
A Survey of High Level Synthesis Languages,

Tools, and Compilers for Reconfigurable High
Performance Computing

Luka Daoud1, Dawid Zydek1, and Henry Selvaraj2

1 Department of Electrical Engineering, Idaho State University, Pocatello, ID, USA
{daouluka,zydedawi}@isu.edu

2 Department of Electrical and Computer Engineering, University of Nevada,
Las Vegas, NV, USA

henry.selvaraj@unlv.edu

Abstract. High Level Languages (HLLs) make programming easier and
more efficient; therefore, powerful applications can be written, modified,
and debugged easily. Nowadays, applications can be divided into parallel
tasks and run on different processing elements, such as CPUs, GPUs,
or FPGAs; for achieving higher performance. However, in the case of
FPGAs, generating hardware modules automatically from high level rep-
resentation is one of the major research activities in the last few years.
Current research focuses on designing programming platforms that allow
parallel applications to be run on different platforms, including FPGA.
In this paper, a survey of HLLs, tools, and compilers used for translating
high level representation to hardware description language is presented.
Technical analysis of such tools and compilers is discussed as well.

Keywords: High Level Synthesis, Compilers, FPGA, C-to-VHDL.

1 Introduction

Today, the trend in High Performance Computing (HPC) is to run applications
in parallel on different processing elements. Applications can be divided into
multiple tasks and executed simultaneously. Performance of such parallel pro-
cessing systems has increased significantly over the past few years and that trend
continues till date. The improvement is possible by implementing the multi-core
versions of conventional CPUs (Central Processing Units), and by hybrid com-
puting platforms with accelerators, such as FPGAs (Field Programmable Gate
Arrays) or GPUs (Graphics Processing Units) [1,2].

In general, applications and simulations [3] are not well suited for execut-
ing exclusively on accelerators. Some portions of applications have extensive
parallelism, suitable for FPGAs or GPUs; others are inherently serial or have
extensive control flow that make them better suited for a CPU or again for an
FPGA. Such device-oriented application partitioning increases the overall sys-
tem performance.

J. Świ
↪
atek et al. (eds.), Advances in Systems Science, 483

Advances in Intelligent Systems and Computing 240,
DOI: 10.1007/978-3-319-01857-7_47, c© Springer International Publishing Switzerland 2014



484 L. Daoud, D. Zydek, and H. Selvaraj

Hybrid HPC is a promising approach to increase the performance of super-
computers. It combines computing platforms, such as CPUs, GPUs, and FPGAs;
in order to attain higher performance. FPGAs offer energy efficiency and higher
throughput for portions of applications characterized by simple data objects and
extensive parallelism. GPUs outperform FPGAs for streaming and floating-point
applications; and for applications requiring high memory bandwidth. CPUs are
optimized for serial processing. Combining these computing platforms ensures
HPC and decreases energy consumption. The main challenge in recent HPC
software is to design a solution that allows using CPU (as a main processing
unit), GPUs, FPGAs, and other accelerators. Moreover, the software should be
able to decide which portion of the application is suitable for which computing
platform, considering higher performance and energy efficiency (Fig. 1).

In order to implement application code on an FPGA, the code should be
written in Hardware Description Language (HDL), like e.g. in [4] or [5]. Due
to rapid increase of complexity in the systems, researchers and engineers moved
from Register Transfer Level (RTL) design to high level design, seeking better
productivity in less time and with lower cost. Therefore, this paper provides a
survey on current and recent High Level Synthesis (HLS) tools, languages, and
compilers for reconfigurable systems. These HLS compilers are categorized in
this paper based on the input language. This paper is a first step in developing
a new tool that translates High Level Language (HLL) to a code recognizable
by variety of computing hardware, such as CPUs, GPUs, FPGAs, DSPs (Dig-
ital Signal Processors), or others. The paper is organized as follows: The next
section compares FPGAs to CPUs and GPUs. A survey on HLS, languages, and
compilers is presented in Section 3; and finally Section 4 concludes the paper.

 

Fig. 1. A compiler compiling an application-code for CPUs, GPUs, FPGAs, and other
accelerators



A Survey of HLS Languages, Tools, and Compilers for RHPC 485

2 FPGAs vs. CPUs and GPUs

FPGAs and/or GPUs are used in hybrid computing systems to accelerate the
computing processes [1]. Hence, HPC can be obtained. In HPC systems, the
FPGA acts as a configurable co-processor to a CPU, where FPGA executes
intensive computational parts of the code. Similarly, GPU processes large blocks
of data in parallel to increase performance. Although FPGAs run at frequencies
expressed in MHz while CPUs run at few GHz, very often FPGAs outperform
CPUs. The reasons behind that are:

• For each specific task a dedicated circuit is implemented in the FPGA,
• Designers exploit the parallelism and pipeline of the circuit implemented on

the FPGA,
• FPGAs offer huge memory bandwidth through configurable logic.

Besides higher performance offered by FPGAs, they provide lower power con-
sumption in comparison to CPUs. In HPC systems, GPUs are intensively used
for numerous scientific applications to achieve higher performance by off-loading
the most intensive computing portions of the application to the GPUs. GPUs
often outperform FPGAs for streaming applications. They usually have a higher
floating-point performance and memory bandwidth than FPGAs. However, ac-
cording to [6], FPGAs present better computing capability for applications char-
acterized by:

• Relatively simple data objects,
• Relatively simple arithmetic operations,
• Smooth implementation using pipelined processing structures,
• Extensive data-parallelism,
• Regular and simple control structures.

3 HLS Languages, Tools, and Compilers

In this section, we analyze HLS tools and programming languages for FPGAs.
The tools enhance the portability and scalability of applications. Moreover, they
optimize performance and design efforts as well. Most of these tools are based
on C/C++ programming language, because the language is well known for both
software and hardware engineers. Fig. 2. shows the flow of generating RTL from
HLL.

3.1 HLS from C/C++ Programming Language

Hardware-C [7] is one of the first HLS languages that uses the C programming
language. It supports parallel processes that communicate together through ei-
ther port passing or message passing techniques. However, it cannot represent
arbitrary serial-parallel structures and it has different syntax from the original
C for several constructs. Handel-C [8] is one of the HLLs based on C language,



486 L. Daoud, D. Zydek, and H. Selvaraj

 

C/C++ 
SystemC 
C# 

Java 

Matlab 

Python 
Schematic 

Compiler HDL Code Synthesis Bitstream 

FPGA 

Source Inputs 

 

Fig. 2. The flow of generating RTL from HLL

where the commands are written one by one and they are executed sequentially.
Handel-C targets low level hardware where the commands can be executed in
FPGA. In order to get benefit of parallel execution, some keywords are used in
the code. Therefore, performance benefits can be attained by using parallelism.
The overall program structure of Handel-C is little different from conventional C.
The program structure consists of one or more main functions, each associated
with a clock. Thus parts of the program can be run at different speeds. When a
code is written in Handel-C, the programmer should be aware of the hardware
implementations in order to get the benefit of parallelism. Similar to Handel-
C, Hyden-C [9] is a framework of optional annotations to enable designers to
describe design-constraints and to direct source-level transformations such as
scheduling and resource allocation. The main difference between Handel-C and
Hyden-C is that Hyden-C, like VHDL, is component-based. Therefore, designers
can describe their designs as a set of distinct components that are developed
independently and then connect them together.

Many HLS tools are designed for application domains. For example, Trident
[10] is a compiler that accepts C code extracting the parallelism and the possibil-
ity of pipeline implementations from the code; and generates the corresponding
circuits in reconfigurable logic. Trident compiler is mainly designed for floating-
point applications. GAUT [11] is an academic HLS tool dedicated to DSP ap-
plications. The GAUT tool converts a C function into a pipelined architecture
consisting of a processing unit, memory unit, communication, and multiplex-
ing unit. Also, Streams-C [12] and Impulse-C (derived from Streams-C) [13] are
compilers that support stream-oriented computation on FPGA-based parallel
processors, where data parallelism can be effectively mapped onto the FPGA.

In addition, many of the free and open source online compilers can be used
to convert the C code (HLL) to HDL. C to Verilog [14] is an online compiler
that translates the C function into a hardware-module interface. Although this
compiler uses most of the C language features, there are some limitations in
the C code that are not acceptable by the tool, e.g. recursive functions, struc-
tures, pointers to functions, and library function calls (printf, malloc, etc). These



A Survey of HLS Languages, Tools, and Compilers for RHPC 487

structures (limitations) cannot be represented in hardware. FpgaC [15] is a com-
piler for a subset of the C programming language. It produces digital circuits
that execute the compiled programs.

Since hybrid systems provide higher performance, some compilers target hard-
ware and software systems by translating specific parts of a larger C program
into hardware; and the rest of the program is executed on a traditional CPU.
NAPA C [16] is a hardware-software and co-synthesis compiler that generates a
C program targeting hybrid RISC CPUs and FPGAs. Similarly, Nimble [17] is
a framework that automatically compiles system-level applications specified in
C to the code executable on the combined CPU and FPGA architectures. Also,
CHiMPS [18] is a C-based compiler for hybrid CPU-FPGA computing platform.
Similar to CHiMPS, CASH [19] is a compiler that targets the hybrid System on
Chips (SoCs). LegUp [20] is an open source HLS tool that automatically com-
piles a C program to target a hybrid FPGA-based software/hardware system.
The program can be divided into program segments, some program segments are
executed on an FPGA-based MIPS CPU and other program segments are auto-
matically synthesized into FPGA circuits. These circuits communicate and work
together with the CPU. ROCCC [21] is an open source compiler that accepts a
strict subset of C and generates VHDL. In order to be used efficiently, the en-
tire software program is not translated into hardware – ROCCC focuses on the
critical regions of software, e.g. regions containing loops performing extensive
computation on large amounts of data. The Nios II C-to-Hardware Acceleration
(C2H) compiler [22] is a tool that allows the designer to create custom hardware
accelerators directly from C code. Altera’s C2H allows partitioning C functions
into hardware sets that can be executed on a Nios II CPU. By using the C2H
compiler, an algorithm in C targeting a Nios II CPU can be quickly converted
to a hardware accelerator implemented on an Altera’s FPGA.

There are also C++ language compilers that can be used to generate HDL.
A Stream Compiler (ASC) [23] is a C++ library allowing the designers to op-
timize the hardware implementation on the algorithm level, architecture level,
arithmetic level, and gate level; all within the same C++ program. ASC code
is compiled to produce hardware netlist circuit. Catapult C [24] is a subset
of C++ with no extensions. It takes ANSI C/C++ or SystemC [25] as input
and generates RTL code targeting FPGAs or ASICs. The code that can be
compiled from Catapult C may be very general and may result in many dif-
ferent hardware implementations. AutoPilot [26] is one of the most recent HLS
tools. It automatically generates efficient RTL code from high level representa-
tions. Autopilot accepts three kinds of standard C-based design entries: C, C++,
and SystemC. AutoPilot is an advanced compiler capable of carrying out effi-
cient power optimization using clock gating and power gating. It also supports
pipeline to improve the system performance. Hence, it can target a wide range of
applications.

In addition, DEFACTO [27] and Carte [28] are compilers that accept C and
Fortran as input languages. DIME-C [29] is a C based compiler that translates a
DIME-C code into VHDL. However, like C to Verilog [14], not all elements in C



488 L. Daoud, D. Zydek, and H. Selvaraj

languages are supported in DIME-C, e.g. pointers, structures, switch statements,
etc. Other C-based compilers include Bash-C [30], Mitrion-C [31], SpecC [32],
SPC [33], or SPARK [34]. Additional commercial tools and early compilers can
be found in [35].

3.2 HLS from Non-C/C++ Programming Language

MATlab Compiler for Heterogeneous computing systems (MATCH) [36] allows
users to develop efficient codes for distributed, heterogeneous, and reconfigurable
computing systems. MATCH takes MATlab programs and automatically maps
them onto a hybrid computing environment consisting of embedded CPUs, DSPs,
or FPGAs.

MyHDL [37] is an open source Python package that allows the designer using
Python to generate HDL. The Python code is converted to Verilog and VHDL.

JHDL (Just-Another Hardware Description Language)[38] is a design tool
for reconfigurable systems that focuses mainly on designing circuits through an
object oriented approach. The main use of JHDL is to create digital circuits
for implementation using FPGAs. JHDL can be used with any standard Java
1.1 distribution without language extensions. Also, based on Java source input,
Sea Cucumber (SC) [39] is a synthesizing compiler for FPGAs that accepts Java
class files as input and then generates circuits. Users write circuit descriptions
exposing coarse-level parallelism as concurrent threads. SC then analyzes the
body of each thread and uses compiler and circuit optimization techniques to
extract fine-grained parallelism. Afterwards, SC compiler is executed to generate
an Electronic Design Interchange Format (EDIF) netlist; and the Xilinx place
and route software is called to create a bitstream from the synthesized EDIF
netlist.

Kiwi [40] is a compiler based on C#. The Kiwi compiler accepts common
intermediate language output from either the .NET or Mono C# compilers and
generates Verilog RTL.

Pebble [41] is a language for parameterized and reconfigurable hardware de-
sign. Pebble has a simple block-structured syntax. Designers can easily define the
number of pipeline stages using the parameters in a Pebble program. The main
objective of Pebble is to support the development of designs involving run-time
reconfiguration.

There are also other HLS compilers that use different languages. For example,
Esterel [42] is a synchronous programming language designed to program reac-
tive systems (systems that react continuously to their environment). Another
example is BlueSpec compiler [43] that works based on Bluespec System Verilog
– a language used in the design of electronic systems.

3.3 Schematics-Based HLS

Schematics such as LabVIEW and MATlab are also used to program FPGAs.
LabVIEW is one of the schematic tools that targets FPGAs. The National
Instruments (NI) LabVIEW FPGA module extends the LabVIEW graphical



A Survey of HLS Languages, Tools, and Compilers for RHPC 489

development platform to target FPGAs on NI reconfigurable I/O hardware.
Since LabVIEW represents parallelism and data flow, it is suitable for FPGA
programming [44]. In addition, designers also can use MATlab to design and
simulate their algorithms by Simulink and Stateflow, then MATlab generates
VHDL or Verilog code for FPGAs using HDL Coder [45]. Another tool is Al-
tium Designer [46]. It is an electronic design automation software package for
printed circuit board, FPGA, and embedded software design.

3.4 HLS Based on Programming Models for GPUs

Parallel computing platforms and programming models for GPUs are subject
of very intense research. CUDA (Compute Unified Device Architecture) and
OpenCL (Open Computing Language) are parallel programming models that
address the higher interest in GPUs; moreover, they have recently expanded
their capabilities beyond GPUs.

CUDA is a parallel computing platform and programming model created by
NVIDIA and implemented on their GPUs. FCUDA [47] is a framework to con-
vert CUDA code to RTL suitable for FPGAs. The transformation process from
CUDA to RTL is done in two phases. First, FCUDA transforms the single-
program-multiple-data CUDA code into C code for AutoPilot [25] with annotated
coarse-grainedparallelism.Then, the AutoPilotmaps themarked parallelism onto
parallel cores and generates the corresponding RTL description. Afterwards, syn-
thesis and programming of FPGA is done. The main goal of the FCUDA is to
convert thread blocks into C functions. FCUDA combines the CUDA program-
ming model with a HLS tool (AutoPilot) to efficiently implement CUDA code on
FPGA.

Another parallel programming framework for writing programs that are ex-
ecuted across heterogeneous platforms is OpenCL [48]. SOpenCL [49] is an
OpenCL-based FPGA synthesis tool. It generates hardware circuits and SoC
systems from OpenCL programs. The output of SOpenCL is a pure C function
which is converted to a hardware circuit in a form of synthesizable HDL.

On the other hand, Altera enables the designers to run OpenCL code on
Altera’s FPGAs [50]. Compiling an OpenCL code to FPGA by Altera’s solution
is the process of converting an OpenCL C code into FPGA bitstream that allows
programming the FPGA. The compilation process has two phases: the OpenCL
code is compiled into intermediate hardware format code, and then compiled
into an FPGA bitstream. Therefore, each OpenCL code is converted into custom
hardware representing the data flow circuit. Mapping multithreaded functions
to FPGA can be done simply by replicating hardware (inefficient – waste of
resources) or by using pipeline parallelism (more efficient mapping).

4 Final Remarks

The trend in HPC is to increase the number of processing elements using het-
erogeneous computing platforms, in order to provide higher performance and



490 L. Daoud, D. Zydek, and H. Selvaraj

increase energy efficiency. Since the complexity in applications and systems has
been increasing, designers move to high level representation to improve the prod-
uct quality in less time and with lower cost.

This paper is a survey of HLS tools and compilers that accept HLL code and
generate HDL or bit-stream files for FPGAs. These HLS tools and compilers
have been presented according to the input source code. Most current and recent
compilers have been presented. Also, compilers that convert a code for GPUs,
written in CUDA or OpenCL, to RTL form have been demonstrated in this
paper. This work has been presented as the first step to design a compiler capable
of compiling and analyzing code for heterogeneous systems combining CPUs,
GPUs, and FPGAs. As a future work, we plan to design such a compiler that will
use intelligent techniques to select the best computing platform for all portions
of the code, in order to increase performance. Our future work will also focus on
improving efficiency of FPGAs for floating-point calculations.

References

1. Liu, B., Zydek, D., Selvaraj, H., Gewali, L.: Accelerating High Performance Com-
puting Applications Using CPUs, GPUs, Hybrid CPU/GPU, and FPGAs. In:
Proceedings of the 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 2012), pp. 337–342 (2012),
doi:10.1109/PDCAT.2012.34

2. Zydek, D., Selvaraj, H., Borowik, G., Luba, T.: Energy Characteristic of Processor
Allocator and Network-on-Chip. International Journal of Applied Mathematics and
Computer Science 21(2), 385–399 (2011), doi:10.2478/v10006-011-0029-7

3. Chmaj, G., Zydek, D.: Software development approach for discrete simula-
tors. In: Proceedings of the 21st International Conference on Systems Engi-
neering (ICSEng 2011), pp. 273–278. IEEE Computer Society Press (2011),
doi:10.1109/ICSEng.2011.56

4. Zydek, D., Selvaraj, H., Gewali, L.: Synthesis of Processor Allocator for Torus-
based Chip Multiprocessors. In: Proceedings of the 7th International Conference
on Information Technology: New Generations (ITNG 2010), pp. 13–18. IEEE Com-
puter Society Press (2010), doi:10.1109/ITNG.2010.145

5. Zydek, D., Selvaraj, H.: Hardware Implementation of Processor Allocation Schemes
for Mesh-based Chip Multiprocessors. Microprocessors and Microsystems 34(1),
39–48 (2010), doi:10.1016/j.micpro.2009.11.003

6. Chase, J., Nelson, B., Bodily, J., Wei, Z., Lee, D.: Real-time Optical Flow Calcu-
lations on FPGA and GPU Architectures: A Comparison Study. In: Proceedings
of the 16th International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2008, pp. 173–182 (2008)

7. Ku, D.C., De Micheli, G.: Hardware C - A Language for Hardware Design. Tech-
nical report, DTIC Document (1988)

8. Aubury, M., et al.: Handel-C Language Reference Guide. Computing Laboratory.
Oxford University, UK (1996)

9. Coutinho, J., Luk, W.: Source-directed Transformations for Hardware Compilation.
In: Proceedings of the International Conference on Field-Programmable Technol-
ogy (FPT), pp. 278–285. IEEE (2003)



A Survey of HLS Languages, Tools, and Compilers for RHPC 491

10. Tripp, J., et al.: Trident: An FPGA Compiler Framework for Floating-Point Al-
gorithms. In: Proceedings of the International Conference on Field Programmable
Logic and Applications, pp. 317–322 (2005)

11. GAUT- High-Level Synthesis Tool From C to RTL (May 2013),
http://hls-labsticc.univ-ubs.fr

12. Gokhale, M., Stone, J., Arnold, J., Kalinowski, M.: Stream-Oriented FPGA Com-
puting in the Streams-C High Level Language. In: 2000 IEEE Proceedings of
the Symposium on Field-Programmable Custom Computing Machines, pp. 49–56
(2000)

13. http://www.impulseaccelerated.com/ReleaseFiles/Help/ImpulseCUserGuide.

pdf: (May 2013)
14. C to Verilog (May 2013), http://www.c-to-verilog.com
15. FpgaC Compiler (May 2013),

http://www.utb.edu/vpaa/csmt/cis/Pages/FPGAc.aspx

16. Gokhale, M., Stone, J.: NAPA C: Compiling for a Hybrid RISC/FPGA Architec-
ture. In: Proceedings of the IEEE Symposim on FPGAs for Custom Computing
Machines, pp. 126–135 (1998)

17. Li, Y., et al.: Hardware-Software Co-Design of Embedded Reconfigurable Archi-
tectures. In: Proceedings of the 37th Annual Design Automation Conference, pp.
507–512 (2000)

18. Putnam, A., et al.: CHIMPS: A C-Level Compilation Flow for Hybrid CPU-FPGA
Architectures. In: 2008 FPL, Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 173–178 (2008)

19. Budiu, M., Goldstein, S.C.: Compiling Application-Specific Hardware. In: Glesner,
M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 853–863. Springer,
Heidelberg (2002)

20. Canis, A., et al.: LegUp: High-Level Synthesis for FPGA-based Proces-
sor/Accelerator Systems. In: Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 33–36 (2011)

21. Villarreal, J., Park, A., Najjar, W., Halstead, R.: Designing Modular Hardware
Accelerators in C with ROCCC 2.0. In: Proceedings of the 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 127–134 (2010)

22. http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

(May 2013)
23. Mencer, O.: ASC: A Stream Compiler for Computing with FPGAs. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 25(9), 1603–
1617 (2006)

24. Mentor Graphics, Catapult C Synthesis (May 2013), http://www.mentor.com
25. Initiative, Open SystemC: SystemC 2.0. 1 Language Reference Manual. Revision

1(1177), 95118–3799 (2003)
26. Zhang, Z., Fan, Y., Jiang, W., Han, G., Yang, C.: AutoPilot: A platform-based

ESL Synthesis System. In: High-Level Synthesis, pp. 99–112. Springer (2008)
27. Bondalapati, K., et al.: DEFACTO: A Design Environment for Adaptive Comput-

ing Technology. Springer (1999)
28. Poznanovic, D.S.: Application Development on the SRC Computers, Inc. Systems.

In: Proceedings of the 19th IEEE International Symposium on Parallel and Dis-
tributed Processing, pp. 1–10 (2005)

29. Park, S., Shires, D., Henz, B.: Reconfigurable Computing: Experiences and
Methodologies. Technical report, DTIC Document (2008)

http://hls-labsticc.univ-ubs.fr
http://www.impulseaccelerated.com/ReleaseFiles/Help/ImpulseCUserGuide.pdf:
http://www.impulseaccelerated.com/ReleaseFiles/Help/ImpulseCUserGuide.pdf:
http://www.c-to-verilog.com
http://www.utb.edu/vpaa/csmt/cis/Pages/FPGAc.aspx
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.mentor.com


492 L. Daoud, D. Zydek, and H. Selvaraj

30. Yamada, A., et al.: Hardware Synthesis with the Bach System. In: Proceedings of
the 1999 IEEE International Symposium on Circuits and Systems, ISCAS 1999,
vol. 6, pp. 366–369 (1999)

31. Mitrionics AB: Mitrion Users Guide. Technical report, Mitrionics (2008)
32. Domer, R.: The SpecC System-Level Design Language and Methodology, Part 1,

Parts 1 & 2. In: Embedded Systems Conference (2001)
33. Weinhardt, M., Luk, W.: Pipeline Vectorization. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 20(2), 234–248 (2001)
34. Gupta, S., Dutt, N., Gupta, R., Nicolau, A.: SPARK: A High-Level Synthesis

Framework for Applying Parallelizing Compiler Transformations. In: Proceedings
of the 16th International Conference on VLSI Design, pp. 461–466 (2003)

35. Cong, J., et al.: High-Level Synthesis for FPGAs: From Prototyping to Deploy-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30(4), 473–491 (2011)

36. Banerjee, P., et al.: A MATLAB Compiler for Distributed, Heterogeneous, Re-
configurable Computing Systems. In: Proceedings of IEEE Symposiumon Field-
Programmable Custom Computing Machines, pp. 39–48 (2000)

37. MyHDL - From Python to Silicon: myhdl.org (May 2013)
38. Bellows, P., Hutchings, B.: JHDL - An HDL for Reconfigurable Systems. In: Pro-

ceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
175–184 (1998)

39. Tripp, J.L., Jackson, P.A., Hutchings, B.L.: Sea Cucumber: A Synthesizing Com-
piler for FPGAs. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS,
vol. 2438, pp. 875–885. Springer, Heidelberg (2002)

40. Greaves, D., Singh, S.: Using C# Attributes to Describe Hardware Artefacts within
kiwi, Specification, Verification and Design Languages. In: Forum on Specification,
Verification and Design Languages, FDL 2008, pp. 239–240 (2008)

41. Luk, W., McKeever, S.: Pebble: A Language For Parametrised and Reconfigurable
Hardware Design. In: Hartenstein, R.W., Keevallik, A. (eds.) FPL 1998. LNCS,
vol. 1482, pp. 9–18. Springer, Heidelberg (1998)

42. Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: De-
sign, Semantics, Implementation. Science of Computer Programming 19(2), 87–152
(1992)

43. BlueSpec (May 2013), http://www.bluespec.com
44. National Instruments LabVIEW (May 2013), http://www.ni.com/labview/fpga
45. FPGA Design and Codesign (May 2013), http://www.mathworks.com/fpga-design
46. Altium Designer (May 2013), http://en.wikipedia.org/wiki/Altium_Designer
47. Papakonstantinou, A., et al.: FCUDA: Enabling Efficient Compilation of CUDA

Kernels onto FPGAs. In: Proceedings of the 7th IEEE Symposium on Application
Specific Processors, SASP 2009, pp. 35–42 (2009)

48. khronos Group (May 2013), http://www.khronos.org
49. Owaida, M., Bellas, N., Daloukas, K., Antonopoulos, C.: Synthesis of Platform

Architectures from OpenCL Programs. In: Proceedings of the 19th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 186–193 (2011)

50. Implementing FPGA Design with the OpenCL Standard (May 2013),
http://www.altera.com/literature/wp/wp-01173-opencl.pdf

http://www.bluespec.com
http://www.ni.com/labview/fpga
http://www.mathworks.com/fpga-design
http://en.wikipedia.org/wiki/Altium_Designer
http://www.khronos.org
http://www.altera.com/literature/wp/wp-01173-opencl.pdf

	A Survey of High Level Synthesis Languages,
Tools, and Compilers for Reconfigurable High
Performance Computing

	1 Introduction
	2 FPGAs vs. CPUs and GPUs
	3 HLS Languages, Tools, and Compilers
	3.1 HLS from C/C++ Programming Language
	3.2 HLS from Non-C/C++ Programming Language
	3.3 Schematics-Based HLS
	3.4 HLS Based on Programming Models for GPUs

	4 FinalRemarks
	References




