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Abstract. This paper presents an approach to merge three elements that are 
usually not thought to be combined in one application: evolutionary computing 
running on reasonably priced microcontrollers (µC) for real-time fast control 
systems. A Multi Objective Genetic Algorithm (MOGA) is implemented on a 
180MHz µC.A fourth element, a Neural Network (NN) for supporting the 
evaluation function by predicting the response of the controlled system, is also 
implemented. Computational performance and the influence of a variety of fac-
tors are discussed. The results open a whole new spectrum of applications with 
great potential to benefit from multivariable and multiobjective intelligent con-
trol methods in which the hybridization of different soft-computing techniques 
could be present. The main contribution of this paper is to prove that advanced 
soft-computing techniques are a feasible solution to be implemented on  
reasonably priced µC -based embedded platforms. 
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1 Introduction 

Soft-computing techniques such as Genetic Algorithms (GA), as well as other intelli-
gent techniques like NNs and Fuzzy Logic (FL), have already proven to be a serious 
alternative not only to complement but also to replace conventional algorithms in a 
wide diversity of applications[1]. 

Intelligent control schemes based on soft-computing techniques are showing to be 
an excellent solution for dealing with the difficulty of optimizing nonlinear and multi 
objective control systems. They also adapt conveniently to diverse real-world issues 
such as system parameter alterations, operation point variations, measurement  
imprecision, noise, unforeseen perturbations and the overall present nonlinearities  
and non-convexities[1, 2]. Trying to control these aspects through conventional  
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hard-computing methods usually will increase the solution complexity up to unviable  
levels, forcing the designer to accept assumptions and simplifications on the control 
problem. Therefore, the control problem transformations –which are needed to solve 
the problemby conventional hard-computing methods in reasonable sampling times - 
can ensure stability on the closed-loop response under some assumptions, but can lose 
optimality in their response when variable and frequent changes in the system opera-
tion point are required. All these aspectsare likely to deteriorate the final result and 
could impede the development of an enhanced controller which would provide added 
value to the final control system. 

NN and FL have already been implemented on embedded platforms for real-time 
control applications, often also in hybrid algorithms combining them witheach other 
(e.g. Neuro-Fuzzy) or with classical control techniques like PI controllers[3–6]. 

GAs are also well known for being able to offer great results when correctly tuned, 
but unlike the previous cases,they are usually used for offline optimization of a wide 
variety of designs and parameter determination[7, 8]. It is not likely to see GAs run-
ning on an embeddedtarget platforms, and when done so, they typically control slow 
systemsor optimize parameters of another controller according to variations [9–13]. 

One of the main drawbacks for the application of GAs and Evolutionary Algo-
rithms(EA) on real-time control applicationsis their high computational cost, their 
complexity and their variability, which may also make it difficult to guarantee the 
searching convergence, i.e. the control action convergence inside the sampling time 
window.Additionally, ensuringstability of the closed-loop response becomes an ardu-
ous task (but however a challenge)that should be done by using Finite Markov Chain 
analysis[14]. These difficulties, together with the fact of lower demand for complex 
optimization methods running on targets, have prevented them from moving onto 
embedded platforms, hindering the appearance of new applications. 

The core of this work is the MOGA which is desired to be proven as feasible for 
fast real-time intelligent control applications under the umbrella of a nonlinear model 
predictive strategy [15]. A NN for supporting the evaluation function by predicting 
the response of the control systems in a short horizon is also implemented. The aim of 
our research is to contribute to the applicability of intelligent & hybrid control 
schemes - using soft-computing techniques – but considering constricted electronic 
control units based on µC or digital signal processors (DSP). 

2 A Real-Time MOGA Based Hybrid Controlscheme  

GAs are stochastic optimization algorithms inspired in evolutionary genetics and 
natural selection, in which a population of solutions evolves through various genera-
tions under the influence of randomness and specimen survival, reproduction and 
mutation [16, 17].The resultisa method that handles very well nonlinear and complex 
systems, does not require excessive model simplifications and has less tendency to get 
stuck in local optima as happens with conventional methods, therefore being very 
successful in finding optimum or near-optimum solutions. Nevertheless, it is an itera-
tive method in whicha series of operators have to be applied to a population of indi-
viduals (candidates) that also need to be evaluated at each iteration, which means the 
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computational complexity is a problem. The application of GAs over multiobjective 
optimization problems leads to MOGA techniques and methods where fitness func-
tions with multiple objectives are considered[18, 19]. 

For the implementation approach presented in this work, the well-knownfast and 
elitist MOGA algorithm NSGA-II (Nondominated Sorting Genetic Algorithm) has 
been selected[20], see Fig. 1. Apart from its high relevancy in the current state of the 
art, its reasonable and foreseeable computational cost together with its fast conver-
gence propertymaintaining a good spread of solutions makes it very suitable for work-
ing as solver in real-time optimization problems.The algorithm complexity of the 
NSGA-II is given by the expressionܱሺܰܯଶሻܩ , where ܯstands for the amount of 
objectives, ܰfor the population size and ܩfor the number of generations. According 
to the previous expression the time T required to execute the searching procedure is 
given by ܶ ൌ  where the factor C represents all the ignored aspects afterܩଶሻܰܯሺܥ
using the asymptotic approach,ܱ, which in this case is dependant of the platform per-
formance, the fitness functions used and the issues related to the programming and 
implementation of the algorithm. As the impact of the population number ܰ  is 
squared, this variable should be tried to be kept low, thusimproving the searching 
results and convergence by adequately tuning the MOGA operators and the number of 
generations required, as far as the characteristics of the problem to be solved allow it. 

 

Fig. 1. Diagram representing the NSGA-II Multi Objective Genetic Algorithm 

The interesting concept of using a MOGA optimizer as main controller and sup-
porting it on NN based predictions as fitness functions is a feasible idea for handling 
the multiobjective nonlinear model predictive control [15]. Further enhancement of 
the controller can be obtained by implementing a final solution selection mechanism 
(among the Pareto's set) based on FL or Expert Systems as proposed in[15], see  
Fig. 2. Both mechanisms (NN and FL) can be implemented in an efficient and  
uncomplicated manner on µC platforms. 

The implementation of the NN is a very critical point that must be implemented 
with high efficiency, as it needs to be executed hundreds or thousands of times per 
second, therefore consuming a considerable part of the total computation time. 
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Fig. 2. The proposed Real-Time MOGA based Intelligent Hybrid scheme 

Supporting the previous concept by transferring the task of executing the NN to a 
FPGA platform is a very interesting approach, due to their parallel processing capa-
bilities with potential to rapidly run predictions of various solutions simultaneously 
[21]. The need for this hybrid hardware architecture solution will depend on the com-
plexity of the NN and the time and cost boundary conditions.  

Another interesting approach is the usage of downsized GAs. Micro-GAs offer a 
lightweight alternative for cases where higher computational costs are not accept-
able[22]. They represent an optimization solution able to offer a compromise between 
results and time constraints which might be adequate in certain applications. Also in 
this direction, techniques based on small population combining Particle Swarm Opti-
mization with evolutionary mechanisms have been proposed[23]. When adequately 
set up and tuned, which usually is a delicate task in GAs, smaller and simpler algo-
rithms can also provide satisfying results. 

3 Microcontroller Implementation  

For the NSGA-II implementation and testing, a high performance floating-pointµC 
was selected(ARM® CortexTM-R4F - 180 MHz - 3 MB of flash memory - 256 KB 
RAM). This is one of the µCs that were considered as interesting – in addition to its 
processing capabilities and performance -because it is available as a redundant dual-
core controller conceived,among others, for safety critical control functions, as it 
occurs in many automotive applications. This makes it well suited for promising ap-
plication fields in the transportation sector, such as the relevant trend of Advanced 
Driver Assistance Systems(ADAS). However, other µCsand DSPs offering perform-
ances up to GHz range and parallel processing can be candidates forapplications in 
which higher data processing speeds are required[24]. 

An important consideration for the software development was to avoid bounding 
the solution to a specific target platform and/or software development tool which 
could create undesirable dependencies and workflow limitations. Therefore a  
simple programmingscheme has been selectedin order to provide a high code portabil-
ity and flexibility to work with other platforms and algorithms. A single primary task 
executes the algorithm on a timer-based determinist and time-constrained loop.  
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The programming abstraction has been kept low: it is written in C and no RTOS  
has been used.Algorithms coming from a code generation tool canalso be easily  
integrated. 

During the adaptation of the original code into embedded platform friendly C,  
diverse functions were suppressed or substituted, for example those regarding to inter-
face, visualization and storage operations. Programming optimizations such as reduc-
ing data type casting operations and avoiding unnecessary intermediate results have 
also been applied. Regarding to the compiler, optimizations affecting registers, local 
code and global code were selected, together with function inlining and the most 
speed oriented speed-VS-code-size balance. 

Regarding to the evaluation function, different approaches were taken. First two 
non-representative multiobjective optimization problems were defined: simple (1) and 
heavy (2) cost functions. Each one is composed by two fitness (objective) functions 
(f0, f1) with different mathematical complexity. 

 ଴݂ ൌ ଴ଶݔ  ൅ ଵଶݔ଴ݔ5 ൅ ଶݔ4 ൅ ସݔଷݔ  ହൗݔ   ;   ଵ݂ ൌ ହସݔ  ൅ ଷଶݔଶݔ8 ൅ ଵݔ9 ൅ ଵݔ଴ݔ  ଶൗݔ  (1) 

 

଴݂ ൌ  ݁ට௫బమାହ௫బ௫భమ ௫ఱൗ ൅ ටݔଶଶ ൅ ඥݔଷݔସ  ·  ሺ ௫ఱଵଶଷସହ଺.଻଼ଽሻହ     (2) 

   ଵ݂ ൌ  ݁ହସଷଶଵଶଷସହ ௫భට௫ఱమାହ௫రమ ௫య⁄ൗ ൅ ටݔ଴ଶ ൅ ඥݔସݔହ  · ସଵݔ  ௫ఱ⁄  

A function which represents a practical problem was also tested: the model of a 
helicopter-like Twin Rotor MIMO System (Feedback Instruments Ltd.). This system 
has two voltage inputs to control the power of each of the two rotors which are rotated 
90º respect to each other. As the structure is fixed to the ground through an articula-
tion, it offers 2 degrees of freedom: the outputs are the pitch and the yaw angles. 

This system is represented not by simple mathematical expressions, but bymore 
complex functions for which two different approaches have been implemented. In 
both of themܪrecursive function calls are executed for predicting the response over 
the prediction horizon.There are two objectives and their functions are chosen to be 
the calculation of the quadratic error over ܪ regarding to the pitch and yaw angle set-
points. This can be easily extended by, for example, adding the control action energy 
consumption. The MOGA chromosome contains 10 real variables, as the MOGA has 
to obtain 2 control actions over a selected horizon of ܪ ൌ  5 steps-ahead. 

The first approachis a relatively complex nonlinear Simulink™ model which 
represents the differential equations and was translated into a C function using code-
generation. It contains 3 transfer functions, 4 integrators and a series of nonlinear 
mathematical expressions andtrigonometric functions. 

The second and especiallyrelevant approach, which leads to the interesting hybrid 
concept with a NN, isimplemented instead of the previous model in order to be 
trained with the real system inputs and outputs so that it better reflects the non lineari-
ties. It is based on a NARX topology containing a layer with 8 neurons and a hidden 
layer with 12 neurons, plus the corresponding input and output layers. It is also  
integrated into the recursive execution based predictive context. 
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Inevitably the µC implementation must be adapted to the specific application con-
sidering the control specifications and requirements. This not only does mean opti-
mizing the size and complexity of the algorithm itself, but also the required range and 
resolution of the variables being used. Once theplatform is established, platform spe-
cific low level coding must be considered in order to optimize the execution perform-
ance.Especially on routines that are executed many times per iteration- such as the 
fitness function or many of the evolutionary operations in EAs or GAs - should be 
taken care to be efficient, as they represent a significant fraction of the overall compu-
tation time. On high performance devices, the correct usage of resources such as the 
cache and the pipeline, and when possible executing more than one instruction per 
cycle(or even fullparallel processing)should beimplemented. Combining the previous 
actions with compiler/linker level optimizations and other actions, such as function 
inlining, significant performance improvements are obtained. 

Aiming to test and analyze different soft-computing algorithms and intelligent con-
trol strategies, several systems would be needed. As setting up physical models would 
suppose an excessive effort, simulating the corresponding plant models on a parallel 
hardware platform was chosen as an agile, cost effective and safe alternative using the 
Hardware in the Loop (HiL) testing approach, see Fig. 3. For the first tests, a cost 
effective 32 bit floating point DSC running at 150 MHz was selected.It offers the 
possibility of directly embedding the automatically generated code from SimulinkTM 

models, and additionally monitor and interact with them through a PC based GUI. It 
will enable to run the plant model in real-time with differential integration steps  
between one and three orders of magnitude faster than the controller sample time. 

 

Fig. 3. HiL based Testing Setup. ARM® CortexTM-180 MHz as Intelligent Controller; DSC-150 
MHz as Emulator of the system to be controlled 
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4 Results 

As it was expected, the results obtained from this implementation have shown that 
MOGAsare computationally costly compared to other algorithms such as FL, NN or 
PID controllers, of which some simple versions were also implemented in a separate 
experiment for testing and comparative purposes, with resulting times in the units to 
hundreds of µs range. More specifically, the NN implemented for the hybrid-
predictive-fitness scheme averaged at 34.7µswith its NARX topology and 8 neurons 
in the main layer and 12 neurons in the hidden layer. 

The numbers corresponding to the most representative cases of the MOGA are pre-
sented in Table 1.A ܾ݅݃ and a ݈݈ܽ݉ݏMOGA were adequately dimensioned thinking 
of complex and simpler problems, whereas the MOGA for the two rotor system was 
adjusted to allow a fast sample rate of 100mswith a prediction horizon of 5 steps. 

Table 1. Summary of the most significant results of the MOGA implementation 

 Big MOGA test Small MOGA test Twin Rotor test 

Fitness function Simple(1) Heavy(2) Simple(1) heavy(2) Nonlinear 
Model 

NN 

Objectives 2 2 2 2 2 2 

Population 60 60 15 15 15 15 

Generations 60 60 20 20 24 24 

Chromosome size 6 6 6 6 10 10 

Prediction horizon - - - - 5 5 

Constraints - - - - - - 

Code size 79.0 KB 79.7KB  78.4 KB 79.2 KB 101.8 KB 104.3 KB 

RAM occupation 85.5 KB 85.5 KB 11.6 KB 11.6 KB 14.9 KB  13.5KB 

TcycleAvg./Worst [ms] 922/970 998/1085 21.5/24.2 28.1/32.3 74.6/82.1 88.1/96.1 

C factor (see section 2) 0.002134 0.002310 0.002389 0.003122 0.006907 0.008157 

tevalAverage 0.335 μs 21.8 μs 0.335 μs 21.8 μs 136.2 μs 173.5 μs 

C’ factor(see eq. 3) 0.002130 0.002130 0.002378 0.002378 0.002371 0.002371 

 
It can be observedthat more RAM than Flash memory is needed, in spite of the 

speed oriented and flash consuming optimization settings. More generations barely 
increase Flash nor RAM usage, but a bigger population once again dramatically in-
creases the RAM consumption: without including the Twin Rotor nonlinear model (or 
the NN), the maximum possible population is 113. 

Regarding to the cycle times - the really critical point - the nonlinear model and 
NN based predictive evaluation functions are considerably more costly that the ݈ܵ݅݉݁݌  and ݕݒܽ݁ܪmathematical expressions (eqs. 1 and 2). Nevertheless, as the 
most significant part of the computation time is still taken by the MOGA itself,  
the relative growth of the total computation time is still acceptable.It can be also noted 
that, although the model is slightly faster than the NN in this implementation, it has 
some simplifications so that the NN might be able to reflect nonlinearities better.  
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A major advantage of having a generic expression of the computational cost is the 
fact that instead of relying on large tables constructed through extensive testing, the 
execution time of a MOGA with some specific parameters can be extrapolated with 
sufficient precision basing on a reduced set of test results and the expression shown in 
section 2: ܶ ൌ ܩଶሻܰܯሺܥ . The resulting ܥ  values obtained are shown in Table 1. 
The difference between C valuesis due to the fact that the ܰଶ factor applies to the 
evolutionary algorithm, but the fitness function evaluation is only called  ܯ · ܰ ·  ܩ
times. Therefore this should be considered if the execution cost of the algorithm as a 
whole, including the fitness functions, is to be considered. 

Consequently the following new expression is proposed: 

 ܶ ൌ ܩଶሻܰܯԢሺܥ ൅ ՜  ܩሻܨԢሺܰܥ ࢀ   ൌ ࡺࡹሾࡺԢሾ࡯ ൅  (3) ࡳሻሿࡲ

Being ܨ ൌ  ௘௩௔௟the total computation time of one fitness function callݐ andܥ/௘௩௔௟ݐ
(including all the objectives and therefore notܯ dependant in this representation). 
Here the ܥԢvalue corresponds to the MOGA running without any fitness evaluation. 

In this way, knowing the computation time of the fitness expression (which can be 
relatively easily obtained in diverse manners) and the ܥԢ value which reflects the 
platform/implementation performance, the computation time of a MOGA of any de-
sired population, generation and objective number can be easily and reliably obtained. 

A small difference between the new ܥ’ values can still be seen, which is explained 
by the fact that there are a series of operations in the loops that introduce offsets and 
different dependencies to the ܯ, ܰ, -magnitudes, hereby slightly distorting the rela ܩ
tion. Their values can be obtained by a combination of code analysis and measure-
ments, but it turns into anunnecessarilycomplex analysis. 

The results obtained in this µC implementation may be compared with those ob-
tained in a NSGA-II implementation on industrial systems by Larzabal et al. [25]. 
This was done on industrial platforms with much higher performance, size and cost. 
The resulting cycle time for a 1 GHz Intel® Celeron® PLC was under 0.15s for a 
population of 70, 100 generations and 1 objective. This gives ܥ ൌ 0.00031. Faster-
platforms obviously provide a lower ܥ  number due to their higher operating fre-
quency. Therefore representing these values in a frequency independent unit could 
provide an interesting benchmark. Calculating ܤ ൌ ܥ ൈ  ௣݂௥௢௖௘௦௦௢௥ሺݖܪܯሻ the result 
is ܤ ൌ 0.38~0.43 for the 180 MHz ARM® based µC and ܤ ൌ 0.31 for the 1 GHz 
Industrial PLC platform. The overall performance of the PLC is better, in spite of the 
additional cost of running a RTOS, as it benefits from higher processing capacity and 
other advantages such as cache and faster memory. 

5 Conclusions and Future Work 

The experimental results obtained in this work prove that the idea of embedding a 
NSGA-II MOGA on a reasonably priced µC - which hasconsiderable restrictions in 
terms of computational power and memory - is possible and reasonable. Therefore, 
this contribution is meant to support the future use of MOGAs not only for off-line 
optimization, but also as main controller in fast real-time control systems. 
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After a first phase where rather simple mathematical equations with reduced capac-
ity to represent real world systems were used as fitness function, more complex 
nonlinear models have been introduced in order toenable to control dynamic sys-
tems,based on a recursive predictive strategy. Anonlinear model with differential 
equation systemswas inserted into this scheme. Finally, following the hybrid soft-
computing concept,a NN which can representcomplex nonlinearities with consider-
able accuracy was also implemented into the predictive structure. 

The resulting cycle times are reasonably low and encouragingto follow this line 
and exploit its potential, as they enable the application of complex intelligent control 
methods on relatively fast dynamic systems. 

Sufficient degrees of freedom are still available to improve the application of com-
plex soft-computing algorithms and techniques, thus enabling the development of new 
systems and control concepts. Fine algorithm tuning and the code optimization for 
specific µCs or DSPs could still push the overall performance. 

A new and more detailed expression to predict - in a reliable and simple manner - 
the total computation time for the MOGA has also been presented. In this formula the 
influence of the fitness functions time cost has been treated independently and in-
cluded as a new term in the expression. 

Future work will develop a more refined implementation and a more exhaustive 
study of alternative solutions regarding both to the algorithmia and the µC or DSP 
based platforms. Following the intelligent control research line, next works will also 
focus on hybrid intelligent controllers’ implementation and their validation through 
the HiL setup. Transferring time consuming parallel operations to a FPGA to optimize 
the controller implementation will also be investigated. 
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