

t (4)

was found by She and Leveque [16], for hk = β− 1. It was pointed out by She and
Waymire [17] and by Dubrulle [7] that they are log-Poisson processes. The upshot
of this computation is that we see the Navier-Stokes evolution acting on the additive
noise to give the Kolmogorov-Obukhov ’41 scaling, and the Navier-Stokes evolution
acting on the multiplicative noise to produce the intermittency corrections through
the Feynmann-Kac formula. Together these two scaling combine to give the scaling
of the structure functions in turbulence,

Lemma 1 (The Kolmogorov-Obukhov-She-Leveque scaling). The scaling of the
structure functions is

Sp ∼Cp|x− y|ζp , ζp =
p
3
+ τp =

p
9
+ 2(1− (2/3)p/3).

p
3 being the Kolmogorov scaling and τp the intermittency corrections. The scaling
of the structure functions is consistent with Kolmogorov’s 4/5 law, S3 =− 4

5 ε|x−y|,
to leading order, were ε =− dE

dt is the energy dissipation.

The first structure functions is estimated by

S1(x,y,∞) ≤ 2
C ∑

k∈Z3\{0}

|dk|(1− e−λkt)

|k|ζ1
|sin(πk · (x− y))|.

We get a stationary state as t → ∞, and for |x−y| small, S1(x,y,∞)∼ 2πζ1
C ∑k∈Z3\{0}

|dk||x − y|ζ1 , where ζ1 = 1/3 + τ1 ≈ 0.37. Similarly, S2(x,y,∞) ∼
4πζ2

C2 ∑k∈Z3\{0}[dk
2 +(C

2 )ck]|x− y|ζ2 , when |x− y| is small, where ζ2 = 2/3+ τ2 ≈
0.696, and S3(x,y,∞) ∼ 23π

C3 ∑k∈Z3\{0}[|dk|3 + 3(C/2)ck|dk|]|x − y|. For the pth
structure functions, we get that Sp is estimated by
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Sp ≤ 2p

Cp ∑
k∈Z3\{0}

σp · (−i
√

2sgn M)p U
(− 1

2 p, 1
2 ,− 1

2(M/σ)2
)

|k|ζp
|sinp(πk · (x− y))|.

where U is the confluent hypergeometric function, M = |dk|(1− e−λkt) and σ =√
(C/2)ck(1− e−2λkt). The details of these estimates are given in [5].
The integral equation can be considered to be an infinite-dimensional Ito pro-

cess, see [6]. This means that we can find the associated Kolmogorov backward
equation for the Ito diffusion associated with the equation (3) and this equations
that determines the invariant measure of turbulence, see [5], is linear. This was
first attempted by Hopf [8] wrote down a functional differential equation for the
characteristic function of the invariant measure of the deterministic Navier-Stokes
equation. The Kolmogorov-Hopf (backward) equation for (2) is

∂φ
∂t

=
1
2

tr[PtCP∗
t Δφ]+ tr[PtD̄∇φ]+< K(z)Pt ,∇φ >, (5)

see [5] and [6] Chapter 3, where D̄ = (|k|1/3Dk), φ(z) is a bounded function of z,
Pt = e−

∫ t
0 ∇u drMt ∏m

k |k|2/3(2/3)Nk
t . The variance and drift are defined to be

Qt =
∫ t

0
eK(s)PsCP∗

s eK∗(s)ds, Et =
∫ t

0
eK(s)PsD̄ds. (6)

In distinction to the nonlinear Navier-Stokes equation (2) that cannot be solved ex-
plicitly, the linear equation (5) can be solved. The solution of the Kolmogorov-Hopf
equation (5) is

Rtφ(z) =
∫

H
φ(eKt Ptz+EI+ y)N(0,Qt ) ∗PNt (dy),

PNt being the law of the log-Poisson process (4). The invariant measure of turbu-
lence that appears in the last equation can now be expressed explicitly,

Theorem 1. The invariant measure of the Navier-Stokes equation on Hc =

H3/2+(T3) is,

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q−1/2EI|2 N(0,Q)(dx)∑

k

δk,l

∞

∑
j=0

p j
ml

δ(Nl− j)

where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson processes (4)

and p j
mk =

(mk)
je−mk

j! is the the probability of Nk
∞ = Nk having exactly j jumps, δk,l is

the Kroncker delta function.

This shows that the invariant measure of turbulence is simply a product of two mea-
sure, one an infinite-dimensional Gaussian that gives the Kolmogorov-Obukhov
scaling and the other a discrete Poisson measure that gives the She-Leveque
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intermittency corrections. Together they produce the scaling of the structure func-
tions in Lemma 1.

The quantity that can be compared directly to experiments is the probability den-
sity function (PDF). We take the trace of the Kolmogorov-Hopf equation (5), see [6]
Chapter 3, to compute the differential equation satisfied by the PDE. The stationary
equation satisfied by the PDF is

1
2

φrr +
1+ |c|

r
φr =

1
2

φ. (7)

Lemma 2. The PDF is a Normalized Inverse Gaussian distribution NIG of
Barndorff-Nilsen [1]:

f (x) =
(δ/γ)√

2πK1(δγ)

K1

(
α
√

δ2 +(x− µ)2
)

eβ(x−µ)

(√
δ2 +(x− µ)2/α

) (8)

where K1 is modified Bessel’s function of the second kind, γ =
√

α2 −β2.

(8) is the solution of (7) and the PDF that can be compared a large class of experi-
mental data.

We finally explain how we get around the famous non-uniqueness problem of
the Navier-Stokes equation. It is well known that the fluid velocity u solving the
(stochastic) Navier-Stokes equation may not be unique in 3 dimensions. However,
the invariant measure in Theorem 1 exists by Leray’s ’34 [11] theory, see Theorem
2 below. If the velocity is not unique different velocities give equivalent statistics.
Thus the statistical theory is unique although the velocity u may not be.

Theorem 2. The solution of the stochastic Navier-Stokes equation (2) satisfies the
estimates

E(|u|22)(t)≤ |u|22(0)e−at +
1
a
(

2|T |
ε ∑

k �=0

dk|k| 1
3 + ∑

k �=0

ck)+
|T |
a

ln(
m

∏
k=1

|k|2) 1
9 ,

and

(1− εD)sup
[0,t]

E(|u|22)(t)+ 2ν
∫ t

0
E(|∇u|)(s)ds ≤ |u|22(0)+ (

|T |
ε ∑

k �=0

dk|k| 1
3 + ∑

k �=0

ck)t

+|T | ln(
m

∏
k=1

|k|2) 1
9 ,

where D = ∑k �=0 dk|k|1/3, E denotes the expectation, a = 2νλ1 −D, λ1 is the first
eigenvalue of −Δ, with vanishing boundary conditions, ε is a small number and |T |
is the volume of the torus (box with periodic boundary conditions).

The proof of the theorem is similar to the proof of the Leray theory in Chapter 4,
in [6].
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